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Abstract 

 

High polymer demand in sludge conditioning and dewatering is an unavoidable 

aspect of the water industry. Understanding interaction mechanisms between sludge 

particles and conditioning polymers in sludge dewatering is necessary to: firstly, 

maximize dewatered cake solids content; and secondly, to minimize polymer demand for 

conditioning. In the first part of this PhD research, two scientific methodologies, 

namely the ‘y-intercept’ concept and Higgins modified centrifugal technique (Higgins 

MCT) were used to identify the optimum polymer demand and type for effective 

conditioning and dewatering. Results from the ‘y-intercept’ concept show that a large 

amount of polymer required during conditioning of anaerobically digested sludge (ADS) 

is mainly due to the neutralization of soluble biopolymers or extracellular polymeric 

substances (EPS) in sludge. In contrast, conditioning of aerobically digested sludge 

(AEDS) and waste activated sludge (WAS) is mostly controlled by a polymer bridging 

mechanism. The results indicated that, in order to achieve maximum dewatering 

performance with minimum conditioning polymer requirement, high charge density 

polymers are suitable for ADS while branched (or cross-linked) polymers can be used for 

AEDS and WAS. In addition, the new lab-scale technique, Higgins MCT, was 

successfully established and implemented for measuring cake solids content achievable 

by centrifuge and determining the optimum polymer demand (OPD). The Higgins MCT 

also helped to understand the relationship between digestion, conditioning, and 

dewatering.  

It has been demonstrated that excess amounts of soluble EPS released in digestion 

can lead to high polymer demand for sludge dewatering. Elucidation of how much soluble 

EPS contribute to polymer demand for conditioning is important to identify pathways to 
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minimize chemical usage without compromising dewatering performance. Thus, in the 

second part of this PhD research, a simple and unique yet effective method for 

quantifying the contribution of soluble EPS to polymer requirement was developed. This 

was achieved through measuring the absorbance of the supernatant derived from 

conditioned digested sludge at the 191.5 nm wavelength. In addition, the role of tightly 

bound EPS in determining the dewatering performance of digested sludges was also 

investigated. Specifically, the study examined ADS and AEDS from seven full-scale 

wastewater treatment plants (WWTPs). Results showed that the concentrations of soluble 

EPS in the sludges varied between 92–1148 mg/L. The EPS in ADS was much higher 

than those of AEDS. Experimental results also demonstrated that higher amounts of 

polymers were wasted in “parasitic” reactions with soluble EPS. For example, for ADS, 

it was as high as 40–86% of the cationic polymer dose) while for AEDS, it was less in 

the range of 25–33%. The residual cationic polymer left in solution, after the parasitic 

reactions, was substantial and varied between 35–254 mg/L. Despite that, zeta potential 

values of dewatered sludge cakes remained negative, i.e. between -24 – -35 mV. This 

indicated that the residual soluble cationic polymers would not have been absorbed on 

the negatively charged sludge particles. This explained the relatively poor performances 

of the dewatering in the plants studied. The study results also suggested that the tightly 

bound EPS attached to the sludge particles would be responsible for the low dewatering 

performance. It is postulated that the tightly bound EPS would gelify and immobilize the 

water surrounding the sludge particles.  

In the final part of this PhD research, inter-relationships between wastewater 

and sludge treatment, specifically among Enhanced Biological Phosphorus Removal 

(EBPR), anaerobic digestion, and dewatering, were investigated to identify feasible 

approaches to reduce both chemical and transportation costs for the EBPR plants. EBPR 
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and non-EBPR WWTPs were compared in this study in order to determine the effects of 

EPBR and anaerobic digestion (AD) on sludge conditioning and dewatering. 

Experimental results show that EPBR and AD resulted in significant decreases in divalent 

cations and generation of soluble EPS, leading to a deterioration of bio-flocculation of 

ADS particles and requiring extra polymer dose for effective ADS conditioning and 

dewatering. In the two-stage AD, acid phase led to significant increases in concentrations 

of soluble biopolymers (more than double) due to hydrolysis reactions which converse 

non-soluble biopolymers to soluble organic compounds. Therefore, proper control of the 

acid phase can help reduce the content of soluble EPS to an optimum value that could 

favor both flocculation while minimizing the chemical cost for conditioning. 
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