Understanding Problems of High Polymer Demand in Sludge Dewatering for Better Sludge Management

by

Vu Hien Phuong To

A thesis submitted to fulfilment of the requirements for the degree of Doctor of Philosophy

University of Technology Sydney

Faculty of Engineering and IT

February 2020

Certificate of Original Authorship

I, Vu Hien Phuong To, declare that this thesis is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Faculty of Engineering and IT at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Signature:

Production Note: Signature removed prior to publication.

Date: 19/02/2020

Acknowledgement

I would like to express my special appreciation and thanks to my principal supervisor Dr. TIEN VINH NGUYEN and co-supervisor Professor SARAVANAMUTHU VIGNESWARAN. I would like to thank them for encouraging my research and for allowing me to grow as a research scientist. Their advice on both research as well as on my career have been priceless. Without their supervisions and constant help, this thesis would not have been possible.

I would also like to thank all academic staffs of the CENTRE FOR TECHNOLOGY IN WATER AND WASTEWATER (CTWW) for their valuable advice, comments, suggestions as well as encouragements during my study. My special thanks to MD ABU HASAN JORHIR, the laboratory manager, for his useful help and advice for my research. Thanks to all my colleagues of CTWW for their support and encouragement.

My special thanks to SYDNEY WATER CORPORATION for their supports of both finance and knowledge for my research. My great appreciation for Dr. HERIBERTO BUSTAMANTE (principal scientist treatment of Sydney Water) and Professor MATTHEW HIGGINS (Buckell University, USA), who have significant experience in the research and industrial areas, by virtue of their helpful consultancy for my study. Also, a grateful thank to UTS INTERNATIONAL RESEARCH SCHOLARSHIP (UTS IRS) for tuition fee support for my study of Doctor of Philosophy Degree.

Finally, yet importantly, I would like to send my special thanks to my family and all of my friends. They were always supporting and encouraging me with their best wishes.

Dedication

This thesis is deeply dedicated to the following people:

To my mother VU NGOC CHIEM and late father TO VAN HOAN

To my brother TO VU THANH, my sister NGUYEN THU HIEN, and my niece TO NGUYEN HIEN ANH

To my aunts, uncles, and cousins

Format of Thesis

This is a thesis by compilation that comprises a combination of chapters and published/publishable papers.

This thesis includes 7 chapters:

- Introduction: Chapter 1
- Literature review: Chapter 2
- Published papers: Chapters 3, 4, 5
- Publishable papers: Chapter 6
- Conclusions: Chapter 7

In order to link all result/paper chapters in a logical and coherent way, there is a preamble to each chapter which states its purpose, aims, and justification. The preambles also specify titles, authorships, publication outlets, and current status of the published papers.

Publications and Conference Presentations

Publications included in this work

- To, V. H. P., Nguyen, T. V., Bustamante, H., Vigneswaran, S., Effects of Extracellular Polymeric Substance fractions on polyacrylamide demand and dewatering performance of digested sludges, Separation and Purification Technology (2020) 116557.
- To, V. H. P., Nguyen, T. V., Bustamante, H., Vigneswaran, S., Deleterious effects of soluble extracellular polymeric substances on polyacrylamide demand for conditioning of anaerobically digested sludge, Journal of Environmental Chemical Engineering 7 (2019) 102941.
- To, V. H. P., Nguyen, T. V., Vigneswaran, S., Bustamante, H., Higgins, H., M. J., Derek, R., Novel methodologies for determining a suitable polymer for effective sludge dewatering, Journal of Environmental Chemical Engineering 6 (2018) 4206–4214.

Other publications

- To, V. H. P., Nguyen, T. V., Vigneswaran, S., Ngo, H. H., A review on sludge dewatering indices, Water Science and Technology 74 (2016) 1 – 16.
- To, V. H. P., Nguyen, T. V., Vigneswaran, S., Nghiem, L., Murthy, S., Bustamante, H., Higgins, M. J., Modified centrifugal technique for determining polymer demand and achievable dry solids content in the dewatering of anaerobically digested sludge, Desalination and Water Treatment 57 (2016) 25509–25519.

Conferences, Showcases and Workshops

- To, V. H. P., Nguyen, T. V., Vigneswaran, Fates of extracellular polymeric substances and soluble cations in two-stage anaerobic digestion, Proceeding of 4th Asia Conference on Environment and Sustainable Development, Yokohama, Japan, oral presentation, November 2019.
- Bustamante, H., To, V. H. P., Nguyen, T. V., Vigneswaran, S., Extracellular Polymer
 Reaction with Flocculants and Polymer Demand, Dewaterability Workshop, USA, oral presentation, July 2018.
- To, V. H. P., Nguyen, T. V., Vigneswaran, S., Bustamante, H., Higgins, M. J. Higgins, Contribution of Soluble Extracellular Polymeric Substances to Polymer Demand for Conditioning of Anaerobically Digested Sludge, Proceeding of Sludge Management in Circular Economy, Rome, Italy, oral presentation, May 2018.
- To, V. H. P., Understanding Problem of High Polymer Demand in Sludge Dewatering for Better Sludge Management, Faculty of Engineering and IT Showcase, University of Technology Sydney, oral presentation, June 2018.
- To, V. H. P., Understanding Problem of High Polymer Demand in Sludge Dewatering for Better Sludge Management, School of Civil and Environmental Engineering Showcase, University of Technology Sydney, oral presentation, April 2018.
- To, V. H. P., Novel Methodologies for Determining Suitable Polymer for Effective Sludge Dewatering, School of Civil and Environmental Engineering Showcase, University of Technology Sydney, poster presentation, April 2017.
- To, V. H. P., Modified centrifugal technique for determining polymer demand and achievable dry solids content in sludge dewatering, Conference of

Environmental Engineering and Management for Sustainable Development, Anniversary Celebration of 60th Year, Hanoi University of Science and Technology, Hanoi, Vietnam, oral presentation, October 2016.

Awards

- Research Exchange to Poznan University of Technology in Poznan, Poland granted by Polish National Agency for Academic Exchange (NAWA), August 2019.
- Runner-up (oral presentation) at Research Showcase of School of Civil and Environmental Engineering, Faculty of Engineering, University of Technology Sydney, April 2018.
- One of the short-listed projects for International Water Association Award under the Category of Breakthrough in Research & Development, 2018.
- International Research Scholarship from University of Technology Sydney & Sydney Water Corporation Scholarship, 2016 – 2020.

Table of Content

Certificate of Original Authorship	i
Acknowledgement	ii
Dedication	iii
Format of Thesis	iv
Publications and Conference Presentations	V
Table of Content	viii
Nomenclature	xiii
Abbreviations	xiv
List of Tables	xvi
List of Figures	xviii
Abstract	xxiii

Chapter 1: Introduction1
1.1. Research background
1.1.1. Bio-flocculation in conditioning and dewatering
1.1.2. Roles of extracellular polymeric substances (EPS) in conditioning and
dewatering
1.1.3. Roles of cations in conditioning and dewatering
1.1.4. Relationship of upstream treatment processes with sludge conditioning and
dewatering5
1.2. Research objectives and scope
1.3. Thesis outline

Chapter 2: Literature Review	. 8
2.1. Flocculation in sludge treatment	.9
2.1.1. Overview of flocculation	.9
2.1.2. Bio-flocs and bio-flocculation in sludge treatment	12
2.2. Effects of ions on sludge conditioning and dewatering	16
2.2.1. Effects of cations	16
2.2.2. Effects of anions	20
2.3. Effects of EPS on sludge conditioning and dewatering	20
2.3.1. Overview of EPS	20
2.3.2. Structure and composition of EPS	22
2.3.3. Effects of EPS on conditioning and dewatering	25
2.4. Polymer application in sludge conditioning and dewatering	27
2.4.1. Overview of flocculants in waste treatment	27
2.4.2. Polymer characteristics and their effects on conditioning and dewatering?	30
2.5. Effects of upstream treatment processes on conditioning and dewatering	33
2.5.1. Effects of wastewater treatment on sludge conditioning and dewatering?	33
2.5.2. Effects of Enhanced Biological Phosphorus Removal on conditioning an	nd
dewatering	33
2.5.3. Effects of digestion on conditioning and dewatering	34

Chapter 3: Novel Methodologies for Determining a Suitable Conditioning Polymer

for Effective Sludge Dewatering	
Chapter 3 Summary	
3.1. Introduction	
3.2. Materials and methods	42

3.2.1. Materials
3.2.2. Experimental studies
3.3. Results and discussion
3.3.1. Characterization of as-received sludge - Prediction of conditioning demand
for each sludge type
3.3.2. Understanding interaction mechanisms between conditioning polymers and
sludge particles
3.3.3. Application of Higgins modified centrifugal technique (Higgins MCT) on
different sludge types
3.4. Conclusions

Chapter 4: Deleterious Effects of Soluble Extracellular Polymeric Substances on

Polyacrylamide Demand for Conditioning of Anaerobically Digested Sludge70

Chapter 4 Summary	71
4.1. Introduction	72
4.2. Materials and methods	75
4.2.1. Materials	75
4.2.2. Experimental methods	76
4.3. Results and discussion	81
4.3.1. Characterization of EPS compositions in ADS	81
4.3.2. Removal of soluble EPS during conditioning	84
4.3.3. Measurement of excess polymer content in the supernatant	92
4.4. Conclusions	94

Chapter 5: Effects of Extracellular Polymeric Substance Fractions on Poly	mer
Demand and Dewatering Performance of Digested Sludge	96
Chapter 5 Summary	97
5.1. Introduction	98
5.2. Materials and methods	100
5.2.1. Materials	100
5.2.2. Experimental methods	103
5.3. Results and discussion	108
5.3.1. Characterizations of digested sludges	108
5.3.2. Conditioning tests with whole digested sludge and supernatant	114
5.3.3. Zeta potential analysis and full-scale cake solids contents	.120
5.3.4. Discussion	122
5.4. Conclusions	125
Chapter 6: Effects of Enhanced Biological Phosphorus Removal and Two-s	tage
Anaerobic Digestion on Sludge Characteristics	127
Chapter 6 Summary	128
6.1. Effects of Enhanced Biological Phosphorus Removal on Sludge Characteri	stics
	129
6.1.1. Introduction	.129
6.1.2. Materials and methods	.130
6.1.3. Results and discussion	136
6.1.4. Conclusions	147
6.2. Fate of Extracellular Polymeric Substances (EPS) and soluble cations in two-s	tage
anaerobic digestion	148
6.2.1. Introductionxi	148

6.2.2. Materials and methods	148
6.2.3. Results and discussion	150
6.2.4. Conclusions	159
Chapter 7: Conclusions & Recommendations	161
7.1. Key findings	162
7.1.1. Novel methodologies for determining a suitable conditioning polymer	for
effective sludge dewatering	162
7.1.2. Effects of EPS fractions on polymer demand and dewatering performance	e of
digested sludge	163
7.1.3. Effects of EBPR & two-stage AD on sludge characteristics in relation	ı to
dewatering1	165
7.2. Recommendations	166
Appendices	168
Bibliography	187

Nomenclature

- W = Weight/Volume percentage
- $Al^{3+} = Aluminum ion$
- $Ca^{2+} = Calcium ion$
- $Cl^- = Chloride$
- $Cu^{2+} = Copper ion$
- $Fe^{2+/3+} = Ferrous/Ferric ion$
- $HCO_3^- = Bicarbonate$

 $HS^{-} = Bisulfide$

- K^+ = Potassium ion
- Mg²⁺ =Magnesium ion
- $M_w =$ Molecular weight
- $Na^+ = Sodium ion$
- $NH_4^+ = Ammonium$
- $OH^{-} = Hydroxide$
- $PO_4^{3-} = Phosphate$
- R = Radius of the centrifugal rotor
- R^2 = Correlation coefficient
- $S^{2-} = Sulfide$
- $SO_4^{2-} = Sulfate$
- wt % = Weight/Weight percentage

xg = times gravity

Abbreviations

- 3D = Three Dimensional
- Abs = Absorbance
- AD = Anaerobic Digestion
- ADS = Anaerobically Digested Sludge
- AEDS = Aerobically Digested Sludge
- AU = Absorbance Unit
- COD = Chemical Oxygen Demand
- CRT = Centrifugal Residence Time
- CST = Capillary Suction Time
- DLVO = A theory proposed by Derjaguin, Landau, Verwey, and Overbeek
- EBPR = Enhanced Biological Phosphorus Removal
- EPS = Extracellular Polymeric Substances
- Higgins MCT = Higgins Modified Centrifugal Technique
- LB-EPS = Loosely Bound Extracellular Polymeric Substances
- M/D ratio = Ratio of Monovalent cations to Divalent cations
- N = Nitrogen
- OPD = Optimum Polymer Demand
- OPD_{CST} = Optimum Polymer Demand determined by CST test
- P = Phosphorus
- PD = Polymer Demand
- RCF = Relative Centrifugal Force
- RPM/rpm = Round Per Minute
- sEPS = Soluble Extracellular Polymeric Substances

- SMP = Soluble Microbial Products
- sPN = Soluble Protein
- sPN/sPS = Ratio of soluble Protein to soluble Polysaccharides
- sPS = Soluble Polysaccharides
- SRF = Specific Resistance to Filtration
- SS = Suspended Solids content
- SVI = Sludge Volume Index
- TB-EPS = Tightly Bound Extracellular Polymeric Substances
- THP = Thermal Hydrolysis Process
- TPN = Total Protein
- TPS = Total Polysaccharides
- TS = Total Solids content
- WAS = Waste Activated Sludge
- WWTPs = Wastewater Treatment Plants
- ZP = Zeta Potential

List of Tables

Table 2-1. Constituents of flocs and their characteristics. 10
Table 3-1. General information on waste treatment systems in the WWTPs studied43
Table 3-2. Concentrations of polymer solutions used for conditioning at the WWTPs
studied
Table 3-3. Conversion between RCF and RPM for 7 cm of rotor radius of the lab-scale
centrifuge used in this study and centrifugal intensity values used in Higgins MCT51
Table 3-4. Typical characteristics of all as-received sludge samples. 52
Table 3-5. Correlation coefficients (R^2) of sludge characteristics with OPD _{CST} for ADS,
AEDS and WAS samples (datasets are provided in Figure A1, A2, A3, and A4 in the
Appendices)
Table 3-6. Maximum cake solids content determined by Higgins MCT tests and full-
scale processes for the two sludge types
Table 3-7. Comparison of OPD _{CST} and currently used PD (full-scale) at the WWTPs
studied65
Table 3-8. Cake solids contents of ADS1 (digested sludge) and WAS (undigested
sludge) before and after conditioning (determined by Higgins MCT)
Table 4-1. Characteristics of anaerobically digested sludge from Cronulla WWTP75
Table 4-2. Polyacrylamide dose range used in tests A and B. 78
Table 5-1. Information on digestion processes of the WWTPs studied101
Table 5-2. TS and pH of 7 digested sludge studied

Table 5-3. Characteristics of the cationic polyacrylamides used by the respective
WWTP which were used in this study (All the cationic polyacrylamides used in the
WWTPs studied were linear polymers)
Table 5-4. Pore size of filter paper for different element analysis
Table 5-5. Percentage of cationic polyacrylamide precipitated by soluble EPS only
during conditioning (calculation from both tests A and B)115
Table 5-6. Concentration of polyacrylamide remaining in the solution after the reaction
with the as-received sludge (Test B)116
Table 5-7. Zeta potential values of both ADS and AEDS before cationic polyacrylamide
addition and their respective biosolids cakes collected from their respective WWTPs
after dewatering120
Table 5-8. Relationship between TB-EPS and full-scale dewatering performance (in
terms of wt% cake solids content) obtained at the respective WWTPs121
Table 6-1. General information on EBPR and non-EBPR WWTPs
Table 6-2. Characterization of sludge samples. 132
Table 6-3. Analytical methods for sludge characterization. 135
Table 6-4. Dewatering performance of EBPR and non-EBPR WWTPs
Table 6-5. Characterizations of sludge samples

List of Figures

Figure 2-1. Structure of typical bio-flocs
Figure 2-2. Composition of bio-flocs (Wilen et al. 2003)14
Figure 2-3. Typical structure of EPS
Figure 2-4. Classification of flocculants in waste treatment systems
Figure 3-1. Modified centrifuge tube before and after Higgins MCT test. The photo on
the right shows the dewatered cake separated with the centrate in the Higgins MCT50
Figure 3-2. Relationships between OPD _{CST} and characteristics of all three sludge types
together (total 19 samples) including (a) Soluble Protein; (b) Soluble Polysaccharides;
and (c) Soluble EPS
Figure 3-3. The use of the "y-intercept" concept to determine predominant flocculation
mechanisms for ADS, AEDS and WAS conditioning
Figure 3-4. Full-scale centrate of (a) WAS dewatering in Quakers Hill WWTP (with
suspended solids over 3500mg/L) and (b) ADS1 dewatering in Wollongong WWTP
(with suspended solids under 100mg/L)
Figure 3-5. Effect of centrifugal intensity on the cake solids content of ADS and WAS
conditioned at full-scale polymer dosages
Figure 3-6. Higgins MCT test of ADS1 conditioned at full-scale PD (12 kg/DT) and
OPD _{CST} (6 kg/DT)
Figure 3-7. Higgins MCT test of WAS conditioned at full-scale PD (8 kg/DT) and
OPD _{CST} (4 kg/DT)
Figure 4-1. Procedure of conditioning tests A and B

Figure 4-2. Relationship curve between absorbance of the supernatant and polymer
dosage for conditioning (adopted from a Sydney Water project)79
Figure 4-3. Characterization of EPS fractions in ADS from Cronulla WWTP. Error bars
represent the standard deviations of PN or PS contents of ADS at 6 sampling times81
Figure 4-4. Soluble EPS content of the sludge fed to dewatering equipment (before
polymer addition) in three WWTPs (Cronulla WWTP with ADS, St. Marys WWTP
with aerobically digested sludge (AEDS) and Quakers Hill WWTP with waste activated
sludge (WAS)) operated by Sydney Water. Error bar represents the standard deviation
of soluble EPS content
Figure 4-5. (a) Residual soluble EPS content and (b) removal percentage of soluble EPS
at different polymer dosages in tests A and B85
Figure 4-6. Residual contents of soluble protein and polysaccharides at different
polymer dosages in (a) test A and (b) test B
Figure 4-7. Zeta potential at different polymer dosages in tests A and B
Figure 4-8. Total soluble EPS content removed by 1 mg of polyacrylamide at different
conditioning dosages in tests A and B
Figure 4-9. Relationship curve of sample absorbance and polymer dose in (a) test A and
(b) test B (at a dilution ratio of 1:80)
Figure 5-1. EPS extraction protocol
Figure 5-2. (a) Concentration of soluble EPS, (b) concentration of LB-EPS, (c)
concentration of TB-EPS and (d) EPS fractions percentage. The concentrations of TB-
EPS were expressed in mg/g TS as TB-EPS are strongly attached to sludge particles.110

Figure 5-3. (a) Soluble divalent cation contents $(Mg^{2+}, Ca^{2+}, Fe^{2+})$ and (b) soluble
monovalent contents (Na ⁺ , K ⁺) of digested sludge from 7 WWTPs showing that most of
WWTPs using low polymer dose for conditioning (Warriewood, Malabar, and
Winmalee WWTPs) had higher amounts of divalent cations
Figure 5-4. Soluble NH4 ⁺ contents of digested sludge from 7 WWTPs showing excess
soluble NH4 ⁺ contents in ADS as compared to AEDS
Figure 5-5. Soluble phosphate contents of digested sludge from 7 WWTPs showing
excess soluble phosphate contents of ADS1, ADS3, ADS4 in WWTPs reported with
precipitates blocking pipe systems
Figure 5-6. Relationship of % polymer consumption by soluble EPS with (a) soluble
EPS content; (b) M/D ratio (ratio of monovalent cations to divalent cations); (c) Total
monovalent cation content of digested sludge from 7 selected WWTPs118
Figure 6-1. pH values of sludge from different stages of sludge treatment in EBPR and
non-EBPR plants
Figure 6-2. Zeta potential values of sludge from different stages of sludge treatment in
EBPR and non-EBPR WWTPs
Figure 6-3. Mixing point of polymer solution and sludge before the centrifuge in EBPR
plant
Figure 6-4. Soluble PO4 ³⁻ of sludge from different stages of sludge treatment in EBPR
and non-EBPR WWTPs141
Figure 6-5. M/D ratio of sludge from different stages of sludge treatment in EBPR and
non-EBPR WWTPs143

Figure 6-6. Relationships of soluble phosphate content with (a) soluble divalent cation
contents and (b) soluble monovalent cation contents of sludge samples in EBPR and
non-EBPR WWTPs144
Figure 6-7. Relationship between M/D ratio and soluble phosphate content of sludge
samples in EBPR and non-EBPR WWTPs145
Figure 6-8. Relationship between soluble EPS and soluble phosphate contents of sludge
samples in EBPR and non-EBPR WWTPs146
Figure 6-9. Soluble divalent cation (Fe ²⁺ , Ca ²⁺ , Mg ²⁺) contents of sludge samples from
different stages of sludge treatment
Figure 6-10. Soluble PO4 ³⁻ content of sludge samples from different stages of sludge
treatment
Figure 6-11. Soluble monovalent cation (Na ⁺ , K ⁺) contents of sludge samples at
different stages of the sludge treatment system
Figure 6-12. Soluble NH4 ⁺ contents of sludge samples from different stages of the
sludge treatment
Figure 6-13. M/D ratio of sludge samples from different stages of the sludge treatment.
Figure 6-14. Changes in (a) total EPS contents, (b) contents of different EPS fractions
and (c) percentage of different EPS fractions in sludge samples from different stages of
the sludge treatment
Figure 6-15. Changes in soluble EPS content of sludge samples from different stages of
the sludge treatment system

Figure 6-16. Changes in protein and	l polysaccharides	of soluble EPS	in sludge samples
from different stages of the sludge t	reatment system		

Abstract

High polymer demand in sludge conditioning and dewatering is an unavoidable aspect of the water industry. Understanding interaction mechanisms between sludge particles and conditioning polymers in sludge dewatering is necessary to: firstly, maximize dewatered cake solids content; and secondly, to minimize polymer demand for conditioning. In the first part of this PhD research, two scientific methodologies, namely the 'y-intercept' concept and Higgins modified centrifugal technique (Higgins MCT) were used to identify the optimum polymer demand and type for effective conditioning and dewatering. Results from the 'y-intercept' concept show that a large amount of polymer required during conditioning of anaerobically digested sludge (ADS) is mainly due to the neutralization of soluble biopolymers or extracellular polymeric substances (EPS) in sludge. In contrast, conditioning of aerobically digested sludge (AEDS) and waste activated sludge (WAS) is mostly controlled by a polymer bridging mechanism. The results indicated that, in order to achieve maximum dewatering performance with minimum conditioning polymer requirement, high charge density polymers are suitable for ADS while branched (or cross-linked) polymers can be used for AEDS and WAS. In addition, the new lab-scale technique, Higgins MCT, was successfully established and implemented for measuring cake solids content achievable by centrifuge and determining the optimum polymer demand (OPD). The Higgins MCT also helped to understand the relationship between digestion, conditioning, and dewatering.

It has been demonstrated that excess amounts of soluble EPS released in digestion can lead to high polymer demand for sludge dewatering. Elucidation of how much soluble EPS contribute to polymer demand for conditioning is important to identify pathways to xxiii minimize chemical usage without compromising dewatering performance. Thus, in the second part of this PhD research, a simple and unique yet effective method for quantifying the contribution of soluble EPS to polymer requirement was developed. This was achieved through measuring the absorbance of the supernatant derived from conditioned digested sludge at the 191.5 nm wavelength. In addition, the role of tightly bound EPS in determining the dewatering performance of digested sludges was also investigated. Specifically, the study examined ADS and AEDS from seven full-scale wastewater treatment plants (WWTPs). Results showed that the concentrations of soluble EPS in the sludges varied between 92–1148 mg/L. The EPS in ADS was much higher than those of AEDS. Experimental results also demonstrated that higher amounts of polymers were wasted in "parasitic" reactions with soluble EPS. For example, for ADS, it was as high as 40-86% of the cationic polymer dose) while for AEDS, it was less in the range of 25–33%. The residual cationic polymer left in solution, after the parasitic reactions, was substantial and varied between 35–254 mg/L. Despite that, zeta potential values of dewatered sludge cakes remained negative, i.e. between -24 - -35 mV. This indicated that the residual soluble cationic polymers would not have been absorbed on the negatively charged sludge particles. This explained the relatively poor performances of the dewatering in the plants studied. The study results also suggested that the tightly bound EPS attached to the sludge particles would be responsible for the low dewatering performance. It is postulated that the tightly bound EPS would gelify and immobilize the water surrounding the sludge particles.

In the final part of this PhD research, inter-relationships between wastewater and sludge treatment, specifically among Enhanced Biological Phosphorus Removal (EBPR), anaerobic digestion, and dewatering, were investigated to identify feasible approaches to reduce both chemical and transportation costs for the EBPR plants. EBPR and non-EBPR WWTPs were compared in this study in order to determine the effects of EPBR and anaerobic digestion (AD) on sludge conditioning and dewatering. Experimental results show that EPBR and AD resulted in significant decreases in divalent cations and generation of soluble EPS, leading to a deterioration of bio-flocculation of ADS particles and requiring extra polymer dose for effective ADS conditioning and dewatering. In the two-stage AD, acid phase led to significant increases in concentrations of soluble biopolymers (more than double) due to hydrolysis reactions which converse non-soluble biopolymers to soluble organic compounds. Therefore, proper control of the acid phase can help reduce the content of soluble EPS to an optimum value that could favor both flocculation while minimizing the chemical cost for conditioning.