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billing period q

Bbuy,qdh BESS sell reservation price of hour h, day d, billing period q

Bpvsell,qdh PV sell reservation price of hour h, day d, billing period q

Bsell,qdh P2P sell reservation price (either Bpvsell,qdh or BBESSsell,qdh)

c1, c2 Acceleration coefficients (PSO)

Cmax 0 Initial maximum capacity

Cmax,qdh Maximum capacity at the start of hour h, day d, billing period q

Cbase,q Electricity cost in period q without PV installed (lowest cost plan)

Cc,qdh Total BESS charge cost up to hour h, day d, billing period q

Cdegrad Battery degradation cost

CEOL End-of-life maximum capacity

Cj
i,n Mean best position of particle i in dimension j at iteration n (QPSO)

Cpv,q Electricity cost in period q with PV installed

Cqdh Available capacity at the start of hour h, day d, billing period q

CSTC Cost of STC certificates

d Day number of billing period q

Dq Days in billing period q

DT Diffuse irradiation on a tilted surface

Dy PV module degradation factor in year y

E Equation of time

Ebal Energy balance after accounting for DER energy flows and losses

Ebd,qdh BESS discharge energy at the end of hour h, day d, billing period q

Ebdbid,qdh P2P BESS sell energy bid of hour h, day d, billing period q

Ebdloss,qdh BESS energy loss during discharge in hour h, day d, billing period q
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Ebg,qdh BESS grid-charge energy at the end of hour h, day d, billing period q

Ebgloss,qdh BESS energy loss during grid-charge in hour h, day d, billing period q

Ebloss,qdh Total BESS energy loss in hour h, day d, billing period q

Ebpv,qdh BESS PV-charge energy at the end of hour h, day d, billing period q

Ebpvloss,qdh BESS energy loss during PV-charge in hour h, day d, billing period q

Ebuybid,qdh P2P Buy energy bid of hour h, day d, billing period q

EEOL Total energy throughput of BESS before reaching end-of-life

Eload,qdh Load energy in hour h, day d, period q

EP2P,qdh P2P energy cleared of hour h, day d, billing period q

Epv,qdh PV generated energy in hour h, day d, period q

Epvbid,qdh P2P PV sell energy bid of hour h, day d, billing period q

Ethrough,qdh Cumulative BESS energy throughput up to hour h, day d, billing period q

Eyear Yearly energy consumption

F BESS loss factor

f Horizon brightening modulating factor

F1, F2 Circumsolar and horizon brightening coefficients

Fx−y View factors for each irradiation component

gk(x) Optimisation constraint functions (PSO)

GT Incident solar irradiance

Gj
n, P

j
i,n Global and personal best positions of particle i in dimension j and iteration

n (PSO)

Go, Gon Extra-terrestrial irradiance incident on a horizontal plane projected from
Earth’s surface and on the plane normal to propagation

Gsc Solar constant (1367 W/m2)

H Daily global (total) irradiation on the horizontal plane

h Hour number of day d

Hb, Hd Daily direct and diffuse irradiation on the horizontal plane

Ho Daily extra-terrestrial solar irradiation on a horizontal plane projected
from Earth’s surface

i Particle number (PSO)

I, IT Hourly global (total) irradiation on the horizontal plane and a tilted plane

Ib, Id Hourly direct (beam) and diffuse irradiation on the horizontal plane

Ibn Direct normal irradiation

Io, Ion Hourly extra-terrestrial solar irradiation incident on a horizontal plane
projected from Earth’s surface and on the plane normal to propagation

Id,cs Circumsolar diffuse irradiation

Id,hz Horizon brightening diffuse irradiation

Id,iso Isotropic diffuse irradiation
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Id,T Diffuse irradiation on a tilted surface

Igc, Idc, Ibnc Global, diffuse and direct normal clear-sky irradiation

Iop,qdh Off-peak BESS charge/discharge control variable for hour h, day d, billing
period q

Ipk,qdh Peak BESS charge/discharge control variable for hour h, day d, billing
period q

Ish,qdh Shoulder BESS charge/discharge control variable for hour h, day d, billing
period q

J Number of unique buy reservation prices in particular bidding hour

j, J Particle dimension and dimensionality of the problem (PSO)

K Number of problem constraints (PSO)

K Number of unique sell reservation prices in particular bidding hour

KT , kT Daily and hourly clearness indexes

Lj
i,n Delta potential well characteristic length (QPSO)

Lst, Lloc Longitudes of the standard meridian and the location in question

M Particle swarm size (PSO)

m Air mass

m Comprehensive learning refreshing gap (CLQPSO)

Mx BESS operation mode variable

Mlife,Mloc SRES contribution length and location multipliers

n Day number of the year

n,N Iteration number and maximum number of iterations (PSO)

P Payback period

p, p0 Mean site elevation and sea level atmospheric pressure

Pmax,pvbatt,q Maximum power demand with a PV-BESS system

Pmax,q Maximum power demand without a PV-BESS system

Pc,i Learning probability of particle i (CLQPSO)

Pc,qdh, Pd,qdh BESS charge and discharge permission control parameters of hour h, day
d, billing period q

pji,n Local attractor of particle i in dimension j at iteration n (QPSO)

Ppv,rat PV module rated power

Ppv PV module output power

Q Number of billing periods q in system lifetime

q Billing period of year y

R2 Coefficient of determination

Rb Ratio of direct irradiance on a tilted plane versus the horizontal plane

re Effective real electricity price growth

RT Ground-reflected irradiation on a tilted surface
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Rmax Maximum BESS charge/discharge rate

RBUY,qdh Supply and demand ratio at the final successful buy reservation price of
hour h, day d, billing period q

Rbuy,qdh Supply and demand ratio for a particular P2P participant buying energy
of hour h, day d, billing period q

rdeg Degradation rate

rd Effective real discount rate per billing period

re Effective real electricity price growth rate per billing period

rji,n, R
j
i,n Sequence of uniformly distributed random numbers (PSO)

rinf Rate of inflation

rnom Annual nominal discount rate

rreal Annual real discount rate

RSELL,qdh Demand and supply ratio at the final successful sell reservation price of
hour h, day d, billing period q

Rsell,qdh Demand and supply ratio for a particular P2P participant selling energy
of hour h, day d, billing period q

Sb Total BESS cost

Spv PV system cost

t Number of discounting (billing) periods per year

Ta Ambient temperature

Tc PV module temperature

TL(m) Linke Turbidity

Tmax,der,qd Maximum power demand with DERs

Tmax,Tmin Maximum and minimum daily temperatures

Tc,qdh Moving average electricity tariff for BESS charging up to hour h, day d,
billing period q

TDC0,qd, TDC,qd Network demand charge under lowest cost and alternative plans

Tfit,qdh PV feed-in tariff

Tluos,qdh LUoS energy charge of hour h, day d, billing period q

TNOCT Nominal operating cell temperature

TP2P,qdh P2P clearing price of hour h, day d, billing period q

Tpv,qdh PV feed-in tariff or power purchase agreement supply rate

Tret0,qdh, Tret,qdh Retailer tariff under lowest cost and alternative plan

Tsc0,qd, Tsc,qd Daily supply charge under lowest cost and alternative plans

Ttuos,qdh TUoS energy charge of hour h, day d, billing period q

Ub Per unit battery cost

Uinv Unit inverter replacement cost ($/W)

Upv Unit cost of PV system replacement($/Wp)
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vji,n, x
j
i,n Velocity and position of particle i in dimension j & iteration n (PSO)

Wq Maintenance cost

X Number of batteries

xρ,j , yρ,k Unique buy and sell reservation prices in a particular bidding hour

xξ,j , yξ,k Cumulative energy bids up to a unique buy and sell reservation price in a
particular bidding hour

y Year number

YEOL Cycle life

Yqdh Operational cycles at the end of hour h, day d, billing period q

Z, Zmax Number of PV modules and maximum number of modules permitted

AEMC Australian Energy Market Commission

AER Australian Energy Regulator

AMI Advanced metering infrastructure

AREMI Australian Renewable Energy Mapping Infrastructure

ARENA Australian Renewable Energy Agency

BAU Business-as-Usual

BESS Battery energy storage system

BoM Australian Bureau of Meteorology

BRL Boland–Ridley–Lauret diffuse fraction model

BSRN Baseline Surface Radiation Network+

CDF Cumulative distribution function

CDO Climate Data On-line

CdTe Cadmium telluride

CER Australian Government Clean Energy Regulator

CIGS Copper indium gallium selenide

CPI Combined Performance Index

CPP Critical peak pricing

CSV Comma-separated variable

DAP Day-ahead pricing

DER Distributed energy resource

DG Distributed generation

DHI Diffuse horizontal irradiation

DLC Direct load control

DLT Distributed ledger technology

DNI Direct normal irradiation

DNSP Distribution Network Service Provider

DR Demand response
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DS Distributed storage

DSM Demand-side management

DUoS Distribution use-of-system

ESRA European Solar Radiation Atlas

ET Extra-terrestrial

FiT Feed-in tariff

GEBA Global Energy Balance Archive

GHI Global horizontal irradiation

GW Gigawatt

GWh Gigawatt hour

HDKR Hay-Davies-Klucher-Reindl

HSI Hourly Solar Irradiance Data

ICT Information and communications technology

IWEC2 International Weather files for Energy Calculations (Second Generation)

KSI Kolmogorov-Smirnov Integral

kW Gigawatt

kWh Kilowatt hour

LCOE Levelised cost of energy

LGC Large-scale generation certificate

LGNC Local general network credit

LNC Local network charge

LRET Large-scale Renewable Energy Target

LRMC Long-run marginal cost

LUoS Local use-of-service

MBE Mean bias error

MeAPE Median absolute percentage error

MINLP Mixed-Integer Non-Linear Programming

MIRR Modified internal rate of return

MMR Mid-market rate

MW Megawatt

MWh Megawatt hour

NASA National Aeronautical and Space Administration

NEM National Electricity Market

NOCT Nominal operating cell temperature

NPV Net Present Value

NREL National Renewable Energy Laboratory

NSRDB National Solar Resource Database
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NUoS Network use-of-system

OMS One Minute Solar Data

OVER Relative frequency of exceedence from KSI

P2P Peer-to-peer

PPA Power purchase agreement

PSO Particle swarm optimisation

PTR Peak-time rebates

PV Photovoltaic

QDPSO Quantum delta potential well-based particle swarm optimisation

QPSO Quantum-behaved particle swarm optimisation

RET Renewable Energy Target

rMBE Relative mean bias error

RMSE Root mean square error

rRMSE Relative root mean square error

RTP Real-time pricing

SAM System Advisor Model

SBS Solar Bonus Scheme

SDR Supply and demand ratio

SGSC Smart Grid, Smart City

SoDa Solar Radiation Data

SRES Small-scale Renewable Energy Scheme

SSE Surface Meteorology and Solar Energy

STC Small-scale technology certificate

STC Standard test conditions

TMY Typical Meteorological Year

TOU Time-of-use

TSS Tariff structure statement

TUoS Transmission use-of-system

UTC Coordinated Universal Time

W Watt

WMO World Meteorological Organisation

WRDC World Radiation Data Centre



Abstract

A
dvances in photovoltaic and battery energy storage system (BESS) technologies have

made hybrid PV-BESS systems an attractive prospect for residential energy con-

sumers. However, the process to select an appropriate system is non-trivial due to the

relatively high cost of batteries, a multitude of available retail electricity plans, the re-

moval of incentive schemes and the impending introduction of disruptive technologies such

as peer-to-peer energy trading.

The introduction of Smart Grid technologies, particularly smart meters, enables con-

sumers to leverage high temporal resolution energy consumption data to optimise system

design based on an individual customer’s circumstance. In this research, real-world energy

consumption data for a large sample of homes are applied to an optimisation strategy de-

veloped to the select system size, tilt, azimuth and retail electricity plan for a residential

PV-BESS based on a customer’s temporal load profile. A case study examining a real

world hybrid PV-BESS is presented to demonstrate the potential benefit of applying the

optimisation process established in this research.

Particle swarm optimisation (PSO) is utilised as the underlying optimisation algorithm

given its suitability to mixed integer non-linear programming problems, characteristic of

the energy models developed in this research. To improve global search performance with

minimal parameter adjustments, various forms of PSO are applied including quantum-

behaved PSO and a modified version with a comprehensive learning component.

To facilitate energy yield modelling, accurate hourly solar irradiation and photovoltaic

array generation models are critical to the optimisation process. Numerous models have

been developed to estimate diffuse and direct irradiance components based on global ir-

radiation measurements. The Boland–Ridley–Lauret (BRL) model consists of a single set

of parameters for all global locations. There is scope to improve the BRL model to better

match local climatic conditions. In this research, the Köppen-Geiger climate classification

system is considered to develop a set of adjusted BRL models for Australian conditions,

which are subsequently applied to the energy models developed in this research.

With the future application of peer-to-peer energy trading markets, prospective in-

vestors would benefit from prior consideration of market conditions and the penetration

rates of participant PV-BESS systems when designing such systems. In this research,

a lifetime assessment of PV-BESS systems is undertaken for a hypothetical peer-to-peer

market of over 2,000 participants. Trader margin, participant margin, network tariff struc-

tures and PV-BESS penetration rate scenarios are considered to examine the impacts on

the optimal PV-BESS design maximising the economic return.

xxxiii





Chapter 1

Introduction

T
he photovoltaic (PV) industry has undergone rapid growth over the last decade at-

tributable to a number of factors including increased PV module efficiencies, reduced

manufacturing costs, reduced installation costs and the introduction of government sub-

sidies, rebates and other incentive schemes. Photovoltaics as a standalone system, while

providing an avenue for consumers to reduce overall energy costs, introduce difficulties

from network operator’s perspective due to the non-scheduled generation profile exhibited

by PV modules – they only produce electricity during daylight hours and energy gen-

erated is highly dependent on weather and season. To manage the fluctuating output of

renewable energy sources, network and market operators are required to invest extensively

to maintain grid stability and provide spinning reserve generation during periods of low

solar irradiation [1]. Consequently, the magnitude of network wide photovoltaic capacity

is inherently limited before cost-prohibitive network upgrades are required, potentially

effecting the economic viability of PV systems.

The introduction of energy storage technologies has the potential to dramatically

change the feasibility of solar and other renewable energy source contributions. Energy

storage systems enable multiple objectives to be achieved. Coupled with advanced power

electronics and communications, energy storage systems can provide power quality im-

provement roles such as voltage and frequency regulation [2] in addition to load or gener-

ation shifting functions normalising demand profiles, collectively reducing costs for both

networks and consumers.

The integration of energy storage has historically been cost prohibitive. Electrical

energy is difficult to store efficiently and cheaply. Large-scale energy storage in the form

of pumped hydro has been utilised for many decades however the technology does not

scale well and cannot be used in smaller installations or at the distribution network level.

Other technologies such as flywheels, compressed air and superconducting magnetic energy

storage have also been introduced, however the complexities of integration, scalability and

cost limit their viability [3].

A battery energy storage system (BESS), in principle, presents a viable option at all

levels of the electricity network. The technology is scalable, ranging from small residential

installations to large transmission network services. Recent progress in battery research

through the development of more efficient chemistries, improved manufacturing techniques

1



2 Introduction

and economies of scale, is forecast to continue to reduce the cost of BESSs [4,5]. However,

to operate at its maximum potential, battery storage requires a more flexible, smarter

electricity network.

The Smart Grid is an evolving paradigm in electrical energy delivery, gaining signifi-

cant traction in recent years. The concept involves the marriage of the electricity network

with state-of-the-art information and communications technology to provide increased con-

trollability and flexibility. One of the key enabling technologies are advanced electricity

meters, referrred to as smart meters – devices that enable energy data to be captured

over short time intervals in near real-time and transmitted via advanced communication

networks to interested parties [6]. Additionally, smart meters facilitate the introduction

of variable electricity price signals, better reflecting the true cost of electricity generation

and encouraging economical energy usage.

The integration of the Smart Grid, particularly smart metering, has the potential

to significantly influence the penetration of small-scale energy storage systems into the

distribution network. Flexible pricing plans may allow customers to take advantage of

low-cost electricity during off-peak periods to charge storage systems and discharge during

peak hours when electricity cost is high. Combined with renewable energy sources such as

solar to form a hybrid energy source, BESSs enable the formation of what are effectively

small-scale grid-connected microgrids, providing a consumer with the flexibility to utilise

on-site generation, stored energy or import energy from the grid in order to maximise

electricity cost savings.

The research presented in this thesis focuses on small-scale hybrid PV-BESS systems

at the residential level, investigating the numerous factors effecting photovoltaic sources

coupled with energy storage to determine optimal system design and operation method-

ologies to maximise electricity cost savings.

The removal of government incentive schemes and the introduction of dynamic tariffs

increases the complexity of the installation business case for small-scale hybrid PV-BESS

systems. The findings of the ‘Smart Grid, Smart City’ (SGSC) project and the Grattan

Institute detailed in Section 2.4 highlight the need for a comprehensive assessment tool

to inform prospective investors and establish the economic efficacy of new hybrid energy

systems.

A design optimisation strategy for hybrid PV-BESS systems is developed in this re-

search. The maximisation of the net benefit achieved through reduced imported energy

costs is set as the underlying objective. Within a competitive retail electricity market

with various tariff structures including flat and time-of-use (TOU) tariffs, as well as the

impending introduction of peer-to-peer energy trading, the most appropriate retail elec-

tricity and peer-traded energy agreements are not self-evident. The research presented

in this thesis is principally focused towards leveraging high temporal resolution energy

consumption data facilitated by smart meters to develop a specific consumer-centred eval-

uation based on influential factors such as subject location, prevailing solar irradiation

and available retail electricity plans. The traditional PV installation objective aiming to

maximise gross energy generation is challenged as the most cost-effective approach. Fur-
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thermore, the trending popularity of residential energy storage devices has highlighted the

necessity for a detailed economic assessment to establish the viability of such a system for

a specific customer’s applications. The ultimate objective of this research is to remove the

uncertainty in system specification and retail electricity plan selection in a competitive

retail market and dynamic regulatory environment.

The desire for flexibility and empowerment to choose renewable electricity sources

at the consumer level has driven the introduction of collaborative economy concepts in

electricity markets [7]. Electricity markets are transitioning from traditional centralised

generation to decentralised structures, facilitated by the widespread introduction of dis-

tributed energy resources (DERs) such as PV and BESSs, and the introduction of other

disruptive ‘sharing economy’ concepts popularised by companies such as Uber and AirBnB.

The concept that energy can be traded between self-organised peers and groups [8], either

as independent producers or community-based structures [7], is expected to be facilitated

by the introduction of physical microgrids or blockchain technologies.

Peer-to-peer (P2P) trading, as a concept whereby bilateral agreements are established

between two electricity peers for the exchange of electricity, is not restricted to large

traditional generators and industrial consumers. The concept, through enabling soft tech-

nologies, can be applied to all levels of the network including single household consumers

or prosumers, leveraging DERs such as solar PV and BESSs.

P2P research is still in its infancy with no agreement on the most efficient data sharing

and processing structures or fair market designs that facilitate local energy trading. In

this research, a hypothetical P2P market structure is investigated based on an auction

scheme reflecting the mechanisms adopted in the Australian wholesale electricity market.

The final contributions of this thesis aim to provide commentary on key factors influencing

optimal DER system design associated with a potential P2P market structure to provide

investment context to prospective DER investors.

1.1 Contributions of the Thesis and Claims to Originality

The research presented in this thesis spans a range of concepts including solar irradiation

modelling enabling PV energy yield model development and assessment, economic analysis,

BESS energy flow models and finally P2P market structures and trade settlement. The

key contributions of this research and duly noted claims to originality are as follows:

• A comprehensive review of solar irradiation databases for energy yield assessment

is presented for the purposes of small-scale PV system energy assessment in the

context of Australia. The Climate Data On-line (CDO) database for daily data and

the Australian Renewable Energy Mapping Infrastructure (AREMI) database for

hourly data processed by the Australian Bureau of Meteorology (BoM) are identified

as suitable references for a low-cost energy resource assessment.

• The diffuse irradiation model referred to as the Boland–Ridley–Lauret (BRL) model

is improved through specific consideration of locational climatology and a rigorous
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data quality control methodology, which to the author’s knowledge has not been

previously applied in the context of Australia. The Köppen-Geiger climate clas-

sification system is used to define Australian climate zones. New Köppen-Geiger

zone BRL models are developed for each climate zone and shown to improve diffuse

irradiation assessment across Australian climatologies for ground-based global irradi-

ation measurement. For satellite-based global irradiation estimates, a new National

BRL model is developed for the Australian continent and shown to out-perform the

existing models used to develop the irradiation components of the AREMI database.

• While PV system design optimisation may be undertaken using many existing soft-

ware platforms, widespread application of optimisation techniques at the residential

consumer level using real-world high temporal resolution smart meter consumption

data has not previously been investigated. The novelty of this research lies in the

large sample size application of design optimisation techniques to establish market

trends in different geographical and electricity network areas. The research presented

in this thesis is intended to establish viability trends for PV systems in the Australian

electricity market including drawing comparisons against recently installed PV sys-

tems and highlighting the economic efficacy of such systems.

• In response to the increasing penetration of residential BESSs in the Australian

consumer market, the design optimisation methodology established in this research

is extended to hybrid PV-BESS systems to provide an assessment of BESS viability

based on a large sample of high resolution real-world consumption data.

• Given the infancy of P2P trading in an Australian context, a comprehensive and

timely review of P2P energy trading projects and schemes is presented to establish

key issues and concepts associated with residential PV-BESS systems participating

in P2P markets.

• Finally, an expansive P2P market assessment based on real-world electricity con-

sumption data from over 2,200 residential premises is conducted, an assessment

which to the author’s knowledge has not yet been undertaken at such as scale with

actual smart meter data in the context of the Australian National Electricity Market

(NEM). A novel assessment of PV-BESS lifetime economic performance is presented

in the context of a P2P market structure with unique consideration given to sys-

tem design optimisation. Recently proposed cost-reflective network tariffs developed

in response to updated regulator requirements are considered for the first time un-

der P2P trading scenarios to assess the impacts on DER design optimisation. An

auction-based market structure previously considered in literature, is expanded to

enable battery degradation and charge costs to be considered prior to market partici-

pation. A comprehensive sensitivity analysis is undertaken to investigate the impact

on DER investment decisions and the physical characteristics of optimally designed

PV-BESS systems intended for operation in a P2P trading market.
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1.2 Thesis Structure

Given the wide range of concepts considered in this research, including solar irradiation

modelling, battery energy flow models, optimisation strategies and algorithms and peer-

to-peer energy trading concepts, with the exception of an initial background chapter and

Chapter 3, relevant literature reviews are introduced at the beginning of each chapter.

The remainder of this thesis is structured as follows.

Chapter 2 presents a brief review of the principles and defining aspects associated

with Smart Grids with a specific focus towards smart metering. A review of the recently

conducted SGSC project in Australia is presented. Motivating factors behind the research

presented in this thesis are drawn from the SGSC project outcomes and observations.

Chapter 3 presents a literature review of solar irradiation modelling aspects includ-

ing a summary of solar irradiation databases. Key solar irradiation modelling equations

are described and a plane-of-array transposition model selected as a key component of

PV energy yield modelling. The BRL model estimating diffuse irradiation components is

introduced and an area for further improvement through specific consideration of climato-

logical zones is identified. The Köppen-Geiger climate classification system is introduced,

establishing the basis for the original research presented in Chapter 4.

In Chapter 4, modified versions of the BRL diffuse model used by BoM are developed

based on Köppen-Geiger climate classifications to improve the accuracy of the current

single national-level model. Specific models for each Köppen-Geiger climate classification

zone are developed for use on ground-based global irradiation measurements. A rigorous

data quality control regime is applied, with the filtered data used to develop improved BRL

models proposed for use in Australian locations. For satellite-based global irradiation

estimates, a new National BRL diffuse model is developed leveraging the data filtered

through the extensive quality control tests considered in this research.

Chapter 5 describes the PV energy yield and economic models and other financial

metrics assumed in this research. The central optimisation problem to maximise the

economic benefit to a prospective investor is defined. A particle swarm optimisation

algorithm using a penalty function and a hypercube nearest vertex approach to handle

constraints is defined and applied to solve the optimisation problem. The efficacy of the

optimisation methodology is demonstrated on a small selection of real-world consumer

data from the SGSC project before a wider extension to a large number of customers in

different geographic regions of Australia.

Chapter 6 describes the battery energy flow and lifetime operation models developed

for this research. The optimisation problem previously defined for a standalone PV system

is modified for a hybrid PV-BESS system. The methodology is applied to two commer-

cially available residential energy storage systems investigated for 100 real customers to

demonstrate the viability of the PV-BESS systems against a particular customer’s energy

circumstances.

Chapter 7 presents a case study for the application of the optimisation methodology

against a real-world hybrid PV-BESS system. The output of the PV energy yield model

is compared against measured PV energy to establish the model accuracy. A hypothetical
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system is modelled to establish the potential investment opportunities had an optimised

system been considered prior to installation.

Chapter 8 investigates the influence on PV-BESS system design optimisation in the

context of a P2P energy trading market. A hypothetical market structure is established

based on mechanisms presented in literature and a large pool of over 2,200 residential par-

ticipants leveraging smart meter data from the SGSC project. Revised energy flow, energy

bidding and reservation price models are developed and simulated over a 20-year market

horizon under various market cases based on PV-BESS market penetration rate scenarios,

expected profit margins and network tariff structures among other considerations. Design

optimisation is undertaken for a sample of 100 customers under numerous scenarios to in-

vestigate the viability and design characteristics of PV-BESS systems intending to engage

in a P2P trading market.

Finally, Chapter 9 presents a summary of research conclusions and potential areas for

future work are identified.
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Chapter 2

Background

S
mart Grid technologies provide a wide range of services designed to achieve the pri-

mary objectives of improving electrical network stability, reliability and energy delivery

efficiency. To provide context towards the research presented in this thesis, general aspects

and introductory terms associated with Smart Grid technologies and DERs are presented

in this chapter as a prelude to the deeper literature reviews and original research under-

taken in subsequent chapters. A review of the SGSC project as a wide-scale Smart Grid

technology assessment within the Australian NEM is presented. The chapter concludes

with a summary of the motivating factors behind the research presented in this thesis.

2.1 The Smart Grid

The Smart Grid is an evolving paradigm associated with the integration of innovative

control, monitoring and communication technologies into the electricity network. The pri-

mary objectives of Smart Grids are to improve energy efficiency, security and reliability

while increasing the integration of renewable energy [9]. Smart Grids rely on advanced

programs and algorithms installed in smart devices at all levels of the electricity net-

work; from generation and transmission, through to the distribution network and end

consumers; combined with an extensive communications network to achieve the following

core applications [9]:

1. Volt and Var control

2. Fault detection, isolation and restoration

3. Wide area monitoring, protection and control

4. Demand response (DR)

5. Distributed generation (DG)

Advanced control devices have long been employed by utilities to dispatch and con-

trol large-scale generators based on fluctuating electricity spot market prices and manage

power flow through the transmission network. However, the penetration of Smart Grid

9
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technologies into the distribution network and ultimately the end user is, as described by

Feng et al., the “last frontier of power system modernisation” [9].

Residential customers, in contrast to industrial and commercial customers, generally

have more flexibility regarding their energy usage behaviours [1]. Therefore residential

customers form a user group with significant potential to influence grid-wide energy usage

to create a more efficient and reliable Smart Grid.

DR and DG are the two Smart Grid applications most directly applicable to the distri-

bution network and ultimately present the greatest potential for end-customer engagement

and influence. Participation in DR and integration of DG at the residential level are the

key Smart Grid focus areas for this research.

2.1.1 Demand Response

Electricity utilities must constantly balance load with available dispatchable generation

in order to maintain grid stability. DR programs provide an extra degree of freedom to

achieve this balance as they allow the utility and/or customer to time shift or curtail load

without the need for additional generation capacity. DR is a mid-point solution between

manipulating energy demand through the electricity price spot market and instigating

emergency load shedding [9].

DR programs fall into two broad categories – incentive-based DR and price responsive

DR [9]. Incentive-based DR programs have been leveraged by utilities for decades [9].

Programs such as direct load control (DLC), aim to shift operation of energy demanding

appliances such as hot water systems to off-peak hours. In these applications, customer

inconvenience is compensated through credits on energy bills or reduced energy tariffs.

Another incentive-based DR program relates to interruptible/curtailable load and

emergency demand reduction where customers act as a virtual spinning reserve [10]. Un-

der these programs, requests to reduce demand are sent to customers. In contrast to

DLC, these requests are not compulsory but the customer may incur penalties for non-

conformances.

Price responsive DR is gaining increased attention through the opportunities presented

by the transition to the Smart Grid [9]. As advanced metering infrastructure (AMI)

becomes increasingly integrated into the electricity network, the cost of transmitting price

signals reduces, enabling price responsive DR to become one of the most effective DR

programs [6].

Customers are not restricted by the contractual obligations that are a feature of

incentive-based DR. Therefore price responsive DR is also referred to as voluntary DR [9].

Under these programs, utilities provide dynamic pricing signals to customers, encouraging

them to reduce demand during peak hours and shift load to off-peak hours. In situations

where loads cannot be shifted without a certain degree of inconvenience, such as entertain-

ment systems or cooking appliances, price signalling motivates the customer to purchase

energy efficient appliances.

The potential collective economic benefits to both the utility and the customer through

price responsive DR and advanced forms of DLC enabled by home automation networks
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are key drivers for the Smart Grid [9]. However, the implementation of price responsive

DR is only possible through AMI and the introduction of intelligent metering devices

known as smart meters.

Demand Response in the form of price responsive PV and BESS systems is investigated

in Chapters 5 to 8 to assess the influence on optimal PV and BESS system design. Smart

meters, as a key enabling DR technology, are leveraged. A description of smart meters

and their market penetration is provided in Section 2.1.2.

2.1.2 Smart Meters

Traditional electro-mechanical energy meters measure cumulative energy consumption and

are usually read by technicians periodically, typically on a quarterly basis for residential or

small business consumers. Consequently, traditional meters can only provide information

on total energy usage, not the time during which the energy was consumed.

Smart meters are advanced electronic energy meters capable of measuring electricity

consumption in real-time and providing bi-directional communication between the utility

and the customer [11–13]. Smart meters are an integral component of the future Smart

Grid paradigm and electricity utilities are progressively integrating them into their net-

works [14, 15].

High temporal resolution energy consumption data available through smart meters are

leveraged in Chapters 5 to 8 to facilitate design optimisation of PV and BESS systems as

a core input to the original research presented in this thesis. The subsequent subsections

provide additional background and context around smart meter integration and common

energy pricing mechanisms available through smart meter deployment.

2.1.2.1 Smart Meter Deployment

Smart meters have been rapidly adopted by numerous countries in the last 5 to 10 years

with many undertaking aggressive rollout plans. The single largest smart meter integrator

is China which, by the end of 2013, had installed 250 million smart meters, accounting for

62% of households [16]. The bullish adoption of smart meters in China was projected to

continue, with a penetration target of 95% by the end of 2018 [16].

In 2013, the Council of European Energy Regulators published a report detailing the

current rollout status of smart meters in European member countries [15]. The report

determined that two countries had completed their rollout (Sweden 100% and Italy 95%),

Finland would reach its 80% target by the end of 2013 and thirteen others were currently

rolling out or intending to rollout smart meters with penetration rates of at least 80% [15].

In the UK, a program to roll-out 50 million smart meters by 2020 was adopted with the

majority of customers beginning to receive smart meters from 2016 [17].

In North America, the United States has invested in numerous Smart Grid AMI

projects under funding provided by the American Recovery and Reinvestment Act 2009.

As of March 2013, a total of 14.2 million smart meters had been installed through the

various AMI projects [18] to give a total installation base of 46 million (accounting for
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40% of households) [16]. By the end of 2015, 65 million smart meters were projected to

be installed in the United States [18].

In Australia, the widest deployment of smart meters was instigated by the Victorian

State Government through its 2006 mandate to install smart meters in every Victorian

residence and small business [19]. By early 2014, 2.8 million smart meters had been

installed in Victorian premises [14].

2.1.2.2 Pricing Strategies

Traditional pricing strategies structured for traditional electromechanical meters involve a

single fixed, or ‘all-in’, rate for all energy consumption [20]. Traditional flat or ‘incremental

block’ rates do not reflect the true cost of energy, but are a reflection of the expected aver-

age cost of electricity generation [6] and the proportion of the network long-run marginal

cost (LRMC) [21] over a billing period. As a result, the fluctuating demand that is a defin-

ing feature of the electricity network is not transparent to the consumer and the quarterly

bill provides little feedback and incentive to change energy usage patterns [1].

Smart meters allow the introduction of alternate energy pricing strategies involving

cost reflective dynamic tariffs [1, 6]. The primary objective of dynamic pricing is to en-

courage customers to shift a percentage of load from peak to off-peak hours to produce a

levelised demand profile throughout the day. As detailed in Section 2.1, dynamic pricing

strategies are therefore a form of voluntary DR. Examples of various pricing strategies are

provided in Figure 2.1 and subsequently discussed in the remainder of this section.

2.1.2.3 Time-of-Use Pricing

TOU pricing involves dividing the day into two or more time periods and setting prices

for each period [20]. Rudimentary TOU pricing has been used by utilities for many years

in the form of separate metering circuits for off-peak hot water systems and other limited

applications. However, generally the term TOU pricing refers to a more flexible strategy

whereby all appliances are subject to the time-based rates and therefore able to participate

in price responsive DR.

TOU strategies include different rates for peak, off-peak and shoulder periods. Typ-

ically, peak periods are in the morning and evening, off-peak are late at night and early

morning, while shoulder periods may be any period in between. Figure 2.1 presents a

simple example of a TOU strategy with three price levels. A TOU strategy may also

include different pricing periods for weekdays and weekends, as well as seasonal pricing,

to allow for the different demand profiles over these days.

The influence on optimal DER design characteristics of TOU pricing mechanisms is

investigated in Chapters 5 to 8.

2.1.2.4 Critical Peak Pricing

Critical peak pricing (CPP) is a pricing strategy that aims to better reflect the true cost

of power generation under extreme operating scenarios [20]. CPP is a variation on TOU,
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Figure 2.1: Electricity dynamic pricing strategies

as shown in Figure 2.1 where customers are subjected to energy prices that may be 5 to

10 times higher [6] than the base peak rate. CPP periods occur on the few days per year

where network demand is at its highest [20]. Customers are notified a day in advance

before a critical day will take place.

Another concept closely related to CPP is known as a peak-time rebate (PTR) [20].

In the United States, particularly in California, utilities offer PTR in the form of Demand

Bidding Programs [22]. Under these programs, the customer receives a rebate for reducing

consumption by the bid amount during critical peaks.

However, in an Australian context CPP is not typically applied, particularly at the

residential consumer level.

2.1.2.5 Real-Time Pricing

Real-time pricing (RTP) reflects the temporal variation of electricity prices throughout the

day as energy demand fluctuates. While it is a more accurate reflection of the wholesale

electricity market prices [20,23,24], RTP cannot be easily predicted or understood by small-

scale customers [6]. Under RTP, price signals are released an hour or day ahead [20, 24]

(whereby it is also known as Day-ahead Pricing (DAP)) to customers, enabling them to

identify periods of increased prices and adjust their consumption patterns accordingly.

Similar to CPP, RTP has not yet been adopted in Australia at the residential consumer

level. However, RTP in the form of real-time energy bids and settlement is investigated in

Chapter 8 as part of a design optimisation strategy in the presence of hypothetical P2P

energy markets.
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2.2 Distributed Generation

DG, also referred to as embedded generation, typically involves small-scale generation

installed within a customer’s private network or embedded in the distribution network,

rather than the transmission network [9]. DG challenges the traditional network archi-

tecture where electricity is produced by large centralised generators and flows in a single

direction to load centres [6]. Instead, DG forces the electricity network to become ‘bi-

directional’ as the network must allow power flow both to and from load centres [6].

Integrating DG seamlessly and reliably is one of the key challenges and drivers for the

Smart Grid.

DG has significant potential to reduce network congestion, particularly at the trans-

mission level, by enabling generation self-sufficiency within localised networks zones [6,9].

Numerous experts have studied the economic implications of adopting a less centralised

network architecture with many concluding that substantial cost savings can be achieved

through reduced transmission infrastructure capital expenditure [6].

However the advantages of DG must first overcome significant hurdles before viability

can be achieved. Not only does DG rely on system wide technology upgrades, extensive

regulatory reform must also be undertaken to increase the liberalisation of the energy

market, enabling small-scale generators to participate effectively [6, 9].

DG consists of a variety of technologies and energy sources [9, 25] including:

• PV

• Small wind turbines

• Fuel Cells

• Microturbines

• Combined Cooling, Heat and Power

For the purposes of this research, DG in the form PV is investigated, establishing

design and operating philosophies and relationships to enable optimal PV participation in

a Smart Grid environment.

The fundamental principles and modelling techniques for PV panels are presented

in Chapter 5 along with the contextual background and the intended scope of this re-

search from a DG perspective. However, preliminary motivating factors for this research

stemming from recent Smart Grid trials and studies are first presented in Section 2.4.

2.3 Distributed Storage

Distributed storage (DS) in many ways fulfils a similar role to DG in a Smart Grid envi-

ronment [6]. During particular periods of the day or for certain seasons of the year, DS

can supplement the main grid or other DG sources to meet demand while providing other

ancillary services associated with improving power quality. However, unlike DG, the net
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energy contribution to the network through DS is zero (or more precisely, slightly nega-

tive due to charge/discharge inefficiencies). Therefore, DS primarily performs an energy

arbitrage or load shifting role [3] in addition to other ancillary services such as voltage

regulation and frequency support.

DS, and to a lesser extent DG and DR, are considered disruptive technologies, as

the need to maintain an immediate balance with traditional large-scale generators is re-

duced or removed entirely [6]. DS, DG and DR programs can be dispatched to perform

a load following application, enabling central generators to maintain relatively continuous

operation.

With extensive DS penetration levels, the need to maintain the electricity network

to cater for pronounced peak periods is greatly reduced. At the greatest extreme, the

network need only be constructed and maintained to provide sufficient energy to ensure

the energy storage devices can be charged [6].

There are numerous energy storage system technologies available, with varying degrees

of efficiency, practicality and fields of application. Some technologies are more suited to

larger scale applications while others may be implemented at all levels of the grid. The

following energy storage systems may be applied in a DS context:

• Pumped Hydro

• Flywheels

• Superconducting Magnetic Energy Storage

• Compressed Air Energy Storage

• Fuel Cells

• Electrochemical Energy Storage

At the small-scale customer level of the electricity network, fuel cells and electro-

chemical energy storage in the form of batteries present the greatest opportunity for DS

deployment. In this research, electrochemical energy storage in the form of a BESS is

investigated.

DG and DS are often collectively referred to as DERs [26], as introduced in Chapter 1.

The term DER hereafter refers to either DG, DS or a combination of both. Design

optimisation of DS is first investigated in Chapter 6 and expanded to a real-world case

study in Chapter 7. Finally, design optimisation of DS for utilisation in P2P energy

trading markets is investigated in Chapter 8.

2.4 Smart Grid Trials

Smart Grid trials have been implemented by numerous electrical utilities and research

organisations in many countries around the world [13]. The United States, France, UK

European Union, Japan and South Korea collectively invested US$3.2 billion in Smart

Grid development programs between 2013 and 2015 [13]. China’s nation building ‘Strong
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Figure 2.2: NPV analysis for national application of Smart Grid technologies in Australia
under a medium macro-economic scenario until 2034. Source: Arup [1]

and Smart Grid Program’ greatly out-scales other world programs with investment funding

totalling $100 billion through to 2020 [13]. However the ‘Strong and Smart Grid Program’

is more aligned with the development of new traditional network infrastructure as opposed

to a pure Smart Grid architecture.

The Australian Government initiated SGSC project was one of the largest and widest

ranging Smart Grid technology trials to have been conducted in the world to date [1].

Ausgrid, owner and operator of one of the largest distribution networks in Australia on a

customer basis, was selected to facilitate the trial and provided with $100 million in funding

from the Australian Government. Through Ausgrid and its consortium of consultant,

research and technology partners, a total of $490 million was invested to complete the

program [1].

Beginning in 2010 and ending in 2013, the trial was divided into numerous work-

streams including common platforms (focusing on communication technology and data

management), grid applications, customer applications, DG/DS and Electric Vehicles. Of

particular interest to this research are the key findings and recommendations associated

with the customer applications, DG and DS workstreams.

For all Smart Grid technologies implemented as part of the trial, a net present value

(NPV) assessment was conducted by extrapolating the results from the trial base to fore-

cast the potential benefits and costs at a national level. Ultimately, the trial results

indicated that implementing the full range of Smart Grid technologies at all levels of the

electricity network would result in a net benefit of between $9.5 billion and $28.5 billion

over 20 years depending on the macro-economic scenario considered [1, 13]. The NPV

analysis under the medium macro-economic scenario is shown in Figure 2.2.

The SGSC trial data are leveraged as a key input to the analysis and original re-

search presented in this thesis. The DER design optimisation investigations presented in

Chapters 5, 6 and 8 utilise the data gathered from thousands of real Australian residences.
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2.4.1 Customer Applications Findings

The customer applications workstream tested different methods of interacting with cus-

tomers to determine if behavioural practices could be influenced through the introduction

of empowering feedback technologies. To implement the workstream, just over 17,000

smart meters were installed in individual homes in rural and urban networks within New

South Wales [1]. To test the effectiveness of Smart Grid technologies, a number of different

electricity plans and products were made available to the participating customers. In some

instances, customers kept their existing fixed rate electricity plans commonly associated

with the traditional grid, while other customers were switched to alternative plans with

dynamic tariffs. Under these plans, customers were offered a number of different prod-

ucts including in-home displays, online appliance control, sub-circuit metering devices,

interruptible air-conditioning rebates and a dynamic peak rebate [1].

As part of the trial, a survey of the participating customers was conducted to gauge

their personal level of engagement. As Figure 2.3 shows, most customers reported changes

to their daily routine with 50% reporting they continued to maintain all their behavioural

changes six to eight months after the trial [1]. Of the potential behavioural changes to

be achieved through the development of the Smart Grid, participation in peak events is

considered to be of primary importance to justify Smart Grid development. Based on

the post-trial survey results, 87% of customers reported participating while 66% reported

lasting behavioural changes [1]. The results of the survey results clearly indicate a will-

ingness to engage with dynamic peak pricing and peak rebates in an effort to reduce their

electricity bills.

Substantial change to routine

Some change to routine No change to routine

66%

29%

5%

All More than half About half

Less than half None

50%16%

20%

6%
8%

Figure 2.3: Proportion of customers reporting behavioural changes during the trial (left).
Proportion of customers reporting maintained behavioural changes 6-8 months after the
trial (right). Source: Arup [1]
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2.4.2 Smart Meter Infrastructure Findings

The national benefits of smart metering infrastructure rollout were assessed as part of the

trial. Two scenarios were considered for the rollout of smart meters. The first considered

deployment of smart meters as a stand-alone technology group. The second considered

the rollout of smart meters and AMI in a Smart Grid environment with features such

as dynamic pricing plans and remote control of appliances. Within the stand-alone sce-

nario, two different deployment strategies were modelled – mandated full deployment and

customer-led voluntary deployment. The results of the cost-benefit analysis suggested

that a mandated full deployment of smart meters without other Smart Grid features was

not economically efficient in 2014 [1, 13]. This conclusion is supported by a cost-benefit

analysis conducted for the mandated separate rollout of smart meters in Victoria [19].

In contrast to the stand-alone deployment, the SGSC cost-benefit analysis concluded

that there was a strong business case to immediately deploy dynamic tariffs, feedback

technologies and AMI [1]. An analysis of the potential smart meter integration dynamics,

presented in Figure 2.4, suggested that by 2024, organic customer-led smart meter growth

would reach a saturating penetration level to justify full-deployment beyond 2024 [1].

2.4.3 Distributed Generation and Storage Findings

Under the SGSC trial, almost 500 homes with existing PV systems were selected to par-

ticipate in the program to determine the impact of DG on the future electricity network.

In addition, other DG technologies including ten 2.4 kW wind turbines and 25 1.5 kW

solid oxide fuel cells were also installed at a number of residences [13]. To provide data

for a cost-benefit assessment of DS, 60 Redflow 10 kWh zinc-bromide flow batteries were

also installed [13].

Figure 2.4: Expected change in smart meter penetration over time as a stand-alone
technology. Source: Arup [1]
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The results of the national cost-benefit assessment found that the primary benefit of

introducing the Smart Grid in relation to DG and DS is a reduction in capital expenditure

by limiting unnecessary deployment and over-sizing of DG systems. The net benefit of

introduced Smart Grid technologies when applied to DG and DS is shown in Figure 2.5;

where the reduction is capital expenditure can be seen to be clearly significant. The study

found that under the business-as-usual (BAU) case with fixed electricity tariffs, customers

are incentivised to install larger systems, with the other customers effectively providing

a cross-subsidy for the PV owners’ electricity costs. Under the BAU case, the degree of

cross-subsidisation was predicted to continue to increase through to 2034.

In a Smart Grid environment, it was found that PV would still continue to grow in

Australia, however the average system size would immediately reduce for new systems.

The reduction in system size is primarily due to the application of cost-reflective dynamic

tariffs that effectively remove the cross-subsidies from other customers. However, it was

noted that if PV efficiencies increased and installation costs decreased at greater rates

than assumed, then PV systems sizes and uptake rates would still increase in the future.

Limited useful data could be obtained for DS due to technical issues encountered,

stemming from a lack of technology maturity, installation limitations and delayed de-

ployment [13]. Consequently, analysis of DS integration in a future Smart Grid scenario

reverted to the well-established lead-acid technology. The cost-benefit analysis of DS found

that DS was unlikely to be deployed through to 2034 if the BAU fixed tariff structures

were retained. However, if the Smart Grid topology was adopted and dynamic tariffs

employed, DS was likely to see justifiable deployment beyond 2024 [1].
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2.4.4 Comparison of SGSC Findings to Other Literature

The results of the SGSC trial are largely supported by statements made in other literature.

The merits of dynamic tariffs have been reviewed for many years and are largely seen as

a step in the right direction for energy reform [6, 20, 27]. Additionally, the difficulties in

integrating DG, particularly PV, at large penetration levels without burdening the existing

network are well known [6, 28,29].

A report published by the Grattan Institute investigated the policy and regulatory

changes required to ensure PV DERs is adopted efficiently, providing a net positive benefit

to the Australian economy [29]. The report found that under existing tariff structures, PV

ownership is still a good investment, even after the closure of the small-scale renewable

energy scheme (SRES) introduced in Australia between 2008 and 2011, and the removal

of the generous feed-in tariff structures that at their peak, offered up to 60 cents/kWh. A

the time of the report, the feed-in tariffs in Australia between 6–8 cents/kWh were deemed

to represent a more realistic figure of energy production costs when compared with other

large-scale sources [29]. However, a reduction in excessive feed-in tariffs was found to be

only part of the necessary changes to ensure a fair electricity policy.

The Grattan Institute found that existing tariffs are poorly structured as they are

currently based around total energy consumption rather than peak demand [27]. The

electricity network must be designed and operated for peak load and whle average energy

consumption may be declining [29], without a coincident reduction in peak demand, cost

savings from reduced network infrastructure capital expenditure cannot materialise. Due

to the general misalignment between peak generation and peak load, PV ownership does

little to reduce peak demand on the electricity grid. Traditional network tariffs, at the time

designed to reflect the average cost to deliver electricity to customers, are designed to cover

the costs of network infrastructure. As PV owners contribute very little to the reduction

in peak demand but reduce potential utility revenue, the current tariff structures were

found to unfairly disadvantage non-PV owners [29]. Therefore the findings of the Grattan

Institute in relation to energy tariff reform strongly correlate with the observations of the

‘Smart Grid, Smart City’ cost-benefit analysis, indicating that a cross-subsidy exists from

non-PV owners to PV owners.

The Grattan Institute found that dynamic tariffs will make solar ownership less attrac-

tive at the scale currently implemented on average in Australia. Figure 2.6 and Figure 2.7

show cost-benefit assessments of PV ownership for residential houses in major Australian

cities; firstly under existing tariff structures (Figure 2.6) and secondly under a Smart

Grid environment with dynamic demand tariffs (Figure 2.7). The analysis clearly shows

PV ownership would not be economically viable with the dynamic tariffs assumed in the

study. However, the Gratten Institute also noted that a relative small reduction in system

costs would again swing PV ownership into a net benefit situation for a number of Aus-

tralian cities [29]. The analysis presented by the Grattan Institute again generally reflects

the SGSC findings that inefficient DG capital expenditure will reduce in a Smart Grid

environment, providing a net positive benefit to the national economy.

However, the Grattan Institute also observed that the situation would change with
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the introduction of DS [29]. Under a Smart Grid scenario with dynamic tariffs, it was

determined that energy storage systems would find economically viable deployment far

sooner than under existing fixed tariff structures as shown in Figure 2.8.

Remark 2.1 It should be noted that the system cost reductions identified in [29] as re-

quired to move PV ownership into a net benefit position have since eventuated with PV

system costs continuing to falling below historical projections consistently over the last five

years.

Figure 2.6: Cost-benefit assessment of a 3 kW PV system under existing tariff structures.
Source: Wood et al. [29]

Figure 2.7: Cost-benefit assessment of a 3 kW PV system under under a demand tariff.
Source: Wood et al. [29]
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Current tariff
Demand tariff

Figure 2.8: Break-even installed price of a 7 kWh battery for a house with 3 kW of PV
installed. Source: Wood et al. [29]

2.5 Motivation for Research

On face value, the reports published by the Grattan Institute and the cost-benefit analyses

conducted for the Victorian smart meter roll-out and the Ausgrid facilitated SGSC trial,

suggest that DERs are likely to face significant challenges in a Smart Grid environment

from an Australian perspective. The results highlight aspects associated with the paradigm

shift towards adopting the Smart Grid and the difficulties in determining economically

efficient energy policies.

However, the results of the SGSC trial and the recommendations published in current

literature indicate there will be an ongoing need for comprehensive and reasoned decision

making tools to ensure DERs are integrated to their maximum potential. From a system

owner’s perspective, the merits of DERs are not intuitive in a complex dynamic operating

scenario that is highly dependent on installation location, electricity tariff policies and

future technology options available.

Furthermore, analyses presented in Section 2.4 are broad brush and exclude the po-

tential for certain installations to benefit from a detailed and accurate assessment of an

optimal DER installation. In principle, DG and DS both have justifiable deployment in a

Smart Grid context. The fundamental question is, when is the tipping point reached and

what are the contributing factors that drive the decision process?

This research aims to present a clear picture of the interdependencies between the tech-

nological constraints of DERs and future proposed regulatory frameworks and electricity

tariffs in a Smart Grid environment.
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Solar Irradiation Literature

Review

K
nowledge of site-specific solar irradiation is essential when determining the energy

yield capability of a photovoltaic system. Numerous solar irradiation databases are

available providing access to monthly, daily, hourly and in some cases, sub-hourly irradia-

tion data. However, most databases are geographically limited, with coverage in South-east

Asia and the Pacific Region (including Australia) unavailable in many databases. In this

chapter, a literature review is undertaken of solar irradiation databases with a particular

focus on Australian applications. The AREMI spatial mapping platform, providing access

to hourly data captured by BoM is identified as a suitable, low cost source of hourly solar

irradiation for solar PV modelling purposes.

To determine the solar irradiation received on a given plane on the Earth’s surface,

knowledge of the Earth’s orbit around the Sun is required. As planetary motion is pre-

dictable, the Sun’s apparent position in the sky at any arbitrary time throughout the year

can be accurately established. Knowledge of solar geometry when coupled with knowledge

of the incident solar irradiation from either ground-based measurement or satellite-derived

estimates enables the estimation of solar irradiation on inclined surfaces.

Solar irradiation incident on horizontal surfaces, may be classified at the fundamental

level as either direct or diffuse. Accurate knowledge of the proportion each component

contributes to global (total) incident irradiation is critical for an accurate resource assess-

ment. Numerous models have been developed to describe diffuse components, a summary

of which is presented in this chapter. One such model, referred to as the BRL model has

been shown to be one of the more accurate models for Australian based applications. An

adjusted version of the BRL model has been implemented by BoM for use as part of its

hourly satellite irradiation service specific to Australian locations. However, the adjusted

model, similar to the original BRL model, does not take into account the large climatic

diversity of the Australian continent.

A description of the BRL model is provided and an area for further improvement

through specific consideration of climatological zones is identified. The Köppen-Geiger

climate classification system is introduced along with a review of data quality methodolo-

gies, establishing the basis for the original research presented in Chapter 4.

23
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Finally, to enable the estimation of solar PV energy generation, as a central component

of the research presented in this thesis, models for the transposition of solar irradiation

on a horizontal plane to irradiation on a tilted surface are reviewed. A single model is

identified for the research applications presented in subsequent chapters.

3.1 Solar Irradiation Databases

A number of solar irradiation databases are available using either ground-based measure-

ment or satellite-based estimates or a combination of both. While ground-based observa-

tions are considered to be the most accurate form of measurement at a specific location,

geographic coverage of ground-based measurements is limited due to high installation and

operation costs of high accuracy solar irradiation monitoring stations.

For locations further than 30 km from ground-based stations, satellite-based estimates

have been shown to be more accurate [30]. Current generation geostationary meteorolog-

ical satellites offer temporal resolutions up to 15 minutes and spatial resolutions down

to 1 km grid cells [31]. In addition, solar irradiation models for satellite-based obser-

vations are becoming increasingly sophisticated, taking into account aerosol properties,

water vapour content and ozone local to the satellite observation. Consequently, satellite

solar irradiation databases form an integral component of the methodology to establish

the solar energy resource at arbitrary locations.

A summary of a number of available databases consisting of ground-based and satellite-

based estimates are further discussed in Section 3.1.1 and Section 3.1.2 respectively.

3.1.1 Ground-Based Solar Irradiation Databases

The Global Energy Balance Archive (GEBA) maintained by ETH Zurich [32] and the

World Radiation Data Centre (WRDC) of the World Meteorological Organisation (WMO)

[33] manage solar irradiation data from two of the largest networks of ground-based so-

lar irradiation measurement sites. GEBA consists of a network of approximately 2,500

contributing stations [34] (although multi-year records enabling representative climatolo-

gies to be established have only been gathererd for around 760 stations [34, 35]) while

the WRDC includes over 1,000 contributing stations [31, 36]. Daily sums and monthly

sums and means are available in the WRDC from 1964 until the present [33], while only

monthly means are stored in GEBA from 1950 (only a few stations) until 1990 for most

locations [37].

Meteonorm is a software platform enabling the generation of representative climatol-

ogy data for any location on Earth [35,38]. The software utilises a database of ground sta-

tion derived average monthly data from sources including GEBA, WMO and the National

Climatic Data Center (USA), as well as satellite data where spatial coverage is deemed

insufficient. The satellite component of Meteonorm is further discussed in Section 3.1.2.

The software uses a three dimensional inverse distance model to interpolate irradiation

and weather data for any location [38]. As the database stores only monthly means for

nodal points, the software synthetically generates hourly and daily data using stochas-
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tic algorithms. Daily profiles are synthetically generated through the method of Aguiar

et al. [39] which uses markov transition matrices to synthetically generate daily clear-sky

clearness indexes from monthly clearness indexes. Hourly data are synthetically generated

using the Aguiar and Collares-Pereira TAG model [40]. Data from 8,352 weather stations

are accessible in Meteonorm, 1,336 of which include solar irradiation measurements.

The National Renewable Energy Laboratory (NREL) maintains the National Solar

Resource Database (NSRDB) for the United States [41]. The database includes hourly

time series data as well as representative weather years, referred to as typical meteorolog-

ical year (TMY) data sets for the United States’ network of around 1,500 ground stations.

Numerous updates have been made to the database resulting in TMY, TMY2 and TMY3

data sets. All TMY files have been converted to the latest System Advisor Model (SAM)

comma-separated-variable (CSV) format developed for use with NREL’s SAM renewable

energy performance and financial modelling software.

The EnergyPlus project, managed by NREL, maintains a database of weather data

from 20 external sources with more than 2,100 locations worldwide across all WMO re-

gions [42]. The data are available in a variety of formats developed by various contributing

organisations. All data files consist of a single representative year of weather data, syn-

onymous with TMY, compiled from multiple years of measured data. Approximately 78

Australian locations are made available through EnergyPlus.

In comparison to the previous databases, a smaller database known as the Baseline

Surface Radiation Network (BSRN) [43] maintains high quality, high temporal resolution

(one minute) data for approximately 50 stations around the world [36]. The database is a

project of the Global Energy and Water Experiment forming part of the World Climate

Research Program (WCRP) [31, 43]. Data access is provided free of charge for research

purposes only.

The Australian BoM operates a network of ground-based solar monitoring stations

capturing one minute irradiation data. The data for 21 weather stations distributed

throughout the major climate zones of Australia are available online via the ‘One Minute

Solar Data’ (OMS) website [44].

A summary of available ground-based solar irradiation databases is provided Table 3.1.

3.1.2 Satellite-Based Solar Irradiation Databases

Meteonorm enables satellite images to be leveraged to establish representative solar irra-

diation climatologies for any location on Earth. The satellite images are processed using

an approximation of the Heliosat-2 method by Lefevre et al. [38] which are processed to

daily means and summed to monthly averages [35].

For locations outside of Europe, when the proposed site is located within 10 km of

three ground-based stations (30 km for rest of the world), ground-based data only are used.

For greater distances, supplementary satellite data are used due to the reduced correlation

between the ground-based data and the actual conditions at the proposed location. For

distances greater than 50 km in Europe (200 km for the rest of the world), ground-based

measurements are no longer considered to be sufficiently accuracte for climatology corre-
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Table 3.1: Ground-based solar irradiation databases

Database Provider URL Access Time Resolution Stations Area Period Reference

EnergyPlus NREL energyplus.net Free Hourly 2,100 Global Various [42]
NSRDB NREL nsrdb.nrel.gov Free Hourly 1,454 United States 1961-2010 [41]
WRDC WMO, NREL wrdc.mgo.rssi.ru Free Daily / Monthly 1000+ Global 1964-Present [31,33, 36]
GEBA ETH Zurich www.geba.ethz.ch Free Monthly 2,500+ (760) Global 1950-1990 [32,34, 35,37]
BSRN WCRP bsrn.awi.de Free Minutely 50 Global 1992-Present [31,36, 43]
Meteonorm 7.2 Meteotest www.meteonorm.com Paid Hourly 8,352 (1,336) Global 1991-2010 [35,38]

One Minute Solar BoM
www.bom.gov.au/climate/

Free Minutely 21 Australia 1993-Present [44]data/oneminsolar/
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lations and satellite-only data are used [35]. The resolution of the contributing satellite

images vary region to region ranging from 2 km to 8 km [35].

Solargis and Vaisala 3TIER provide high-resolution satellite derived irradiation data

services with complete world coverage. Solargis has a temporal resolution of 15 or 30

minutes depending on the region, a spatial resolution of 3-6 km and a 250 m resolution

based on altitude [45]. Vaisala 3TIER has a spatial resolution of 3 km for hourly irra-

diation data [46]. An assessment by Ineichen [47] for the University of Geneva and the

International Energy Agency determined Solargis be to one of the two most accurate com-

pared to four other products including Vaisala 3TIER when assessed against ground-based

measured data for western European locations. However, Ineichen also noted that it was

difficult to draw general conclusions due to a lack of aerosol ground-data measurements,

exact calibration data and interannual variability of irradiance conditions [47].

SoDa is a broker of numerous consolidated databases made accessible via a web inter-

face [31,48]. Coverage for Europe and Africa is provided through the HelioClim-3 database

derived from Meteosat Second Generation images using the Heliosat-2 method proposed

by Rigollier et al. [49, 50]. World coverage is provided through access to the NASA SSE

database [48]. Two versions (Versions 4 and 5) are currently available, principally differen-

tiated by the atmospheric models considered. Under Version 5, atmospheric properties are

updated every three hours providing estimates of surface solar irradiance under cloudless

skies for any global site since 2004 [50].

The National Aeronautical and Space Administration (NASA) maintains the Surface

Meteorology and Solar Energy (NASA SSE) database for satellite-derived data. The

database enables irradiation data to be accessed for locations covering the entire globe.

However, the spatial resolution is coarse, with latitude and longitude resolutions of 1◦

(approximately 111 km) [51].

The most recent version of the NREL NSRDB includes satellite-derived solar irradi-

ation estimates, enabling the development of TMY data sets for any location in North

America, Central America and India. Satellite images are processed using the latest Phys-

ical Solar Model (PSM) [41] for the United States and Central America and the SUNY

(State University of New York) model [52, 53] for India [41]. Temporal and spatial reso-

lutions currently available are 30 minutes/4 km respectively (America) (1998-2015) and 1

hour/10 km for India (2000-2014). Data from the NSRDB are also used in the Photovoltaic

Geographical Information System (PVGIS) developed by the European Commission Joint

Research Centre [54], referred to as PVGIS-NSRDB [54].

The Australian BoM maintains two satellite-based solar irradiation databases. The

CDO database [55] stores satellite-derived daily irradiation data for the BoM’s national

network of weather stations, providing access to irradiation data for hundreds of Australian

locations. To facilitate the daily totals of the CDO database, the BoM also maintains a

database of Australian Hourly Solar Irradiance Gridded Data (HSI). The data are derived

from satellite images obtained from the GMS-4 satellite through to the current generation

Himawari-8 satellite [56]. The images are converted to irradiation estimates through the

methodology established by Weymouth and Le Marshall [57] and Ridley et al. [58]. Im-
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provements to the BoM package have been investigated in independent research [59–61]

as well as by BoM itself [56, 59]. HSI data have a spatial resolution of approximately 5

km [56,62], enabling estimates of solar irradiation to be established for for any Australian

location. However, unlike CDO, access to HSI data requires payment, primarily to cover

data handling costs [62]. The data have been calibrated through data from the BoM OMS

database, enabling the removal of estimate bias [56] and to develop irradiation component

models [58].

Alternatively, the AREMI spatial data platform developed by the Australian Renew-

able Energy Agency (ARENA) provides free access to HSI data for the period between

1990–2015 [63].

EnMetSOL is a database managed by the University of Oldenburg providing irradi-

ation data for Europe and Africa. Coverage is provided for Europe, India, Middle East

and the USA [64] with between two and four observations per hour [64]. Comparison

of data generated using the the EnMetSOL models against four other databases found

EnMetSOL, along with Solargis, produced the best correlations with ground data.

The Satellite Applications Facility on Climate Monitoring (CM SAF) of the European

Organisation for the Exploitation of Meteorology Satellites (EUMETSAT), maintains a

database for Europe, Africa and parts of Asia derived from the Meteosat Second Gener-

ation (MSG) satellites. CM SAF data were also used to develop the PVGIS databases,

PVGIS-CMSAF (Europe and Africa) and PVGIS-SARAH (Europe, Africa, Asia) [54,65].

Numerous other irradiation databases exist, however coverage is limited to certain

geographic regions. Examples include Satel-light (Europe/North Africa) [66] and SOLEMI

(Europe/Africa/Western Asia) [67, 68], both developed through joint European research

efforts; and SolarAnywhere, a proprietary product developed by Clean Power Research [69]

using the methodology developed by Perez et al. [52, 53] at the State Univeristy of New

York [69], providing coverage for North America only.

A summary of satellite-based solar irradiation databases is presented in Table 3.2 and

Table 3.3, showing the temporal and spatial resolution, geographical coverage and period

of coverage.

3.1.3 Irradiation Data for Australian Applications

To determine the most appropriate data service for a particular application, priority must

be placed on, in no particular order, data coverage, model accuracy (satellite-derived data),

data resolution (temporal/spatial) and finally, cost of access. The accuracy of individual

satellite data services for Australian locations, similar to the assessment conducted for

Western Europe by Ineichen [47], had not been established in literature at the time of

writinga. Consequently, the accuracy criteria is disregarded for the purposes of selecting

a data resource for Australia. The following acceptance criteria were considered for this

research:

(i) Free access

aRefer to Remark 3.1
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(ii) Hourly data

(iii) 5 km resolution (approximate)

(iv) Minimum 10 years of measurements

(v) Observed data (not synthetic or re-analysis)

(vi) Full Australian coverage

Amongst the products summarised in Section 3.1, Meteonorm, Solargis, 3TIER, NASA

SSE, BoM HSI and AREMI represent the only available satellite-based irradiance data

services for Australian locations. The NASA SSE database is a free database, however

the spatial resolution of the data is very coarse (111 km) and data are only available in

monthly averages. In contrast, Meteonorm, Solargis, 3TIER and BoM HSI provide access

to data of a high temporal and spatial resolution, however accessibility is only available

through paid access. As the analysis to be presented in the subsequent chapters utilises

solar irradiation at multiple locations, paid access services were deemed untenable for the

purposes and objectives of this research.

Consequently, the AREMI spatial mapping platform represents the only freely avail-

able option for complete coverage of hourly irradiance data for all Australian locations.

Given the relatively high temporal and spatial resolutions of AREMI, which are in-line

with those available through the alternative paid access services for the Pacific region,

AREMI represents an adequate package for a comprehensive analysis of solar irradiation

across Australia.

Remark 3.1 Recently published research by Copper and Bruce [112] presented a compar-

ative assessment of various irradiation maps for Australian locations. The assessment

considered Solargis, Vaisala 3TIER, BoM HSI, NASA SSE and Meteonorm among oth-

ers. A high level of variance was observed across the databases considered with the authors

noting the potential for using multiple data sources through weighted averages to form a

more robust dataset. No specific conclusion was drawn towards the database yielding the

highest accuracy against ground-measured data. However, Solargis and BoM HSI showed

the lowest average absolute MBE.

Part of the research presented in this thesis considered solar irradiance models based on

daily solar irradiation data, including the research presented in Chapter 5 and Chapter 6

Section 6.4.1. To facilitate this, data from the BoM CDO database, as a freely available

daily irradiation database, were also utilised. Models based on AREMI data were con-

sidered for the more recent research components conducted for this thesis including those

presented in Chapter 4, Chapter 6 Section 6.4.2, Chapter 7 and Chapter 8.
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Table 3.2: Satellite-based irradiation databases

Database Provider URL Access Area Australia Coverage References

3TIER Vaisala www.3tier.com Paid Global Complete [46]

AREMI ARENA nationalmap.gov.au/renewables/ Free Australia Complete [56, 63,70]
Climate Data On-line BoM www.bom.gov.au/climate/data/ Free Australia Partial [55]

Hourly Gridded Data BoM
www.bom.gov.au/climate/

Paid Australia Complete [56,62, 70]
data-services/solar-information.shtml

Meteonorm 7.2 Meteotest www.meteonorm.com Paid Global Complete [35, 38]
NASA SSE NASA eosweb.larc.nasa.gov/sse/ Free Global Complete [71]

NSRDB NREL nsrdb.nrel.gov Free
Nth/Ctrl America

N/A [41]
India

HelioClim-3 SoDA www.soda-pro.com Paid Euro/Africa N/A [31,48,50]
Satel-light ENTPE www.satellight.com Free Euro/Nth Africa N/A [66]
Solargis Solargis solargis.com Paid Global Complete [45]
SolarAnywhere Clean Power Research www.solaranywhere.com Paid North America N/A [69]
EnMetSOL University of Oldenburg www.uni-oldenburg.de/en/ - Euro/Africa N/A [64,72]

SOLEMI DLR dlr.de/tt/solemi -
Euro/Africa/Asia

N/A [67,68]
(except East Asia)

CM SAF DWD www.cmsaf.eu Free Eur/Africa N/A [54,73, 74]
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Table 3.3: Temporal and spatial resolution of satellite-based irradiation databases

Database Time Resolution Spatial Resolution Period References

3TIER Hourly 3 km 1998-Present [46]

AREMI Hourly 5 km 1990-2015 [56,63, 70]
Climate Data On-line Daily Individual Stations 1990-Present [55]
Hourly Gridded Data Hourly 5 km 1990-Present [56, 62, 70]

Meteonorm 7.2 Hourly

5 km 1993-2012 (Africa)

[35, 38]2-3 km 2004-2010 (Europe)

8 km 2010-2016 (Global)
NASA SSE Monthly 111 km 1983-2005 [71]

NSRDB
30 mins 4 km 1998-2014 (North/Central America)

[41]
Hourly 10 km 2000-2014 (India)

HelioClim-3 15 minutes 3-5 km 2004-Present [31, 48, 50]
Satel-light 30 minutes 5 km (lon) 6 km (lat) 1996-2000 [66]

Solargis Hourly 3-6 km
1994-Present (Europe/Africa)

[45]1999-Present (Asia/Americas)
2006-Present (Pacific)

SolarAnywhere Hourly 10 km 1998-Present [69]
EnMetSOL 15/30 minutes 1 km 1995-2005/2005-Present [64,72]
SOLEMI Hourly 3-5 km 1991-Present [67, 68]
CM SAF Hourly 3-5 km 2005-Present [54, 73, 74]
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Table 3.4: Global irradiation calculation methodology and atmospheric data sources for satellite-based irradiation databases

Database Global Methodology Atmospheric Properties References

3TIER
Vaisala cloud algorithm MODIS [75], MACC-II [76], MERRA2 [77]

[46]-
AREMI Weymouth and Le Marshall [57] - [56, 63, 70]
Climate Data On-line Weymouth and Le Marshall [57] - [55]

Hourly Gridded Data Weymouth and Le Marshall [57] - [56, 62, 70]

Meteonorm 7.2
Heliosat-2 approx. [49, 78]

Solar Consulting Services [79] [35, 38]
Synthetic daily/hourly irradiation [39, 40]

NASA SSE NASA GEWEX SRB - [71]

NSRDB
Physical Solar Model (PSM) (Americas) [80] MODIS [75], MISR [81], AERONET [82], MERRA [77]

[41]
SUNY (India) [52, 53] Solar Consulting Services [79]

HelioClim-3 Heliosat-2 [49]
MACC-II [76]

[31, 48,50]
Linke Turbidity [83]

Satel-light Modified Heliosat [84] Linke Turbidity (ESRA) [85] [66]
Solargis Solargis method MACC-II [76], NOAA GFS [86] [45]
SolarAnywhere SUNY [52,53] - [69]
EnMetSOL Modified Heliosat [84, 87] MACC [76] [64, 72]
SOLEMI Heliosat-2 [49] MACC [76] [67, 68]

CM SAF MAGICSOL (Modified Heliosat [88, 89])
MACC [76]

[54, 73,74]ERA-interim reanalysis of ECMWF [90]
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Table 3.5: Clear-sky, diffuse and direct irradiation models used by satellite-based irradiation databases

Database Clear-Sky Diffuse Direct References

3TIER
Modified Kasten (SUNY) [52] - DIRINT [91]

[46]REST2 [92] - REST2 (with modulation function) [92]
AREMI - Modified BRL [58,70] - [56, 63,70]
Climate Data On-line - - - [55]
Hourly Gridded Data - Modified BRL [58,70] - [56, 62, 70]
Meteonorm 7.2 Modifed ESRA clear-sky [38,93] BRL [58], Perez (1991) [94] - [35, 38]
NASA SSE - - - [71]

NSRDB
REST2 (Americas) [92] REST2 [92] REST2 [92], DISC [95]

[41]
SOLIS clear-sky (India) [96] - DIRINT [91]

HelioClim-3
McClear clear-sky v5 [97,98]

- - [31, 48,50]
ESRA clear-sky v4 [93,99]

Satel-light Page (1996) [100], Dumortier (1995) [101] Skartveit (1998) [102] [66]
Solargis Simplified SOLIS clear-sky [103] - Modified DIRINDEX [45,52,104] [45]
SolarAnywhere - - - [69]

EnMetSOL
SOLIS clear-sky [96] - Kemper (2007) [72,105]

[64, 72]
Dumortier clear-sky [106] Diffuse fraction [107] -

SOLEMI
Bird clear-sky [108]

- - [67, 68]
(modified Iqbal [109])

CM SAF SPECMAGIC [102,110,111] - SPECMAGIC [102,110,111] [54, 73, 74]



34 Solar Irradiation Literature Review

3.2 Solar Irradiation on the Horizontal Plane

3.2.1 Solar Time

When utilising minutely or hourly solar irradiation data, it is necessary to establish the

relationship between standard (clock) time and solar time. Irradiation data is predomi-

nantly time-stamped in standard clock time. However, the geometric relationships describ-

ing Earth’s solar orbit, and therefore the relationships describing the angle of incidence of

solar irradiance on the Earth’s surface, are referenced to solar time.

The Earth’s tilt (in relation to the Earth’s plane of orbit) and the slightly elliptical

nature of Earth’s orbit, lead to variations in the Sun’s position relative to the same clock

time each day [113]. The Equation of Time, E, accounts for the apparent time difference

between clock time and solar time for any given day of the year. According to Spencer [114]

as cited by Iqbal [109] and referenced in Duffie and Beckman [115]b, E is defined as:

E = 229.2(0.0000075 + 0.001868 cosB − 0.032077 sinB − 0.014615 cosB)

− 0.04089 sinB) (3.1)

where B is given by

B = (n− 1)
360

365
(3.2)

and n is the day number of the year.

Taking into account the longitude of the subject location and the corresponding time

zone standard meridian, solar time is defined as follows:

Solar Time = Standard Time + 4 (Lst − Lloc) + E (3.3)

where Lst and Lloc are the longitudes of the standard meridian and the location respec-

tively. In (3.3), the longitudes are defined in degrees west with respect to the prime

meridian such that:

0◦ ≤ (Lst, Lloc) ≤ 360◦ (3.4)

3.2.2 Components of Horizontal Irradiation

Irradiance is defined as the solar power received per unit area commonly referenced in

the unit W/m2. Irradiation is the integrated irradiance over a certain period of time

and therefore quantifies the solar energy received, referenced in units of either Wh/m2 or

MJ/m2. The total irradiance incident on a horizontal plane, referred to as global horizontal

irradiance (GHI) can be broken into two components – direct (also referred as as beam)

and diffuse irradiance (referred to a diffuse horizontal irradiance DHI). Direct refers to

irradiance received directly from the solar disc whereas diffuse irradiance is received from

atmospheric scattering across the entire sky dome. Consequently, daily (H) and hourly

bIt should be noted, based on advice provided by Spencer [116], the term 0.0000075 in (3.1) was corrected
from 0.000075 as quoted by Iqbal [109] and Duffie and Beckman [115] from Spencer [114]
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(I) global irradiation quantities can be expressed as:

H = Hb +Hd (3.5)

I = Ib + Id (3.6)

where subscripts b and d refer to the direct and diffuse components respectively.

Direct normal irradiation (DNI), as opposed to direct horizontal irradiation, is most

frequently considered in irradiation decomposition models. DNI is defined as the irradi-

ation incident on a plane perpendicular to the direction of radiation propagation. DNI

irradiation, Ibn, is related to Ib through a sinusoidal function of solar altitude α, the angle

between the horizontal and the direct irradiation direction propagation to an observed

position, as shown in (3.7)

Ibn =
Ib

sin(α)
(3.7)

3.2.3 Geometric Relationships for Solar Irradiation

The calculation of irradiance received from the sun incident on a particular surface is

dependent on solar geometry on both an intra-day and an annual basis. Descriptions of

key geometric relationships and parameters critical to the estimation of solar irradiance

are provided in this section.

The angle of incidence of direct irradiance θ on a surface is described as a function of

latitude φ, solar declination δ, tilt of the irradiated surface β, azimuth of the irradiated

surface γ and solar hour angle ω as shown in (3.8):

cos θ = sin δ sinφ cosβ + sin δ cosφ sinβ cos γ + cos δ cosφ cosβ cosω

− cos δ sinφ sinβ cos γ cosω + cos δ sinβ sin γ sinω (3.8)

In (3.8), the solar hour angle ω describes the angular displacement of the Sun assuming

the Earth rotates 15◦ per hour. With respect to solar noon (the local meridian), ω is

negative during morning hours and positive in afternoon hours. The remaining parameters

in (3.8) are subject to the following constraints:

−90◦ ≤φ≤ 90◦ (3.9a)

−δmax ≤δ≤ δmax (3.9b)

0◦ ≤β≤ 180◦ (3.9c)

−180◦ ≤γ≤ 180◦ (3.9d)

where a negative γ corresponds to a surface facing east of north and a positive γ, an

azimuth that is west of north.

In (3.9b), δmax, equal to the axial tilt of the earth, varies slowly over time following

an approximately 40,000 year cycle [51]. To be consistent with the literature upon which
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this thesis is based, δmax is assumed to be 23.45◦, as defined by Duffie and Beckman [115].

Spencer [114] as cited by Iqbal [109], defines the solar declination angle δ as follows:

δ = 0.006918− 0.399912 cos (B) + 0.070257 sin (B)− 0.006758 cos (2B)

+ 0.000907 sin (2B)− 0.002697 cos (3B) + 0.00148 sin (3B) (3.10)

Solar zenith angle θz, the angle between the sun and vertical, is a further parameter

key to the calculation of solar irradiation. Zenith angle is the complement of solar altitude

such that θz = 90− α and can be further expressed as follows:

cos θz = cosφ cos δ cosω + sinφ sin δ (3.11)

The sunset hour angle ωs and the sunrise hour angle (which is simply −ωs) defines

the boundaries of a solar day. Without the presence of an atmosphere, sunset would occur

when the solar zenith angle is 90◦. Substituting ωs into (3.11) and rearranging gives the

following expression for sunset hour angle:

cosωs = − sinφ sin δ

cosφ cos δ
= − tanφ tan δ (3.12)

However, due to atmospheric refraction, at sunset the solar disc appears lifted above

the horizon for a brief period after the true geocentric position of the sun has travelled

beneath the horizon. The effect of atmospheric refraction yields an approximate sunset

zenith angle of ωz,s = 90.833◦ [117]. Rearranging (3.11) and noting that sunset solar

altitude αs is the compliment of sunset zenith angle θz,s, the following expression for

sunset hour angle is derived:

cosωs =
sinαs − sinφ sin δ

cosφ cos δ
(3.13)

where αs = 90− θz,s = −0.833◦.

With expressions for angle of incidence and zenith angle developed, the ratio of direct

irradiance incident on an inclined surface to that of a horizontal surface (Rb) is defined as:

Rb =
cos θ

cos θz
(3.14)

3.2.4 Extra-Terrestrial Irradiance

Extra-terrestrial (ET) irradiance is the irradiance that would be received on the Earth’s

surface without the presence of an atmosphere. ET irradiance varies over the course of the

year, primarily due to variations in the Earth-Sun distance created by Earth’s elliptical

orbit leading to irradiance fluctuations in the order of ±3.3% [115]. Other variabilities

created by fluctuating solar activity conincident with sunspots also effect estimates of

ET irradiance. However, the fluctuating activity can be largely ignored due to the un-
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certainty and variability in atmospheric transmittance due to climatic conditions [115].

Consequently, the radiation emitted by the Sun at the minimum Earth-Sun distance may

be considered uniform, leading rise to the solar constant Gsc, considered to be 1367 W/m2

in this research [115]. The extra-terrestrial irradiance incident on the plane normal to the

radiation Gon and on a horizontal plane projected from the Earth’s surface Go are defined

in accordance with (3.15) and (3.16) respectively.

Gon = Gsc

(
1 + 0.033 cos

360n

365

)
(3.15)

Go = Gsc

(
1 + 0.033 cos

360n

365

)
cos θz (3.16)

Integrating the ET irradiance over a particular hour or a full day enables the hourly

and daily extra-terrestrial solar irradiation to be calculated as in (3.17) and (3.18) where

Io and Ho are hourly and daily irradiation respectively.

Io =
12× 3600Gsc

π

(
1 + 0.033 cos

360n

365

)

×
[
cosφ cos δ (sinω2 − sinω1) +

π (ω2 − ω1)

180
sinφ sin δ

]
(3.17)

Ho =
24× 3600Gsc

π

(
1 + 0.033 cos

360n

365

)

×
(
cosφ cos δ sinωs +

πωs

180
sinφ sin δ

)
(3.18)

3.2.5 Clearness Index

The clearness index gives a relative measure of the percentage of time the sun is obscured

by cloud for a particular location. The daily clearness index KT is defined as the ratio

of daily global (total) irradiation H, to the daily extra-terrestrial irradiation defined in

(3.18). The daily clearness index may be written as:

KT =
H

Ho
(3.19)

The hourly clearness index kT may also be defined in a similar fashion such that

kT =
I

Io
(3.20)

where I is the global hourly irradiation on the horizontal plane.
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3.2.6 Clear-Sky Irradiation

Clear-sky irradiation is an important parameter in solar energy system assessment as it

corresponds to the maximum solar energy available [92]. Clear-sky models are used as the

basis for many cloudy-sky (all-sky) irradiance models and the estimation of irradiation

characteristics from satellite imagery [118, 119]. Clear-sky models vary significantly in

complexity from single parameter models relying on solar zenith angle only such as the

Kasten model [120], to complex, multi-paramter, multi-band models covering both direct

and global irradiation parameters [118], for example the REST2 model [92]. Complex

models rely on an extensive list of detailed atmospheric measurements such as water

vapour, Angstrom Beta, ozone, aerosols, dew point temperature and Rayleigh Scattering

among others [118,121].

Numerous assessments of clear-sky global irradiation models have been conducted to

establish the most accurate models for different geographic regions. However, no single

model has been shown to perform better than all others across all regions.

Ineichen [119] compared eight clear-sky broadband models against 20 years of data at

differing climates and altitudes for 16 ground measurement stations across different states

in the United States as well as stations in Portugal and Germany. Ineichen found the Solis

model gave the most accurate results. However, overall clear-sky estimate accuracy was

not deemed to be highly dependent on the model selected in the first instance but rather

the accuracy of the input turbidity data. Consequently, Ineichen indicated consideration

should be given towards implementation simplicity where the European Solar Radiation

Atlas (ESRA) and Molineaux models have an advantage (as they were found to perform

well) and the availability of input parameters such as aerosol optical depth and Linke

Turbidity.

Gueymard [122] assessed 18 broadband radiative models for clear-sky irradiance with

an improved validation methodology. The performance of the models were validated with

key statistics including MBE, RMSE, uncertainty confidence intervals and a proposed

Combined Performance Index (CPI) with the Kolmogorov-Smirnov Integral as an input.

The true performance of each model was established through tightly controlling measure-

ment uncertainty and propagation uncertainty. Measurement uncertainty was controlled

by using data derived from high quality measurement devices while propagation uncer-

tainty associated with imperfect description of atmospherics was reduced by applying a

strict selection criteria, using only real time data. Data selected from five measurement

locations were used to test the models – four United States locations (including Hawaii)

and Saudi Arabia. Gueymard found that the REST2 and Ineichen models were amongst

the best performing models, however it was noted they contain a complex combination of

atmospheric inputs.

Badescu et al. [123] assessed 54 clear-sky radiation models against measured global

irradiance at two ground-based stations in Romania. A unique testing procedure was

applied involving 26 testing stages for each ground station, with each stage testing the

model performance under non-ideal conditions and low input data quality associated with

the model parameters. Badescu et al. found that no single model performed the best for
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all input data. Rather, some models were noted to rank amongst the best for the majority

of the testing steps, including the ESRA3, Ineichen, REST2 clear-sky models. ESRA3 is

similar to ESRA but with Linke Turbidity obtained from an empirical formula which is a

function of precipitable water and Angstrom β. The ESRA3 model was found to have a

relatively good performance.

Engerer and Mills [118] conducted an assessment of nine clear-sky models for Australia

conditions. The models tested including Kasten, Ineichen, Bird, ESRA, REST2, Molin-

eaux and the Simplified Solis models among others. Using high frequency (one-minute)

data from BoM for 14 chosen locations, the analysis applied the quality control method-

ology of Long and Shi [124]. Atmospheric data were taken from the SoDa data services

for ozone, turbidity and aerosols. A polynomial function was fitted to the data to avoid

discontinuities similar to [119]. Engerer and Mills found the ESRA to be the clear “best”

choice for clear-sky direct irradiation and performed well for global irradiance. Ultimately,

it was concluded that the ESRA model is best for Australian conditions with the REST2

model coming second [118].

Based on the assessment of Engerer and Mills [118], the ESRA clear-sky model is used

in this thesis as the basis for quality control assessments presented in Section 3.4. The

ESRA clear-sky model is described in further detail in Section 3.2.6.2.

3.2.6.1 Linke Turbidity

The attenuation of solar irradiation, in particular direct irradiation [125], due to atmo-

spheric absorption and scattering is conveniently approximated by the Linke Turbidity

factor TL. Atmospheric turbidity is commonly modelled as a descriptor of atmospheric

composition and considered in many irradiance models including the ESRA and other

clear-sky models as well as other models for global, direct and diffuse irradiance.

Linke Turbidity describes the optical thickness δ(m) of a wet and turbid atmosphere in

units of the Rayleigh optical thickness δR(m), the spectrally integrated optical thickness of

a clean and dry ‘Rayleigh’ atmosphere under standard conditions [125]. Optical thickness

and therefore Linke Turbidity are functions of relative optical air mass m (the spectral

distribution of incident solar direct irradiation which varies with solar altitude) [125].

Linke Turbidity is defined as:

TL(m) =
δ(m)

δR(m)
(3.21)

A number of the clear-sky irradiation models assessed in [119] included the application

of Linke Turbidity data, data for which were derived from the SoDa database at a relative

optical air mass of 2 (AM2). However, as only monthly data are available through the

SoDa service, a polynomial function was fitted to the data to avoid discontinuities. A

similar polynomial fit was used by Engerer and Mills [118, 126] as part of an assessment

of clear-sky irradiation models for Australian locations. Monthly mean values for TL were

derived from the SoDa database for input into the ESRA and other clear-sky models.

For this research, a similar methodology to [118,119,126] is adopted for the application

of the ESRA clear-sky irradiance model defined in Section 3.2.6.2. Figures 3.1 and 3.2
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show the polynomial fit for Linke Turbidity data from the SoDa data bank associated with

Wagga Wagga and Rockhampton stations within the BoM OMS network.
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Figure 3.1: Polynomial fit of Linke Turbidity based on SoDa data for Wagga Wagga
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Figure 3.2: Polynomial fit of Linke Turbidity based on SoDa data for Rockhampton

3.2.6.2 ESRA Clear-Sky Model

As discussed in Section 3.2.6, the ESRA clear-sky model has been observed to perform

well [118,123], particularly in Australian locations [118]. A description of the ESRA model
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as provided by Rigollier et al. [93] and summarised in this section. Clear-sky irradiance

can be broken into a direct and diffuse component. The direct normal clear-sky irradiance

component of the ESRA clear-sky model is defined as follows:

Ibnc = Ione
−0.8662TL(AM2)mδR(m) (3.22)

where TL(AM2) is the Linke Turbidity factor at an air mass of 2 and m is the relative

optical air mass.

The relative optical air mass is unitless and can be expressed as a function of solar

altitude α. However, due to to atmospheric refraction a correction was introduced by

Rigollier et al. [93] such that αtrue can be calculated as:

αtrue = α+ 0.061359

(
180

π

)[
0.1594 + 1.1230(π/180)α+ 0.065656(π/180)2α2

1 + 28.9344(π/180)α+ 277.3971(π/180)2α2

]
(3.23)

With the refraction correction for solar altitude, the relative optical air mass is defined

as:

m
(
αtrue
)
=

p/p0

sinαtrue + 0.50572
(
αtrue + 6.07995

)−1.6364 (3.24)

where p and p0 are the mean atmospheric pressure at the site elevation and at sea level

respectively. The ratio of p/p0 can be expressed as:

p

po
= e−z/zh (3.25)

where z is the site elevation and zh is the scale height of the Rayleigh atmosphere, equal

to 8434.5 m [93].

The Rayleigh optical thickness δR(m), as an input to (3.22), is calculated as follows

based on Rigollier et al. [93]:

1

δR(m)
=

⎧⎪⎨
⎪⎩

6.62960 + 1.75130m− 0.12020m2 + 0.00650m3 − 0.00013m4 if m ≤ 20

10.4 + 0.718m if m > 20

(3.26)

Remark 3.2 Geiger et al. [99] and Remund et al. [83] introduced a pressure correction

to the Rayleigh optical thickness δR(m) formulation as the model of (3.26) performs in-

correctly for high elevations. The corrections are not introduced in this paper due to in-

consistencies in the equations reported in [83] and [99]. In the original model of [93], the

pressure errors were not immediately evident as the elevations of the assessed locations

were less than 500 m. The vast majority of Australian locations are less than 500 m while

the network of BoM OMS stations are universally less than 500 m, with the exception of

Alice Springs (546 m). Consequently, the formulation error in (3.26) as detailed in [93]

is not expected to appreciably effect the results presented in this research.

The diffuse component of the ESRA clear-sky model, Idc, is defined in [93] and repeated
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as (3.27), noting the Remund et al. [83] pressure correction observation for site elevation

as discussed in Remark 3.2. While the exact influence on the model output is unclear,

the pressure corrected Linke Turbidity T ∗
L(AM2) = p/p0 × TL(AM2) is considered in this

research. The diffuse component of the ESRA clear-sky model with atmospheric pressure

corrections is defined as follows:

Idc = IoTRd

[
T ∗
L(AM2)

]
Fd

[
α, T ∗

L(AM2)
]

(3.27)

where TRd and Fd are diffuse transmission and angular functions defined according to

(3.28) and (3.29) below.

TRd

[
T ∗
L(AM2)

]
= −1.5843× 10−2 + 3.0543× 10−2T ∗

L(AM2)

+3.797× 10−4
[
T ∗
L(AM2)

]2
(3.28)

Fd

[
α, T ∗

L(AM2)
]
= A0 +A1 sin(α) +A2 sin

2(α) (3.29)

The coefficients A0, A1 and A2 are dependent only on Linke Turbidity and expressed

as:

A0 = 0.26463− 0.061581T ∗
L(AM2) + 0.0031408

[
T ∗
L(AM2)

]2
(3.30a)

A1 = 2.04020 + 0.018945T ∗
L(AM2)− 0.011161

[
T ∗
L(AM2)

]2
(3.30b)

A2 = −1.33025 + 0.03231T ∗
L(AM2)− 0.0085079

[
T ∗
L(AM2)

]2
(3.30c)

With the direct and diffuse components of clear irradiation, the global clear-sky irra-

diation is calculated as:

Igc =
Ibnc

sin(α)
+ Idc (3.31)

3.2.7 Models for Global Irradiation

Global irradiation models typically combine clear-sky models with models for estimating

cloud index [127]. The complexity of the models vary. Some simple models take into

account cloud cover, humidity, temperature and wind speed only, such as the Zhang and

Huang model [128] defined as follows:

Ig =

{
Gsc sin (αs)

[
co + c1 (CC10) + c2 (CC10)

2

+ c3
(
Tn − Tn−3

)
+ c4φ+ c5Vw

]
+ d

}
/k (3.32)

where CC10 is the level of cloud cover, φ is relative humidity, Tn and Tn−3 are dry bulb

temperature at hours n and n − 3 respectively, Vw is wind speed and c0–c5, d and k are

the regression coefficients.

Other models such as the REST2 model [92] are based on complex combinations of
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aerosols. Consequently, many are heavily reliant on detailed atmospheric data, which are

not always freely available, especially for Australian locations.

Seo and Huang [129] investigated modified versions of the Zhang and Huang model to

test the dependence on the input variables in order simplify the model. It was found that 7

out of the 23 locations tested, the models could be simplified by removing the wind speed

and humidity terms, thereby becoming a 2 variable model, with 4 regression coefficient

terms instead of 6 [121]. One such location was Darwin, Australia. Furthermore, it was

found that that two variables were sufficient for non-tropical sites, with the additional

variables necessary for tropical locations.

Noting the model dependence on climatology, Seo and Krarti [130] expanded the Zhang

and Huang model of (3.32) to develop a set of coefficients for different climatological zones

based on the Köppen-Geiger climate classification system for which a further description is

presented in Section 3.3. It was noted that the root mean square error (RMSE) and mean

bias error (MBE) was remarkably improved from the Zhang and Huang model, however no

data from Australian locations were used to develop the coefficients while the performance

of the model in Australia was also untested.

Copper [127] aimed to test the accuracy of various widely adopted global irradiation

models for Australian locations. When separately assessing the global models, Copper

found that the six variable model of Seo and Huang outperformed the other global irradi-

ation models [127]. However, it was noted that the Köppen-Geiger variation of the Zhang

and Huang model, used to develop the second generation International Weather files for

Energy Calculations (IWEC2) TMY files, showed improved or matched performance for

three out of four locations.

Numerous other models exist such as Thevenard and Brunger, Kasten and Cesplak

(simple) as translated to english by Davis and McKay, and Moriarty [121]. A review of

each model is beyond the scope of this research.

In this research, the unique application of the Köppen-Geiger climate classification in

the Seo and Huang global irradiance model is the motivator for an extension to diffuse

decomposition irradiation models. Diffuse irradiance models are discussed in Section 3.2.8

and a particular model known for its good performance across many climatological zones

is investigated to determine if accuracy improvements are possible through consideration

of Köppen-Geiger climate classification.

3.2.8 Diffuse Decomposition Models

Due to the high variability of cloud cover and changes in atmospheric gases, accurate

estimation of the diffuse fraction of irradiation is difficult. A multitude of models have

been developed to estimate diffuse irradiation with many reviews aiming to identify the

most accurate model [103,127,131,132] with recent studies including [133–135]. However,

all assessments are limited in scope and typically assess the models against a limited

network of ground-based weather stations.

Diffuse fraction is defined as the ratio of diffuse horizontal irradiation over global

horizontal irradiation and is often the primary reference when referring to diffuse to enable
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ease of comparison with clearness index, previously defined in Section 3.2.5, which is also

defined as a fraction.

Orgill and Hollands developed one of the earliest models diffuse fraction models ex-

pressed as a function of clearness index, consisting of sub-intervals for the hourly clearness

index kT . Orgill and Holland noted that diffuse fraction d = Id/I varies little around the

ends clearness index range, but varies substatially in the middle range. Consequently, the

models of Orgill and Holland and other early models such as Erbs et al. [136] and Reindl

et al. [137] break the clearness index index in sub-intervals, with piecewise correlations

developed for each sub-interval [138]. At the simplest level, the piecewise diffuse fraction

model is a function of clearness index only with a linear relationship in each sub-interval,

as is the case with the Orgill and Hollands model detailed in (3.33):

Id
I

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1− 0.249kT for 0 ≤ kT ≤ 0.35

1.557− 1.84kT for 0.35 < kT < 0.75

0.165 for kT ≥ 0.75

(3.33)

The Erbs hourly correlation is an extension of sorts on the Orgill and Hollands, intro-

ducing a higher order polynomial as a function of clearness index. The model was devel-

oped from data gathered from the stations in the US and one Australian station [115,136].

The model is noted by Duffie and Beckman to be, for practical purposes, very similar to

the Erbs model [115] defined in (3.34) as:

Id
I

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1− 0.09kT − 2.5557k2T + 0.8448k3T for kT ≤<= 0.22

0.9511− 0.1604kT + 4.388k2T − 16.638k3T + 12.336k4T for 0.22 < kT ≤ 0.80

0.165 for kT ≥ 0.80

(3.34)

The Dirint model of Perez et al. [91] is a modified version of the Direct Insolation

Simulation Code (DISC) model by Maxwell [95]. Rather than modelling DHI, the Dirint

model estimates DNI which can then be used to estimate the diffuse irradiation through

the relationships of (3.6) and (3.7). DNI is first calculated through the DISC model and the

resultant output IDISC is then scaled by X(K ′
t, θz,W,ΔK ′

t), a coefficient function of the

solar irradiation condition parameters of clearness index (K ′
t – modified to be independent

of the sun’s position), solar zenith (θz), atmospheric precipitable water (W – derived from

dew point temperature measurements) and a stability index (ΔK ′
t) [91,132,138]. The last

parameter ΔK ′
t reflects the dynamics of the time series [91]. The coefficent function is

taken from a four-dimensional lookup table consisting of a 6 × 6 × 5 × 7 matrix [91]. The

Dirint model is therefore expressed simply as:

Ibn = IDISCX(K ′
t, θz,W,ΔK ′

t) (3.35)



3.2. Solar Irradiation on the Horizontal Plane 45

where the DISC model is itself a function of global irradiation and solar zenith angle [91],

a detailed description for which is provided in [95].

A further evolution of Dirint is DirIndex [52], developed through an alternative con-

sideration of atmospheric turbidity [132]. The DirIndex model is considered in the Solargis

satellite-based solar irradiation database [45]. The Dirint model is used by the Vaisala

3TIER and NSRDB (India) databases, while the DISC model is used in the NSRDB

(Americas) database.

The model developed by Skartveit et al. [102] is a modified version of the original

model developed by the authors to include an hourly variability index [132], similar to

the modifications of Perez et al. in the development of the Dirint model [104]. The

model also included additional corrections for surface albedo to differentiate between snowy

and non-snowy conditions [132]. The Skartveit model consists of an extensive array of

analytical functions to estimate diffuse irradiation from global irradiance, solar elevation

and clearness index [121] [132]. The model is essentially a piecewise polynomial model

that separates clearness index into numerous regions [121]. The primary disadvantage of

the model is the high number of parameters requiring estimation, with over 20 parameters

depending on the surface albedo circumstances [121].

Boland et al. [138] noted a number of shortfalls associated with piecewise polynomial

diffuse fraction models such as those of Orgill and Hollands, Reindl, Erbs and Skartveit.

Various authors use different clearness index sub-interval end points in their models while

the models assume only two significant predictors – clearness index and solar altitude.

Boland et al. identified that additional predictors can be introduced to account for the

highly variable spread in the middle sub-interval whilst also accounting for spread featured

around the end sub-intervals. Finally, Boland et al. reasoned that a model accounting for

clearness index in a single uniform manner enables easy alteration, allowing adjustments

for future climate change to be made more easily than fixed sub-intervals.

The early work by Boland et al. [139] presented a simple logistic function model for

diffuse fraction developed for Australian locations involving clearness index only. The

model was the first step in the development of a generic model of diffuse fraction that

could address the transportability issues associated with others models developed for other

climates [58]. The ultimate aim was to develop a single model from global irradiance and

other predictors [58] to cover the whole range of clearness indices rather than splitting the

range into sections as was the case for the models of [102,136,140].

The theoretical framework for the use of the logistic model was further expanded and

the model modified again by Boland et al. [141]. The version of the logistic function model

with the addition of a persistence factor, as updated by Ridley et al. [58] and known as

the BRL model, is widely referenced in literature. In developing the new model, Ridley

et al. [58] aimed to use as few predictors that rely on measured data as possible to enable

the prediction of diffuse irradiation from global irradiation or inferred from satellite data

only.

The BRL model considers five key parameters:

• An hourly clearness index kT ;
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• Solar altitude α in units of degrees;

• Apparent solar time (AST ) in units of hour number, which is asymmetric about

solar noon and may explain differences between morning and afternoon;

• A daily clearness index KT as Ridley et al. noted that the whole day may have

common characteristics; and

• A clearness variability predictor, similar to the models of Skartveit [102] and Dirint

[91], referred to as a persistence factor ψ, to capture the values of lagged clearness

index due to atmospheric inertia [58].

The BRL model is defined as:

d =
1

1 + eβ0+β1kT+β2AST+β3α+β4KT+β5ψ
(3.36)

where β0, β1, β2, β3, β4 and β5 are fitted coefficients with the values of -5.38, 6.63, 0.006,

-0.007, 1.75 and 1.31 respectively [58]. Data from seven world locations were amalgamated

and the residual sum of squares minimised to estimate each parameter coefficient. The

persistence term ψ is defined as:

ψ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

kt−1+kt+1

2 sunrise < t < sunset

kt+1 t = sunrise

kt−1 t = sunset

(3.37)

Ridley et al. compared the BRL model against the Skartveit [102], Reindl [137] and

Perez Dirint [91] models, providing graphical comparisons between the models for the city

of Adelaide, reproduced as Figure 3.3. The common theme between the Skartveit, BRL

and Perez Dirint models is the introduction of the persistence term to account for the high

variability in the diffuse fraction and clearness index as clearly seen in Figure 3.3. Based

on absolute percentage error and MBE statistical indicators, the BRL model performed

equally as well as the other models for the northern hemisphere, while the Bayesian In-

formation Criterion suggested that the BRL model outperformed all other models in both

hemispheres. Ridley postulated that given its strong performance in both hemispheres

and its relatively simple formulation, the BRL model could be used a universal model for

all locations and climates.

Boland et al. [138] undertook further research to determine if the BRL diffuse fraction

predictor can be used to give delineations for both diffuse and direct irradiance accurately.

While energy predictions for PV installations are reliant on global and diffuse irradiation

estimates only, accurate DNI estimates are critical for concentrated solar thermal systems.

The performance of the BRL model using (3.6) and (3.7) to predict DNI was tested against

a new logistic model developed specifically for DNI and the Dirint model. It was shown that

the new logistic model performed better than the Dirint model in all four error analyses

conducted for all locations examined with the exception of MBE in Lisbon, Portugal.
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Figure 3.3: Comparison of diffuse fraction models for Adelaide irradiation data. Source:
Ridley et al. [58]
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The BRL model was then shown to perform as well as the new logistic model, with the

BRL model giving better results in the middle clearness index range. It was ultimately

concluded that the BRL model is suitable to model both diffuse and direct irradiation.

Torres et al. [132] reviewed 17 diffuse fraction models of three primary types: twelve

piecewise polynomial models (from 1st to 4th order polynomals), two logistic models and

three dynamic process models. It was found that the higher order polynomials do not

appreciably improve the estimation over lower order models, an observation supported by

Duffie and Beckman [115] when comparing the 4th order correlation of Erbs et al. [136]

against the earlier piecewise linear correlation of Orgill and Hollands [140]. Torres et al.

found that the relative RMSE (rRMSE) and coefficient of correlation were significantly

improved with the use of the dynamic models of Skartveit, Dirint and BRL, which demon-

strated a far better fit to the measured data. Torres et al. [132] also noted that the results

confirmed the previously published findings of Ineichen [103], which established that the

dynamic models of Skartveit and DirIndex (a modified version of Dirint) performed better

than the piecewise polynomial model of Erbs et al. [136]. Of the three dynamic pro-

cess models, Torres et al. [132] found the Dirint and BRL models to show the highest

level of precision, as virtually all statistical indicators were better than the other models

tested. Ultimately, the BRL model was recommended due to its advantages in calculation

simplicity compared to the more complicated Dirint model [132].

Abal et al. [135] considered the BRL model of Ridley et al. [58] in a comparison of

ten diffuse models for applications in Uruguay. It was found that when the BRL model is

adjusted based on local irradiation data, the model outperformed all others.

Copper [127] aimed to test the accuracy of diffuse irradiation models for Australian

locations either in the absence of measured data or with global irradiation measurements

only. A particular focus was placed on the coupling of global and diffuse/direct models

and examining error propagation through both. When separately assessing the diffuse

models, Copper found no clear superior model under all-sky conditions, using ground

measured global irradiation data as an input. However, it was noted that the BRL and

Skartveit models outperformed the others in estimating direct irradiation under clear-sky

conditions [127].

When coupling the global and diffuse models, Copper found diffuse model uncertainty

doubled when using global models as an input [127]. Ultimately, Copper recommended

the use of either the BRL or Skartveit models for diffuse/direct irradiation, coupled with

BoM HSI satellite data for global irradiation in the absence of ground measured data [121].

3.2.8.1 BoM BRL Model

The Australian BoM uses a modified version of the BRL model for its HSI database

derived from satellite-based estimates. The BoM model replaces the persistence term

with a variability term based on the RMSE between the irradiance at a particular hour

and the irradiance for the previous and subsequent hours as shown in (3.38) [70]. The

variability term was adopted because it gave a lower mean absolute percentage error when

fitted against the BoM network of surface stations.
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υ =

⎧⎪⎨
⎪⎩
√

(kt−1−kt)2+(kt+1−kt)2

2 sunrise < t < sunset

0 t = sunrise, t = sunset
(3.38)

The BRL model is applied to the BoM HSI database of satellite observations acquired

by numerous satellites and instruments since 1990, from the original GMS-4 satellite to

the latest Himawari-8 satellite.

3.2.9 Hourly Irradiation from Daily Data

The time resolution of available solar radiation data vary significantly for each site. While

some installations and weather stations have pyranometers (measuring global irradiance)

or pyrheliometers (measuring direct irradiance normal to the direction of propagation)

which gather data over minutely or hourly intervals, for the vast majority of locations, solar

irradiation data are based on satellite observations, which are saved as cumulative daily

global irradiation in databases such as BoM CDO. Consequently, in order to investigate

the hourly PV generation potential at a particular location, it is necessary to establish an

estimate of hourly solar irradiation when only daily data are available.

Determining hourly solar irradiation from daily data is an inexact process. The most

obvious shortfall is the lack of transparency regarding the clearness of the sky. The pres-

ence of intermittent or continuous cloud cover cannot be determined through investigating

the daily irradiation data alone [115]. However, available estimation methods “tend to pro-

duce conservative estimates of the long-time process performance” [115], working best for

clear days, which correspond to the days of highest energy harvesting.

Studies of the daily irradiation components have resulted in the development of an

expression for the fraction of daily diffuse irradiation in terms of the daily clearness index

KT . An expression for the set of correlations was developed by Erbs et al. [136], defined

in (3.39) and (3.40) as follows:

For ωs ≤ 81.4◦

Hd

H
=

⎧⎪⎨
⎪⎩
1− 0.2727KT + 2.4495K2

T − 11.9514K3
T + 9.3879K4

T for KT < 0.715

0.143 for KT ≥ 0.715
(3.39)

For ωs > 81.4◦

Hd

H
=

⎧⎪⎨
⎪⎩
1 + 0.2832KT − 2.5557K2

T + 0.8448K3
T for KT < 0.722

0.143 for KT ≥ 0.722
(3.40)

Through knowledge of the total daily irradiation and the application of equations

(3.39) and (3.40), the daily diffuse irradiation can be determined and subsequently daily

direct irradiation through (3.5).

Equation (3.41), developed by Collares-Pereira and Rabl [142], provides an estimate
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of the ratio of hourly total and daily total radiation defined as

I

H
=

π

24
(a+ b cosω)

cosω − cosωs

sinωs − πωs
180 cosωs

(3.41)

where the coefficients a and b are established to be

a = 0.409 + 0.5016 sin (ωs − 60) (3.42a)

b = 0.6609− 0.4767 sin (ωs − 60) (3.42b)

The same principle may be applied to the diffuse component of the irradiation. Liu and

Jordan [143] described a relationship for the ratio of hourly and daily diffuse irradiation

expressed as follows:
Id
Hd

=
π

24

cosω − cosωs

sinωs − πωs
180 cosωs

(3.43)

Remark 3.3 It is important to note that when the midpoint of the solar hour occurs after

sunset or before sunrise, (3.41) and (3.43) yield a negative value which is not practically

possible. Consequently, solar hours that straddle sunrise or sunset should be ignored when

utilising (3.41) and (3.43) to estimate the hourly solar irradiation.

3.3 Köppen-Geiger Climate Classification

The Köppen-Geiger climate classification, originally developed by Wladimir Köppen in

1900, for which the most notable version is presented in [144], as stated in [145], was one

of the first quantitative classifications of world climates [146]. The classification system is

based on the notion that native vegetation is one of the best ways to define climate zone

boundaries [147]. A significant revision was undertaken by Rudolf Geiger in 1961 [146],

resulting in the development of the most recent hand drawn map [145]. Since the work of

Geiger, enhanced versions have been progressively developed in part due to the availability

of updated meteorological data and the introduction of modified analysis methodologies.

Recent notable revisions include the work by Kottek et al. [146], Peel et al. [148] and

Rubel et al. [145]. However, Geiger’s revision is still the most frequently referenced [146].

The classification system groups world geography into five key climate categories (vari-

ations on the naming conventions are given in literature [145,147,148], however the cate-

gorisations are largely equivalent). The categories as documented in [146] are:

• Equatorial (Tropical/Tropical Rainy)

• Arid (Dry)

• Warm temperate

• Snow (Cold/Boreal/Cold Snowy Forest/Continental)

• Polar (Alpine)



3.3. Köppen-Geiger Climate Classification 51

Within the key climate categories are sub-classes, delineated by criterions for average

precipitation and air temperature [146,148]. In particular, monthly average, minimum and

maximum temperatures, annual average temperatures, threshold limits on monthly and

annual average precipitation and average precipitation for summer and winter months are

considered [146]. Tthe climate classification sub-classes, as defined in [146], are detailed

in Table 3.6.

Table 3.6: Köppen-Geiger sub-classes based as defined by Kottek et al. [146]

Main Climates

Sub-Classes

Precipitation Temperature

(A) Equatorial (W) Desert (h) Hot Arid
(B) Arid (S) Steppe (k) Cold Arid
(C) Warm Temperate (f) Fully Humid (a) Hot Summer
(D) Snow (w) Dry Winter (b) Warm Summer
(E) Polar (m) Monsoonal (c) Cool Summer

(d) Extremely Continental
(F) Polar Frost
(T) Polar Tundra

The Köppen-Geiger system has a number of shortfalls. Criticism has been placed

on the rigid boundary criteria which can lead to large discrepancies between adjacent

sub-classes. Some sub-classes have been defined based on natural landscape features, for

example ’Rainforest’, while others are based on the human experience, for example ‘mon-

soon’ [147]. Trewartha, as referenced by Stern et al. [147], noted that even though bound-

aries are precisely defined, they are limited by human judgement and are consequently

open to debate and modification. However, the wide acceptance of the classification sys-

tem as noted by [146,147,149] indicates the merits outweigh the deficiencies.

Applications for the climate classification systems include micrometeorological flux

measurements, global river discharge, vegetation coverage assessments, soil erosion, human

thermal comfort, particulate air pollution and composition of European disease vectors

[145]. In an Australian context, the classification system has been used to reflect current

vegetation distribution to enable the the prediction of distributions in future climates

and the resultant hydrological implications under climate change scenarios [149]. Crosbie

et al. [149] note that vegetation coverage is inextricably linked to climate and therefore

investigated changes in climate types as a surrogate for changes in vegetation under climate

change scenarios.

Stern et al. [147] of BoM, in an effort to improve the Köppen-Geiger climate classi-

fication to better reflect the human experience, made slight departures from the original

classification through additional division of some climates and recombination of other

groups. The research was developed with a particular focus on Australia and Australian

climes. Using data gathered from 6000 rainfall and 600 temperature measurement lo-

cations between the years of 1961-1990, a revised digital map was generated using the

Hutchinson’s interpolation method of thin plate smoothing splines with a resolution of

0.025◦, incorporating elevation to facilitate a three-dimensional classification. Following

interpolation, the data were then smoothed using a filter resulting in a digital climate
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classification map for Australia. The major classification groups and climate sub-classes

considered in the methodology of [147] are presented in Figure 3.4 and Figure 3.5.

Figure 3.4: BoM major climate classification groups for Australia. Source: Australian
Bureau of Meteorology [150]

The revised version of the Köppen-Geiger classification by Kottek et al. in 2006 was

the first revision aiming to develop a digital version of the global map [145,146]. The revi-

sion was developed through a process of extensive data checks to remove inhomogeneities

associated with temperature data and a multi-stage quality control check for precipitation

data [146] for the period 1951-2000. The resultant digital map, allowing for 31 discrete

climate types, as shown in Figure 3.6, provided a Köppen-Geiger climate classification at

a latitude and longitude resolution of 0.5◦ [146].

Most recently, Rubel et al. expanded upon the work of the Kottek et al. and developed

a re-analysed map of the European Alps using downscaling algorithms with a resolutions

of 30 arc-seconds over the 1800-2010 for the purposes of climate zone change forecasting

out to 2100. The methodology of Rubel et al. was applied to a revised global map,

available as Google Earth .kmz files with resolutions of 30, 10 and 5 arc-minutes for data

over the period 1986–2010 [151]. For Pacific and South-east Asian locations, including

Australia, a map up to a resolution of 10 arc-minutes is available. The Köppen-Geiger

climate classification map based on the reanalysis methodology of [151], reproduced in

Figure 3.7, indicates 15 different climate divisions are present in Australia, noting that

some divisions, for example ‘As’ and ‘Csc’, only appear as a few pixels.

Despite the Australia continent specific climate research by [147] and [148] among

others, which show improvements to the original Köppen-Geiger classification, the recent
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Figure 3.5: BoM climate classification of Australia (climate classes). Source: Australian
Bureau of Meteorology [150]

Figure 3.6: Köppen-Geiger climate classification world map. Source: Climate Change
& Infectious Diseases Group [151]
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methodology of Rubel et al. [145] undertaken in 2017 is considered in this research. The

resultant reanalysis yielding the 10 arc-minute map reproduced as Figure 3.7 is used as

the defining climate classification map of Australia.

Equatorial

Arid

Warm Temperate

Polar

Snow

Figure 3.7: Köppen-Geiger climate classification for Australia based on re-analysis of
Rubel et al. [145] adapted from [151]

Table 3.7: Köppen-Geiger climate classification divisions of Australia based on method-
ology of Rubel et al. [145] and location of One Minute Solar Stations

Köppen-Geiger
BoM One Minute Solar StationsClassification Divisions

Af -
Am Cairns
As -
Aw Darwin, Townsville
BSh Broome, Cobar, Longreach, Kalgoorlie-Boulder, Tennant Creek
BSk Mildura
BWh Alice Springs, Learmonth, Woomera
BWk -
Cfa Rockhampton, Wagga Wagga
Cfb Cape Grim, Melbourne
Cfc -
Csa Adelaide, Geraldton
Csb Mt Gambier
Csc -
Cwa -

In the research presented in Chapter 4, the unique application of the Köppen-Geiger

climate classification in the Seo and Krarti global irradiance model is the motivator for an

extension to diffuse decomposition irradiation models, specifically the BRL diffuse model.
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The diverse range of climate classifications within Australia highlights there is some scope

to develop climate classification based diffuse irradiation models, as opposed to a single

internationally tuned model. Furthermore, the low spatial density of ground-based diffuse

and direct irradiation measurements within Australia places increased reliance on the

accuracy of satellite-based estimates for solar energy system performance assessments.

Improvements to diffuse estimates from satellite global irradiation using modified versions

of the BRL model are investigated in Chapter 4.

3.4 Data Quality Control

To enable solar irradiation models to be developed, the accuracy of the irradiation data

is critical. The measurement quality control procedures undertaken by meteorological

organisations provide a first level of data quality assurance, however for numerous research

applications, particularly the investigation of solar irradiation models, additional precise

and fine control tests are necessary to remove questionable and erroneous data [152].

Lemos et al. [153] undertook a series of quality control tests on data gathered from the

seventeen station network of the Environmental Data Organization System (SONDA) in

Brazil. Similarly, Engerer and Mills relied on the QCRad process developed by Long and

Shi [124] to remove erroneous measurements and improve the overall quality of data in

order to investigate the accuracy of clear-sky irradiation models.

Younes et al. [154] undertook a review of existing quality control methodologies under-

taken for solar irradiation related research and analysis. The methods of Page, Helioclim,

Molineaux/Ineichen, NREL SERI QC, CIE and Muneer/Fairooz were reviewed with a

view to propose a new procedure, taking learnings from existing methods.

The Page model developed for the ESRA and the Meteorological Office of the United

Kingdom, sets upper and lower boundaries for diffuse irradiation and an upper boundary

for global irradiation measurements.

The Helioclim quality control algorithm, developed as part of the SoDa project based

on the Geiger et al. [99] web-based quality control service, is performed through com-

paring data against simulated clear-sky results and estimated extra-terrestrial irradiation.

Consequently, the Helioclim method is based on likelihood control rather than a means

for precise and fine control [152]. The procedure of Molineaux and Ineichen is also web-

based and is used to output a series of coherence tests along plots for comparison between

modelled and measured data.

The SERI QC programme of NREL establishes boundaries and limits within which

acceptable data are expected to lie, similar to the Page and Helioclim methods. However,

the SERI QC programme is far more sophisticated, enabling boundaries to be set for ranges

of air masses, applied monthly to each station. The programme also provides a means to

fill in data gaps following removal of erroneous values through an averaging technique using

acceptable measurements of other irradiation components or if not available, irradiation

models based on synoptic data.

The CIE automatic quality control procedure proposed that testing should not be

conducted when global irradiance is less than 20 W/m2 and when the solar altitude is
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less than 4◦. The procedure consists of five test levels including absolute limit checks

on irradiation components, consistency checks based on redundancy between irradiation

component measurements, tests related to irradiation/illuminance measured in the four

cardinal directions, inter-comparison of irradiance/illuminance and a comparison of the

zenith illuminance against diffuse illuminance.

The Muneer and Fairooz procedure is a combination of the page and CIE procedures

with additional filters, consisting of five test levels. The first test applies the CIE pro-

cedure, while the remaining tests consist of consistency checks of measured components,

expected diffuse ratio and clearness index envelopes for the removal of outliers, checks

against the Page clear and overcast sky limits and finally calculation of Linke Turbidity

and checking for its limits.

Based on the methodologies observed in existing literature, Younes et al. proposed

a new semi-automatic quality control process [154]. First, preliminary filters are applied,

including physical constraints on hourly clearness index kT (0 < kT < 1) and a more

conservative approach to the removal of low solar altitude hours (α < 7◦ instead of 4◦

in the CIE procedure). The Page upper and lower boundaries for diffuse and global

irradiation are then applied. Finally, a quality control envelope is established to remove

outliers. A description of the envelope methodology is discussed in Section 4.2.1. The

process, while largely automatic, requires human intervention to select the cut-off point

of the envelopes at the extremes ends of the clearness index range to ensure envelope

cross-over has not occurred. The envelope method of [154] was adopted in [152, 155] and

also referenced by Lemos et al. [153] in the creation of an alternative envelope based on

the logistic function.

In addition to the method proposed in [154] and the other methods outlined therein,

Journée and Bertrand [152] developed a method for the Royal Meteorological Institute of

Belgium (RMIB), intended for sub-hourly data such as 10 or 30 minute averages. The

methodology applies tests for physical reasoning and statistical variability while spatial

and temporal dependencies are also accounted for. The threshold values considered in

the test are specific to the RMIB network and are therefore only applicable to low alti-

tude European regions. The quality control envelope procedure of [154] is also applied

but modified to set an upper limit on the clearness index. While most of the tests are

automatic, the overall procedure is semi-automatic as some tests, such as impacts of snow

and shadow and misleading calibrations, require a human identification.

The QCRad product by Long and Shi [124] follows the quality procedures of the

BSRN, part of the WMO WCRP program. Long and Shi propose additional modifications

by developing comparison tests for irradiation components and configurable climatological

limits [155]. The procedures of the QCRad product are extensively referenced in [118,153,

155]. The QCRad methodology was used by Engerer and Mills [118] to validate clear-sky

irradiation models in Australia.

Lemos et al. [153] undertook a recent investigation of solar irradiation in Brazil with

the objective of developing a country specific BRL diffuse model for hourly and sub-

hourly data. The QCRad quality control tests developed by Long and Shi [124] were
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applied. Additional checks following the methods of Younes et al. [154] and Journée and

Bertrand [152] and the World Meteorological Organization were also applied.

The method of [153] first applied the same solar altitude limit proposed in [154], due

to the high measurement uncertainty at sunrise and sunset and the low contribution to the

overall daily irradiation. A set of physical tests were then applied, rejecting data outside

the physical ranges of clearness index and diffuse fraction. Additionally, a range limit was

placed on the persistence factor considered in the BRL irradiation model.

The QCRad quality control procedures of Long and Shi [124], testing for irradiation

component consistency and plausibility, along with tracking system malfunctions were

then applied. Based on guidelines by the WMO [156], a variability test was introduced to

check for excessive irradiation fluctuations between successive observations.

A check for heavily overcast conditions was made by applying a lower limit on the

global irradiation measurements and the daily average in accordance with the methodology

of [152]. Conversely, cloud enhancement irradiation events were removed by checking

against the Solis clear-sky model [96]. A lower bound was placed on diffuse irradiation

in clear-sky conditions by considering the Rayleigh limit, defining the lowest amount of

diffuse irradiation that can reach the Earth’s surface in ideal clear-sky conditions. The

Rayleigh limit test was based on the QCRad method [124].

Based on the arguably superior performance of a logistic function when fitting a single-

curve against the diffuse fraction vs clearness index relationship [141, 153], Lemos et al.

created outlier quality control envelopes by fitting a logistic function on the previously

filtered data. However, the process was semi-automatic, requiring a human operator to

translate the mean logistic function to upper and lower envelope boundaries based on

visual inspection.

As a final filter, Lemos et al. discarded hours with less than 45 minutes of contributory

observations prior to hourly averaging of the filtered irradiation data.

The quality control methodologies reviewed in this section are applied in the research

presented in Chapter 4 aiming to develop a Köppen-Geiger BRL diffuse model adjustment

for Australian locations. The specific quality control methodologies used are defined in

the next chapter.

3.5 Solar Irradiation on a Tilted Surface

After establishing hourly irradiation models on a horizontal plane as presented in Sec-

tion 3.2, to enable the assessment of solar PV energy yield, models for transposing hori-

zontal irradiation onto a tilted plane are required. This section provides a general review

of various transposition models and model comparisons presented in literature.

Tilted plane irradiation models are divided into two categories – isotropic and aniso-

tropic [115,131]. In isotropic models, diffuse irradiation is considered to be uniform across

the entire sky dome. Consequently, the total irradiation on the tilted plane may be

expressed as:

IT = BT +DT +RT (3.44)
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where BT , DT and RT are the total direct (beam) irradiation, diffuse irradiation and

ground reflected irradiation on the tilted plane respectively [157].

Anisotropic models consider the diffuse irradiation to be non-uniform and attempt

to incorporate additional irradiation components such as circumsolar diffuse (the forward

scattering of solar irradiation around the solar disc) and horizon brightening (concentrated

diffuse irradiation near the horizon most prominent on clear days) [115]. Consequently,

the diffuse term in (3.44) may be broken into several components to give a more complete

expression for irradiation on a tilted surface defined as:

IT = IbRb + Id,isoFc−s + Id,csRb + Id,hzFc−hz + IρgFc−g (3.45)

where Ib is the direct irradiation, Rb is as defined in (3.14), Id,iso is the isotropic component

of diffuse irradiation, Id,cs is circumsolar diffuse, Id,hz is horizon brightening diffuse, ρg is

the composite ground reflectance and the Fx−y terms are the corresponding view factors

for each irradiation component [115].

Remark 3.4 When utilising observed horizontal solar irradiation data to determine the

irradiation on a tilted surface, care must be taken during the solar hours containing sunrise

or sunset. As the solar zenith angle approaches sunset hour angle, the term cos θz becomes

small and consequently Rb becomes large. If any direct irradiation is observed during the

period, multiplying it by the large Rb may yield values that exceed the solar constant [115].

A solution is to either ignore the solar hours containing sunrise or sunset, or alternatively

redefine the expression of (3.14) from an instantaneous one to one integrated over time

[115]. According to Duffie and Beckman, the average Rb during the sunrise and sunset

hours may be expressed according to (3.46)–(3.49) where ω1 and ω2 are the sunrise and

sunset hour angles respectively. During sunrise and sunset hours, (3.46) provides a far

more reasonable magnitude for Rb than (3.14).

Rb,avg =
a

b
(3.46)

a = (sin δ sinφ cosβ − sin δ cosφ sinβ cos γ) (ω2 − ω1)

+ (cos δ cosφ cosβ + cos δ sinφ sinβ cos γ) (sinω2 − sinω1) (3.47)

− (cos δ sinβ sin γ) (cosω2 − cosω1) (3.48)

b = (cosφ cos δ) (cosω2 − cosω1) + (sinφ sin δ) (ω2 − ω1) (3.49)

3.5.1 Transposition Model Comparisons in Literature

Numerous models have been developed to define incident irradiation on a tilted surface

based on measured horizontal irradiation. Three models particularly prominent in lit-

erature include the Liu and Jordan model (isotropic) [158], Hay-Davies-Klucher-Reindl

(HDKR) model (anisotropic) [137] and Perez (1990) model (anisotropic) [159].

According to Duffie and Beckman [115], the Perez model is the least conservative

of the three models and has been shown to be the most accurate, particularly for west
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facing solar surfaces [131,160,161] or in general, surfaces with azimuths far from zero. For

surfaces facing the equator, Duffie and Beckman recommend the use of the HDKR model

due to its relative simplicity compared to the Perez (1990) model.

Comparative evaluations for irradiation transposition models have been performed

by numerous authors for the Liu and Jordan, HDKR and Perez models among others.

Khoo et al. [162] compared the Liu and Jordan, HDKR and Perez (1990) models against

measured data in Singapore, finding the Perez model to be the most accurate. Noorian

et al. [131] and Khalil and Shaffie [160] evaluated the performance of numerous models

against measured irradiation data for south and west facing surfaces in Iran and Egypt

respectively and found the Perez (1990) model to be the most accurate for both surface

orientations.

Wattan and Janjai [161] assessed the performance of fourteen models against mea-

sured data in Thailand for various inclined surface orientations. While the HDKR and

Perez (1987) models performed comparatively well, it was found that two other models by

Gueymard [163] and Muneer [164] were slightly more accurate across the entire orientation

range. However, it should be noted that for tilt angles of 60 degrees or less, the Perez

(1987) model out-performed all other models.

Gueymard [165] reviewed the effect of direct and indirect irradiation uncertainties

for tilted surface irradiation estimates. Ten models were assessed including Liu and Joran

(isotropic) [158], HDKR [165], Perez (1990) [159], Gueymard [163], Muneer [164], Hay [166]

and Skartveit and Olseth [167] among others. The Perez and Gueymard models were

shown to perform the best when considering clear-sky conditions only. However, when

considering all-sky conditions and in situations where only global irradiation was known,

the HDKR model demonstrated the best performance.

David et al. [168] assessed four tilt models for application in a southern hemisphere

location. The Hay [166], Skartveit and Olseth [167], Gueymard [167] and Perez (1987) [169]

models were assessed. The Perez model was shown to perform the best with both hourly

and minutely data.

Copper presented a summary of comparative studies for irradiation tilt models in

a PhD thesis [127], surmising that no single tilt model has been shown to perform the

best for all locations and at all ranges of tilt and azimuth. However, Copper noted that

generally the Perez model were shown to have the best average performance [127].

A review conducted by Freeman et al. [170] for NREL compared the HDKR and Perez

models against measured data from an existing PV array. Although the models yielded

similar results, Freeman et al. found the Perez model provided slightly better correlations.

In addition to the comparative evaluations in literature, the Liu and Jordan, HDKR

and Perez models have found extensive applications in proprietary solar irradiation and PV

array performance modelling software. PVsyst, as the industry leading software program

for large-scale solar PV system modelling, uses the Hay [166] and Perez [159] transposition

models. The developers noted that the Perez model is sensitive to the accurracy of diffuse

irradation data [171], an observation supporting the research of [165], and stated previously

that the use of the model was not justified unless hourly irradiance data are available.
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However, it was also noted that recent research by Ineichen [172] concluded that the

Perez model is slightly better. When applied using PVsyst, the estimates tend to be

less conservative than the Hay model, with estimates up to 2% higher depending on

location [171]. Helioscope, a cloud based platform by Folsom Labs, also allows users to

choose between the Hay and Perez models [173].

Other platforms such as the HOMER microgrid optimisation software utilise the

HDKR model [174] while the NREL System Advisor Model enables users to choose be-

tween the Liu and Jordan (isotropic), HDKR and Perez models [170]. The Sandia National

Laboratory PVLIB toolbox for Matlab allows either the Liu and Jordan, HDKR, Perez

or a fourth model known as the Simple Sandia Model developed for the Sandia National

Laboratory to be selected [175].

Given the prevalence of the Liu and Jordan, HDKR and Perez (1990) models in energy

yield assessment software platforms and the demonstrated performance of the HDKR and

Perez models in comparative studies, the mathematical formulation for each model is

summarised in Section 3.5.2 to Section 3.5.4 for reference. The final model selected for

use in this research is established in Section 3.5.5.

3.5.2 Liu and Jordan Model

The Liu and Jordan model [158] was one of the earliest established models. The model is

the most conservative as it consistently underestimates incident solar irradiation but has

nonetheless been utilised by numerous authors in literature pertaining to PV panel tilt

optimisation [176,177].

The Liu and Jordan model, defined in (3.50) is an isotropic model and is therefore

relatively simple as the circumsolar and horizon brightening components of (3.45) are

ignored. The diffuse irradiation view factor Fc−s between the solar collector and the sky

and the reflected irradiation view factor Fc−g between the solar collector and the ground

are expressed as a function of collector tilt β.

IT = IbRb + Id

(
1 + cosβ

2

)
+ Iρg

(
1− cosβ

2

)
(3.50)

3.5.3 HDKR Model

The HDKR model was iteratively updated [115] by expanding upon the anisotropic model

originally developed by Hay and Davies [166, 178]. Reindl et al. [137] amended the Hay

and Davies model to incorporate a modified version of the Temps and Coulson horizon

brightening factor [179] as proposed by Klucher [180].

The HDKR model is effectively an extension of the original Liu and Jordan model to

include additional diffuse components for circumsolar and horizon brightening irradiation.
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The HDKR model is expressed as:

IT = (Ib + IdAi)Rb + Id (1−Ai)

(
1 + cosβ

2

)[
1 + f sin3

(
β

2

)]

+ Iρg

(
1− cosβ

2

)
(3.51)

where Ai is the anisotropy index accounting for forward scattering of circumsolar irradia-

tion defined as:

Ai =
Ib
Io

(3.52)

and f is a modulating factor of the horizon brightening term

[
1 + f sin3

(
β
2

)]
to account

for cloudiness defined as:

f =

√
Ib
I

(3.53)

3.5.4 Perez Model

The Perez (1990) model [159] (hereafter referred to as the Perez model) is the latest model

in a series of progressive improvements undertaken by Perez et al. [169, 181]. The Perez

model is based on a far more detailed analysis of the diffuse components of the anisotropic

model and features statistically derived brightness coefficients based on hourly diffuse

irradiation observations.

According to the Perez model, the diffuse irradiation incident on a tilted plane can be

described by the following:

Id,T = Id

[
(1− F1)

(
1 + cosβ

2

)
+ F1

a

b
+ F2 sinβ

]
(3.54)

where F1 and F2 are the circumsolar and horizon brightening coefficients respectively

and a and b are terms accounting for the angles of incidence of the cone of circumsolar

irradiation [115]. The a and b terms are described as:

a = max (0, cos θ) (3.55)

b = max (cos 85, cos θz) (3.56)

The brightness coefficients F1 and F2, are functions of the zenith angle θz, a clearness

index ε and a brightness index Δ. The clearness and brightness indexes are described as:

ε =

Id+Ibn
Id

+ 5.535e−6θ3z

1 + 5.535e−6θ3z
(3.57)

Δ = m
Id
Ion

(3.58)
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where m is air mass, Ibn is the direct normal incident irradiation and Ion is the extra-

terrestrial normal incident irradiation.

The brightness coefficients F1 and F2 are functions of statistically derived coefficients

for ranges of the clearness index ε [115] as shown in (3.59) and (3.60). Details of the rec-

ommended set of coefficients, as prescribed by Perez et al. [159], are provided in Table 3.8.

F1 = max

(
0, f11 + f12Δ+

πθz
180

f13

)
(3.59)

F2 = f21 + f22Δ+
πθz
180

f23 (3.60)

Table 3.8: Brightness coefficients for Perez anisotropic sky. Source: Perez et al. [159]

Range of ε f11 f12 f13 f21 f22 f23

1.000-1.065 -0.008 0.588 -0.062 -0.06 0.072 -0.022
1.065-1.230 0.13 0.683 -0.151 -0.019 0.066 -0.029
1.230-1.500 0.33 0.487 -0.221 0.055 -0.064 -0.026
1.500-1.950 0.568 0.187 -0.295 0.109 -0.152 0.014
1.950-2.800 0.873 -0.392 -0.362 0.226 -0.462 0.001
2.800-4.500 1.132 -1.237 -0.412 0.288 -0.823 0.056
4.500-6.200 1.06 -1.6 -0.359 0.264 -1.127 0.131
6.200-inf 0.678 -0.327 -0.25 0.156 -1.377 0.251

With reference to (3.55)–(3.60) defined above, the total irradiation on the tilted plane

according the Perez model, including direct, isotropic diffuse, circumsolar diffuse, diffuse

from the horizon and ground reflected irradiation [115] is defined as:

IT = IbRb + Id (1− F1)

(
1 + cosβ

2

)
+ IdF1

a

b
+ IdF2 sinβ + Iρg

(
1− cosβ

2

)
(3.61)

3.5.5 Selected Transposition Model

Although the Perez model has been shown to generally outperform other transposition

models [131, 160, 162], the HDKR model has also been shown to perform well across a

variety of locations and climates [161,165]. The complexity of the Perez model places it at

a distinct disadvantage when applied to the design optimisation analyses presented in the

subsequent chapters of this research. The increased complexity of the Perez model requires

additional computation time, a penalty which cannot be discounted. For system design

optimisation involving thousands of calculations to reach a solution for a multitude of test

installations, the Perez model is at a distinct disadvantage. Consequently, for the purposes

of this research and the optimisation problems presented in the remaining chapters, the

HDKR model, as defined in (3.51), is assumed.

3.6 Summary

An introduction to solar irradiation modelling was presented in this chapter. Available

solar irradiation databases, including both ground-based and satellite-based observations,

were summarised with specific consideration given towards Australian applications.
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Concepts associated with solar geometry were explored as the basis for the establish-

ment of models associated with irradiation on the horizontal plane. Clear-sky irradiation

models were reviewed with the ESRA clear-sky model described in detail based on its es-

tablished performance in literature under Australian conditions, intended for application

in the quality control tests conducted for the research detailed in Chapter 4.

Models for global irradiation were briefly discussed. A particular variant by Seo and

Huang [130], based on the Köppen-Geiger climate classification system and since used to

develop the IWEC2 weather files, was established as a motivator for the original research

undertaken in this thesis, presented in Chapter 4.

Diffuse and direct irradiation components were introduced. A summary of numerous

reviews conducted in literature assessing the multitude of diffuse models developed was

presented. The BRL model by Ridley et al. [58] was found to perform well in both global

and Australian conditions and selected for further improvement in Chapter 4, through

application of the Köppen-Geiger climate classification system.

Finally, transposition models to calculate irradiation on the horizontal plane were re-

viewed. Based on widely accepted applications in literature and energy yield modelling

software, the Perez and HDKR model were considered to be superior. The HDKR model’s

simplicity and efficiency of calculation were considered to be the justification for appli-

cation to the PV design optimisation methodologies presented in subsequent chapters of

this thesis.





Chapter 4

Köppen-Geiger BRL Diffuse

Irradiation Models

I
mprovements to solar irradiation resource assessments enable solar PV system energy

yield uncertainty to be reduced. Site-specific irradiation assessments are facilitated by

existing networks of irradiation component measurement stations which are particularly

sparse in an Australian context. The Australian BoM, which operates the ground-based

network of OMS measurement stations, has only commissioned 21 stations (eight of which

have since closed) for the entire country.

Measurement of global irradiation is less cost restrictive, compared to the measurement

of direct and diffuse components, as only a single pyranometer sensor is required. Satellite-

based global irradiation estimates are also available, such as the HSI database maintained

by BoM, providing hourly and in some cases, sub-hourly irradiation data with complete

global coverage.

Numerous models have been developed to describe either the diffuse or direct compo-

nents based on global irradiation and other meteorological parameter measurements. One

such model, commonly referred to as the BRL diffuse model has been shown to be amongst

the most accurate models [58,132,138], performing well in Australian climates [121]. The

model consists of a single set of parameters defining an empirical logistic function to de-

scribe diffuse irradiation based on global irradiation measurements or estimates only. As

the model includes a universal set of parameters, no allowance is provided for different

climatic areas.

The simple form, accuracy and low computational demand of the BRL model makes

the model an attractive option amongst the multitude of other models, many of which

have considerable complexity. BoM applies a slightly adjusted version of the BRL model

for use as part of its HSI service specific to Australian locations. However, the BoM

adjusted BRL model, similar to the original BRL model, does not take into account the

large climatic diversity of the Australian continent.

Research on global irradiation models has found merits in developing model variants for

specific climates. The Seo and Krati variation on the Zhang and Huang global irradiation

model applies the widely adopted Köppen-Geiger climate classification system to develop

models for various climate types [130].

65
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In this research, the concept of climate zone based irradiation models is extended

for the application to the BRL model specifically for Australian locations and climates.

Using data from the BoM network of OMS stations, techniques for irradiation data quality

control are applied to create high quality data sets from which the BRL model is adjusted.

A new national-level model is developed for the Australian mainland while climate zone

models using the Köppen-Geiger climate classification system are developed for Australian

climate zones. The estimates of the new adjusted BRL models are compared against the

original BRL model.

Given the high reliance on satellite-based irradiation estimates for Australian applica-

tions, this research extends the Köppen-Geiger zone adjusted BRL model methodology to

satellite data. A subset of the BoM HSI database made available via the AREMI spatial

mapping infrastructure platform is analysed and compared against ground-based data to

determine the accuracy improvements that may be gained. In parallel to the Köppen-

Geiger models developed for satellite data, a new Australian national-level model, tuned

using a quality controlled data set is also developed and compared against the BoM ad-

justed BRL model estimates within the AREMI database.

4.1 Improved BRL Model

In this research, the application of the Köppen-Geiger climate classification system to

Australian irradiation data is investigated to establish potential improvements over the

original BRL and BoM modified BRL models through climatological classification consid-

erations.

Two main model categories are developed, each with two sub-categories as follows:

(i) New national-level Australian BRL models

(a) Original BRL method (persistence factor)

(b) BRL with BoM variability term (3.38) replacing persistence

(ii) BRL models for each Köppen-Geiger zone in Australia

(a) Original BRL method (persistence factor)

(b) BRL with BoM variability term replacing persistence

A third level is also developed for each BoM OMS station for initial comparison pur-

poses only – comparing the original BRL model against models tuned for a specific location.

During earlier work, Boland et al. [141] did not perform any rigorous quality control

procedures aside from the application of an author-developed quadratic programming

process to identify values with a high probability of infeasibility, as opposed to direct

testing against physical and statistical constraints. In this research, extensive quality

control tests are applied to raw minutely data to improve the accuracy of the input data

used to calibrate the BRL models. The methodologies adopted to first filter the data

and then develop new BRL models and undertake statistical analyses of the resultant

irradiation estimates are presented in Section 4.2.
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Following irradiation data filtering, local BRL models for each station are fitted, rep-

resenting the closest possible BRL model fit for a specific location. Plots to visually

demonstrate the potential improvement over the original BRL model are provided in Sec-

tion 4.3.

However, the practical application of BRL models specific to a single location is limited

given the limited availability of sites measuring diffuse irradiance. The new National BRL

models are developed from an amalgamated set of filtered data based on observations from

all BoM OMS stations. To facilitate a compromise between the large quantity of data at

the national-level and specific locational tuning, the climatological coverage of the BoM

OMS network is leveraged to develop a limited number of BRL models for the Australian

continent. Consequently, the establishment of BRL models based on Köppen-Geiger zones

is investigated in Section 4.3 as a potential improvement over a single national model.

The low spatial coverage of ground-based measurement locations with a minimum

data output consisting of GHI is a materially limiting factor for energy yield prospecting

analysis. Although significantly higher than the density of high frequency tracking stations

operating within the BoM OMS network, GHI-only measurements locations in Australia

are sparse.

Satellite-based observations from the BoM HSI and AREMI databases present an op-

portunity for complete GHI spatial coverage. The BoM HSI database retains hourly solar

irradiation values estimated from satellite observations. As detailed in Section 3.1.2, the

outputs from the BoM HSI database up to 2015 are included in the AREMI database. As

AREMI is a publicly accessible tool providing universal spatial coverage for the continent

of Australia at zero cost, AREMI data were considered for this research. As detailed in

Section 3.2.8.1, BoM applies a modified version of the BRL correlation to estimate DNI

irradiation. In Section 4.4, a new adjusted BRL model at the national-level and models

based on Köppen-Geiger zone classifications are tested on the AREMI data. The objective

is to determine if the irradiation component estimates of DHI and DNI can be improved

through climatologically specific considerations.

4.2 Research Methodology

4.2.1 Quality Control Methodology

Given the similarity of objectives presented in this research to the investigations by Lemos

et al. [153], the quality control process adopted in [153] was applied to this research with

some minor modifications:

(i) The ESRA clear-sky model was applied to the cloud enhancement and “tracker-off”

tests as opposed to the Solis clear-sky model due to its demonstrated performance

in Australian locations (refer Section 3.2.6 and [118]).

(ii) A modified quality control envelope based on the methodology of [152] and [154] is

applied to the average hourly data.
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(iii) Hourly and daily parameters for clearness index and persistence factor are recalcu-

lated following the application of the final data filters.

The quality control process used in this research is detailed Table 4.1. With the

exception of the adoption of the ESRA clear-sky model, the Lemos et al. methodology

was adopted up to the construction of hourly data outlier envelopes.

Remark 4.1 In this research, the outlier envelope method of Lemos et al. was not used

due to its semi-automatic nature rather than a statistical approach based on standard de-

viations within a sub-set of the clearness index range. Consequently, the original envelope

methodologies of [152] and [154] are applied in this research, as they largely follow a more

automated process.

The Younes et al. [154] quality control envelope is applied in this research. The method

is based on dividing the clearness indices into bins (ten bins are nominated) and calculating

means for diffuse fraction d and clearness index kT and the standard deviation of diffuse

fraction (σd) within each bin. The upper and lower outlier envelope is then formed by

d± 2σd for each bin mean kT and fitting a second-order polynomial through the points.

The method of [154] is also semi-automatic as it requires visual inspection of the

shoulder effects at the extreme ends of the clearness index range whereby the upper and

lower boundaries may cross each other. In this research, the need to visually inspect each

plot is removed through an automated procedure to introduce a piece-wise adjustment

of the lower envelope boundary. At low clearness indexes, data dispersion for d–kT plots

reduces and the resultant curve connecting each clearness index bin mean kT flattens out.

A limit is set on the polynomial curve for the lower boundary whereby for lower clearness

values, the ordinate (diffuse fraction) of the envelope remains constant, i.e. the lower

boundary is limited to be less than −2.5σd.

For high clearness indexes, the method of Journée and Bertrand [152] is adopted to

identify obvious outliers. The outlier envelope boundary is made vertical at a maximum

clearness index kT,max whereby all clearness indexes higher than kT,max are at least 0.02

higher. Therefore for all data points with the associated kT,i values arranged in ascending

order of magnitude, where i ∈ {1, . . . , n − 1} and n is the number of hourly data points,

the upper clearness index limit boundary is defined as follows:

kT,max = max
(
kT,i
)
, where

∣∣kT,i − kT,i+1

∣∣ > 0.02 (4.1)

Furthermore, in [152] the overall envelope was defined to be ±5σd rather than ±2σd

as proposed in [154], giving an approximately 25% wider envelope with the intention of

avoiding unnecessary rejection of valid data. Based on visual inspection of the data for

Australian locations, an envelope based on ±5d appeared to be too wide. Instead, an

envelope of ±2.5σd is applied in this research.

A summary of the modifications to the Younes et al. [154] envelope process applied in

this research is as follows:



4.2. Research Methodology 69

(i) Increase number of clearness index bins to 15 (from ten) to improve efficacy of

polynomial fitting.

(ii) Restrict lower envelope boundary to less than −2.5σd at low clearness indexes.

(iii) Adopt the maximum clearness index boundary kT,max of [152].

(iv) Define the envelope to be ±2.5σd rather than ±2σd.

The complete historical ground-based solar irradiation data records of the BoM OMS

database for 19 weather stations in mainland Australia and Tasmania were subjected to

the rigorous quality control tests detailed in Table 4.1. The procedure is further outlined

in the flow chart of Figure 4.1. Linke Turbidity data, as an input to the ESRA clear-sky

model, was derived from the SoDa database [48]. SoDa was also used for air pressure data

at each location assessed as inputs into the Rayleigh limit test.

Following the application of the quality control tests in Step 1 of Figure 4.1, many

of the minutely irradiation data are rejected. To ensure excessive data rejection does not

misrepresent the hourly irradiation used in the BRL model development, hours with less

than 45 minutes of data are not considered as outlined in Step 2 of Figure 4.1, similar to

the methodology of [153].

Examples of the minutely data filtering process for the Melbourne, Wagga Wagga and

Townsville BoM weather stations are presented in Figure 4.2 to Figure 4.10. The data

quality control process of [153] in Step 1 of Figure 4.1 is first applied to the OMS data as

shown in Figures 4.2 to 4.4. The results of Step 2 are shown in Figures 4.5 to 4.7. The

removal of outliers in hourly data calculated from cumulative minutes within the hour in

Step 3 is shown in Figures 4.8 to 4.10.

A percentage breakdown of the data retained in each quality control step is provided

in Table 4.2 for each BoM OMS station. In Step 1, on average 55% of minutely data

are retained for each station. In Step 2, 21% of the previously accepted hourly data are

rejected following the application of the minute threshold filter process. Finally, following

the removal of outliers in Step 3, 98% of the remaining data are retained. Overall, on

average 43% of data are retained across all 19 OMS stations to be used for the development

of the adjusted BRL models proposed in this research.

4.2.2 Statistical Indicators

Numerous statistical indicators have been used in literature as part of the error analysis

process to establish the accuracy of solar irradiation models. These include:

• Median absolute percentage error (MeAPE)

• Root mean square error (RMSE)

• Mean bias error (MBE)

• Coefficient of determination (R2)

• Kolmogorov-Smirnov Integral (KSI)
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Table 4.1: Quality control tests for raw solar irradiation data

Step Test Description Reference Criteria

(i)

Physical Tests

Solar altitude limit. [154] α < 7◦

Persistence factor plausibility. 0 < ψ < 1

Clearness index limits (minute, hour, day). 0 < kt, kT ,KT < 1

Diffuse fraction limit. 0 < d < 1

Consistency Check if irradiation component measurements are consistent. [124]

| I−(Id+Ibn sinα)
I

| < 0.08, if α > 15◦ and Id + Ibn sinα > 50

| I−(Id+Ibn sinα)
I

| < 0.15, if α < 15◦ and Id + Ibn sinα > 50

If Id + Ibn sinα < 50, test not possible

Plausibility

Plausible limits for irradiation (W/m2) based on the solar

[124]

0 < I < 1.5G(sinα)1.2 + 100

constant adjusted for the earth-sun distance, i.e. 0 < Id < 0.95G(sinα)1.2 + 50

G = Gsc(1− ε2)/(1 + ε cos(360n/365)) where ε is orbit eccentricity. 0 < Ibn < G

”Tracker-off” Test Check for tracking system malfunctions. [124] If I
Ic

> 0.85 and Id
I

> 0.85, reject

Data variability Test
Check irradiation values between successive

[156] |Ii − Ii−1| < 800 and |Ii+1 − Ii < 800
time stamps (W/m2).

Heavily Overcast
Lower bound on global irradiation (W/m2). [152]

I
Io

≥ 10−4(α− 10), if α > 10

Conditions μ
(

I
Io

)
≥ 0.03, day average

Cloud Enhancement
Remove high irradiation values attributable to cloud

[153] I
Ic

< 1.1
enhancement by checking against clear-sky conditions.

Rayleigh Limits Compare Rayleigh lower limit to diffuse irradiation. [124]

For RL = 209.3 sinα− 708.3(sinα)2 + 1128.7(sinα)3

−911.2(sinα)4 + 287.87(sinα)5 + 0.046725(sinα)P

If I > 50 and d < 0.8 and Id < RL − 1, reject

(ii) Sub-hourly Data Limits
Check quantity of minutely data (m) in each

[153] If m < 45, reject hour
hour after all other filters.

(iii) Quality Envelope

Statistical assessment of clearness index bins to establish
[154] If outside outlier envelope, reject

upper and lower measurement boundaries.

Define upper limit of clearness index kt,max by

[152] kt,max = max(kT,i) where |kT,i − kT,i+1| > 0.02removing sparse outliers amongst n data points

clearness indexes are ordered by magnitude.
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Figure 4.1: Solar irradiation data quality control process flow chart
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Figure 4.2: Quality control tests and filtering process for the BoM Melbourne station

Figure 4.3: Quality control tests and filtering process for the BoM Wagga Wagga station
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Figure 4.4: Quality control tests and filtering process for the BoM Townsville station

Figure 4.5: Removal of hourly data below minute count threshold (45 mins) for Mel-
bourne
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Figure 4.6: Removal of hourly data below minute count threshold (45 mins) for Wagga
Wagga

Figure 4.7: Removal of hourly data below minute count threshold (45 mins) for
Townsville
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Figure 4.8: Outlier envelope of filtered Melbourne data

Figure 4.9: Outlier envelope of filtered Wagga Wagga data
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Figure 4.10: Outlier envelope of filtered Townsville data

Table 4.2: Percentage breakdown of retained data following each quality control step

Station

Quality Control Step

Step 1 (%) Step 2 (%) Step 3 (%) Overall (%)

Cairns 61 78 98 46
Darwin 60 82 98 48
Townsville 64 83 98 52
Broome 60 86 98 51
Cobar 45 78 98 34
Kalgoorlie-Boulder 55 78 98 42
Longreach 55 82 97 44
Tennant Creek 61 87 98 52
Mildura 48 74 98 35
Alice Springs 57 85 98 48
Learmonth 52 84 98 43
Woomera 38 69 98 26
Rockhampton 61 81 98 49
Wagga Wagga 56 78 98 43
Cape Grim 56 76 98 42
Melbourne 55 73 98 39
Adelaide 52 76 98 39
Geraldton 53 79 98 41
Mt Gambier 53 72 98 37

Average 55 79 98 43
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• Relative frequency of exceedence from KSI (OVER)

• Combined Performance Index (CPI)

MeAPE (indicating the size of the errors) and RMSE (capturing overall goodness of

fit) were used in [58, 138] to validate the accuracy of the original BRL model. In [138],

MBE (capturing average model bias) and KSI (described further below) were also used,

while an additional method known as the Bayesian Information Criterion (BIC) was used

in [58]. Lemos et al. [153] used MeAPE, RMSE and KSI as part of the formal error

analysis for a new BRL model adjusted for Brazil. Copper and Sproul [127] used RMSE,

R2 (indicating level of variance in the dependent variable that is predictable from the

independent variable) and MBE as part of a comparative study for solar irradiance models

for Australia. Badescu et al. [123] used MBE and RMSE in the testing of 54 models for

global and diffuse clear-sky irradiance, while [161] and [131] also used the same indicators

as the primary error analysis tools for the assessment for diffuse irradiation models on

inclined surfaces. Engerer and Mills [118] used relative versions of MBE (rMBE) and

RMSE (rRMSE) along with the coefficient of determination R as the performance metrics

for clear-sky irradiation models under Australian conditions.

Mathematical definitions of MeAPE, rMBE, rRMSE and R2 are defined as follows:

MeAPE(%) = median

⎛
⎝
∣∣∣∣∣ d̂i − di

di

∣∣∣∣∣× 100

⎞
⎠ (4.2)

rMBE(%) =

∑n
i=1

(
d̂i − di

)
nd

× 100 (4.3)

rRMSE(%) =
1

d

√√√√∑n
i=1

(
d̂i − di

)2
n

× 100 (4.4)

R2 = 1−
∑n

i=1

(
di − d̂i

)2
∑n

i=1

(
di − d

)2 (4.5)

where d̂i is the predicted values for diffuse irradiation fraction, di is the measured data, d

is the mean of the measured data and n is the number of data.

KSI, provides a measure of the distribution similitude between the cumulative distri-

bution function (CDF) of different data sets [138, 182]. KSI has been used in numerous

studies and assessments of solar irradiation modelling [122,138,153,182] and is defined as

follows:

KSI(%) = 100×
∫ xmax

xmin
Dndx

αcritical
(4.6)

where Dn is the difference between the CDFs of the measured and the model predicated

values while xmax and xmin are the extreme values of the independent variable [138,153].

The variable αcritical, calculated as αcritical = Vc×(xmax−xmin), depends on the population

size N and the critical value Vc calculated for the 99% confidence level so that for N ≥ 35,
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Vc = 1.63/
√
N .

An additional statistic referred to as OVER, originally defined in [182] and updated

in [122], is derived during the KSI calculation process, providing a measure of the frequency

of exceedence of the CDF error against a critical value Vc and is defined as follows:

OVER(%) = 100×
∫ xmax

xmin
max (Dn − Vc, 0) dx

αcritical
(4.7)

Gueymard [183] developed the CPI statistic taking percentage measures of distribution

similitude (KSI and OVER) and dispersion (rRMSE) to provide an overall measure of

model performance defined as:

CPI(%) =
KSI + OVER+ 2rRMSE

4
(4.8)

For the formal error analysis conducted in this research, MeAPE, rMBE, rRMSE, R2,

KSI, OVER and CPI, representative of the common approach in solar irradiation model

assessments, are selected to test the accuracy of the modified BRL models developed in

this research.

4.2.3 Satellite Data Time Stamps

The AREMI database includes data from 1990 to 2015. Over this 35 year measurement

period, numerous satellites have been commissioned and decommissioned. Satellite obser-

vations for the entire continent are not synchronous. Rather, satellite sensors undertake

progressive latitude scans with observation times fixed for each hour of the day. For each

satellite generation, the observation time within each hour differs while in some satellite

cases, the times differ for different hours in the day. Consequently, the fluctuating ob-

servation times over the data set history must be accounted for when comparing against

ground-based observations. Table 4.3 reproduces the documented observation times by

BoM [70] for each satellite generation.

Each satellite observation constitutes a near-instantaneous irradiation estimate and is

considered to be representative of the entire hour. Consequently, the hourly integration of

ground-based minutely observations undertaken for the results presented in Section 4.3 is

not applicable. To correctly correlate satellite observations with ground-based data, the

ground-based minutely data closest to the satellite observation time stamps are required

for comparison. Consequently, the quality control procedure previously established in

Section 4.2.1 requires the following modification:

• Sub-hourly sub-limits removed (i.e. no longer require at least 45 mins of data)

• The closest minutely ground-based observations to the satellite time stamps are

assumed to be representative of the entire hour

In this research, specific consideration was given to satellite observation time stamps

as published by BoM. Corrections were meticulously applied to identify the closest minute

approximation from ground-based data measurements. Furthermore, careful consideration
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Table 4.3: Minute time stamps associated with each satellite observation for BoM HSI and AREMI data sets. Source: BoM [70]

Start Date 1990-01-01 1993-01-01 1994-07-01 1995-06-11 2003-05-21 2005-11-01 2010-07-01 2016-06-22
End Date 1992-12-31 1994-06-30 1995-06-10 2003-05-20 2005-10-31 2010-06-30 2016-03-21 Ongoing
Satellite GMS-4 A GMS-4 B GMS-4 A GMS-4 B GMS-4 A GMS-4 B GMS-5 A GMS-5 B GOES-9 A GOES-9 B MTSAT-1R MTSAT-2 Himawari-8

Latitude
-10 45.7 38.7 47.2 40.7 46.7 40.5 46.7 39.7 39.9 27.9 46.2 44.7 36
-15 46.7 39.7 48.2 41.7 47.7 41.5 47.7 40.7 41 29 47.2 45.7 36.9
-20 47.7 40.7 49.3 42.8 48.8 42.6 48.8 41.8 42 30 48.3 46.8 37
-25 48.7 41.7 50.2 43.7 49.7 43.5 49.7 42.7 43 31 49.2 47.7 37.9
-30 49.6 42.6 51.1 44.6 50.6 44.4 50.6 43.6 43.9 31.9 50.1 48.6 38.4
-35 50.5 43.5 52 45.5 51.5 45.3 51.5 44.5 44.7 32.7 51 49.5 38.6
-40 51.2 44.2 52.7 46.2 52.2 46 52.2 45.2 45.5 33.5 51.7 50.2 38.9
-44 51.8 44.8 53.3 46.8 52.8 46.6 52.8 45.8 46 34 52.3 50.8 39.1

A columns: UT hours 18 19 20 21 23 00 01 02 03 05 06 07 08 09 11
B columns: UT hours 22 04 10
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was also given to central Australia local standard time Lst which is not a full hour multiple

ahead of the Co-ordinated Universal Time (UTC). Consequently, for satellite observations

in the central Australia time zone, the hour component of the satellite observation Lst

UTC time equivalent actually corresponds to the ground-measured data in the following

hour as demonstrated by the example in Table 4.4.

Table 4.4: Satellite and ground measurement time stamps for Adelaide enabling syn-
chronous irradiation data comparison (nearest minute)

AREMI AREMI Nearest Observation Lst of ground
Time stamp (UTC) Time stamp (Lst) Latitude Minute data equivalent

20/05/2003 00:00 20/05/2003 09:30 -35 52 10:22

4.2.4 BRL Modelling Procedure

Following the removal of erroneous data through the quality control tests established in

Section 4.2.1, the accepted irradiation data set can be used for the development of revised

BRL models.

To enable the creation of a National BRL and Köppen-Geiger zone BRL models,

data from the contributing irradiation measurement stations require amalgamation. Some

weather stations have significantly longer operational lifespans that others resulting in a

larger database of irradiation measurements. Lemos et al. [153] sampled data from the

entire measurement history of each station, with the number of points sampled for each

station limited to the site with the smallest quantity of measured data (post-filtering) to

remove locational bias. However, due to the relatively short measurement history of many

Australian based weather stations, limiting the analysis to the shortest data set would

result in a poor representation of Australian irradiation characteristics.

Consequently, to maintain a sufficiently large data set from which correlations are

fitted and tested whilst avoiding locational bias, each site was limited to a maximum of

17,520 data points or two years of hourly data. The hourly data were not sequentially

selected but rather randomly sampled across the entire measurement history of the station.

For stations with less than an equivalent of two years’ data, all data (post-filtering) were

sampled. The sampled data were then amalgamated into a single data set, representative

of Australia nationally or a specific Köppen-Geiger zone within Australia.

Two-thirds of the amalgamated data were randomly sampled and used to fit BRL

diffuse irradiation correlations. The remaining one-third were used as part of the model

validation and statistical assessment process.

The problem of determining a BRL correlation to the diffuse irradiation fraction data

with parameter β0, β1, β2, β3, β4, β5, was solved using the fminunc function of Matlab

to find the minimum of an unconstrained multi-variable function f(β0, β1, β2, β3, β4, β5)

where

f(β0, β1, β2, β3, β4, β5) = d− 1

1 + eβ0+β1kT+β2AST+β3α+β4KT+β5ψ
(4.9)

The rigorous quality control methodology considered in this research resulted in a

large number of rejected data as previously shown in Figures 4.5 to 4.10 of Section 4.2.1.
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Consequently, many data time stamps associated with sunrise and sunset have the poten-

tial to be rejected. To ensure the persistence and variability terms remain consistent with

the intended scope, the terms as defined in (3.37) and (3.38) must be slightly modified.

Where a sunset or sunrise hour has been rejected through the filtering process, the persis-

tence and variability terms are assumed to be ψ = kt and υ = 0 respectively for the first

or last remaining hour of the day within the data set.

The diffuse fraction BRL model of (3.36) also enables estimates for DNI to be estab-

lished through the relationships of (3.6) and (3.7) which give:

Ibn =
I(1− d)

sin(α)
(4.10)

The overall data merger and BRL modelling procedure is summarised in the flow chart

of Figure 4.11.

Accepted hourly data
(all sites)

Randomly sample up to 17,520 data
points from all sites (2 years)

Each site: Randomly sample  data
points for model calibration. Retain

remaining  for data validation.

�

�

�

�

Solve model parameters 
 

using fminunc(Matlab)
�� ��� ��

Amalgamate data for all sites Amalgamate data for each KG zone

Solve model parameters 

using fminunc(Matlab)
�� ��� ��

Apply  data retained for validation to
new national BRL model

�

�
Apply  data retained for validation to

new KG zone BRL models

�

�

Calculate statistical indicators

Plot , CDF and error CDF� � ��

KG zone BRLNational BRL

Figure 4.11: BRL model adjustment and validation procedure
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4.3 Ground-Based Data Results

Following the application of the quality control and BRL model fitting procedure sum-

marised in Figure 4.1 and Figure 4.11, new adjusted BRL models for individual stations

were established for comparison purposes. Additionally, new models based on the BoM

modification to the BRL methodology replacing persistence ψ with variability υ were also

determined. The resultant plots of diffuse fraction and direct normal irradiation against

hourly clearness index for Adelaide, Cape Grim, Alice Springs and Townsville stations are

presented in Figures 4.12 to 4.19. It can be clearly seen that both the adjusted BRL and

adjusted BoM models demonstrate a closer approximation to the underlying measured

data than the original BRL correlation parameters of Ridley et al. [58].

Amalgamating the filtered data for an Australian national irradiation data set and

fitting an adjusted BRL model results in the clearness index versus diffuse fraction plots of

Figure 4.20 and Figure 4.21. Again a preliminary visual assessment of the the data plotted

against clearness index shows a clear improvement. Detailed statistical assessments based

on the methodology in Section 4.2.2 are presented in Sections 4.3.1 and 4.3.2 for diffuse

and direct irradiation respectively.

Figure 4.12: BRL model results for diffuse fraction (left) and DNI (right) for Adelaide

Figure 4.13: BRL model (with BoM variability parameter) results for Diffuse fraction
(left) and DNI (right) for Adelaide
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Figure 4.14: BRL model results for diffuse fraction (left) and DNI (right) for Cape Grim

Figure 4.15: BRL model (with BoM variability parameter) results for diffuse fraction
(left) and DNI (right) for Cape Grim

Figure 4.16: BRL model (with BoM variability parameter) results for diffuse fraction
(left) and DNI (right) for Alice Springs
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Figure 4.17: BRL model results for diffuse fraction (left) and DNI (right) for Alice
Springs

Figure 4.18: BRL model results for diffuse fraction (left) and DNI (right) for Townsville

Figure 4.19: BRL model (with BoM variability parameter) results for diffuse fraction
(left) and DNI (right) for Townsville
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Figure 4.20: National BRL model results for diffuse fraction (left) and DNI (right) for
all Australian measurement locations

Figure 4.21: National BRL model (with BoM variability parameter) results for diffuse
fraction (left) and DNI (right) for all Australian measurement locations

4.3.1 Diffuse Horizontal Irradiation

The CDF of diffuse horizontal irradiation fraction d generated for the measured data, the

original BRL model and modified BRL models for the location of Adelaide is presented in

Figure 4.22. The CDF for the original BRL model (purple) can be seen to markedly devi-

ate from the CDF of the measured data (dotted black). It is also apparent in Figure 4.22

that the nationally and Köppen-Geiger zone adjusted BRL models present a closer ap-

proximation to the CDF of the measured data. However, precisely which model performs

better is not easily identifiable.

CDF errors for Adelaide are shown in Figure 4.23. Based on the left plot of Figure 4.23,

the original BRL model clearly performs worse than the new adjusted models of this

research. A comparison of CDF error for each of the adjusted models is shown on the right

of Figure 4.23. The magnitude of the error for the Köppen-Geiger zone BRL correlation is

evidently lower than the adjusted National BRL and BOM models for the majority of the

diffuse fraction range. Differentiation between the BRL models with a persistence term

(designated as BRL) or a variability term (designated as BoM) is difficult to discern and

it is not immediately clear which model performs best. Similar observations can be made

for Cape Grim as shown in Figure 4.24 and Figure 4.25.
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The CDF and CDF errors for Alice Springs shown in Figure 4.26 and Figure 4.27 do not

present strong evidence for either the Köppen-Geiger or national models. In Townsville’s

case, the national models appear to provide a closer correlation to the measured data

CDF than the Köppen-Geiger models as shown in Figure 4.28 and Figure 4.29. Despite

the inability to clearly differentiate between the BRL and BoM variants of the Köppen-

Geiger and national models, and the fluctuating performance of the Köppen-Geiger and

national models, at least one of the new adjusted BRL models out-performs the original

BRL model for each of the sites represented in Figures 4.22 to 4.29.
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Figure 4.22: CDFs of diffuse fraction for different BRL models for Adelaide
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Figure 4.23: CDF error of diffuse fraction for different BRL models for Adelaide. Critical
value Vc shown as dotted line
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Figure 4.24: CDFs of diffuse fraction for different BRL models for Cape Grim
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Figure 4.25: CDF error of diffuse fraction for different BRL models for Cape Grim.
Critical value Vc shown as dotted line
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Figure 4.26: CDFs of diffuse fraction for different BRL models for Alice Springs
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Figure 4.27: CDF error of diffuse fraction for different BRL models for Alice Springs.
Critical value Vc shown as dotted line
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Figure 4.28: CDFs of diffuse fraction for different BRL models for Townsville
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Figure 4.29: CDF error of diffuse fraction for different BRL models for Townsville.
Critical value Vc shown as dotted line
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CDF plots provide an early assessment of model improvement or lack thereof. To

firmly establish model performance with an aim to identify the best performing model,

the rigorous statistical assessment defined in Section 4.2.2 is applied. For each of the BoM

OMS weather station locations, statistical indicators were calculated.

A tiered approach was adopted for comparisons between model statistical indicators.

Direct comparisons were drawn as follows:

(i) Original BRL model and new National BRL model (Table 4.6)

(ii) New National BRL model and new National BoM model (Table 4.7)

(iii) New Köppen-Geiger zone BRL or BoM model against either the new National BRL

model or the new National BoM model, depending on the performance established

in the previous comparisons tables (Table 4.8)

To facilitate the comparison, colour codes are applied with green designating model

improvement, orange a clear worse performance and gold a marginally worse performance.

The marginal performance thresholds for each of the statistical indicators are designated

as follows:

• MeAPE within 2%

• rMBE within ±1%

• rRMSE within 2%

• R2 within 0.02

• KSI within 2%

• OVER within 1%

• CPI within 2%

With reference to the measured data, the statistical indicators of the diffuse fraction

estimates determined by the original BRL model, as defined in [58], are presented in Ta-

ble 4.5, including the relative scaling term for rMBE and rRMSE, d. Significant positive

bias (over 10%) can be seen in a number of locations which provides immediate confirma-

tion of the inadequacy of the original BRL model when tuned against data that have not

been thoroughly quality controlled. A comparison of the new National BRL model against

the original BRL shows a clear model improvement in Table 4.6. For 96% of the statistical

results, the application of the new National BRL model shows an improvement in diffuse

fraction estimates. The exceptions are associated with rMBE with Townsville, Mildura

and Adelaide showing rMBEs of -3.96%, -1.68% and -3.43% respectively, approximately

3.5%, 1.2% and 1.3% greater than the original BRL model. Two other locations show

only a marginal deterioration in rMBE. Overall, the rMBE demonstrates a roughly even

split between over-estimation and under-estimation, with the absolute magnitude greatly

improved compared to the original BRL model in Table 4.5.
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The application of the the BoM variability adjustment to the BRL model for nation-

ally aggregated data generally shows a slightly worse performance than the persistence

based BRL model. Table 4.7 demonstrates an improvement in 37% of the statistical indi-

cators while 58% demonstrate a marginally worse performance. Consequently, it can be

concluded that the new National BRL model out-performs the variability based National

model.

Table 4.5: Statistical indicators for diffuse fraction under original BRL model

Location KG Zone

Statistical Indicators (%)

dMeAPE rMBE rRMSE R2 KSI OVER CPI

Cairns Am 13.71 1.46 16.41 94.50 142.90 74.52 62.56 0.52
Darwin Aw 23.36 10.32 21.06 92.23 255.83 171.46 117.35 0.43
Townsville Aw 18.44 0.52 20.08 94.02 98.03 47.73 46.48 0.42
Broome BSh 40.93 15.32 28.08 91.71 285.60 213.11 138.72 0.32
Cobar BSh 28.72 5.68 18.21 96.03 83.66 43.56 40.91 0.43
Kalgoorlie-Boulder BSh 23.69 2.41 18.80 96.04 218.03 156.57 103.05 0.40
Longreach BSh 45.31 14.67 29.32 93.18 103.33 59.68 55.41 0.26
Tennant Creek BSh 36.20 10.37 26.15 92.95 236.26 162.78 112.84 0.34
Mildura BSk 19.05 0.51 16.61 96.16 211.80 148.89 98.48 0.46
Alice Springs BWh 33.65 7.98 24.88 94.63 216.81 149.38 103.99 0.32
Learmonth BWh 48.04 13.94 30.45 93.27 264.15 202.65 131.92 0.25
Woomera BWh 20.14 1.54 15.98 96.32 66.98 25.97 31.23 0.48
Rockhampton Cfa 16.64 5.03 17.93 94.24 237.44 152.99 106.57 0.49
Wagga Wagga Cfa 17.28 0.77 16.30 96.20 178.71 121.84 83.29 0.45
Cape Grim Cfb 8.40 -4.80 13.78 90.67 235.86 161.91 106.33 0.72
Melbourne Cfb 8.35 -2.33 11.57 95.91 189.20 136.44 87.19 0.65
Adelaide Csa 14.42 -2.08 16.44 95.26 214.72 148.88 99.12 0.51
Geraldton Csa 26.85 2.67 23.99 94.01 237.28 164.85 112.53 0.36
Mt Gambier Csb 12.01 -4.49 14.87 95.01 174.35 107.74 77.96 0.58

Table 4.6: Statistical indicators for diffuse fraction under National BRL model (compared
to original BRL model)

Location KG Zone

Statistical Indicators (%)

MeAPE rMBE rRMSE R2 KSI OVER CPI

Cairns Am 9.43 -0.05 14.46 95.74 42.83 4.65 19.10
Darwin Aw 12.43 6.85 19.70 93.20 146.29 61.27 61.74
Townsville Aw 10.89 -3.96 17.39 95.52 39.74 1.92 19.11
Broome BSh 15.31 7.47 23.05 94.41 122.76 49.14 54.50
Cobar BSh 11.12 2.16 14.75 97.40 22.88 3.07 13.87
Kalgoorlie-Boulder BSh 10.09 -1.20 14.56 97.62 37.58 12.28 19.74
Longreach BSh 12.30 2.77 19.77 96.90 27.63 6.02 18.30
Tennant Creek BSh 13.21 4.25 23.23 94.43 81.23 12.02 34.93
Mildura BSk 9.21 -1.68 12.72 97.75 55.45 18.50 24.85
Alice Springs BWh 12.53 0.87 20.83 96.23 36.19 7.18 21.26
Learmonth BWh 14.97 1.24 21.04 96.79 70.41 33.62 36.53
Woomera BWh 8.07 -0.34 12.07 97.90 14.54 0.78 9.86
Rockhampton Cfa 10.14 3.34 16.45 95.15 108.15 30.61 42.91
Wagga Wagga Cfa 8.74 -1.70 14.33 97.06 44.80 9.56 20.75
Cape Grim Cfb 5.64 -3.23 12.54 92.28 109.11 41.19 43.85
Melbourne Cfb 5.07 -1.57 9.55 97.21 66.27 25.56 27.73
Adelaide Csa 8.78 -3.43 14.06 96.53 82.99 19.34 32.61
Geraldton Csa 12.42 -2.91 19.43 96.07 63.58 11.25 28.42
Mt Gambier Csb 7.48 -4.39 12.45 96.51 88.24 23.69 34.21

Improved 96% 19 14 19 19 19 19 19
Marginal 2% 0 2 0 0 0 0 0
Worse 2% 0 3 0 0 0 0 0
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Table 4.7: Statistical indicators for diffuse fraction under National BRL model (with
BoM variability parameter) (compared to National BRL model)

Location KG Zone

Statistical Indicators (%)

MeAPE rMBE rRMSE R2 KSI OVER CPI

Cairns Am 9.65 -0.19 14.34 95.80 40.65 4.25 18.40
Darwin Aw 12.92 6.88 19.79 93.14 146.13 61.67 61.85
Townsville Aw 11.09 -4.04 17.62 95.40 41.02 1.85 19.53
Broome BSh 15.90 7.66 23.05 94.41 125.13 52.57 55.95
Cobar BSh 11.33 2.18 14.77 97.39 22.56 3.43 13.88
Kalgoorlie-Boulder BSh 10.17 -1.09 14.67 97.59 39.03 12.67 20.26
Longreach BSh 12.80 3.08 19.90 96.86 28.94 7.43 19.04
Tennant Creek BSh 13.42 4.30 23.13 94.48 81.59 14.00 35.46
Mildura BSk 9.26 -1.52 12.69 97.76 55.69 18.05 24.78
Alice Springs BWh 12.74 0.92 20.86 96.22 36.55 8.44 21.68
Learmonth BWh 15.59 1.61 21.16 96.75 74.34 37.17 38.46
Woomera BWh 8.04 -0.25 12.00 97.92 14.22 0.76 9.75
Rockhampton Cfa 10.18 3.32 16.53 95.10 105.50 28.69 41.81
Wagga Wagga Cfa 8.93 -1.53 14.39 97.03 42.32 8.15 19.81
Cape Grim Cfb 5.71 -3.14 12.55 92.26 105.89 37.03 42.01
Melbourne Cfb 5.04 -1.46 9.64 97.16 62.67 23.34 26.32
Adelaide Csa 8.93 -3.35 14.19 96.47 81.82 16.92 31.78
Geraldton Csa 12.64 -2.77 19.65 95.98 65.53 11.94 29.19
Mt Gambier Csb 7.64 -4.29 12.46 96.50 86.68 21.64 33.31

Improved 37% 2 10 4 4 10 10 9
Marginal 58% 17 9 15 15 7 4 10
Worse 5% 0 0 0 0 2 5 0

Table 4.8: Statistical indicators for diffuse fraction under Köppen-Geiger zone BRL
model (compared to National BRL model)

Location KG Zone

Statistical Indicators (%)

MeAPE rMBE rRMSE R2 KSI OVER CPI

Cairns Am 9.72 -0.05 14.39 95.77 45.85 7.46 20.52
Darwin Aw 11.09 1.46 17.31 94.76 72.79 16.55 30.99
Townsville Aw 12.17 -8.85 20.13 94.00 80.73 15.50 34.12
Broome BSh 12.77 2.97 21.52 95.13 63.22 14.37 30.16
Cobar BSh 10.18 -0.40 14.75 97.40 11.71 0.41 10.41
Kalgoorlie-Boulder BSh 10.47 -4.04 15.40 97.34 74.95 23.08 32.20
Longreach BSh 11.08 -2.04 20.18 96.77 19.83 0.14 15.08
Tennant Creek BSh 12.24 0.50 22.42 94.82 39.52 3.21 21.89
Mildura BSk 9.17 0.58 12.34 97.88 42.71 13.24 20.16
Alice Springs BWh 12.97 0.49 20.98 96.18 33.73 2.39 19.52
Learmonth BWh 13.82 0.27 20.65 96.91 50.68 19.68 27.92
Woomera BWh 7.27 -0.22 11.98 97.93 11.74 0.47 9.04
Rockhampton Cfa 10.10 1.53 15.67 95.60 94.22 25.85 37.85
Wagga Wagga Cfa 9.14 -2.97 14.74 96.89 73.56 18.24 30.32
Cape Grim Cfb 5.05 -0.58 11.58 93.41 51.03 20.64 23.71
Melbourne Cfb 4.98 1.03 9.57 97.20 75.59 25.25 29.99
Adelaide Csa 8.69 -0.25 13.20 96.95 46.71 6.21 19.83
Geraldton Csa 12.90 1.45 18.80 96.32 49.14 19.85 26.64
Mt Gambier Csb 7.30 0.05 10.85 97.35 44.30 10.82 19.21

Improved 72% 13 15 13 13 14 14 14
Marginal 14% 6 1 5 6 0 0 1
Worse 14% 0 3 1 0 5 5 4
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The results of the Köppen-Geiger zone diffuse fraction BRL model for Australian based

locations investigated in this research are presented in Table 4.8. With reference to the

results of the new National BRL, which were shown to clearly out-perform the original

BRL and BoM variability adjusted model, the Köppen-Geiger formulation can be seen

to provide an improvement for the majority of the locational statistical indicators. Gen-

erally, rMBE shows a marked improvement with only three locations exhibiting a worse

performance (Townsville, Kalgoorlie-Boulder and Wagga Wagga). rRMSE and R2 also

show strong support for the Köppen-Geiger improvement with under-performing metrics

mostly within the marginal range. KSI, OVER and CPI show clear under-performance for

the five locations, while close to 50% of the MeAPE results are marginally worse. Overall,

72% of the statistics indicators show improvement and 14% show a clearly worse perfor-

mance. Referring to the CPI statistics, 14 (74%) of locations demonstrate an improvement.

With reference to the methodology in [183], if a single statistic is used to confirm model

improvement as suggested, the CPI statistic supports the adoption of the Köppen-Geiger

adjustment to the original BRL model for ground-based data measurement.

Consequently, for ground-measured irradiation, separate Köppen-Geiger zone BRL

correlations using the original BRL formulation of (3.36) clearly demonstrate an improve-

ment over a National BRL model and by extension the orignal BRL correlation of [58]. The

results of the error analysis show strong support for the application of the Köppen-Geiger

climate classification to a new set of BRL models for the Australian continent. The BRL

parameters proposed for ground-based GHI measurements within Australia determined

through this research are detailed in Table 4.9.

Table 4.9: BRL model parameters for ground-based measurements

Model β0 (constant) β1 (kT ) β2 (AST) β3 (α) β4 (KT ) β5 (ψ)

National BRL -6.862 9.068 0.01468 -0.00472 1.703 1.084

Köppen-Geiger (Am) -6.433 8.774 -0.00044 -0.00578 2.096 0.684
Köppen-Geiger (Aw) -6.047 7.540 0.00624 -0.00299 2.077 1.208
Köppen-Geiger (BSh) -6.734 8.853 0.02454 -0.00495 1.874 0.939
Köppen-Geiger (BSk) -7.310 10.089 0.01852 -0.00693 1.296 1.114
Köppen-Geiger (BWh) -7.097 9.416 0.01254 -0.00416 1.661 1.130
Köppen-Geiger (Cfa) -6.484 8.301 0.01577 -0.00338 1.607 1.307
Köppen-Geiger (Cfb) -6.764 9.958 0.01271 -0.01249 0.928 1.142
Köppen-Geiger (Csa) -7.099 10.152 -0.00026 -0.00744 1.147 1.184
Köppen-Geiger (Csb) -7.080 10.460 0.00964 -0.01420 1.134 1.017

4.3.2 Direct Normal Irradiation

The statistical error analysis for diffuse fraction models suggest the Köppen-Geiger model

gives an improvement to DHI estimation. Diffuse irradiation is just one of the two primary

components of global horizontal irradiation. The performance the BRL model used for the

estimation of direct irradiation is assessed in this section. Following the fitting of a BRL

correlation for diffuse fraction d, a BRL model for DNI is determined through substitution

of d into (4.10).

Plots of the CDFs and CDF errors for the original BRL model and new adjusted
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Köppen-Geiger zone BRL and National BRL models against measured data are shown in

Figures 4.30 to 4.37. Similar to the diffuse fraction case in Section 4.3.1, the new Köppen-

Geiger zone BRL models for DNI associated with Adelaide and Cape Grim can be seen

to present a closer approximation to the CDF of the measured data as shown in the CDF

error plots of Figure 4.31 and Figure 4.33. For Adelaide in Figure 4.31, the Köppen-Geiger

approximation is out-performed by the National BRL model at higher levels of DNI (in

the vicinity of 1000 W/m2), consistent with the converse results observed in Figure 4.23

at low values of diffuse fraction. Köppen-Geiger DNI estimates for Cape Grim show near

universal improvement across the entire range of DNI from a CDF perspective as evident

in Figure 4.33.
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Figure 4.30: CDFs of DNI for different BRL models for Adelaide
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Figure 4.31: CDF error of DNI for different BRL models for Adelaide. Critical value Vc

shown as dotted line
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Figure 4.32: CDFs of DNI for different BRL models for Cape Grim
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Figure 4.33: CDF error of DNI for different BRL models for Cape Grim. Critical value
Vc shown as dotted line
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Figure 4.34: CDFs of DNI for different BRL models for Alice Springs
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Figure 4.35: CDF error of DNI for different BRL models for Alice Springs. Critical
value Vc shown as dotted line
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Figure 4.36: CDFs of DNI for different BRL models for Townsville
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Figure 4.37: CDF error of DNI for different BRL models for Townsville. Critical value
Vc shown as dotted line
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However, consistent with the observations for diffuse fraction in Section 4.3.1, the CDF

error plots for Alice Springs and Townsville in Figure 4.35 and Figure 4.37 respectively

show the Köppen-Geiger model does not lead to invariably improved performance for all

locations.

A complete statistical analysis of MeAPE, rMBE, rRMSE, R2 and KSI was conducted

for the DNI components estimated from the new BRL models. Following the same tiered

approach as adopted for diffuse fraction in Section 4.3.1, Table 4.11 shows the new National

BRL model for DNI, including the relative scaling term for rMBE and rRMSE, Ibn. Worse

performance compared to the original BRL model statistics shown in Table 4.10 is seen only

in the rMBE statistic for Townsville, Cape Grim, Melbourne, Adelaide and Mt Gambier.

Similar to the diffuse fraction case, 96% of the statistics show a clear improvement over

the original BRL model.

A comparison of the persistence (BRL) and variability (BoM) variants of the new

nationally adjusted models in Table 4.12 suggests the inclusion of a persistence term

provides a better estimate. For the variability variant, a marginally worse performance is

seen for 59% of the statistics across all measurement locations.

Table 4.13 shows the statistical comparison between the the Köppen-Geiger BRL

model and the new National BRL model. With reference to the results for diffuse fraction,

the Köppen-Geiger BRL estimates for DNI show even stronger support for the adoption of

a Köppen-Geiger zone based modelling system. Only 7% show a clearly worse performance

while 74% of the indicators show improvement (compared to 72% for diffuse fraction in

Table 4.8).

Table 4.10: Statistical indicators for DNI under original BRL model

Location KG Zone

Statistical Indicators (%)

IbnMeAPE rMBE rRMSE R2 KSI OVER CPI

Cairns Am 12.55 -3.39 14.34 97.06 60.97 18.90 27.14 456
Darwin Aw 10.43 -7.81 13.79 95.54 79.08 25.87 33.13 521
Townsville Aw 8.48 -2.08 11.81 96.70 66.27 27.38 29.32 571
Broome BSh 9.08 -7.47 11.75 94.68 96.64 51.99 43.03 658
Cobar BSh 9.19 -5.29 11.52 97.67 73.74 36.26 33.26 587
Kalgoorlie-Boulder BSh 7.67 -3.31 10.28 97.81 71.40 31.72 30.92 610
Longreach BSh 7.26 -5.65 9.19 95.34 95.65 53.47 41.87 750
Tennant Creek BSh 7.95 -5.71 11.38 96.04 78.54 33.15 33.61 651
Mildura BSk 8.93 -2.74 11.32 97.97 73.41 31.28 31.83 547
Alice Springs BWh 6.80 -4.43 9.69 96.94 73.57 34.81 31.94 696
Learmonth BWh 7.33 -5.33 9.13 95.40 95.30 58.96 43.13 767
Woomera BWh 9.40 -3.67 11.82 98.05 73.81 31.44 32.22 532
Rockhampton Cfa 12.33 -5.67 14.02 96.84 70.24 17.15 28.86 486
Wagga Wagga Cfa 7.79 -2.24 10.72 98.02 55.03 18.44 23.73 549
Cape Grim Cfb 65.56 6.57 28.59 95.33 55.26 16.08 32.13 257
Melbourne Cfb 33.71 0.16 15.93 98.15 47.38 13.96 23.30 340
Adelaide Csa 10.12 -0.49 12.95 97.74 63.00 22.18 27.77 496
Geraldton Csa 7.53 -3.00 10.86 96.65 82.58 34.94 34.81 654
Mt Gambier Csb 19.46 2.15 14.89 97.78 64.86 20.21 28.71 423
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Table 4.11: Statistical indicators for DNI under National BRL model (compared to
original BRL model)

Location KG Zone

Statistical Indicators (%)

MeAPE rMBE rRMSE R2 KSI OVER CPI

Cairns Am 10.69 0.17 12.08 97.91 13.45 0.24 9.46
Darwin Aw 6.69 -3.97 11.50 96.90 37.79 0.00 15.20
Townsville Aw 5.82 2.38 10.08 97.59 25.32 0.43 11.48
Broome BSh 4.46 -3.05 8.48 97.23 37.14 4.88 14.75
Cobar BSh 4.55 -1.30 8.08 98.86 16.30 0.49 8.24
Kalgoorlie-Boulder BSh 3.79 0.38 7.42 98.86 11.78 0.25 6.72
Longreach BSh 2.69 -1.07 5.68 98.21 24.63 1.56 9.39
Tennant Creek BSh 3.98 -1.64 9.04 97.50 20.83 0.00 9.73
Mildura BSk 5.62 0.75 8.19 98.94 17.18 0.49 8.51
Alice Springs BWh 3.00 -0.29 7.29 98.27 9.01 0.00 5.90
Learmonth BWh 2.94 -0.63 5.70 98.20 24.61 4.02 10.01
Woomera BWh 6.26 -0.09 8.02 99.10 14.62 0.57 7.81
Rockhampton Cfa 9.36 -2.39 11.89 97.73 25.65 0.25 12.42
Wagga Wagga Cfa 5.80 1.28 9.09 98.57 13.37 0.18 7.93
Cape Grim Cfb 43.53 6.93 27.30 95.74 31.34 2.56 22.13
Melbourne Cfb 27.53 2.17 13.39 98.70 15.17 1.95 10.97
Adelaide Csa 9.61 2.85 11.10 98.34 25.14 0.41 11.94
Geraldton Csa 3.67 1.06 8.47 97.97 18.95 0.00 8.97
Mt Gambier Csb 16.84 4.63 13.02 98.30 35.51 2.45 16.00

Improved 96% 19 14 19 19 19 19 19
Marginal 2% 0 2 0 0 0 0 0
Worse 2% 0 3 0 0 0 0 0

Table 4.12: Statistical indicators for DNI under National BRL model (with BoM vari-
ability parameter) (compared to National BRL model)

Location KG Zone

Statistical Indicators (%)

MeAPE rMBE rRMSE R2 KSI OVER CPI

Cairns Am 10.66 0.35 12.00 97.94 12.77 0.20 9.24
Darwin Aw 6.74 -3.97 11.57 96.87 37.68 0.00 15.20
Townsville Aw 6.05 2.45 10.29 97.49 25.72 0.41 11.68
Broome BSh 4.65 -3.15 8.53 97.19 38.22 5.92 15.30
Cobar BSh 4.70 -1.32 8.12 98.85 16.80 0.55 8.40
Kalgoorlie-Boulder BSh 3.81 0.33 7.50 98.84 12.38 0.21 6.90
Longreach BSh 2.81 -1.18 5.75 98.17 25.82 2.56 9.97
Tennant Creek BSh 4.11 -1.68 9.02 97.51 21.23 0.05 9.83
Mildura BSk 5.58 0.67 8.18 98.94 17.71 0.38 8.61
Alice Springs BWh 3.06 -0.32 7.32 98.25 9.54 0.00 6.05
Learmonth BWh 3.03 -0.75 5.76 98.17 26.10 5.05 10.67
Woomera BWh 6.24 -0.13 8.01 99.10 13.87 0.53 7.61
Rockhampton Cfa 9.58 -2.34 11.95 97.70 24.86 0.21 12.24
Wagga Wagga Cfa 6.00 1.18 9.16 98.55 12.49 0.14 7.74
Cape Grim Cfb 42.83 6.83 27.39 95.71 30.87 2.26 21.97
Melbourne Cfb 27.96 2.07 13.57 98.66 14.39 1.75 10.82
Adelaide Csa 9.94 2.80 11.25 98.29 24.86 0.34 11.92
Geraldton Csa 3.81 1.00 8.59 97.91 20.05 0.00 9.31
Mt Gambier Csb 17.13 4.57 13.08 98.28 35.18 2.18 15.88

Improved 40% 4 10 4 4 9 14 8
Marginal 59% 15 9 15 15 10 3 11
Worse 2% 0 0 0 0 0 2 0
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Table 4.13: Statistical indicators for DNI under Köppen-Geiger zone BRL model (com-
pared to National BRL model)

Location KG Zone

Statistical Indicators (%)

MeAPE rMBE rRMSE R2 KSI OVER CPI

Cairns Am 10.90 -0.11 12.03 97.93 14.48 0.49 9.76
Darwin Aw 6.12 -0.91 10.32 97.50 17.17 0.00 9.45
Townsville Aw 5.81 4.76 11.37 96.94 48.96 3.74 18.86
Broome BSh 3.72 -1.17 7.87 97.61 16.53 0.06 8.08
Cobar BSh 4.69 0.21 8.10 98.85 10.68 0.06 6.74
Kalgoorlie-Boulder BSh 3.79 1.92 7.81 98.74 21.44 0.52 9.39
Longreach BSh 2.30 0.41 5.68 98.22 14.75 0.00 6.53
Tennant Creek BSh 3.59 0.01 8.79 97.64 7.27 0.00 6.21
Mildura BSk 5.40 -0.53 7.93 99.01 12.60 0.04 7.13
Alice Springs BWh 2.88 0.02 7.31 98.26 6.61 0.00 5.31
Learmonth BWh 2.65 -0.23 5.57 98.29 17.48 0.50 7.28
Woomera BWh 6.11 0.09 7.91 99.12 10.02 0.42 6.56
Rockhampton Cfa 9.00 -1.34 11.37 97.92 21.46 0.66 11.22
Wagga Wagga Cfa 5.85 1.79 9.36 98.49 19.62 0.51 9.71
Cape Grim Cfb 39.00 1.18 25.03 96.42 11.14 1.34 15.63
Melbourne Cfb 27.20 -1.79 13.31 98.71 18.38 1.13 11.53
Adelaide Csa 8.73 0.48 10.30 98.57 11.96 0.05 8.15
Geraldton Csa 4.23 -0.84 8.30 98.05 18.04 0.01 8.66
Mt Gambier Csb 15.91 -0.11 11.25 98.73 17.73 0.63 10.21

Improved 74% 14 16 14 14 14 13 14
Marginal 19% 5 1 5 5 1 5 3
Worse 7% 0 2 0 0 4 1 2

4.4 Satellite-Based Data Results

The strong performance of the Köppen-Geiger zone BRL model applied to ground-based

data presents an improvement opportunity to irradiation component estimation from GHI

only data. BRL model improvements for satellite-based observations are investigated in

this section.

As ground-based data measurements consist of single minutely observations to be rep-

resentative of an entire hour to synchronise with the satellite estimate, new National BRL

and Köppen-Geiger zone BRL models were fitted. Figures 4.38 and 4.39 show comparisons

against the original AREMI data and ground-based measurements for the new National

BRL models with persistence (National BRL) and variability parameters (National BoM)

respectively. Improvements introduced by the new national models are not markedly ap-

parent, however inspection at the high end of the clearness index range suggests the new

national models may present an enhancement.

The statistical comparison between all models follows a similar tiered approach to the

one presented in Section 4.3.1. Comparisons are first drawn against the diffuse fraction or

DNI estimate of the original AREMI data set before direct model-to-model comparisons.

To facilitate the comparison, different colour codes are applied from those used in Sec-

tion 4.3 to better differentiate between the ground-based and satellite-based data analysis.

In this section, blue indicates model improvement, purple a clear worse performance and

grey a marginally worse performance.
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Figure 4.38: National BRL model results applied to satellite-based data for diffuse
fraction (left) and DNI (right) for all Australian measurement locations

Figure 4.39: National BRL model (with BoM variability parameter) results applied to
satellite-based data for diffuse fraction (left) and DNI (right) for all Australian measure-
ment locations

4.4.1 Diffuse Horizontal Irradiation

AREMI diffuse fraction estimates are calculated from the estimated DNI data using a

transposed version of (4.10). The statistical results associated with the original AREMI

diffuse fraction data set against the measured ground-based data are shown in Table 4.14.

The rMBE statistics can all be seen to be negative and consistently very high while

the other statistics indicate generally poor correlation with the ground-based data. This

suggests that improvements to the overall global irradiation model employed by BoM,

which is based on the methodology of Weymouth and Le Marshall [57], is likely required,

with consideration given to the quality control tests detailed in this article. Further

discussion and context is provided in Section 4.5.

Similar to the ground-based results in Section 4.3, the development of a National BRL

model based on high quality filtered data, provides a closer match to ground measurements

than the original AREMI diffuse fraction estimate as shown in Table 4.15. Only 6% of

the statistics demonstrate a worse result than the original AREMI data set and just one

statistic exhibits a marginally worse outcome. The affected locations are all situated in

arid areas with Köppen-Geiger zone designations of ‘BSh’ and ‘BWh’. While improvement
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in the statistics is clear through the application of a new National BRL model, rMBE

continues to show universal under-estimation, further highlighting the requirement for

review of the global irradiation satellite model.

Table 4.14: Statistical indicators for original AREMI diffuse fraction data set

Location KG Zone

Statistical Indicators (%)

dMeAPE rMBE rRMSE R2 KSI OVER CPI

Cairns Am 27.40 -17.79 47.24 51.67 355.56 270.57 180.15 0.57
Darwin Aw 25.49 -16.21 44.78 63.02 424.08 327.17 210.20 0.49
Townsville Aw 29.00 -26.14 55.45 54.02 284.73 184.95 145.15 0.46
Broome BSh 27.02 -10.39 47.52 76.08 230.54 139.54 116.28 0.36
Cobar BSh 23.44 -14.15 41.23 78.77 152.37 60.65 73.87 0.45
Kalgoorlie-Boulder BSh 22.82 -14.16 42.97 75.83 341.78 245.08 168.20 0.46
Longreach BSh 29.65 -12.64 51.17 76.64 117.39 29.96 62.42 0.32
Tennant Creek BSh 31.01 -16.40 54.63 69.39 342.51 242.77 173.64 0.37
Mildura BSk 23.59 -18.42 42.87 70.36 434.01 334.44 213.55 0.51
Alice Springs BWh 26.47 -16.13 52.30 74.93 310.33 212.74 156.92 0.36
Learmonth BWh 35.77 -2.18 58.91 73.26 276.79 185.25 144.97 0.29
Woomera BWh 24.68 -22.00 43.32 64.82 208.78 115.14 102.64 0.55
Rockhampton Cfa 22.52 -15.32 42.85 65.44 409.70 311.92 201.83 0.53
Wagga Wagga Cfa 24.41 -16.25 40.67 73.13 403.03 299.66 196.01 0.50
Cape Grim Cfb 19.04 -20.51 36.99 35.30 747.88 646.74 367.15 0.74
Melbourne Cfb 17.32 -16.08 32.28 65.20 543.93 441.12 262.41 0.68
Adelaide Csa 22.74 -16.95 37.36 72.66 469.45 367.38 227.89 0.56
Geraldton Csa 28.07 -13.52 52.87 68.48 283.30 189.57 144.65 0.41
Mt Gambier Csb 18.74 -16.67 34.68 65.83 413.61 310.58 198.39 0.65

Table 4.15: Satellite data statistical indicators for diffuse fraction under National BRL
model (compared to original AREMI diffuse fraction data set)

Location KG Zone

Statistical Indicators (%)

MeAPE rMBE rRMSE R2 KSI OVER CPI

Cairns Am 23.89 -12.95 44.54 57.05 305.07 212.20 151.59
Darwin Aw 21.24 -13.04 42.11 67.30 346.75 249.44 170.10
Townsville Aw 20.76 -20.13 51.93 59.68 234.67 137.76 119.07
Broome BSh 24.68 -3.96 43.63 79.83 200.10 110.42 99.45
Cobar BSh 26.79 -6.89 37.12 82.79 144.56 54.82 68.41
Kalgoorlie-Boulder BSh 23.84 -7.33 40.16 78.88 305.20 211.04 149.14
Longreach BSh 28.17 -5.47 46.71 80.54 117.31 36.49 61.80
Tennant Creek BSh 29.12 -8.72 49.64 74.73 289.80 196.16 146.31
Mildura BSk 22.32 -11.21 39.77 74.48 355.84 259.23 173.65
Alice Springs BWh 26.19 -8.52 48.71 78.26 291.03 196.02 146.12
Learmonth BWh 38.72 5.32 57.49 74.53 298.27 208.25 155.38
Woomera BWh 29.78 -16.05 40.07 69.89 188.00 93.10 90.31
Rockhampton Cfa 17.99 -10.12 40.11 69.72 315.40 226.06 155.42
Wagga Wagga Cfa 19.04 -9.34 37.69 76.92 290.57 194.83 140.20
Cape Grim Cfb 12.98 -15.70 34.10 45.02 576.94 481.99 281.78
Melbourne Cfb 11.15 -11.11 29.94 70.08 377.52 283.18 180.14
Adelaide Csa 16.74 -11.05 34.46 76.75 346.70 252.32 166.98
Geraldton Csa 26.26 -6.27 50.35 71.42 256.86 163.95 130.38
Mt Gambier Csb 12.93 -9.70 31.32 72.13 253.67 160.43 119.18

Improved 93% 15 18 19 19 18 17 18
Marginal 1% 1 0 0 0 0 0 0
Worse 6% 3 1 0 0 1 2 1

Table 4.16 shows the National BoM model offers a better estimate for diffuse fraction

over the National BRL model with 70% of the indicators showing improvement. The

majority of the marginally worse statistics are associated with rRMSE and R2. However,
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Table 4.16: Satellite data statistical indicators for diffuse fraction under National BRL
model (with BoM variability parameter) (compared to National BRL model)

Location KG Zone

Statistical Indicators (%)

MeAPE rMBE rRMSE R2 KSI OVER CPI

Cairns Am 23.98 -12.97 44.55 57.03 303.13 210.29 150.63
Darwin Aw 21.15 -13.16 42.26 67.06 349.02 251.65 171.30
Townsville Aw 21.03 -20.20 52.15 59.34 234.38 137.41 119.02
Broome BSh 24.50 -4.22 43.86 79.62 199.46 110.16 99.34
Cobar BSh 26.67 -7.01 37.34 82.59 143.84 54.27 68.20
Kalgoorlie-Boulder BSh 23.90 -7.29 40.31 78.72 304.38 210.38 148.85
Longreach BSh 27.78 -5.63 46.86 80.41 116.62 35.95 61.57
Tennant Creek BSh 29.39 -8.72 49.82 74.55 287.80 193.98 145.35
Mildura BSk 21.87 -11.05 39.73 74.54 350.67 254.19 171.08
Alice Springs BWh 26.05 -8.49 48.92 78.07 290.34 195.26 145.86
Learmonth BWh 38.11 4.93 57.29 74.71 295.05 204.90 153.63
Woomera BWh 29.23 -16.04 39.93 70.10 186.42 92.11 89.60
Rockhampton Cfa 17.90 -10.03 40.20 69.58 314.24 224.69 154.83
Wagga Wagga Cfa 18.93 -9.10 37.64 76.99 286.61 191.08 138.24
Cape Grim Cfb 12.93 -15.48 34.03 45.22 568.99 474.22 277.82
Melbourne Cfb 11.17 -10.94 29.91 70.14 371.67 277.88 177.34
Adelaide Csa 16.32 -10.89 34.46 76.74 343.60 248.86 165.35
Geraldton Csa 25.70 -6.26 50.47 71.29 254.07 160.92 128.98
Mt Gambier Csb 12.63 -9.64 31.41 71.97 252.66 159.29 118.69

Improved 70% 14 13 6 6 18 18 18
Marginal 29% 5 6 13 13 0 0 1
Worse 2% 0 0 0 0 1 1 0

Table 4.17: Statistical indicators for diffuse fraction under Köppen-Geiger zone BRL
model (with BoM variability parameter) (compared to National BoM model)

Location KG Zone

Statistical Indicators (%)

MeAPE rMBE rRMSE R2 KSI OVER CPI

Cairns Am 24.25 -12.44 44.54 57.05 308.71 215.52 153.33
Darwin Aw 22.00 -16.92 44.09 64.14 443.69 346.12 219.50
Townsville Aw 22.43 -23.45 54.39 55.78 272.02 174.86 138.91
Broome BSh 21.69 -9.06 45.08 78.48 209.57 115.53 103.81
Cobar BSh 23.70 -10.74 39.09 80.92 155.00 62.23 73.85
Kalgoorlie-Boulder BSh 21.14 -10.85 41.82 77.10 327.58 232.12 160.84
Longreach BSh 23.99 -10.94 48.75 78.80 118.40 29.73 61.41
Tennant Creek BSh 25.49 -13.28 51.61 72.68 312.00 214.84 157.52
Mildura BSk 25.41 -11.87 40.72 73.25 403.30 306.54 197.82
Alice Springs BWh 24.02 -9.90 49.22 77.80 280.71 185.75 141.22
Learmonth BWh 34.36 2.67 56.90 75.06 270.94 180.94 141.42
Woomera BWh 26.88 -16.89 40.14 69.79 185.58 91.22 89.27
Rockhampton Cfa 20.92 -9.69 40.35 69.36 353.82 261.50 174.00
Wagga Wagga Cfa 22.65 -8.85 38.04 76.50 327.65 231.82 158.89
Cape Grim Cfb 11.74 -12.13 32.45 50.20 474.96 379.72 229.90
Melbourne Cfb 10.81 -7.43 28.48 72.93 296.25 201.48 138.67
Adelaide Csa 16.32 -8.25 33.07 78.58 294.32 199.89 140.09
Geraldton Csa 27.46 -2.71 49.81 72.03 233.27 141.40 118.57
Mt Gambier Csb 13.37 -12.43 32.91 69.23 315.55 221.82 150.79

Improved 41% 11 8 6 6 7 8 8
Marginal 23% 5 2 12 10 1 0 0
Worse 37% 3 9 1 3 11 11 11



104 Köppen-Geiger BRL Diffuse Irradiation Models

the almost universal improvement in KSI, OVER and CPI suggest the National BoM

model may be considered to be superior.

Given the superior statistical performance of the National BoM model over the Na-

tional BRL model, the Köppen-Geiger zone BRL model is compared against the National

BoM model in Table 4.17. The statistical indicators associated with the Köppen-Geiger

model do not support the adoption of a Köppen-Geiger zone BRL model without im-

provement to the global irradiation satellite model of BoM. Without such an improve-

ment, localization of the BRL model may be concluded to be inappropriate. Only 41% of

the indicators exhibit an improvement while 37% show a clearly worse performance. The

majority of the worse indicators relate to rMBE, KSI, OVER and CPI across multiple

Köppen-Geiger zones.

Consequently, it may be concluded that there is no benefit in applying a climate

classification system to the BRL models when considering satellite-based data estimates

without improvement to the global irradiation satellite model employed by BoM. How-

ever, the better performance of the new National BRL model with variability parameter

justifies the adoption of a new national-level model. The adjusted BRL parameters with

a variability term, as detailed in Table 4.18, are proposed for application to the AREMI

GHI data set.

Table 4.18: BRL model parameters for satellite-based global estimates

Model β0 (constant) β1 (kT ) β2 (AST) β3 (α) β4 (KT ) β5 (υ)

National BoM -7.108 9.598 0.01416 -0.00743 2.813 -0.343

4.4.2 Direct Normal Irradiation

Table 4.19 shows the statistical indicators associated with the DNI estimate of the original

AREMI data set. Table 4.20 shows a comparison of the new National BRL model applied

to AREMI GHI data against the original AREMI DNI statistics. Similar to the ground-

based results, the development of a National BRL level based on high quality filtered data,

results in a closer match to ground estimates than the original AREMI DNI estimates.

Only three of the statistics demonstrate a clearly worse result than the original AREMI

DNI data set and only four statistics exhibit a marginally worse outcome.

A comparison of the new National BoM model against the new National BRL model

is shown in Table 4.21. In contrast to the results for diffuse fraction in Section 4.4.1, the

variability factor shows a worse performance than the persistence factor with only 41% of

the statistics showing improvement.

Table 4.22 shows the results for the Köppen-Geiger zone BRL model. Similar to

diffuse fraction in Section 4.4.1, no clear improvements are introduced by climatological

classification considerations in BRL model development applied to satellite-based data.

On 44% of the statistical indicators see an improvement. The indicators exhibiting a

worse performance are spread across the climatological zones, inhibiting the potential to

at least apply the Köppen-Geiger models to a subset of climatologies.
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Table 4.19: Statistical indicators for original AREMI DNI data set

Location KG Zone

Statistical Indicators (%)

IbnMeAPE rMBE rRMSE R2 KSI OVER CPI

Cairns Am 27.40 -17.79 47.24 51.67 355.56 270.57 180.15 421
Darwin Aw 25.49 -16.21 44.78 63.02 424.08 327.17 210.20 477
Townsville Aw 29.00 -26.14 55.45 54.02 284.73 184.95 145.15 541
Broome BSh 27.02 -10.39 47.52 76.08 230.54 139.54 116.28 626
Cobar BSh 23.44 -14.15 41.23 78.77 152.37 60.65 73.87 569
Kalgoorlie-Boulder BSh 22.82 -14.16 42.97 75.83 341.78 245.08 168.20 551
Longreach BSh 29.65 -12.64 51.17 76.64 117.39 29.96 62.42 683
Tennant Creek BSh 31.01 -16.40 54.63 69.39 342.51 242.77 173.64 633
Mildura BSk 23.59 -18.42 42.87 70.36 434.01 334.44 213.55 498
Alice Springs BWh 26.47 -16.13 52.30 74.93 310.33 212.74 156.92 659
Learmonth BWh 35.77 -2.18 58.91 73.26 276.79 185.25 144.97 722
Woomera BWh 24.68 -22.00 43.32 64.82 208.78 115.14 102.64 457
Rockhampton Cfa 22.52 -15.32 42.85 65.44 409.70 311.92 201.83 458
Wagga Wagga Cfa 24.41 -16.25 40.67 73.13 403.03 299.66 196.01 500
Cape Grim Cfb 19.04 -20.51 36.99 35.30 747.88 646.74 367.15 251
Melbourne Cfb 17.32 -16.08 32.28 65.20 543.93 441.12 262.41 314
Adelaide Csa 22.74 -16.95 37.36 72.66 469.45 367.38 227.89 448
Geraldton Csa 28.07 -13.52 52.87 68.48 283.30 189.57 144.65 607
Mt Gambier Csb 18.74 -16.67 34.68 65.83 413.61 310.58 198.39 352

Table 4.20: Satellite data statistical indicators for DNI under National BRL model
(compared to original AREMI DNI data set)

Location KG Zone

Statistical Indicators (%)

MeAPE rMBE rRMSE R2 KSI OVER CPI

Cairns Am 55.93 11.53 60.65 59.50 165.91 92.21 94.86
Darwin Aw 22.19 13.10 45.69 65.35 35.01 8.09 33.62
Townsville Aw 14.20 14.63 45.78 61.90 116.60 33.38 60.38
Broome BSh 10.41 2.00 27.11 78.56 162.93 75.18 73.08
Cobar BSh 15.86 2.26 31.39 84.11 97.86 53.84 53.62
Kalgoorlie-Boulder BSh 17.00 2.26 35.31 80.80 377.00 281.68 182.33
Longreach BSh 10.44 0.34 23.94 80.69 110.30 42.51 50.17
Tennant Creek BSh 11.79 2.75 31.41 74.97 174.17 117.48 88.62
Mildura BSk 28.82 7.85 42.17 77.01 266.19 170.90 130.35
Alice Springs BWh 10.33 1.58 28.71 79.15 249.71 163.49 117.66
Learmonth BWh 11.80 -5.70 27.08 71.29 308.04 240.61 150.70
Woomera BWh 45.15 14.81 48.17 74.81 130.61 42.01 67.24
Rockhampton Cfa 36.41 7.71 49.22 69.83 342.99 251.31 173.19
Wagga Wagga Cfa 27.73 5.92 39.97 78.33 347.91 254.43 170.57
Cape Grim Cfb 280.07 40.15 100.69 50.10 185.72 93.57 120.16
Melbourne Cfb 109.62 20.10 65.05 73.37 462.67 366.72 239.87
Adelaide Csa 46.35 9.57 43.79 79.84 380.16 284.48 188.05
Geraldton Csa 14.06 0.90 36.04 72.72 181.66 121.33 93.77
Mt Gambier Csb 75.53 14.15 59.61 74.86 191.20 96.00 101.61

Improved 95% 16 18 19 19 18 18 18
Marginal 3% 3 0 0 0 0 0 1
Worse 2% 0 1 0 0 1 1 0



106 Köppen-Geiger BRL Diffuse Irradiation Models

Table 4.21: Satellite data statistical indicators for DNI under National BRL model (with
BoM variability parameter) (compared to National BRL model)

Location KG Zone

Statistical Indicators (%)

MeAPE rMBE rRMSE R2 KSI OVER CPI

Cairns Am 54.53 11.58 60.68 59.46 164.39 90.73 94.12
Darwin Aw 22.28 13.23 45.82 65.15 34.25 7.42 33.33
Townsville Aw 14.73 14.71 45.94 61.63 114.70 31.92 59.63
Broome BSh 10.36 2.14 27.21 78.40 159.16 72.03 71.40
Cobar BSh 15.77 2.34 31.49 84.00 97.90 53.21 53.52
Kalgoorlie-Boulder BSh 17.15 2.23 35.42 80.68 377.85 282.59 182.82
Longreach BSh 10.30 0.41 23.98 80.63 109.75 41.73 49.86
Tennant Creek BSh 11.88 2.77 31.51 74.82 173.70 116.06 88.19
Mildura BSk 28.61 7.75 42.17 77.01 268.18 172.72 131.31
Alice Springs BWh 10.40 1.56 28.81 79.01 250.47 163.70 117.95
Learmonth BWh 11.70 -5.54 26.98 71.50 303.36 236.36 148.42
Woomera BWh 43.00 14.83 48.03 74.97 129.44 41.05 66.63
Rockhampton Cfa 36.44 7.63 49.31 69.72 344.80 253.07 174.12
Wagga Wagga Cfa 27.05 5.73 39.97 78.33 351.96 258.55 172.61
Cape Grim Cfb 283.08 39.66 100.64 50.15 190.98 98.83 122.77
Melbourne Cfb 110.92 19.75 65.07 73.35 467.55 371.66 242.34
Adelaide Csa 46.48 9.42 43.81 79.81 383.35 287.67 189.66
Geraldton Csa 14.20 0.93 36.09 72.64 180.02 119.69 92.98
Mt Gambier Csb 76.27 14.05 59.80 74.71 192.63 97.51 102.43

Improved 41% 8 10 4 4 9 10 10
Marginal 47% 10 9 15 15 6 2 6
Worse 11% 1 0 0 0 4 7 3

Table 4.22: Satellite data statistical indicators for DNI under Köppen-Geiger zone BRL
model (compared to National BoM model)

Location KG Zone

Statistical Indicators (%)

MeAPE rMBE rRMSE R2 KSI OVER CPI

Cairns Am 55.26 11.00 60.79 59.32 173.45 99.79 98.70
Darwin Aw 22.55 15.90 46.86 63.55 77.12 12.53 45.84
Townsville Aw 13.85 16.53 46.89 60.02 141.09 53.23 72.03
Broome BSh 9.75 4.48 27.54 77.87 94.84 26.09 44.00
Cobar BSh 14.71 4.80 32.13 83.35 93.47 42.33 50.01
Kalgoorlie-Boulder BSh 16.20 4.75 35.97 80.08 320.48 225.50 154.48
Longreach BSh 9.16 2.59 24.34 80.05 105.27 30.53 46.12
Tennant Creek BSh 10.90 5.11 32.05 73.94 129.92 82.66 69.17
Mildura BSk 29.60 8.27 42.74 76.38 262.63 168.30 129.10
Alice Springs BWh 9.70 2.47 28.73 79.13 225.28 140.87 105.90
Learmonth BWh 10.98 -4.62 26.69 72.10 277.83 210.59 135.45
Woomera BWh 45.28 16.06 48.33 74.65 127.93 39.29 65.97
Rockhampton Cfa 37.99 7.39 49.27 69.77 351.73 259.78 177.51
Wagga Wagga Cfa 27.94 5.62 40.20 78.08 355.07 261.67 174.29
Cape Grim Cfb 196.94 31.97 97.14 53.55 271.62 178.51 161.10
Melbourne Cfb 90.83 13.61 62.91 75.09 552.21 455.37 283.35
Adelaide Csa 44.44 6.95 42.86 80.68 430.10 333.45 212.32
Geraldton Csa 15.12 -1.15 35.98 72.82 216.28 146.44 108.67
Mt Gambier Csb 88.91 17.54 61.02 73.66 160.24 66.44 87.18

Improved 44% 12 7 5 5 10 10 10
Marginal 28% 6 3 14 14 0 0 0
Worse 28% 1 9 0 0 9 9 9
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4.5 Discussion

The performance of the BRL model based on Köppen-Geiger climate zones shows some

potential for ground-based measurement applications. However, the low spatial density of

ground-based monitoring in Australia results in no more than four stations operating in

any one zone. For most zones, only two stations are present while some zones only have one

station with a relatively short measurement history (Mildura and Cairns). Additionally,

not all climate zones identified in Table 3.7 have a BoM OMS station. Consequently, it

is not possible to fit a Köppen-Geiger classification BRL model to these areas. However,

the relatively small geographical size of these areas means only a small percentage of the

Australian continent is ineligible for a Köppen-Geiger zone BRL model.

It is apparent from the small campaign data for some stations and low spatial density

of monitoring, the zone correlations have room for improvement. The establishment of

additional monitoring stations particularly for warm temperature (‘C’) and equatorial

(‘A’) main climates, would enable the development of higher accuracy Köppen-Geiger

BRL models within which the majority of the Australian population resides.

With reference to Table 4.8 and Table 4.13 in Sections 4.3.1 and 4.3.2 respectively, it

can be seen that the majority of the clearly under-performing metrics for ground-based

DHI and DNI estimates are associated with just three measurement locations – Townsville,

Kalgoorlie-Boulder and Wagga Wagga. The lower performance for Townsville may be

explained by the relatively short measurement campaign compared to Darwin as the other

weather station within the Köppen-Geiger categorisation of ‘Aw’. The Townsville data

set consists of only 20% of the targeted two-years of randomly sampled data. Similar

observations can be drawn for the DNI results.

Speculative explanations for Wagga Wagga and Kalgoorlie-Boulder are not as appar-

ent. Köppen-Geiger zone re-categorisation trials were conducted to assess if the BRL

model adjustments based on adjacent zones present a more applicable representation

of local solar irradiation characteristics. However, the results for Wagga Wagga after

re-categorisation as ‘Cfb’ and ‘BSk’ did not demonstrate any improvement. Kalgoorlie-

Boulder showed some improvement through a ‘BWh’ categorisation.

It is evident that despite the demonstrably improved performance of the Köppen-

Geiger BRL models for diffuse fraction applied to ground-based GHI data in general,

the low spatial density of ground-based solar irradiation measurement stations within

Australia results in model under-performance in some locations. For zones exhibiting

such behaviour, deferral to the National BRL model may be more appropriate. The

identification of such areas is non-trivial and requires consideration of separation distance.

For example, for locations in the state of New South Wales within which Wagga Wagga is

situated, it may be more appropriate to apply the National BRL model for ‘CSa’ classified

areas, whereas in Queensland, within which Rockhampton is located, the Köppen-Geiger

model may be retained.

Despite the deficiencies discussed above, the results presented in this research provide

sufficient evidence to justify the application of adjusted BRL models for ground-based data

– first in a national context through the application of rigorous quality control regimes to
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tune BRL parameters, and secondly based on Köppen-Geiger zone classifications.

The statistical indicators associated with the satellite-based data results, as presented

in Sections 4.4.1 and 4.4.2, are markedly worse in comparison to the ground-based as-

sessment. The low correlation between ground-based measurements and satellite diffuse

fraction and DNI estimates through the BRL model may be attributed to the larger errors

associated with the GHI estimates within the AREMI data set. Referring to Figure 4.40

(left), the AREMI GHI estimates show an over-estimation bias, an issue that is magnified

through the application of the BoM BRL model to estimate DNI. The amplification effect

on DNI bias from GHI error can be better observed through examination of average daily

profiles for winter and summer months in Darwin. As shown in Figure 4.41, the GHI

error (left) is reduced compared to the full year. Consequently, the DNI estimate (right)

provides a closer match to the ground-measured data. Conversely, for the summer months

GHI error is larger leading to considerably larger DNI bias. The effect is more pronounced

for the data from Adelaide with the winter average daily profile (Figure 4.44) exhibiting

pronounced bias, particularly in the late afternoon as the the GHI AREMI observation

deviates markedly from the ground measurement. The summer DNI estimates present a

closer match to ground data, coinciding with a closer GHI approximation (Figure 4.45).

It may therefore be concluded that without improvement to the global irradiation

satellite model of [57] employed by BoM, the over-estimation of global irradiation results

in amplification of bias when estimating diffuse fraction and DNI irradiation following the

application of the BRL model.
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Figure 4.40: Darwin average hourly profile of AREMI GHI (left) and DNI (right) after
filtering

The results presented in Section 4.4.1 and 4.4.2 show there is no improvement intro-

duced through the application of Köppen-Geiger zone based BRL parameters to satellite

data. However, the demonstrably better performance of the new National BRL model

for diffuse fraction and DNI estimation after applying the quality control process of Sec-

tion 4.2.1 justifies the adoption of a new National BRL model. The results for diffuse

fraction and DNI present opposing arguments for the adoption of a variability term, as is
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Figure 4.41: Darwin average winter hourly profile of AREMI GHI (left) and DNI (right)
after filtering
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Figure 4.42: Darwin average summer hourly profile of AREMI GHI (left) and DNI
(right) after filtering
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Figure 4.43: Adelaide average hourly profile of AREMI GHI (left) and DNI (right) after
filtering
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Figure 4.44: Adelaide average winter hourly profile of AREMI GHI (left) and DNI
(right) after filtering
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Figure 4.45: Adelaide average summer hourly profile of AREMI GHI (left) and DNI
(right) after filtering
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the case for diffuse fraction, or a persistence term, as is the case for DNI. For solar PV

applications where accurate knowledge of diffuse irradiation is important for transposition

models in order to calculate plane-of-array irradiation (discussed further in Section 3.5),

it can be argued that it may be more appropriate to adopt the National BoM model.

4.6 Summary

The original research presented in this chapter aimed to improve estimates of diffuse irra-

diation components from global horizontal irradiation data measurements. The Köppen-

Geiger climate classification system was proposed for application to diffuse irradiation

models and investigated to establish the potential to improve modelling accuracy through

climatological characteristic considerations of specific locations.

Rigorous data quality control steps were defined to establish a high quality tuning

data set to facilitate the development of new BRL diffuse models. Using data from the

Australian Bureau of Meteorology’s one minute solar measurement station network, a

new National BRL model was developed for ground-based measurements. Through the

calculation of statistical indicators including mean absolute percentage error, mean bias

error, coefficient of correlation, root mean square error, Kolmogorov-Smirnov Integral and

the construction of cumulative distribution functions, the performance of the new model

variant was established and compared against the original BRL model. The new National

BRL model was shown to almost universally out-perform the original BRL model. The

filtered data were then used to develop Köppen-Geiger zone specific BRL models. Similar

analysis found strong support for the adoption of a specific climate classification models to

improve diffuse irradiation estimates. New National and Köppen-Geiger BRL parameters

were proposed for application to Australian ground-based global horizontal irradiation

data in the absence of diffuse and direct irradiation estimates.

The low spatial and temporal density of ground-based irradiation measurements was

proposed as a potential contributor to reduced performance in Köppen-Geiger models for

some locations. An opportunity for improvement through the establishment of additional

measurement locations within each Köppen-Geiger zone, particularly on the coastal fringes

of eastern Australia where the majority of the population resides, was identified. As an

intermediate solution, deferral to the new National BRL model was proposed in instances

where the Köppen-Geiger models are shown to be inferior.

Due to the limited ground coverage of global horizontal irradiation estimates, satellite-

based irradiation estimates were investigated. Hourly satellite measured irradiation data

from 1990 to 2015 processed by BoM and made available through the AREMI database

were examined for potential improvement through the development of new National BRL

and Köppen-Geiger BRL models. The Australian BoM uses a variant of the BRL model

to process data within its hourly solar insolation database, which takes into account clear-

ness index variability as opposed to a persistence factor. The BoM variability was also

investigated for potential model improvements.

Based on a similar data quality control and statistical analysis approach, the results

found in this research do not support the adoption of Köppen-Geiger zone BRL models
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for satellite-based estimates without improvement to the global irradiation satellite model

employed for the AREMI data set. However, a new National BRL model based on the

BoM BRL model variant was found to present a closer approximation to ground-based

measurements than the original AREMI data set.

In the next chapter, synthetic hourly irradiation from daily irradiation data as previ-

ously presented in Section 3.2.9 are first utilised as part of a design optimisation strategy to

reduce lifetime energy costs based on specific consideration of temporal energy consump-

tion profiles. The new National BRL diffuse irradiation model developed in this chapter is

leveraged in the more advanced system and market analyses presented in Chapter 6 and

Chapter 8.



Chapter 5

PV Design Optimisation

O
ver the last decade the solar PV industry has undergone significant technological

improvement and enormous growth in installed capacity. As market penetration

increases, primarily driven by the continued reduction in technology costs, installation

incentive schemes will be reduced or removed altogether.

The reduction and removal of incentive schemes are not the only disrupting factor

to the small-scale PV industry. The penetration and system characteristics of residential

PV systems have the potential to be significantly influenced by the introduction of smart

meters and other smart grid technologies. Enabled by smart meters, the implementation

of dynamic tariff structures will require due consideration of a customer’s temporal energy

consumption habits.

The SGSC project commissioned by the Australian Government between 2012 and

2014 [1] and other independent research conducted by the Grattan Institute [29] in 2015 [1]

found a real and immediate business case for the introduction of dynamic tariffs. Focusing

on temporal energy demand, dynamic tariffs were deemed necessary to remove the cross-

subsidies existing between non-PV owners and PV owners. Under such an environment,

the uptake of small-scale PV in Australia was projected to exhibit continued growth.

However, in response to the recommended tariff restructures, a reduction in average size

of new residential systems was forecast to occur [1].

An optimisation strategy for residential PV systems is developed in this chapter. The

maximisation of the net benefit achieved through reduced imported energy costs is set as

the underlying objective. Within a competitive retail electricity market with various tariff

structures including flat and dynamic TOU rates, the best plan is not self-evident. The

research presented in this chapter is principally focused towards leveraging temporal energy

consumption data facilitated by smart meters to develop a customer specific evaluation

based on other influential factors such as location, prevailing solar irradiation and available

retail electricity plans. The traditional PV installation objective to maximise gross energy

generation is challenged and demonstrated to not necessarily be the most cost-effective

approach. The ultimate objective of this research is to remove the uncertainty in system

specification and retail electricity plan selection in a competitive retail market and dynamic

regulatory environment.

While PV system design optimisation may be undertaken using many existing software

113
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platforms, widespread application of optimisation techniques at the residential consumer

level using real-world high temporal resolution smart meter consumption data has not

previously been investigated in an Australian context. The novelty of this research lies

in the large sample size application of design optimisation techniques to establish market

trends in different geographical and electricity network areas. The research presented

in this thesis is intended to establish viability trends for PV systems in the Australian

electricity market including drawing comparisons against recently installed PV systems

and highlighting the economic efficacy of such systems.

As a basis for the optimisation problem defined in this chapter, a PV array energy yield

model using the solar irradiation models presented in Chapter 3 is defined. Particle swarm

optimisation (PSO) is used as the underlying optimisation algorithm, given its speed

and simplicity of application to non-linear problems. The standard canonical algorithm

is modified first through the introduction of a penalty function and then through the

introduction of a hypercube nearest vertex approach previously established in literature

to enable the handling of constraints.

Actual solar irradiation data from selected Australian locations, smart meter data from

the SGSC project and electricity plans from three large Australian retailers are applied

to the optimisation problem to demonstrate the potential investment value of optimally

selected PV systems. Although the assessment presented in this chapter is undertaken

in an Australian context, the principles and analysis methodology are applicable to any

location or country.

5.1 Literature Review

Solar power generation, particularly PV, has undergone enormous growth over the last

decade. The growth can be primarily attributed to technological improvements and the

introduction of government incentives such as rebates and feed-in tariffs [29,184]. However,

less tangible factors such as increased end-user energy awareness and an increased public

perception of the potentially damaging impacts of unrestrained carbon emissions have

also led to a dramatic increase in the number of rooftop PV installations. The cumulative

installed capacity of small-scale PV systems in Australian up to July 2019 was 9.1 GW as

shown in Figure 5.1 [185], increasing from just 8,000 homes with solar PV in 2007 [186].

The countries leading the PV uptake on an installed capacity basis include China,

Japan, United States, Germany, India, Itay and the United Kingdom [187]. By 2018,

China had installed over 175 GW of solar PV, almost three times more than any other

country as shown in Figure 5.2 [186].

One of the primary disadvantages associated with PV is fluctuating and intermittent

power output. Solar energy is entirely weather dependent and consequently experiences

frequent periods of generation well below system ratings. PV panels are only able to

generate energy during daylight hours, typically reaching peak output around midday.

Periods of maximum load demand typically occur during the morning and in the early

evening. Therefore, there is generally a misalignment between the period of maximum
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generation and the period of maximum load demand as shown in Figure 5.3.

5.1.1 Photovoltaic Technologies and Materials

PV cells are specially manufactured semiconductor diodes designed to absorb photons to

create electron-hole pairs in the semiconductor material [188]. The pn-junction formed by

appropriately doping the semiconductor material creates an electric field which separates

the electron-hole pairs [189]. Absorption of photons elevates electrons from the valence

band into the conduction band, leaving behind holes in the valence band [189]. Once
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the charge carriers are separated into these regions, they are able to participate in the

conduction process when an external electrical circuit is completed [189].

A multitude of PV materials and topologies exists from basic single junction cells

to III-V multi-junction cells designed to enable photon absorption from a wide band of

the radiation spectrum [190]. However, for the vast majority of current terrestrial solar

applications, PV cells are constructed from three main technologies – monocrystalline

silicon, multicrystalline (also referred to as polycrystalline) silicon and thin-film materials.

Each technology has its own advantages and disadvantages in terms of manufacturing cost,

efficiency and temperature performance.

Monocrystalline PV cells are constructed from thin wafers cut from a single silicon

crystal [189]. As monocrystalline silicon exhibits a near perfect crystal lattice, it exhibits

the highest efficiency per unit area at standard test conditions. Due to the energy intensive

process to produce pure silicon ingots, monocrystalline PV cells are more expensive to

produce than multicrystalline cells which are produced by cooling melted silicon in a

crucible at a controlled rate [189]. The final multicrystalline product has a non-uniform

crystal structure, however the structure still enables the cells to exhibit similar performance

characteristics to monocrystalline.

Thin-film cells refer to a range of technologies and chemistries including amorphous

silicon, cadmium telluride (CdTe) and copper indium gallium selenide (CIGS). Thin-film

technologies have vastly improved in recent years [184] to the point that they are now

cost competitive with crystalline cells, particularly in warmer environments. Of the thin-

film technologies, CdTe is the most competitive and has seen the largest commercial

penetration [191].

Thin-film cells are a direct semiconductor meaning they have valence and conduction

bands that are aligned with respect to band gap momentum. Consequently, photons near
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the band gap energy are likely to be readily absorbed without requiring momentum in

addition to their energy [188,189]. In contrast, indirect semiconductors such as crystalline

silicon feature band misalignment with respect to momentum, resulting in inefficient ab-

sorption of photons near the band gap energy. Due to their efficient photon absorption,

thin-film cells can be manufactured with significantly reduced semiconductor thickness

when compared to crystalline silicon cells resulting in material and cost savings.

5.1.2 Geographic Location of PV systems

Designing a PV system requires consideration of geographical location and environmental

conditions in order to determine the requirements of the physical installation to achieve

optimality. The latitude of the location has a significant influence on the alignment of

the PV panels with respect to the horizontal plane. Generally, PV panels in the northern

hemisphere should face south whereas panels in the southern hemisphere should face north

[157].

Variation in the angle of incidence of solar irradiation during different seasons of the

year complicates the orientation of the panels [189]. During winter, the sun is lower in

the sky than in summer, requiring an increased angle of tilt further towards the vertical.

When PV systems are installed without solar tracking, as is the case in the vast majority of

small-scale PV installations, the season on which to base the PV panel orientation is largely

dependent on the seasonal load profile of the consumer and the ability to participate in

solar feed-in schemes [157]. However, the optimal solution is not always transparent. For

example, a hypothetical installation may require more electrical energy for heating during

winter than cooling in summer. This would initially imply that a PV system should be

designed and oriented for maximum utilisation during winter. However, summer months

typically yield an increased level of system utilisation through more daylight hours and a

higher average hourly solar irradiance. If a PV system is installed such that it can feed-in

to the electricity grid and therefore take advantage of feed-in tariffs, the optimal system

arrangement could be one designed for summer months, despite the hypothetical higher

winter load.

The lack of transparency regarding the optimal system arrangement is a key driver for

the PV system design optimisation tool investigated in this research. Optimal alignment

of solar panels have been investigated extensively in literature [157,189,192–194]. However

optimisation of PV panel orientation combined with detailed load profiles obtained through

smart metering devices, has not be investigated to any significant extent.

5.1.3 PV Installation Incentive Schemes

As market penetration increases for PV, primarily driven by the continued reduction in

technology costs, installation incentive schemes are expected to reduce or be removed alto-

gether. In an Australian context, PV systems contribute to the Australian Government’s

Renewable Energy Target (RET) and are therefore eligible for certain incentives depend-

ing on the size of the system installed. For systems of 100 kW or less, PV systems are

deemed to be part of the SRES. Historically, the Solar Bonus Scheme (SBS) incentivised
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the installation of PV through a generous feed-in tariff (FiT). The SBS encouraged in-

vestors to install large PV systems aiming to generate as much energy as possible during

peak solar irradiation hours. However, the SBS in Australia, under which the FiT was

initially set to be 60 c/kWh and later reduced to 20 c/kWh, was closed to new customers

in 2011 and officially ended in 2016.

An assessment of the Australian Government Clean Energy Regulator (CER) database

[195] revealed a relatively large national average size of 5.11 kW for new systems installed

between January 2015 and August 2016. However, due to closure of the SBS, the newly

installed larger systems are ineligible for the high FiTs mandated under the SBS and

subsequently the payback periods are increasingly reliant on the cost savings achieved

through self-consumption of PV generated energy.

Systems installed as part of the SRES continue to receive incentives in the form of

upfront small-scale technology certificates (STCs) [196]. Current policy is to retain the

SRES in the medium term, however the magnitude of the effective rebate will be gradually

reduced between 2017–2030 [197], complicating the investment decision process.

PV systems may still be eligible to receive FiTs from an energy retailer, however

current Australian FiTs are no longer mandated but rather set by individual retailers.

As an example, the benchmark range for FiTs in New South Wales was 4.7–6.1 c/kWh

in 2015–2016 [198] and increased to 8.5–10.4 c/kWh in 2019–2020 [199], still significantly

less than those offered under the SBS.

For PV systems larger than 100 kW, incentives are provided through large-scale gen-

eration certificates (LGC) [196]. PV system developers commonly enter into a negotiated

power purchase agreement (PPA) with an interested electricity off-taker, most commonly

energy retailers but also large corporations with a high demand for energy. Under a PPA,

the price to purchase LGCs from the PV installation is typically built into the total price

paid for grid-exported energy.

The research presented in this thesis investigates solar PV modelling of residential and

commercial PV systems in the context of current Australian market conditions and the

incentive schemes developed to achieve the RET. Chapters 5, 6 and 8 consider FiTs and

STCs for design optimisation of small-scale systems. Chapter 7 investigates the optimisa-

tion of solar PV under incentive schemes for both small-scale and large-scale systems.

5.1.4 PV System Optimisation

The optimisation of PV systems have been extensively researched in literature [200, 201].

A variety of optimisation methodologies have been utilised including numerical meth-

ods [157, 202] and metaheuristic methods such as genetic algorithms [203–207] and PSO

[176, 208–212]. In recent times, research has focused heavily towards hybrid renewable

energy systems and microgrids [204, 205, 207, 212, 213]. However, given hybrid systems

predominantly find applications in medium to large-scale energy systems, the objectives,

assumptions and methodology are not well-suited to small-scale residential systems. Con-

sequently, limited research exists relating to a comprehensive market assessment for eco-

nomic optimisation in residential PV applications.
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Self-consumption and load matching of PV to residential loads have been investigated

in [202, 203, 214]. Widen et al. [202] assessed load matching of PV combined with de-

mand side management and energy storage systems through consideration of customer

load profiles. However, it was acknowledged that no consideration was given to economic

performance or optimal sizing of PV systems. Beck et al. [203] investigated the tempo-

ral resolution of smart meter load data on the self-consumption rate of PV generated

electricity, developing an economic model to optimise the system size. However, a single

standardised profile from an example PV system was applied to all analysed cases, thereby

eliminating tilt and azimuth optimisation from the analysis.

The economic evaluation of PV systems has been extensively investigated. Many

articles consider cost-benefit relationships through variations on a NPV analysis [157,201,

203, 205, 206, 215–219]. Mulder et al. [215] investigated the dimensioning of PV-battery

systems based on selling price and incentive conditions by utilising smart meter data

from 65 Belgian households. Although smart meter data with a relatively high resolution

(15 minutes) were used in the analysis, the temporal resolution was not leveraged; only

cumulative annual generation and consumption profiles were considered.

Pillai et al. [217] investigated the near-term economic benefits of PV systems in the

UK and India by determining the prosumer energy unit cost, equivalent to levelised cost

of energy (LCOE). However, the analysis was based on a national average PV system

size and monthly energy demand profile rather than the circumstances of an individual

customer.

Despite the prevalence of existing literature focusing on PV system optimisation, no

research has aimed to develop an encompassing design tool at the consumer level to inform

prospective residential PV system owners through an integrated approach determining

system size, orientation and the associated least cost retail electricity plan. With the

integration of Smart Grid technologies, particularly the continued installation of smart

meters and the introduction of dynamic electricity tariffs, such an optimisation tool is

required to empower customers and provide confidence in the potential investment value

of residential PV systems.

5.2 Photovoltaic Model

The PV energy yield model considered in this research is based on the model defined

by Duffie and Beckman [115]. Using data provided on manufacturer data sheets under

nominal operating cell temperature (NOCT) and standard test conditions (STC), the

operating temperature of a particular PV module can be determined through (5.1):

Tc = Ta + (TNOCT − 20) · GT

800
· (1− ηmpp,STC) (5.1)

where Ta is the ambient temperature, TNOCT is the nominal operating cell temperature,

GT is the incident solar irradiance (i.e. power per unit area) and ηmpp,STC is the maximum

power point efficiency at standard test conditions.

The operating efficiency of the PV module at particular environmental conditions is
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defined as:

ηmpp = ηmpp,STC + μmpp(Tc − Ta) (5.2)

where μmpp (%/◦C) is the temperature coefficient of power provided on the module data

sheet.

According to [115], the output power of a PV array at any particular instant, assuming

the array has maximum power point tracking, can be described at a simple level as:

Ppv = AcZGT ηmppηeDy (5.3)

where Ac is the PV module area, Z is the number of PV modules, ηe is the efficiency of

the associated balance of plant (including the maximum power point tracking inverter and

other loss associated equipment) and Dy is the PV module degradation factor in year y.

Most PV module manufacturers offer a linear power performance warranty whereby the

module output degrades linearly over the warranty period. Consequently the degradation

factor Dy can be expressed as follows:

Dy = D1 − rdeg(y − 1) for 1 ≤ y ≤ Y (5.4)

where rdeg is the manufacturer prescribed degradation rate and D1 is the degradation

factor in the first year (since performance equal to 100% of the rated output is not usually

guaranteed).

If the instantaneous power is integrated over time and GT is assumed to be constant

over the period so that the hourly irradiation IT = GT , then the energy produced by the

PV array over an hour is defined as:

Epv = AcZIT ηmppηeDy (5.5)

In (5.5), IT is the hourly irradiation on the tilted plane defined by the HDKR model

of (3.51) in Section 3.5.3. Equation (5.5) constitutes the underlying energy yield model

used in the objective function of the optimisation problem defined in Section 5.4.1.

5.2.1 PV Maintenance Model

The cost of maintenance Wq must be accounted for when undertaking an NPV analysis.

Although small-scale residential systems are largely maintenance free, periodic system

inspections are required. Definitive guidelines for maintenance frequency and statistical

costs have not been universally established. Consequently, in this research, maintenance

is assumed to be carried out every five years at a cost of $200, a reasonable assumption

provided the system is properly installed.

Furthermore, while PV modules are known to have relatively long operational lifespans

(in excess of 20 years), inverters usually require replacement at least once over the lifetime

of the system. In this research, inverter replacement has been assumed to occur after

ten years of operation. Consequently, based on the assumptions above and recognising
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that t is the number of billing periods per year, maintenance is therefore required every

5t (maintenance only) and 10t billing periods (maintenance plus inverter replacement).

The maintenance costs defined by (5.6) are determined at the start of each billing period,

where Uinv refers to the inverter replacement cost per watt peak ($/Wp) and Spv(Z) is

the PV system cost defined later by (5.17). If maintenance is due, Wq defined by (5.6)

forms a negative cash flow in the later-defined objective function of (5.12) for period q.

Wq(Z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
200 if q−1

5t ∈ Z
+, q−1

10t /∈ Z
+

200 + UinvSpv(Z) if q−1
10t ∈ Z

+

0 otherwise

(5.6)

5.3 Economic Model

Due to the relatively long lifetime of PV systems, the time value of money must be con-

sidered. The option to invest in a PV system must be compared against other investment

options that are realistically expected to earn a minimum rate of return. The time value

of money is most commonly considered through a present value analysis. For a given in-

vestment option, future cash flows are discounted to yield their present value. Summation

of the present value of each cash flow and subtracting the initial cost of the investment

yields the NPV of the investment. NPV is therefore expressed as:

NPV =

Q∑
q=1

Cq

(1 + rnom)q
− C0 (5.7)

where C0 is the initial investment cost, Cq is the cash flow in period q, Q is the number

of billing periods and rnom is the nominal discount rate. The discount rate is defined as

the opportunity cost of capital – the return an investor reasonably expects to yield from

well-defined alternative investment options. For the analysis presented in this chapter, the

cost of capital is assumed to be 6% p.a., chosen to be reflective of standard investment

options available to a typical home owner.

In addition to the time value of money, the purchasing power of the currency, which

diminishes due to inflation, must also be considered. Inflation can be included in the

economic model by modifying the nominal discount rate to yield a real discount rate

defined by (5.8):

rreal =
(1 + rnom)

(1 + rinf )
− 1 (5.8)

where rreal and rinf are the real discount and inflation rates respectively. Assuming the

more conservative inflation rate of 2% within the Reserve Bank of Australia’s target range

of 2–3% [220], the real discount rate considered in this research is 3.92%.

For retail electricity, typical billing periods are monthly or quarterly. Therefore the

assumed annual rates must be converted to an effective rate based on the period of billing
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as given by (5.9):

rd = (1 + rreal)
1/t − 1 (5.9)

where rd is the effective real discount rate for the period and t is the number of billing

periods per year. For quarterly billing (t = 4), the effective quarterly rate, assuming

rreal = 3.92%, is rd = 0.97%.

Although NPV analysis is predominantly the primary metric for assessing investment

options, the rate of return is also critically important to establish investment preferences

among competing options. For the economic analysis considered in this research, the

modified internal rate of return (MIRR) [221] as defined in (5.10) is used:

MIRR = Q

√√√√ ∑Q
q=1C

+
q (1 + rinv)(Q−q)

C0 +
∑Q

q=1C
−
q (1 + rfin)q

− 1 (5.10)

where rinv and rfin are the re-investment and finance rates respectively (both assumed to

be equivalent to rd), while C
+
q and C−

q denote positive and negative cash flows respectively.

Negative cash flows are associated with maintenance and equipment replacement costs in

the context of a PV system.

Ideally, the MIRR should be greater than the cost of capital. In this research, an

investment yielding such a return is defined as a ‘viable’ investment. However, despite the

‘viable’ investment definition, the intangible value associated with PV systems complicates

the decision criteria – an investor may consider an MIRR slightly lower than the cost of

capital to be acceptable in order to reduce their net carbon emissions. Thus, in the context

of residential PV systems, the requirement for an MIRR greater than the cost of capital

should not be seen as prescriptive, but used rather as a supporting metric for NPV to be

balanced with an investor’s desire to reduce their environmental footprint.

The final metric considered in this research is the payback period defined as:

P = A+
B

C
(5.11)

where P is the payback period, A is the number of periods whereby the cumulative cash

flow is negative, B is the residual cost to be paid back in period A+ 1 and C is the total

cash flow in period A + 1. A PV system may yield both a positive NPV and adequate

MIRR over its design life, however if a particular investor intends to relocate before the

expiration of the system life (thus prior to the realisation of any net benefit), knowledge

of the payback period is crucial.

5.4 Photovoltaic System Optimisation Problem

The optimisation objective is to maximise the monetary savings achieved by installing an

optimally sized and oriented PV system. The savings, defined as the difference between

the cost of electricity with an optimised PV system under a given retail electricity plan,

against a known lowest cost ‘do nothing’ plan, are quantified through the NPV analysis

defined in Section 5.3. Through a comparison of the optimised systems for each of the
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retail electricity plans available to an individual customer, the optimal system and tariff

structure for a particular residence can be determined.

The defining equations for the optimisation problem and the subsequent analysis in

this research are based in an Australian context. Irradiation and energy consumption data

for a sample of Australian customers are used. Furthermore the economic parameters,

system costs and available incentive schemes are reflective of the Australian PV industry.

However, the problem is easily transferable to other national contexts given equivalent

economic parameters, tariff structures and system costs.

5.4.1 Problem Definition

The optimisation problem considered in this research is defined as follows:

Given:

(i) Annual inflation of rinf = 2%

(ii) Maximum number of PV modules (Zmax = 30)

(iii) PV cost per watt peak (Upv = $2.37/Wp) [222]

(iv) Inverter replacement cost (Uinv = $0.35/Wp) [222]

(v) Quarterly billing frequency

(vi) A nominal annual discount rate of rnom = 6%, corresponding to a quarterly real

effective rate of rd = 0.97%

(vii) Nominal annual electricity price growth of 4.04%, corresponding to a quarterly real

effective rate of re = 0.50%

(viii) PV system balance of plant efficiency ηe = 90%

(ix) PV system lifespan of 20 years (which is considered to be conservative)

Find: Tilt angle β, azimuth angle γ, and number of modules Z

Objective:

max
β,γ,Z

NPV =

Q∑
q=1

⎡
⎢⎣
(
Cbase,q − Cpv,q(β, γ, Z)

)
(1 + re)

q

(1 + rd)
q − Wq(Z)

(1 + rd)
q

⎤
⎥⎦− Spv(Z) (5.12)

Subject to:

0 ≤ β ≤ 180◦, for β ∈ R (5.13a)

−180◦ ≤ γ ≤ 180◦, for γ ∈ R (5.13b)

0 ≤ Z ≤ Zmax, for Z ∈ Z
+ (5.13c)
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In (5.12), Cpv,q and Cbase,q refer to the cost of electricity with and without a PV system

respectively within the billing period q (the difference of which constitutes the monetary

savings achieved through the installation of PV). Spv is the PV system cost, Q is the

number of billing periods over the lifetime of the system and Wq is the maintenance cost

in period q. Expressions for Cbase,q, Cpv,q, Spv and Wq are defined in (5.14), (5.15) and

(5.6) respectively.

Equation (5.12) includes an additional growth factor (1 + re)
q to allow for retail elec-

tricity price growth above (or below) the rate of inflation. In an Australian context since

1990, electricity price rises have significantly outpaced inflation on average by 2-3% per

annum in real terms [223]. Consequently, electricity price growth is assumed to be 2%

in real terms (or 4.04% in nominal terms), becoming re = 0.5% when converted to an

effective quarterly rate for the quarterly billing assumed in this research.

Cbase,q =

Dq∑
d=1

⎡
⎣ 24∑
h=1

(
Tret0,qdhEload,qdh

)
+ Tsc0,qd

⎤
⎦ (5.14)

Cpv,q(β, γ, Z) =

Dq∑
d=1

⎧⎨
⎩

H∑
h=1

[
Tret,qdhmax

(
0, Ebal,qdh(β, γ, Z)

)

−Tfit,qdhmax
(
0,−Ebal,qdh(β, γ, Z)

)]
+ Tsc,qd

⎫⎬
⎭ (5.15)

Ebal,qdh(β, γ, Z) = Eload,qdh − Epv,qdh(β, γ, Z) (5.16)

In (5.14) and (5.15), for hour h of day d in billing period q (with Dq days in the billing

period), Tret0,qdh and Tret,qdh represent the retail tariffs associated with grid imported

electricity under a base plan (i.e. lowest cost ‘do nothing’ plan) and an alternatively

trialled plan respectively; Ebal,qdh is the balance of net energy flow defined in (5.16) as the

difference between load energy Eload,qdh and the PV generated energy Epv,qdh; and Tfit,qdh

is the PV FiT. Tsc0,qd and Tsc,qd are the daily electricity supply charges for the base plan

and tested plan respectively.

The total PV system cost Spv for a system of rated power Ppv,rat, defined in (5.17), can

be reduced through government initiated rebates and incentive schemes. In an Australian

context, the total sytem cost to the investor is reduced through an effective rebate provided

under the SRES. Under this scheme, STCs (Small-scale Technology Certificates defined

in Section 5.1.3, not the standard test conditions previously referenced in this chapter)

are generated and traded on an open market as a commodity to be ultimately purchased

by liable entities (usually energy retailers) [197]. The quantity of certificates generated

depends on the size, location and length of time the system is expected to contribute to

the SRES. In 2016, certificates were generated for up to 15 years yielding a contribution

lifetime of Mlife = 15 [224]. The location multiplier is assumed to be Mloc = 1.382 for

the locations assessed in this research [224]. In this chapter, the PV investor is assumed
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to receive CSTC = $32 for each certificate.

Spv(Z) = UpvPpv,rat(Z)−MlifeMlocPpv,rat(Z)CSTC (5.17)

5.4.2 Optimisation Method

PSO has seen many applications in PV optimisation problems due to the complex non-

linear equations involved and its excellent performance under such conditions [200]. For

this research, PSO is selected due to its speed, global search performance and relative

simplicity of application [225].

Originally developed by Kennedy and Eberhart [226], PSO simulates the social inter-

action within bird flocks and fish schools to achieve a global objective in the absence of

centralised control [225]. Each swarm agent is represented as a particle with infinitesimal

volume that flies through the solution space with J-dimensional position and velocity vec-

tors, where J is equivalent to the number of optimisation parameters in the problem (i.e.

J = 3 in this research). Consequently for the ith particle in the nth iteration, the position

and velocity vectors xi,n and vi,n are respectively defined as:

xi,n = (x1i,n, x
2
i,n, x

3
i,n) = (βi,n, γi,n, Zi,n) (5.18)

vi,n = (v1i,n, v
2
i,n, v

3
i,n) (5.19)

In iteration n+1, updates of the dimensional components of position (xji,n) and velocity

(vji,n) for each particle are performed through knowledge of the global best position within

the swarm and the personal best position for each particle. The component-wise updates

for each particle are defined by (5.20) and (5.21):

vji,n+1 = χ

[
vji,n + c1r

j
i,n

(
P j
i,n − xji,n

)
+ c2R

j
i,n

(
Gj

i,n − xji,n

)]
(5.20)

xji,n+1 = xji,n + vji,n+1 (5.21)

where, c1 and c2 are acceleration coefficients, rji,n and Rj
i,n are two sequences of uniformly

distributed random numbers over (0, 1), P j
i,n is the personal best position and Gj

i,n is

the global best position of the swarm, for particle i in dimension j. A modification

of the original PSO algorithm is performed through the inclusion of a constriction factor

term χ which gives significantly improved convergence performance [225]. Equation (5.20)

is consequently termed PSO with constriction factor (PSO-Co), one of the two basic

algorithms defined as canonical PSO [225]. In this research, c1, c2 and χ were set according

to the recommendations of [225], defined to be 2.05, 2.05 and 0.729 respectively.

The algorithm continues until the termination conditions are met, i.e. the global best

position is found (to an accepted level of accuracy) or the maximum number of iterations

N has been reached, as defined by the user.

A flow chart of the PSO algorithm applied to the optimisation problem defined in

Section 5.4.1 is presented in Figure 5.4. The standard PSO processes are represented as

colourless cells. To differentiate the standard PSO procedures from the unique application
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explored in this research, the optimisation problem and underlying models defined in

Section 5.2 and Section 5.4.1 are represented by the blue cells.

A common method to handle optimisation constraints is to introduce a penalty func-

tion into the objective function [227] so that the revised objective function takes the form:

F (x) = f(x) +H(x, n) (5.22)

where f(x) is the original objective function defined by (5.12) and H(x, n) is the penalty

function. In this research, in order to manage the size and orientation constraints of a

PV system, H(x, n) takes the form defined by Parsopoulos and Vrahatis [228] and further

explored by Sun et al. [227] such that:

H(x, n) = h(n)
K∑
k=1

ψ
(
λk(x)

)
λk(x)

α(λk(x)) (5.23)

The terms in (5.23) include a relative violated function of the constraints λk(·) (so that

the penalty function is zero when all optimisation parameters are within their associated

constraints); a multi-stage assignment function ψ(·) (which scales the penalty depending

on the value of λk(·); a power function α(·); and a dynamically modified penalty value

h(n) based on the iteration number. In (5.23), K refers to the number of constraints in the

optimisation problem and subsequently for the problem defined in Section 5.4.1, K = 3.

The penalty parameters of (5.23) are problem dependent [228]. In this research, the

values considered by Parsopoulos and Vrahatis in [228] were used with a few minor modifi-

cations to improve convergence performance. The penalty parameters used in this research

are defined in (5.24a)–(5.24d) as follows:

h(n) = n
√
n (5.24a)

λk(x) = max
(
0, gk(x)

)
(5.24b)

α(λk(x)) =

⎧⎪⎨
⎪⎩
1 for λk(x) < 1

2 otherwise
(5.24c)

ψ
(
λk(x)

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

10 for λk(x) ≤ 0.01

20 for 0.01 < λk(x) ≤ 0.1

100 for 0.1 < λk(x) ≤ 1

300 otherwise

(5.24d)

where gk(x) are the constraint functions of the defined optimisation problem reformulated

in the form gk(x) ≤ 0. The constraints of (5.13) re-written in the form gk(x) ≤ 0 therefore
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Figure 5.4: Optimisation problem flow chart
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become:

g1(x) = |β − 90| − 90 ≤ 0 for β ∈ R (5.25a)

g2(x) = |γ| − 180 ≤ 0 for γ ∈ R (5.25b)

g3(x) = |Z − Zmax

2
| − Zmax

2
≤ 0 for Z ∈ Z

+ (5.25c)

Referring to (5.25a)–(5.25c), it should be noted that the optimisation variable Z is

limited to integer values while β and γ may take any real value within the domain of the

constraints. Consequently, the optimisation problem may be classified as a mixed-integer

non-linear programming (MINLP) problem.

In order to handle the integer constraints, the method adopted by Chowdhury et

al. [229] was utilised whereby the continuous and discrete components of the particles are

first separated. The locations of the discrete components are approximated by the nearest

vertex of a local hypercube in J-dimensional space [229]. More simply, the particle’s dis-

crete components are approximated in each dimension by rounding to the nearest integer

value. All components, both continuous and discrete, are then evaluated according to

(5.20) and (5.21).

The constrained mixed-integer modifications to the standard canonical PSO algorithm

are identified as purple cells in the flow chart of Figure 5.4. It should be noted that

although tilt β and azimuth γ are not restricted to integer values, such accuracy is difficult

to achieve and unnecessary given the insignificant energy gains achievable. Consequently,

the nearest vertex approach was also applied for the tilt and azimuth parameters in the

subsequent analysis.

A population size of M = 20 was applied. To ensure convergence, an iteration limita-

tion of 1000 was also applied. Convergence was deemed to be achieved after 30 consecutive

iterations where no change in the global best solution was observed. The PSO algorithm

was developed and simulated in Matlab version R2015b using an Intel i7-4790 3.6 GHz

CPU. An average solution time of 41.56 seconds was observed for Customer 1, taking on

average 29.2 iterations.

5.4.3 Input Data

Between 2012 and 2014, the SGSC project collected smart meter energy data for approxi-

mately 13,700 residences in the state of New South Wales, Australia [1]. In 2015, the data

were made publicly available by the Australian Government Department of Industry, In-

novation and Science [230], presenting an ideal data source to investigate the optimisation

of residential PV installations.

Given the extensive time required to process the large amount of customer data avail-

able, a sample of customers was randomly selected to test the optimisation strategy de-

veloped in Section 5.4.1. The sample includes four residences from both rural and urban

regions and a larger focus group of 120 residences from the city of Newcastle. The sample

of Newcastle residences is divided into three relative energy consumption categories with

40 members each, based on the 3-quantiles of the distribution of yearly energy consumption
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Eyear. For the sample of residences selected, the categories are defined as:

Low: Eyear ≤ 3, 590.5 (kWh/year)

Medium: 3, 590.5 < Eyear ≤ 6, 122.6 (kWh/year)

High: Eyear > 6, 122.6 (kWh/year)

Satellite-derived daily global horizontal irradiation data from the nearest BoM weather

stations are utilised in the analysis, accessed from the CDO database [55]. To reduce the

likelihood of under-estimation or over-estimation of irradiation due to anomalous meteo-

rological years, data from five consecutive years between 2011 and 2015 are utilised. Using

(3.5) and (3.43), the daily data were processed to derive estimated hourly irradiation com-

ponents. This process is necessary to enable PV energy yield estimates to correlate with

the hourly smart meter energy consumption data utilised in this research.

Hourly ambient temperature data are not available in the CDO database for the

assessed weather station locations. Consequently, the ambient temperatures for PV array

operation are assumed to be the measured daily maximum temperature for all hours of

operation, yielding conservative estimates for PV performance. Temperature data for the

same five year period as the irradiation data were also accessed from the CDO database

[55].

The energy tariffs used in this research are based on the available standing offers in

September 2016 from three of the largest energy retailers in Australia. The four cus-

tomers considered in the initial analysis are located within the same distribution network

jurisdiction as Newcastle. Consequently, the available retail plans for these customers are
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Figure 5.5: Optimisation convergence with ten repetitions (Customer 1)
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assumed to be equivalent to those of Newcastle. For each retailer, a flat tariff and a TOU

tariff are considered for which example rate profiles are shown in Figure 5.6. It should be

noted that variable weekend TOU rates and incremental flat tariffs based on cumulative

energy consumption within a given period are also considered but have been omitted in

Figure 5.6 for clarity. Detailed tariff tables for the retail electricity plans assumed in this

research are provided in Table A.1 to Table A.4.

5.4.3.1 Equipment Assumptions

The PV arrays are modelled as Trina Solar TSM-250PD05.05 250 W polycrystalline PV

modules. The relevant performance characteristics are detailed in Table C.1.

Figure 5.6: Typical electricity tariff structures

5.5 Optimisation Results

5.5.1 Four Residences

Table 5.1 summarises the results of the optimisation problem of Section 5.4.1 for four

residences arbitrarily selected from the SGSC database. The identities of each of retailer

are withheld and are designated as either Retailer A, B or C.

Referring to Table 5.1, it can be seen that for all retail electricity plans, an investment

in PV yields a positive NPV. For each customer, the retail plan and associated optimised

PV system giving the highest NPV are highlighted in grey.

For Customers 1, 2 and 4, at least one retail electricity plan, combined with an opti-

mised PV system, results in a positive NPV and a MIRR greater than the nominal cost

of capital (6%), thus indicating a viable investment. The optimal system for Customer 3

results in an MIRR of 5.81%; less than the required rate of return and thus indicating PV

is a non-optimal financial investment option.
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Table 5.1: Comparison of optimised PV systems for different retail electricity plans and different customers.

Customer Retailer Tariff Size (kW) Tilt Azimuth NPV MIRR Payback (Years) Plan Savings

1

A TOU 6.77 31◦ 21◦ $7,182 6.01% 12 $254
A Flat 6.52 31◦ 2◦ $7,257 6.10% 11.6 $329
B TOU 7.02 31◦ 21◦ $7,543 6.03% 12 $614
B Flat 6.52 31◦ 1◦ $7,815 6.24% 11 $887
C TOU 7.02 31◦ 21◦ $7,189 5.94% 12.3 $260
C Flat 6.77 31◦ 2◦ $6,928 5.94% 12.3 $0

2

A TOU 6.52 28◦ 32◦ $8,849 6.51% 10 $2,127
A Flat 5.26 25◦ 9◦ $7,258 6.54% 9.8 $536
B TOU 7.02 28◦ 33◦ $9,427 6.49% 10 $2,705
B Flat 5.51 25◦ 9◦ $7,693 6.57% 9.8 $971
C TOU 7.02 28◦ 33◦ $9,008 6.39% 10.6 $2,286
C Flat 5.26 26◦ 8◦ $6,722 6.38% 10.6 $0

3

A TOU 2.51 30◦ 29◦ $447 4.25% 18.5 $0
A Flat 2.26 28◦ 5◦ $1,720 5.48% 13.7 $1,273
B TOU 2.76 31◦ 30◦ $652 4.37% 18 $205
B Flat 2.26 28◦ 5◦ $2,129 5.81% 12.9 $1,682
C TOU 2.76 31◦ 30◦ $456 4.21% 18.5 $9
C Flat 2.26 28◦ 5◦ $1,670 5.44% 13.7 $1,223

4

A TOU 3 27◦ 32◦ $3,993 6.46% 10.1 $174
A Flat 2.76 25◦ 4◦ $3,903 6.61% 9.6 $84
B TOU 3.26 27◦ 32◦ $4,321 6.46% 10.1 $502
B Flat 2.76 25◦ 3◦ $4,331 6.85% 8.8 $513
C TOU 3.26 27◦ 33◦ $4,127 6.36% 10.6 $309
C Flat 2.76 25◦ 4◦ $3,819 6.56% 9.9 $0



132 PV Design Optimisation

The payback periods of the optimal systems ranges from 8.8–12.9 years, well within

the assumed lifetime of the PV system of 20 years.

In Table 5.1, the PV systems are generally oriented towards the west, with TOU plans

having a marginal increase in tilt angle compared with flat plans. For the customers as-

sessed, periods of peak electricity demand occur in the afternoon/evening. Consequently,

the orientation of the optimised PV systems appear to be biased towards afternoon solar

hours. While this is easily rationalised for TOU plans, for flat tariffs one would initially

expect the PV systems to be aligned due north (or south for the northern hemisphere),

towards the mid-day sun and the solar energetic maximum. However, due to the compar-

atively low feed-in tariffs offered by the retailers assessed, the azimuths of the PV systems

under flat plans are also slightly biased towards the afternoon peak in order to reduce the

cost of grid-imported electricity and the comparatively high cost attached to it.

The final column of Table 5.1 summarises the comparative savings that can be achieved

through the correct choice of retail electricity plan. Referring to Customer 2 and compar-

ing the highest NPV solution (Retailer B, TOU) with the worst solution (Retailer C, flat),

an increase in NPV of $2,705 is achieved. This represents a substantial saving, demon-

strating the necessity to choose the most cost effective plan for a customer’s particular

circumstances.

The sensitivity of NPV to system size was assessed for Customer 3 and graphically

presented in Figure 5.7. The peak of each curve corresponds to the optimal systems

recorded in Table 5.1, further highlighted by the dotted vertical and horizontal lines. It

is immediately discernible in Figure 5.7 that a significant reduction in NPV occurs as the

PV system size increase beyond the optimal. Even if an investor has the available capital

to install a substantially sized system, the NPV of such an investment may be far less

than an alternative smaller optimised system.

The sensitivity of NPV to tilt and azimuth is demonstrated by the contour plot of

Figure 5.8 for Customer 2. While a significant impact on NPV can be observed for systems

with tilts approaching the vertical and oriented facing far west or east, for orientations

in the vicinity of the optimal position, NPV can be seen to be only marginally effected.

Therefore it can be concluded that tilt and azimuth have limited contributions to the

achievable NPV, provided the tilt and azimuth are within ±10◦ and ±20◦ of the optimal

angles respectively.

Remark 5.1 While the design optimisation methodology developed in this chapter enables

tilt and azimuth to be optimally selected in addition to system size, it is important to note

that in most instances, residential consumers typically have limited installation flexibility,

particularly from an azimuth perspective. While fixed-tilt racking options are available,

racking allowing selectable tilts and azimuths are not generally practical for roof surfaces

facing far from north, i.e. west or east sides of a roof. Consequently, the tilt and azimuth

optimisation parameters may have limited practicality for many residential consumers.

However, the results presented in this section show NPV to be relatively insensitive

to tilt and azimuth within a wide central-angle range suggesting the lack of design flexi-

bility may in many circumstances have limited effect. The roof pitch on most residential
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premises enable an underlying tilt to be achieved, moving the installation closer to a local,

if not global, optimum. Consequently, where tilting of PV arrays to optimal angles induces

increased installation difficulty, leveraging the pre-existing roof pitch may be sufficient to

achieve a good, albeit sub-optimal, economic outcome through optimisation of size only.

The methodology established in this chapter is intended to provide the greatest level of de-

sign flexibility in the first instance, however additional constraints on tilt and azimuth in

(5.13) are straight forward to implement should the installation circumstance require so.

Figure 5.7: NPV sensitivity to system size (Customer 3)

5.5.2 Large Sample

A wider sample size was considered using energy consumption data for 120 customers in

the city of Newcastle, New South Wales, Australia. Using the methodology established in

Section 5.4, PV systems were optimised for each customer.

A breakdown of the proportional contribution of each optimisation parameter to the

total NPV under TOU and flat plans is provided in Figure 5.9. The contribution of

azimuth angle is larger for TOU plans than flat plans, however the contribution is still

limited, with only a 5% increase in NPV achieved under TOU plans. Therefore it can be

concluded that even with PV systems optimally aligned further west (or east) based on

the temporal energy usage profile, only small gains in net benefit can be achieved. Due

to the difficulties customising azimuth angles on residential rooftops, the additional effort

and cost may not be justifiable given the limited benefit.

A proportional breakdown of the optimal retail plans is given in Figure 5.10. The

optimal plans observed include both flat and TOU plans from Retailer B and a flat plan

aTotal percentages are greater than 100% for the low and high energy charts due to rounding error
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Figure 5.8: NPV sensitivity to tilt and azimuth (Customer 2)

from Retailer C. Amongst the sample of 120 customers, no retail plan from Retailer A can

be seen to yield the highest NPV.

It is immediately evident in Figure 5.10 that the flat plan from Retailer B is the best

choice plan for the majority of low energy residences, with the potential to secure 88%

of the market amongst the 40 selected customers. As energy consumption increases, the

TOU plan from Retailer B seizes a progressively higher proportion of the market from 13%

(low energy) to 45% (high energy), with a combined market percentage of 32.7% across

the entire population.

Box plots showing the inter-quartile ranges of key economic performance metrics are

presented in Figure 5.11(a)–(e) with the sample population categorised based on relative

85%

5%10%

87%

< 1%

12%

PV Size
Azimuth
Tilt

FLAT TOU

Figure 5.9: Average contribution of each optimisation parameter to total NPV for all
Newcastle customers
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cumulative energy consumption profile. The median and interquartile ranges for each

economic parameter are further summarised in Table 5.2.

Referring to Figure 5.11(a) and Table 5.2, the median NPV and inter-quartile ranges

amongst the sample of customers clearly increase as the energy consumption category

increases. For customers with low energy usage, the median NPV for an optimised PV

system is $1,471 over 20 years representing an average saving of $74 per year in 2016

currency. In comparison, the median NPV for medium and high energy consumers can be

seen to be $3,230 and $6,269 respectively, representing savings of roughly $162 and $313

per year. It should be highlighted that these average savings represent the real achievable

savings after factoring in all costs.

From a population perspective, the median PV system sizes and NPVs are closely

related, demonstrated by the similar trends in the box plots of Figure 5.11(a) and Fig-

ure 5.11(b). As summarised in Table 5.2, the median sizes for low, medium and high

energy customers are 1.38 kW, 2.88 kW and 5.26 kW respectively. It is apparent based

on the median value and the inter-quartile ranges that the size of optimised PV systems

is larger for customers with higher energy consumption.

Table 5.2: Summary of median values and associated inter-quartile (IQR) ranges for key
economic metrics for each energy consumption range in Newcastle

Metric

Median (IQR)

Low Medium High

NPV ($) 1,471 (1166) 3,230 (1264) 6,269 (2647)

Size (kW) 1.38 (0.75) 2.88 (0.88) 5.26 (1.88)

Plan savings ($) 829 (423) 1,269 (1365) 1,969 (2564)

MIRR (%) 6.02 (0.59) 6.15 (0.59) 6.34 (0.72)

Payback (years) 12.1 (2.5) 11.5 (2.6) 10.5 (3)

To test if the low, medium and high distributions are in fact different, hypothesis tests

were undertaken on the mean of each sample via the t-test as detailed in Appendix B.

13%

88%

40%

60%

45%
53%

3%

Retailer B (TOU)
Retailer B (Flat)
Retailer C (Flat)

LOW MEDIUM HIGH

Figure 5.10: Proportion of lowest cost energy retailers for Newcastle residences with
low, medium and high energy consumptiona
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Figure 5.11: Box plots for (a) NPV, (b) system size, (c) plan selection savings, (d)
MIRR and (e) payback period for Newcastle residences with low, medium and high energy
consumption profiles
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For the null hypothesis, the means of two samples were considered to be equal (implying

equivalence between the distributions); the alternative hypothesis therefore being unequal

means. A summary of the subsequent results of the hypothesis tests is provided in Ta-

ble B.1. For NPV and PV system size, the p-values were found to be less than the 5%

significance level for both test cases Low/Medium and Medium/High. Therefore, the null

hypothesis was rejected leading to the conclusion that the mean optimal system size of

medium consumers is larger than that of low customers, and less than that of high con-

sumers based on the box plot trends, i.e. the average size for the PV systems is larger for

households that consume more energy. However, given the large sample variance evidenced

by the wide inter-quartile ranges summarised in Table 5.2, particularly for high consump-

tion customers, no prescriptive PV system size can be established for each consumption

category. Thus a process to optimally select a PV system, such as the one explored in this

research, must be undertaken to avoid uneconomical system selection.

Figure 5.11(c) summarises the savings potential achieved through correct retail elec-

tricity plan selection. The metric represents the difference in NPV between a system

optimised for the highest cost energy plan and the lowest cost (optimal) plan given a

customer’s particular energy profile. Based on the magnitude of potential savings, the im-

portance of correct plan selection (achieved through detailed consideration of a customer’s

particular circumstances) is clearly evident. Referring to the median values summarised

in Table 5.2, potential savings are in the range of 31% (high energy) to 56% (low energy)

relative to the median achievable NPV. Consequently, it can be concluded that correct

plan selection is a critical consideration to be made in conjunction with optimal selection

of the PV system size and orientation.

As previously mentioned in Section 5.3, despite the obvious net benefit achievable

through the installation of PV, MIRR is also a key consideration when establishing the

viability of the investment. Referring to Figure 5.11(d), the MIRR ranges observed for

the three consumption categories are similar, with a marginal increase in median MIRR as

consumption increases. However, significant overlap in the inter-quartiles ranges signals

difficulty in establishing a clear differentiator between the distributions. Indeed, when

conducting hypothesis testing on the mean of the MIRR distributions, as summarised in

Table B.1, the null hypotheses can not be rejected at the 5% significance level. Con-

sequently, no assertions can be made regarding differences in the MIRRs between the

consumption categories.

Table 5.3: Proportion of Newcastle customers where PV is financially attractive (accept-
able MIRR)

Energy Consumption MIRR > 6% MIRR > 5.5%

Low 53% 88%

Medium 63% 98%

High 65% 88%

All 60% 91%

Based on the MIRR metric, investing in PV may be deemed to be a ‘non-viable’
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financial investment option for a large proportion of customers. Referring to Table 5.3,

only 60% of customers have a return on investment above 6% for an optimised PV system.

However relaxation of the MIRR may be considered acceptable for many customers given

the intangible value associated with PV systems. After relaxing the acceptable MIRR

rate to 5.5%, the proportion of customers with ‘viable’ PV investment options increases

to 91%.

Referring to Figure 5.11(e), slightly shorter median payback periods can be observed

as energy consumption increases. However, similar to MIRR, no differences can be con-

clusively established between the payback periods of medium and high customers due to

a failure to reject the null hypotheses. It should be noted that the null hypothesis was

rejected at the 5% level for the low and medium comparison. Consequently, it can be con-

cluded that the mean payback period is less for consumers with medium and high energy

consumption than that of low consumers. From a population perspective, customers with

a higher relative energy consumption profile are more likely to achieve an earlier payback

on their investment.

Despite all customers achieving investment payback prior to the assumed system end-

of-life (20 years), a number of installations have payback periods in excess of 14 years.

Such a period may be unacceptably long for many investors. Shorter payback periods

may be achieved by introducing an additional constraint on the system lifetime prior to

optimisation. Such a lifetime constraint will result in a different PV system size and

orientation, ultimately yielding a lower NPV compared to the 20-year period considered

in this research. However, if the investor intends to relocate after a predetermined period,

thereby foregoing the residual value in the PV system, such a consideration is justifiable.

The higher NPVs coupled with shorter payback periods observed in this section indi-

cate households with higher energy consumption have a greater justification to install a

PV system, a relatively intuitive expectation. However, the results also suggest that un-

der Australian regulatory environments and incentive schemes, PV system optimisation

becomes increasingly important for households with lower energy consumption to avoid

ineffective system selection. The lower NPVs seen for low energy households, indicate a

higher sensitivity to sub-optimal sizing, potentially removing the viability of PV altogether

without due assessment.

5.5.3 Other Locations

To gain a wider appreciation of the optimised economic performance characteristics of PV

systems, the optimisation strategy was applied to four additional Australian locations.

As the state of New South Wales has three electricity distributors, the investigation was

extended to hypothetical customers from the cities of Tamworth and Parramatta within

the other two networks to complement the investigation in Section 5.5.2. Furthermore, the

cities of Melbourne and Brisbane, in the states of Victoria and Queensland respectively,

were also investigated due to their geographic and regulatory separation from New South

Wales. As smart meter data for the other locations were not available for this research,

the data for the same 120 customers used in the Newcastle analysis were again applied. It



5
.5
.

O
p
tim

isa
tio

n
R
esu

lts
1
3
9

Table 5.4: Comparison of mean economic performance and system characteristics for optimised PV systems in different locations

Location

A B C

NPV

Size CER data

Plan savings

Payback MIRR

TOU Flat TOU Flat TOU Flat (kW) (kW) (years) >6%

Newcastle – – 32.50% 66.70% – 0.80% $3,741 3.22 5.41 $1,632 12.3 60%

Brisbane – 7.5% 54.20% – 31.70% 6.70% $4,418 3.68 5.74 $1,295 11.9 69.20%

Melbourne – 20% 80% – – – $3,803 2.72 4.42 $2,374 11.7 75%

Parramatta – 86.7% 0.80% – 12.50% – $3,699 3.3 5.68 $1,972 12.5 58.30%

Tamworth 97.5% – 2.50% – – – $5,545 4.06 5.83 $3,772 11.3 77.50%
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should be noted that the assumption of homogeneous load profiles between the different

locations has inherent shortcomings as the average load profile for the Newcastle area

does not necessarily translate to the other locations. However, the analysis methodology

remains valid and it is conceivable that similar load profiles may be individually observed

in different locations.

A summary of the mean economic performance and system characteristics for opti-

mised systems in each location is provided in Table 5.4. Brisbane exhibits the greatest

plan diversity, featuring four of the six plans assessed and a mixture of TOU and flat

tariffs as the lowest cost plans for certain customers. In contrast, Tamworth customers

receive the greatest benefit from TOU tariff structures only, with the vast majority from

Retailer A (97.5%). For all locations assessed, the achievable savings through correct plan

selection prior to system optimisation are significant. For Brisbane customers, plan savings

of $1,295 on average are observed while savings of $3,772 are possible in Tamworth.

Referring to the NPV column, the mean net benefit achievable through system opti-

misation varies significantly amongst the five locations. Comparing the highest NPV city

of Tamworth with the lowest NPV city of Parramatta, customers with the sampled load

profiles on average receive an additional benefit of $1,846.

The proportion of customers with ‘viable’ PV investment opportunities also varies

between the locations assessed. Parramatta exhibits the lowest with 58.3% of customers

having ‘viable’ opportunities whereas Tamworth exhibits the greatest proportion at 77.5%.

Interestingly, a relatively high proportion of customers in Melbourne are found to have a

‘viable’ PV investment. Although not demonstrated in this research, Melbourne has the

lowest historical average irradiation levels amongst the locations assessed. Consequently

the intuitive assumption would be to expect a lower PV investment value. However,

through a combination of optimal PV system selection and comparatively high prevailing

retail electricity costs, PV systems are found to be a ‘viable’ investment for 75% of the

hypothetical Melbourne customers assessed.

The mean installed system sizes for the locations assessed from January 2015 to August

2016 are also provided in Table 5.4 based on CER data [195]. A comparison between

the mean optimised PV sizes found in this research and the historical CER data shows

significant over-sizing for each of the locations assessed – approximately 2 kW on average.

This conclusion can be drawn as no significant policy changes have been made relating

to small-scale PV systems since 2011–2012. Therefore, the systems installed in 2015-

2016 were exposed to identical incentives to those considered in the optimisation problem

investigated in this research. These results corroborate the size reduction forecasts of the

SGSC project [1] and the Grattan Institute [29] previously discussed in Chapter 2.

5.6 Updates to PV Model

For the subsequent chapters presented in this thesis, a revised PV energy yield model from

the one established in (5.5) was considered to capture additional loss factors associated

with PV systems. Efficiency factors similar to the ones considered by Copper et al. [231]
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are applied to (5.5) to yield a revised generated DC energy for PV systems defined as:

Epv,dc = AcZIT ηmppζpvηsoilηmmηdc,wire (5.26)

where ηsoil, ηmm and ηdc,wire are the efficiencies due to panel soiling, module mismatch

and DC wiring losses, assumed to be 99%, 98% and 98% respectively in this research.

Converting the the DC energy to AC through an inverter gives the total energy gen-

erated by the PV system as AC power to be:

Epv,ac = Epv,dcηinvηac,wire (5.27)

where ηac,wire is the efficiency due to AC wiring losses, assumed to be 99%, and ηinv is

the inverter losses. Different values for the inverter efficiency are considered in subsequent

chapters.

The updated PV model of (5.27) is considered in the large customer sample assessment

of Chapter 6 Section 6.4.2, the case study presented in Chapter 7 and the P2P energy

trading simulation of Chapter 8.

5.7 Summary

The introduction of smart grid technologies and the phased removal of incentive schemes

is likely to further complicate the cost-effective selection and integration of residential

PV systems in the future. The continued increase in smart meter market penetration

allows high temporal resolution data to be leveraged by electricity customers in order to

make informed PV investment decisions. Consequently, an optimisation tool is required

to maximize the investment value of PV systems and avoid ineffective capital spending.

In this chapter, such an optimisation strategy was explored. A model for PV energy

production, as well as underlying economic models based on an NPV analysis, were defined

as key components of the optimisation objective function.

An algorithm based on canonical PSO was developed to include a penalty function to

enable the handling of parameter constraints. A hypercube nearest-vertex approach was

incorporated to facilitate the inclusion of discrete parameters such as the number of PV

modules in the system.

The optimisation methodology was tested in an Australian context, using real-world

hourly smart meter and irradiation data applied to currently available incentive schemes

and retail electricity plans.

With realistically defined economic parameters, a positive NPV was achievable for

all customers assessed. Net present value, system size and savings achievable through

correct retail plan selection were all found to increase between the low, medium and high

annual electricity consumption brackets defined in the chapter. However, ‘viable’ PV

investment opportunities were not universally observed for all customers, with at most

77.5% of customers amongst the locations assessed yielding a return greater than the cost

of capital.
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A wide variety of optimal retail plans was observed, from the extreme of 97.5% from

one retailer in one city to a diverse array of plans and tariff structures in others.

A sensitivity analysis on individual customers demonstrated the significant negative

impact of non-optimal sizing on the value of the investment, particularly for over-sized

systems. However, a sensitivity analysis conducted on tilt and azimuth found limited

effect on the net benefit for deviations within ±10◦ and ±20◦ respectively. Furthermore,

optimal azimuth selection was found to contribute to less than 1% of the potential net

benefit for flat tariffs and just 5% for TOU tariffs. Consequently, azimuth was therefore

deemed non-critical and the optimisation problem can be reduced to the two dimensions

of tilt and size.

Finally, the average optimal system sizes for the customers and locations assessed

were found to be significantly less than the average size installed in 2015 and 2016 by 2

kW on average. The observed disparity between recent practices within the Australian

residential PV industry and the characteristics of the optimised systems found in this

chapter highlights the necessity for an economic optimisation strategy to be routinely

implemented prior to the decision to invest.

Chapter 6 extends the design optimisation problem investigated in this chapter to

consider the introduction of BESSs under a hybrid PV-BESS system configuration.



Chapter 6

BESS Design Optimisation

B
attery energy storage systems for residential applications, particularly lithium-ion

based batteries, have undergone rapid development in the past five years. A range of

stationary energy storage devices from manufacturers including Tesla Motors, Enphase,

Mercedez Benz, Samsung and LG have been recently introduced to the market. In Aus-

tralia, average annual electricity prices have risen 4.5% over the last 10 years [223], 2.5%

higher than the inflation rate target [220]. Consequently, the application of BESSs to com-

plement existing rooftop PV systems or the installation of new hybrid PV-BESS solutions

are of particular interest to energy consumers aiming to reduce their net electricity costs.

The performance of PV-BESS systems in reducing energy costs have been investigated

in [203, 215, 232, 233] where various PV and BESS sizes were tested under various tariffs

[232, 233], incentive schemes [215] and temporal resolution of energy consumption data

[203]. However, existing research has been primarily structured around typical PV-BESS

systems and consumption profiles, rather than investigating strategies to enable individual

customers to optimise a system based on their own circumstances.

In this chapter, the optimisation methodology developed in Chapter 5 is updated with

a modified objective function for hybrid PV-BESS systems. The aim is to assist potential

PV-BESS investors in determining the economic efficacy of a hybrid PV-BESS system.

Models for BESS energy flow, installation cost and maintenance cost are developed and

integrated with the models for solar irradiation and PV energy output considered in pre-

vious chapters. Together, the energy flow and system cost models form key components

of the underlying optimisation problem. In order to maximise the net benefit of a hybrid

system, the PV power rating, PV orientation, retail electricity plan and currently available

retail BESS products are optimally selected. BESS operating modes are also considered

to establish the most cost-effective operation profile. The objective function is formulated

as a NPV evaluation of the electricity cost savings that can be achieved through the intro-

duction of a hybrid PV-BESS system compared to a known lowest-cost retail electricity

plan.

A form of PSO, referred to as quantum-behaved PSO (QPSO), is utilised due to its

fast convergence speed, handling of optimisation parameter constraints and simplicity of

implementation. The algorithm is tested in an Australian context for three residences

in the state of New South Wales using one year of hourly energy data and five years

143
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of irradiation data from BoM. TOU retail electricity plans from three large Australian

retailers as well as current PV and retail BESS pricing are applied in order to establish

the feasibility of installing a PV-BESS system under prevailing market conditions.

The analysis is then expanded to a sample of 100 customers with the new National

BRL diffuse model developed in Chapter 4 applied as an input to the updated PV energy

yield model of Section 5.6. A more rigorous climatological data methodology is presented,

capturing the complete measurement campaign history of the AREMI and CDO databases

through the development of a TMY data set for irradiation and the estimation of hourly

temperatures from daily maxima and minima.

6.1 BESS Model

The BESS models defined in this section are structured based on manufacturer warranties

and guarantees to establish the economic benefit the owner can expect over the lifetime

of the system. While BESS systems may be reasonably expected to perform beyond

the warranty period, no documentation is available in the public domain quantifying the

end-of-life performance characteristics. Consequently, the model developed and presented

in this section may be expected to be conservative from a lifetime energy throughput

perspective. However, given the significant capital required to purchase and install a BESS

system, a conservative assumption is justifiable and for an economically viable system, the

purchaser should reasonable expect to receive a payback within the warranty period.

The performance of battery systems, regardless of technology, degrade over time. The

maximum capacity of a BESS can be expected to decrease over its lifetime due to a

number of factors, a primary contributor for which is the number of charge/discharge

cycles undergone. The energy storage capacity degradation rate ζbatt (kWh/cycle) can be

defined as:

ζbatt =
Cmax 0 − CEOL

YEOL
(6.1)

where Cmax 0, CEOL and YEOL are the initial maximum capacity, end-of-life maximum

capacity and cycle life respectively. In this research, these values are based on specifications

provided in manufacturer data sheets.

The maximum capacity Cmax,qdh available at the start of each hour h, in day d and

billing period q, is assumed to be a linear function of the number of operational cycles

Yqdh in the previous hour such that:

Cmax,qdh = Cmax,qd(h−1) − Yqd(h−1)ζbatt (6.2)

It should be noted that Yqdh generally represents only a partial cycle for hourly intervals

and therefore represents a fraction of the energy throughput of a full discharge/charge
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cycle. Yqdh is defined as follows:

Yqdh =
Ebpv,qdh + Ebg,qdh + Ebd,qdh

2δCmax,qdh
(6.3)

where Ebd,qdh, Ebpv,qdh and Ebg,qdh are the discharge, PV-charge and grid-charge energy

flows respectively and δ is the maximum depth of discharge.

The available capacity at the start of each hour is a function of the capacity at the

start of the previous hour and the total charge/discharge energy that has flowed to/from

the battery cells in the previous hour. The available capacity Cqdh is therefore defined as:

Cqdh = Cqd(h−1) − Ebd,qd(h−1) + Ebpv,qd(h−1) + Ebg,qd(h−1) (6.4)

The charge and discharge energy flow terms in (6.4) are defined in (6.5)–(6.7) as

follows:

Ebpv,qdh =max

{
min

[
Cmax,qdh − Cqdh,

(
Epv,qdh − Eload,qdh

)
(1− F ) ,

Rmax(1− F )

]
, 0

}
(6.5)

Ebg,qdh =max

{
min
[
Cmax,qdh − Cqdh, Rmax (1− F )

]
(M3 +M4) Iop,qdh

−Ebpv,qdh, 0

}
(6.6)

Ebd,qdh =max

{
min

[
Cqdh − Cmax,qdh(1− δ),

Eload,qdh − Epv,qdh

1− F
,Rmax

]

×
[
(M2 +M4) Ish,qdh + Ipk,qdh

]
, 0

}
(6.7)

In (6.5)–(6.7), Epv,qdh, Eload,qdh and Rmax are the PV generated energy as defined in

(5.5) or (5.27), energy requirement of the underlying load and rated continuous charge/

discharge rate respectively. Iop,qdh, Ish,qdh, Ipk,qdh and terms of the form Mx are BESS

operation control variables defined later in Section 6.1.1.

It should be noted that the charge energy flow terms Ebpv,qdh and Ebg,qdh are considered

to be the net additional charge to a BESS after losses while the discharge energy term

Ebd,qdh is the total energy discharged from the BESS, representative of both the energy

delivered to the load and the discharge losses. The charge and discharge losses have been

accounted for through the inclusion of a loss factor F = (1 − ηbatt)/2 where ηbatt is the

BESS round-trip efficiency.

Referring to (6.5), the charge contribution from PV can be expected to follow one of

three scenarios. In the instance where the current BESS capacity is nearing maximum
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and the energy required to ‘top-up’ the BESS is less than the surplus PV energy, the

PV charge contribution is equal to the magnitude of the depleted charge, shown as the

first term in (6.5). Note that the PV system must also supply charge losses which are

treated as a separate load, defined later in (6.9)–(6.11). In the instance where the battery

charge required to reach maximum capacity is greater than the surplus PV energy, the

second term of (6.5) allows the entirety of the remaining surplus PV energy to charge

the battery. The actual charge increase of the battery is limited due to charging losses,

quantified through the application of a loss factor term (1−F ). Finally, battery charging

and discharging, is limited by a maximum charge and discharge rate Rmax. Consequently,

where the available surplus PV energy exceeds Rmax, the total charged energy is limited to

Rmax less the charge losses. The actual charge energy applied is determined through the

application of a ‘min’ function on the three terms. A ‘max’ function with an additional zero

term is added to ensure the equation holds true when no surplus PV energy is available

for BESS charging.

In (6.6), the energy charge from the grid is defined similarly as the charge from PV in

(6.5). The charge energy is defined as either the maximum charge rate less battery losses,

or the amount of depleted capacity. The total amount of charge required is reduced by

the amount of charge already provided by the PV system. One notable difference between

(6.5) and (6.6) is the presence of charge control operators, M3, M4 and Iop,qdh, defined

later in Section 6.1.1 as previously mentioned.

The discharge energy equation (6.7), is in many respects a reverse of (6.5) but with

discharge control operators similar to (6.6). The energy discharged follows one of three

scenarios – either the remaining available capacity in the battery taking into consideration

the maximum depth of discharge δ, the remaining load where available PV energy is

insufficient or the maximum discharge rate of the battery. Under the second scenario, the

amount of energy discharged to meet the load requirements is greater than the actual load

requirement due to discharge losses. Hence the divisor (1− F ) is introduced.

The total energy loss associated with the BESS charging and discharging terms of

(6.5)–(6.7) is defined as:

Ebloss,qdh = Ebpvloss,qdh + Ebgloss,qdh + Ebdloss,qdh (6.8)

where Ebpvloss,qdh, Ebgloss,qdh and Ebdloss,qdh are the losses during PV-charge, grid-charge

and discharge respectively and are defined in (6.9)–(6.11) as:

Ebpvloss,qdh = max

[
min

(
Cmax,qdh − Cqdh

1− F
,Epv,qdh − Eload,qdh, Rmax

)
, 0

]
F (6.9)

Ebgloss,qdh =max

[
min

(
Cmax,qdh − Cqdh

1− F
,Rmax

)
(M3 +M4) Iop,qdh

−Ebpv,qdh

1− F
, 0

]
F (6.10)



6.1. BESS Model 147

Ebdloss,qdh = Ebd,qdhF (6.11)

6.1.1 Operation Modes

In addition to increasing the self-consumption ratio of PV generated energy (by effectively

translating PV generated energy to non-generation periods), a BESS can also be used to

perform energy arbitrage by charging during low cost off-peak hours and discharging during

peak periods. In this research, a review of various BESS operating modes is undertaken to

determine the most economically efficient mode for each residence assessed. The operating

modes considered are defined as follows:

• Mode 1: PV generation shifting. Discharge in peak only.

• Mode 2: PV generation shifting. Discharge during shoulder and peak periods.

• Mode 3: Energy arbitrage and PV generation shifting. Discharge in peak only.

• Mode 4: Energy arbitrage and PV generation shifting. Discharge during shoulder

and peak periods.

As previously indicated, (6.6), (6.7), (6.10) and (6.11) are controlled by the operation

mode variables M1, M2, M3 and M4 where:

Mx =

⎧⎪⎨
⎪⎩

1 if in Mode x where x ∈ {1, 2, 3, 4}
0 otherwise

(6.12)

The variables Iop,qdh, Ish,qdh and Ipk,qdh control BESS charge and discharge based on

the tariff period within which a particular hour lies and take the form:

Iop,qdh =

⎧⎪⎨
⎪⎩

1 if h ∈ {off-peak hours}
0 otherwise

(6.13)

with similar equations for Ish,qdh and Ipk,qdh for shoulder and peak hours respectively.

The final component of the BESS model is the cost, defined simply as:

Sb = UbX (6.14)

where Ub is the price per battery and X is the number of battery units installed in the

BESS.

6.1.2 BESS Maintenance Model

During the lifetime of a PV-BESS system, periodic maintenance as well as battery and

inverter replacements are required. In this research, the lifespans of PV modules and

inverters/batteries are assumed to be 20 years and 10 years respectively. Consequently,
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with t billing periods per year, inverters/batteries will require replacement after 10t billing

periods. Furthermore periodic maintenance is assumed to occur every 5t billing periods.

The system maintenance costs are therefore defined as:

Wq =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
200 if q−1

5t ∈ Z
+, q−1

10t /∈ Z
+

400 + κinvUinvSpv + κbSb if q−1
10t ∈ Z

+

0 otherwise

(6.15)

where Uinv is the inverter replacement cost ($/Wac) and κinv and κb are cost reduction

rates for the inverter and batteries. Given a current average per unit inverter cost of

US$0.29/Wac [234], the per unit PV inverter costs are assumed to be Uinv = AU$0.41/Wac

(assuming AUD/USD exchange rate of 0.7). The cost of inverters and batteries are forecast

to reduce significantly over the next 10 years with reductions of 31% and 53% respectively

between 2015–2025 [235]. Consequently, the cost reduction factors in (6.15) are assumed

to be κinv = 0.69 and κb = 0.47.

6.2 PV Model

Two assessments are presented in Section 5.5 – a small sample assessment of three cus-

tomers sampled from the the SGSC project and a larger sample of 100 customers. For

the preliminary small sample assessment, the simple PV energy yield model previously

defined in (5.5) is considered.

For the large sample assessment, the more advanced model defined at the end of

Chapter 5 as (5.27), accounting for additional loss factors including soiling and module

mismatch among others, is applied.

The model for PV system cost previously defined in (5.17) is considered for both the

small and large sample assessments conducted in this chapter. The exception is a revision

to the STC price of CSTC = $34 based on a revised market assessment provided in [236].

The analysis presented in this chapter also considers revised system unit prices to

capture price differences at different system sizes. The cost per watt peak Upv is based

on data provided in [236] for March 2016 which were published to be (in AUD) $3.20,

$3.00, $2.55, $2.35 and $2.20 for 1 kW, 1.5 kW, 3 kW, 5 kW and 10 kW rated systems

respectively. When solving the optimisation problem presented in Section 6.3, the price

corresponding to the closest system size is used.

6.3 Hybrid PV-BESS Optimisation Problem

The objective of this research is to maximise the electricity cost savings achieved through

optimal selection of a hybrid PV-BESS system based on high resolution smart meter load

data and prevailing economic and PV-BESS market conditions. Cost savings are quantified

through an NPV analysis performed on the difference in electricity costs between a known

lowest-cost retail electricity plan and a hybrid PV-BESS system combined with other
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currently available retail electricity plans.

As previously indicated in Section 6.1, hourly evaluations of the energy flows are

conducted for each hour h in day d and billing period q. Maximising the net benefit over

all the billing periods Q in the lifetime of the system is the objective of the optimisation

problem as defined below.

6.3.1 Problem Definition

Given:

(i) Annual inflation of rinf = 2%

(ii) Maximum number of PV modules (Zmax = 30)

(iii) Quarterly billing frequency

(iv) A nominal annual discount rate of rnom = 6%, corresponding to a quarterly real

effective rate of rd = 0.97%

(v) Nominal annual electricity price growth of 4.04%, corresponding to a quarterly real

effective rate of re = 0.50%

(vi) PV system balance of plant efficiency ηe = 90%

(vii) PV system lifespan of 20 years (which is considered to be conservative)

Find: Tilt angle β, azimuth angle γ, number of PV panels Z and number of batteries X

Objective:

max
β,γ,Z,X

NPV =

Q∑
q=1

(
Cbase,q − Cpvbatt,q

)
(1 + re)

q−1

(1 + rd)
q

−
Q∑

q=1

Wq

(1 + rd)
q − (Spv + Sb

)
(6.16)

Subject to:

0 ≤β≤ 180 for β ∈ R (6.17a)

−180 <γ≤ 180 for γ ∈ R (6.17b)

0 ≤Z≤ Zmax for Z ∈ Z
+ (6.17c)

0 ≤X≤ Xmax for X ∈ Z
+ (6.17d)

In (6.16), Cpvbatt,q and Cbase,q are the cost of electricity with and without a PV-BESS

system within the quarter billing period q.



150 BESS Design Optimisation

The terms Cbase,q and Cpvbatt,q are defined as:

Cbase,q =

Dq∑
d=1

⎛
⎝ 24∑

h=1

Tret0,qdhEload,qdh + Tsc0,qd

⎞
⎠ (6.18)

Cpvbatt,q =

Dq∑
d=1

⎧⎨
⎩

24∑
h=1

[
Tret,qdhmax

(
0, Ebal,qdh

)
− Tfit,qdhmax

(
0,−Ebal,qdh

)]

+Tsc,qd

⎫⎬
⎭ (6.19)

where Tret0,qdh and Tret,qdh are the grid imported retail electricity tariff of the base plan

and tested plan respectively for the hth hour of day d with Dq days in the billing period,

Tsc0,qd and Tsc,qd are the daily electricity supply charges for the base plan and tested plan

respectively, Tfit,qdh is the PV feed-in tariff and Ebal,qdh is the net energy flow balance of

the terms defined in Section 6.1, expressed as:

Ebal,qdh = Eload,qdh − Epv,qdh − Ebd,qdh + Ebpv,qdh + Ebg,qdh + Ebloss,qdh (6.20)

As the optimisation parameters Z and X are limited to integer values (with respective

maximums Zmax and Xmax determined by the customer’s available space restrictions),

while β and γ may take any real value within the domain of the constraints, the problem

is classified as an MINLP problem.

6.3.2 Optimisation Method

To solve the MINLP problem defined in 6.3.1, a modified version of the PSO algorithm

previously described in Section 5.4.2, known as QPSO as denoted by Sun et al. [225] was

applied. QPSO is a relatively simple probabilistic algorithm using the mean best position

of the particle swarm to improve the global search capability [225]. QPSO requires fewer

parameter adjustments between problems and handles parameter constraints naturally

with no specific modifications required to the algorithm compared to traditional PSO.

QPSO varies markedly from traditional PSO as velocity vectors are no longer used

[225]. The principle of state superposition and uncertainty through the application of

a quantum delta potential well model was first introduced in [237] to govern particle

position updates. The concept was based on trajectory analysis which determined that

to guarantee a global solution, the particle must converge to its local attractor pji,n [225]

defined as:

pji,n = φj
i,nP

j
i,n +

(
1− φj

i,n

)
Gj

i,n (6.21)

where Gj
i,n is the global best position of the swarm and P j

i,n is the personal best position of

a particle, while φj
i,n = c1r

j
i,n/(c1r

j
i,n+ c2Rj

i,n) and rji,n and Rj
i,n are random numbers from

a uniform distribution. Noting that typically c1 = c2 in PSO [238], φj
i,n may therefore be
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sampled as a random variable from U(0, 1).

Under the model, the particles are treated as spin-less with a particular energy in

J-dimensional Hilbert space [225, 238]. To ensure the particles remain in a bound state

to guarantee a solution, a one-dimensional delta potential well model centred on the local

attractor pji,n [225] for each dimension j is considered to ensure convergence [237]. The

delta potential well represents the probability of a particle i appearing in a position xi.

Under such an assumption, the characteristics of the particle are represented by a position

dependent wave function ψ with a position probability density |ψ|2 [238] defined by:

∣∣∣∣ψ (xji,n − pji,n

)∣∣∣∣
2

=
1

Lj
i,n

e
−2
∣∣∣xj

i,n−pji,n

∣∣∣/Lj
i,n (6.22)

where the parameter Lj
i,n is the characteristic length of the delta potential well – the key

parameter governing the search scope of the particle [227]. To facilitate good performance

of the QPSO algorithm, two search strategies exist to determine the characteristic length

Lj
i,n [225]. The first strategy is referred to as quantum delta potential well-based PSO

(QDPSO), as originally developed in [237], and has been shown to demonstrate satisfactory

performance [225]. Under this strategy, Lj
i,n = 2α

∣∣∣xji,n − pji,n

∣∣∣ leading to the following

stochastic evolution equation:

xji,n+1 = pji,n ± Lj
i,n

2
ln

1

uji,n+1

(6.23)

where uji,n+1 is sampled from the uniform distribution U(0, 1). However, QDPSO has also

been shown to be sensitive to the selection of α [225].

The second strategy for determining Lj
i,n is an evolution of the QDPSO model and

represents the typical definition of QPSO. The concept of a mean best position [239] is

considered whereby the mean best position acts as the ‘centre of gravity position’ for all the

particles [239,240]. For M particles with J dimensions and for each particle i ∈ {1, . . . ,M}
with dimension j ∈ {1, . . . , J}, the mean best position is defined as:

Cj
i,n =

M∑
i=1

P j
i,n

M
(6.24)

The intention of the second strategy is to scale the distance from the current position

to a global mean best point Cj
i,n, thereby controlling the value of Lj

i,n [225]. The position

of a particle in the nth iteration xi,n is updated according to (6.25):

xji,n+1 = pji,n ± α
∣∣∣xji,n − Cj

i,n

∣∣∣ ln 1

uji,n+1

(6.25)

The parameter α is referred to as the contraction-expansion coefficient and is set so as

to balance the local and global search performance of the algorithm [238]. In contrast to

traditional PSO, α is the only parameter requiring adjustment for a specific optimisation
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problem in QPSO.

For the optimisation problem with objective function (6.16), (6.25) was considered as

the defining position update equation. The value of α was varied each iteration in the

range between 1 and 0.5 based on the example provided in [225] whereby:

α = (1− 0.5)
(N − n)

N
+ 0.5 (6.26)

To provide an acceptable balance between optimisation speed and accuracy for the

purposes of the analysis presented in this chapter, a particle swarm of M = 10 particles

with a maximum number of iterations of N = 50 was implemented. In order to handle

the discrete parameters Z and X denoting the number of PV panels and number of bat-

teries respectively, the hypercube nearest-vertex approach of [229] previously considered

in Chapter 5 was again utilised.

Figure 6.1 and Figure 6.2 show the solution convergence over ten repetitions for two

test customers. For each of the repetitions performed, the same solution was found.

The QPSO algorithm was developed and simulated in Matlab version R2015b using an

Intel i7-4790 3.6 GHz CPU. Average solution times of 147.54 seconds and 149.54 seconds

were observed for Customer X and Y respectively. The increase in solution time compared

to the results recorded in Section 5.4.2 may be principally attributed to the increased

complexity of the objective function, requiring sequential BESS energy calculations for

each hour over a 20 year horizon. It can be see that the number of iterations taken

to reach the optimal solution is approximately 15 with QPSO; similar to, if not slightly

faster, than traditional PSO in Chapter 5, but with a significantly simplified optimisation

algorithm. Convergence plots for the two test customers are provided in Figures 6.1 and

6.2.
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Figure 6.1: Optimisation convergence with ten repetitions (Customer X)
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Figure 6.2: Optimisation convergence with ten repetitions (Customer Y)

6.3.3 Input Data

The electricity tariff structures tested in the optimisation problem were based on real 2016

TOU rates from three large Australian retailers, EnergyAustralia, Origin Energy and AGL.

The retail tariffs considered in this research are provided in Appendix A Table A.3 and

Table A.4.

6.3.3.1 Small Sample

Electricity consumption data measured over a one-year period for a small initial sample of

three arbitrarily selected customers from the SGSC project are used in the analysis. Daily

irradiation and ambient temperature data over a five-year period for each location were

derived from the BoM CDO database [55]. The daily irradiation data were converted to

hourly data using the same methodology established in Chapter 3 and Chapter 5. The

weather station data considered for the small sample analysis is provided in Table 6.1.

Table 6.1: Weather station data considered in the small sample assessment

Analysis
Station Name

BoM Latitude Longitude Elevation
Year OpenSample Station ID (◦) (◦) (m)

Small

Cessnock Airport AWS 61260 -32.79 151.34 61 1968
Lake Macquarie AWS 61412 -33.09 151.46 6 2008
Scone Airport AWS 61363 -32.03 150.83 221 1988

6.3.3.2 Large Sample

The second stage of the analysis considers a larger sample of 100 customers from the

SGSC project. The updated PV energy yield model of (5.27) is applied with some minor
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additional adjustments including a change to monthly billing for q, an inflation rate change

to rinf = 2.5% and nominal electricity price growth of 4.5%. Although the adjustments

are minor and do not yield appreciably different results to the small sample analysis,

the changes have been transparently identified for posterity. Furthermore, the inverter

efficiency ηinv included in (5.27) is assumed to be 96%, representative of typical residential

PV inverters.

The new National BRL model for satellite-based data measurement developed in

Chapter 4 is used given the strong results of the statistical assessment undertaken in

Section 4.4.1.

The previous research presented in Chapter 5 assumed the ambient temperature to

be equal to the maximum daily temperature for the purposes of PV module losses due to

temperature. This assumption yields conservative results from an electricity cost saving

perspective. In the next section, an improvement to ambient temperature assumptions

is introduced by estimating hourly temperature data from daily maximum and minimum

temperature data.

6.3.3.3 Hourly Temperature Estimates from Daily Extremes

Hourly temperature data are typically unavailable for the vast majority of locations. Nu-

merous empirical models have been developed to estimate hourly temperatures from daily

minimum and maximum data. Reicosky et al. [241], assessed five methods including the

hourly model defined by deWit [242] presented as a subroutine in Rootsimu v4.0 [243]. The

de Wit model constructs the hourly temperature estimates from minimum and maximum

temperature measurements within a particular day as well as the minimum temperature

from the next day. The minimum and maximum values are used to construct a piece-wise

sinusoidal function constructed in two parts – from sunrise to 2 pm and from 2 pm to

sunrise of the next day. The model assumes the maximum and minimum daily tempera-

tures (Tmax and Tmin) occur at 2 pm and sunrise respectively [241]. Following statistical

analysis applied to four years of data, the method of de Wit was concluded to be the most

accurate method [241].

Based on the model comparison undertaken in [241], the de Wit [242,243] temperature

model was applied as an input to the PV energy yield model considered in this chapter.

The ambient temperature Ta at each hour based on the de Wit model is defined as follows:

Ta =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a+ b cos
(

πh′
10+hrise

)
for 0 ≤ h < hrise

a+ b cos
(

πh′
10+hrise

)
for 14 < h < 24

a− b cos
[
π(h−hrise)
14−hrise

]
otherwise

(6.27)

where a = (Tmax + Tmin)/2, b = (Tmax − Tmin)/2, h is hour of the day, hrise is the sunrise

hour angle and h′ = h+10 if h < hrise and h′ = h− 14 if h > 14. It should be noted that

for h > 14, Tmin of the next day is used to determine Ta for the remaining hours of each

day.
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6.3.3.4 Typical Meteorological Year Development

In contrast to the methodology applied in Chapter 5 and for the small sample of customers

in Section 6.3.3.1, the weather data (both hourly irradiation and estimated hourly temper-

ature) were subjected to a more rigorous process to better represent typical climatological

data based on long-term irradiation and temperature measurements.

As opposed to applying five consecutive years of weather data over the period of

2011–2015, typical meteorological year data sets were developed following the procedure

detailed in the flow chart of Figure 6.3.
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Figure 6.3: TMY development flow chart
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The weather station location details assumed in this research is defined in Table 6.2.

The full campaign history of AREMI irradiation data between 1990 and 2015 were used to

develop the TMY data sets. In the first step, all extra leap year days were removed from

consideration. The second step was applicable to irradiation data only, whereby the time

stamps of the satellite observations were determined through consultation with the lookup

table previously defined in Section 4.2.3. In the third step, average hourly irradiation and

daily maximum and minimum temperatures were calculated to establish a representative

average year. The average year values were used in place of missing data values.

Table 6.2: Weather station data considered in the large sample assessment

Analysis
Station Name

BoM Latitude Longitude Elevation
Year OpenSample Station ID (◦) (◦) (m)

Large Newcastle University 61390 -32.89 151.71 21 1998

Average monthly irradiation totals and average monthly maximum and minimum

temperatures were the calculated. The average values for each month during the entire

measurement campaign were then compared against an average representative month.

The absolute value of the error between the two values was determined, the minimum of

which corresponds to the typical monthly value. The process was repeated until all twelve

months of the TMY data set were determined. The resultant full irradiation TMY data

set and an example period showing direct and direct irradiation components are presented

in Figure 6.4. The estimated temperature TMY dataset is shown in Figure 6.5.

A comparison of the average hourly irradiation profiles between the TMY data set

using the new National BRL diffuse model of Chapter 4 and hourly data derived from

daily data in the 2011–2015 date range is shown in Figure 6.6. It can be seen that the the

TMY data set has slightly higher average global irradiation values than observed in the

2011–2015 period. Furthermore, the models defined in (3.39) to (3.43) estimating hourly

irradiation data from daily data predict less direct irradiation in the middle of the day

compared to the hourly based BRL model.

6.3.3.5 Equipment Assumptions

The PV modules considered for the small sample analysis were modelled based on 280 W

Trina Solar TSM-PC05A(II) polycrystalline modules, applicable parameters for which are

provided in Appendix C Table C.2. For the large sample analysis, the 300 W Trina Solar

TSM-PD06A polycrystalline modules detailed in Appendix C Table C.4 were considered,

to provide a more uniform comparison with the analysis presented in later in Chapter 8.

Two BESSs were considered in this research – the Tesla Motors 13.5 kWh 5 kW Power-

wall 2 and the more modular 1.2 kWh 260 W Enphase AC Battery. Values for the BESS

model parameters defined in Section 6.1 including δ, Ylife, YEOL, CEOL and ηbatt were

based on the manufacturer data sheets [244] and [245] for the Tesla and Enphase systems

respectively. Applicable data sheet parameters are detailed in Appendix D Table D.1. The

fully installed cost of the Powerwall 2 is assumed to be AU$10,000 [246] in this chapter,

while the cost of the Enphase BESS is approximately AU$2,000 [247].



6.3. Hybrid PV-BESS Optimisation Problem 157

1000 2000 3000 4000 5000 6000 7000 8000

Hour of Year

0

200

400

600

800

1000

1200

Ir
ra

di
at

io
n 

(W
/m

2
)

Global Horizontal
Diffuse Horizontal
Direct Horizontal

1000 1020 1040 1060 1080 1100

Hour of Year

0

200

400

600

800

1000

1200

Ir
ra

di
at

io
n 

(W
/m

2
)

Global Horizontal
Diffuse Horizontal
Direct Horizontal

Figure 6.4: TMY global, diffuse and direct irradiation data set for Newcastle based on
AREMI data
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6.4 Results

6.4.1 Small Sample

Table 6.3 shows a summary of the optimised PV-BESS systems for each customer under

retail electricity plans from three large retailers. For each customer, Retailer B is found

to provide the greatest benefit. For Customer 1, the maximum system size of 8.4 kW

(Zmax = 30, 280 W PV panels) is reached, while Customer 3 is also seen to potentially

benefit from a relatively large PV system of 7.56 kW. In contrast, the optimal PV system

for Customer 2 is found to be a far smaller system at 4.2 kW. The optimal tilt and

azimuth angles also vary for each customer but are within a 20-30 degree range. However,

importantly for the customers assessed, no instance can be seen whereby an energy storage

system yields an economic benefit higher than a PV-only system based on current BESS

pricing.

To determine the price point at which a hybrid PV-BESS system becomes an econom-

ically beneficial option for each customer, an NPV sensitivity analysis was undertaken on

BESS pricing. Referring to Figure 6.7, systems consisting of either the Tesla Powerwall 2

or an Enphase AC Battery become viable for Customer 1 when unit costs are reduced to

70% of 2016 pricing. Customers 2 and 3 first see a benefit from the small, more modular

Enphase system at the 60-70% price point but do not see a benefit from a larger Tesla

system until pricing reaches 30-40% of current levels.

Figure 6.8 shows the number of batteries that constitute the optimal system as BESS

prices are decreased. For the more modular Enphase BESS, an increase in battery quantity

is observed for each customer as prices decrease. Customer 1, having a relatively high

energy demand, would benefit the most from a larger number of Enphase batteries at

each price point compared to the other two customers. In contrast, Customer 3 would

not benefit from additional batteries until the 50% price point is reached, after which the

customer could can take immediate advantage of additional units as prices continue to

decrease. However, for the larger Tesla system, a single battery was found to be sufficient

for all customers under all BESS price scenarios with one exception being an additional

battery for Customer 1 at the 10% price point.

Table 6.3: Characteristics and economic performance of optimised PV-BESSs for differ-
ent retail electricity plans

Customer Retailer
BESS Size PV Size

Tilt Azimuth NPV MIRR
Payback

(kWh) (kWp) (Years)

1

A 0 8.4 29◦ 30◦ $10,534 7.39% 9.3
B 0 8.4 29◦ 30◦ $11,153 7.52% 9
C 0 8.4 29◦ 30◦ $10,745 7.44% 9

2

A 0 4.2 31◦ 26◦ $672 4.88% 18.4
B 0 4.2 31◦ 26◦ $917 5.04% 17.8
C 0 4.2 31◦ 26◦ $732 4.92% 18.2

3

A 0 7.56 29◦ 25◦ $4,601 6.06% 13.8
B 0 7.56 29◦ 25◦ $5,044 6.19% 13.6
C 0 7.56 30◦ 26◦ $4,870 6.14% 13.6
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0

2

4

6

8

10

12

0 20 40 60 80 100

N
um

be
r o

f B
at

te
rie

s

Battery Cost as a Percentage of 2016 Prices (%)

Cust.1 - Tesla
Cust.1 - Enphase
Cust.2 - Tesla
Cust.2 - Enphase
Cust.3 - Tesla
Cust.3 - Enphase

Figure 6.8: Number of batteries in PV-BESS system for varying installed BESS costs
(Retailer B, Operation Mode 2)

Table 6.4 summarises the effect of BESS operation mode on the NPV for each cus-

tomer. The table considers a significantly deflated BESS pricing scenario of 10% of 2016

installation costs whereby energy arbitrage would yield its greatest benefit among the

price points considered in this research. In all instances, Mode 2 can be seen to produce

the highest NPV, i.e. the BESS operating to maximise self-consumption of PV generated

energy in shoulder and peak periods with no energy arbitrage. Consequently, even with

significantly deflated BESS costs, under current TOU electricity tariffs and with electricity

prices continuing to increase at current rates, a BESS system engaging in energy arbitrage

is not found to provide any additional economic benefit than a BESS system purely used

for PV generation load shifting.
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Table 6.4: Economic performance under different BESS operating modes (Tesla Power-
wall 2, cost = 10% of 2016 prices)

Customer Operating Mode BESS Size (kWh) PV Size (kWp) NPV

1

1 27 8.4 $17,446
2 27 8.4 $19,637
3 27 7.56 $16,721
4 27 8.4 $18,102

2

1 13.5 4.2 $3.80
2 13.5 4.2 $4,931
3 13.5 4.2 $3,269
4 13.5 4.2 $4,232

3

1 13.5 4.2 $7,313
2 13.5 4.2 $8,678
3 13.5 4.2 $6,785
4 13.5 4.2 $7,652

6.4.2 Large Sample

BESS operating Mode 2 and Mode 4, as detailed in Section 6.1.1, were tested on a larger

sample of 100 customers selected from the SGSC project. An adjustment was made to

the Tesla Powerwall 2 cost, increasing from $10,000 to $12,350 to more accurately reflect

recent manufacturer price guidance [248].

The optimisation methodology was applied to three BESS price levels – current sys-

tem pricing (100%), a price reduction to 70% and a 50% price reduction. Referring to

Figure 6.9(a), only four customers can be seen to benefit from a BESS, each of which is a

Tesla Powerwall 2, while 93% of customers benefit from a PV system.

When the BESS prices are reduced to 70% of the original price assumption, the propor-

tion of customers with an optimal design configuration featuring a BESS greatly increases

to 67% as shown in Figure 6.9(b). Furthermore, the split between the larger Powerwall 2

BESS and much smaller Enphase system is approximately equal. Furthermore, larger

PV systems are almost uniformly coupled with the larger Powerwall 2 battery, while the

Enphase battery is typically featured in PV systems within the 2.4 kW to 6.9 kW range.

A slight anomaly can be observed in relation to the proportion of customers featuring

an optimised PV system, which has dropped to 92% from 93% in Figure 6.9(a). Further

investigation revealed the PV system no longer featured in the 70% BESS price case was

initially a very small system at 0.6 kW, with a corresponding NPV of just $30. Conse-

quently, it may be concluded that the optimisation algorithm did not have sufficient time

to reach the optimal solution in this case. However, given the relatively small NPV error

compared to the 20-year analysis horizon, the balance between speed and accuracy may

be considered acceptable.

Figure 6.9(c) shows the NPV when BESS prices are reduced by 50%. The proportion

of customers with a PV system and the distribution of optimal system sizes can be seen

to remain relatively unchanged compared to the previous two cases. However, 93% of

customers can be observed to benefit for a BESS. The split between the Powerwall 2 and

Enphase systems remains relatively even, with a clear trend towards the small battery for

PV systems of 6 kW and lower.
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Figure 6.9: NPV, PV size and BESS size for a sample of 100 customers at (a) 100%, (b)
70% and (c) 50% BESS reference price levels
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Figure 6.10: MIRR, PV size and BESS size for a sample of 100 customers at (a) 100%,
(b) 70% and (c) 50% BESS reference price levels
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Some customers can be seen to have a non-zero NPV without the installation of a PV

system or a BESS in Figure 6.9. This cost saving is achieved through optimal electricity

retail plan alone.

Figure 6.10 shows the distribution of the nominal MIRR for each customer at the three

BESS price levels previously considered. For each level, the proportion of customers with

a nominal MIRR above the acceptable 6% level (given the nominal discount rate of 6%

assumed in this research), remains relatively unchanged – around 62–67%. The deviation

in acceptable MIRR proportion may be attributed to certain customers on the ‘economic

fringe’ between a PV-only system and a PV-BESS solution, leading to an increase in NPV,

at the expense of a comparatively large initial system cost increase effecting the rate of

return. The proportion recovers somewhat when the BESS price level reduces further to

50% as shown in Figure 6.10(c). However, overall it cannot be concluded that a reduction

in BESS pricing presents a clear trend in the nominal MIRR received on the investment.

The proportions of the lowest cost base plans prior to optimal PV-BESS selection from

Retailers A, B and C are presented in Figure 6.11. Approximately 65% of customers can

be seen to benefit from prior selection of the plan from Retailer A, while 35% benefit from

Retailer B. No customers were found to initially benefit from the Retailer C plan.

Following the application of the optimisation algorithm for each customer, a compar-

ison of the proportion of the optimal retail plans for three BESS reference price levels is

presented in Figure 6.12. The plan featured in the majority of optimal solutions can be

seen to have transitioned from Retailer A to Retailer B. With BESS costs at 100% of the

reference price, 91% of customers benefit most by selecting Retailer B, compared to 35%

in the previous case of Figure 6.11. As BESS costs are reduced, the proportion of cus-

tomers with Retailer B plans increases slightly, with only 5% benefiting from Retailer A

at the 50% BESS cost level. Figure 6.11 and Figure 6.12 provide a clear demonstration of

the necessity to consider available retail plans during the selection of a PV-BESS system.

The optimal retail plan for a load-only customer is not necessarily the best option when

a PV-BESS system is installed.

Figure 6.11: Proportion of base case lowest cost retail plans amongst 100 test customers
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Figure 6.12: Proportion of lowest cost retail plans amongst 100 test customers with a
PV-BESS installed at three different BESS price levels

6.5 Summary

Significant price reductions in PV and battery systems have sparked considerable interest

in hybrid PV-BESS solutions at the residential level. However, optimal system selection is

critical to ensure the economic viability of such systems for a particular customer’s energy

requirements.

An optimisation tool was developed in this chapter and applied to three real-world

electricity customers. Based on current PV and battery system prices, no battery system

was found to be economically viable for the residences assessed, however optimised PV-

only systems were found to yield a net benefit for all customers.

A sensitivity analysis was conducted on battery pricing to determine the price point

at which a hybrid PV-BESS would yield a net benefit improvement. The results showed

that significant price reductions to 60-70% of current prices are required before the tested

customers could take advantage of an energy storage system. It was also concluded that

customers can generally take advantage of a modular system of smaller batteries earlier

than a bulk energy storage system. Additionally, the results indicated that the current

size of the Tesla Powerwall 2 battery is large enough for most energy storage needs even

with battery prices at significantly deflated levels.

For the three customers selected, various battery operating modes were examined to

determine the most economically beneficial operation. No instances were found whereby

energy arbitrage yielded a greater benefit than purely maximising PV self-consumption.

This observation continued to hold at all battery pricing levels.

The analysis was expanded to a wider sample of 100 customers. It was found that only

four customers would benefit from a BESS system at current pricing, with the proportion

increasing to 93% if BESS costs were reduced to 50% of current pricing. The proportion

of customers with an MIRR exceeding the cost of capital under each price scenario was

found to remain relatively constant across each of the BESS price scenarios.

Finally, the necessity to identify the most cost-effective retail electricity plan following

the installation of a PV-BESS system was established. Without a PV-BESS, the majority

of customers were found to benefit most from Retailer A, whereas when a PV-BESS system
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is installed, the most cost-effective plan changed to Retailer B for 91% of customers.

Chapter 7 presents a case study assessment of the PV-BESS design optimisation

methodology developed in this chapter applied to the TransGrid iDemand real-world mi-

crogrid system. The PV-BESS design optimisation methodology is further extended in

Chapter 8 to consider the introduction of P2P energy trading to assess system design

impacts effecting economic returns.



Chapter 7

Case Study

T
he economic performance of a hybrid PV-BESS is primarily dependent on the prevail-

ing climatological and market conditions under which the proposed system is intended

to operate and the underlying load which it is intended to supply. In an Australian context,

PV systems contribute to the Australian Government’s RET and are therefore eligible for

certain incentives depending on the size of the system installed. For systems of 100 kW

or less, PV systems are deemed to be part of the SRES and receive incentives in the form

of upfront STCs [196]. Additionally, feed-in tariffs from an energy retailer may also be

made available. However, STCs are scheduled to be phased out by 2030, complicating the

investment decision process.

For PV systems larger than 100 kW, incentives are provided through the Large-Scale

Renewable Energy Target in the form of LGC) [196]. PV system developers or owners

generally enter into a negotiated PPA, most commonly with energy retailers. Under a

PPA, the price to purchase LGCs from the PV installation is typically built into the total

price paid for grid-exported energy. In the analysis presented in this chapter, PPA prices

from $60/MWh to $140/MWh are considered to determine the effect on the economic

viability of hybrid PV-BESSs.

A case study based on TransGrid’s iDemand project, featuring a 53 kW polycrystalline

PV array combined with a 400 kWh lithium polymer battery system [249], is presented

in this chapter. TransGrid is the owner and operator of New South Wales’ high voltage

transmission network. The iDemand system was developed as a demand management

innovation project to enable “researchers to investigate optimal integration of batteries,

load and local generation” [249]. A block diagram of the TransGrid iDemand AC system

is provided in Figure 7.1.

Operational data from the iDemand system are first used to validate the accuracy of

the adopted PV energy yield model and then applied to hypothetical installations over a

nine-year period to enable the determination of the opportune investment year and the

characteristics and performance of the corresponding optimised system, including whether

to install a small-scale or large-scale system given the different incentive schemes on offer.

In this chapter, PV energy yield and battery lifetime operation models based on hourly

satellite irradiation and estimated hourly temperatures from daily temperature data are

considered. The objective function of the underlying optimisation problem is formulated

167
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Figure 7.1: TransGrid iDemand AC system

as an NPV maximisation of energy cost savings achieved through the introduction of an

optimally sized and oriented PV-BESS as previously defined in Chapter 6. Consideration

is given to forecast technology cost reductions and electricity tariff increases.

7.1 Weather and PV Energy Models

7.1.1 Hourly Irradiation

As detailed in Chapter 3, BoM maintains a database of hourly and daily irradiation data

from satellite observations. While direct access to the hourly data is available subject to

a fee, the hourly data from 1990 to 2015 are publicly available via the AREMI spatial

data platform [63]. The data includes global horizontal irradiation (I) and direct normal

irradiation (Ibn) which are related through the following equation:

I = Ibn cos(θz) + Id (7.1)

where Id is the diffuse horizontal irradiation and θz is the solar zenith angle the equation

for which was previously established in (3.11). Consequently through rearranging (7.1),

Id can be directly estimated from the AREMI data as discussed in detail in Chapter 4.

Remark 7.1 It should be noted that for the analysis presented in this chapter, neither the

improved National BRL developed in Chapter 4 or the TMY data set methodology defined
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in Section 6.3.3.4 were applied as each were developed subsequent to the research presented

in this chapter.

7.1.2 Hourly Temperature

The BoM CDO database contains daily maximum and minimum temperature data for

thousands of weather locations within Australia. Data for the station closest to Trans-

Grid’s iDemand site (less than 4.5 km away) were applied to the methodology defined

in Section 6.3.3.3 to estimate hourly temperature from daily minimum and maximum

temperatures.

7.1.3 PV Energy Yield

After obtaining hourly irradiation components based on satellite data the transposition

model is required to estimate the irradiation on the plane-of-array of a PV system. The

HDKR transposition model previously considered in Chapter 5 and Chapter 6 is again

applied, repeated below as (7.2) for convenience:

IT =(Ib +AiId)Rb + Id(1−Ai)

(
1 + cosβ

2

)[
1 + f sin3

(
β

2

)]

+ Iρg

(
1− cosβ

2

)
(7.2)

In (7.2), Ib and Id are the hourly direct and diffuse irradiation on the horizontal plane

respectively, Ai = Ib/Io, f =
√

Ib/I, I is the hourly global horizontal irradiation, Io is

the hourly extra-terrestrial irradiation, ρg is the ground reflectance and Rb is the ratio of

tilted to horizontal direct irradiation. Importantly, Rb is a function of panel tilt β and

panel azimuth γ, the equations for which are presented at length in Section 3.2.

Although not repeated in detail in this section, the analysis presented in this chapter

(and for the the subsequent Chapter 8) consider an Incident Angle Modifier (IAM), as

defined by De Soto et al. [250] to account for reflected radiation off the PV panel glass

surface.

The PV energy yield model defined by (5.27) in Section 5.6 is considered in this case

study, taking as an input the irradiation model for IT defined in (7.2).

7.2 Optimisation Problem

7.2.1 Economic Assumptions

A nominal discount rate of 10% per annum is considered in this research, representative

of the cost of capital that may be expected for a large corporation such as TransGrid.

Annual inflation is assumed to be 2.5% while nominal electricity price growth is taken to

be 4.5%.

For large-scale commercial and industrial customers, electricity charges are typically

billed monthly. Consequently, the real discount rate and electricity price growth (taking
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inflation into account) converted to monthly effective rates are rd = 0.59% and re = 0.16%

respectively.

The analysis presented in this research considers forecast PV system, battery and

battery inverter costs between 2017 and 2025. The forecast costs are based on three price

scenarios as defined by Brinsmead et al. [235], designated as minimum, base and maximum

price scenarios.

7.2.2 Problem Definition

The optimisation problem is near identical to the problem defined in Section 6.3.1 with

the previous objective function defined by (6.16). However, for industrial customers such

as TransGrid, the tariff structures are slightly different and include an additional demand

charge during each billing period. Consequently, the Cbase,q and Cpvbatt,q terms previously

defined in (6.18) and (6.19) are modified to include the demand charge TDC,q applied

to the maximum demand Pmax,pvbatt,q and Pmax,q with and without a PV-BESS system

respectively as shown in (7.3) and (7.4):

Cbase,q =

Dq∑
d=1

⎛
⎝ 24∑

h=1

Tret,qdhEload,qdh + Tsc,qd

⎞
⎠+ TDC,qPmax,q (7.3)

Cpvbatt,q =

Dq∑
d=1

⎧⎨
⎩

24∑
h=1

[
Tret,qdhmax

(
0, Ebal,qdh

)
− Tpv,qdhmax

(
0,−Ebal,qdh

)]

+Tsc,qd

⎫⎬
⎭+ TDC,qPmax,pvbatt,q (7.4)

The Ebal,qdh expression remains the same as (6.20). For systems of size ≤100 kW,

Tpv,qdh is the retailer PV feed-in tariff (6c/kWh) and for large-scale systems (>100 kW)

Tpv,qdh is the supply rate as agreed in the PPA (ranging from $60/MWh to $140/MWh). It

should be noted that the same daily supply term Tsc,qd is considered in (7.3) and (7.4) and

therefore has no impact on the NPV as only a single retail electricity tariff is considered

in the analysis presented in this chapter. Calculating the cost savings as the difference

between the base cost and cost with a PV-BESS system results in the daily supply charges

cancelling out.

As the problem is in the form of a MINLP problem, meta-heuristic methods are em-

ployed to solve the problem. A modified version of QPSO, known as comprehensive learn-

ing quantum-behaved particle swarm optimization (CLQPSO) is employed. As previously

discussed in Chapter 6, QPSO has been shown have a better global search performance

than traditional PSO with fewer parameter adjustments [225].

For the problem presented in Chapter 6, despite the fast convergence as previously

shown in Figure 6.1 and Figure 6.2, premature convergence was experienced in some

instances, whereby the swarm became stuck in local optima thereby requiring numerous

repetitions for each customer to be undertaken in order to increase certainty of optimality.
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To discourage such premature converge, one technique proposed by [251], referred to as

comprehensive learning, has been applied to QPSO in [252]. Under traditional PSO, a

particle learns from its personal as well as the global best positions simultaneously [251].

Liang et al. [251] noted that limiting the social learning aspects to the global best position

leads to fast convergence but comes at the risk of entrapment in local optima, particularly

for multi-modal problems.

Under the comprehensive learning strategy proposed in [251], in a particular dimension

j, a particle is given the opportunity to learn from the personal best positions of all the

particles, including its own P j
i,n. The potential to learn is based on a prescribed learning

probability Pc,i which varies for each particle, proposed in [251] as follows:

Pc,i = 0.05 +
0.45e10(i−1)/(M−1)

e10 − 1
(7.5)

where M is the swarm population size.

For each dimension j of a particle i, a random number is generated and compared

against the probability Pc,i. If the random number is greater than Pc,i, the particle will

learn from its own P j
i,n. If the random number is less than Pc,i, two separate particles

are randomly chosen and the fitness values compared. The winning particle is used as the

learning exemplar. In the instance where the exemplars in each dimension are a particle’s

own P j
i,n, then a random dimension in another randomly selected particle is chosen to learn

from. The learning process is continued until the particle position no longer improves for

a prescribed number of iterations, referred to as the refreshing gap which was set to be

m = 7 in [251].

Long et al. [252] extended the formulation of QPSO to include the comprehensive

learning component of [251]. In QPSO, the comprehensive learning strategy is applied

to the particle swarm prior to the calculation of the mean best position Cj
i,n as defined

in (6.24). To solve the objective function (6.16) as applied to the problem defined in

this chapter, the maximum number of iterations was set to be N = 50 to ensure the

optimisation process was completed in a reasonably time frame with a swarm size of

M = 10. The refreshing gap of m = 7 and the learning probability Pc,i as defined in (7.5)

were also applied. The optimization problem was solved using Matlab 2017a.

Figure 7.2 and Figure 7.3 show the solution convergence for the CLQPSO algorithm

for ten repetitions against the same two test customers considered in Chapter 6. Com-

paring the number of iterations to reach a solution against the QPSO algorithm as shown

in Figure 6.1 and Figure 6.2, it can be seen that the CLQPSO algorithm takes longer,

approximately 10-15 more iterations for the problem considered in this research. It can

also be seen that the final NPV solutions reached after each repetition are almost, but not

quite, identical for each customer. The maximum error from the highest NPV solution

found was determined to be 0.0289% and 0.0086% for Figure 7.2 and Figure 7.3 respec-

tively. Therefore, it is clear the CLQPSO algorithm did not quite have enough time to

reach the global optimal solution. However, given the error is very small this is considered

reasonable.

Although the QPSO algorithm can be seen to be generally faster to reach a solution,
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the chance of getting stuck in local optima, which was sometimes observed using QPSO in

the research undertaken in Chapter 6, is a problem of some concern. To reduce the proba-

bility of such an occurrence, the trade-off in speed to avoid premature global convergence

is considered necessary thereby justifying the application of the CLQPSO algorithm.

The QPSO algorithm was developed and simulated in Matlab version R2017b using an

Intel i7-4790 3.6 GHz CPU. Average solution times of 186.69 seconds and 199.65 seconds

were observed for the same Customer X and Y assessed in Chapter 6 respectively. An

increase in solution time of approximately 30-40% due to the comprehensive learning

component may therefore be expected. It can be seen that the number of iterations taken

to reach the optimal solution is approximately 10 more than the 15 iterations taken for

QPSO. Convergence plots for the two test customers are provided in Figures 7.2 and 7.3.
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Figure 7.2: Optimisation convergence with ten repetitions (Customer X)

7.2.3 Input Data and Equipment Details

For this research, the inverter losses are assumed to be in accordance with the SMA

STP17000TL model inverters installed in the iDemand system. The characteristics of the

PV modules and batteries considered in this analysis are shown in Appendix C Table C.3

and Appendix D Table D.2. The energy costs associated with the terms Tret,qdh, Tsc,qd

and TDC,q are shown in Appendix A Table A.5.
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Figure 7.3: Optimisation convergence with ten repetitions (Customer Y)

7.3 Results

7.3.1 Energy Model Comparison

A comparison of average hourly AC power generated from the 53 kW polycrystalline silicon

PV array installed in the iDemand system and the energy production model considered

in this research is presented in Figure 7.4. Plots for energy production for months centred

around winter and summer, as well as a full year of production are shown. For the full year

of production, the energy model appears to slightly under-estimate energy production in

the early afternoon hours and over-estimates production in the mid-morning hours. The

overall rMBE for the full year of AC production is 0.02% as shown in Table 7.1.

The over-estimation during early morning can be attributed to shading events in

winter, clearly observed in the winter plots of Figure 7.4. The model inaccuracy due to

shading events is further demonstrated by the rMBE and rRMSE statistics summarised

in Table 7.1 which are the worst for the three periods assessed. The overall accuracy of

the PV energy yield model is perhaps better represented by the statistics for the summer

period whereby the rRMSE is the lowest amongst periods assessed and the overall rMBE

for AC energy is -2.9%.

The overall effect of energy yield model inaccuracy on the determination of economic

performance of a PV system is shown in Table 7.2. The model underestimates electricity

cost savings by just 1.57%, thereby presenting a conservative estimate. Based on the

relatively low error, a reasonable degree of confidence in the accuracy of the PV energy

yield model can be held for the purposes of economic optimisation.

The average hourly load profiles in different seasons are also shown in Figure 7.4.
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Figure 7.4: Comparison of average hourly estimated AC generation versus actual mea-
sured AC generation in 2015

Table 7.1: Statistics for measured versus modelled energy production of the iDemand
system

Period
AC Energy DC Energy

rMBE (%) rRMSE (%) rMBE (%) rRMSE (%)

Year -0.02 24.18 -0.36 24.19
Summer -2.9 20.69 -3.24 20.81
Winter 4.36 29.34 4.01 29.22

Clearly there is a strong alignment between the hours of electricity demand and the hours

of energy generation. The significance of this load profile is further discussed in Section 7.4.

7.3.2 Optimisation Results

Following the application of the optimisation algorithm applied to the TransGrid iDemand

data and the economic scenarios considered, no hybrid PV-BESS was found to yield an

economic benefit greater than a PV-only system. Consequently, the results presented and

discussed in the remainder of this research refer to a PV-only system.

Referring to Figure 7.5, the NPV achieved for an optimised system steadily increases

Table 7.2: NPV of energy cost savings (actual and estimated) of the iDemand system
(2015)

NPV (Actual) NPV (Estimated) Error (%)

$10,210 $10,049 -1.57
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Figure 7.5: Optimal PV array sizes and associated NPVs evaluated for a range of PPAs
forecast for future years of installation

with installation year due to reduction in system costs under the base PV system cost

scenario of [235]. For the high price case of a PPA=$140/MWh shown in Figure 7.5,

it can be seen that the optimal system size for the load profile considered is a 100 kW

PV system, the maximum achievable under the small-scale renewable energy scheme, up

until 2022. Between 2022 and 2025, the optimal system from an NPV perspective changes

to be a large-scale system. At this point, the NPV and system size trajectories diverge

depending on the negotiated exported energy price under a various PPAs. It should be

noted that the distinct NPV increase from 2021 to 2022 is due to a significant PV price

drop as forecast by Brinsmead et al. [235] and is unrelated to the pricing scenario and

PPA energy price.

Referring to Figure 7.6, the MIRR for an investment in PV steadily increases as system

prices are expected to decrease overtime. Due to the forecast price drop in 2022, the MIRR

increases rapidly before reducing once again as the optimal system is deemed to be a large-

scale scale system. The inverse is true for the payback period. It should be noted that

under the base system pricing scenario featured in Figures 7.5 and 7.6, the maximum

MIRR achieved for the NPV optimised PV systems is around 9.5%, less than the cost

of capital of 10%. Consequently, without considering carbon reduction motives, under

the economic assumptions considered in this research, investment in a PV system does

not present the most efficient investment option. However, a relaxation of the discount

rate, would yield a higher rate of return and therefore the investment in a PV system

may be deemed economically viable. Furthermore, other market participants may have

higher retail electricity costs than those assumed in Table A.5, rendering a PV system

more economically viable.

The optimal NPV and PV system size trajectories for the three pricing scenarios
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Figure 7.6: MIRR and payback periods of optimised systems for a range PPAs forecast
for future years of installation

considered in this research are overlaid in Figures 7.7 and 7.8 respectively. Under the

minimum and base price scenarios, the optimal system size is 100 kW until 2020 and

2022 respectively whereby a larger system is the most beneficial. The shaded regions

represent the range of PPA energy prices considered in this research – the lower bound

represents $60/MWh and the upper bound $140/MWh. However, under the maximum

price scenario, the optimal size for all installation years is almost uniform at 100 kW with

the exception of the initial year 2017. Due to especially high PV system costs modelled

for 2017 under the maximum pricing scenario, the optimal size is only 4.5 kW. This is an

unrealistic scenario as the industry pricing is currently tracking well below the assumed

price point.
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7.4 Discussion

It should be noted that hourly irradiation measurements from satellite observations do

not necessarily coincide with the beginning of the hour. In the instance of MTSAT-2

observations at a latitude of -35◦, the observation occurs 49.5 seconds after the beginning

of the hour [56]. As the irradiation observations are required to align with the time stamp

for the load data, significant errors may be introduced if the resolution of load data is too

coarse. To achieve a reasonable correlation between data time stamps, minutely load data

are preferable.

As stated in Section 7.3.2, no battery system was found to provide an economic benefit

higher than a PV-only system. This may be attributed to two primary factors. Firstly,

the electricity costs as detailed in Table A.5 are particularly low when compared to the

residential consumer market. Consequently, the relatively low energy cost savings achieved

through avoided grid-imported energy are not sufficient to out-weigh the high capital costs

of a battery system. Secondly, as shown in Figure 7.4, the hours of load demand strongly

align with the hours of PV generation. Therefore, the benefit achieved through shifting

PV generated energy to evening or early morning hours is far less than directly meeting

demand during the day time period which typically correspond to higher network prices,

particularly in the afternoon. The combination of these two factors indicate that under

the load profile and tariffs conditions representative of TransGrid’s operations, a hybrid

PV-BESS is not the most economically efficient arrangement.

7.5 Summary

PV energy yield models and battery operation models were developed as key components

of an optimization algorithm to determine the hybrid PV-BESS with the most economic

value for a load based on TransGrid’s iDemand system. The energy yield model was found

to have an acceptable accuracy and shown to underestimate the potential annual energy

cost savings by just 1.57%.

Implementation of the optimization algorithm revealed no battery system would yield

an economic benefit greater than a PV-only system for installation years between 2017

and 2025. Under the system pricing scenarios considered, the optimal system was found

to be a small-scale system until 2020 after which a transition to a large-scale system would

yield the highest NPV depending on the pricing scenario considered.

The results presented in this chapter demonstrate the necessity to optimize PV-BESS

systems as an integral component of the investment decision process.



Chapter 8

DER Design Optimisation for

Peer-to-Peer Energy Trading

D
esire for flexibility and empowerment to choose renewable electricity sources at the

consumer level has driven the introduction of collaborative economy concepts in elec-

tricity markets [7]. Electricity networks and markets are transitioning from traditional

centralised generation to decentralised structures as a means to transition to a low car-

bon society that is “consumer-centred” [253], facilitated by the widespread introduction

of DER. Sharing economy concepts popularised in the mobile app era by Uber for trans-

portation and Airbnb for hospitality services are now under investigation for extension to

electricity markets [254]. The concept that energy can be traded between self-organised

peers and groups [8], either as independent producers or community-based structures [7], is

expected to be facilitated by the introduction of physical microgrids or transactive energy

enabling soft technologies such as distributed ledger technologies (DLTs).

Existing retail arrangements do not capture the value provided by DER and in some

cases discourage PV investment [255]. The temporal and spatial variations between DER

and individual consumers [255] are not accounted for under network tariff structures that

have not traditionally accurately reflected the cost to deliver services to each customer

[256].

P2P energy trading, also referred to as local electricity trading [255, 257], virtual

net metering [258] or transactive energy [259], is a concept whereby bilateral agreements

or contracts are established between two electricity peers for the exchange of electricity

at an agreed price and for an agreed time [7]. P2P trading is not restricted to large

traditional generators and industrial consumers but can be applied to all levels of the

network including single household consumers or prosumers, in the case where energy

customers also have installed DERs such as rooftop solar PV, batteries or micro wind

turbines.

P2P research is still in its infancy with no agreement on the most efficient data sharing

and processing structures [260] or fair market designs that enable the development of local

energy trading [261, 262]. The coordination of loads between peers does not necessarily

require centralised control, such as the role played by an aggregator through cloud-based

systems [263]. DLTs are an example of distributed transaction management between peers

179
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whereby each peer holds a copy of the transaction log thus removing the need for central

management [264]. DLTs provide “real value when multiple organisations have a stake

in shared data and processes” [265]. The management of each stake is handled by smart

contracts, which are defined programs that govern the ledger rules and are triggered when

transaction conditions have been met [264]. To faciliate smart contracts, particularly

for the benefit of P2P trading, DLTs must be secure and demonstrate consensus (proof of

agreement), provenance (auditable) and immutabability (tamper-proof) [265]. Blockchain,

as a form of DLT, has received increasing attention for P2P trading applications with over

140 research projects and startups emerging in the energy sector [264].

In this chapter, P2P trading is investigated from the perspective of a prospective

investor in small-scale DERs at the residential level. A lifetime assessment of DERs con-

sisting of solar PV and battery systems is undertaken in the context of a P2P market

consisting of over 2,200 participants with real load consumption profiles derived from the

SGSC project data. The energy flow models previously developed in Chapter 5 and Chap-

ter 6 are modified to enable potential DER investors to participate in P2P transactions.

The hypothetical P2P market simulation is tested under various scenarios to identify

trends in optimal PV-BESS system sizes and the potential economic returns available.

8.1 Literature Review

The first application of the P2P concept to power systems was introduced in 2007 [7]. In

recent years, particularly since 2016, the number of research projects and trials has rapidly

increased, coinciding with increased consumer appetite to utilise low carbon energy sources

and leverage DERs.

Sousa et al. [7] present a comprehensive review of consumer-centric electricity markets

noting that other recent studies have focused solely on market prospects or technical

aspects. The review aimed to provide an understanding of all aspects of the transition to

the consumer. Three P2P market designs are presented – full P2P, community-based P2P

and hybrid P2P.

Full P2P, in which peers or agents directly negotiate with each other, is gaining signif-

icant momentum [7]. Under full P2P, the negotiation process can, and is indeed expected

to, result in a different price for every trade. Through the use of DLT, privacy is assured

with only power and energy quantities and the associated price signals shared between

agents [7]. Under a full P2P design, the delivery of energy can be truly aligned with

customer preferences, whether sourcing green energy only or achieving the lowest possible

price for the individual customer. The primary disadvantage of full P2P is the problem

of scalability associated with the negotiation process due to the quantity and frequency of

potential transactions [7, 265]. As an example, the Brooklyn Microgrid project, discussed

further in Section 8.1.3, observed scalability limitations for the Ethereum blockchain DLT,

requiring the establishment of a bespoke blockchain for the project [266].

Under community-based structures, a community manager, also referred to as an ag-

greggator or trader, is established to handle trading between the participants or manage

trades outside the community on behalf of the participants. The main definition of a
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community is a group of participants sharing a common goal, such as carbon footprint

reduction through purchase of remotely generated green energy [7] or auctioning of lo-

cal available stored energy [267]. Consequently, community structures are well suited to

microgrid architectures or for a local group of participants. The market is structured to

benefit the entire community rather than focusing at the individual level. However, there

are times when the preferences and expectations for particular members are not met as

they may not align with the community interests [7].

Full P2P and community designs can be combined to form hybrid topologies. As

described by Sousa et al. [7], at the upper layer peers or energy collectives can trade directly

with each other, while on the bottom layer a community manager overseas trading within

the community. The graphical representation of a hybrid P2P structure is presented in

Figure 8.1 as detailed in [7]. The primary advantages of hybrid structures include a wider

energy choice than community structures, increased cooperation between agents and fewer

scalability issues due to the reduced communication and computational effort required.

Energy Collective

Collective Trade

Community Manager

Market / Services

P2P Trade

Market / System Operator

Figure 8.1: Hybrid P2P market design adapted from Sousa et a. [7]

In [7], a test case of the three high level P2P structures was conducted on the IEEE

14-bus system. It was found that a full P2P architecture resulted in the highest local

consumption of DERs while the hybrid topology presented reasonable trade-offs to improve

social welfare (i.e. mutual economic benefit) through transactions with other communities.

The hybrid P2P system was therefore considered to be the most compatible with the

existing network and is more predictable to grid operators than full P2P [7].

In [268], a hierarchical architecture was proposed to identify and characterise the key

elements of P2P energy trading. A three-dimensional achitecture was proposed with four

key layers – the business layer (referred to in [7] as the market layer), control layer, in-
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formation and communications technology (ICT) layer and finally the power grid layer.

The second dimension details the size of the trading group, first starting with a single

customer, then scaling up to microgids, cells of microgrids and finally entire regions con-

sisting of multiple cells. The final dimension relates to time related components of the

transaction process from bidding, to energy exchange and finally to financial settlement.

In [268], a P2P trading platform was proposed focusing on the business layer for a grid-

connected low-voltage microgrid. The research novelty is claimed to be prosumer modelling

as opposed to modelling of agents categorised solely as either generators or consumers.

In [268], P2P energy trading to maximise economic benefit is the sole consideration, as

opposed to other research whereby physical support of microgrids to improve reliability

and stability are considered. The system was simulated using game theory to reach Nash

equilibrium as a solution of a non-cooperative game with multiple players [268]. Under the

simulation, solar PV and later wind turbines were modelled along with flexible demand

scheduling through electric hot water heaters. However, no consideration was given to

energy storage systems.

8.1.1 Optimisation of P2P Participation

Optimal peer-to-peer trading decisions have received significant attention in recent liter-

ature largely from a community or microgrid perspective such as in [7, 261, 262, 268–274].

Although less prevalent, some research focused on P2P optimisation for single residences

[260,263,268]. In [263] and [260], cost optimisation in smart homes with demand-side man-

agement (DSM) was investigated for energy sharing. The research aimed to address unfair

cost and benefit distributions for P2P trades under microgrid structures with the aim to

enforce pareto optimality whereby no household is worse-off in order to benefit others.

In [263], Alam et al. first considered integrating P2P trading with DSM. Multi-objective

optimisation and pareto optimality constraints were used to minimise costs for a microgrid

of individual households, whilst also minimising the import from the grid. In [260], Alam

et al. showed the cost savings associated with energy storage and renewable penetration

rate scenarios do not always increase linearly, but rather decrease after a saturation point.

In [263], only two households were considered, while the study in [260] was limited to 40

households with three different PV system and battery sizes. In [263], the evaluation was

only performed over 8 one-hour periods while [260] considered a single 24-hour window.

Long et al. [275] determined the optimal capacity of DERs including solar PV and

combined heat and power systems to balance supply and demand for local low-voltage

networks in a P2P trading environment. Customers were clustered based on their load

profiles and the optimal DER was determined to balance low-voltage networks.

Münsing et al. [271] found the optimal schedule for a mix of battery loads [269].

However, investigation of the influences of DER size, penetration rates, market signals or

customer preference was not undertaken [269].

In [269], an optimisation model to maximise the cumulative economic benefits amongst

a group of households with PV and battery systems under a P2P trading environment was

considered. Limited previous research was identified to be focused towards the optimisa-
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tion of operational decisions, such as when to export and store energy, and strong influence

they have on energy costs [269]. The study aimed to assist stakeholders in establishing

an assessment of the techno-economic trade-off of P2P. A large heterogeneous group of

households participating in a P2P market was assessed, whereby trading and physical con-

straints were considered. Four groups of customers were included in the analysis consisting

of PV only, battery only, no DER and a combination of both PV and battery DERs.

Reservation prices were considered for each prosumer or consumer as part of the energy

bidding process, with the price including a margin that can be user adjustable, enabling the

participant to sufficiently cover the investment cost (the analysis considered a consumer

margin of 10%). With this mechanism, the market was expected to self-stabilise [269].

Sensitivity analyses were conducted on four parameters – P2P trader margin, size of

participant PV systems, different FiT rates and PV market penetration rates. Local use-of-

system (LUoS) network charges, as considered in [255] and discussed in Section 8.1.2, were

assumed to be included in the aggregator margin and therefore effectively shared between

trading peers as in [255]. Results showed that significant savings were possible through

P2P. However, it was identified that prospective owners need to be aware of the highly

sensitive impacts of PV penetration rates on savings from P2P trading to ensure that

installation costs of DERs are justifiable. The results of this research highlight the value

in optimal selecting system size based on market conditions such as trading mechanisms,

penetration rate and cumulative energy profiles of participants. The research presented in

this thesis aims to address this problem.

The research in [269] included a number of analysis exemptions and approximations.

Battery depth of discharge and degradation were not considered in the levelised cost of

storage for the battery. Load profiles were based on a single profile randomly scaled

to represent a set of households. Only a single retail plan was considered, with some

randomness introduced in pricing based on a normal distribution as opposed to actual

retail rates. Finally, the levelised cost of electricity for solar PV was based on industry

averages. However, as shown in Chapter 5, investment returns are customer specific and

dependent on the temporal load profile to establish self-consumption and export potential.

In this research, the above deficiencies are addressed as detailed further in Section 8.1.6.

The time frames investigated for P2P trading analysis vary significantly in literature –

from hours or a few days [260,263,270–274,276], to a few weeks [261,269,275] and to over

one or two years [7,255,262,275]. However, based on the literature review undertaken for

the research presented in this thesis, no investigations have focused on the assessment of

the full investment lifetime of DERs under a P2P trading environment.

Furthermore, the scale of participation previously investigated also varies widely. Only

a few participants were considered in [262,263, 270] while tens of participants were inves-

tigated in [7, 260, 268, 271–273, 275, 276]. Large-scale analyses such as those undertaken

in [255,269,274] whereby hundreds of peers were modelled are less prevalent but necessary

to establish the wider market impacts of P2P trading. This research aims to undertake a

large-scale assessment of P2P participation in the Australian NEM.
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8.1.2 P2P Market Designs

The policy of the European Union places end-users firmly in the middle of the transition

to a low carbon society [253]. Removal of regulatory barriers and incentivising the estab-

lishment of local trading markets are considered to be necessary to transition the current

electricity market to a prosumer-centred market [253,261,262]. Numerous market designs

and mechanisms have been considered for P2P trading, with no consensus yet reached on

the most efficient approach [261,262]. In Australia, a number of studies have been under-

taken to evaluate potential trading environments and market structures with consideration

given to cost-reflective tariffs structures [256, 277, 278] and charges representative of the

fractional network use of service to facilitate local trades [255,257,279]. However, valuing

the contribution of DERs towards reduced network costs and lower carbon emissions is

a complex undertaking. For example, local generation network credits incentivising lo-

cal energy trading have been considered and rejected by regulators [280]. Cost-reflective

tariffs structures are further discussed in Section 8.1.5.

Liu et al. [270] developed an energy sharing model based on a supply and demand

ratio (SDR) to drive the internal pricing of a microgrid with P2P prosumers with installed

PV systems. An aggregator was used to coordinate the energy sharing with common buy

and sell pricing applied to all prosumers and consumers. To encourage increased energy

sharing, demand response was used to adjust power consumption based on SDR indicators.

For example, as SDR is inversely proportional to price, when the SDR ratio is low, buyers

would aim to reduce power in order to reduce the buying price. Similarly, sellers would

also want to reduce self-consumption to sell more energy at a higher price.

Zhou et al. [272], undertook an evaluation of P2P sharing mechanisms including SDR,

mid-market rate (MMR) and bill sharing. The SDR mechanism developed by Liu et

al. [270] was found to out-perform the other mechanisms. Evaluation indexes such as a

value tapping, participant willingness and equality of cost, energy balance, power flatness

and self-sufficiency were also considered.

Long et al. [273] undertook a similar assessment for bill sharing and MMR as in [272].

A third scheme referred to as an auction-based pricing strategy, similar to the methodology

of [255,269], was also investigated, whereby reservation prices were set for each consumer

or prosumer defining the bid prices and offers. The final P2P trade price was defined

by the auction clearing price, determined by the intersection of the supply and demand

curves. A community of ten households, five with PV, were trialled in a case study.

Auction-based pricing was also investigated in [267, 281, 282]. Kang et al. [281] intro-

duced a double auction mechanism for P2P trades amongst plug-in hybrid electric vehicles,

whereby both the buyers and sellers bid to trade energy via an auctioneer, representing a

P2P market trader or aggregator.

A review of various auction-theoretic and game-theoretic approaches for P2P trading

is presented in [282] and includes a clear description of a double auction process. For each

trading interval, consumers and prosumers bid their offers to participate in P2P trading.

Consumers bid the maximum price at which they are willing to purchase P2P energy while

the prosumers bid their minimum sale price for their installed DER. These bid prices are
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referred to as the reservation prices [255, 269]. The highest consumer reservation price is

allocated energy first followed by a merit-order dispatch of progressively lower bidders. The

final allocated consumer reservation price defines the clearing price of the P2P auction for

that trading interval. Consumers and prosumers that are unable to offer over or undercut

the clearing price respectively are excluded from the P2P trading interval and instead

exchange energy with other sources, e.g. electricity retailers.

Tushar et al. [267] apply a modified version of a Vickrey auction by integrating a

Stackelberg game between the auctioneer and bidders to facilitate stored energy trades

between residential units and facility controllers of apartment buildings. In a Vickrey

auction, the clearing price is defined as the second highest reservation price amongst

the participants selected to enter into the P2P trades, in this case the reservation price

of the energy storage owner’s. However, this would adversely impact owner revenue.

Consequently, a Stackelberg game is used to strike a balance between the auction price,

which is somewhere between the Vickrey price and the maximum owner bid price, and the

amount of energy each owner is willing to trade.

Long et al. [274] investigated P2P energy sharing where only energy measurement at

the point of common coupling with the main grid and a one-way communication path were

required to minimise the energy costs of a community. Supply and demand management

were handled by a proposed two-stage aggregated control methodology of distributed

prosumer batteries within the community to minimise grid export and therefore maximise

self-consumption within the community. Data from smart meters at each household were

used to calculate the SDR for each time period. SDR was then used as the pricing

mechanism to determine the P2P trading prices with an additional compensation price

added for prosumer sales as a variant on the original formulation of [270].

Lüth et al. [262] considered alternative market designs to incentivise local energy trad-

ing with the aim of addressing the questions – what is the value of batteries towards P2P

trades and what market features are required? Batteries installed at prosumer residences

and a central community battery were both tested within a flexi-user market and pool

hub market established for each battery configuration with the objective of minimising

the community energy costs. Nine months of energy consumption data were applied to

the analysis with the communities modelled consisting of just four representative houses.

The P2P prices were set based on the willingness of the consumer to pay.

In [270], day-ahead markets were established for energy sharing models in a P2P

network. As stated in [276], forward pricing is expected to become more important as

microgrids and managed networks are more widely integrated. Morstyn et al. [276] further

expanded the consideration of forward price markets with proposed bilateral real-time and

day-ahead contract networks. A distributed price-adjustment process was established to

find a set of an agreed network of contracts between prosumers, suppliers (similar to

retailers or aggregators) and generators (i.e. traditional large-scale generation). The

unwillingness to deviate from the agreed network of contracts ensures price stability.

A framework to integrate prosumers into day-ahead and intraday wholesale electricity

markets is proposed in [261]. The research aimed to evaluate the value of P2P in day-ahead
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and intraday markets and how battery systems contribute towards demand flexibility. In

the first stage, the community commits to bidding into the day-ahead market based on

the combined uncertainty of DERs and wholesale spot prices. In the second stage, intra-

day P2P trades are used to balance supply and demand. P2P prices are set between

the FiT and grid day-ahead price and are assumed to be equal to the grid price less the

transmission component of the network tariff, similar to the methodology of the virtual

trial in [265].

The potential value of DERs is not believed to be adequately reflected under current

market structures by Roy et al. [255]. The potential for DERs to reduce energy con-

sumption amongst consumers and to enable the deferral of network augmentations are

not considered to be adequately reflected under existing tariff structures and incentive

schemes [255]. Within the context of the Australian NEM, P2P was proposed and investi-

gated in [255] as a solution to better utilise DERs. The impacts on consumers, prosumers,

retailers and the Distribution Network Service Provider (DNSP) were assessed.

Under the methodology established in [255], an aggregator is assumed to facilitate

the transactions while peers share an LUoS charge, representing associated network costs

for the levels of the network actually used to facilitate the energy exchange. The pricing

mechanism assumed was based on the Australian wholesale market, relying on the revealed

preferences of P2P participants to determine the traded quantity. The reservation prices

at which buyers and sellers are willing to trade are revealed and used to establish the

market clearing price and traded quantities.

In [255], three tests under P2P trading are investigated. The first test investigated the

overall effect of P2P trading. A hypothetical group of 1000 customers (based on 3 years of

data from 300 Ausgrid customers, half of which had PV systems installed) were modelled

with a 15% solar PV penetration. Due to the low supply of solar, high P2P demand

results in a large uplift to prosumer revenue due to higher P2P clearing prices compared

to FiTs. Consumers were not found to materially benefit and would rely on the free issue

of smart meters to participate. In Test 2, solar PV penetration rates were examined. With

penetrations above 50%, investments in solar PV were found to be less under P2P than

BAU. Under Test 3, aggregator margins up to 40% were found to have virtually no impact

on the quantity of P2P trades due to the large price differential between retail tariffs

and FiTs. However it was found that fewer consumer-only customers would participate.

Beyond 40%, traded quantities began to drop.

8.1.3 International Trial P2P Projects

Numerous pilot projects and trials have been established investigating the operation and

benefits of P2P energy trading. Zhang et al. [283] present a review of existing P2P trading

projects identifying projects that focus purely on business models and others consisting

of business models combined with technology aspects such as ICT and control. Sousa et

al. [7] also provide a brief summary of market design specific projects along with projects

considering the implementation and trading platform requirements for P2P energy trans-

actions. In [7], two key business areas are noted as (i) P2P exchange of energy surplus
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between local participants and (ii) enabling consumers to directly choose local DERs.

Piclo (formerly Open Utility) [284], based in the United Kingdom, enables local com-

mercial consumers to purchase electricity from local small-scale renewables [265]. Un-

der the structure, electricity meter data, generator pricing and consumer preferences are

leveraged by a matching algorithm via an online platform [268] to rationalise demand and

supply over half-hourly intervals [268,283].

Vandebron [285] is an online platform in the Netherlands allowing small independent

energy producers such as farmers with solar PV and wind turbines to sell energy to house-

holds [265]. Vandebron, similar to Good Energy via the Piclo platform [284], is a retailer

encouraging consumer and prosumers to exchange energy [268]. Prosumers with surplus

DER generation are incentivised to provide the energy to the Vandebron platform through

lower consumption electricity rates [268].

Similar to Piclo and Vandebron, Powerpeers is another online platform enabling par-

ticipants to trade energy services through a subscription fee [265]. The platform is backed

by Vattenfall, the largest utility in the Nordic region.

The transmission system operator Tennet in the Netherlands and parts of Germany has

undertaken two successful blockchain trial projects [286]. With blockchain development

partner IBM, flexibility services in both energy and demand [265] were provided through

Tesla electric vehicles and household batteries.

The Brooklyn Microgrid [287] is a local energy marketplace faciliated by LO3 En-

ergy’s online platform Exergy, enabling P2P transactions to be conducted autonomously

in near real-time. Bilateral contracts between peers are established through a proprietary

blockchain DLT whereby prosumers are able to auction surplus generation via an online

platform and mobile app to consumers willing to purchase the energy [259].

SonnenCommunity is a community based project by battery manufacturer Sonnen

whereby members store surplus energy, selling to other members when required at a low-

price tariff defined by Sonnen [268]. German regulation prohibits the feed-in of DERs

during periods of grid over supply [265]. Consequently, the SonnenCommunity manages

supply and demand to share energy between participants via a virtual energy pool [288]

with a zero net exchange of energy between consumers [265].

8.1.4 Trial P2P Projects in Australia

Given the research presented in this thesis is based on Australian electricity market con-

siderations and assessed against Australian customers and locations, a review of P2P

projects and trials conducted in Australia is presented in this section. Numerous projects

have been undertaken in Australia either through private investment or under govern-

ment grants provided through agencies such as ARENA. Many of the projects are still in

progress and the results are not yet publicly available.

A virtual trial of P2P energy trading using a distributed ledger technology was assessed

by AGL in 2017 with funding from ARENA [265]. With assistance provided by consultant

partners MHC Consult and IBM, the project was split into two stages. The first stage

established and assessed a virtual trading model while the second stage reviewed the
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benefits and limitations of DLT technologies such as blockchain. Historical half-hourly

data from AGL’s customer base consisting of 85 consumer and 27 prosumer homes in

Melbourne, Victoria were used for the Stage 1 assessment. A single summer weekday was

selected to demonstrate the model and methodology. The trial assumed each participant

was economically rational, thereby aiming to improve personal economic benefit. The

benefits were modelled to be distributed fairly across the P2P participants in prosumer

and consumer groups, proportional to their generation or consumption profiles. Bilateral

contracts between peers were not investigated in the research but rather a central P2P

administrator managing a P2P cost stack was assumed, consisting of:

• P2P export price (higher than the retailer feed-in tariff)

• Variable network charges (removal of partial network costs during P2P trading pe-

riods)

• P2P administration fees (assumed to be 1 c/kWh)

• Fixed network and retail daily charge fees (excluded from analysis as same charges

are applied whether in P2P market or BAU market).

Three hypothetical scenarios were modelled assessing network price modifications, cus-

tomer load profile changes and market competition effecting P2P market development.

The first scenario focused solely on variable network charges through the assumed elimi-

nation of the transmission component, referred to in Australia as the transmission use-of-

system (TUoS), as local DER generation does not require direct access to the transmission

network. The second scenario assessed the influence of customer load shifting to better

align with local DER profiles whilst also considering the elimination of TUoS. Finally,

the third scenario considered the entrance of a low-cost P2P market entrant handling the

transactions (with an administration charge of 2 c/kWh), shifting revenue away from the

incumbent retailer during DER generation periods.

The virtual trial found P2P trading can, under specific conditions, provide financial

benefit to both consumers and prosumers. Consumer preferences, for example local green

energy from family or friends, were also postulated to drive further value. The study

concluded that modifications to network prices based on location and time of generation

enables the establishment of a P2P market. Using storage and DSM to shift load to

local DERs was also found to unlock more P2P market value while a new low-cost P2P

administration entrant gave the greatest benefit to customers (potentially supported by

an existing registered retailer).

Stage 2 provided a technical assessment of DLT enabling P2P trading, with blockchain

specifically investigated. It was noted that DLTs have issues when applied to high-

frequency high-volume transactions, as storing all prosumer/consumer transactions would

be cost-prohibitive in a full-scale market [265]. Consequently, a compromise was pro-

posed to only store trading instructions and parameters from prosumers/consumers and

a history of net aggregated volumes of trading positions between retailers and contracted

prosumers/consumers.
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In March 2018, LO3 Energy, with ARENA funding, commenced a microgrid feasibility

study trial in the La Trobe Valley of Victoria Australia [289]. The trial aimed to assess the

viability of a local electricity marketplace trading energy and demand response services

amongst participants. The marketplace was facilitated by LO3 Energy’s blockchain-based

digital ledger platform Exergy [259] with participants including dairy farmers, residences,

commercial and industrial customers.

The Enexa trial facilitated by LO3 Energy [259] aimed to introduce transactive en-

ergy in South Australia’s Riverland, linking commercial customers with renewable energy

sources and pricing. The project goal aimed to expand the regional boundaries and ulti-

mately provide services to residential consumers.

Greensync, with ARENA funding, developed the decentralised energy exchange plat-

form deX [290]. The market-based platform enables physical coordination and dispatch of

DERs amongst market participants including homeowners, businesses, retailers and energy

networks. The platform lists buyers and sellers, records agreements between participants

whilst managing event handling and verifying contractual obligations. Functionality to

build-in P2P transactions into deX is planned, however the developers remain technology

agnostic regarding DLTs such as blockchain. A multitude of foundation partners including

equipment manufacturers, consultants and research bodies provided input to help define

the principles and establish the pilot marketplace. The pilot trial successfully demon-

strated the ability to respond to dynamic, time-related and location-based prices. The

deX platform is currently under commercial scale trials through Simply Energy’s ARENA

funded virtual power plant (VPP) in Adelaide, South Australia [291]. The VPP consists

of Tesla Powerwall 2 batteries installed in 1,200 homes providing 6 MW of energy storage.

An additional 2 MW of demand response capability facilitated by commercial businesses

is also included in the VPP trial.

Power Ledger has developed a platform based on the Ethereum blockchain that enables

“trustless, transparent and interoperable” energy trading [254]. The platform development

consists of two blockchain layers. The first blockchain layer facilitates POWR tokens

enabling Application Hosts, such as utilities or retailers, to have access to the platform

and to generate Sparkz (the second token) to be used by the consumer base. The second

layer issues Sparkz tokens purchased through fiat currencies against escrowed POWR

tokens via Smart Bonds and used by P2P customers for energy trades [254].

With funding provided by the Smart Cities and Suburbs Program of the Australian

Government, the RENeW Nexus project aims to undertake a city-wide demonstration of

energy and water trading facilitated by Power Ledger’s blockchain platform [292]. Around

40 residences across Fremantle, Western Australia are participating in the projet [292],

while trading of energy from a 5 MW solar farm and a grid-scale community-owned battery

system is also under investigation [293].

Other P2P trial projects undertaken by Power Ledger include the White Gum Valley

project in Perth, Western Australia and the Greenwood Solutions project in Melbourne,

Victoria, aim to facilitate energy trades from solar PV systems between residents in strata

developments [294].
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8.1.5 Cost-Reflective Tariff Structures

The current top-down market structure whereby energy has traditionally flowed from

centralised generation down to consumers is no longer applicable. Under this structure,

network charges do not account for bi-directional energy flows due to the presence of

high DER penetration rates. Prosumers currently receive a FiT for exported surplus

generation however FiTs are paid only against the energy portion of the tariff and do not

adequately reward prosumers for the typically local consumption by nearby customers and

subsequently the use of only the local distribution network [279]. Concurrently, retailers

must pay the full network charge to DNSPs [279] which is subsequently passed on to local

consumers. Furthermore, the energy component of the consumer bill must be paid against

the retailer’s whole electricity contract book, not the FiT paid to the nearby prosumer

as the most likely source of energy generation [279]. Consequently, cost-reflective tariff

structures have received renewed focus in recent research [21, 256, 277–279], accounting

for actual volumetric energy and power demand as well as consideration of local network

utilisation.

Network tariffs at the level of small consumers have traditionally been volumetric and

fixed, with little variance across geographical regions [278]. The uptake of energy-intensive

appliances such as air-conditioning systems [278], along with the augmentations required

to integrate high-level PV market penetration, have required additional investment in net-

work infrastructure to manage increased peak-hour demands. Rising electricity prices have

placed pressure on households which have in turn responded through reduced consump-

tion and the installation of DERs to manage retail price exposure. The resultant further

reduction in network capacity factors exacerbates the disparity between the network cost

of service provision and the time of energy consumption. Consequently, cost-reflective

tariffs have been proposed whereby customers are informed and capable of responding

to network tariff price signals based on the direct impact the customer induces on the

network. Cost-reflective tariffs thus represent fairer prices with minimised cross-subsidies

and tariffs signalling efficient investment in the network and DERs [277].

In Australia, reform is already underway for cost-reflective network tariffs [279]. In

2014, the Australian Energy Market Commission (AEMC) amended the National Electric-

ity Rules with a network pricing objective [277] to reflect the efficient costs to the DNSP

to provide electricity services to customers [295]. However, the rule was not prescriptive

in how to design cost-reflective tariffs [278]. Additional modifications have be proposed

to include a capacity or demand charge component [277, 278], however in 2017 only a

few distributors such as SA Power Networks had introduced a demand tariff structure.

In [278], cost-reflective tariff designs with demand charges are investigated. The correla-

tion between existing cost-reflective charge structures and peak contribution from a group

of over 3,800 customers was found to be poor. An adjusted demand charge structure was

proposed to move the demand component from one based on the customer’s monthly peak

to a charge based on customer demand coincident with the network peak demand. The co-

incident demand model was shown to be better aligned with the network pricing objective

of the Australian Energy Regulator (AER). More recently, numerous Australian DNSPs,
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including Ausgrid, Endeavour Energy and Essential Energy have, as part of the 2019–24

regulatory submisison, each presented an updated tariff structure statement (TSS) to the

AER [296] which included a demand or capacity charge in some form, providing a better

representation of the efficient costs of network service delivery.

In parallel to network tariff cost-reflective reform, the utilisation of local networks

only by DERs, as opposed to traditional centralised generation requiring the full use of

transmission and distribution networks, has been considered for potential tariff structure

changes.

The introduction of a local generation network credit (LGNC) has been considered in

a number of countries, whereby additional time-varying credits are effectively added to the

standard FiT based on local network utilisation [279]. Rutovitz et al. [258] consider local

generation credits whereby DERs exporting to the grid are rewarded with a volumetric

credit linked to the time-of-day export. The LGNC concept was submitted to the AEMC

for consideration as a regulatory change [279, 280]. However, the proposal was rejected,

with the determination finding that the introduction of an LGNC would provide insuffi-

cient incentive to invest in DERs. Contrary to the objectives of local network utilisation,

the introduction of LGNCs was expected to lead to higher consumer prices [280].

In [279], LGNCs were investigated with a probabilistic approach proposed to assess

the potential value associated with PV and energy efficient appliances. It was postulated

that the rule change determination of the AEMC [280] failed to account for two consid-

erations. Firstly, the combination of LGNCs and targeted TOU charges would enable

short-term peak shaving (which can be implemented in parallel with the refinement of

cost-reflective tariff design). Secondly, LGNCs would also lead to reduced network ex-

penditure by encouraging generation at peak times (similar to the effect of current TOU

pricing) [279].

The concept of an LGNC was extended to a local network charge (LNC) in [257]

whereby the network component of the electricity bill is reduced in recognition of the

partial use of the distribution network when generators and consumers are locally situated.

Trials were conducted to assess local energy trading and the application of LNCs for

commercial scale generators against trialled net-metered loads either co-located within

the same facility or distributed across a number of sites. The LNC could be applied

as a reduced network charge for the consumer or a credit to the local generator. The

generator credit was considered in modelling due to the complications associated with

maintaining records of local transactions for local consumption of local generation [21].

However, as previously discussed, this issue may be alleviated cost-effectively through the

implementation of DLTs. The LRMC, as the standard measure for establishing network

tariffs and representing the annual cost of providing one unit of additional capacity to the

network [257], was used to calculate the LNC. The calculation was in two parts with a base

value provided by the LRMC and an additional time-varying tariff component. The base

value for the LNC at each level of the network includes only the LRMC for the network

levels upstream.

The LNC tariff component was based on two methodologies. The first was a volumetric
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method whereby the peak and off-peak annual hourly likelihood are used to establish the

tariff. For example, if peak hours are 90% likely to occur in 600 hours of the year, then

the LNC peak volumetric tariff component (in $/kWh) is (LRMC× 90%)/600. Note that

as LRMC is defined in $/kW, in order to provide a time-based distribution of cost over

a year, typical practice is to convert it to an effective kWh value by dividing it by 8,760

(the number of hours in a standard year).

The second method consisted of both volumetric and capacity components. The split

between volume and capacity was based on mirroring network usage tariff structures [21].

For example, a DNSP calculated split of 76:24 would result in 24% of the LRMC assigned

to the capacity component which is in turn calculated by determining the number of days

per year a peak is expected to occur. Consequently, the capacity component is charged in

units of $/kW/day based on the LRMC.

In [21], it was found that the capacity payment, dependent on the minimum gener-

ator availability during a particular period, did not adequately incentivise as it did not

reward fractional contribution during peak periods. Consequently, a targeted version of

the volumetric method, whereby the DNSP determines a smaller number of peak hours

per year with a high probability of occurrence, is used to establish the peak LNC, thereby

providing transparency for a generator to maintain availability [21].

It is important to note that the trial in [257] investigated medium-scale cogeneration,

solar and wind with installed capacity greater than 150 kW. In [21], it was recommended

that LNCs should not be made available to non-dispatchable generation or generation un-

der 10 kW. However, it was also conceded that the introduction of batteries may influence

the recommendation in the future.

8.1.6 Research Objective for P2P Trading

Existing research including [261,262,268,269] has shown the potential benefit a prosumer

can receive through providing access to existing DER systems under a P2P trading mar-

ket. However, Nguyen et al. [269] identified that prospective investors would benefit from

prior consideration of market conditions and the penetration rates of participant DERs

when sizing systems. Based on the literature review undertaken for this research, the op-

timal system sizing and orientation of DER systems to maximise savings at the individual

consumer level has not previously been investigated for P2P trading applications.

In this research, a novel lifetime assessment of DERs consisting of solar PV and battery

systems trading in a P2P market is undertaken, with the objective of assessing the influ-

ence of design optimisation on market participation. An expansive P2P market assessment

based on real-world electricity consumption data from over 2,200 residential premises is

conducted, an assessment which to the author’s knowledge has not yet been undertaken

in the context the Ausralian NEM at such a scale with actual metered data. The data,

gathered during the SGSC project, are utilised to establish a hypothetical group of energy

trading peers. Previously, solar PV penetration rates have been considered in [255,269,272]

while P2P trader margins have been considered in [255, 269]. Similar considerations are

proposed for this research with sensitivity analyses undertaken for various DER penetra-
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tion rate scenarios, P2P participant margins, commercially available BESS types, retailer

plans and the inclusion/exclusion of FiTs and P2P trading.

Existing research on P2P trading with energy storage systems have not typically mod-

elled key factors effecting lifetime storage cost including battery degradation and physical

limits such as a depth of discharge. In [262, 269], no consideration was given to degra-

dation or depth of discharge. In [260, 261, 274], minimum charge levels were considered

however battery degradation was not accounted for. In this research, battery degradation

and the associated cost of degradation, maximum depth of discharge and charge/discharge

efficiencies are uniquely accounted for based on manufacturer warranties and data sheets.

The P2P trading mechanism considered in this research is based on the auction-based

bidding scheme of [255, 265, 269, 273] with consideration given to the minimum returns

expected by P2P participants. Although the supply and demand ratio market mechanism

has previously been shown to outperform other mechanisms [268], such a mechanism is

only applicable to a community-based structure where the grid import and export prices

are the same for all participants. As the objective of this research is to optimise the

economic benefit of an individual customer, the P2P market structure resembles either the

full P2P or at least the hybrid structure defined in [7]. The minimum sell and maximum

buy prices are not homogeneous for all participants as each customer can sign up to

different retailers or aim to recover DER investment costs dependent on their personal

circumstances. Therefore an auction-based scheme is more relevant and modelled in this

chapter. A variant on the SDR ratio is proposed to manage the partial success of P2P

bidding when participant bids coincide with the determined clearing price.

Residential and small business premises typically do not have the knowledge or tech-

nical capability to participate in networks of contracts involving multiple-agents, or to

facilitate the load forecasts necessary for more advanced forward and adjustments mar-

kets. Consequently, this research focuses on post-delivery settlement of energy transactions

through the use of DLT, rather than optimally scheduling and bidding DERs into the P2P

market. Bilateral contracts between consumers and retailers in the form of electricity re-

tail plans, as per existing BAU practice, are assumed to provide the necessary balancing

for all energy not sourced through the P2P market.

In this research, given the recent focus of the AER to consider the efficient costs of

electricity delivery, the recently developed cost-reflective tariffs by Ausgrid are uniquely

considered in the context of a P2P market. The tariffs, which include a demand com-

ponent, are expected to evolve over the next decade, coinciding with a future electricity

market with high DER penetration rate scenarios and active P2P trading.

Finally, LUoS network charges are considered in this research, similar to [255, 269]

and the virtual trial of [265]. Due to the difficulties in establishing the exact cost of the

local network portion used for local P2P trading, the high level assumption of [265] is

assumed, whereby the TUoS component is excluded from the network tariff component of

the electricity bill. In [257], the customer is solely responsible for the LUoS while in [269],

the LUoS is included as part of the P2P trader margin with no further quantification

of the charge component. In this research, the methodology of [255] is applied whereby
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the LUoS is assumed to be shared between the prosumer and the consumer to encourage

customer participation.

8.2 P2P Market Model

The P2P market model considered in this research is based on double auction schemes

similar to those presented in [255,267,269,281,282]. Under such schemes, both the buyer

and seller of energy bid to participate in a P2P market facilitated by a P2P trader or

aggregator via provision of a reservation price and an associated energy quantity.

In this research, a modified version of the P2P trading scheme considered in [255,269]

is applied. Under the methodology established in [255, 269], an aggregator is assumed

to facilitate transactions while peers share the LUoS charge, representing the associated

network costs for the levels of the network used to facilitate the energy exchange. Sharing

the LUoS charge encourages P2P participation by reducing the network component of

the energy costs to the consumer. Figure 8.2, adapted from [269], graphically depicts the

financial agreements between market participants.

Generator TNSP DNSP

LoadLoad 
with 
DER

P2P TraderRetailer

DUOS + TUOS

LUOSTUOS

Energy 
Payment

Retail 
Tariff FiT

P2P Clearing Price 
(includes ½ LUOS)

P2P Clearing 
Price (- ½ LUOS)

Retail 
TariffSurplus PV Energy

Energy Supply

Feed-in Tariff

BAU Payment

P2P Payment

Figure 8.2: Block diagram of P2P energy supply and financial transactions adapted from
Nguyen et al. [269]

Nguyen et al. [269] considered the LUoS to be included in the P2P trader margin. In

this research, the LUoS charges are quantified and assumed to be equivalent to the Ausgrid

distribution use-of-system (DUoS) charges under the TSS of the 2019-2024 regulatory

period, detailed in Section 8.2.2. Furthermore, as trades of P2P energy within a single

distribution network do not make use of the transmission network, TUoS charges are

excluded from P2P trades in this research, as similarly considered in [21,265]. The avoided
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TUoS charges are quantified in this research based on the published estimates in the

Ausgrid 2019–2024 TSS.

The P2P sale reservation prices Bpvsell,qdh and BBESSsell,qdh for solar PV and BESS

discharge respectively, in billing period q, day d and hour h, are defined as follows:

Bpvsell,qdh =
(
Tfit,qdh + Tluos,qdh/2

)
(1 + μP2P )

(
1 + μT /2

)
(8.1)

BBESSsell,qdh = Cdegrad +
(
Cc,qd(h−1) + Tluos,qdh/2

)
(1 + μP2P )

(
1 + μT /2

)
(8.2)

where Tfit,qdh, Tluos,qdh, μP2P and μT are the feed-in tariff from the electricity retailer,

LUoS charge payable to the DNSP, the preferred sale margin of the P2P participant and

the P2P trader margin respectively. In (8.2), the BESS sell bid is dependent on the

effective battery degradation cost Cdegrad associated with the discharge cycle and the cost

of energy Cc,qd(h−1) used to charge the battery up to the previous hour, h− 1. Equations

for Cdegrad and Cc,qdh are defined in Section 8.2.3.1.

The P2P buy reservation price is defined in (8.3) where Ttuos,qdh is the TUoS charge

payable for retailer purchased energy, which is no longer applicable to P2P energy trades.

Bbuy,qdh =
Tret,qdh − Tluos,qdh/2− Ttuos,qdh

1 + μT /2
(8.3)

Many reservation price bids submitted to the P2P trader can be expected to be equiv-

alent due to the limited number of electricity retailers resulting in a limited number of

retail [270] and feed-in tariffs.

In a P2P market, while the majority of successful bids remain unaffected, for final

bidders where the bid price corresponds to the determined clearing price and energy,

without appropriate handling, the energy balance between supply and demand can be

violated. To ensure energy trade balances are not violated, the method of [269] is further

modified by applying a supply and demand ratio based on the market mechanism defined

in [270]. While the mechanism in [270] is used to dictate the P2P clearing for a P2P

community, in this research, the supply and demand ratio is used to define the portion

of energy shared between the final bidders, with the remainder of the energy requested

or delivered is settled against the customer’s retailer of choice. Definition of the supply

and demand ratios, as well as a description of the P2P settlement process is provided in

Section 8.2.1.

8.2.1 P2P Settlement

The pricing mechanism assumed in the auction strategy is based on the Australian whole-

sale market, relying on the revealed preferences of P2P participants to determine the

traded quantity. The reservation prices at which buyers and sellers are willing to trade

are revealed and used to establish the market clearing price and traded quantities. Under

a double auction settlement scheme, P2P bids are settled based on merit order, with buy

bids ordered from highest to lowest and sell bids from lowest to highest. The final sell

reservation that is less than or equal to a buy reservation at an equivalent cumulative
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energy level defines the clearing price of the trading interval. The market settlement steps

are as follows:

(i) Calculate the import/export quantity for each customer.

(ii) Calculate the reservation price for the purchaser defined as the retail tariff less half

the LUoS costs and half the P2P trader margin.

(iii) Calculate the reservation price for the seller defined as the retail tariff plus half the

LUoS costs and half the P2P trader margin.

(iv) Create cumulative demand/supply tables with corresponding reservation prices.

(v) Find the intersection of the table entries, representing the clearing price and the

electricity quantity traded.

The P2P settlement process can be described mathematically as follows. Consider J

and K to be the number of unique buy and sell reservation prices arranged in merit order,

where xρ,j and yρ,k represent the unique buy and sell prices, while xξ,j and yξ,k represent

the corresponding cumulative bid energy for each j ∈ {1, . . . , J} and k ∈ {1, . . . ,K}. P2P
settlement is achieved when, for xξ,j > 0 and yξ,k > 0, there exists a j and k, such that:

xξ,j−1 < yξ,k and xρ,j+1 < yρ,k+1 (8.4)

Should j and k be found, then the P2P clearing price is TP2P,qdh = yρ,k and the final

buy bid successfully participating in the auction is BBUY,qdh = xρ,j . For the determination

of the energy cleared, consider the scenarios shown in Figure 8.3. In the first scenario of

Figure 8.3(a), the P2P clearing price and energy quantity are TP2P = yρ,k and EP2P = yξ,k

respectively. The final successful buy bid is BBUY = xξ,j . Note that the cumulative energy

of xξ,j is greater than EP2P = yξ,k, consequently only a portion of the buy bid position j

is settled in the P2P market. In the case of Figure 8.3(b), the energy bid yξ,k associated

with the clearing price TP2P = yρ,k, exceeds the energy bid xξ,j associated with the final

buy price BBUY = xρ,j . Therefore only a portion of the energy in bid position k is sold

in the P2P market. In Figure 8.3(c), the final successful buy and sell bid prices are equal.

Consequently, the clearing price is TP2P = yρ,k = xρ,j . Again only a portion of the final

buy bid is settled in the P2P market. Finally in Figure 8.3(d), the final successful buy

and sell bid energies are equal. Therefore, EP2P = xξ,j = yξ,k and under this scenario the

entire energy quantity of the final buy and sell bids are settled in the P2P market.

Based on the examples shown in Fig 8.3, where j and k exist such that (8.4) is satisfied,

the energy cleared in the P2P in billing period q, day d and hour h, is defined as:

EP2P,qdh =

⎧⎪⎨
⎪⎩
yξ,k if xξ,j > yξ,k

xξ,j otherwise
(8.5)
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Figure 8.3: P2P energy supply demand settlement examples
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The supply and demand ratio for final successful buy bids can be determined as follows:

RBUY,qdh =
EP2P,qdh − xξ,j−1

xξ,j − xξ,j−1
(8.6)

The demand and supply ratio final successful sell bids is defined as:

RSELL,qdh =
EP2P,qdh − yξ,k−1

yξ,k − yξ,k−1
(8.7)

To ensure a solution is found satisfying the condition (8.4), if it indeed exists, dummy

values must be added in the first and last positions of the cumulative energy and price

vectors. The starting and end positions for bidding vectors xξ = (xξ,0, . . . , xξ,J+1),

xρ = (xρ,0, . . . , xρ,J+1), yξ = (yξ,0, . . . , yξ,K+1), yρ = (yρ,0, . . . , yρ,K+1) respectively are

as follows:

xξ,0 = 0 xρ,0 = xρ,1 yξ,0 = 0 yρ,0 = 0

xξ,J+1 = xξ,J xρ,J+1 = 0 yξ,K+1 = yξ,K yρ,K+1 = yρ,K (8.8)

For each P2P participant with buy and sell bids Bbuy,qdh and Bsell,qdh respectively, the

supply and demand ratio Rbuy,qdh (or demand and supply ratio Rsell,qdh in the case of sell

bids), can be defined as follows:

Rbuy,qdh =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
RBUY,qdh if Bbuy,qdh = BBUY,qdh

1 if Bbuy,qdh > BBUY,qdh

0 otherwise

(8.9)

Rsell,qdh =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
RSELL,qdh if Bsell,qdh = TP2P,qdh

1 if Bsell,qdh < TP2P,qdh

0 otherwise

(8.10)

Note that the sell bid Bsell,qdh is equal to either Bpvsell,qdh or BBESSsell,qdh, depending on

success of each.

Equations (8.9) and (8.10) are used in the objective function of the optimisation

problem defined in Section 8.4, to reflect the amount of energy successfully traded in the

P2P market and settled against the retailer for a particular participant within a trading

hour.

8.2.2 Distribution Network Tariff Structure

DNSPs are required to submit a TSS to the AER for review and determination prior to

entering the next regulatory period, currently set every five years. The tariff structures of

Ausgrid, as the DNSP applicable to the load data from the SGSC project, are assumed in

this research.
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In response to rule changes by the AEMC [277] directing DNSPs to reflect the efficient

costs of network service delivery in tariff proposals, Ausgrid along with other distributors

within the National Electricity Market are required to introduce cost-reflective pricing

structures. The final proposal for the 2019–2024 regulatory period submitted by Ausgrid

to the AER [297] included the introduction of demand tariffs for residential consumers for

the first time [298]. Two primary structures were proposed:

• TOU demand tariff – Including TOU energy rates reflecting similar to traditional

TOU tariff structures and a new daily demand charge component based on seasonal

peak kW demand.

• Demand tariff – Including flat (low) energy rates and a large demand charge com-

ponent.

In this research, the latest available TSS developed by Ausgrid [298–301], including

TUoS and DUoS components forming an overall network use-of-system (NUoS) charge,

is applied to the subsequently presented analysis, with each of the two tariff structures

considered under particular scenarios. A summary of the Ausgrid network tariffs assumed

is provided in Appendix A Table A.6.

8.2.3 Energy Flow Models

While the BESS energy flow model equations defined in Chapter 6 are largely still applica-

ble under a P2P trading market, slight modifications to the original models are required,

details for which are provided in this section. Previously, four operation modes were con-

sidered in Section 6.1.1, based around off-peak, shoulder and peak retail tariff periods.

Under a P2P trading environment, the operation of the BESS, either charging or dis-

charging, is based around the price signals associated with the P2P market. Therefore,

the following amended modes of operation are considered:

• Mode A: Off-peak charging with discharging in shoulder and peak periods based

on settlement against a sell reservation price.

• Mode B: Charging only via solar PV, discharging any time based on settlement

against a buy reservation price.

The charge control operators defined in Section 6.1.1 are revised and simplified to the

following parameters:

Pd,qdh =

⎧⎪⎨
⎪⎩

0 if h ∈ {off-peak hours} and in Mode A

1 otherwise
(8.11)

Pc,qdh =

⎧⎪⎨
⎪⎩

1 if h ∈ {off-peak hours} and in Mode A

0 otherwise
(8.12)
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where Pc is the control signal for permission to charge and Pd is the control signal for

permission to discharge. With the addition of the charge and discharge permission control

signals, (6.5)–(6.7) defined in Chapter 6 are adjusted to (8.13)–(8.15) for BESS charging

from PV, BESS charging from the grid (settled against the retailer or in the P2P market)

and BESS discharging energies respectively.

Ebpv,qdh =max

{
min

[
Cmax,qdh − Cqdh,

(
Epv,qdh − Eload,qdh

)
(1− F ) ,

Rmax(1− F )

]
, 0

}
(8.13)

Ebg,qdh = max

{
min
[
Cmax,qdh − Cqdh, Rmax (1− F )

]
Pc,qdh − Ebpv,qdh, 0

}
(8.14)

Ebd,qdh =max

{
min

[
Cqdh − Cmax,qdh(1− δ),

Eload,qdh − Epv,qdh

1− F
,Rmax

]

×Pd,qdh, 0

}
(8.15)

The total energy loss term Ebloss,qdh from (6.8) remains unchanged, repeated as (8.16)

for convenience, along with the individual charge and discharge loss terms described in

(8.17)–(8.19).

Ebloss,qdh = Ebpvloss,qdh + Ebgloss,qdh + Ebdloss,qdh (8.16)

Ebpvloss,qdh = max

[
min

(
Cmax,qdh − Cqdh

1− F
,Epv,qdh − Eload,qdh, Rmax

)
, 0

]
F (8.17)

Ebgloss,qdh = max

[
min

(
Cmax,qdh − Cqdh

1− F
,Rmax

)
Pc,qdh − Ebpv,qdh

1− F
, 0

]
F (8.18)

Ebdloss,qdh = Ebd,qdhF (8.19)

where Ebpvloss,qdh, Ebgloss,qdh and Ebdloss,qdh are the losses during PV charging, grid charg-

ing and discharging respectively.

The PV AC generated energy Epv,ac for each hour period is calculated through the

updated model of (5.27) presented in Section 5.6. The efficiency factors assumed in this

chapter are identical to those considered in Section 5.6 with the exception of inverter

efficiency ηinv which is assumed to be 96% for both PV and battery inverters where a

particular BESS product does not come with an in-built inverter.

8.2.3.1 P2P Energy Bids

Additional energy terms associated with the P2P buy and sell bids are defined as follows:

Epvbid,qdh = max
(
Epv,qdh − Eload,qdh − Ebpv,qdh − Ebpvloss,qdh, 0

)
(8.20)
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Ebdbid,qdh =max

{
min
[
Rmax − Ebd,qdh, Cqdh − Ebd,qdh − Cmax,qdh (1− δ)

]
, 0

}

× Pd,qdh(1− F ) (8.21)

Ebuybid,qdh = max
(
Eload,qdh − Epv,qdh + Ebpv,qdh + Ebloss,qdh, 0

)
(8.22)

where Epvbid,qdh is the PV sell energy bid to the P2P trader associated with the previously

defined Bpvsell,qdh price, Ebdbid,qdh is the BESS sell bid corresponding with a BBESSsell,qdh

price and Ebuybid,qdh is the buy energy bid with the associated price Bbuy,qdh. It should be

noted that the BESS sell bid must account for battery energy loss, hence (8.21) is repre-

sentative of the energy available at the output of the battery after losses. The additional

loss term Ebdbidloss,qdh, defined in (8.23), is applicable should the BESS discharge bid be

successful.

Ebdbidloss,qdh =max

{
min
[
Rmax − Ebd,qdh, Cqdh − Ebd,qdh − Cmax,qdh (1− δ)

]
, 0

}

× Pd,qdhF (8.23)

Following a successful bid, the total energy discharge (8.15) requires an update to

reflect the P2P traded energy. Consequently, additional terms Ebdbid,qdh and Ebdbidloss,qdh

must be added to (8.15), becoming (8.24). Note that the demand and supply ratio Rsell,qdh

is included in (8.24) to reflect the success of the P2P sell bid.

Ebd,qdh =max

{
min

[
Cqdh − Cmax,qdh(1− δ),

Eload,qdh − Epv,qdh

1− F
,Rmax

]

×Pd,qdh, 0

}
+
(
Ebdbid,qdh + Ebdbidloss,qdh

)
Rsell,qdh (8.24)

As previously identified in (8.2), the reservation price associated with BESS discharge

bids is dependent of the cost to charge the BESS and the effective degradation cost asso-

ciated with the discharge cycle. The average effective electricity tariff Tc,qdh to charge the

battery over the lifetime of the system is defined as:

Tc,qdh =
Cc,qdh

Ethrough,qdh
(8.25)

where Cc,qdh is the charge cost, Ethrough,qdh is the cumulative energy throughput experi-

enced by the battery up to period q, day d and hour h. Ethrough,qdh and Cc,qdh are defined

in (8.26) and (8.27).

Ethrough,qdh = Ethrough,qd(h−1) + Pc,qd(h−1)

(
Ebg,qd(h−1) + Ebgloss,qd(h−1)

)
+ Ebpv,qd(h−1) + Ebpvloss,qd(h−1) (8.26)
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Cc,qdh = Tc,qd(h−1)Ethrough,qd(h−1) + Pc,qd(h−1)

[
TP2P,qd(h−1)

(
1 + μT /2

)
Rbuy,qd(h−1)

+Tret,qd(h−1)

(
1−Rbuy,qd(h−1)

)](
Ebg,qd(h−1) + Ebgloss,qd(h−1)

)
+ Tfit,qd(h−1)

(
Ebpv,qd(h−1) + Ebpvloss,qd(h−1)

)
(8.27)

In (8.27), the total charge cost Cc,qdh at hour h is dependent on the historical cost

up to the previous hour period h − 1, represented by the first addition term Tc,qd(h−1)×
Ethrough,qd(h−1) and the cost of charge in the h − 1 period. Consequently, the propor-

tion of the energy bought from the P2P market and the retailer must be accounted for

(represented by the middle addition term). Finally, where the battery is charged either

partially or fully by the PV system, the forfeited FiT must be accounted for as the rev-

enue stream is foregone in order to charge the battery for potential P2P sale in subsequent

hours. This cost is accounted for in the final major addition term Tfit,qd(h−1)(Ebpv,qd(h−1)+

Ebpvloss,qd(h−1)).

Equation (8.2) also includes a BESS degradation cost Cdegrad, which is defined below

as:

Cdegrad =
Sb

EEOL
(8.28)

where Sb is the BESS cost previously defined in (6.14) and EEOL is the total energy

throughput of the battery before reaching end-of-life. Each charge/discharge cycle is as-

sumed to reduce the maximum capacity of the BESS linearly with a battery degradation

rate of ζbatt defined previously in (6.1). The resulting lifetime degradation can be repre-

sented by an arithmetic series, the summation of which is represented by (8.29).

EEOL =
YEOL

2
[
2Cmax0δ − (YEOL − 1) ζbatt

] (8.29)

where YEOL is the BESS cycle life, δ is depth of discharge and Cmax0 is the initial maximum

capacity.

8.2.4 DER Penetration Scenarios

In this research, the influence of DER penetration rates on the optimal DER system

design is investigated. Three different DER penetration scenarios amongst P2P market

participants are considered as follows:

1. 100% have solar PV and a BESS by year 5 and year 10 respectively

2. 100% have solar PV and 50% have a BESS by year 10 respectively with a continued

linear uptake of BESSs until year 20.

3. 100% have solar PV and 50% have a BESS by year 20.

It is assumed that initially 50% and 10% of P2P market participants have PV and a

BESS respectively. This assumption is justified given the widespread adoption of solar PV
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in Australia and the increased likelihood of DER owners, as energy conscience consumers,

to participate in a P2P market. Residential BESSs are in their relative infancy and

consequently a far lower penetration percentage of 10% is assumed. While the initial

BESS assumption is higher than the existing penetration rate in Australia in 2019, an

increased appetite for BESS owners to participate in a P2P market, compared to other

electricity consumers without DERs, is considered to be reasonable.

The DER uptake at the start of each simulation year over the 20-year P2P market

horizon modelled in this research is assumed to follow a linear trajectory from the initial

starting penetration percentages. A graphical representation of the three DER penetration

scenarios is shown in Figure 8.4.

0 2 4 6 8 10 12 14 16 18 20

P2P trading year

0

10

20

30

40

50

60

70

80

90

100

D
E

R
 P

en
et

ra
tio

n 
P

er
ce

nt
ag

e 
(%

)

PV 100% by Year 5
BESS 100% by Year 10
PV 100% by Year 10
BESS 50% by Year 10
PV 100% by Year 20
BESS 50% by Year 20

Figure 8.4: P2P market participant DER penetration rate scenarios

8.2.5 Weather Models

The new National BRL model for satellite-based data measurement developed in Chapter 4

was used, given the supporting statistical assessment presented in the chapter. Typical

meteorological year data sets were developed for irradiation and temperature according to

the methodology defined in Section 6.3.3.4.

8.2.5.1 Solar Irradiation Model

The new National BRL with BoM variability adjustment was applied based on the supe-

rior performance documented in Chapter 4 for satellite-based data measurements. The

BRL model parameters defined in Table 8.1 were applied to the TMY irradiation data to

determine the diffuse fraction. Equations (3.6) and (3.7) were then used to determine the

direct irradiation component.
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Table 8.1: BRL model parameters for satellite-based measurements

Model β0 (constant) β1 (kT ) β2 (AST) β3 (α) β4 (KT ) β5 (υ)

National BoM -7.108 9.598 0.01416 -0.00743 2.813 -0.343

8.2.5.2 Temperature Model

Following the TMY data development process of Figure 6.3, the hourly temperature model

of de Wit [242] as defined in Section 7.1, was applied to estimate hourly temperatures from

the maximum and minimum daily temperature data.

8.2.6 Input Data

To simulate a large-scale P2P trading pool, representative load data for potential P2P

participants were established through interrogating half-hourly smart meter data from

7,694 customers in the Ausgrid network acquired during the SGSC project. Section 8.3

summarises the data processing and customer selection methodology.

To represent the climatological variability across the Ausgrid network, ten different

BoM weather stations capturing daily maximum and minimum temperature data were

selected, summarised in Table 8.2, providing wide geographical coverage. Irradiation data

corresponding to the coordinates of the weather stations were extracted from the AREMI

database.

Table 8.2: Weather station data included in P2P trading model

Station Name
BoM Latitude Longitude Elevation

Year OpenStation ID (◦) (◦) (m)

Williamtown RAAF 61078 -32.79 151.84 8 1942
Paterson (Tocal AWS) 61250 -32.63 151.59 30 1967
Cessnock Airport AWS 61260 -32.79 151.34 61 1968
Scone Airport AWS 61363 -32.03 150.83 221 1988
Norah Head AWS 61366 -33.28 151.58 19 1989
Mangrove Mountain AWS 61375 -33.29 151.21 305 1994
Newcastle University 61390 -32.89 151.71 21 1998
Terry Hills AWS 66059 -33.69 151.23 199 2004
Sydney (Observatory Hill) 66062 -33.86 151.21 39 1858
Parramatta North (Masons Drive) 66124 -33.79 151.02 55 1965

Ten TOU retail plans available in 2019 were considered, including plans from the

largest three retailers AGL, EnergyAustralia and Origin Energy within the Ausgrid net-

work, to provide a representation of the retail plans servicing the majority of Ausgrid

customers. The distribution network tariff structures considered in this chapter, as pub-

lished in Ausgrid’s 2019–2024 TSS and described in Section 8.2.2, were applied through

an adjustment of the 2019 retail plans. The prevailing 2019 network tariffs were first re-

moved from the peak, shoulder and off-peak energy rates and the proposed tariff structure

for the next regulatory period added to the adjusted rates. Where a particular plan in-

cluded a discount factor, the discount factor was then applied, along with the 10% Goods

and Services Tax (GST) applicable in Australia. The resultant revised tariffs for each of
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the electricity retailers considered in this research are provided in Appendix A Table A.7

against the two Ausgrid demand tariff forms ‘Demand’ and ‘TOU Demand’.

The range of battery models considered in this research was extended from the Enphase

AC Battery and the Tesla Powerwall 2 investigated in Chapter 6, to include an additional

seven batteries available in 2019. Appendix D Table D.3 provides a summary of the BESS

characteristics including parameters CMAX , Rmax, CEOL, YEOL, D, ηbatt, Cdegrad and Ub

as well as battery, inverter and installation cost assumptions.

PV systems were modelled based on the Trina Solar TSM-300PD06H module charac-

teristics summarised in Appendix C Table C.4.

PV system prices were based on the recent price guidance published by Solar Choice,

an Australian based solar quote comparison provider [302]. Average monthly system

costs from January 2018 until February 2019 were calculated based on published monthly

‘median’ and ‘high’ values. Table 8.3 provides a summary of the per unit system cost

for various system sizes. The ‘median’ values were assumed for analysis presented in this

chapter.

Table 8.3: Average residential solar PV system prices from Jan 2018 to Feb 2019. Source:
Solar Choice [302]

Size (kW)
1.5 2 3 4 5 7 10

Average ‘Median’ PV cost ($/W) 2.29 2.11 1.79 1.64 1.53 1.61 1.70
Average ‘High’ PV cost ($/W) 2.94 2.80 2.39 2.17 2.02 2.07 2.20

8.3 P2P Market Simulation

A subset of the SGSC customer database, characterised as load-only customers with no

gross or net metered solar PV or any controlled loads, was extracted and filtered to ensure

at least one full year of data were available. The program to roll-out smart meters to

the SGSC participants was conducted over a number of months. As a result, the time

ranges of the available customer data were not temporally coincident, with only partial

years available for some customers. Consequently, for the purposes of this research and the

development of a P2P market simulation, customers with at least the full 2013 calendar

year of data were selected. Following this filtering process, the pool of available customers

was reduced from 7,694 to 2,305. Where additional months of data were available for the

selected customers, a representative load year was developed, similar to the development

of the TMY weather data sets described in Section 8.2.5.

The process to construct a pool of participant customers to simulate a P2P market

is outlined in the flow chart of Figure 8.5. Weather data for each customer are randomly

assigned from the database of ten locations within the area covered by the SGSC project

as defined in Section 8.2.6. To establish the P2P pool of participants, PV and BESS

systems, the year of installation and an electricity retail plan are randomly assigned to

each customer, based on the DER penetration percentage scenario defined in Section 8.2.4

assumed in the simulation. For certain P2P simulation cases, as defined later in this
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Figure 8.5: P2P participant selection process flow chart
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section, the network tariff structure (defined in Section 8.2.2) and BESS charging mode

(either Mode A or Mode B as defined in Section 8.2.3) are also randomly assigned.
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Figure 8.6: P2P market settlement flow chart

The PV size, tilt and azimuth are sampled from normal distributions with means (and

standard deviations) of 4.5 kW (1.2 kW), 15◦ (5◦) and 0◦ (20◦) respectively. Note that

the large standard deviation of azimuth is to capture the fact that many roof surfaces

don’t face north; in fact many PV units are installed on the west (90◦) and east (-90◦)
surfaces due to space constraints. The maximum and minimum sizes of the PV systems
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are limited to 10.2 kW and 2.1 kW respectively to ensure realistic sizes were modelled. The

BESS and retail plan selected for each customer is sampled from a uniform distribution

consisting of the nine BESS types and ten retail plans detailed in Appendix D Table D.3

and Appendix A Table A.7 respectively.

Following the completion of the customer selection and DER assignment process de-

tailed in Figure 8.5, the pool of 2,205 P2P participants is passed into the P2P settlement

simulation detailed in the flow chart of Figure 8.6. For the purpose of explanation simpli-

fication, the billing period q and day d terms are removed from subscript notation in this

section.

In the ‘Customer Bidding’ stage, energy flow values are calculated for customer n,

starting at hour h = 1. The desired P2P energy trades, Ebdbid,h, Epvbid,h andEbuybid,h are

determined, based on the DER surplus energy available or the energy supply deficiency.

The P2P reservation prices associated with the energy bids are then calculated prior to

sending the bid to the P2P trader. The process is repeated for each customer.

After the bids are determined for each customer in hour h = 1, the ‘P2P Market

Settlement’ stage solves the supply and demand problem by sorting the buy and sell bids

in merit order and identifying the intersection point as detailed in Section 8.2.1. After the

P2P settlement conditions are established, the P2P settlement data, including clearing

price TP2P,h, clearing energy EP2P,h, final buy bid BBUY,h and supply and demand ratios

RBUY,h and RSELL,h are tabulated in a lookup table to be used as an input in the P2P

trading design optimisation problem investigated in this chapter, as detailed in Section 8.4.

Following P2P market settlement, the success or failure of the bids is determined for

each customer n in the ‘Post-settlement Update’ stage before proceeding to the h+1 hour

where the process is repeated for all hours in the 20-year simulation horizon.

To facilitate a sensitivity analysis, numerous P2P market cases were simulated. Ta-

ble 8.4 presents a summary of each P2P market simulation and the parameter values

featured in each case. The impact of DER penetration rate scenarios is simulated through

cases A, B and C while an increased P2P participant profit margin of 30% is simulated in

case D. The influence of FiTs on P2P trading prices and energy quantities is investigated

through case E where a FiT is no longer assumed to exist. Case F simulates electricity

price increases returning to be in-line with the annual inflation rate, assumed to be 2.5%.

Finally cases G and H investigate the influence of BESS price reductions on P2P trading.

In addition to the input parameter values detailed in Table 8.4, the following additional

inputs were considered across also eight market cases simulated:

• P2P trader margin uT =20%

• BESS mode randomly assigned to be either A or B

• Battery types randomly assigned from the nine options detailed in Appendix D

Table D.3

• Retail electricity plan randomly assigned from the ten options detailed in Appendix A

Table A.7



8.4. P2P Trading Optimisation Problem 209

• Ausgrid network tariff structure randomly assigned from the two options detailed in

Appendix A Table A.6

Table 8.4: P2P market simulation cases

Case
DER Penetration P2P Sell Battery

FiT
Nominal Electricity

Rate Scenario Profit Margin (μP2P ) Cost Cost Increase Rate

A 1 10% 100% On 4.5%
B 2 10% 100% On 4.5%
C 3 10% 100% On 4.5%
D 2 30% 100% On 4.5%
E 2 10% 100% Off 4.5%
F 2 10% 100% On 2.5% (inflation)
G 2 10% 70% On 4.5%
H 2 10% 50% On 4.5%

8.4 P2P Trading Optimisation Problem

The objective of the optimisation problem considered in this chapter is similar to the

objectives previously considered in Chapters 5 and 6 – maximise electricity cost savings

through the introduction of DERs against a known lowest cost retail electricity plan. The

objective function (8.30) is therefore largely unchanged from the one considered in Chap-

ter 6 with the exception of a subscript notation change from Cpvbatt,q to Cder,q, representing

the non-discounted lifetime cost of electricity with a DER system. The notation change

is introduced to maintain consistency with the phraseology used in this chapter.

8.4.1 Problem Definition

As undertaken in the previous chapters, hourly evaluations of the energy flows are con-

ducted for each hour h in day d and billing period q. Maximising the net benefit over all

billing periods Q in the lifetime of the system under a P2P market trading environment

is the objective of the optimisation problem defined as follows:

Given:

(i) Annual inflation of rinf = 2.5%

(ii) Maximum number of PV modules (Zmax = 34)

(iii) Monthly billing frequency

(iv) A nominal annual discount rate of rnom = 6%, corresponding to a monthly real

effective rate of rd = 0.28%

(v) Nominal annual electricity price growth of 4.5%, corresponding to a monthly real

effective rate of re = 0.16%

(vi) PV system lifespan of 20 years (which is considered to be conservative)
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Find: Tilt angle β, azimuth angle γ, number of PV panels Z and number of batteries X

Objective:

max
β,γ,Z,X

NPV =

Q∑
q=1

(
Cbase,q − Cder,q

)
(1 + re)

q−1

(1 + rd)
q

−
Q∑

q=1

Wq

(1 + rd)
q −
(
Spv + Sb

)
(8.30)

Subject to:

0 ≤β≤ 180 for β ∈ R (8.31a)

−180 <γ≤ 180 for γ ∈ R (8.31b)

0 ≤Z≤ Zmax for Z ∈ Z
+ (8.31c)

0 ≤X≤ Xmax for X ∈ Z
+ (8.31d)

In (8.30), the maintenance costs Wq are as previously defined in (6.15) while the BESS

system cost Sb and the PV system cost Spv are defined in Table D.3 lines 6–8 and Table 8.3

line 1 respectively. The terms Cbase,q and Cder,q are defined as:

Cbase,q =

Dq∑
d=1

⎛
⎝ 24∑

h=1

Tret0,qdhEload,qdh + TDC0,qdPmax,qd + Tsc0,qd

⎞
⎠ (8.32)

Cder,q =

Dq∑
d=1

⎛
⎜⎝ 24∑

h=1

⎧⎨
⎩max

(
0, Ebal,qdh

) [
Tret,qdh

(
1−Rbuy,qdh

)
+ TP2P,qdhRbuy,qdh

(
1 + μT /2

)]

−max
(
0,−Ebal,qdh

) [
Tfit,qdh

(
1−Rsell,qdh

)
+ TP2P,qdhRsell,qdh

]

+max
(
0,−Ebal,qdh

)(TP2P,qdhμT /2

1 + μT /2
+

Tluos,qdh

2

)
Rsell,qdh

⎫⎬
⎭

+TDC,qdPmax,der,qd + Tsc,qd

⎞
⎠ (8.33)

Equations (8.32) and (8.33) feature the demand charge terms (TDC0,qdPmax,qd) and

(TDC,qdPmax,der,qd), similar to the term in (7.3) considered for an industrial consumer

(TransGrid), but not previously considered at the residential scale in Chapters 5 and 6.

A demand charge is introduced to the reflect the revised Ausgrid tariff structure proposal

for the 2019–2024 regulatory period described in Section 8.2.2. Pmax,der,qd and Pmax,qd are

the maximum load demand within the billing period with and without DERs respectively.

Ebal,qdh is the same net energy flow balance equation first introduced in Chapter 6 but

with the updated energy flow terms defined in Section 8.2.3, the equation for which is

repeated as (8.34) for convenience. All other terms, including Dq, Tret0,qd, Tret,qd, Tfit,qd,
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Tsc0,qd, Tsc,qd are as defined in previous chapters.

Ebal,qdh = Eload,qdh − Epv,qdh − Ebd,qdh + Ebpv,qdh + Ebg,qdh + Ebloss,qdh (8.34)

The comprehensive quantum-behaved particle swarm optimisation (CLQPSO) algo-

rithm used in Chapter 7 was employed to solve the MINLP DER system design optimi-

sation problem in the context of a P2P trading market. The problem was simulated and

solved in Matlab version 2017b.

8.5 Trial Scenarios

In order to conduct sensitivity analyses around the various P2P market simulation inputs

and assumptions, numerous trial scenarios were considered. Table 8.5 presents a summary

of the scenarios investigated in this research. A base scenario was established whereby no

P2P trading is implemented, representative of the BAU situation for P2P design optimi-

sation as investigated in previous chapters. Scenarios 1a, 1b and 1c test the influence of

various P2P market DER penetrations rates on optimal system design while Scenario 2

investigates the effect of increasing the P2P sale profit margin to 30%. The alternative

Ausgrid demand tariff structure defined in Section 8.2.2 is investigated in Scenario 3 while

Scenario 4 tests the impact of retail tariff plan variation against the known lowest cost plan

without DERs. The implementation of different battery types and BESS cost reductions

to 70% and 50% of current system pricing are investigated in Scenario 5. Scenario 6 tests

BESS charging from the grid and charging from PV only while Scenario 7 investigates the

influence on optimal DER design when FiTs are removed, both with and without a P2P

trading environment. Finally, electricity price increases returning to the inflation rate are

assessed.

Due to the large number of customers assessed, the multitude of scenarios considered

and the length of time required to optimise a system, scenario sensitivity was tested

around default assumptions detailed in Table 8.6. For each simulation scenario considered

Table 8.5: P2P sensitivity analysis scenarios

Scenario Scenario Description
P2P Pool Scenario

Simulation Case Input Parameters

Base P2P Trading N/A Off
1a DER Penetration Rate Scenario A 1
1b DER Penetration Rate Scenario B 2
1c DER Penetration Rate Scenario C 3
2 P2P Sell Profit Margin D 30%
3 Ausgrid Tariff Structure B Demand
4 Retail Plan B 1–10

5 Battery Type & Pricing B,G,H
Type = 1–9,

Pricing = 100%, 70%, 50%
6 BESS Mode B A
7a FiT E Off
7b FiT and P2P Trading N/A Off

8
Electricity Price Growth

F 4.50%In-line with Inflation
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Table 8.6: Default customer parameters

Parameter Value Description

DER Penetration Rate Scenario 2 100% PV by year 10, 50% BESS by year 10.

P2P Sell Profit Margin 10%
Applied to both PV and BESS P2P energy
sell trades.

BESS Cost Current 100% of current (2019) retail prices.

Retail Plan Base Plan
Lowest cost electricity retail plan without DERs
or P2P market.

Battery Type Soltaro 2
Representative of the lowest degradation cost
Cdegrad (refer to Appendix D)

Battery Mode B
Charging only via PV, discharge any time if price
signals are favourable.

Ausgrid Tariff Structure TOU Demand
Closest representation to historical tariff structure
included in Ausgrid 2019-24 TSS proposal.

P2P Trading Applicable
FiT Applicable

in Table 8.6 which tests particular input parameters, the default assumptions were applied

for all other untested parameters.

8.6 Results

8.6.1 P2P Market Simulation Cases

An example of the P2P market supply and demand bids is presented in Figure 8.7 corre-

sponding to Hour 7 of Year 1 under P2P market simulation Case B. Total P2P buy bids

equate to around 635 kWh while 870 kWh are available for sale, either from surplus PV or

surplus BESS energy. Although energy buy bids total 630 kWh, only 220 kWh of energy

is traded between successful participants at a P2P clearing price of around $0.12/kWh.

Remark 8.1 In Figure 8.7, there is a visible discrepancy between the PV sell and BESS

sell reservation prices. The maximum PV sell bid is approximately $0.17/kWh, occurring

around the cumulative bid energy of 530 kWh. The limited number of PV sell reservation

prices is due to the low diversity of retail electricity plans considered in the P2P market

simulation, with only 10 retailers and two network tariff structures modelled in this re-

search. The increased diversity in the BESS sell bids, starting around $0.34/kWh, is due

to the historical BESS charge/discharge sequence unique to each BESS owner, resulting

in a unique average cost for BESS charging.

The P2P market simulation for Hour 15 of the final day in year 20 is provided in

Figure 8.8. The diversity of the BESS sell prices is clearly higher due to the smoother sell

reservation curve than the one seen in Figure 8.7, due to the longer operational time frame

of the BESS systems leading to an increase in diversity of the average BESS charging costs

experienced by each BESS owner. It is also evident in Figure 8.8 that due to BESS cost

reductions some BESS systems are able to successfully bid into the P2P market. However,

by comparing the highest buy bid with the energy quantity of the equivalent BESS sell

bid, it is evident that for simulation Case B that only around 20% of the BESSs would

successfully trade in the P2P if the quantity buy demands were incidentally higher.
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Figure 8.7: P2P settlement for Hour 7 in Year 1 (P2P simulation case B)
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Figure 8.8: P2P settlement for Hour 15 in the final day of Year 20 (P2P simulation case
B)

To provide further context towards the frequency and magnitude of P2P clearing prices

within each hour of the day for simulation Year 1 and Year 20, heat maps are provided

in Figure 8.9, corresponding to simulation Case B. The vast majority of P2P trades are

undertaken between the hours 8 and 14, corresponding to a comparatively low clearing

price. Referring to the price/hour heat map for Year 1, between hours 13 and 17 the

trades can be generally seen fall into three distinct price ranges – $0.11 to $0.15, $0.17

and $0.22 to $0.26. This is due to the coincidence of off-peak, shoulder and peak periods

within these hours over the full course of the year. In Year 20, the clearing price range
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Figure 8.9: Heat map of P2P clearing prices for each hour of the day (P2P simulation
case B)
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Figure 8.10: Heat map of P2P cleared energy for each hour of the day in Year 1 and
Year 20 (P2P simulation case B)

is significantly wider, due to the success of some BESS sell trades. The price bands are

fairly indistinct due to the variability in BESS systems average charging costs resulting in

the sell reservation price diversity as seen in Figure 8.8.

The frequency and magnitude of energy trades for each hour of the day for simulation

Year 1 and Year 20 are provided in Figure 8.10. In Year 1, the most frequent hourly

trades occur within the bins of 450 kWh and 500 kWh. In Year 20, as all participants

now have a PV system, the quantity of P2P energy traded reduces significantly, with the

most frequent traded quantity being 150 kWh, occurring in Hour 7 of the day.

Figure 8.11 and Figure 8.12 show the heat maps of clearing price and cleared energy for

each hour of the day respectively under Case D where the P2P seller margin is increased

from 10% to 30%. Comparing Figure 8.11 to Figure 8.9 of Case B, it is evident the clearing

prices have increased for most frequent occurrences at the low-end of the price rage under

a higher seller margin scenario. However, at the high-end of the price range there is no

further increase to the maximum clearing price. The effect of a 30% seller margin is limited

to an increased frequency within the last bin of $0.39/kWh in Year 20. It can also be seen

by comparing Figure 8.12 and Figure 8.10 that the quantity of energy trades is reduced
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Figure 8.11: Heat map of P2P clearing prices for each hour of the day in Year 1 and
Year 20 (P2P simulation case D)
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Figure 8.12: Heat map of P2P cleared energy for each hour of the day in Year 1 and
Year 20 (P2P simulation case D)
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Figure 8.13: Heat map of P2P clearing prices for each hour of the day in Year 1 and
Year 20 (P2P simulation case E)

with the adoption of a higher P2P seller margin. In Year 1, the most frequent hourly

energy trade is 200 kWh for Case D, as opposed to the most frequent trades of 500 kWh

for Case B.
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Figure 8.14: Heat map of P2P cleared energy for each hour of the day in Year 1 and
Year 20 (P2P simulation case E)

Case E, whereby FiTs are no longer considered to be available, presents markedly

different results to Case B and Case D. Referring to Figure 8.13, the clearing prices in

Year 1 and Year 20 are significantly reduced as participants no longer wish to set a sell

reservation price higher than the FiT given FiTs no longer exist. The scenario is indeed

possible given the large number of PV systems currently installed in Australia which are

expected to continue generating for many years to come. Due to the lower P2P clearing

prices, the quantity of energy traded in each hour is significantly larger in Figure 8.14

compared to Cases B and D, with trades in a wider energy range up to 950 kWh for Year

1. Year 20 also exhibits an uplift in P2P trading compared to Case B and Case D, however

similar to the previous two cases, the quantity of trades in the final simulation Year 20 is

less than in Year 1. There is also a clear gap in the midday hours whereby fewer trades are

made, compared to the evening hours where BESS sell trades are frequently successful.

Further discussion is provided towards the end of the section.

Heat maps for each of the P2P market simulation cases are provided in Appendix E.1

for reference.

The average cumulative energy flows Eload, Epv, Ebpv, Ebd, Ebg and Ebloss for the entire

P2P market pool for simulation Case B are shown in Figure 8.15. In Year 1, the proportion

of customers with a BESS system is low. Consequently, the charge and discharge energies

are relatively insignificant compared to the average cumulative load and PV generation

profiles. However, in Year 20 due to the increase in proportion of participants with a

BESS installed, the cumulative charge and discharge energies are noticeably larger. Two

discharge peaks are visible – the first in the morning following the off-peak charging period

and the second much larger peak in the early evening hours. BESS charging occurs in

two primary periods – night-time off-peak hours (for systems where off-peak charging is

permitted under BESS Mode A) and during the sunlight hours of mid-morning. In Year

20, due to the saturation of solar PV installations, the cumulative PV generated energy

exceeds the average load profile maximum by more than 100%.

Remark 8.2 The over-installation of solar PV with respect to the maximum demand

requirements of the underlying consumer load during sunlight hours poses significant diffi-
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Figure 8.15: Average load and DER energy flows for P2P pool of participants in Year
1 and Year 20 (P2P simulation case B)
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Figure 8.16: Average P2P and retail electricity energy sales across the participant pool
in Year 1 and Year 20 (P2P simulation case B)

culties for DNSPs and electricity retailers. DNSPs must construct the electricity network

to handle large reverse direction power flows, while electricity retailers are required to pro-

vide balance energy primarily during night and early morning/late afternoon hours. Such

a situation is highly undesirable for electricity retailers as the generation portfolio would

inevitably become less diverse. The viability of lower cost thermal energy as well as non-

dispatchable renewable energy sources such as solar PV is removed from portfolios, instead

favouring fast-start gas, hydroelectricity and other energy storage technologies.

Such considerations are not investigated in this research. However, it suffices to note

that the likelihood of all electricity market customers exhibiting load and generation profiles

similar to the P2P simulation of Figure 8.15 is low. Prior to such a scenario occurring
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network wide, market corrections through curtailment of PV generation facilitated by smart

inverters and/or adjustments to the DNSP hour definitions of off-peak, shoulder and peak

periods may be expected. However, the assessment of DER operating scenarios in 20 years

is difficult to forecast and therefore no contingency assumptions have been developed for

this research.

Figure 8.16 shows the average cumulative energy purchased in the P2P market, energy

purchased from electricity retailers and the energy sold to retailers via FiTs. In Year 1,

maximum hourly average P2P purchased energy is around 450 kWh occurring in hour 11.

The retail energy sale ‘duck-curve’ profile (so-named as it resembles the silhouette of a

duck’s head and tail in peak demand hours) can be seen to hollow out significantly in the

central hours of the day with respect to the original average load profile. A slight increase

in load during off-peak hours is also visible; a result of the introduction of BESSs requiring

grid charging. In Year 20, the ‘duck-curve’ hollows further so that almost no electricity is

sourced from the retailer between the hours of 8 and 15. Furthermore, off-peak demand

is significantly increased, further exacerbating the network capacity factor issues.

Under simulation Case E where FiTs are removed from retail plans, Figure 8.17 shows

that in Year 1, a much larger proportion of PV generated energy is sold through the P2P

market compared to Case B in Figure 8.16, as previously observed in the heat map of

Figure 8.14. In Year 20, a noticeable difference in P2P traded energy can be observed in

the late afternoon hours by comparing Figure 8.16 and Figure 8.17. This is due to the low

BESS sell reservation prices for systems charging from PV only as the FiT component of

the charge cost described in (8.27) is zero. Consequently, the success of BESS discharge

in the P2P market markedly increases, as discussed later. It should be noted surplus PV

energy is still shown in Figure 8.17. Without appropriate curtailment the PV systems will

continue to inject energy into the electricity grid, although without a financial benefit.
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Figure 8.17: Average P2P and retail electricity energy sales across the participant pool
in Year 1 and Year 20 (P2P simulation case E)
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All P2P market simulation cases defined in Table 8.4 were calculated following the

process outlined in the flow chart of Figure 8.6, result summaries for which are presented

in Table 8.7 to Table 8.9. In Table 8.7, the total load energy (including the underlying

load without DERs and the additional BESS grid-charge energy) over the entire 20-year

simulation horizon is presented in units of gigawatt hours (GWh). Simulation Case A has

the highest lifetime load due to the higher penetration of BESSs requiring grid charging.

Comparing Cases A, B and C (corresponding to DER penetration rate scenarios 1, 2 and

3 respectively), the total load decreases from 253 GWh (Case A) to 241 GWh (Case C)

due to the lower number of BESSs in the market and therefore the less demand for charge

energy. The remaining cases have a similar total load to Case B, which is expected given

each additional case was modelled to have the same DER penetration rate scenario as

Case B.

A percentage breakdown of the energy purchased through the P2P pool and purchased

from the retailer is also provided in Table 8.7. For each simulation case, less than 10.6% of

the total load energy is sourced from the P2P market, with Case E resulting in the highest

proportion of P2P energy trades. Due to the high proportion of participants with DER

systems as the P2P simulation horizon progresses, a reduced number of energy trades

occur. Consequently, the proportion of load energy bought through the P2P market

in Year 1 can be expected to be higher than in Year 20, as previously observed in the

energy/hour heat maps of Figure 8.10, Figure 8.12 and Figure 8.14. In contrast, over

44% of energy is purchased from the electricity retailer in all cases, primarily due to

the unavailability of P2P trades during night time hours (no solar PV energy and BESSs

charging against low off-peak retail tariffs). It should be noted that Case C has the highest

proportion of retailer bought energy of all cases, as well as the highest proportion of P2P

traded energy amongst the three DER penetration rate scenarios of Case A, Case B and

Case C due to the reduced self-sufficiency of the Case C participants.

The proportion of total PV generated energy sold in the P2P market for each simu-

lation case is presented in Table 8.8. A maximum percentage of 10.8% occurs for Case C,

however the total volume of PV generated energy is less than the other cases. The next

highest proportion can be seen for Case E, which is 2.6% higher than Case B featuring the

same DER penetration rate scenario. Consequently, it may be concluded that based on

Table 8.7: P2P market simulation case settlement results – load energy

P2P Market Average P2P Load

Simulation Clearing Price Total Load P2P Buy Retailer Buy
Case ($/kWh) (GWh) (%) (%)

A 0.148 281 4.8% 44.1%
B 0.151 264 6.6% 50.3%
C 0.155 250 9.1% 58.1%
D 0.163 264 3.5% 53.3%
E 0.071 266 10.6% 46.9%
F 0.151 264 6.6% 50.3%
G 0.152 265 6.6% 50.0%
H 0.155 265 7.0% 50.0%
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Table 8.8: P2P market simulation case settlement results – PV energy

P2P Market PV

Simulation Total PV P2P Sell Grid Feed-in
Case (GWh) (%) (%)

A 253 5.0% 55.1%
B 239 7.1% 56.8%
C 204 10.8% 56.3%
D 239 3.8% 60.2%
E 239 9.7% 53.4%
F 239 7.1% 56.8%
G 239 6.8% 56.7%
H 239 7.0% 56.6%

Table 8.9: P2P market simulation case settlement results – BESS energy

P2P Market BESS

Simulation Total Discharge P2P Sell
Case (GWh) (%)

A 44 1.7%
B 28 2.4%
C 16 3.6%
D 28 0.8%
E 30 16.8%
F 28 2.4%
G 29 4.1%
H 29 6.2%
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Figure 8.18: P2P settlement for an example hour in Year 20 (P2P simulation case E)

the cases presented in Table 8.4, removal of FiTs would result in an uplift in P2P trades of

2.6%. Case D shows the lowest proportion of successful P2P trades, clearly demonstrating

the effect of higher P2P profit margins – a 3.3% reduction in P2P trading.

The simulation settlement results for BESS P2P energy trading are presented in Ta-



8.6. Results 221

ble 8.9 which shows that generally BESS owners are rarely able to successfully conduct

P2P trades based on the low percentages observed. The main exceptions exist for Cases

E, G and H. Case E has the most success of sale, whereby 16.8% of BESS discharge energy

is successfully sold. This is due to the low charging costs of the BESSs from the removal

of FiTs resulting in low sell reservation prices, thus increasing the probability of sale. An

example of a P2P clearing price corresponding to a BESS sell reservation price under Case

E is provided in Figure 8.18.

The results of the design optimisation for 100 test customers against the P2P market

trial scenarios detailed in Table 8.5 is presented in the next section.

8.6.2 DER Design Optimisation

A summary of the average NPV achieved following DER design optimisation for 100 P2P

participants is presented in Figure 8.19. For each of the scenarios shown in Figure 8.19, it

was found that the addition of a BESS system does not lead to an increase in NPV for any

of the customers tested, similar to the results presented in Chapter 6. The average NPVs

shown in Figure 8.19 result from PV-only DER systems. Consequently, the DER system

yielding the greatest electricity cost savings consists of PV-only systems for all tested

customers. With respect to the BAU base scenario, i.e. current PV system and BESS

pricing, current retail electricity tariffs and FiTs and no P2P trading, the introduction

of a P2P trading market results in a relatively small uplift of between 3% and 4% for

each of the three DER penetration rate scenarios considered in this research, as shown for

Scenarios 1a to 1c.

Remark 8.3 Scenario 1a, representative of a high DER penetration rate scenario, corre-

sponds to the greatest average NPV up-lift. This result is not necessarily intuitive as one

would expect that higher penetration rate scenarios would lead to increased P2P trading

competition and therefore less opportunity for additional revenue for the optimally designed

participants, whereas the opposite can be seen to true in Figure 8.19. The reasoning lies

in the fact that increased competition in the P2P market pool leads to a lower average P2P

clearing price in market Case A compared to Case C as previously shown in Table 8.7.

Table 8.10 shows summary totals of cumulative traded energy from the group of 100 par-

ticipants with optimally designed DERs. Although the energy sold to the P2P market can

be seen to increase from Scenario 1a to 1c, similarly for the P2P clearing price in Ta-

ble 8.7 for market Cases A to C, the small uplift in PV revenue (10% above the FiT) is

outweighed by the lower cost of purchased energy, of which the greater proportion is bought

from the P2P market under Scenario 1a. As a result, a slightly higher NPV can be seen

for Scenario 1a in Figure 8.19.

Under Scenario 2, an increase in the P2P sell margin to 30% does not result in an

appreciable uplift in NPV for the DER system owners tested. In Scenario 3, the tested

customers receive on average a further 17% NPV uplift by adopting an Ausgrid demand

tariff structure compared to Scenario 1b where participants have the alternative TOU

demand tariff. Figure 8.20 and Figure 8.21 show a comparison of the average hourly
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Figure 8.19: DER design optimisation average NPV for 100 trial customers (Scenarios
1a–3b and 6–8)

Table 8.10: Energy totals across 100 participants with optimally designed DERs (PV-
only)

Scenario
Total Load Total PV Retailer FiT Total P2P Sell (PV-only) Total P2P Buy
(GWh) (GWh) (GWh) (GWh) (GWh) (GWh)

Base 10.83 28.57 6.36 24.10 0.00 0.00
1a 10.83 28.58 6.12 23.47 0.65 0.24
1b 10.83 28.57 6.18 23.31 0.81 0.19
1c 10.83 28.57 6.24 23.02 1.08 0.13
2 10.83 28.58 6.29 23.97 0.14 0.08
3 10.83 28.56 6.31 13.73 10.37 0.06
6 10.83 28.57 6.18 23.31 0.81 0.19
7a 10.83 0.00 6.31 0.00 0.00 4.52
7b 10.83 5.57 7.94 2.69 0.00 0.00
8 10.83 28.59 6.18 23.32 0.81 0.19

energy flow in years 1 and 20 of the simulation horizon for Scenarios 1b and 3 respectively.

Referring to Figure 8.21, for Year 1 of Scenario 3 almost all surplus PV energy is sold in

the P2P market, dropping significantly in Year 20. In contrast, Figure 8.20 shows that

under Scenario 1b and a TOU demand tariff, the P2P participants are rarely successful

in selling energy in the midday hours, instead selling some energy in the morning and late

afternoon periods where retail and network prices are high and PV energy generation is

low, albeit far less than in Scenario 3. Further discussion around the implications of these

observations is provided in Section 8.7.

Average energy flow figures for each of the other test scenarios are included in Ap-

pendix E.2.

Due to the ineffectiveness of a BESS to further increase the NPV for any customer,

the results of Scenario 6 (which tests BESS charge mode) are identical to Scenario 1b –

neither charge mode matters as no BESSs are installed.

Referring to the results in Figure 8.19 for Scenario 7a, whereby no FiT is considered to

be available in the P2P market, the NPV is reduced by 31%. Figure 8.22 shows the average

size of the optimal DER (PV) configuration. Under Scenario 7a, the optimal configuration
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Figure 8.20: Average energy purchases and sales across 100 test customers in Year 1
and Year 20 (Scenario 1b)
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Figure 8.21: Average energy purchases and sales across 100 test customers in Year 1
and Year 20 (Scenario 3)

is to have no PV system as all. Instead, the net average benefit of around $7,000 observed in

Figure 8.19 is achieved purely through purchasing low-cost P2P traded energy. While the

long-term outlook for FiTs is debatable, it is not unreasonable to consider the possibility

of FiT removal. Under such a scenario, participants with existing PV systems may seek

to recover their investment cost through P2P trades. The results found in this research

suggest prospective PV system investors should consider P2P trading market participation

as an alternative to investing in PV. Further investigation focused towards the sensitivity

of NPV to the removal of FiTs midway through the PV system lifespan is required.

With the removal of both FiT and P2P trading in Scenario 7b, the average optimal PV

system can be seen in Figure 8.22 to reduce significantly from 10.2 kW in the base scenario,
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to just over 2 kW, corresponding to an NPV reduction of 85% as shown in Figure 8.19.

Under Scenario 8, whereby electricity price increases are modelled to match inflation, the

NPV reduces by 8% on average due to the lower P2P trading prices that occur under

such a scenario and lower underlying retail electricity costs making PV investment less

beneficial.

Referring to Figure 8.22, the majority of scenarios show that the 100 test customers

benefit the most by maximising the PV system size, which was modelled to be 10.2 kW

in this research. Further discussion is provided in Section 8.7.
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Figure 8.22: DER design optimisation average PV size for 100 trial customers (Scenarios
1a–3b and 6–8)
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Figure 8.23: DER design optimisation average nominal MIRR for 100 trial customers
(Scenarios 1a–3b and 6–8)

The average MIRRs for each of the scenarios are shown in Figure 8.23. Virtually no

change is observed for Scenarios 1a, 1b, 1c, 2 and 6 with an increase of just 1% while

Scenario 8 is reduced by just 1%. Scenario 3 results in an uplift of 6% due to the greater

success of P2P sell trades while Scenario 7b leads to a 17% reduction. However, it should
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be noted that the average MIRRs amongst the 100 participants investigated are greater

than the 6% threshold (shown as a red) for all scenarios except Scenario 7a, demonstrating

from an investment return perspective that investing in a PV system is worthwhile. In

the case of Scenario 7a, comparing the MIRR against the 6% threshold is not valid as no

capital is spent on DER systems under this scenario. The cost savings are achieved purely

through access to an alternative electricity tariff platform.

The average NPVs for 50 customers under Scenario 4, whereby the financial benefit

under different retail electricity plans is tested, are presented in Figure 8.24. For each

of the retail tariff cases, the optimal system size was found to be 10.2 kW, matching the

base case scenario. Only one participant was found to benefit from a BESS installation,

corresponding to retail plan 5. By considering an alternative plan to the base plan when

a DER system is not installed, it can be seen that the majority of plans yield an increased

benefit. On average NPV is increased by up to 79% under Retail Plan 1. Referring to Fig-

ure 8.25, the MIRRs are also generally improved, with an MIRR up to 9% (corresponding

to a 21% increase) observed for Retail Plan 1.

The sensitivity of NPV to different BESS types at different price levels is tested in

Scenario 5. Figure 8.26 shows the BESS size required to achieve the optimal NPV for 100

customers under Scenario 5. In Figure 8.26(a), it can be seen that at current price levels

(Scenario 1b), no BESS yields a greater benefit than a PV-only system. When pricing is

reduced to 70%, again no BESS is seen to yield an improved benefit. However, at a 50%

reduction level, some customers see an increased benefit from the installation of BESS

systems, with a mix between the Tesla Powerwall 2 and the SolaX Triple Power 6.3 as

the optimal configurations among the BESS options considered. Referring to Figure 8.27,

each customer with a BESS achieves an MIRR exceeding 7%, well above the cost of

capital threshold level of 6%. The result demonstrates investment in a BESS when prices

are depreciated can be expected to yield a benefit from a return on investment perspective

in addition to maximising NPV.
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Figure 8.24: DER design optimisation average NPV for 50 trial customers under (Sce-
nario 4: columns 4a–4j correspond to Retail Plan 1 – 10 respectively)
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Figure 8.26: NPV and BESS size for a sample of 100 customers at (a) 100%, (b) 70%
and (c) 50% BESS reference price levels (Scenario 5)
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Figure 8.27: MIRR and BESS size for a sample of 100 customers at (a) 100%, (b) 70%
and (c) 50% BESS reference price levels (Scenario 5)
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8.7 Discussion

The results presented previously in Section 6.4.2 indicated that 4% of customers would

benefit from a Tesla Powerwall 2 battery. However, the results in Section 8.6.2 show no

customer to benefit from a BESS system under current pricing. The research undertaken

for Chapter 6 assumed Powerwall 2 pricing to be $10,000 [246] whereas in late 2018, pricing

was increased to the $12,350 [248, 303] level which was assumed in this chapter. More

recently in July 2019, Powerwall 2 pricing was again reduced to $11,700 [304, 305]. The

fluctuating Powerwall 2 pricing highlights the uncertainty facing prospective customers

and therefore the necessity to apply the design optimisation methodology developed in

this thesis as part of the investment decision process.

The average optimal PV system size found in Section 8.6.2 for the majority of scenarios

was 10.2 kW, suggesting the customers would benefit most by maximising PV system size.

The research presented in Chapter 5, based on 2016 pricing, resulted in a very different

assessment, with average sizes in the range of 2.72 kW to 4.06 kW depending on installation

location. While the Chapter 5 findings are valid for PV system pricing and electricity retail

market scenario in the time range considered, the trend in upwards PV system sizes first

observed in Chapter 6 before the final current market state considered in this chapter is

clear. The size trend may be primarily attributed to significant PV system price reductions

over the last three years coupled with a large increase in available FiTs.

The observation that the Ausgrid network demand tariff structure results in a cost-

saving increase of 20%, compared to 3% for the equivalent assumptions under a TOU

demand tariff suggests further research is required to assess the influences of various net-

work tariff structures in a P2P trading environment. It should be noted that the P2P

market model detailed in Section 8.2 may require further enhancement around sharing of

network costs between buy and sell participants. Customers submitting buy bids based on

a TOU demand tariff will on average submit higher bids than those on the demand tariff

structure, thereby increasing the probability of a successful bid. Conversely, customers

submitting sell bids under a demand tariff will have a greater probability of a successful

trade. Consequently, on average the buy participant pays for half the TOU demand tariff

whereas the sell participant will pay half the demand tariff. The implications on DNSP

network cost recovery that this situation may impose require further investigation.

8.8 Summary

Existing research has shown the potential benefit a prosumer can receive through sharing

energy in a P2P trading market [255, 257, 269]. However, it has previously been shown

that prospective investors would benefit from prior consideration of market conditions

and the penetration rate scenarios of participant DERs when sizing investments [269].

Based on the literature review undertaken for this research, the optimal system sizing and

orientation of DER systems to maximise savings at the individual consumer level has not

previously been investigated for P2P trading applications, nor has a full assessment of

lifetime operation been undertaken.
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In this chapter, P2P trading was investigated from the perspective of a prospective

investor in small-scale DERs at the residential level. A lifetime assessment of DERs con-

sisting of solar PV and battery systems was undertaken in the context of a P2P market

consisting of over 2,200 participants with real load consumption profiles derived from the

SGSC project data. Revision of the PV-BESS energy flow models developed in previous

chapters was presented to enable potential DER investors to participate in P2P transac-

tions.

The hypothetical P2P market simulation was tested under various market P2P sim-

ulation cases and input value scenarios to identify trends in optimal PV-BESS system

design and the potential economic returns available. A double auction scheme was se-

lected for P2P market settlement, given its suitability to full and hybrid P2P structures

where each participant does not necessarily pay the same cost for electricity. The buy

and sell reservation prices were constructed to account for recently introduced Australian

network tariff structures as well as battery degradation and charging costs.

The results of the P2P market simulations for various trial cases revealed up to 10.8%

of total PV generated energy within a pool of over 2,200 market participants could be

traded in the P2P market. In a P2P market with BESS owner’s bidding to sell available

energy, it was found up to 3.6% of BESS discharge energy could be traded in the P2P

market, observed under the slowest DER penetration rate scenario. In a trialled case

where retailer-provided FiTs are removed, the success of BESS energy sale was found to

increase, with 16.8% of total discharged energy sold in the P2P market, attributed to the

lower sell reservation prices resulting from reduced battery charging costs.

A DER design optimisation methodology was developed for P2P energy trading and

implemented for 100 test P2P market participants using CLQPSO as the underlying op-

timisation algorithm. It was found that under current retail electricity tariffs, FiTs and

PV-BESS system pricing, prospective investors would benefit from a PV-only system in a

P2P market. The optimal size for all participants was found to be 10.2 kW, corresponding

to the upper end of the design size range considered. However, a scenario where FiTs were

removed found participants would benefit most from P2P trading only. When P2P sale

margins were increased to 30%, no appreciable impact on average NPV was observed.

The results of this research demonstrate the necessity to consider market conditions

and DER system pricing, in particular BESS costs, when deciding to invest in a DER

system operating in a P2P market scenario. While current PV system prices and FiTs

suggest prospective investors would gain some additional benefit by participating in a P2P

market, a clear reliance on FiTs to recover capital costs when sized to generate as much

energy as possible was observed.



Chapter 9

Conclusion

C
ontinued advances in PV and BESS technologies have made DERs an attractive

option for residential energy consumers. Selecting an appropriate system is non-

trivial due to the relatively high cost of batteries, a multitude of available retail electricity

plans, the removal of incentive schemes and the impending introduction of disruptive

technologies such as a peer-to-peer energy trading.

The introduction of Smart Grid technologies, particularly smart meters, enables con-

sumers to leverage high temporal resolution energy consumption data to optimise system

design based on an individual customer’s circumstance. The results of the SGSC trial

undertaken by the Australian Government and the recommendations published in current

literature highlight the enormity of the paradigm shift towards integrating Smart Grid

technologies and the difficulties in determining economically efficient energy strategies.

The results further indicate there will be an ongoing need for comprehensive and reasoned

decision making tools to ensure PV and energy storage systems are integrated to their

maximum potential.

The research presented in this thesis leverages the real-world energy consumption data

from the SGSC project to develop and demonstrate a design optimisation strategy enabling

the economically efficient selection of PV and BESS system size, tilt, azimuth and retail

electricity plan for residential DERs based on a customer’s temporal load profile.

To enable the develop of energy yield models incorporated in the design optimisation

methodology, a literature review of solar irradiation databases was undertaken in Chap-

ter 3, with a particular focus on Australian applications. The AREMI spatial mapping

platform, providing access to hourly data captured by BoM, was selected as the primary

database for solar irradiation data and solar PV modelling in this research.

To enable the estimation of solar PV energy generation, as a central component of

the research presented in this thesis, models for the transposition of solar irradiation on

a horizontal plane to irradiation on a tilted plane were reviewed. The HDKR model was

selected based on documented accuracy and reduced computational demand.

The BRL diffuse irradiation model, previously shown to be one of the more accurate

models for Australian based applications, was identified for further improvement. Specific

consideration of climatological zones based on the Köppen-Geiger climate classification

system was introduced along with a review of data quality methodologies, establishing the

231
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basis for the original research presented in this thesis.

In Chapter 4, the Köppen-Geiger climate classification system was proposed for appli-

cation to diffuse irradiation models and investigated to establish the potential to improve

modelling accuracy through climatological characteristic considerations of specific loca-

tions. Rigorous data quality control steps were defined to establish a high quality tuning

data set to facilitate the development of new BRL diffuse models. Using data from the

BoM OMS network, a new National BRL model and specific BRL models for each Köppen-

Geiger zone were developed for ground-based measurements. Through the application of

a rigorous statistical analysis process, the performance of the new models were established

and compared against the original BRL model. The new National BRL model was shown

to almost universally out-perform the original BRL model and strong support was found

for the adoption of specific climate classification models to improve diffuse irradiation es-

timates. Based on the results presented in Chapter 4, new National and Köppen-Geiger

BRL parameters were proposed for application to Australian ground-based global hori-

zontal irradiation data in the absence of diffuse and direct irradiation estimates.

Due to the limited ground coverage of global horizontal irradiation estimates, irra-

diation estimates from satellite imagery were also investigated. Based on a similar data

quality control and statistical analysis approach to that of the ground-based data analy-

sis, the results found in this research did not support the adoption of Köppen-Geiger zone

BRL models for satellite-based estimates. However, a new National BRL model based on

the BoM BRL model variant was found to present a closer approximation to ground-based

measurements than the original AREMI dataset.

The introduction of smart grid technologies and the phased removal of incentive

schemes is likely to further complicate the cost-effective selection and integration of res-

idential PV systems in the future. The continued increase in smart meter market pene-

tration allows high temporal resolution data to be leveraged by electricity customers in

order to make informed PV investment decisions. Consequently, an optimisation tool is

required to avoid ineffective capital spending.

In Chapter 5, such a design optimisation strategy was developed to maximise the

investment value of PV. Models for PV energy production, as well as underlying economic

models based on an NPV analysis, were defined as key components of the optimisation

objective function.

A version of the canonical particle swarm optimisation algorithm, modified to include

a penalty function and a hypercube nearest-vertex approach to facilitate the inclusion of

discrete parameters, was applied as the underlying optimisation algorithm. The optimisa-

tion methodology was tested in an Australian context, using real-world hourly smart meter

and irradiation data applied to recently available incentive schemes and retail electricity

plans.

With realistically defined economic parameters, a positive NPV was found to be achiev-

able for all customers assessed. NPV, system size and savings achievable through correct

retail plan selection were all found to increase between the low, medium and high annual

electricity consumption brackets defined in the chapter. However ‘viable’ PV investment
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opportunities were not universally observed for all customers, with at most 77.5% of cus-

tomers amongst the locations assessed yielding a return greater than the cost of capital.

A wide variety of optimal retail plans was observed, from the extreme of 97.5% from one

retailer in one city to a diverse array of plans and tariffs structures in others.

A sensitivity analysis on individual customers demonstrated the significant negative

impact of non-optimal sizing on the value of the investment, particularly for over-sized

systems. However, a sensitivity analysis conducted on tilt and azimuth found limited

effect on the net benefit for deviations within ±10◦ and ±20◦ respectively. Furthermore,

optimal azimuth selection was found to contribute to less than 1% of the potential net

benefit for flat tariffs and just 5% for TOU tariffs. Consequently, azimuth was therefore

deemed as a non-critical parameter and the optimisation problem may be reduced to the

two dimensions of tilt and size.

Finally, the average optimal system sizes for the customers and locations assessed were

found to be significantly less than the average size installed in 2015 and 2016, approxi-

mately 2 kW on average. The observed disparity between practices within the Australian

residential PV industry in 2016 and the characteristics of the optimised systems found in

Chapter 5 highlighted the necessity for an economic optimisation strategy to be routinely

implemented prior to the decision to invest.

In Chapter 6, the significant price reductions in PV and battery systems, sparking

considerable interest in hybrid PV-BESS solutions at the residential level, was the mo-

tivation behind an adjustment of the design optimisation strategy initially developed in

Chapter 5. Battery energy flow models were developed as the basis for a revised objective.

Subsequent analysis was initially applied to three real-world electricity customers be-

fore expansion to a larger sample of 100 consumers. For the small sample, based on PV

and battery system prices at the time of research, no battery system was found to be eco-

nomically viable for the residences assessed. However, optimised PV-only systems were

found to yield a net benefit for all customers.

A sensitivity analysis was conducted on battery pricing to determine the price point

at which a hybrid PV-BESS would yield a net benefit improvement. The results showed

that significant price reductions to 60-70% of current prices are required before the tested

customers could take advantage of an energy storage system.

For the three customers selected, various battery operating modes were examined to

determine the most economically beneficial operation. No instance was found whereby

energy arbitrage yielded a greater benefit than purely maximizing PV self-consumption.

The observation continued to hold at all battery pricing levels.

The analysis was expanded to a wider sample of 100 customers, with battery prices

investigated at three levels – 100%, 70% and 50% of the reference retail prices. It was

found that at the 100% level, only 4% of customers would benefit from a Tesla Powerwall

2 system, with the proportion markedly increasing to 67% and 93% for the 70% and 50%

levels respectively. The vast majority of customers were found to benefit from PV under

all BESS pricing conditions.

To demonstrate the accuracy of the energy yield models developed, and to present an
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alternative design optimisation assessment for a larger consumer, a case study based on

the TransGrid iDemand project was undertaken in Chapter 7. Operational data from the

iDemand system were used to validate the accuracy of the adopted PV energy yield model

at a high level, which was ultimately shown to underestimate the potential annual energy

cost savings by just 1.57%.

The operational data were then applied to hypothetical installations over a nine-year

period to enable the determination of the opportune investment year and the charac-

teristics and performance of the corresponding optimised system. Implementation of the

optimisation algorithm revealed no battery system would yield an economic benefit greater

than a PV-only system for installation years between 2017 and 2025. Under the system

pricing scenarios considered, the optimal system was found to be a small-scale system until

2020 (incentivised through small-scale technology certificates), after which a transition to

a large-scale system receiving large-scale generation certificates would yield the highest

NPV depending on the pricing scenario considered. The results presented in Chapter 7

provided further support for the necessity to introduce a PV-battery system optimisation

process as an integral part of the investment decision process.

A hypothetical P2P energy trading market was proposed in Chapter 8. The design

optimisation methodology developed in Chapter 6 was revised to enable the potential net

benefit achieved through P2P trading to be quantified. P2P market simulations were

conducted to provide a sensitivity assessment around various market scenarios to identify

trends in optimal PV-BESS system design. A double auction scheme was selected for P2P

market settlement with consideration given to shared network tariffs based on recently

introduced demand tariff structures in Australia. Battery degradation and charging costs

were also modelled.

The results for the trial market cases amongst a pool of over 2,200 market participants

revealed up to 10.8% of PV generated energy could be traded in the P2P market under

the DER penetration rate scenarios modelled. Owners of BESSs were found to be less

successful when bidding to sell available energy, however in the scenario where FiTs were

removed, BESS energy sale success increased, with 16.8% of total discharged energy sold

in the P2P market.

A DER design optimisation methodology was developed for P2P energy trading and

implemented for 100 test P2P market participants using CLQPSO as the underlying op-

timisation algorithm. It was found that under current retail electricity tariffs, FiTs and

PV-BESS system pricing, prospective investors would benefit from a PV system only, sized

to maximise energy production. Under current market conditions and BESS prices, no

BESS amongst a range of currently available products yielded a higher net benefit than

a PV system only for any of the 100 test customers. The results of this research demon-

strate the necessity to consider market conditions and DER system pricing, in particular

BESS costs, when deciding to invest in a DER system operating in a P2P market scenario.

While current PV system prices and FiTs suggest prospective investors would gain some

additional benefit by participating in a P2P market, a clear reliance on FiTs to recover

capital costs when sized to generate as much energy as possible was observed.
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The research presented in this thesis shows a strong upwards trend in optimal PV sys-

tem size over the last three years. The increase in optimal size can be primarily attributed

to significant PV system price reductions over the last three years coupled with a large

increase in available FiTs. While a prospective investor seeking to purchase a PV system

in 2019 or 2020 may benefit from the larger systems found in Chapter 8, compared to

investors in 2016 as presented in Chapter 5, the research presented in this thesis demon-

strates the necessity to consider current and future retail electricity market and regulatory

conditions prior to investing in a hybrid PV-BESS system. With the availability of smart

meter data, consumers can leverage the value of high temporal resolution consumption

data to inform investment decisions for their individual circumstance.

9.1 Future Work

Given the rapidly increasing maturity of the renewable energy industry, significant PV

price reductions have been achieved since the commencement of the research presented in

this thesis. While Chapter 8 largely captures current market conditions, there is scope to

update the analyses presented in Chapters 5 and 6 to provide up-to-date regulatory, retail

electricity and renewable energy industry context.

Additional research may be undertaken to investigate the influence of modelling uncer-

tainty on the optimal design solutions, including input weather data uncertainty, energy

measurement uncertainty and key PV-BESS datasheet performance metrics.

There is scope to investigate different battery operating modes in addition to the modes

considered in Section 6.1.1 and Section 8.2.3 in future research. These modes may include

peak lopping, scheduled operation and operation modes based on future load forecasts.”

In relation to the research presented in Chapter 8, further work is proposed to as-

sess additional P2P market analysis scenarios to expand upon the scenarios detailed in

Table 8.5. Scenarios proposed for further consideration include:

• Investigation of appropriate management of different network tariff structures as

discussed in Section 8.7;

• Sensitivity of NPV and return on investment towards reduced or future removal of

FiTs, for instance a 50% reduction on existing tariffs, a situation which may transpire

within the next 10 years given the high uptake of PV in Australia and the impending

closure of the small-scale renewable energy scheme;

• Different PV system costs such as assessment against the ‘high’ range of system

prices detailed in Table 8.3;

• Alternative DER penetration rate scenarios more closely aligned with the projected

uptake of DERs in the Australian market; and

• Expand analysis to different distribution networks in the Australian NEM.

In Section 8.1.5, research on co-incident capacity charges proposed by [278] was re-

viewed. The proposal was introduced in response to recent guidance by the AER to
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encourage networks to “send price signals that are more closely aligned with peak demand

and utilisation on the network” [278]. There is potential to further expand the scenario

analyses in Chapter 8 to investigate the impact on P2P energy trading when capacity

charges are only applicable to events when the customer peak demand is coincident with

the hourly network peak. Given the large sample of data available through the SGSC

project, the network peaks to which the capacity charges would be applicable can be

roughly identified, similar to the methodology implemented in [278].



Appendix A

Retail Electricity Tariffs

A.1 Retail Tariffs for 2016 - Chapters 5 and 6

The electricity tariffs assumed in these chapters are based on the standing offers available

from Origin Energy, EnergyAustralia and AGL in September 2016. The flat tariff retail

plans assumed in these chapters are summarized in Table A.1. In principle, under a flat

tariff plan each energy unit at any time of day is billed uniformly at a single rate. However,

a number of flat tariff plans considered in this analysis also include inclining block rates

based on the total daily or quarterly energy consumption. The flat tariffs associated with

each inclining energy block are shown in Table A.2.

The TOU tariff retail plans assumed are summarized in Table A.3 and the times for

which each TOU tariff level is applicable are shown in Table A.4.
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Table A.1: Flat tariffs for each retail plan and location considered (prices include 10% GST)

Retailer Location
Flat Tariff 1 Flat Tariff 2 Flat Tariff 3 Daily Supply Charge Feed-in Tariff
(c/kWh) (c/kWh) (c/kWh) (c/Day) (c/Day)

Origin Energy

Newcastle 27.005 26.51 24.2 88.66 6.0
Parramatta 25.773 25.113 23.903 86.35 6.0
Tamworth 26.62 26.191 25.773 149.6 6.0
Melbourne 27.654 - - 108.757 5.0
Brisbane 25.586 - - 128.117 6.0

EnergyAustralia

Newcastle 26.72571 26.1217 25.52869 83.9025 6.1
Parramatta 28.02481 27.05923 25.20859 89.7644 6.1
Tamworth 30.31237 29.74906 29.22029 152.6767 6.1
Melbourne 27.654 - - 115.5 5.0
Brisbane 25.982 - - 128.7 6.0

AGL

Newcastle 27.621 26.818 20.911 86.427 6.1
Parramatta 27.104 26.587 26.367 85.217 6.1
Tamworth 29.909 29.458 29.018 148.918 6.1
Melbourne 27.225 - - 120.868 5.0
Brisbane 27.071 - - 115.236 6.0
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Table A.2: Energy blocks associated with each flat tariff rate for each retail electricity plan

Retailer Location Block 1 Block 2 Block 3

Origin Energy

Newcastle First 10.9589 kWh/Day Next 10.9589 kWh/Day Remaining kWh/Day
Parramatta First 10.9589 kWh/Day Next 8.2192 kWh/Day Remaining kWh/Day
Tamworth First 10.9589 kWh/Day Next 8.2192 kWh/Day Remaining kWh/Day
Melbourne All kWh/Day - -
Brisbane All kWh/Day - -

EnergyAustralia

Newcastle First 10.9589 kWh/Day Next 10.9589 kWh/Day Remaining kWh/Day
Parramatta First 10.9589 kWh/Day Next 8.2192 kWh/Day Remaining kWh/Day
Tamworth First 10.9589 kWh/Day Next 8.2418 kWh/Day Remaining kWh/Day
Melbourne All kWh/Day - -
Brisbane All kWh/Day - -

AGL

Newcastle First 1000 kWh/Quarter Next 1000 kWh/Quarter Remaining kWh/Quarter
Parramatta First 1000 kWh/Quarter Next 1000 kWh/Quarter Remaining kWh/Quarter
Tamworth First 1000 kWh/Quarter Next 1000 kWh/Quarter Remaining kWh/Quarter
Melbourne All kWh/Day - -
Brisbane All kWh/Day - -
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Table A.3: TOU tariffs for each retail plan and location considered (prices include 10% GST)

Retailer Location
TOU Tariff 1 TOU Tariff 2 TOU Tariff 3 Daily Supply Charge Feed-in Tariff

(c/kWh) (c/kWh) (c/kWh) (c/Day) (c/Day)

Origin Energy

Newcastle 52.8 21.45 13.2 99 6.0
Parramatta 35.31 29.15 15.4 108.9 6.0
Tamworth 31.35 31.35 18.15 149.6 6.0
Melbourne 46.453 28.567 20.284 108.757 5.0
Brisbane 33.803 24.365 19.767 128.117 6.0

EnergyAustralia

Newcastle 53.98844 21.62446 12.03719 95.6494 6.1
Parramatta 38.1634 28.39265 14.3803 112.5366 6.1
Tamworth 33.62293 33.62293 17.00116 153.1365 6.1
Melbourne 35.222 - 17.842 113.3 5.0
Brisbane 35.2 24.53 17.897 128.7 6.0

AGL

Newcastle 55.363 21.659 12.177 96.426 6.1
Parramatta 36.245 29.7 14.465 109.439 6.1
Tamworth 34.892 34.892 18.656 148.885 6.1
Melbourne 34.727 27.225 20.559 120.615 5.0
Brisbane 35.871 25.85 21.065 115.236 6.0
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Table A.4: Hours of the day defining off-peak, shoulder and peak periods for each retail electricity plan (WD and WE denote weekday and weekend
respectively)

Retailer Location Peak Period Shoulder Period Off-peak Period

Origin Energy

Newcastle WD=(2pm-8pm)
WD=(7am-2pm,8pm-10pm)

All other timesWE=(7am-10pm)

Parramatta WD=(1pm-8pm)
WD=(7am-1pm,8pm-10pm)

All other times
WE=(7am-10pm)

Tamworth WD=(7am-9am,5pm-8pm) WD=(9am-5pm,8pm-10pm) All other times

Melbourne WD=(3pm-9pm)
WD=(7am-3pm,9pm-10pm)

All other times
WE=(7am-10pm)

Brisbane WD=(4pm-8pm)
WD=(7am-4pm,8pm-10pm)

All other times
WE=(7am-10pm)

EnergyAustralia

Newcastle WD=(2pm-8pm)
WD=(7am-2pm,8pm-10pm)

All other times
WE=(7am-10pm)

Parramatta WD=(1pm-8pm)
WD=(7am-1pm,8pm-10pm)

All other times
WE=(7am-10pm)

Tamworth WD=(7am-9am,5pm-8pm) WD=(9am-5pm,8pm-10pm) All other times
Melbourne WD=(7am-11pm) - All other times

Brisbane WD=(4pm-8pm)
WD=(7am-4pm,8pm-10pm)

All other times
WE=(7am-10pm)

AGL

Newcastle WD=(2pm-8pm)
WD=(7am-2pm,8pm-10pm)

All other times
WE=(7am-10pm)

Parramatta WD=(1pm-8pm)
WD=(7am-2pm,8pm-10pm)

All other times
WE=(7am-10pm)

Tamworth WD=(7am-9am,5pm-8pm) WD=(9am-5pm,8pm-10pm) All other times

Melbourne WD=(3pm-9pm)
WD=(7am-3pm,9pm-10pm)

All other times
WE=(7am-10pm)

Brisbane WD=(4pm-8pm)
WD=(7am-4pm,8pm-10pm)

All other timesWE=(7am-10pm)
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A.2 Example Business Retail Tariffs - Chapter 7

Table A.5: TransGrid iDemand retail electricity tariff assumptions (P = Peak, SH =
Shoulder, OP = Off-peak)(prices exclude 10% GST)

Parameter Charges

Rate

Unit
P SH OP

Tret

Retailer Energy 6 6 4 c/kWh

Distributor Energy 4.1124 3.0474 1.3178 c/kWh

Administration 0.0378 c/kWh

Ancillary Services 0.261 c/kWh

LRET 0.381 c/kWh

SRES 0.404 c/kWh

NSW Energy Saving 0.082 c/kWh

Tsc
Network Access Charge 18.729 $/Meter/Day

Meter Provision 2 $/Meter/Day

TDC Distributor Demand 10.4581 $/kVA

A.3 Ausgrid Network and Retailer Tariffs - Chapter 8

Table A.6: Ausgrid proposed 2019-2020 network tariffs (prices exclude 10% GST)

Tariff Component Charge Component
Tariff Structure

TOU Demand Demand

NUoS

Peak (c/kWh) 23.5336 3.0293
Shoulder (c/kWh) 4.4199 3.0293
Off-peak (c/kWh) 3.0859 3.0293
Network Access Charge ($/day) 46.1155 37.1624
Demand Charge (High Season) (c/kW/day) 4.0779 20.3897
Demand Charge (Low Season) (c/kW/day) 4.0779 10.1949

Peak (c/kWh) 16.6295 1.3073
DUoS Shoulder (c/kWh) 3.5148 1.3073
& Off-peak (c/kWh) 2.2504 1.3073

Climate Change Network Access Charge ($/day) 41.2955 32.3424
Fund Demand Charge (High Season) (c/kW/day) 4.0779 20.3897

Demand Charge (Low Season) (c/kW/day) 4.0779 10.1949

TUoS

Peak (c/kWh) 6.9041 1.722
Shoulder (c/kWh) 0.9051 1.722
Off-peak (c/kWh) 0.8355 1.722
Network Access Charge ($/day) 4.82 4.82

Distribution Loss Factor (DLF) 1.048 1.048
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Table A.7: Retail tariffs for 2019 associated with the Ausgrid network. Adjusted for the proposed 2019-2020 tariff structure statement (prices include
10% GST)

Tariff Structure Bill Component

Retailer
1 2 3 4 5 6 7 8 9 10

EnergyAustralia
Origin

AGL
Simply Red Alinta

Dodo ReAmped
Energy

PowershopEnergy Energy Energy Energy Locals

Peak (c/kWh) 59.29 41.4 45.1 58.43 42.9 60.26 67.01 45.65 38.49 39.6
Shoulder (c/kWh) 31.02 18.59 19.14 22.18 23.1 25.3 28.36 18.15 18.69 21.59

Retail Plans Off-peak (c/kWh) 18.92 11.26 12.54 15 15.4 16.5 17.49 11.66 14.29 18.1
2019 Energy Discount (%) 26 0 0 18 10 30 30 0 0 15

Daily Supply Charge (c/day) 106.04 106.54 102.4 96.44 110.11 105.6 111.2 99.66 140.8 120.47
Solar FiT (c/kWh) 12.5 8 11.1 8 11.1 7.5 11.6 8 9 10.2

Peak (c/kWh) 42.75 39.88 43.58 46.67 37.24 41.12 45.85 44.13 36.97 32.37
Shoulder (c/kWh) 21.23 16.26 16.81 16.28 18.69 16.08 18.22 15.82 16.36 16.37

Ausgrid TOU Demand Off-peak (c/kWh) 14.46 11.88 13.16 12.81 14.42 11.98 12.68 12.28 14.91 15.91
Tariff (2019-20) & Daily Supply Charge (c/day) 107.01 107.51 103.38 97.41 111.08 106.57 112.13 100.63 141.77 121.44
Energy Discount Demand (High Season)

4.49 4.49 4.49 4.49 4.49 4.49 4.49 4.49 4.49 4.49
(c/kW/day)
Demand (Low Season)

4.49 4.49 4.49 4.49 4.49 4.49 4.49 4.49 4.49 4.49
(c/kW/day)
Solar FiT (c/kWh) 12.5 8 11.1 8 11.1 7.5 11.6 8 9 10.2

Peak (c/kWh) 25.26 16.25 19.95 27.29 15.97 24.57 29.30 20.50 13.34 12.28
Shoulder (c/kWh) 20.04 14.66 15.21 14.96 17.25 14.96 17.10 14.22 14.76 15.01

Ausgrid Demand Tariff Off-peak (c/kWh) 14.41 11.81 13.09 12.75 14.36 11.94 12.63 12.21 14.84 15.85
(2019-20) & Daily Supply Charge (c/day) 97.16 97.66 93.53 87.56 101.23 96.72 102.28 90.78 131.92 111.59

Energy Discount Demand (High Season)
22.43 22.43 22.43 22.43 22.43 22.43 22.43 22.43 22.43 22.43

(c/kW/day)
Demand (Low Season)

11.21 11.21 11.21 11.21 11.21 11.21 11.21 11.21 11.21 11.21
(c/kW/day)
Solar FiT (c/kWh) 12.5 8 11.1 8 11.1 7.5 11.6 8 9 10.2





Appendix B

Hypothesis Tests

The hypothesis testing methodology used in Chapter 5 is based on the p-value approach

detailed in [306]. While hypothesis testing is usually established on the assumption of

normally distributed populations with equal variance, if the sample sizes are sufficiently

large for distributions exhibiting non-normal characteristics, such as skewness and unequal

variance as apparent in Figure 5.11(a)–(e), then by the central limit theorem, the standard

hypothesis testing methodology remains valid [306]. As the samples considered in this

research each include 40 customers, the sample sizes are deemed sufficiently large to invoke

the above statement.

Under the well defined p-value approach for the two-tailed t-test, if the p-value calcu-

lated for the sample test statistic t∗ is less than the confidence level α (assumed to be 5%

in this research), the null hypothesis (equal distribution means) is rejected, in favour of

the alternative hypothesis (distribution means are not equal).

The results of the hypothesis tests undertaken for the analysis in Section 5.5.2 are

summarized in Table B.1.

Table B.1: Summary of hypothesis tests for distributions of key performance and system
metrics.

Tested samples Metric p-value Reject null hyp. (@ α = 5%)

Low/medium

NPV 2.79×10−14 Yes
Size 1.63×10−17 Yes

Savings 1.26×10−5 Yes
MIRR 0.0818 No
Payback 0.298 Yes

Medium/high

NPV 8.45×10−13 Yes
Size 7.07×10−15 Yes

Savings 3.31×10−4 Yes
MIRR 0.2109 No
Payback 0.1075 No
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Appendix C

PV Module Input Parameters

Applicable parameters of the PV module considered in the analysis presented in Chap-

ters 5, 6, 7 and 8 are detailed in the subsequent tables.

Table C.1: PV module characteristics for Chapter 5

Parameter Value

Make Trina Solar
Model TSM-250PD05.05
Type Polycrystalline
Maximum Power @ STC 250 W
Efficiency (ηmpp,STC) @ STC 15.3
Power Temperature Coefficient (μmpp) -0.41
NOCT 44◦C
Surface Area (Ac) 1.637 m2

Initial Guarantee D1 97
Degradation Rate rdeg 0.7

Table C.2: PV module characteristics for Chapter 6 (small sample)

Parameter Value

Make Trina Solar
Model TSM-280PC05A(II)
Type Polycrystalline
Maximum Power @ STC 280 W
Efficiency (ηmpp,STC) @ STC 17.1
Power Temperature Coefficient (μmpp) -0.39
NOCT 44◦C
Surface Area (Ac) 1.637 m2

Initial Guarantee D1 97
Degradation Rate rdeg 0.7
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Table C.3: PV module characteristics for Chapter 7

Make Suntech

Model STP250-20/Wd

Type Polycrystalline

Maximum Power @ STC 250 W

Efficiency (ηmpp,STC) @ STC 15.4%

Power Temperature Coefficient (μmpp) -0.43

NOCT 45◦C

Surface Area (Ac) 1.62688 m2

Table C.4: PV module characteristics for Chapter 6 (large sample) and Chapter 8

Parameter Value

Make Trina Solar
Model TSM-300PD06H
Type Polycrystalline
Maximum Power @ STC 300 W
Efficiency (ηmpp,STC) @ STC 17.6
Power Temperature Coefficient (μmpp) -0.38
NOCT 41◦C
Surface Area (Ac) 1.705 m2

Initial Guarantee D1 97
Degradation Rate rdeg 0.7



Appendix D

BESS Input Parameters

The battery system characteristics assumed for Chapter 6 and the TransGrid iDemand

case study in Chapter 7 are provided in Table D.1 and Table D.2 respectively. The BESS

characteristics considered in Chapter 8 are detailed in Table D.3 based on figures published

in [248]. The final row was calculated using (6.1), (8.28) and (8.29).

Table D.1: System characteristics of two BESSs considered in Chapter 6

Make Enphase Tesla
Model AC Battery Powerwall 2

Energy Capacity CMAX (kWh) 1.2 13.5
Power Rating Rmax (kW) 0.26 5.00
End-of-life Capacity CEOL (kWh) 0.96 9.45
Cycle Life YEOL 3,650 3,650
Depth of Discharge D (%) 100 100
Battery Cost Ub (AUD) $2,000 $10,000
Installation Cost $0 $400
Battery Efficiency (Round-trip) (%) 0.96 -
Inverter Efficiency (Assumed) ηinv (%) 0.96 -
Total efficiency (ηbatt) (%) 0.88 0.90

Table D.2: TransGrid iDemand BESS characteristics in Chapter 7

Manufacturer Kokam

Model KRI-H-3R4C-133

Nominal Charge/Discharge Power (Rmax) 133 kWh

Initial Maximum Useful Capacity (Cmax0) 126 kWh

End-of-life Capacity (CEOL) 75.6 kWh (60%)

Cycles (YEOL) 8000

Depth of Discharge (D) 80%

Round-trip DC Efficiency (ηbatt) 95%

Assumed Warranty Period 10 years
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Table D.3: System characteristics of nine BESSs available in 2019 assessed in Chapter 8

Make Enphase Soltaro Soltaro SolaX SolaX LG Chem DCS BYD Tesla
Model AC Battery 2 4.5 Triple Power 4.5 Triple Power 6.3 Resu 10 PV 10.0 B Box Pro 13.8 Powerwall 2
Reference Number 1 2 3 4 5 6 7 8 9

Energy Capacity CMAX (kWh) 1.2 2 4.5 4.5 6.3 8.8 10.4 13.8 13.5
Power Rating Rmax (kW) 0.26 2 4.5 2.5 2.5 5 5.2 12.8 5.00
End-of-life Capacity CEOL (kWh) 0.96 1.8 4.05 4.05 5.67 5.28 9.36 9.52 9.45
Cycle Life YEOL 3,650 10,000 10,000 6,000 6,000 3,650 5,000 3,650 3,650
Depth of Discharge D (%) 100 90 90 90 90 100 100 100 100
Battery Cost Ub (AUD) $2,000 $1,700 $4,200 $2,800 $4,000 $7,655 $8,900 $9,600 $12,350
Inverter Cost $0 $694 $1,562 $868 $868 $1,735 $1,804 $4,442 $0
Installation Cost $0 $400 $400 $400 $400 $400 $400 $400 $400
Battery Efficiency (Round-trip) (%) 0.96 0.97 0.97 0.95 0.95 0.95 0.98 0.953 -
Inverter Efficiency (Assumed) ηinv (%) 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 -
Total efficiency (ηbatt) (%) 0.88 0.89 0.89 0.88 0.88 0.88 0.90 0.88 0.90
Degradation Cost (Cdegrad) (c/kWh) 50.73 16.44 16.11 17.72 16.39 38.10 22.48 33.93 30.44



Appendix E

P2P Market Simulation - Results

for All Cases

E.1 P2P Market Simulation Price, Energy and Hour Heat
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Figure E.1: Heat map of P2P clearing prices for each hour of the day in Year 1 and Year
20 (P2P simulation case A)
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Figure E.2: Heat map of P2P cleared energy for each hour of the day in Year 1 and Year
20 (P2P simulation case A)
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Figure E.3: Heat map of P2P clearing prices for each hour of the day in Year 1 and Year
20 (P2P simulation case B)
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Figure E.4: Heat map of P2P cleared energy for each hour of the day in Year 1 and Year
20 (P2P simulation case B)
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Figure E.5: Heat map of P2P clearing prices for each hour of the day in Year 1 and Year
20 (P2P simulation case C)
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Figure E.6: Heat map of P2P cleared energy for each hour of the day in Year 1 and Year
20 (P2P simulation case C)
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Figure E.7: Heat map of P2P clearing prices for each hour of the day in Year 1 and Year
20 (P2P simulation case D)
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Figure E.8: Heat map of P2P cleared energy for each hour of the day in Year 1 and Year
20 (P2P simulation case D)
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Figure E.9: Heat map of P2P clearing prices for each hour of the day in Year 1 and Year
20 (P2P simulation case E)
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Figure E.10: Heat map of P2P cleared energy for each hour of the day in Year 1 and
Year 20 (P2P simulation case E)
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Figure E.11: Heat map of P2P clearing prices for each hour of the day in Year 1 and
Year 20 (P2P simulation case F)
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Figure E.12: Heat map of P2P cleared energy for each hour of the day in Year 1 and
Year 20 (P2P simulation case F)
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Figure E.13: Heat map of P2P clearing prices for each hour of the day in Year 1 and
Year 20 (P2P simulation case G)
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Figure E.14: Heat map of P2P cleared energy for each hour of the day in Year 1 and
Year 20 (P2P simulation case G)
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Figure E.15: Heat map of P2P clearing prices for each hour of the day in Year 1 and
Year 20 (P2P simulation case H)
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Figure E.16: Heat map of P2P cleared energy for each hour of the day in Year 1 and
Year 20 (P2P simulation case H)
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E.2 Optimised DER Average Energy Flow
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Figure E.17: Average energy purchases and sales across 100 test customers in Year 1
and Year 20 (Scenario 0)
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Figure E.18: Average energy purchases and sales across 100 test customers in Year 1
and Year 20 (Scenario 1a)
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Figure E.19: Average energy purchases and sales across 100 test customers in Year 1
and Year 20 (Scenario 1b)
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Figure E.20: Average energy purchases and sales across 100 test customers in Year 1
and Year 20 (Scenario 1c)
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Figure E.21: Average energy purchases and sales across 100 test customers in Year 1
and Year 20 (Scenario 2)
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Figure E.22: Average energy purchases and sales across 100 test customers in Year 1
and Year 20 (Scenario 3)
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Figure E.23: Average energy purchases and sales across 100 test customers in Year 1
and Year 20 (Scenario 6)
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Figure E.24: Average energy purchases and sales across 100 test customers in Year 1
and Year 20 (Scenario 7a)
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Figure E.25: Average energy purchases and sales across 100 test customers in Year 1
and Year 20 (Scenario 7b)
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Figure E.26: Average energy purchases and sales across 100 test customers in Year 1
and Year 20 (Scenario 8)
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Energy Society (ISES), 16-19 June 2003, Conference Proceedings, p. 13 p.

[84] H. G. Beyer, C. Costanzo, and D. Heinemann, “Modifications of the Heliosat procedure for
irradiance estimates from satellite images,” Solar Energy, vol. 56, no. 3, pp. 207–212, 1996.

[85] D. Dumortier, “The satellight model of turbidity variations in Europe,” Ecole Nationale des
Travaux Publics de l’Etat, Report, September 1998.

[86] National Oceanic and Atmospheric Administration. Global forecast system (GFS). [Online].
Available: https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-
forcast-system-gfs

[87] A. Hammer, “Anwendungspezifische solarstrahlungsinformationen aus Meteosat-Daten,”
PhD thesis, 2000.

[88] A. Hammer et al., “Solar energy assessment using remote sensing technologies,” Remote
Sensing of Environment, vol. 86, no. 3, pp. 423–432, 2003.

[89] D. Cano et al., “A method for the determination of the global solar radiation from meteoro-
logical satellite data,” Solar Energy, vol. 37, no. 1, pp. 31–39, 1986.

[90] D. P. Dee et al., “The ERA-interim reanalysis: Configuration and performance of the data
assimilation system,” Quarterly Journal of the Royal Meteorological Society, vol. 137, no.
656, pp. 553–597, 2011.

[91] R. Perez, P. Ineichen, E. Maxwell, R. Seals, and A. Zelenka, “Dynamic global-to-direct
irradiance conversion models,” ASHRAE Transactions, vol. 98, no. 1, pp. 354–369, 1992.

[92] C. A. Gueymard, “REST2: High-performance solar radiation model for cloudless-sky irra-
diance, illuminance, and photosynthetically active radiation - Validation with a benchmark
dataset,” Solar Energy, vol. 82, no. 3, pp. 272–285, 2008.

[93] C. Rigollier, O. Bauer, and L. Wald, “On the clear sky model of the ESRA - European Solar
Radiation Atlas - With respect to the Heliosat method,” Solar Energy, vol. 68, no. 1, pp.
33–48, 2000.

[94] R. Perez, P. Ineichen, E. Maxwell, R. Seals, and A. Zelenka, “Dynamic models for hourly
global-to-direct irradiance conversion,” in Proceedings of ISES World Congress, Denver, Col-
orado, 1991, Conference Proceedings.

[95] E. Maxwell, “A quasi-physical model for converting hourly global to direct normal insola-
tion,” Solar Energy Research Institute, Report SERI/TR-215-3087, August 1987.

[96] R. W. Mueller et al., “Rethinking satellite-based solar irradiance modelling: The SOLIS
clear-sky module,” Remote Sensing of Environment, vol. 91, no. 2, pp. 160–174, 2004.

[97] Z. Qu, B. Gschwind, M. Lefevre, and L. Wald, “Improving HelioClim-3 estimates of sur-
face solar irradiance using the McClear clear-sky model and recent advances in atmosphere
composition,” Atmos. Meas. Tech., vol. 7, no. 11, pp. 3927–3933, 2014, aMT.



268 Bibliography
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[132] J. L. Torres, M. De Blas, A. Garćıa, and A. de Francisco, “Comparative study of various
models in estimating hourly diffuse solar irradiance,” Renewable Energy, vol. 35, no. 6, pp.
1325–1332, 2010.

[133] C. Bertrand, G. Vanderveken, and M. Journée, “Evaluation of decomposition models of
various complexity to estimate the direct solar irradiance over Belgium,” Renewable Energy,
vol. 74, pp. 618–626, 2015.

[134] C. A. Gueymard and J. A. Ruiz-Arias, “Extensive worldwide validation and climate sensi-
tivity analysis of direct irradiance predictions from 1-min global irradiance,” Solar Energy,
vol. 128, pp. 1–30, 2016.
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