

Powertrain Electrification for Jerk Reduction and Continuous Torque Delivery

by Peter Shaker Tawadros

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Professor Nong Zhang

University of Technology Sydney Faculty of Engineering and Information Technology

June 2019

UTS School of Mechanical and Mechatronic Engineering (MME) Faculty of Engineering & Information Technology (FEIT)

Powertrain Electrification for Jerk Reduction and Continuous Torque Delivery

- Research Centre: The UTS Centre for Green Energy and Vehicle Innovations (GEVI)
- Completed by: Peter Shaker Tawadros
- Supervisor: Prof. Nong Zhang
- Co-supervisors: Dr. Paul Walker

Course code: C02018 Subject Number: 49986 Doctor of Philosophy (PhD) Date: 01/01/2009 to 30/06/2019

University of Technology Sydney (UTS) P.O. Box 123, Broadway, Ultimo, N.S.W. 2007 Australia

Certificate of Original Authorship

I, Peter Shaker Tawadros declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Faculty of Engineering and IT at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Signature:

Production Note: Signature removed prior to publication.

28 June 2019

Statement of Contribution

This research project was a collaboration between the Author (Peter Shaker Tawadros) and Mohamed Mahmoud Zakaria Awadallah. Both the Author and Dr Awadallah studied under Prof. Nong Zhang and Dr Paul Walker in the preparation of this project. The project in its entireity required the design, modelling, simulation, verification, construction of a prototype, and experimental validation of a novel P3 mild hybrid vehicle with torque hole elimination.

Mohamed's thesis "A Mild Hybrid Vehicle Control Unit Capable of Torque Hole Elimination in Manual Transmissions", is focused on the development of the control system for the mild hybrid vehicle. It presents the modelling, simulation and hardware-in-the-loop verification of the powertrain and elements of its functionality.

My thesis "Powertrain Electrification for Jerk Reduction and Continuous Torque Delivery", is focused on the development and validation of the physical prototype powertrain. It presents the initial design process, construction of the prototype, experiment design, laboratory testing, and analysis of the data obtained from testing of the physical powertrain prototype.

At all stages of this project both Mohamed and I worked together as a team, collaborating and assisting each other to ensure the project goals were met. For the tasks listed above, where that task is presented in one candidate's thesis, that candidate made the majority contribution to the completion of that task whilst the other provided support as needed.

Signature:

Production Note: Signature removed prior to publication.

Peter Shaker Tawadros 28 June 2019 Signature:

Production Note: Signature removed prior to publication.

Mohamed Mahmoud Zakaria Awadallah 28 June 2019

Acknowledgements

Without a doubt I first need to thank God for guiding me along the ten-year long path to completion of this research. To have finally reached this point can really only be described as a miracle.

I also need to thank my parents, Laurice and Lotfi for instilling a sense of never being quite satisfied in my brother Paul and I. Between Paul and I we now have amassed some 62 years of institutional education – almost a literal lifetime. I think now's a good time to be satisfied. I wish Dad were here to see it all finished but seeing things from above probably looks better anyway.

My supervisors, Prof. Nong Zhang and Dr. Paul Walker, who have been tirelessly supportive and endlessly patient. The car works. You get a workshop manual to go with it, too. I hope it was worth the wait.

My research colleague Dr Mohamed Awadallah, for motivating me to carry on no matter the setbacks. If everyone had a work ethic like yours the rest of us could go on holiday forever.

Team KERMIT – Jack Liang, James Tawadros, Enoch Zhao, Mohamed Awadallah, Fatma Al-Widyan. Thank you for putting in an amazing effort to help get the car assembled in record time.

Finally, my wonderful wife Dina. Thank you for your love, support, distractions, and cheekiness. You make everything fun.

Financial support for this project is provided jointly by the Australian Research Council (Linkage ID number LP0775445), and The UTS Centre for Green Energy and Vehicle Innovations (GEVI).

iii

Abstract

A mild-hybrid electric powertrain is proposed for the principal purpose of providing continuous drive torque using a single, dry-plate clutched transmission. The powertrain is optimised to deliver several benefits, in relation to cost, complexity, vibration (jerk), as well as dynamic and emissions performance.

The powertrain proposed is a post-transmission type, with the motor being placed inline with the transmission output shaft, prior to the differential. This allows the powertrain to be controlled for providing continuous drive torque to the wheels during gear shifting and takeoff, eliminating the "torque hole" due to disengagement of the clutch plate, and providing a degree of damping during clutch re-engagement. A pressure-based clutch model is used to modulate the electric drive torque to minimise torsional vibration during the gear shifting process, whilst engine speed is controlled proportionally to road speed to minimise discontinuity of rotational velocity during the re-engagement process. The system is designed as a driver assistance function, but can optionally be implemented with automatic clutch and gear actuation units.

A rule-based energy management strategy (EMS) allows the powertrain to be additionally controlled for drive torque supplementation, battery recharging, brake energy recuperation, and electric vehicle (EV) crawl.

System optimization is conducted on several levels. The system architecture is optimized to minimize modification cost from a typical conventional vehicle (CV) by careful consideration of powertrain topology. The selection of the post-transmission (P3) architecture was made to eliminate the cost and complexity of a dual-motor configuration whilst maximising the utility of a single electric motor (EM) using a sophisticated EMS. The

electric power components, primarily the electric motor and battery are optimized for component size and cost based on benchmarking criteria and power needs analysis.

A V-cycle development process using model-based design was followed. A hardware-in-theloop (HIL) vehicle model was built in a virtual environment, allowing testing of performance and comparison with the CV by running the software model through standard drive cycles in Advanced Vehicle Simulator (ADVISOR). Certain model parameters were tested on a HIL bench and refined, and then the model was downloaded onto a real-time controller (dSPACE MicroAutoBox II) for implementation in the prototype validation stage.

The powertrain is designed to meet the requirements of a typical light vehicle. The prototype powertrain was built into a 1990 Mazda MX-5 (Miata) body, which was modified to fit the additional powertrain components selected through the optimization process. These components include a 1.2 KWh, 96 V LiFePO₄ battery pack, a 10 KW cont./30 KW pk. permanent magnet motor, four quadrant 600 A motor controller, battery management system, electronic throttle system, and supervisory controller. The vehicle was instrumented for clutch pedal position, clutch line pressure, gear lever position, brake pedal position, brake line pressure, throttle pedal and butterfly position, engine manifold vacuum, transmission output torque, transmission output speed, and electric motor torque. The battery is also instrumented through the battery management system (BMS) and is capable of logging individual cell voltages and temperatures, as well as pack statistics including state of charge, depth of discharge, current and voltage.

As implemented, the system is designed to suit low-end vehicles typically sold in developing nations, and serves as a way to reduce fossil-fuel dependency, introduce fleet electrification (particularly in areas where access to electricity is unreliable), and improve urban air pollution whilst also improving vehicle driveability through powertrain refinement. In developing the vehicle for such purpose, a tight manufacturing cost control of no more than 105% of the manufacturing cost of the base vehicle is imposed. With changes to the benchmarking criteria and control, the powertrain architecture could also be used for dynamic performance enhancement.

Results of experimental testing of the prototype against the CV are presented and discussed. The experimental testing encompasses acceleration, jerk, torque continuity, and emissions. Results validate the modelled system to a high degree, showing that the powertrain meets its design objectives, effectively providing continuous drive torque, substantially reducing torsional drivetrain vibrations manifested as longitudinal jerk.

Based on the test results of the prototype, a number of refinements, optimizations, and further works are suggested. Principally, the major system improvements include the implementation of an auto-clutch system (ACS), computerized gear selection, or the combination of both in the form of an automated manual transmission (AMT). These improvements eliminate the need for predictive algorithms required to fill the torque hole, as the target speed and torque are known at all stages during the gear selection process. Further refinements include optimization of the traction battery, new approaches to motor control, and further cost reductions in the transmission componentry through the use of electronic synchronization control.

Contents

POWERTRAIN ELECTRIFICATION FOR JERK REDUCTION AND	
CONTINUOUS TORQUE DELIVERY	I
CERTIFICATE OF ORIGINAL AUTHORSHIP	I
STATEMENT OF CONTRIBUTION	II
ACKNOWLEDGEMENTS	III
ABSTRACT	IV
CONTENTS	II
LIST OF FIGURES	V
LIST OF TABLES	X
ACRONYMS AND ABBREVIATIONS	XI
CHAPTER 1: INTRODUCTION	14
1.1 Research Statement	17
1.2 Objectives	17
1.3 Scope	18
1.4 Thesis Presentation	19
1.5 List of Publications	23
1.5.1 First Author Publications	23
1.5.2 Second Author Publications	24
CHAPTER 2: LITERATURE REVIEW	26
2.1 The Emissions Problem	27
2.2 Modern Vehicle Electrification	31
2.3 Technological State-of-the-art	34
2.4 Hybrid Powertrain Development	40
2.5 Torque and Jerk	47
CHAPTER 3: PROBLEM DEFINITION AND SOLUTION PROPOSAL.	53
3.1 Future of Internal Combustion	
3.2 Hybrid Vehicle Market Gap	
3.3 Political, Legislative and Economic Considerations	
3.4 Technological, Environmental and Social Considerations	62
3.5 Design Constraints	
3.5.1 Series Hybrid Topology	69
3.5.2 Parallel Hybrid Topology	
3.5.3 Series-Parallel Topology	
3.5.4 Degree of Hybridization	
3.5.5 Topology Selection	
3.6 Summary	
CHAPTER 4: INITIAL DESIGN AND REQUIREMENT BENCHMARK	ING80
4.1 Project Requirements	80
4.2 Base Vehicle Specification	
4.3 Electric Propulsion System Specification	85
4.3.1 Hybrid Topology	
4.4 Component Sizing and Selection	
4.4.1 Base Vehicle	
4.4.2 Electric Motor Charaterization	
4.4.3 Electric Motor Selection	
4.4.4 Motor Controller	
4.4.5 Traction Battery Sizing	116
4.4.6 Battery Component Selection	123

4.4.7	Battery Management System	128
4.4.8	Supervisory Controller	129
4.5 S	ummary	129
CHAPTER	Simulation and modelling	131
5.1 Ir	troduction	133
5.2 D	esign and System Definition	135
5.2.1	Mathematical Model	136
5.2.2	Simulation model	142
5.2.3	Energy Management Strategy	143
5.3 M	Iodel Verification	145
5.3.1	Continuous Torque Delivery Simulation	146
5.3.2	Fuel Economy and Emissions Simulation	148
5.4 R	apid Control Prototyping	156
5.4.1	EPS Architecture	157
5.4.2	Supervisory Controller	159
5.4.3	EPS Control Panel	160
5.5 H	ardware-in-the-loop test bed	162
5.5.1	HIL Bench Model	165
5.5.2	Control Panel	167
5.5.3	Test Scenario	167
5.6 S	ummary	170
CHAPTER	R 6: PROTOTYPE ASSEMBLY	172
6.1 O	verview	173
6.2 M	Iechanical Assembly	175
6.2.1	Transmission support cross-member	177
6.2.2	Differential Mount	177
6.2.3	Electric Motor Mount	178
6.2.4	Rotating Assembly	178
6.2.5	Electronic Throttle Body	179
6.2.6	Electronic Throttle Pedal	181
6.2.7	Traction Battery	182
6.2.8	Motor Controller Cooling	183
6.2.9	Improvements	183
6.3 E	lectrical Assembly	184
6.3.1	Battery and BMS	187
6.3.2	Electric Motor Throttle Control	188
6.3.3	Electronic Engine Throttle Control	189
6.3.4	Supervisory Controller	191
6.4 S	ummary	193
CHAPTER	R 7: TORQUE SENSING AND CONTROL	195
7.1 S	ystem Layout	195
7.2 C	ontrol Model	196
7.2.1	Control Unit Architecture	198
7.2.2	Stateflow State Machine	199
7.2.3	Torque Model Calculation	200
7.2.4	Engine Throttle Control	202
7.2.5	Control Unit Verification	204
7.3 C	ontrol Panel	205
7.4 T	orque Sensing	206
7.4.1	Vehicle Jerk	206
7.4.2	Measuring Shift Quality	207

7.4.3 Sensor Design	
7.4.4 Sensor Testing	
7.4.5 Simulation vs Measured Torque	
7.4.6 Vehicle Jerk Estimation	
7.5 Summary	
CHAPTER 8: EXPERIMENT DESIGN	
8.1 Test Aims and Goals	
8.1.1 Test 1 – Torque Hole	
8.1.2 Test 2 - Dynamic Performance (Acceleration)	
8.1.3 Test 3 – Driveline induced jerk.	
8.1.4 Test 4 - Fuel Economy and Emissions	
8.1.5 Further Testing	
8.2 Test Instrumentation	
8.3 Test and DAQ Software	
8.3.1 Orion BMS2 Utility	
8.3.2 Curtis 1314-4402 Programming Station	
8.3.3 dSPACE ControlDesk.	
8.3.4 NI LabView	
8.3.5 MAHA LPS 3000 Control Station	
8.4 Laboratory Equipment and Specifications	
8.4.1 MAHA MSR500/2 Dynamometer	
8.4.2 Tailpipe Exhaust Extraction	
8.4.3 Ambient Combustion Gas Monitoring	
8.4.4 Ambient Cooling	
8.5 Laboratory Setup	
8.5.1 Hardware and Software Setup	
8.5.2 Temperature Soaking	
8.5.3 Road Load Determination	
8.5.4 Datalogging Time Alignment	
8.6 Summary	
CHAPTER 9: RESULTS AND DISCUSSION	
9.1 Clutch Characterization	
9.2 Torque Hole Characterization – Test 1	
9.2.1 Uncontrolled Torque Hole	
9.2.2 Torque Fill-In	
9.2.3 Jerk	
9.3 Dynamic Performance (Acceleration) – Test 2	
9.3.1 Jerk under acceleration	
9.4 Fuel and Emissions – Test 3	
9.4.1 NEDC - Fuel	
9.4.2 NEDC – Emissions	
9.4.3 Acceleration – Fuel	
9.4.4 Acceleration – Emissions	
9.5 Summary	
CHAPTER 10: CONCLUSIONS	
10.1 Contributions	
10.2 Future Research Directions	
Appendix A : Vehicle parameters	
Appendix B : Model Parameters	
Appendix C : Sensor and Actuator Datasheets and Calibration Data	

List of figures

Figure [1.1 The structure of this thesis generally follows the V-cycle for model-	
based design	20
Figure 2.1 Sales forecasts from Valeo (Nikowitz 2016) (top) and Bloomberg	
(McDonald 2016) (bottom). Dominance of ICE vehicles (including HEV) is	
likely to continue for another 20-30 years.	33
Figure 2.2 Tree-diagram of all energy management strategies described in the	
literature to date (Xu et al. 2018)	
Figure 2.3 Electronic clutch module "e-clutch" architecture developed by	
Schaeffler Group (Lakshminarayanan et al. 2017)	39
Figure 2 4 Torque fill-in drivetrain proposed by (Baraszu & Cikanek 2002)	40
Figure 2.5 The Oerlikon 6-speed Hybrid AMT (Gavgani et al. 2015, 2016)	10
Vacca et al. 2017)	42
Figure 2.6 A theoretical series-parallel topology used for optimization study	12
(Tribioli 2017)	43
Figure $?$ 7 HAMT torque output results during shifting – from (Gaygani et al	
2015	51
Figure 2.8 Jerk during a shift in (7bang et al. 2010). The negative and positive	
iarks from alutah actuation as well as lurah are similar to these observed here	52
Figure 2.1. A dyapage in algoritic traction drive technologies have made electric	
reasons such as this and built by students at LTS massible	52
Figure 2.2 United Nations Environment Programme Would man of omissions	33
etenderde (Alayeau 2017)	61
Standards (Akumu 2017)	01
Figure 3.3 Heat map - relative cost of gasoline as a function of GDP per capita.	()
Original map using data from the world Bank (world Bank 2017)	64
Figure 3.4 Heat map - relative cost of electricity (average consumer tariffs) as a	
function of GDP per capita. Original map using data from the World Bank	
(world Bank 2018)	64
Figure 3.5 Hybrid vehicle topologies - (a) Series, (b) Parallel, (c) Series-	(0)
Parallel	68
Figure 3.6 Parallel hybrid topology nomenclature, adapted from (De Santis et	= 1
al. 2018)	71
Figure 4.1 Generic engine characteristic (peak values)	82
Figure 4.2 Generic vehicle characteristic (in-gear velocities)	82
Figure 4.3 Generic vehicle characteristic (simulated peak acceleration)	83
Figure 4.4 P3 topology can incorporate gear reductions for the electric motor to	
improve efficiency (x-engineer.org 2019)	87
Figure 4.5 A tree-diagram of all "online" (i.e., not using static component	
relationships) component sizing methods (Huang et al. 2018)	90
Figure #.6 Top-down view of the prototype vehicle with the roof removed	95
Figure #.7 Comparison of generic engine and prototype vehicle engine peak	
power and torque	96
Figure #4.8 Engine BSFC Map (Oglieve, Mohammadpour & Rahnejat 2017)	96
Figure #4.9 New York City Cycle (NYCC) speed and acceleration trace, as well	
as power requirements using base vehicle specifications	99
Figure #.10 NYCC shift points based on the prototype vehicle specifications	100
Figure #1.11 Power required for gear change using NYCC	101
Figure #.12 Electric motor torque and speed required at gear change	101
Figure # 13 EV crawl mode power demand	103

Figure #.14 EV crawl mode and torque fill (summed) power demand Figure #.15 Generalized front/rear brake bias (Tawadros, Zhang & Boretti	104
2014)	105
Figure #.16 Brake blending strategy for hybrid vehicles, taking into account	
envelopes of motor operation (Tawadros, Zhang & Boretti 2014)	106
Figure 4.17 Regenerative braking profile on the NYCC	106
Figure 4.18 Brake power histogram using the NYCC (averaged over 1sec time	
unit)	107
Figure 4.19 Total electric motor torque demand profile on the NYCC	107
Figure 4.20 Electric motor load points on the NYCC	108
Figure 4.21 The operating principle of Field-oriented control (Freescale	
Semiconductor 2014)	111
Figure 4.22 HPEVS AC-9 motor efficiency map (Akritidis 2015)	
Figure 4 23 Torque performance analysis of the HPEVS AC-9 in the NYCC	
cycle using MX-5 parameters	114
Figure 4 24 Load levelling strategy	118
Figure 4 25 Engine load levelling with on-axis permanently coupled motor is	110
constrained by the road speed, which constrains engine speed when a gear is	
selected. The vertical and herizontal lookup strategy is shown	110
Figure # 26 Instantaneous electrical newer required by the prototype in the	110
NVCC	110
Figure # 27 Simulated betters summer on the NVCC	121
Figure 4.27 Simulated battery current on the NYCC	121
Figure 4.28 Charge current histogram on the NYCC	121
Figure 4.29 Discharge current histogram on the NYCC	122
Figure 4.30 Electrical power histogram on the NYCC	123
Figure #.31 Energy and power density of various battery chemistries (Dunn,	105
Kamath & Tarascon 2011)	125
Figure 4.32 Lithium Ion chemistries - charge/discharge curves (Scrosati &	
Garche 2010)	125
Figure 5.1 The MBD process can be divided into virtual development work	
(developing the plant model) and physical development work (verification and	
validation)	133
Figure 5.2 Model-Based Design Adoption Grid	134
Figure 5.3 The prototype MHEV powertrain architecture used in KERMIT IV	135
Figure 5.4 Kinematic diagram of the MHEV architecture (Awadallah 2018)	137
Figure 5.5 A high-level view of the powertrain of the mild HEV model in	
Simulink	142
Figure 5.6 The rule-based energy management control strategy	145
Figure 5.7 Gear shifting torque profile	147
Figure 5.8 Gear shifting speed profile	147
Figure 5.9 The speed profile of Indian Urban Drive Cycle	149
Figure 5.10 The speed profile of HWFET Drive Cycle	149
Figure 5.11 Cumulative distribution of daily driving distance in Australia	
(Sharma et al. 2012)	153
Figure 5.12 The low-density traffic pattern drive cycle	154
Figure 5.13 The high-density traffic pattern drive cycle	154
Figure 5.14 Simulated F.E. under all tested drive cycles	155
Figure 5.15 Automotive Development Process using dSpace RCP platform	
Figure 5.16 The functional block diagram of an electric propulsion system	
Figure 5.17 The system architecture of the HIL electric propulsion system	159
Figure 5 18 Modelling control design of the HIL EPS	161
1.5are prio moderning control design of the fill Di Summer and the second	

Figure 5.19 The control panel used for the HIL EPS	162
Figure 5.20 Conceptual system structure	163
Figure 5.21 The HIL test bench as constructed	164
Figure 5.22 The top level of the RTI-Simulink blocks used for the Test Rig	166
Figure 5.23 Test rig modelling control design	166
Figure 5.24 PC display panel for data acquiring, variables changing in	
ControDesk	167
Figure 5.25 HIL torque profile	169
Figure 6 1 Axes of linear and rotational motion (terminology)	172
Figure 6.2 Vehicle underside showing the powertrain assembly and layout	175
Figure 6.3 Standard MX-5 powertrain showing the PPF connecting front and	170
rear assemblies	176
Figure 6.4 Standard intake system arrangement (Mazda Motor Corporation	170
1020)	180
Figure 6 5 Comparison of manual (left) and electronic (right) throttle body	100
flanges	181
Figure & 6 Standard throttle nodel arrangement (Mazda Mater Corneration	101
1000)	107
Figure & 7 Device Craig water round transmission cooler used for cooling	102
Figure 6.7 Davies Craig water pump and transmission cooler used for cooling	102
Figure (9 DMS Comparting discourse)	107
Figure 6.8 BMS Connection diagram \cdots	100
Figure 6.9 Electric motor throttle control system schematic	188
Figure 6.10 Engine throttle control system schematic	189
Figure 6.11 Supervisory controller schematic wiring diagram	191
Figure [/.1 The system virtual model mirrors the physical prototype	196
Figure //.2 Top-level control model representation showing the control unit	100
(right) and ports (left)	196
Figure //.3 Second-level representation of the control unit, showing subsystems	100
and state machine	198
Figure 7.4 Gear change continuous torque delivery state machine	199
Figure //.5 The "Calculate Torque" subsystem. The Calculate End Torque	
subsystem is similar but uses the next gear value instead of current gear value	200
Figure 7.6 An engine torque map was experimentally-derived and was used to	
determine target torque infill values	201
Figure 7.7 Engine throttle control subsystem	202
Figure 7.8 Engine throttle control was achieved using a 1D lookup table with	
throttle valve position plotted against engine RPM	204
Figure 7.9 Control unit verification using dashboard library components	205
Figure 7.10 The control panel user interface used to monitor and control the	
prototype during testing	206
Figure [7.11 Actual measured half shaft torque with fill-in, showing the	
different phases of the gear change (Baraszu & Cikanek 2002)	209
Figure 7.12 The torque sensor assembled in its housing (exploded view and	
photo)	210
Figure 7.13 Torque sensor module	211
Figure 7.14 Torque profile emulation data (incl. torque fill-in) from the HIL	
bench, obtained using the commercial transducer and the UTS Bluetooth	
transducer inline	212
Figure 7.15 Torque profile during constant-throttle acceleration cycle	
.	213
Figure 7.16 Real measured torque on the prop shaft	213 213

Figure & 1 Acceleration simulation results	220
Figure 8.2 Acceleration and powertrain derived jerk simulation results	220
Figure 8.3 Test process for continuous torque delivery validation	221
Figure 8.4 Test process for acceleration testing	225
Figure 8.5 Test process for fuel economy and emissions validation	225
Figure 8.5 Test process for fuer economy and emissions varidation	220
Figure 8.6 The Orion BMS2 software utility	
Figure 8. / Curtis 1314 programming station software	231
Figure 8.8 The dSpace dashboard used for controlling and monitoring the	
experiment conditions	232
Figure 8.9 Prototype MHEV (KERMIT IV) on the MAHA MSR500/2	
dynamometer	234
Figure 8.10 Iterative road load determination using SAE-J2264 routine	
showing the road load co-efficients	243
Figure 9.1 Clutch dimensions and assembly diagram (Mazda Motor	
Corporation 1989)	247
Figure 9.2 Clutch stall test outputs	248
Figure 9.3 Slip speed against torque fraction (transmitted torque expressed as a	
fraction of maximum observed torque)	249
Figure 9.4 An example of clutch judder observed during testing	250
Figure 9.5 Clutch Slip speed against Line Pressure. Self-excitation effects	
below 900RPM	251
Figure 9.6 Torque transmissibility shows three distinct regions of clutch	
engagement	252
Figure 9.7 Complete test profile for 60km/h 3-4 shift torque hole	
characterization	254
Figure 9.8 Torque hole for a 1-2 shift without continuous torque control	255
Figure 9.9 Torque hole for a 2-3 shift without continuous torque control	256
Figure 9.10 Torque hole for a 2-3 shift at 40km/h without continuous torque	
control	257
Figure 9.11 Torque hole for a 3-4 shift without continuous torque control	
Figure 9.12 Time domain data for a 1-2 shift using continuous torque control	
Figure 9.13 Time domain data for a 2-3 shift using continuous torque control	262
Figure 9 14 Time domain data for a 2-3 shift at 40km/h using continuous	0_
torque control	265
Figure 9 15 Time domain data for a 3-4 shift at 50km/h using continuous	
torque control	266
Figure 9.16 Simulated gear shift (top) using HIL compared against	
experimental data from the prototype vehicle	268
Figure Q 17 Jerk data during the 20km/h 1-2 gear shift	270
Figure 0.18 Jerk data during the 20km/h 2.3 gear shift	270
Figure 0.10 Jork data during the 40km/h 2.3 gear shift	272
Figure 9.19 Jerk data during the 40km/h 2-3 gear shift	275
Figure 9.20 Jerk data during the Jokin/ii 3-4 gear shift	
Figure 9.21 Experimental acceleration data compared with simulation data	277
Figure 9.22 Jerk data for shifts 1-2, 2-3, 3-4 for both the NHEV and the CV	270
Figure 9.23 Acquired speed data for the NEDC cycle	279
Figure 9.24 Cumulative fuel consumption from the NEDC test shows the effect	202
of engine stop-start on FE.	282
Figure 9.25 Instantaneous fuel consumption data for the NEDC test shows the	0.00
principal differences at stop-start and initial acceleration	
Figure 9.26 Hydrocarbon emissions are highest during engine transient events	
such as start-up, gear changes, and overrun after the high-speed cycle	284

Figure 9.27 CO emissions were higher under MHEV operation	285
Figure 9.28 Carbon Dioxide emissions followed engine speed, and thus were	
significantly reduced under MHEV operation	286
Figure 9.29 Nitric Oxide emissions were somewhat lower under MHEV	
operation due to reduced engine thermal state	286
Figure 9.30 Correlation of carbon dioxide output and engine speed	287
Figure 9.31 Cumulative fuel consumption for the acceleration test	287
Figure 9.32 Difference in fuel consumption as a function of time shows the	
effect of gear changes on the overall fuel economy	288
Figure 9.33 Carbon Monoxide (top) and Hydrocarbon (bottom) emissions for	
the acceleration run	289
Figure 9.34 Carbon Dioxide (top) and Nitric Oxide (bottom) emissions for the	
acceleration run	290

List of tables

Table I Initial Design Constraints	67
Table II Initial Design Benchmarks	68
Table III Key characteristics of varying degrees of hybridization	75
Table IV Functionality of the various parallel hybrid topologies P0-P4	77
Table V Base vehicle specifications	84
Table VI P3 and P4 hybrid topology featureset	
Table VII The results of a market search for potential base vehicles for the	
MHEV assembly process	93
Table VIII Gear ratio comparison - generic vehicle and prototype MX-5	
(Mazda Motor Corporation 1989)	97
Table IX Motor design parameters	109
Table X Updated motor parameters	112
Table XI Motor parameters - HPEVS AC-9	113
Table XII Comparison of the commercially available motor controllers	115
Table XIII Calculated traction battery requirements	123
Table XIV Battery characteristics - commercially available cells	127
Table XV Mechanical Notation and Nomenclature	141
Table XVI Electrical Notation and Nomenclature	141
Table XVII Drive cycle parameters	149
Table XVIII Emissions and fuel economy simulation results	151
Table XIX Drive Cycle Characteristics	153
Table XX Fuel economy and emissions results for all tested cycles	154
Table XXI Fuel economy benchmarking simulation results	222
Table XXII Lower and higher limit simulation results for tailpipe emissions	222
Table XXIII Measured quantities for experimental validation	229
Table XXIV Hardware configuration checks required prior to test	
commencement	237
Table XXV Software configuration checks required prior to test	
commencement	238
Table XXVI Control values for the continuous torque control system	260
Table XXVII Jerk results in summary	276
Table XXVIII Summary fuel and emissions results from the acceleration test	281
Table XXIX Summary fuel and emissions results from the NEDC test	281

Acronyms and abbreviations

4WD	Four-Wheel-Drive
5MT	5-speed Manual Transmission
A/D	Analog-to-Digital
ABB	ASEA Brown Boveri (company name)
AC	Alternating Current
ACG	Automatic Code Generation
ACIM	Alternating Current Induction Motor
ADC	Analog-to-Digital Converter
ADVISOR	ADvanced VehIcle SimulatOR
AER	All-Electric Range
AMT	Automated Manual Transmission
AT	Automatic Transmission
BEV	Battery Electric Vehicle
BLDC	BrushLess Direct Current
BMEP	Brake Mean Effective Pressure
BMS	Battery Management System
BOL	Beginning Of Life
BSFC	Brake-Specific Fuel Consumption
CAN	Controller Area Network
CARB	California Air Resources Board
CD	Coast Down
CRAC	Computer Room Air Conditioning
CSHVR	City-Suburban Heavy Vehicle Route
CTM	Cost To Manufacture
CV	Conventional Vehicle
D/A	Digital-to-Analog
DAC	Digital-to-Analog Converter
DAQ	Data AcQuistion
DC	Direct Current
DCT	Dual-Clutch Transmission
DHT	Dedicated Hybrid Transmission
DOF	Degrees Of Freedom
ECE/UNECE	United Nations Economic Commission for Europe
ECU	Electronic Control Unit
EM	Electric Motor
EMF	ElectroMotive Force
EOL	End Of Life
EPA/US EPA	United States Environmental Protection Authority
EPS	Electric Propulsion System
ESM	Engine Simulation Motor
EV	Electric Vehicle
FE	Fuel Economy
FF	Front-engine/Front-wheel-drive
FOC	Field Orientation Control
FR	Front-engine/Rear-wheel-drive
намт	Hybridized Automated Manual Transmission

HAP	Hazardous Air Pollutants
HC	Hydrocarbons
HEV	Hybrid Electric Vehicle
HIL	Hardware-In-the-Loop
HPEVS	Hi-Performance Electric Vehicles
HSD	Hybrid Synergy Drive
HWFET	HighWay Fuel Economy Test
I/O	Input/Output
I2V	Infrastructure-to-Vehicle
I4	Inline 4-cylinder
ICE	Internal Combustion Engine
IGBT	Integrated Gate Bipolar Transistor
ΙοΤ	Internet of Things
ISC	Idle Speed Control
VEDMIT IV	Kinetic Energy Recovery and Motor Infill Torque Investigation
KEKMII IV	Vehicle
LiFePO4	Lithium Iron Polymer
Li-ion	Lithium-Ion
LSB	Load Simulation Brake
МАЦА	MAHA Maschinenbau Haldenwang Gmbh & Co. KG (company
MAIIA	name)
MBD	Model-Based Design
MHEV	Mild Hybrid Electric Vehicle
MR	Mid-engine/Rear-wheel-drive
MT	Manual Transmission
N/C	Normally Closed
N/O	Normally Open
n-D	n-Dimensional
NEDC	New European Driving Cycle
NEMA	National Electrical Manufacturers' Association
NI	National Instruments (company name)
NiMH	Nickel Metal Hydride
NOVC	Non Off-Vehicle Charging
NOx	Nitric Oxide
NVH	Noise, Vibration and Harshness
NYCC/NYCDDS	New York City Cycle/New York City Dynamometer Drive Schedule
OBD/OBDI/OBDII	On-Board Diagnostics (version I/II)
OEM	Original Equipment Manufacturer
OTA	Over-the-Air
OVC	Off-Vehicle Charging
PC	Personal Computer
PCB	Printed Circuit Board
PEMS	Portable Emissions Measurement System
PESTEL	Political, Economic, Social, Technological, Environmental, Legal
PHEV	Plug-in Hybrid Electric Vehicle
PID	Proportional Integral Differential
PIL	Processor-In-the-Loop
PM2.5	Particle Matter <2.5um
PMSM	Permanent Magnet Synchronous Motor

PMSRM	Permanent Magnet Switched Reluctance Motor
PPF	PowerPlant Frame
PSI	Pounds per Square Inch
РТО	Power Take-Off
RCP	Rapid Control Prototyping
DEEU/DEU-	Range-Extended Electric Vehicle/Battery Electric Vehicle -
KEEV/BEVX	Extended Range
RHS	Rectangular Hollow Section
RLD	Road Load Determination
RON	Research Octane Number
RPM	Revolutions Per Second
RR	Rear-engine/Rear-wheel-drive
RTI	Real Time Interface
SAE	Society of Automotive Engineers
SIL	Software-In-the-Loop
SOC	State-Of-Charge
SPDT	Single-Pole Double-Throw
SRM	Switched Reluctance Motor
TCO	Total Cost of Ownership
ТСО	Total Cost of Ownership
THS/THS-II/THS-	Torrate Urhaid System (I/II/III)
III	Toyota Hydrid System (1/11/11)
TTR	Through-the-Road
UDDS	Urban Dynamometer Drive Cycle
UN	United Nations
UTS	University of Technology Sydney
UUT	Unit Under Test
V&V	Verification and Validation
V2I	Vehicle-to-Infrastructure
VDV	Vibration Dose Value
VFD	Variable Frequency Drive
VI	Virtual Instrument
VOC	Volatile Organic Compounds
WHO	World Health Organization
WLTP	World-harmonized Light-duty Test Procedure
ZEV	Zero Emissions Vehicle