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NOMENCLATURE

(Om) = “Modelled flow at time ¢”;
(Qo) = “Observed flow at time 77,
a; = “Weight vector connecting the i hidden node and the input variables”;
b; = “Bias of the i™ hidden node”;
tj = “Target at time ;”;
Vj = “Output at time j”’;
Awii(s) = “Weight adjustment between node j in layer s and node i in layer (s-1)”;
Fi(s) = “Output of the neuron j in layer s”;
H = “Hidden layer output matrix”;
H = “Moore-Penrose generalized inverse of hidden layer output matrix”;
L = “Number of random hidden nodes;
Qgp = “Predicted flow by GP”;
Qnam = “Predicted flow by NAM”;
O = “Flow at time £”;
R; = “Rainfall at time ¢”’;
wij(s-1)= “Weight in the link between neuron j in layer s and neuron i in layer (s-1)”;
xi(s) = “linput of neuron j from previous layer’s neuron /”;
xi(s-1) = “Input from neuron i in layer s-17;
Yis) = “Weighted sum for neuron j in layer s”;
Bi = “Weight connecting the hidden node and the output node”;
gx) = “Activation function (example, sigmoidal function)”;

X



i(s) = “Local or instantaneous gradient”; and

“Error Value”.

™
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ABSTRACT

Application of hydroinformatics tools in water resources has been very common in
water industry due to the rapid advancement of digital computer. Over the last few decades,
there are several tools have been developed and applied with success. The most commonly
used Artificial Intelligence (AI) based hydroinformatics tools in hydrology are Genetic
Programming (GP), Artificial Neural Network (ANN), Fuzzy Logic (FL), Standard Chaos
Technique, Inverse Approach, Support Vector Machine (SVM) and Evolutionary
Computation (Genetic Algorithm (GA), Shuffled Complex Evolution (SCE), Particle Swarm
Optimization (PSO), Ant Colony Optimization Algorithm (ACOA)) based Al techniques
including SVM (EC-SVM). These tools including Genetic Programming (GP) have been
proven to be efficient in prediction of flows from event based rainfalls series.

The driving factor behind the application of hydroinformatics tools was to ease the
complex numerical modelling process. In principal, both conceptual and physically based
distributed models require a large number of parameters such as catchment characteristics,
losses, flow paths, meteorological and flow data. The values of some of these parameters are
evaluated through calibration. The -calibration process of complex models may be
cumbersome and requires considerable effort and experience particularly when the number
of the calibration parameters is large. Even though the model is calibrated, the application of
the parameters is catchment specific. Model parameters from one catchment may not be
representative for the other catchment. In this case, hydroinformatics tools like GP and/or
ANN can be used where no parameters associated with catchment and soil characteristic are
necessary. GP has been successfully applied for calibration of numerous event based rainfall

and runoff models. However, application of GP for the prediction of long term time series is
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limited.

The application of GP for long term runoff prediction from a dam catchment is
demonstrated. The model is developed and calibrated for a dam catchment located in New
South Wales, Australia. The calibration shows excellent agreement between the observed
and simulated flows recorded over thirty years and the results are better than traditional
Sacramento model and ANN. GP is also linked to MIKE11-NAM to build a hybrid model.
The concept of this hybrid model is to fill the data gaps and generate long term (100 years)
predictions. The calibrated GP model is then applied for the assessment of two future rainfall
scenarios where future hundred year flows are predicted using rainfall input generated from
different assumed climatic conditions. The analysis results provide some basis for making
future water management plans including water supply from alternative sources. While the
application was successful and produced better results, it was found that GP suffered from
computational overhead in the learning process from input data. To improve the prediction
accuracy, relatively new Al technique, called Extreme Learning Machine (ELM) is proposed.

ELM is applied to partly overcome the slow learning problems of GP and ANN and
to predict the hydrological time-series very quickly. ELM, which is also called single-hidden
layer feed-forward neural networks (SLFNs), is able to well generalize the performance for
extremely complex problems. ELM randomly chooses a single hidden layer and analytically
determines the weights to predict the output. The ELM method was applied to predict
hydrological flow series for the Tryggevalde Catchment, Denmark and for the Mississippi
River at Vicksburg, USA. The results confirmed that ELM’s performance was similar or
better in terms of Root Mean Square Error (RMSE) and Normalized Root Mean Square Error

(NRMSE) compared to ANN and other previously published techniques, namely
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Evolutionary Computation based Support Vector Machine (EC-SVM), Standard Chaotic
Approach and Inverse Approach. In this analysis, the sensitivity of ELM’s input parameters
on the prediction accuracy were not investigated. The influence of input parameters was then
analysed to further improve the model results.

The robustness of ELM’s performances based on number of lagged input variables,
the number of hidden nodes in ELM, higher lead days prediction and extrapolation capability
using four goodness-of-fit measures is demonstrated. The results show that (1) ELM yields
reasonable results with all combinations of lagged input variables (flows) for 1-day lead
prediction. The minimum errors were obtained when 4-day lagged flows were applied as
input variables; (2) ELM produced satisfactory results very rapidly for any number of hidden
nodes ranging from ten to six thousand in the hidden layer. The time required to train ELM
varies from less than a second to two minutes as only single iteration is required. A larger
number of hidden nodes generally gives slightly better results; (3) ELM generated reasonable
results for higher number of lead days (second and third) predictions; (4) ELM was able to
extrapolate when the highest magnitude of input variables were excluded from training
dataset; (5) ELM was shown to be computationally much faster and capable of producing
better results compared with GP and EC-SVM for prediction of flow series from the same
catchment. This demonstrates ELM potential for forecasting real-time hydrological time-
series. This analysis was based on node based ELM (NELM) method. The performance of
ELM is further improved by introducing Kernel function (KELM) in the learning process in
the subsequent analysis.

In addition to node based ELM, Kernel based ELM (KELM) is also applied. The

performance of KELM was also compared against hidden node based ELM (NELM). The

Xvi



predictive capabilities of both NELM and KELM were investigated using data from three
different catchments located in three different climatic regions (Tryggevalde catchment,
Denmark, Mississippi River at Vicksburg, USA and Duckmaloi Weir catchment, Australia).
The results were compared with those obtained with Genetic Programming (GP) and
evolutionary computation based Support Vector Machine (EC-SVM), the later obtained from
literature. The results show that KELM predictions were better than NELM, GP and EC-

SVM. KELM ran faster than any other model.

ELM’s fast learning capability from a training dataset for the prediction of
hydrological flows means that it would be more suitable for on-line and real-time applications
where quick processing time is important or vital. The study demonstrates ELM’s ability for
rapid prediction and has potential application in real-time forecasting and in water resources

planning and management.
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CHAPTER 1

INTRODUCTION




1. INTRODUCTION
1.1. General

Water is one of the most valuable natural resources in human life. The rapid growth
of the population is impacting the water cycle, rainfall and the catchment characteristics.
Understanding this water movement, rainfall pattern and influence of catchment response to
the rainfall has been one of the major research fields for many decades as hydrological flows
generated from rainfall is paramount important for water resources planning and
management. For example, heavy rainfall from a developed or urban catchment is a major
problem in many parts of the world. The impacts of this urban flooding include public health
hazards, deaths, and tremendous economic and environmental damages. The impact of high
flows in rural catchment also causes significant impacts to crop, stock and domestic animals.
In many countries in Asia, people constantly face minor to catastrophic floods that last even
several months. In Bangladesh, flood is an annual phenomenon. Each year, the flood water
may cover 75% of the area and resulting huge economic damage. In August 2017, heavy
rainfall in India and Nepal resulted in extensive flooding on rivers downstream in
Bangladesh. The city of Mumbai experienced a flood in 2002 when all the basic needs for
human beings like electric supply, telephone were shut down (Boonya-Aroonnet, 2002). The
response to this flood issue is to establish an improved flow forecasting technique for flood
mitigation and floodplain management.

Development of conceptual rainfall-runoff models based on engineering hydrology
1s applied to forecast the flows. In principal, these models generalise the complex
hydrological cycle and predict the flow from watershed. Various conceptual methods were
developed for the analysis of rainfall-runoff model, with the advent of high performance
computers. Some of the traditional methods include MIKE11 NAM (Nillsen and Hansen,

1973), Sacramento Model (Burnash, 1995), Tank Model (Sugawara, 1995), SWMM (Huber



et al., 1988; Liong et al., 1991), XPRafts, RORB, URBS and WBNM. These models are
used by the water manager for flow forecasting, flood control, impact of urbanisation,
management of river operation and reservoir operations. Flow forecasting is essential for
reservoir/dam operation as the operators make the planned release decisions based on this
forecast to meet the requirement for hydroelectric power generation, irrigation water
demand, town water supply etc. For multipurpose reservoir system, inflow prediction plays
a significant role in the management as hydroelectric power generation that requires high
head water level whereas flood control requires the storage level to be as low as possible.
However, the accuracy of the flow predictions (peak as well as hydrograph) provided by the
hydrologist is often not enough. Hydrologist needs to understand the level of details of
hydrological cycle included in the model. Some parameters must be adjusted to match the
model output to those observed from the catchment of interest. These models also need
periodic recalibration as the catchment characteristics (topography) changes so rapidly.
Modification of model parameters to reflect catchment changes and to predict the flow, is
needed within shortest possible time especially during the management of flood. Fine tuning
of the model parameters is usually performed by trial-and-error approach. The performance
depends upon the users’ intuition, experience, skill, and knowledge. Manual approach is
inefficient and large number of repetitive simulations is required to arrive at a satisfactory
solution particularly for large catchment like Mississippi River (Ibrahim and Liong, 1992).
In such real-time forecasting applications, where time, along with high prediction accuracy,
is crucial, a much simpler and faster data-driven model that yields accurate runoff from

rainfall with shortest possible time is therefore highly desirable.



1.2. Statement of the Problem

Determination of catchment response (hydrological flow) due to a rainfall event is
very important especially from a dam catchment for efficient allocation of water in the future
to customers/irrigators or management of flood flows or tributary inflows to the river system
downstream of the dam. Establishing a noble methodology in determining the accurate
magnitude of runoff or inflows to the dam or flood resulting from heavy rainfall has been a
research topic since last many decades. Hence, conceptual rainfall-runoff model has been
very popular. However, calibration of this model to improve the accuracy of the yield is still
under research. Instead of using the cumbersome and computationally long trial-and-error
approach, many Artificial Intelligence (AI) based machine learning techniques (data driven
modelling) solely or together with a family of population-evolution based search algorithms
known as evolutionary algorithms (EAs) have been extensively considered in this field.
However, very few of the machine learning techniques have received widespread acceptance
in the commercial applications. This is because most techniques require high number of
function evaluation and computational time to solve even a simple problem. These
techniques may not be suitable during a flood event as quick response from the model is
required. The present study applies a machine learning method (data driven modelling
technique) to increase the robustness in obtaining reasonably accurate runoff/flood from

rainfall events.

1.3. Objectives of this Study
The objective of this study is to explore and enhance the use of hydroinformatics
tool including machine learning technique in rainfall-runoff modelling (data driven

modelling technique), and for real-time flood forecasting. This study also aims to analyse



the sensitives of the input parameters and improve the accuracy of the model. Thus, the

main contribution of this research can be stated as below:

(1) Evaluate the application of Genetic Programming (GP) for improving the
forecasting accuracy of rainfall-runoff model and compare the performance
against Artificial Neural Network (ANN) technique.

(1))  Improve the accuracy of traditional conceptual rainfall-runoff model (MIKE11-
NAM) by linking with GP if the input data is erroneous or missing.

(iii))  Evaluate the performance of GP model for different long term rainfall scenarios
where the rainfall pattern is changed over a long period.

(iv)  Demonstrate the performance of a relatively new machine learning technique,
called Extreme Learning Machine (ELM) in the prediction of hydrological flows

(v) Demonstrate the superiority of ELM’s prediction accuracy over other widely
available techniques such as Support Vector Machine (SVM), Evolutionary
Computation based SVM (EC-SVM), GP, ANN and other techniques.

(vi)  Demonstrate the sensitivities of the ELM’s (node base ELM) input parameters in
the prediction of real-time flood flows.

(vii) Demonstrate the applicability of ELM for up to higher lead-days predication.

(viii) Evaluate the performance of extreme flood prediction when the extreme values
are removed from training dataset.

(ix)  Investigate the performance ELM using Kernel function (Kernel based ELM) and
compare the performance against node based ELM.

The overall flow chart illustrating the overall methodology adopted in the current study is

shown in Figure 1. 1.
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Figure 1. 1: Flow Chart Illustrating the Overall Methodology Adopted in the Current
Study.



14. Scope of this Study

This study includes the following scope of works to understand the limitations (e.g.
prediction accuracies, run time etc) of some of the existing hydroinformatic approaches (e.g.
Artificial Intelligence techniques) and how these limitations can be improved using a
relatively new machine learning technique.

e Literature review.

e Genetic Programming (GP), Artificial Neural Network (ANN) and Extreme
Learning Machine (ELM) will be used for rainfall-runoff modelling/flood
forecasting.

e Historical rainfall and lagged observed flow will be used to train GP, ANN, and
ELM.

e Traditional rainfall-runoff model using MIKE11-NAM will be developed and
calibrated using observed flow.

e NAM output and historical rainfall be used as input to train GP for flood forecasting,

e The performance of GP will be improved using base flow parameter.

e Rainfall scenarios using long term historical rainfall time series (100 year) will be
generated by extending the drought season and fed into the GP.

e Future rainfall time series generated by varying the rainfall magnitude will be used
for flood forecasting for next 100 years.

e GP, ANN and ELM will be applied for the prediction real-time flows from three
catchments in Denmark, USA and Australia.

e Two types of ELM (node and Kernel based) techniques will be investigated for the
prediction of flood flows and compared with other techniques.

e The best method is recommended for the real-time application as a flood forecasting

tool.



1.5. Organisation of the Thesis

Chapter 2 describes the previous research works in the application of evolutionary
algorithm and data driven modelling techniques and the problems associated with their
application in rainfall-runoff modelling.

Chapter 3 describes the application of Genetic Programming (GP) and Artificial
Neural Network (ANN) in predicting flows using the rainfall and past historical observed
lagged flow. The long-term (>100years) prediction of flows is also described using hybrid
approach where GP is linked with MIKE11-NAM.

Chapter 4 demonstrates the use of a relatively new Artificial Intelligence (Al)
technique called, Extreme Learning Machine (ELM) for prediction hydrological flow series.
The performance of ELM (node based) is compared with other widely used data driven
modelling techniques including Standard Chaos Technique, Inverse Approach, ANN and
Evolutionary Computation (EC) based Support Vector Machine (SVM).

Chapter 5 presents the improvement of node based ELM’s performance by fine-
tuning the input parameters. The sensitivities of input parameters on the flow prediction,
higher lead days prediction and ELM’s extrapolation capability are also described in this
chapter. The performances of some of the best models are compared with GP and EC-SVM.

Chapter 6 applies the application of improved ELM called Kernel based ELM and
compares the performance and run time against node based ELM, GP and EC-SVM.

Chapter 7 describes the conclusion of this research works and recommends for

further studies.



CHAPTER 2

LITERATURE REVIEW




2. Literature Review
2.1. Introduction
The need for hydrological flow estimation and prediction is quite obvious to

complement field measurement especially when the catchment is very large and has scarcity
of hydrologic record. Gathering data by installing measurement equipment is sometimes
difficult in terms of cost and time as the flow estimation model requires long period of
hydrological information. This leads to the analysis of hydrologic response of the catchment
to future rainfall occurred on the catchment. Accordingly, research interests have been
concentrating on the development of efficient hydroinformatic approach to estimate the
flows yield from the catchment.

In this chapter, various techniques known in the rainfall-runoff model are first
reviewed especially the applications of conceptual models and data driven models. Review
on some recently emerging evolutionary techniques that were linked with data driven model

useful to solve complex problems and improve the prediction accuracy is also presented.

2.2 Conceptual Techniques in Rainfall-Runoff Model

In hydrological process, rainfall is converted to flows for the management of
catchment. The flow estimation process from the rainfall is reported to be highly non-linear
and is not easy to represent in the simple model (Singh, 1964; Kulandaiswamy and
Subramanian, 1967; Chiu and Huang, 1970). Usually, two approaches were applied, namely
conceptual approach and black box approach (Young and Wallis, 1985; Singh, 1988).

In the analysis of rainfall-runoff model, various conceptual methods were
developed with the advent of high performance computational techniques. Such methods
include MIKE11 NAM (Nielsen and Hansen, 1973), Sacramento Model (Burnash, 1995),

Tank Model (Sugawara, 1995), SWMM (Huber et al., 1988), XPRafts, RORB, URBS and
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WBNM. In principal, conceptual methods generalise the hydrological cycle and predict the
flow from watershed. Some of these also take into account the soil moisture interconnection
with hydrologic cycle (Duan et al., 1992). However, depending on the level of details of
hydrological cycle included in the model, some parameters must be adjusted in order to
match model output to those observed from the catchment of interest. Fine tuning of these
parameters is usually performed manually. However, this manual approach is time
consuming to arrive at a satisfactory solution particularly when the calibration parameters
are large (Ibrahim and Liong, 1992). In these circumstances, automatic calibration
procedures were developed with computer technology. Development of automatic
calibrations (Madsen, 2000) schemes which is called optimization techniques, has been an
active research endeavours during the past decades.

Several optimization methods have been applied in the calibration process. These
traditional optimization techniques include linear, nonlinear, dynamic programming and
evolutionary algorithms. The detailed description of evolutionary algorithm is presented in

section 2.4.

2.2.1. Linear Programming

A linear programming gradient (LPG) method is presented by Alperovits and
Shamir (1977) in the optimal design of water distribution network by linearizing the
mathematical formulation (Atiquzzaman, 2004). Quindry et al. (1981), Fujiwara et al.
(1987), Kessler and Shamir (1989) and Eiger et al. (1994) also applied LPG successfully and
enhanced the functionalities (Morgan and Glulter, 1985; Fujiwara and Khang, 1990).
However, linearization of complex non-linear process in LP reduces its performance. It is
not always beneficial to linearise the problem as it may suffer losses and distort the original

problem (Atiquzzaman, 2004).
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A linear programming model was introduced by Tu et al. (2003) for multipurpose
reservoir system operation. The reservoir operating rules was proposed to minimize the
drought impacts. The model efficiently allocated water to meet the planned demand during

normal periods of operation.

2.2.2. Non-Linear Programming

Chiplunkar et al. (1986) and Lansey and Mays (1989) applied non-linear
programming technique (NLP) (Su et al., 1987; Duan et al., 1990). Compared to LP, NLP
model can deal with more variables. However, Chiplunkar et al. (1986) often found that the
NLP model often converged prematurely to the local minima. In the last few decades, non-
linear programming algorithms that use gradient based algorithms, have been applied
widely. Gradient based technique can easily identify a relative optimum solution. However,
the method does not always provide optimal solution on a non-convex search space
(Atiquzzaman, 2004). Simpson et al. (1994) and Savic and Walters (1997) indicated that
NLP is also inadequate to deal with discontinuous search space and unable to provide

optimal solution (Gupta et al., 1999; Cunha and Sousa, 1999).

2.2.3. Dynamic Programming

Dynamic Programming (DP) has been adapted since 1960s in the water resources
engineering and management problem (Wong and Larson, 1968). In DP, the optimization
problem is sub-divided into stages where each stage is linked to the previous stage
(Atiquzzaman, 2004). The input of current state is transferred to the following stage. A two-
stage dynamic programming approach is proposed by Vamvakeridou-Lyroudia (1993). Lall
and Percell (1990) developed a dynamic programming based optimizer (GPO) and applied

in the gas transmission pipeline systems. They determined the optimized solution (feasible

12



strategy) by minimising the operation cost of the pipeline and satisfying several constraints.
DP produced satisfactory results to simple systems. However, the performance DP
deteriorated if the system was increased in size and the computational time increased
significantly (“the curse of dimensionality”) (Atiquzzaman, 2004).

During the past decade or so, population-evolution-based optimization schemes have
been extensively used for model calibration. The successful application of CRR model
depends heavily on how well the conceptual model is calibrated (Johnston and Pilgrim,
1976; Duan et al., 1992; Ibrahim and Liong, 1992; Liong et al., 1995a; Gan and Biftu, 1996;
Kuczera, 1997; Thyer et al., 1999). Gupta et al. (1999) mentioned that finding optimal
parameters for a CRR model may be difficult from the calibration process. Such problems
attributable to the data or information available for calibration cannot identify model
parameter values with acceptable precision and non-linear structural characteristics of CRR
models. Duan et al. (1992, 1293) identified five characteristics complicating the optimization
problem which are: (a) existence of several major regions of attraction into which a search
strategy may converge; (b) each major region of attraction may contain numerous local
optima; (c) the objective function surface in multi parameter space may not be smooth and
may not even be continuous; (d) the parameters may exhibit varying degrees of sensitivity
and a great deal of interaction. Duan et al. (1992), through their six-parameter conceptual
rainfall-runoff model called SIXPAR demonstrated in their study that the conceptual
rainfall-runoff model calibration problem is more difficult than had been previously thought.
They performed detailed analysis of the response surface of different objective functions on
the SIXPAR model and demonstrated the presence of multiple optima complicating the
conceptual rainfall-runoff model calibration. Finally, they stated that calibration of such
model requires sophisticated mathematical tools and some degree of expertise and

experience with the model.
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2.3. Artificial Intelligence (AI) Technique

The Al approach is based on identifying a relationship between input and output
from the historical observed data without attempting to describe any of the internal
mechanisms. Professionals, researchers in water resources have been interested in data
driven modelling using Al approaches which are assumed to overcome some of the
drawbacks associated with conventional techniques (conceptual model). Such
techniques are proven to be an effective and efficient way to model the complex process
(e.g. RR) where the knowledge of the hydrological process is not required. Over the last
few decades, these tools have been useful operation tools in case of the absence of
hydrologic data such as evaporation data, catchment characteristics, etc. This has
attracted to the attention of researchers where accurate and timely estimation of flow
and flood forecasting is an extremely important issue in water industry as the existing
structural protection system is not adequate to reduce the flood risk. Al (also called
Black box model), according to Toth et al. (1999), is sometimes essential to predict the
flow in shortest possible time which will allow sufficient time for flood warning and
evacuation plan. Black box models for flood forecasting are most suitable tools,
especially when the catchment size is large. Application of Al technique has been very
popular as conceptual and physically based distributed models in the prediction of dam
inflows or natural catchment yield requires many parameters including catchment area,
slope, soil type, infiltration, drainage networks and their layout or their representations
in the model and meteorological data (rainfall and runoff data). The values of some of
these parameters, like infiltration rates, can only be determined through calibration.
Calibration of such models using a trial and error method, or optimization algorithm

needs knowledge and experience about the catchment, extensive effort specially for
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larger catchment with lots of calibration parameters to be determined (Atiquzzaman and
Kandasamy, 2016a). Artificial intelligence (AI) based machine learning techniques have
proven superior in this modelling process (e.g flow prediction) compared to other
stochastic models including “Autoregressive (AR)”, “Autoregressive Moving Average
(ARMA)”, “Autoregressive Integrated Moving Average (ARIMA)” and
“Autoregressive moving average with Exogenous Inputs (ARMAX)” (Hsu et al., 1995
and Lohani et al., 2012). Over the last decades, Al techniques including Artificial Neural
Network (ANN) (Funahashi, 1989; Furundzic, 1998; Gallant and White, 1992; Anctil et
al., 2004; Jeevaragagam and Simonovic, 2012), Fuzzy Logic (FL) (Tayfur and Sing,
2006; Adeli and Sarma, 2006), Support Vector Machine (SVM) (Sivapragasam and
Liong, 2002, Yu and Liong, 2004), Chaos Theory (Yu et al., 2002), and Genetic
Programming (GP) (Lee and Suzuki, 1995; Rodriguez-Vazquez and Flemming, 1997,
Keijzer and Babovic, 1999; Jayawardena et al., 2005; Meshgi et al., 2015) have been
successfully utilized in many application around the world for their ability to recognize

non-linearity in complex hydrological process.

Generally, application of data driven models to predict hydrological flow series
(future discharges) requires an input of lagged discharges or meteorological data
(Akhtar et al., 2009). Prediction of hydrological flow at a location in a river was
performed by Karunanithi et al. (1994) using a cascade correlation algorithm. Flow data at
different locations along the river and along its tributaries was as input. The model performed
better than the commonly used conventional technique. Appropriate network structure,
presenting data to “Artificial Neural Network (ANN)” and training algorithms were also
presented. The study outcome revealed that lag time is more important in predicting stream
flows. Hsu et al. (1995) demonstrated that non-linear ANN models provided a more

representative rainfall-runoff relationship. They compared ANN results with ARMAX and
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the conceptual Sacramento soil moisture accounting model. It was reported that the models
tend to fit the higher flows quite well. However, the low flow prediction is not so good for a
one-step ahead prediction. Fernando and Jayawardena (1998) also modelled this by using
Radial Basis Function neural network (RBF-NN). They showed it performed better than the
ARMAX. ANN with multi-layer perceptron (MLP) networks trained with gradient-based
methods has been used in many applications. Traditionally, the weight vectors in ANN
models is determined using back-propagation (BP) algorithm by minimizing the mean
square error between the measured and forecasted discharges of the hydrological process.
However, the performance of ANN depends on network architecture (e.g. number of hidden
layers, the number of neurons, activation functions etc), performance criteria, division and
pre-processing of data, and determining appropriate model inputs (Maier and Dandy, 2000).
Cigizoglu (2003) studied the application of ANN for forecasting of daily flows for a river in
Turkey. Their analysis demonstrated ANN’s superior capability compared to conventional
models (e.g. AR and regression models). Application of data-driven modelling methods has
been made to quantify the uncertainty associated with the prediction. Kingston et al. (2005)
highlighted ANN’s failure to account for prediction uncertainty as the quantification of
uncertainty associated with ANN’s parameter, namely, weights is complex and difficult.
They proposed Bayesian training method to assess ANN’s weight uncertainty. Peters et al.
(2006) used HEC-RAS model to train the multilayer feed forward ANN and to replace one-
dimensional hydrodynamic modelling system with ANN. They showed that ANN model
performed well in terms of decrease in computational time especially for online flood
forecasting. Wang et al. (2005) improved the performance of ANN with self-organising
polynomial neural network (SOPNN). They demonstrated the capability of SOPNN in
selection of appropriate model inputs, optimization of the network structure and error

minimisation. SOPNN was applied to runoff prediction and it was found that SOPNN
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performed better than the group method of data handling (GMDH) and the traditional back-
propagation network (BPN). Mittal et al. (2012) proposed a dual (combined and paralleled)
artificial neural network (D-ANN) to estimate the extreme runoff values. They compared the
performance of D-ANN with common feed forward ANN (FF-ANN). D-ANN performed
better than FF-ANN. The relationship between input and output vectors were established
using three steps: (1) compilation of the statistics of rainfall and the corresponding runoff
{Qt = f(Ri—o, Re_g, R¢_7,Q¢_1,0Q¢_2)}, where R and Q represent the rainfall and runoff
values at time “#’; (2) estimation of predicted values and errors of the runoff values (¢ =
y — ¥), where y is observed value of runoff, y predicted value of runoff and ¢ value of error;
(3) estimation of error corresponding to the predicted runoff {g =
f(Ri—g,Ri_g, Rt_7,Q¢—1,Q¢—3)}. The ultimate predicted value of runoff was derived by
summing the predicted value and the error. The model was applied on a real case study on
Kolar River basin in India. In the application, it was demonstrated that though both D-ANN
and FF-ANN produced similar behaviour but D-ANN was able to predict the peak value
better than FF-ANN. According to Chen and Chang (2009), a very simple ANN network
architecture may not accurately predict while too complex architecture may reduce its
generalization ability due to over-fitting. Uncertainty in streamflow prediction was assessed
by Boucher et al. (2009) based on ensemble forecasts using stacked neural network. Instead
of forecasting a single value (e.g. one-day-lead prediction), they predicted an ensemble of
stream flows which was then used to fit a probability density function to assess the
confidence interval as well as other measures of forecasts uncertainty. The uncertainty
associated with prediction of water levels (or discharges) was analyzed by Alvisi and
Franchini (2011). They introduced fuzzy numbers to determine the weights and biases of
neural network to estimate prediction uncertainty of water levels and discharges. The

comparison of this fuzzy neural network method with Bayesian neural network and the local
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uncertainty estimation model demonstrated the effectiveness of the proposed method where
the uncertainty bands had slightly smaller widths than other data-driven models. Alvisi and
Franchini (2012) found better accuracy in forecasting water levels and narrower uncertainty
band width compared to Bayesian neural network using Grey neural network (GNN). Here
the parameters are represented by unknown grey numbers that lie within known upper and
lower limits. The grey parameters are searched in way that the grey forecasted river stages
include at least a preselected percentage of observed river stages. Sing et al. (2015) applied
ANN to establish relationships between rainfall and temperature data with runoff from an
agricultural catchment (973 ha) in Kapgari (India). Several resampling of short length
training datasets using bootstrap resampling based ANN (BANN), found solutions without
over-fitting. A ten-fold cross-validation (CV) technique based ANN was also applied to
obtain unbiased reliable testing results. Sing et al. (2015) demonstrated that BANN provides
more stable solutions and was able to solve problems of over-fitting and under-fitting than
ten-fold CV based ANN. Gholami et al. (2015) achieved high degree of accuracy in the
prediction groundwater fluctuation using dendrochronology (tree-ring diameter) and ANN
(multilayer perceptron, MLP). Rasouli et al. (2012) applied three machine learning methods
including Bayesian Neural Network (BNN) for streamflow forecasting using different
combination of local meteo-hydrologic observations and climate indices. They found that
BNN outperformed the other nonlinear models. Chen and Chang (2009) proposed an
evolutionary algorithm (Genetic Algorithm (GA)) based ANN (EANN) to define the optimal
network architecture and for prediction of real-time inflows to the Shihmen Reservoir in
Taiwan. They demonstrated that EANN performed better than the ARMAX stochastic
model. Chen and Chang (2009) also stated that the performance of ANN depends on network
architecture (e.g. inputs, number of hidden layers, the number of neurons and activation

functions) and noted that very simple network architecture of ANN may not accurately

18



predict while too complex architecture may reduce its generalization ability due to over-
fitting. Wu and Chau (2011) found that the performance of ANN can be improved

significantly if the input data is preprocessed with Singular Spectrum Analysis (SSA).

The performance of ANN was improved by combining with other techniques (e.g.
hybrid methods) (Chen et al., 2915). For example, Deka and Chandramouli (2009) proposed
Fuzzy Neural Network (FNN) hybrid model to study the operation of a proposed
multipurpose reservoir system and found that FNN is highly adaptive, flexible, easy to build.
Adaptive Neural-based Fuzzy Inference System (ANFIS) significantly improved on ANN
predictions for reservoir prediction (Bhakra Dam, India, Lohani et al., 2012); for forecast of
daily flood discharge (Yom River Basin, Thailand, Tingsanchali and Quang, 2004; and Ajay
River Basin in Jharkhand, India, Mukerji et al. 2009), and for event-based rainfall-runoff

modeling using lag time (Talei and Chua, 2012).

Fuzzy rule based models are based upon the fuzzy set theory. Fuzzy set theory
differs from the classical theory of crisp sets. A fuzzy set is a class of objects which is
characterised by a membership function. The membership functions for each object assign a
grade ranging between zero and one (Zadeh, 1965). Fuzzy set comprises of ordered pairs of
values, (x, uq(x)), where x is an element of numerical basic set 4 and where p,(x) is the
degree of membership of x. If the grade for membership function is 1, this means that x
entirely belongs to the fuzzy set. Zero grade, on other hand indicates that x does not belong
to the fuzzy set at all. Values in between mean that x belongs to the set to some degree.
Tayfur and Singh (2006) described a general fuzzy system consists of four steps —
fuzzification, fuzzy rule base, fuzzy output engine, and defuzzification. In fuzzy logic
application, firstly the input data are converted to degree of membership functions. Secondly,
fuzzy rule base defines a list of rules that include all possible relations between inputs and

outputs. These rules are generally expressed in the IF-THEN format. There are two types of
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expression of rules used in fuzzy application which are called ‘Mamdani’ and ‘Sugeno’. In
Mamdani rule system, the consequent of the input variable is expressed as verbally.
However, in Sugeno rule system, the consequent part of the fuzzy rule is expressed as a
mathematical function of the input variable. Thirdly, the fuzzy inference system engine take
into account of all the fuzzy rules in the fuzzy rule base and transform them to a set of output.
Finally, defuzzification converts the resulting fuzzy outputs from the fuzzy inference engine
to a number. There are several defuzzification methods available which are centre of gravity
(COQG), bisector of area (BOA), mean of maxima (MOM), left-most maximum (LM), and
right most maxima (RM) etc. Fuzzy logic has been widely applied in hydrological modelling
for the last two decades. Fuzzy conceptual rainfall-runoff framework was proposed by
Ozelkan and Duckstein (2001) where every element of the rainfall-runoff model was
assumed to be uncertain. Fuzzy rules, applied to different operational modes and the
parameter identification process was examined using fuzzy regression techniques. The
methodology was applied to different types of conceptual models including linear,
experimental two parameters and Sacramento Soil Moisture Accounting Model that enabled
the decision maker to understand the model sensitivity and the uncertainty stemming from
the elements of the model. Tayfur and Sing (2006) applied ANN and fuzzy logic (FL) for
predicting event based rainfall-runoff and the results were compared against the “kinematic
wave approximation (KWA)”. A three layered “feed-forward ANN” was developed using
the “sigmoid function” and the “backpropagation algorithm”. The triangular fuzzy
membership functions were applied to develop the fuzzy logic model for the input and output
variables. They described that ANN and FL require long historical data compared to KWA.
But KWA model involves many parameters for which field estimation is needed. Adaptive
Neuro-Fuzzy Inference System (ANFIS) and ANN were applied by Tingsanchali and Quang

(2004) to forecast the daily flood flow of the Yom River Basin in Thailand. They

20



demonstrated that ANFIS performed better than ANN multilayer perceptron model. Though
different types of ANN together with Fuzzy Logic have been successfully applied to solve
complex hydrological processes, it suffers from some major limitations (ASCE Task

Committee, 2000 a and b), for example,

e choosing optimal network architecture is an issue;

e does not provide a direct relationship between the input and output variables; and

e does not help in advancing the scientific understanding of hydrological process.

Cui et al. (2014) examined the impact of topographic uncertainty in their rainfall-
runoff model (TOPMODEL). The performance of TOPMODEL is influenced by the grid
size of the digital elevation model (DEM) that defines the topography. The relationship
between DEM resolution and TOPMODEL performance was investigated using fuzzy
analysis technique. Different grid sizes of the DEM ranging from 30m to 200m were used
in TOPMODEL. It revealed that the best results were produced with fuzzy technique for the
30m resolution. Cheng et al. (2002) adopted a parallel Genetic Algorithms (GA) with Fuzzy
Optimal model in a cluster of computers to reduce the computational run time required to
optimize the rainfall-runoff model (Xinanjiang) and to improve the quality of the results. As
the problem was partitioned into smaller pieces, their proposed hybrid approach achieved

the superior results quicker than GAs.

Over the last several decades, parallel to ANN and Fuzzy Logic, Genetic
Programming (GP) has been applied to solve various hydrological/hydraulic problems,
such as rainfall-runoff relationship from synthetic data, sediment transport modelling,
prediction of bridge pier scouring (Azamathulla et al., 2010), salt intrusion in estuaries
and flow over a flexible vegetated bed (Babovic, 1996; Babovic and Abbott, 1997).

Babovic and Abbott (1997) mentioned that GP can be used to model single non-linear
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reservoir behaviour of a hypothetical catchment simulated by RORB. Whigham and
Crapper (2001) applied Genetic Programming to predict the runoff from 2 catchments
using only previous rainfall data. One of the catchments is a moderately fast response
catchment and the other, a rapid response catchment. They found that Genetic
Programming was able to distinguish the slow response from the rapid response of the
catchment and reacted accordingly by incorporating the average rainfall terms in the
resultant expression. Makkeasorn et al. (2008) showed GP performed better than neural
networks (NN) for forecasting discharges in a semi-arid watershed in South Texas, USA
by including sea surface temperature, spatio-temporal rainfall distribution,
meteorological data and historical streamflow data. The application of GP in real-time
runoff forecasting was also demonstrated by Liong et al. (2002). Liong et al. (2002)
applied GP as a forecasting tool in a catchment with a drainage area of 6 km?. Different
storm intensities and durations were considered to train and verify GP results. The
functional relationship between rainfall and runoff derived from GP showed that the
prediction accuracy of GP in terms of RMSE is reasonably good. Savic et al. (1999)
found in their study that GP performed better compared to conceptual hydrological
model (e.g. HYRROM). Application of GP demonstrated by Khu et al. (2001) in real-
time runoff forecasting showed that GP played as an error updating scheme to
complement traditional hydrological model (MIKE11/NAM). GP was able to predict
the runoff for all updating intervals not exceeding the time of concentration of the
catchment. They also found that non-dimensionalising the variables enhanced the
prediction accuracy. Ten storm events were considered to infer the performance of GP
in updating NAM output. The best functional form with minimum RMSE is as follows:

QIMP,,, = QSIM, + 0.009 + 1.61¢, — 0.644¢,_; + 0.087,(QSIM,_, — QSIM,_,
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Where, QIMP, 4 is improved discharge at time t + 1; QSIM, is simulated discharge at
time t; & is prediction error at time t. GP also produced comparable results with two
other updating methods such as the auto-regression and Kalman Filter. In applied
engineering, GP is frequently used to recognise the relationship between the complex
hydrological parameters. Rodriguez-Vazquez et al. (2012) proposed GP and Genetic
Algorithm (GA) for rainfall-runoff modelling of a sub-basin located near Mexico City.
They developed two different models for the analysis. The first was a multi-objective
optimization based GP model for determining the structures and parameters of non-
linear auto-regressive models (NARMAX). The second was a GA based model that
optimized the parameters of a non-conventional rainfall-runoff model. Their analysis
concluded that the multi-objective optimization based GP model best fitted the analysed
storms of interest. Recently, Nourani et al. (2013) included watershed geomorphological
features as spatial data together with temporal data in GP for rainfall-runoff modelling.
Two separate scenarios, namely separated gemorphological GP (SGGP) and integrated
gemorphological GP (IGGP) models and their application were described. The
geomorphological parameters or the spatial data includes area, slope and curve number
for sub-basin were considered in addition rainfall and runoff time series. Separate GP
models were developed for each sub-catchment in SGGP where as all the sub-catchment
spatial and temporal parameters were integrated in IGGP. From the application of these
techniques to Eel River Watershed, they found these models could compensate the lack
of temporal data. Specifically, SGGP model for the sub-basins could distinguish the
dominant variables of the sub-basins in the process and IGGP can be a reliable tool for
spatial and temporal interpolation of runoff through the watershed. IGGP was able to

fill up the data gaps in other stations.
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SVM is another powerful Al technique that has been successfully applied in flow
forecasting, rainfall-runoff modeling (Sivapragasam et al. 2001) and streamflow forecasting
(Chiogna et al., 2018). SVM is a statistical method that resolves the problem similar to a NN
but the nature of its underlying functional form is not assumed a priori. In other words, SVM
can be seen as an approximate implementation of the method of structural risk minimisation.
In this process, learning from data is actually to choose from the given set of functions which
best approximate the measured output. The best approximation represents the smallest value
of the risk. However, if the training examples are limited, this approach does not guarantee
a small actual risk. To overcome this limitation, statistical learning theory has been
introduced. In this method, the structural risk is minimised by controlling the estimate of risk
and the confidence interval of this estimate (Vapnik, 1999). Chiogna et al. (2018) proposed
SVM with hydrological model (Soil Water Assessment Tool) output, the hydropower energy
price and the day of the week to capture sudden fluctuations in river stage caused by the
hydropower production company in Upper Adige River basin in North-East Italy. They
found that that SVM was able to reproduce the hydropeaking and performed better than
SWAT under low flow condition when the streamflow was impacted by the hydropower.
SVM was applied by Sivapragasam (2002) and Liong and Sivapragasam (2002) to predict
the stage in the city of Dhaka, Bangladesh using daily water level data measured at five
gauging stations (Liong et al., 1999). The results showed that SVM performed better than
ANN (Liong et al., 1999) in terms of RSME and R?. Similarly, SVM was shown to be
comparable or better than ANFIS and GP, for application in forecast of monthly river flow
(Wang et al. 2009) and short term river flow (Heihe River, Northern China, He et al. 2014).
Sivapragasam (2002) applied SVM to rainfall-runoff modelling using six storm events that
occurred in Upper Bukit Timah catchment, Singapore. The results showed the robustness of

SVM compared to multi-layered feed-forward ANN.
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SVM was further improved by reducing the noise from input data using Singular
Spectrum Analysis (Sivapragasam et al., 2001), optimization of SVM parameters using
Evolutionary Computation based Algorithm (EC-SVM) (Yu et al., 2004) and Particle Swarm
Optimization algorithm (Wang et al. 2013). Lin et al. (2006) reported SVM as a powerful
tool that could overcome some of the drawbacks that were evident in ANN: (1) finding
global solutions, (2) over-fitting unlikely, (3) generating non-linear solutions using the
Kernel Function, and (4) obtaining optimized solutions using a limited training dataset.
While SVM overcame some drawbacks of ANN (finding global optimized solutions and
over-fitting, Lin et al. 2000), it required a long simulation time for large complex problem,
and in the selection of an appropriate kernel function and associated parameters (C and ¢).
Fotovatikhah et al. (2018) reviewed the available Al and computational intelligence (CI)
methods in the literature including ANN, fuzzy sets, wavelet models, SVM, EC and hybrid
methods employed in hydrology, flood and waste flow prediction. They found that EC and
SVMs showed lower error rates compared to other machine learning and soft computing
techniques. Yu et al. (2004) presented a combined application of Chaos Theory and SVM
where the parameters were optimized with an EA to reduce prediction error. In SVM,
Gaussian Kernel function, being more suitable, was applied to hydrological time-series
application (Liong and Sivapragasm, 2002). An EA engine, called Shuffled Complex
Evolution (SCE), was applied to determine five parameters, i.e. time delay, embedding
dimension and three SVM parameters (tradeoff between empirical error and model
complexity, insensitive loss function, and width of Gaussian kernel function). EA based
SVM (EC-SVM) was used to predict runoff time-series for catchments including the
Tryggevalde Catchment, Denmark and the Mississippi River, USA. The results showed that
EC-SVM improved the prediction accuracy compared to standard chaos technique, Naive,

ARIMA and Inverse Approach. Wang et al. (2013) applied an EA, called particle swarm

25



optimization (PSO), to determine SVM parameters. They further proposed ensemble
empirical mode decomposition (EEMD) for decomposing annual rainfall series in SVM to
avoid model over-fitting or under-fitting. The proposed model (PSO-SVM-EEMD)
improved the rainfall-runoff forecasting significantly compared to ordinary least-square
regression model and ANN. Sivapragasam et al. (2001) enhanced the performance of SVM
by pre-processing the input data using a noise-reduction algorithm, Singular Spectrum
Analysis (SSA). SSA was coupled with SVM and used to predict the flows from the
Tryggeveelde Catchment (Denmark). It improved the prediction accuracy compared to the
non-linear prediction (NLP) method.

Literature on the application of Al approaches including ANN, ANFIS, SVM and
GP in hydrological time-series prediction indicates that their performances are not consistent
for all applications and it is difficult to state which method is superior. Superior performance
depends on appropriate parameters and network configurations. Researchers have attempted
to improve the performance of these methods using hybrid approach (ANFIS) or by
combining them with other algorithms (EC-SVM) to optimize the parameters. However,
they still require numerous iterations and significant computational time to generate
optimum solutions. To overcome this, Huang et al. (2006) proposed a learning algorithm,
called “Extreme Learning Machine (ELM)”. ELM determines weights related output
analytically with randomly generated input weights. The performance of ELM has been
compared by Huang et al. (2006) with conventional neural network (BP) and SVM on some
benchmarking problems in the function approximation and classification areas. Huang et al.
(2006) reported that ELM is capable of approximating any continuous function and
implementing any classification. ELM learns faster (Taormina and Chau, 2015) and is stable
with a wide range of number of hidden nodes. ELM was also applied by Taormina and Chau

(2015) in the selection of input variables for rainfall-runoff modelling. They obtained most
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accurate solutions with ELM is coupled with Binary-coded discrete Fully Informed Particle
Swarm Optimization (BFIPS). The performance of ELM depends on the activation function
and the random assignment mechanism. With appropriately selected activation function and
random mechanism, ELM does not degrade the generalization capability (Lin et al., 2014).
Numerous experiments and applications have demonstrated the effectiveness and efficiency
of ELM (Huang et al., 2006). Atiquzzaman and Kandasamy (2016b) demonstrated that
ELM’s learning speed and accuracy were comparable to Standard Chaos Technique, Inverse
Approach and EC-SVM in the forecasting of hydrological time-series (refer to Chapter 4).
However, the robustness of ELM’s performance (improved accuracy) on different input
parameters, longer lead day prediction and extrapolation capability was not investigated by
Atiquzzaman and Kandasamy (2016b) (refer to Chapter 5).

The following sections present the brief description of Artificial Neural Networks
(ANN), Genetic Programming and Extreme Learning Machines as this study applies these

three Al techniques. ANN and GP are applied in this study for comparison against ELM.

2.3.1. Brief Description of Artificial Neural Network

A lot of works has been particularly carried out in the application of ANN in stream
flow forecasting and runoff modelling due to its capability to reproduce the unknown
relationship existing between a set of input and output variables. American Society of Civil
Engineers (ASCE) has officially formed a committee on application of ANN in and they
reported that since the early nineties, ANNs have been successfully used in R-R modelling
and other hydrology related areas such as stream-flow forecasting, ground-water modelling,
water quality, water management policy, precipitation forecasting, hydrologic time series,

and reservoir operations.
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Artificial Neural Network (ANN) is a network that connects many simple elements
called neurons. Each neuron has a small amount of local memory. The neuron connections
are established through communication channels which carry numeric data encoded by
various means. Neurons become active when it receives data through the communication
channels.

The architecture of ANN follows the model similar to human brain and nerve cells.
Historically, much of the motivation to build ANN came from the desire to produce artificial
systems capable of mimicking the behaviour of human brain. Neural Network model derives
the statistical structures present in the input data set by using the architecture and learning
paradigms. The information acquired after learning the data structure is stored at the
connections between the elements of the neural architecture. At the beginning, the
architecture is not structured and the learning algorithms extracts the regularities present in
the data by finding a suitable set of synapses during the process of observation of the
examples. Thus, ANNs solve problems by self-learning and self-organization i.e. the
network recognizes the features of input data itself and displays its findings. They derive
their intelligence from the collective behaviour of simple computational mechanisms at
individual neurons.

In ANN, there are two types of architectures including feed-forward and recurrent
architectures. The feed-forward architecture allows connections only in one direction and
the neurons are arranged in layers, starting from a first input layer and ending at the final
output layer with one or more hidden layers. The information passes from the input to the
output side. The recurrent architecture, however, permits back-coupling and any type of
connections is allowed. This is generally achieved by recycling previous network outputs as

current inputs, thus allowing for feedback.
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Feed-forward network is usually used in hydrological problem as the recurrent
architecture based models are significantly more complex in terms of time and storage
requirements. This study considers only ANN with a feed-forward architecture. A 3-layered
feed-forward architecture is shown in Figure 2. 1. The 3 layers are called input, hidden output
layers. Each layer consists of several neurons which are interconnected by weight functions.
The input variables (observed data) are fed to input neurons directly. The variable
information is passed on to hidden and output layers through the interconnections between
the neurons. The neurons in input layer transform via weight functions which are estimated
through this process. The transformation is performed in two stages as shown below

(Sivapragasam and Muttil, 2005):

» Determining Weighted Sum.
“Input from each neuron is multiplied with weights and a weighted sum is
performed”:
Y.(s)= Zn:wl.j(s—l).xl.(s—l)
(1)
where “Yj(s) = weighted sum for neuron j in layer s; wi(s-1) = weight in the link
between neuron j in layer s and neuron i in layer (s-1); and xi(s-1) = input from neuron
i in layer s-1".
» Selecting Activation Function.

An activation function, F(s), such as the sigmoid function expressed as:

‘ 1 + e )

Fi(s) is the output of the neuron j in layer s.
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Figure 2. 1: 3-Layered Feed Forward Neural Network Architecture

Initially, ANN generates the weights related to the interconnections randomly. In
this process, a learning rate (o) and a momentum rate (/) are defined. The learning rate plays
an important role and controls the variation (incremental change) of interconnecting weights.
During the iterative training process, the variation in the weight functions is controlled by
the learning rate based on the percentage of the difference between the observed and model
output. If the high learning rate is selected, larger weight change is observed, and the model
learns the input dataset quickly. The momentum rate ensures the model from being trapped
to local optima and increase the rate of learning at the same time. The change in the previous
interconnection weights is multiplied by the momentum rate. The relationship between the
learning rate and momentum rate is described as:

Aw,(s) = ad(s)x,(s) + pAw,(s=1) A3)

where Aw;i(s) = “weight adjustment between node j in layer s and node 7 in layer (s-1)”;
dj(s) = “local or instantaneous gradient”; and

xi(s) = “input of neuron j from previous layer’s neuron i".
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Equation 3 demonstrates that the momentum rate (f) increases the rate of variation
of weight when the local gradient component is in the same direction as that of the learning
component. Alternatively, the learning rate becomes faster when the error back- propagation
is downward and vice versa.

ANN model is trained with a list of input data. The model adjusts the
interconnection weights and computes the desired output until some termination criteria are
met. The trained ANN model with the optimized interconnection weights, can be readily

used to produce outputs for a set of known inputs.

2.3.2. Brief Description of Genetic Programming

“GP is a domain-independent automatic programming for evolving computer
programs to solve, or approximately solve problems” (Koza, 1992, 1997; Liong et al., 2002).
GP which is a member of EA family, is actually a generalization of genetic algorithm (Aytek
and Kisi, 2008). Poli et al. (2008) defined “Genetic programming (GP) is an evolutionary
computation technique that automatically solves problems without requiring the user to
know or specify the form or structure of the solution in advance”.

GP provides a transparent and structured system compared to other Al approach
such as ANN, as ANN produces their knowledge in terms weight matrix that is sometime
not accessible to human understanding (Savic et al., 1999). Scientists, researchers and water
manager usually focus on the agreement of predicted and observed behaviour of a complex
hydrological process using some kind of fixed relationship. If the comparison is accepted,
the model is considered to be correct within that context (Babovic and Keijzer, 2002). Hence,
GP can mimic this complex relationship and derive the governing equations directly from

measurement. Genetic Programming has the advantage of providing inherent functional
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relationship explicitly over ANN. So, GP induced rainfall-runoff relationships can be an
alternative to commonly used rainfall-runoff models.

GP uses optimization mechanism to evolve simple program where Darwin’s natural
selection theory of evolution is applied to progressively generate the offspring from better
parents. In GP, trial parent programs are repeatedly modified in the search for better or fitter
solutions (Langdon, 1998). In this process, the quality criteria are defined to improve the
accuracy of EAs. These criteria are then used to measure and compares solution candidates
in a stepwise refinement of a set of data structures and return an optimal or near optimal
solution after a number of generations (Jayawardena et al., 2005). The accuracy of solution
depends on the level of noise in the data set. If the data is noise free, GP generates a function
in symbolic form which is defined by Liong et al. (2002) as symbolic regression. The
symbolic regression is error driven evolution and may be linear, quadratic or higher order
polynomial. GP has been extremely popular due to the success at searching complex non-

linear spaces and the robustness in practical application.

2.3.2.1. Generation of Offspring from Parent Population

Population in GP consists of functional relationship or computer program. In order
to create new relationship from parent relationship, the parent relationships are represented
by parse tree structures composed of function set and terminal set (see Figure 2. 2). The
functions are mathematical or logical operators and terminals are constants and variables.
These trees are dynamically modified by genetic operators which are called selection,
crossover and mutation to optimize its fitness value in the evolution process. The genetic
operator is applied to select individuals. Selection process involves some probabilistic
approach to copy individuals from previous generation to the next generation based on

fitness value. After selection, crossover and mutation are applied. Crossover operator inter-
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changes randomly selected subtrees of each chosen parent pair to generate syntactically
correct offspring. Figure 2. 3 shows the crossover of two parent population. After the
crossover, the program probabilistically selects a single parental solution program from the
population based on objective function value and performs mutation operation. There are
several types of mutations possible in the process. For example, two of them are: (1) the
child population can be mutated by replacing a function or a terminal with another function
or a terminal; and (2) the whole subtree of a child population can be interchanged by another
subtree. The subtree in the process can be generated using the same approach applied at the
beginning to generate the initial population of points. The final solution is shown in Figure

2. 4.

Parent 1: {\/(b* — 2a) — b}/ 2a Parent 2: (Vb? — dac)/ dac

Figure 2. 2: Parent Population in GP (Source: Liong et al., 2002)
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Child 1: {/(b? —4ac) —b}/2a Child 2: (Vb? —4ac)/2a

Figure 2. 3: Child Population in GP (Source: Liong et al., 2002)

T8
) (b) =30

Figure 2. 4: GP Parse Tree Representing {sqrt(b2-4ac)-b}/2a (Source: Liong et al.,
2002)

Root node

2.3.2.2. Working Mechanism
The basic steps of GP (Figure 2. 5) are described as follows:
1. Create a set of initial population of points/solutions.

2. Evaluate each solution (parse tree) and assign the fitness.



3. Generate a subset of population of points according to their objective function values
(fitness). Solutions with higher fitness values will be selected to produce offspring

(children).

START

!

Generation = 0

!

Generate initial random population

!

Termination criteria | YES
satisfied ? stop

NO

Evaluate fitness of each
individual population

'

Crossover Conduct genetic operations | Mutation
based on probability

Select 2 individuals based Select one individual
on fitness
Perform crossover Perform mutation
, " Introduce newly l

4

generated individuals into
new population pool

Figure 2. 5: Flow Chart of Genetic Programming (Source: Liong et al., 2002)

4. Selects pairs of solutions randomly from the subset of population of points for mating
and apply crossover operation. Crossover will interchange the genetic components
between two selected points;

5. Choose a crossover location where the genetic materials of the parent population will

be interchanged (binary bit) to produce child population.
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6. Apply mutation operation which randomly select a genetic information (0 or 1) of
the solution and change it from 0 to 1 or vice versa.

7. Copy the resulting mutated child chromosomes into the new population.

8. Evaluate the fitness value (performance) of the new population.

9. Repeat steps 3-8 until some termination criteria are met.

2.3.3. Brief Description of Extreme Learning Machine (ELM)

Extreme Learning Machine (ELM) is a relatively new Al techniques developed by
Huang et al. (2006). ELM is a single-hidden layer feed-forward neural network (SLFN) that
provides efficient unified solutions where the input weights and hidden layer biases are
chosen randomly (Huang et al., 2006). ELM’s hidden node parameters are independent
between the hidden layer and the training data which means that it generates the hidden node
parameters without depending on training data. However, ELM’s connections with output
neurons are adjustable. ELM determines weights related to output analytically with
randomly generated input weights. ELM transforms the training of Feed-Forward Neural
Network into a linear problem in which only connections with output neurons are adjusted.
Thus, the well-known generalized inverse technique is directly applied for the solutions.

ELM’s learning algorithm is much simpler, and the learning speed is extremely
fast as it avoids iterative tuning to determine the weights. The advantages of ELM are: (1)
faster learning speed than conventional method; (2) learns with single iteration; (3) better
generalization performance; (3) automatically determines all the network parameters
analytically; (4) suitable for many nonlinear activation function and kernel functions; (5)
straightforward in reaching solutions without facing issues like local minimum, improper
learning rate and overfitting; (6) suitable for online and real-time applications; and (7) a

viable alternative technique for large-scale computing and machine learning.
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The mathematical equation for ELM can be formularized as (Figure 2. 6):

fu(x) = X1 BiG(a;, by, xp) =Xiy Big(as. x; + by) 4)

where, a; is the weight vector connecting the i hidden node and the input variables
and b;is the bias of the i™ hidden node, L is random hidden nodes; f; is the weight connecting
the hidden node and the output node and g(x) is activation function (example, sigmoidal

function: g(x) = 1/(1 + exp (—x)); x € R™ and a; € R™).

Input Hidden Output
Layer Layer Layer

Figure 2. 6: Structure of Neural Network

When the difference between the target (¢;) and the model {f; (x) = y;} is zero for
a time series of N samples,

§=1||3’j—tj||=0 (5)

where, J=1, ...N.

This means:

Yo Big(aixj + b)) = ¢ (6)

Equation (6) can be written as:

HB =T (7

where H is called hidden layer output matrix of SLFN.
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For a fixed input weight and input biases, training of SLFN finds a least squares
solution f of above equation.

|H(@,b,%)f — T|| = ™%||H(a b, )8 — Tl (8)

Where, a= a,...arp, b= bl’ bLB X = X1, - XN

glay.x; +by) ... g(a,.x;+by)

H(a,b,%) = : :
glay.xy +by) ... glap.xy+b)l,
{ tf
p=|: and T =
T T
BL Lxk tN Nxk

where, k is the number of targets.
Equations (7) or (8) is solved using the smallest norm least-squares solution method, where
B=HT 9
H' is called Moore-Penrose generalized inverse of matrix H (hidden layer output)
and 7 'is target matrix. If the number of hidden neurons and the number of samples are equal,
SLEN can approximate the training of samples with zero error (Huang et al., 2012). H' can

be calculated using several methods including orthogonal projection method,

orthogonalization method, iterative method, singular value decomposition (SVD), etc. In
ELM, the SVD method is used to calculate H'. Huang et al. (2012) represented H =
(HTH)~'HT if HTH is nonsingular or H = HT(HHT)~' if HH” is nonsingular according
to orthogonal projection. Based on ridge regression theory, a value of 1/C is added to the

diagonal of HTH or HHTin the calculation of the output weights /3 to get stable and better

generalization performance. Thus equation (9) can be written as,
B=H"(c+HHT)'Tor B = (z+HH)'H'T (10)

The corresponding output function becomes:
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fi(®) = h(x)(G+ HTH) T H'T (11)
where h(x) is called hidden-layer output matrix or feature mapping matrix. Huang
et al. (2011, 2012) reported that the generalization performance of ELM is less sensitive to
the dimensionality of the feature space (L). ELM’s performance is good when L is large
enough (e.g. >1000). For better results the regularization coefficient (C) can be optimized.
If the feature mapping matrix is unknown, Huang et al. (2012) described how the
Kernel Matrix of ELM can be used:

Qpry = HHT; Qgppj = h(x)). h(xj) = K(x;, xj)

fi(®) = h(x) H"(+ HH")7'T (12)
K(x,x)1

L= | G+ Q)T (13)
K(x,xy)

In the above equation the Kernel K (x, x") can be represented using Gaussian Kernel
function:

K(x,x') = exp (=yllx — x'||) (14)

where 7 is the Kernel parameter. In order to achieve good outcome from KELM (Li
et al., 2014), appropriate values of C and y need to be chosen. Huang et al. (2012) tested
KELM using several values of C and vy in a range between 22* and 2%°. In this large range,

optimization method could be used to select values of these two parameters (C and ).

24. Evolutionary Algorithms

Evolutionary Algorithms (EAs) are optimization techniques that mimic the
evolutionary processes. EAs have been applied widely to solve complex engineering
problems. They apply the principle of survival of the fittest from a population of potential

solutions and explore the search space to produce better approximations to a solution. The
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population of points is generated randomly at the beginning. Each point is then evaluated
against the objective function in the first generation. At the end of first generation, the
stopping criteria is checked. If the stopping criteria is not satisfied, a new set of points
(offspring) is created. The offspring created with this process is better suited to their
environment than the parents. The performance of the children is then evaluated and move
to second generation. This process is continued until the termination criteria is satisfied or a
predetermined number of generations (epoch) is reached.

EAs share the information and keep the best solution from current generation for
the next generation. Keeping the best solution (survival of the fittest) ensures the search

engine from being trapped to local optima. The EAs process is presented in Figure 2. 7.
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Figure 2. 7: Flow Chart of Evolutionary Algorithm (Source: Atiquzzaman, 2004)

The family of EAs includes techniques such as Evolutionary Algorithms (e.g.
Genetic Algorithm), Evolutionary Programming (EP) (Fogel et al., 1966), Evolutionary

Strategy (ES) (Schwefel, 1981) and Genetic Programming (GP) (Koza, 1992).

Various Evolutionary Algorithm (EA) based techniques have recently been
successfully used in the field of rainfall-runoff modelling, both for the calibration of
conceptual rainfall-runoff models and also as black box tools. Amongst these techniques,

GAs have been widely applied to different problems in water resources (Babovic and
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Keijzer., 2000; Cieniawski et al., 1995; Dandy et al., 1996; Franchini, 1996; Liong et al.,
1995b; and Wang, 1991) since the technique is robust and can be understood and
implemented easily. Besides GA, there are other types of algorithms available such as Ant
Colony Optimization Algorithms (ACOAs) (Dorigo et al.,, 1996), Particle Swarm
Optimization (PSO) (Kennedy and Eberhart, 1995), Shuffled Complex Evolution (Duan et
al., 1992, Liong and Atiquzzaman, 2004), Shuffled Frog Leaping Algorithm (SFLA) (Eusuff
and Lansey, 2003) and Non-Dominated Sorting Genetic Algorithm (Atiquzzaman et al.,

2006).

2.4.1. Genetic Algorithm (GA)

Genetic Algorithm (GA) (Holland, 1975; Goldberg, 1989) is an example of EAs
that mimics Darwinian survival-of-the-fittest philosophy. GA has been applied to many
engineering problems including calibration of conceptual rainfall-runoff model, water
supply system design and optimization of water distribution network.

GA’s natural selection of the solution in the searching process guides the evolution
in the right direction to optimal solution. In the searching process, the historical information
is exploited to direct the search process towards the optimum by sharing the knowledge.

GA performs well and provide promising solutions for those problems where
solution search space is non-convex and lots of local optimum solutions exist within the
search space. It explores the search space in the most promising areas and improves the
quality of the population of points (approximations of the solutions) over the generations.

Generally like EAs, GA starts the solutions process with a population of points
(initial decision vectors) generated randomly. Each solution vector (population of point)
consists of a set of parameters (decision variables) of the problem that need to be optimized.

With regard to rainfall-runoff calibration problem, the decision vector comprises many
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variables including runoff coefficient. GA converts the decision vector (decision variables)
to a binary number (e.g. 0 and 1) of finite lengths.

The string of the solution of the problem in GA is described as chain consists of
series links by Perez and Joaquin (1995). The performance of the chain is evaluated
(represented) by the objective function of the model. The solution variables of a rainfall-
runoff calibration problem contain a set of links which carries a certain characteristic of the
solution.

There are three fundamental operations undertaken in GA method. These include
selection, crossover and mutation. These three operations modify the selected decision

variables to most appropriate children (offspring) before passing on to next generation.

24.1.1. Selection in GA

In GA, good individuals are selected naturally according to the value of objective
function (fitness). In any generation, good solution may be selected multiple times whereas
the worst solution may be discarded.

Consider the following two variables in a two-dimensional problem that are
represented by binary numbers of five digits each:

X1=01010

X2=10111

The binary representation for X1 and X2 can be placed head-to-tail to produce a ten
digit number. Several of such ten-digits numbers generate a population points of the
problem. From the population of points, a subset of solution vectors is selected according
to the value of objective function. After the selection of the subset, a new group of solution

vectors is generated by applying crossover and mutation processes. Generally, two solution
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strings of the decision vectors are selected for carrying out the crossover operation and

generate new strings.

2.4.1.2. Crossover in GA

The purpose of crossover is to transfers the genes of the parents to children. A single
location along the strings of the points is identified randomly and the binary numbers are
exchanged at that location. Two head and tail segments are produced by cutting the two
parent strings. The individual segments (e.g. tail) are interchanged to generate child binary

numbers (offspring population). Figure 2.8 illustrates the crossover process.

Crossover Point Crossover Point
Parents 010101| TYEEI 110111| 0101
Child 010101| 0107 110111 [fEH]

Figure 2.8: Illustration of Crossover Operation (Source: Atiquzzaman, 2004)

2.4.1.3. Mutation in GA

A mutation process is applied to child population. After crossover, the resulting
binary numbers (offspring population) are mutated. In this process, a random binary number
(gene) is selected and altered. The value of binary bit is changed from 0 to 1 or vice versa.
The valuable genetic information obtained from crossover process is safeguarded.

Mutation process is important in the optimization as value of child’s objective
function may not be changed after the first two processes (i.e. selection and crossover). As
a result, the search engine will lose the diversity and confine the solution space to a local
optima. Mutation operation will assist keeping the search process towards global optima.
However, the probability of mutation to a particular string is very small. The operation of

mutation is shown
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Figure 2.9.
Location for Mutation
Offspring 0101010101

Binary string 0101000101
after mutation

Figure 2.9: Illustration of Mutation Operation (Source: Atiquzzaman, 2004)
2.4.2. Nondominated Sorting Genetic Algorithm (NSGA-II)

Deb et al. (2000) developed a multiobjective optimization algorithm, called
“Nondominated Sorting Genetic Algorithm (NSGA-II)”. NSGA-II can provide a trade-off
between several objectives which are considered in the solution scheme. The trade-off
information generated by NSGA-II assists water manager in making a sound decision for
alternative solutions. NAGA-II initially generates a set of population P with N solutions
randomly. It generates child population (Q;) from the parent population (P;) of size N. These
parent and child populations are mixed up together to form the population of P+Q;. The
entire population is then sorted and classify using a fast nondominated sorting algorithm.
This process generates different nondominated fronts (F1, F2, etc). The new parent
population (P1) is generated using the solutions from first front (¥1). The process is
repeated until the solution size becomes N. One set of solutions from all fronts is accepted.
The approved solutions are rearranged based on the “crowded comparison criterion”. The
purpose of applying “crowded comparison criterion” is to keep the diversity in the process
without being trapped in a local optima. The process ensures the diversity by selecting a
point in a less crowded region of population. The new children (offspring) population is
recreated, and the procedure is continued in the subsequent generations. The advantage of
NSGA-II is that it can handle any number of objectives. The disadvantage is that it is

computationally less efficient than other types of multiobjective genetic algorithm. More
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details can be found in (Deb et al., 2000). The schematic diagram of NSGA-II is shown in
Figure 2. 10. NSGA-II has been successfully applied in different types of problems including
optimization of reservoir operation (Sivapragasam, 2002), optimization of water distribution

modelling (Atiquzzaman e. al., 2006) and so forth.

Pt+1

Crowding distance

[Non-dominated}

sorting sorting
Pareﬂt Fl ..................... —
— | Population
P (Size N) P, 1 —
- (Size N)
Binary
tournament
Selection, | | E%" -+ “—:>
Recombination,
Crossover 9
Mutation t Reject
| (Size N) 7] Rejected
Child N
Population )
Q, (Size N)

Figure 2. 10: Schematic Diagram of NSGA-II Procedure (Source: Al-Fayyaz, 2004)

2.4.3. Simulated Annealing (SA)

Metrpolis et al. (1953) and Kirkpatrick et al. (1983) applied Simulated Annealing
(SA) efficiently in solving combinatorial problems (Atiquzzaman, 2004). The basic concept
of SA is driven by the thermal processes. For example, the thermal process involves the way
of cooling and annealing of solids. If the solid material is heated up to a maximum value, it
melts and gets mobility. At this stage, the atoms in the solid molecules arrange themselves

with the high energies. When the temperature of solid molecules is decreased, the melted
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solids form a crystalline structure. However, the crystal structure becomes irregular if the
cooling is undertaken very rapidly. Suppose, “the current energy state i of the solid with
energy E; is changed to the state j with energy E; applying a perturbation mechanism. The
later state j will be the new current state if the energy difference (E; — E;) is less than or
equal to zero. Otherwise, if the energy difference is greater than zero, the state j will be
accepted with a probability of [exp (Ei — E;)/Kp*T]; where, Kp is Boltzmann constant; T
denotes temperature” (Atiquzzaman, 2004).

Pham and Karaboga (2000) described that the SA algorithms search based on four
principals which are: “(1) representation of solutions; (2) definition of cost function; (3)
definition of the generation mechanism for the neighbours, and (4) designing a cooling
schedule”. In the solution process of SA, feasible solutions represent the states of the solid
and the objective function values (cost) are the energies of the state. The new solution is
generated by randomly changing the current feasible solution according to the Metropolis’s
criterion. The objective functions values of the two solutions are determined. If the
difference in objective functions values of the two solutions is negative, the new solution
will replace the current solution. Otherwise, it is accepted based on Boltzman’s probability
(see above). This generation of new solution and the acceptance of that solution are repeated
until the search engine finds the global optima (satisfies the stopping criteria or reaches the

maximum number of evaluation).

2.4.4. Shuffled Complex Evolution (SCE)
Duan et al. (1992) developed a global optimization tool at the University of
Arizona, called “Shuffled Complex Evolution (SCE)”. SCE has been applied to a variety of

engineering problems and proven to be an effective and efficient algorithm by many
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researches (Duan et al., 1993; Liong and Atiquzzaman, 2004; Atiquzzaman and Liong,
2004).

Thyer et al. (1999) has described that “SCE works on the basis of four concepts. (1)
combination of deterministic and probabilistic approaches, (2) systematic evolution of a
complex of points; (2) competitive evolution; and (4) complex shuffling”. The algorithm
starts the solution process with the random generation of a population of points within the
feasible space. The sample of points has the parameters values which are restricted by the
lower and upper bounds. As the initial population of points are generated randomly and the
searching is not biased to pre-defined points, this algorithm provides the potential to reach
global optimum solutions. Each generated point is evaluated against the pre-specified
objective functions and constraints. After the evaluation, the points are sorted in ascending
order based on the objective function values. The population of points is then partitioned
into several complexes. Each complex will have 2N + 1 points, where N is the dimension of
the problem. SCE uses this complex of points and search in different direction within the
feasible domain. With this process, each point in a complex may get the opportunity to
reproduce a new point. A sub-complex is then created from each complex with N + 1 points
where “Nelder and Mead Simplex Method (NMSM) (Nelder and Mead, 1965)” is applied
for global improvement. The best point with higher fitness value is selected to generate child.
Two main steps in the NMSM, namely reflection and contraction are performed to get a
better point (offspring). The worst parent point in the sum-complex is replaced with this new
child point. Once the evolution process is complete, the complexes are combined into the
new population of points. The new sample population is evaluated and sorted again based
on objective function. The points are shuffled for information sharing and reassigned into

new complexes. This process is continued until stopping criteria are met.
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2.4.5. Other Optimization Algorithms

There are other optimization algorithms available including “Ant Colony
Optimization Algorithms (ACOAs), Shuffled Frog Leaping Algorithm (SFLA) and Particle
Swarm Optimization (PSO)”.

The basic search process in ACOAs (Dorigo et al., 1996) is similar to Genetic
Algorithm (GA) or Simulated Annealing (SA). The general behaviour of real ant is
incorporated in ACOAs. Ants find the food sources following the shortest paths from the
nest without the strength of vision. The individual ant communicates with other ant using
pheromone trails. During this searching process, the pheromone trails are dissipated on the
shortest paths. This indicates the distance and quality of the food source. When other ants
find the pheromone trail, they get attracted to follow it. The path is reinforced and attracted
by more ants to follow the trail. The pheromone level in most attractive path is increased
over time whereas this reduces to nil in poor paths. Dorigo et al. (1996) developed ACOAs
based on this behaviour of the real ants. They use the following analogies: “(1) artificial
ants scan the solution space while real ants search their natural environment for food; (2)
the objective function values represent a mapping of the food sources quality and an
adaptive memory is equivalent to the pheromone trails” (Atiquzzaman, 2004). Instead of
real ant, artificial ants are equipped in ACOAs which find the feasible solutions within the
search space using a heuristic function.

Kennedy and Eberhart (1995) proposed a similar approach, called “Particle Swarm
Optimization (PSO)”. PSO is a population-based search technique similar to EAs. In PSO,
the behaviour of bird flock is incorporated. The algorithm simulates the behaviour of a bird
flock where social information is shared. When the bird flock searches for food, individuals
learn the experience and discoveries from others. The behaviour of one individual is guided

by the best local or global companions in the search space. In addition, individuals also adjust
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their flying speed and direction based on their previous experiences. All the individuals
observe the behaviour and memorise the flying histories and eventually converge to global
optimal solution. Eusuff and Lansey (2003) developed “Shuffled Frog Leaping Algorithms

(SFLA)” based on the concept of PSO and SCE.

2.5. Summary

The application of conceptual rainfall-runoff modelling techniques, their
calibration using traditional algorithms and more powerful evolutionary algorithms have
been discussed. It has been found that the traditional algorithms have failed to converge to
optimal solution as the search space of a conceptual rainfall-runoff model is complex. Hence,
evolutionary algorithms have attracted the attention of the researches due to their robust
capability to produce optimal result.

The literature of Al techniques has been discussed. These techniques including
ANN, ANFIS, SVM and GP have been very popular to predict the hydrological flows.
Aapplication of Al approaches in hydrological time-series prediction indicates that their
performances are not consistent for all applications and it is difficult to state which method
1s superior. Superior performance depends on appropriate parameters and network
configurations. Researchers have attempted to improve the performance of these methods
using hybrid approach (ANFIS) or by combining them with other algorithms (EC-SVM) to
optimize the parameters. However, they require significant computational time and
numerous iterations for reasonable prediction of runoff from rainfall. In order to overcome
the long computational time and to produce generalized solution, a learning algorithm called
Extreme Learning Machine (ELM), developed by Huang et al. (2006) was used in this study.

This thesis discusses the application of this relatively new Artificial Intelligence
(Al) technique (both node band Kernel based ELM). ELM’s performance is compared

against other widely used techniques including ANN, SVM, GP and EC based SVM.
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CHAPTER 3

PREDICTION OF INFLOWS FROM DAM
CATCHMENT UISNG GENETIC
PROGRAMMING

This chapter includes the major part of
e Atiquzzaman, M. and Kandasamy, J. (2016). “Prediction of Inflows from Dam Catchment

using Genetic Programming”, International Journal of Hydrology Science and
Technology, vol 6, No. 2, pp103-117, http://dx.doi.org/10.1504/I1JHST.2016.075560.
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3. Prediction of inflows from dam catchment using genetic
programming

3.1. Introduction

Conceptual rainfall-runoff modelling is essential for flow estimation from the
catchment. In principal, both conceptual and physically based distributed models require a
large number of parameters such as catchment characteristics, losses, flow paths,
meteorological and flow data. The values of some of these parameters are evaluated through
calibration. Accurate calibration can be performed manually or using available computer
based hydroinformatics tools such as evolutionary algorithms (GA, SCE and PSO). The
calibration process of complex models may be cumbersome and requires considerable effort
and experience for large topographically varying catchment where catchment characteristics
change significantly. Even though the model is calibrated, the parameters from one
catchment may not be representative for the other catchment. In this case, hydroinformatics
tools like GP and ANN can be used where no parameters associated with catchment and soil
characteristic are necessary. The driving factor behind the application of hydroinformatics
tools was to ease the complex numerical modelling process.

The study aims to introduce a scheme for establishing a rainfall-runoff relationship
or hydrological flow forecasting tool for the analysis of yield from a dam catchment. The
model uses Artificial Intelligence (Al) based data driven modelling methods with all the
necessary catchment data to establish an efficient flood forecasting tool. Hence, Al
techniques, namely, Genetic programming (GP), Artificial Neural Network (ANN) with
MIKE11-NAM (DHI, 2013) are proposed for long term runoff prediction from a dam
catchment. These tools are chosen in this study because it gets trained with the input data
and also does not need all the catchment characteristic data which are difficult to measure in

the field. A catchment located in New South Wales, Australia was selected. The calibration
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shows excellent agreement between the observed and simulated flows recorded over thirty
years. The model was also applied for assessment of future one hundred years flows using

rainfall input generated from two different assumed climate change scenarios.

3.2. Proposed Scheme
In the present study, the hydroinformatics tools (GP, ANN) are proposed to estimate
the long term catchment runoff using the past and current information of weather data and
past catchment flow as input data. However, the long term historical catchment runoff
measurement is not normally available for many catchments. Hence, a traditional lumped
conceptual rainfall-runoff model, for example MIKE11-NAM is suggested. The MIKE11-
NAM requires the same input as precipitation, potential evapotranspiration and observed
flow. It operates by continuously accounting for the moisture content in the surface,
subsurface and groundwater storages.
The schematic diagram of the proposed methodology is shown in Figure 3.1. The
step-by-step procedure is also described below:
1. Meteorological data (rainfall and evaporation) and available observed flow for the
catchment was collected.
2. A MIKEI11-NAM model was built and calibrated using these data for the period of
available data. It was built with the same rainfall used in the previous analysis (GP)
and the evaporation data from 1954 to 1981.
3. The simulated runoff from MIKE11-NAM was generated.
4. GP was trained and validated using NAM predicted flow, rainfall and evaporation
data as input and observed flow as output for the period of available data.

5. The GP model was applied to real-time prediction of flows.
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The model’s performance is reported through comparisons of simulated and

observed flows using goodness-of-fit measures.

Meteorological Data Rainfall-Runoff (RR)
(Rainfall and Simulation Model

Evaporation) (e.g. MIKE11 NAM)
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Figure 3.1: Schematic Diagram of the Proposed Method

The trained GP can also be applied to predict long-term catchment runoff using

future predicted or forecast rainfall. The proposed procedure is shown in Figure 3.2.
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Figure 3.2: Long term Runoff Prediction

3.3. Application

GP and ANN are applied for forecasting of Duckmaloi Weir Inflows. Duckmaloi
Weir is located on Duckmaloi River (see Figure 3.3), adjacent to the eastern side of Oberon
Dam catchment, Australia. The catchment area at the weir is approximately 112 km? and
storage capacity 20 ML (DNR, 2007). A Sacramento model was built and calibrated by
DNR. The results from proposed method will be compared against Sacramento results.

Firstly, the aim of this study is to develop relationship between the future inflow at
the Duckmaloi catchment outlet using rainfall and runoff data available up to the current

time t. Mathematically, the relationship can be expressed:

Oronne = SRR oo R3O O piseeeOrins) (1)
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Where, O is the inflow (m?/s), R is the rainfall intensity (mm/day), n refers to how
far into the future the inflow prediction is desired, m represents how far back the recorded

data in the time series are affecting the inflow prediction and A¢ is time interval.

63063
L

Kilometers

Figure 3.3: Oberon Dam and Duckmaloi Weir Catchments

The performance of the model results is reported through the comparisons of
simulated and observed flows using two goodness-of-fit measures. They are coefficient of
determination and coefficient of efficiency.

Coefficient of Determination: Coefficient of determination (R?) is defined as the

squared value of the coefficient of correlation which is calculated as:

2

i(o,- ~0)(P, - P)

n n (2)
Lo -0 S -py

R* =

Where, O observed, and P predicted values.
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R? estimates the combined dispersion against the single dispersion of the observed
and predicted series. The range of R? lies between 0 and 1 which describes how much of the
observed dispersion is explained by the prediction. A value of 0 means no correlation at all
whereas a value of 1 means that the dispersion of prediction is equal to that of the
observation.

Coefficient of Efficiency: Coefficient of Efficiency (E) proposed by Nash and
Sutcliffe (1970) is defined as one minus the sum of the absolute squared differences between
the predicted and observed values normalized by the variance of the observed values during
the period under investigation (Krause, et al., 2005). It is calculated as:

>0~ P’

E=1- 3)

>0, -0y

The range of E lies between 1 (perfect fit) and —o.

3.3.1. Case Study I

Firstly, an example event is demonstrated with the rainfall and flow data in year
1990. The inflow forecasting for the Duckmaloi catchment is conducted for 1-day lead-time
prediction. The GP and ANN are trained with the input data set containing variables of
rainfall and inflow at current time and the value of n is set to 1 (see eq. 1). In these models,
fifty percent of the data was used for training and fifty percent for validation. The GP and
ANN results are presented in Figure 3.4 and Figure 3.5 respectively. Both models produce
very good prediction of Duckmaloi Weir inflows. The goodness-of-fit measure is presented
in Table 3. 1. Visually, GP produces better prediction than ANN especially during recession.

Figure 3.5 shows some noise in the prediction at the tail of the hydrograph. GP usually
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derives physical relationship between the variables. A series of relationships are produced
by GP. However, only one is shown below.

Qt+at = Regne + Q¢ —0.0776213 * Qp_p¢ (4)

Where, Q,is discharge at current time, Q. is discharge at future time, R; is

rainfall at current time and At is time interval.
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Figure 3.4: Comparison of Hydrograph between Observed and GP Runoff — Year

1990
Table 3. 1 Goodness-of-fit measures - 1990
Parameter Genetic ANN
Programming
Coefficient of Determination (R?) 0.88 0.87
Coefficient of Efficiency (F) 0.88 0.87

59




Comparison of Simulated and Observed Discharge - ANN
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Figure 3.5: Comparison of Hydrograph between Observed and ANN Runoff — Year
1990

3.3.2. Case Study II

In this example, GP and ANN are trained again with whole series of rainfall and
runoff data as used in fish river water supply scheme IQQM modelling report (DNR, 2007).
The data contain time series from 11/10/1954 to 19/02/1981. The comparison of measured
and simulation Duckmaloi Weir inflows are presented in Figure 3.6 and Figure 3.7
respectively. GP performs slightly better than ANN and the coefficient of determination is

found to be 0.73 (see Table 3. 2) which implies very good prediction for long term time

series.

Table 3. 2 Goodness-of-fit measures — 1954 to 1981

Parameter Genetic ANN
Programming
Coefficient of Determination (R?) 0.73 0.71
Coefficient of Efficiency (E) 0.73 0.71
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Comparison of Observedand Simulated Discharge at Duckmaloi Weir
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Figure 3.6: Comparison of Measured and Simulated Inflows at Duckmaloi Weir - GP
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3.3.3. Comparison of GP and Sacramento Model Results

Comparison of observed and simulated discharges from Genetic Programming and
Sacramento models are presented in Figure 3.8 to Figure 3.15. Almost all the figures show
that Sacrament model either over-predicted or under-predicted at and around the peak
discharge. Figure 3.16 shows a comparison for an event from June 1960 to October 1960. It
has been found that GP is following the observed discharges especially during the recession
part reasonably well compared to Sacramento model. Yearly volumes of inflows to
Duckmaloi Weir are calculated and plotted in Figure 3.17. Figure 3.17 presents that
Sacramento model under-predicted in 1960, 1971 and 1972 and over-predicted in 1963,

1967, 1968 and 1980.
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Figure 3.8: Comparison of Observed and Simulated Discharges from GP and
Sacramento Models — 1954 to 1956
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Comparison of Observedand Simulated Discharges at Duckmaloi Weir
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Figure 3.9: Comparison of Observed and Simulated Discharges from GP and
Sacramento Models — 1957 to 1959
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Figure 3.10: Comparison of Observed and Simulated Discharges from GP and
Sacramento Models — 1960 to 1962

63



Comparison of Observedand Simulated Discharges at Duckmaloi Weir
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Figure 3.11: Comparison of Observed and Simulated Discharges from GP and
Sacramento Models — 1963 to 1965
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Figure 3.12: Comparison of Observed and Simulated Discharges from GP and
Sacramento Models — 1966 to 1969
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Comparison of Observedand Simulated Discharges at Duckmaloi Weir
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Figure 3.13: Comparison of Observed and Simulated Discharges from GP and
Sacramento Models — 1969 to 1973
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Figure 3.14: Comparison of Observed and Simulated Discharges from GP and
Sacramento Models — 1974 to 1977
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Comparison of Observedand Simulated Discharges at Duckmaloi Weir
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Figure 3.15: Comparison of Observed and Simulated Discharges from GP and
Sacramento Models — 1978 to 1981
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Figure 3.16: Comparison of Observed and Simulated Discharges from GP and
Sacramento Models — June to October 1960
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Comparison of Observed and Simulated Inflow Volumes
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Figure 3.17: Comparison of Observed and Simulated Yearly Volumes of Inflows at
Duckmaloi Weir

To measure the model performance, a low flow event is selected. Figure 3.17 shows
the total volume of inflows to the Duckmaloi Weir were very low in 1965. The corresponding
inflow series is depicted in Figure 3.18. The goodness-of-fit measures for the GP and
Sacramento models are estimated for this particular low flow series and presented in Table
3. 3. Table 3. 3 shows that the coefficient of determination is similar from both model but
the coefficient of efficiency for GP is close to 1 which means that the performance of GP is
reasonable. The flow frequency curves from GP model results and observed flows is shown
in Figure 3. 19. This is also reflected in scatter plot in Figure 3.20 which shows that majority

of GP predicted flows lies around 45 degree line compared Sacramento flows.

Table 3. 3: Model Performance Criteria

Performance Criteria GP | Sacramento
Coefficient of Determination (R*) | 0.80 0.83
Coefficient of Efficiency (£) 0.78 -1.18
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Comparison of Observedand Simulated Discharges at Duckmaloi Weir
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Figure 3.18: Low flow series in year 1965.
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Figure 3. 19: Comparison of Duckmaloi Weir Inflows — 1954 to 1981
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Comparison of Observedand Simulated Discharges at Duckmaloi Weir
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Figure 3.20: Scatter Plot of Observed and Simulated Discharges — 1965
34. Improvement of Model Calibration using GP

GP model was built using the lagged observed flows as an input. However, GP
automatically discards input variables (lagged flows) that has less influence on the output.
The lagged inflow on the previous day determined by GP has significant influence on the
model prediction. The drawback of this model is that the model input is dependent on the
catchment runoff observed on the previous day which may be erroneous or not available.
The model also cannot be applied for long term simulation as the observed data is not
available. Nonetheless, this can be overcome by using a hybrid approach where the runoff is
generated by a traditional hydrological model which is subsequently used as an input to GP
as a substitute for observed lagged flow. An attempt is made in this research to apply a
conceptual rainfall-runoff model to generate the series of discharges from rainfall and

evaporation data. In this analysis, a MIKE11-NAM model (DHI, 2013) is considered.
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NAM model was built with the same rainfall as used in section 3.3.2 and the
evaporation data as shown in Figure 3.21. The model was developed with the NAM
parameters as given in Table 3. 4. In this hybrid approach, the MIKE11-NAM parameters
were initially fine-tuned. The model was calibrated with NAM’s ‘“autocalibration”
functionality between the period of 11/10/1954 and 19/02/1981. The initial and updated
NAM parameters are shown in Table 3. 4. The performance of NAM is shown graphically
in Figure 3. 22 in terms of ranked plot. The coefficient of determination from this model was

found to be 0.78.

Evaporation Time Series

Evaporation {mm)

Figure 3.21: Evaporation Time Series

NAM predicted flow was then used as inflow to improve the calibration using GP.
The initial GP model was developed using the input of rainfall and the NAM predicted flow
to predict the observed flow. The GP model is shown below (see equation 5). The flow
duration curve is shown in Figure 3.23. Figure 3.23 demonstrates that GP has significantly
improved model calibration especially flow under 40 ML/day. The performance of GP is
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also improved further by including the base flow (see Figure 3.23). The corresponding
derived relationship from GP is shown equation 6. The model accuracies in terms of R’ are
shown in Table 3. 5. GP with model base flow component performed better (Figure 3.23)
than and NAM and GP without the base flow.

QOgp = 0.6534*Onam + 0.00526*R*Onam - 0.4636*SIN(0.6534*Onam) 5)

Ogp = 0.7155%BF + 0.4908*Onam*BF + 0.007869* R* Onam (6)

Where, Ogp = Predicted flow by GP; Onam = Predicted flow by NAM; R = Rainfall; BF =
Base Flow
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Figure 3. 22: Ranked Plot - Comparison of Duckmaloi Weir Inflows
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Table 3. 4: NAM Model Parameters

Initial Value Calibrated Unit
Parameter Value
Maximum Water Content in Surface Storage 19.6 19.38 mm
(Umax)
Maximum Water Content in Root Zone 300 297.25 mm
Storage (Lmax)
Overland Flow Runoff Coefficient (CQOF) 0.124 0.12 -
Time Constant for Routing Interflow (CKIF) 778.1 805.61 hour
Time Constant for Routing Overland Flow 22.9 25.68 hour
(CK1)
Root Zone Threshold Value for Overland 0.64 0.61 -
Flow (TOF)
Root Zone Threshold Value for Interflow 0.935 0.86 -
(TIF)
Root Zone Threshold Value for GW 0.925 0.96 -
Recharge (TG)
Time Constant for Routing Baseflow (CKBF) 3833 3718.64 hour
Table 3. 5: Mode Performance — GP vs. NAM
Model Coefficient of Determination (R?)
NAM 0.78
GP Without BF 0.81
GP with BF 0.82
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Figure 3.23: Ranked Plot of Daily Recorded and Modelled Inflow to Duckmaloi Weir
Improvement by Base Flow
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3.5. Long Term Rainfall Scenario Analysis

This analysis required long term (100 year) inflow and rainfall time series (1890-
2006) which were collected from NSW State Water Corporation (DNR, 2007). From this
long term rainfall series, two future climatic scenarios (assumed two hypothetical rainfall
time series) were generated using the following procedures before feeding the data to GP
model as described in the previous section. These two rainfall scenarios have been developed
to analyse the affect rainfall variation on the catchment flow. These analyses will provide
some likely scenarios and useful information to water manager for planning and

management of the catchment.

3.5.1. Scenario 1: Stretching the Minimum Rainfall Duration in Sequence

(Stretched rainfall)

In this scenario, the dry period is extended by assuming the low rainfall over the
five years in last 100 years will continue for next 10 years. The step-by-step procedures are
described below:

» Yearly total rainfalls are estimated from last more than 100 year rainfall series
starting from 1901 to 2006, (Figure 3. 24). It can be seen in Figure 3. 24 that a five
year spell of minimum total rainfall occurred from 1936 to 1940.

» In the next step, five years total rainfall series were calculated. The five year total
rainfall values were sorted in ascending order which shows that the first three
minimum five yearly rainfalls occurred in 1936-1940, 1906-1910 and 1901-1905.
These three five year periods are considered the worst drought sequence in last 100
years.

» A future time series was generated assuming the drought could be worse than what
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had happened historically. With this assumption, these drought sequences are placed
one after another.

The rainfall in 1936-40 remained unchanged but the rainfall in 1941-1945 was
replaced by that in 1906-1910 and 1946-1950 by 1901-1905. The other five yearly
total rainfalls were reshuffled randomly. The original and future stretched five yearly
rainfall (drought) series are presented in Figure 3. 25.

The new five yearly total rainfalls series were distributed back to daily rainfall using
the same temporal pattern as in the original time series.

The initial estimates of flows were generated using MIKE11-NAM.

The GP was run to update the flows.
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Figure 3. 24: Yearly Total Rainfall in the Past 100 Years
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Five Year Total Rainfall - Past and Future Scenario
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Figure 3. 25: Original and stretched rainfalls - Scenario 1. The x axis label is the year

3.5.2.

ending of the S year period.

Scenario 2: Rainfall Variation

In this scenario, instead of extending the dry period, the rainfall during dry period

is decreased and the rainfall in wet period is increased by a certain percentage. The step-by-

step procedure is described below:

1.

The total rainfall over five consecutive years was calculated in a manner similar to
steps 1 and 2 of Scenario 1.

Rainfall totals above the average were increased by 20% and rainfall totals below
average declined by 20%. The present and adapted five year total rainfalls are
presented in Figure 3. 26.

The new five yearly total rainfalls series were distributed back to daily rainfall using
the same temporal pattern as in the original time series.

The initial estimates of flows were generated using MIKE11-NAM.

The GP was run to update the flows.
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Figure 3. 27: GP Flow from Stretched Rainfall (Scenario 1)
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Figure 3. 28: GP Flow from Rainfall Changes (Scenario 2)

3.5.3. Rainfall Scenario Results

The calibrated NAM model was applied to determine initial estimates of 100 year
inflows at the Duckmaloi Weir for both rainfall scenarios. The 100 year flows generated are
shown in Figure 3. 27 and Figure 3. 28 respectively. The inflows were updated using the GP
model as described in equation 5. The results (estimated flow) in terms of ranked plots are
shown in Figure 3. 29. Figure 3. 30 illustrates the corresponding yearly volume. Figure 3.
29 shows that how both scenarios decrease yields at the Duckmaloi Weir if the drought
condition persists. The catchment flows yield below 135 ML/d (86 ML/d for Scenario 1 and
132 ML/d for Scenario 2) for 90% of the time (see Table 3. 6). Table 3. 6 describes how
catchment yields will change if the future climatic scenarios (Scenario 1 and Scenario 2)
vary compared to last 100 year rainfall condition. Scenario 1 and 2 intersects at discharge of
30 ML/d (Figure 3. 29) for the percentage of time exceeded or equalled of 30% (seeTable 3.

6). After this point, the discharge to the Duckmaloi Weir decreases sharply compared to
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scenario 1 due to the impact of 20% decrease in rainfall. Scenario 2 results also show that
30% of the time there would be no flow to the dam catchment. If the future climatic condition
follows Scenario 2, alternative source of water supply needs to be identified.

The scenario testing demonstrates how this method could be used for making future
water resources management plans under different climate scenarios and contribute to

decisions concerning water supply from alternative sources.
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Figure 3. 29: Ranked Plot of 100 years Daily Inflows to Duckmaloi Weir for
Scenarios 1 (Stretched Rainfall) and 2 (Rainfall Variation)
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Figure 3. 30: Yearly Volume of 100 Year Inflows to Duckmaloi Weir for Different
Scenarios 1 (Stretched Rainfall) and 2 (Rainfall Variation).

Table 3. 6: Discharge against % of Time Exceeded or Equaled

% Time Exceeded or Discharge (ML/d)
Equalled Estimated Flow Scenario 1 | Scenario 2

1 449 343 465
5 213 139 219

10 135 86 132

30 41 30 31

50 17 13 3

70 7 5 0

3.6. Discussion

This study demonstrates the application of GP for predicting real-time inflows to a
dam catchment, named Duckmaloi Weir. In the first example, the GP model performed well
when one day lagged flow was used for training and validation. In the second example, the
lagged observed flows were replaced with the runoff generated from a traditional calibrated

hydrological model (MIKE11-NAM). The output from NAM was improved by training GP
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together with the rainfall data. The final calibrated results from GP indicated excellent
agreement between the observed and simulated flows (e.g. R>>0.8). This methodology of
using hybrid model is more versatile and is better suited for the following reasons:
e historical observed flow may be erroneous, and parts of the time series may be
missing;
e more suitable for long-term forecasting (e.g. 100 year); and
e more suitable for real-time prediction as the 1-day lagged data is often not available.
Finally, two examples of long-term climatic scenarios were applied to predict the
possible future 100 year water inflows to Duckmaloi Weir under extreme and extended
drought conditions using flows from the NAM model (second example). The application of
Al (e.g. GP) to improve runoff generated from a traditional conceptual hydrological model
for a real catchment and future possible rainfall scenarios analysis, will provide an
alternative solution to water manger. These example rainfall scenarios are hypothetical but
can be more appropriately replaced by other more relevant scenarios. For example,
downscaled rainfall from the climatic model can be used to assess the impact of climate
change on catchment runoff and dam operation. The analysis demonstrates how it can be
useful for planning future water resource management and decision-making in a dam

catchment.

3.7. Summary

In this chapter, application of Genetic Programming (GP) and Artificial Neural
Network (ANN) have been demonstrated in predicting flow using the rainfall and past
historical observed lagged flow for Duckmaloi Weir catchment located in Oberon, Australia.
GP performed well compared to ANN. The performance of GP was also compared against

traditional Sacramento model and GP’s results were superior.
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Two examples showing one-day lead prediction solely using GP and another
showing a hybrid approach with MIKE11-NAM and GP reveal some promising results. For
I-day prediction, the GP model demonstrated a closer agreement between observed and
modelled flows with current rainfall and lagged flows. The hybrid model was applied to
update flow prediction from MIKE11-NAM. This approach is useful when measured or
gauged flows are not complete or missing and it is also suitable for long-term prediction.
The 100 year flows were predicted assuming two hypothetical rainfall time series. The
results from this hypothetical rainfall analysis show how the flow conditions vary in the dam
catchment in drought conditions. The analysis provides some information to water manager
about the potential application of hydroinformatics tools (GP, MIKE11-NAM and GP hybrid

models) in the operation and management of water resources.
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CHAPTER 4

PREDICTION OF HYDROLOGICAL TIME-
SERIES USING EXTREME LEARNING
MACHINE (ELM)

This chapter includes the major part of
e Atiquzzaman, M. and Kandasamy, J. (2016). “Prediction of Hydrological Time-

Series using Extreme Learning Machine”, Journal of Hydroinformatics. 18.2, pp.
345-353, http://dx.doi.org/10.2166/hydro.2015.020.
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4. Prediction of Hydrological Time-Series Using Extreme Learning
Machine (ELM)

4.1. Introduction

The application of data-driven modelling approaches including Artificial Neural
Network (ANN) and Support Vector Machine (SVM) has been widespread in the water
resource engineering field, especially for predicting hydrological time-series. This is because
they can establish complex non-linear relationships between input and output variables
(Tokar and Johnson., 1999). The main advantage of these techniques is that they do not
require the information about the complex nature of the underlying hydrological process.
When data-driven modeling is applied, input variables including precipitation, lagged
precipitation, and lagged discharges are normally employed to forecast the discharges
(Akhtar et al., 2009). Many of these data-driven modelling methods including ANN, ANFIS
and SVM are slow requiring numerous iterations to generate optimal solutions (Ding et al.,
2015 and Zhang et al., 2007), and may not be suitable for real-time prediction where quick
response is vital. Huang et al. (2006) reported that applying typical feed-forward neural
network has been limited due to the use of conventional gradient-based slow learning
algorithms in training and iterative determination of network parameters. To overcome the
long computational time and to produce generalized solution, a learning algorithm called
Extreme Learning Machine (ELM), developed by Huang et al. (2006) was used in this study.
The performance of ELM was compared with conventional NN and SVM on benchmarking
problems in the function approximation and classification areas. Huang et al. (2006) found
that ELM approximates any continuous function and implements any classification. ELM
may need more hidden nodes but learns faster than SVM. The generalization performance

of ELM is stable with a wide range of number of hidden nodes.

Ding et al. (2015) stated that ELM, which requires a single iteration, overcomes the
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slow training speed and over-fitting problems unlike other conventional ANN learning
algorithm. ELM’s robustness and fast learning rate was proved in different fields including
real dataset classification and regression (Huang et al., 2012). Zhang et al. (2007) applied
ELM to multi-category classification problems in cancer diagnosis and found that ELM did
not have problems like falling in local minima and over-fitting which are commonly

experienced by iteration based learning methods.

This study demonstrates that the method partly overcomes the slow learning issue
by using Extreme Learning Machine (ELM) which predicts the hydrological time-series very
quickly. ELM, which is also called single-hidden layer feed-forward neural networks
(SLFNSs), is able to well generalize the performance for extremely complex problems. ELM
randomly chooses a single hidden layer and analytically determines the weights to predict

the output (Huang et al., 2006).

The application of ELM uses a MATLAB program developed for predicting
hydrological flow time-series. The ELM method was applied to predict hydrological flow
series for the Tryggevaelde Catchment, Denmark and for the Mississippi River at Vicksburg,
USA. The results confirmed that ELM’s performance was similar or better in terms of Root
Mean Square Error (RMSE) and Normalized Root Mean Square Error (NRMSE) compared
to ANN and other previously published techniques, namely Evolutionary Computation
based Support Vector Machine (EC-SVM), Standard Chaotic Approach and Inverse

Approach (Yu et al., 2004).

4.2. Application
ELM is applied to estimate the catchment runoff. ELM is an Al technique where
the input weights and hidden layer biases are randomly chosen and the output weights are

determined analytically (Huang et al., 2006). ELM generates the parameters associated with
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hidden nodes without depending on training data. However, ELM transforms the training of
Feed-Forward Neural Network into a linear problem where only connections with output
neurons are adjusted to generate the solutions. Unlike ANN, ELM does not require complex
network architecture to obtain good results. ELM uses three fixed layers i.e. input, hidden
and output layers. In these layers, the number of input variables (flows), the number of nodes
in hidden layers and the activation function (sigmoid function) in output layer need to be
defined beforehand. ELM’s learning speed is extremely fast compared to other machine
learning techniques (e.g. SVM) as it avoids iterative tuning to determine the weights (Huang
et al., 2006 and Huang et al., 2012). Other advantages of ELM can be found in Huang et al.
(2000).

In this study, ELM was applied to predict runoff (one-step-ahead prediction) using
the past and current information of hydrological flows as input data. Mathematically, the

relationship can be expressed as:

Qt+At = f(Qt > Qt—At EARR Qz—mAt) (1)

if past historical flow series is considered.

Or, QHA[ =f (Qz»Qthza ----- QtfmAt"th’thfAt ”"thfmAt) ()

if past historical flow and flow difference data series are considered.

Or, dQ+At =f (deth—Aﬂ """" dQ—mAt) (3)

if past historical flow difference series is considered.
where, Q is the flow (m’/s), dQ,,,,is error predictor,dQ = Q,,, —Q,, m represents

how far back the recorded data of the time-series affects the flow prediction and At is time
interval.
Once the error predictor is determined from the model in equation (3), the predicted flow is

estimated as:
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QHAt = Qt + sz (4)

The performance of trained ELM was evaluated with standard goodness-of-fit
measures such as Root Mean Square Error (RMSE) and Normalized Root Mean Square Error
(NRMSE).

The RMSE and NRMSE are defined as:

RMSE = |25, [(@n): - (@) ]° 5)

NRMSE = \/Zé\,:l[(Qm)t - (Qo)t]z/Z;:V:l[(Qo)t - éo]z (6)

where (On): and (Qo)t are the predicted and observed values at time #; N is the

number of observations and Q, is the mean observed flow.

RMSE represents the forecasting error and estimates the sample standard deviation
of the differences between predicted values and observed values. It is a good measure when
large model errors are not desirable. The NRMSE normalizes the RMSE and facilitates
comparison between datasets. NRMSE close to zero indicates a perfect match between the
observed and predicted values and greater than one means predictions are inferior to the
constant mean value (Liong et al., 2002).

ELM was used to estimate the one-lead-day prediction of flows for Tryggevalde
Catchment (Denmark) and Mississippi River at Vicksburg. The ELM was trained with the
same data as used in Liong et al. (2002) and Yu et al. (2004) and the results were compared
with Standard Chaos Technique, Inverse Approach, ANN and EC-SVM. In Yu et al. (2004),
data in the period 1975-1991 was used for training and 1992-1993 for validation in Standard
Chaos Technique. Phoon et al. (2002) used 1975-1989 for training, 1990-1991 for testing

and 1992-1993 for validation in their application of the Inverse Approach.
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In this study, data in the period 1975-1991 was used for training and data between
1992-1993 for validation similar to the Standard Chaos Technique. The number of hidden
nodes in ELM was selected as the number of training samples (6204). This is because ELM
can generate zero error when the number of hidden neurons learns the same number of
distinct observations (Huang et al., 2006). For the output node, the widely used sigmoid

activation function was chosen.

4.3. Tryggevalde Catchment

The Tryggevelde Catchment, Denmark (130.5 km?) is located in the eastern part of
Sealand, north of Karise. The catchment is predominantly characterized by clay soil. The
daily measured flows are available for the period 1 January 1975 to 31 December 1993
(Figure 4. 1). The statistics of flow series are: mean flow = 0.977 m?¥/s; standard
deviation=1.367 m?/s; maximum flow = 11.068 m*/s; and minimum flow = 0.014 m?®/s. The
statistics of flows represent that there are distinct wet and dry periods in the time-series.

The training and validation accuracies are presented in Table 4. 1 in terms of RMSE
and NRMSE for ELMI (lagged flow, Q), ELMII (lagged flow difference, dQ) and ELMIII
(O, dQ). The validation accuracies from all three ELM models were between 0.491-0.504
(RMSE) and 0.337-0.347 (NRMSE) respectively. The ELMIII performed the best amongst
the three models. The time required to train ELM models was about 100sec on a Windows-
based machine (Intel 17 CPU at 2.67GHz). The corresponding validations times were
between 0.47-0.49sec. An ANN model, which estimates the default number of hidden nodes
(81) based on number of input variables, output variables and training samples, was trained
with the same dataset as ELM (hidden nodes = 6204) for approximately 100sec (training
time of ELM) for comparison with ELM. The prediction accuracies of ANN obtained from

633 iterations were 0.588 (RMSE) and 0.403 (NRMSE) (Table 4. 2).
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Figure 4. 1: Daily Observed Flows at Tryggevalde Catchment (Source: Yu et al.,
2004)

Table 4. 1: ELM Prediction Accuracy for both Training and Validation Dataset for
Tryggevaelde Catchment

No. of Training Validation
Model . RMSE NRMSE Time (s) RMSE NRMSE Time (s)
Iterations
ELMI(Q) Single 0.495 0.362 99.28 0.497 0.341 0.49
ELMII(dQ) Single 0.508 0.372 108.09 0.504 0.347 0.47
ELMIII(Q, dO) Single 0.488 0.357 100.88 0.491 0.337 0.48

Table 4. 2 compares the ELM results with other available techniques (Liong et al.,
2002; Yu et al., 2004). Yu et al. (2004) used two types of input time-series, namely daily
flow series (Q) and flow difference series (dQ) separately in EC-SVM. The use of dQ-series
in EC-SVM provided better results than the Q-series. The number of iterations required was
151,668 for EC-SVM(Q) and 11,800 for EC-SVM(dQ). All ELM techniques were faster as
no additional iteration was required and produced better results (Table 4. 2). The ELMIII

model improved the prediction accuracy in terms of RMSE by 24% over the standard chaotic
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approach, 7% over the Inverse Approach and 4% over the EC-SVM(Q). ELMI performed

similarly.

Table 4. 2: Prediction Accuracy for Validation Dataset, the Number of Iterations and
Training Time from Various Techniques for Tryggevalde Catchment

Model RMSE NRMSE No. of Iterations Training Time
(Training) (sec)
Standard Chaos 0.647 0.444 - -
Technique”
Inverse Approach” 0.527 0.361 - -
EC-SVM(Q)* 0.514 0.352 151,668 -
EC-SVM(dQ) " 0.504 0.347 11,800 -
ANN 0.588 0.403 633 100™
ELMI(Q) 0.497 0.341 Single 99.28"
ELMII(dQ) 0.504 0.347 Single 108.09"
ELMIII(Q, dO) 0.491 0.337 Single 100.88""

"Liong et al. (2002) and Yu et al. (2004); “Windows Intel i7 at 2.67 GHz

4.4. Mississippi River at Vicksburg Flow

A similar approach, as applied in Section 4.3, was also applied to predict flows in
the Mississippi River at Vicksburg, USA and used the same daily flows documented in Yu
et al. (2004). The Mississippi River basin covers more than 3,220,000 km? including
tributaries from central USA and two Canadian provinces. The daily measured flows cover
the period 1 January 1975 to 31 December 1993 (Figure 4. 2). The statistics of flow series
are: mean flow = 18,457 m’/s; standard deviation=9,727.27 m’/s; maximum flow = 52,103
m?/s; and minimum flow = 3,908 m?¥/s.

Table 4. 3 shows that the results of training and validation obtained from ELMI(Q),
ELMII(dQ) and ELMIII(Q, dQ). The time required to train ELM models was about 97sec
on the same computer (Windows Intel 17 CPU at 2.67 GHz). The corresponding validation

times were between 0.45-0.47sec.
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Figure 4. 2: Daily Observed Flows at Mississippi River Catchment (Source: Yu et al.,
2004)

Table 4. 3: ELM Prediction Accuracy for both Training and Validation Dataset for
Mississippi River Flow, Vicksburg

No. of Training Validation
Model . %-%' "RMSE NRMSE Time (s) RMSE NRMS Time
terations E (s)
ELMI(Q) Single ~ 396.58  0.040  97.92 32000 0.040 047
ELMII(dQ) Single  389.37  0.0394  96.85 3128 0.0397 047
ELMIIIQ,d0)  Single 38249  0.0387  96.84 308.66  0.0391  0.45

The results (Table 4. 3) showed that ELMIII performed best with RMSE and
NRMSE of 308.66 and 0.0391 respectively. The RMSE and NRMSE values were slightly
higher for the other two ELM models (ELMI and ELMII). ELMIII predicted better results
(Table 4. 4) than the Standard Chaos Technique (RMSE = 1738.95 and NRMSE= 0.2064)
and Inverse Approach (RMSE = 356.89 and NRMSE= 0.0452). An ANN model (default
hidden nodes = 81) trained with the same dataset as ELM (hidden nodes = 6204) was run for
approximately 97sec (training time of ELM) for comparison with ELM. ANN prediction
accuracies obtained from 794 iterations were 549.70 (RMSE) and 0.0696 (NRMSE) (Table
4. 4).
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Table 4. 4: Prediction Accuracy for Validation Dataset, the Number of Iterations and
Training Time from Various Techniques for Mississippi River Flow, Vicksburg

Model RMSE NRMSE No. of Iterations  Training Time
(Training) (sec)
Standard Chaos 1738.95 0.2064 - -
Technique”
Inverse Approach” 356.89 0.0452 - -
EC-SVM(Q)* 306.58 0.0387 1,732.579 -
EC-SVM(dQ) " 304.26 0.0385 47, 590 -
ANN 549.70 0.0696 794 97*
ELMI(Q) 320.00 0.04 Single 97.92™
ELMII(dQ) 312.8 0.0397 Single 96.85™
ELMIII(Q, dO) 308.66 0.0391 Single 96.84"

"Liong et al. (2002) and Yu et al. (2004); “*Windows Intel i7 at 2.67 GHz

Table 4. 4 shows that the RMSE and NRMSE of ELM models were slightly higher
compared to EC-SVM(Q) and EC-SVM(Q, dQ) models. However, ELM predicted these
solutions quickly (single run) compared to EC-SVM(Q) and EC-SVM(Q, dQ), where
1,732,579 and 57,590 iterations, respectively were required. This demonstrates that ELM

can be efficient for online and real-time applications.

4.5. Discussion

This study demonstrates the application of a new Al technique, called ELM for the
prediction hydrological flow time-series from Tryggevaelde and Mississippi River
Catchment. The data obtained from a relatively small (Tryggevaelde Catchment, Denmark)
and large catchment (the Mississippi River Catchment at Vicksburg) covered both dry and
wet periods. ELM was not applied to the field of catchment hydrology before and these two
catchments were selected from the literature for comparison purpose. Three different ELM
models considering observed lagged flow (ELMI), flow difference (ELMII) and
combination of these two variables (ELMIII) were built. The results for Tryggevalde
Catchment show that ELMIII (RMSE of 0.491) performed better than ELMI (RMSE of
0.497) and ELMII (RMSE of 0.504) models. Similarly, for Mississippi River Catchment,

ELMIIT (RMSE of 308.66) improved the accuracy compared to ELMI (RMSE of 320.00)
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and ELMII (RMSE of 312.8) models. The prediction accuracies of ELMIII were also similar
or better than ANN and other previously published techniques including EC-SVM, Standard
Chaotic Approach and Inverse Approach. More specifically, ELMIII improved the flow
prediction accuracy in terms of RMSE by 24% over Standard Chaos Technique, 7% over
the Inverse Approach and 4% over the EC-SVM for the Tryggevelde Catchment. ELM
provided solutions of similar accuracy to EC-SVM when predicting Mississippi River flows.

ELM’s reached the solutions quickly compared to other techniques including EC-
SVM. This is because no additional iteration is required in ELM whereas other techniques
require thousands of iterations to predict the same flow time-series although most do so with
less accuracy. Such runs typically have a much longer processing time. Importantly, this
processing time will significantly increase for more complex scenarios where many more
iterations are required to obtain an optimal solution. This longer processing time may be a
limiting factor for real-time application. ELM learns the training dataset very quickly which
means that this method is suitable for flood forecasting, the prediction of inflows for
reservoir operations, supply of water to meet irrigation demand, real time control of water
systems and sewer systems, etc. Furthermore, by having improved or at least comparable
prediction accuracy to other available methods, ELM is no less capable for use in water

resource management and decision-making.

4.6. Summary

ELM was applied to predict hydrological flow time-series for the Tryggevelde
Catchment (Denmark) and Mississippi River at Vicksburg (USA). The results show that
ELM’s performance is reasonable for 1-day lead prediction compared to ANN and other
previously published techniques. The real strength of ELM is the short computational run-

time to reach solutions comparable with other techniques including EC-SVM. ELM’s fast
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learning capability from a training dataset means that it would be more suitable for on-line
and real-time applications where quick processing is important or vital. However, the
robustness of ELM’s performance (improved accuracy) on different input parameters, longer
lead day prediction and extrapolation capability was not investigated. The sensitivity of
ELM’s performance on input parameters is thoroughly investigated and reported in Chapter

5 including application to a local catchment.
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CHAPTER 5

ROBUSTNESS OF EXTREME LEARNING
MACHINE (ELM) IN THE PREDICTION OF
HYDROLOGICAL FLOW SERIES

This chapter includes the major part of
e Atiquzzaman, M. and Kandasamy, J. (2018). “Robustness of Extreme Learning

Machine in the prediction of hydrological flow series.”, Computers & Geosciences
Journal, 120, pp. 105-114, http://dx.doi.org/10.1016/j.cageo.2018.08.003.
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5. Robustness of Extreme Learning Machine (ELM) in the Prediction of
Hydrological Flow Series

5.1 Introduction

Predicting hydrological flow series generated from a catchment is an important aspect
of water resources management and decision making. The underlying process of prediction of
flows from a catchment is complex and depends on many parameters.

Application of Artificial Intelligence (AI) based machine learning techniques including
Artificial Neural Network, Genetic Programming (GP) and Support Vector Machine (SVM)
replaced the complex modelling process and at the same time improved the prediction accuracy
of hydrological time-series. However, they still require numerous iterations and computational
time to generate optimum solutions.

This study applies the Extreme Learning Machine (ELM) to hydrological flow series
modeling and compares its performance with two most superior techniques GP and Evolutionary
Computation based SVM (EC-SVM) to demonstrate its fast learning capability. Atiquzzaman
and Kandasamy (2016b) demonstrated that ELM’s learning speed and accuracy were comparable
to Standard Chaos Technique, Inverse Approach and EC-SVM in the forecasting of hydrological
time-series. However, the robustness of ELM’s performance on different input parameters,
longer lead day prediction and extrapolation capability was not investigated by Atiquzzaman and
Kandasamy (2016b). This chapter documents the performance of ELM tested with different
combinations of input variables. The robustness of ELM was evaluated by varying number of
lagged input variables, the number of hidden nodes and input parameter (regularization
coefficient). The number of nodes in the hidden layer was varied to check the sensitivity of
ELM’s result. The generalization capability of ELM was investigated for longer lead-day
prediction (e.g. second and third) and for its extrapolation capability. The robustness and

performance of ELM were studied using the data from three different catchments located in three
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different climatic conditions. ELM was applied to the Tryggevelde (Denmark), Mississippi
River (USA) and Duckmaloi Weir (Australia) Catchments.

The study results described in this chapter show that (1) ELM yields reasonable results
with two or higher lagged input variables (flows) for 1-day lead prediction; (2) ELM produced
satisfactory results very rapidly when the number of hidden nodes was greater than or equal to
1000; (3) ELM showed improved results when regularization coefficient was fine-tuned; (4)
ELM was able to extrapolate extreme values well; (5) ELM generated reasonable results for
higher number of lead days (second and third) predictions; (6) ELM was computationally much
faster and capable of producing better results compared to other leading Al methods for
prediction of flow series from the same catchment. ELM has the potential for forecasting real-

time hydrological flow series.

5.2 Data and Methods
5.2.1 Catchment Data

ELM is capable of producing better flood prediction for any catchment under different
climatic condition. To demonstrate the robustness ELM, data from three different catchments
obtained from three different climatic conditions (Liong et al., 2002 and Yu el al., 2004) was
used in this study and the results were compared with other published techniques.

The first catchment is Tryggevalde Catchment (130.5 km?) located in Denmark in the
eastern part of Sealand, north of the village Karise (Figure 4. 1). This is a small catchment
characterized by clay soil which results in very flashy flow.

The second one is for the Mississippi River catchment in USA. The Mississippi River
is one of the world’s greatest river systems. Both catchments have the daily measured flows for
the period of 1 January 1975 to 31 December 1993 (Figure 4. 1 and Figure 4. 2) (Yu et al., 2004).

The Tryggevaelde Catchment is small, and the maximum recorded flow is 11.068 m*/s whereas
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Mississippi River catchment is very large and the maximum flow is 52,103 m?/s. In this study,
flow data between 1975 to 1991 was used for training ELM and the data between 1992 t01993

for testing. No rainfall and evaporation data were applied as input series.
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Figure S. 1: Location of Duckmaloi Weir Catchment

The third catchment used for this analysis is the Duckmaloi Weir catchment which is
located south of Oberon and approximately 180 km west of Sydney, Australia (see Figure 5. 1).
The catchment covers an area of approximately 112 km? and is drained by Duckmaloi River and
its tributaries. The weir is located on the Duckmaloi River. It provides Oberon with its water
supply and cooling water for Mount Piper and Wallerawang power stations. The operational
capacity of the weir is 20ML at full supply level of RL 1,057.64m AHD. A stream gauging station
is located just downstream of Duckmaloi Weir and has recorded data from 18 October 1954 to
19 February 1981 (Figure 5. 2). The rainfall data recorded at the station (63036) has continuous
records for more than 100 years. The statistics of flow series are: mean flow = 0.862 m3/s;
standard deviation=1.417 m3/s; maximum flow = 36.014 m3/s; and minimum flow = 0.0 m3/s.
The time series is shown in Figure 5. 2 which shows that there are distinct wet and dry periods

in each year. In ELM, rainfall and flow data from 1954 to 1975 are used for training and from
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1976 to 1981 for testing.
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Figure 5. 2: Daily Observed Flows - Duckmaloi Weir Catchment

5.2.2  Methods

Model: The basic hidden node based ELM (Huang et al., 2006) as described in Chapter
4, has been applied in this analysis. Huang et al. (2012) stated that if the number of hidden
neurons and the number of input samples are equal, ELM can, in theory, approximate the training
of samples with zero error. However, in order to get stable and better generalization performance,
a parameter called the regularization coefficient (C) (see Huang et al., 2012) was introduced in
ELM. The performance of ELM also depends on the activation function. If these are

appropriately selected, ELM does not degrade the generalization capability (Lin et al., 2014).

Modelling Technique: ELM and GP were used to estimate the catchment runoff using
past catchment flow as input data. Mathematically, if only the past historical flow series is

considered, the relationship can be expressed:
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Qt+nAt =f (Qt > Qt—At yoeeed Qt—mAt) (D

if the only past historical flow series is considered.

Oronse =S Rins R Ry oo R0 OO, O i) 2
if the past and present rainfalls and past historical flow series are considered.
where Q is the flow (m?/s), R is the rainfall (mm), n refers to how far into the future
the inflow prediction is desired; / and m represents how far back the recorded time series

(rainfall and flows) affects the flow prediction. At is time interval.

5.2.3 Model Development

Model Architecture: In this study, the dependency of ELM on the lagged input

variables, number of hidden nodes and regularization coefficient (C) were analyzed with sigmoid
activation function to develop the best trained model. The authors selected sigmoid activation
function as this produced best results compared to other activation functions (Atiquzzaman and
Kandasamy, 2016b). The C value is optimized to improve the results.

Lagged Variables: ELM and GP’s performances for one-day lead predictions (n = 1)

were tested by assigning a number of lagged flows (m) as defined in equation 1. Initially, seven
day lagged flows (m = 7) with the number of hidden nodes set to the number of training samples
were applied.

In ELM, m was decreased one-by-one and each time the model was re-run to assess its
performance. The best performing model was used for subsequent analysis.

In GP, an algorithm called Eureqa (Schmidt and Lipson, 2009) was used which
automatically test a range of m in the training phase to produce a model with the m that best
correlates with the output.

Number of Hidden Nodes: The number of the hidden nodes needs to be defined

beforehand. The influence of the number of hidden nodes on the model prediction was analyzed
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with the best performing model obtained in the manner outlined in the previous section. The
number of hidden nodes applied was varied from 10 to 6204 to test the model performances. The
upper limit was set to 6204 as this equals the total number of training samples according to Huang
et al. (2012) produces best results.

Regularization Coefficient: The performance of ELM depends on the regularization

coefficient (C). The default value of C is 1. The model with an optimized number of hidden nodes
found from previous analysis was chosen to undertake further test to improve the accuracy by
varying the regularization coefficient. The default value was increased by a factor of ten each
time in a series of runs to test the model performances. The factor ten was used to rapidly increase

the C value to quickly access which gave a better solution.

5.2.4  Extrapolation and Higher Lead-Day Prediction

ELM’s ability to extrapolate flows was tested by training it with a dataset that did not
include the maximum values of the entire time-series. In this test, the input data series was split
up into two groups. The portion of the time series which contained the largest discharge was used
as the production dataset. The remaining of the data series was used for training. The trained
model was applied to verify if it could predict the extreme values of the time-series.

The ELM model was also applied for higher lead-days (e.g. n=2, 3, 5) predictions to

access and compare ELM’s performance against other published Al techniques.

5.2.5 Performance Measures

The model prediction accuracies were assessed using four performance measures,
namely Correlation Coefficient (CC), Nash-Sutcliffe Efficiency (NSE), Root Mean Square Error
(RMSE) and Normalized Root Mean Square Error (NRMSE). NSE and RMSE were found to be

the two mostly used performance measures according to a review by Nourani et al. (2014).
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Rathinasamy et al. (2014) proposed wavelet-based performance measures (Multiscale NSE and
NRMSE) instead of traditional NSE and RMSE as they found that the proposed measures were
more reliable. However, in this study NSE, RMSE and NRMSE were selected primarily to
undertake a direct comparison with the results given in Yu et al. (2004) and Yu and Liong (2007).
It is unlikely that other performance measure will adversely affect the assessment of ELM’s
performance since ELM performed well across the entire range of performance measures tested.

CC provides information on linear dependence between observed and simulated values
(Kisi et al., 2013) and its values lies between 0 and 1. A value of 0 means no correlation at all
whereas a value of 1 means that the dispersion of prediction is equal to that of the observation.
RMSE represents the forecasting error and estimates the sample standard deviation of the
differences between predicted values and observed values. A RMSE value of zero indicates
perfect match whereas higher values represent no match between the observed and modelled
output. It is a good measure when large model errors are not desirable. Another criterion
frequently used in the context of assessing the performance of hydrological models is NSE. The
NSE provides a measure of the model’s ability to predict observed values. In general, high values

of NSE (up to 100%) and small values for RMSE indicate good model predictions.

53 Results
5.3.1 Influence of Lagged Variables

The ELM model was run for Tryggevaelde and Mississippi River catchments with flow
data as input for different m values ranging from 1 to 7. The number of hidden nodes was set to
the number of training samples (i.e. 6204). The CC, NSE, RMSE and NRMSE values for training
and testing are presented in Table 5. 1 for Tryggevalde and Table 5. 2 for Mississippi River
catchments. The time required to train ELM for the two catchments was less than 122sec. The

CC and NSE are higher than 0.9 and 0.8 respectively for all training and testing results which
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show that ELM predicts generalized results for all lagged input variables above 1. The RMSE
for Tryggevealde catchment ranged from 0.495 to 0.560 (Figure 5. 3) and NRMSE from 0.339 to
0.384 for testing results. Similarly, for Mississippi River catchment, the RMSE varied from
315.77 to 608.33 (Figure 5. 5) and NRMSE from 0.04 to 0.077 for testing results. The RMSE
values for these two catchments vary as the magnitude of flows are very different (average flow
for Tryggevaelde is 0.977 m*/s and 18,457 m?/s for Mississippi River) and the deviations between
observed and predicted flows differ significantly. Though, ELM produced reasonable results for
all runs, the minimum error (e.g. RMSE and NRMSE) for the testing dataset was obtained when
m =4 (ELM4) for Tryggevealde catchment and m = 2 for Mississippi River catchment (see Table
5. 1). This is because smaller catchment responds quicker to changes in climatic conditions than
bigger catchment. Therefore, more number of lagged variables are required to detect fast
changing flows for accurate prediction. For the larger catchment (Mississippi River catchment),
lagged variables above 2 produced similar results (see Table 5. 2) since catchment response is
very slow. The scatter plots of observed and modelled flows for training and testing datasets are
shown in Figure 5. 4 for Tryggevelde catchment and Figure 5. 6 for Mississippi River catchment.
It shows good agreement between the measured and predicted daily discharge. The measured
and predicted runoffs are evenly scattered around the line of agreement (best fit) especially for
the Mississippi River (Figure 5. 6).

The same data was applied to GP for comparison. Table 5. 1 and Table 5. 2 show the
results of GP for both catchments. GP automatically discards runs of poorer performing lagged
variables and produced a solution where m = 2. The time taken was 202.8sec in 77,082 iterations
for Tryggevelde catchment and 8min 20sec and 181,892 iterations for Mississippi River
catchment. The GP results in terms of RMSE and NRMSE were worse than ELM. As ELM2 and
ELM4 model produced comparable results, ELM4 is used in the subsequent analysis for

consistency with Tryggevalde catchment.
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for Tryggevaelde Catchment
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Table 5. 1: Comparison of Prediction Accuracies for Different Lagged Variables -
Tryggevaelde Catchment

Model Run m* CC NSE RMSE NRMSE Iterations Training

Time
o T G G GE 0n s e
BLM2  poine 2 oosc  oms oSl oasy  Shele 1068
BLMS  1oine 0 00% osm  oa9  oap  Shele e
BLMA  mouime  * ooal o osos o  Smee 9%
BLMS  TORE 5 Tor  osm odes  oa;  Snde 99k
ELM6  roime  ©  oos o  odo7  oaal  Shee 1002
ELMT qdie 7 09% osm  ods  oap  Snele e
O Teine 1 0o oss oss om0 Wk

m* =no of lagged flows in the input
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Table 5. 2: Comparison of Prediction Accuracies for Different Lagged Variables -
Mississippi River Catchment

Model Run m¥* CC NSE RMSE NRMSE Iterations Training

Time
BLMI  1oine | 0097 ooes gon3s ooy Siee 104
BLM2 1 2 0599 ooen 3is7  gos S 10s
BLMS  pouime oo ooon s oou  Sele  l0dsee
ELMA  1oie 4 0599  ooon oo oou S 10k
ELMS  1e 5 05% ooon soss oou  Shee 104
e oo 00N OB e e
T OR OB S I8 e e
GP Training 0.999  0.998 414.81 0.042 181,892 f1min 20sec

Testing 2 0.999 0.998  321.70 0.041

m* = no of lagged flows in the input
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Figure 5. 6: Scatter Plot of Observed and Predicted Training (a), and Testing Dataset (b)
for Mississippi River Catchment

For Duckmaloi Weir catchment, the model is run with flow and rainfall data as input for
different values of / and m with number of hidden nodes of about 7745. Table 5. 3 shows the
predictions accuracies for different combination of / and m. The total time required to train the
ELM model ranges from 3.14min to 3.29min. The CC and NSE are found to be greater than 0.9

and 0.8 respectively for all the runs (see Figure 5. 7). Figure 5. 7 shows that the RMSE from
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testing results ranges from 33.099 (ELM2) to 38.235 (ELM3) and NRMSE from 0.284 (ELM2)
to 0.328 (ELM3) (see Figure 5. 7). The RMSE values for this catchment are not the same
compared to the previous two catchments as the difference in observed and predicted flows
differs significantly. ELM produces reasonable solutions for all runs. However, the minimum
error is obtained when / and m values are 2 (see model ELM2) and RMSE and NRMSE are found
to be 33.099 and 0.284. The scatter plot of observed and modelled flows for training and testing
datasets is shown in Figure 5. 8 for Duckmaloi Weir catchment. It shows good agreement
between the measured and predicted daily discharge. The measured and predicted runoffs are
evenly scattered around the line of agreement (best fit).

The comparisons of ELM and GP are presented in Table 5. 3. GP produces optimal
solution based on current rainfall (/=1) and past flow (m = 1) with total number of iterations of
255,473 in 12.52min. The GP results show that CC, NSE, RMSE and NRMSE from testing
results are 0.85, 0.729, 60.715 and 0.52 respectively. However, ELM produced superior results
even with / =1 and m = 1 (see ELMI in Table 5. 3) where CC, NSE, RMSE and NRMSE are
0.953, 0.907, 35.56 and 0.305 respectively. ELM2 model (Table 5. 3) improves the prediction
accuracy by 45.5% in terms of RMSE and ELM1 by 41.4% compared to GP.

Table S. 3: Prediction Accuracy for Duckmaloi Weir Catchment

Model Run A, m* CC NSE RMSE NRMSE Iterations Training Time
(min)
T IR M A </ e O
BLMZ i @D 00 e ey o St 3
ELMS g O Gomr  omy  smass  opn  Snee 3
ELMG goie G Goss  omy  yiso  opr  Snee 39
ELMS  gcie  G9 0os  oon  seses opis  Snee 32
FLMG  roine 69 099 oot saim o Snee 3
ELMT e D 0o oo e oalg  Sme 320
GP Training 0.898  0.805  54.402 0.441 255473 12,52

Testing &1 0.85 0.729 60.715 0.520

*/ =no of lagged rainfall including current rainfall in the input
*m = no of lagged flows in the input
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for Duckmaloi Weir Catchment

5.3.2 Influence of Number of Hidden Nodes

ELM4 (m=4) was run for Tryggevelde and Mississippi River Catchment with different

number of hidden nodes to test its influence on the prediction accuracy. The number of hidden

nodes tested ranged from 10 to number of training samples (6204). The results in terms of CC,
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NSE, RMSE and NRMSE for both training and testing are given in Table 5. 4 for Tryggevalde

Catchment and Table 5. 5 for Mississippi River Catchment. The CC and NSE for both catchments

are higher than 0.9 and 0.8 respectively for all runs. The prediction errors in terms of RMSE and

NRMSE decrease with larger number of hidden nodes (see Table 5. 4 and Table 5. 5). The

variations of RMSE with hidden nodes are presented in Figure 5. 9. For Tryggevealde Catchment,

the RMSE and NRMSE values for testing dataset are 0.574 and 0.393 respectively for 10 hidden

nodes (ELM4-1) and 0.495 and 0.339 respectively for 6204 hidden nodes (ELM4).

Table 5. 4: Influence of Number of Hidden Nodes on Prediction Accuracy for

Tryggevaelde Catchment
No of Trainin % RMSE
No. Model Hidde - NSE RMSE NRMSE gTime Lmprovement
Run n Compared to
Notes 1000 Nodes
Training 0911 0829 0566 0414
b EIM&L peging 10 0021 0837 0574 0393 SIS -
Training 0.924 0853 0524 0383
2 BIMA2 roging 190 0033 0860 0526 0361  15€ ;
Training 0.925 0.855 0520  0.380
3 BIM&3 roging 290 0934 0863 0522 0358 15C -
Training 0927 0860 0512 0375
4 EIMa4 roding 200 0936 0867 0515 0353 1S ;
Training 0929 0862 0507 0371
> BIMAS riding 1990 0038 0869 0508 0348 25 -
Training 0930 0.865 0503  0.368
6 EIM&6  roging 2990 0930 0871 0502 0343  109seC 1.2
Training 0931 0.866 0500  0.366
7o BIM&T peding Y990 0940 0873 0498 0341 Al3lsec 2.0
Training 0931 0867 0499  0.365
8  EBIM48  roging %% 0041 0873 0496  0.340 63sec 2.4
Training 0931 0.867 0498  0.365
9 EIM&9 poding %99 0941 0874 0495 0339 024 2.6
Training 0931 0867 0498  0.364
10 EIM3 poding 2% 0041 0885 0495 0339 99sec 2.6
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Figure 5. 9: Influence of Hidden Nodes on ELM Model Accuracy- Tryggevaelde
Catchment

For Mississippi River Catchment, these values range from 734.51 and 0.093 for 10
nodes to 320.15 and 0.041 for 6204 nodes respectively. The RMSE value decreased by 13.8%
for Tryggeveelde Catchment and 56% for the Mississippi River. The time required to train ELM
increased from less than 1s for 10 nodes to less than 104sec for 6204 nodes (Table 5. 4 and Table
5. 5). The percentages of improvement of the models in comparison with 1000 nodes model
(ELM4-4) are shown in last column of Table 5. 4 and Table 5. 5. The number of hidden nodes
of 1000 was chosen for comparison as the accuracy does not improve significantly with nodes
above this number. The maximum improvement of accuracy in terms of RMSE was only 2.6%
for Tryggevalde Catchment and 1.2% for Mississippi River Catchment when the number of
hidden nodes was increased from 1000 to 6204. Figure 5. 10 shows that the RMSE for a big
catchment like the Mississippi River, was less sensitive to increased number of hidden nodes.
Although, the accuracy of ELM did not significantly improve where the number of hidden nodes
was greater than or equal to1000, the training time increased significantly. This suggests that
ELM is capable of producing good solutions very fast with a modest number of hidden nodes

(e.g. 1000). The model with 1000 hidden nodes (ELM4-5) was investigated for these two
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catchments only to further improve the accuracy by fine tuning the C parameter and compare the

results with EC-SVM.
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Figure 5. 10: Influence of Hidden Nodes on EL.LM4 Model Accuracy for Mississippi River
Catchment

Table 5. 5: Influence of Number of Hidden Nodes on Prediction Accuracy for Mississippi

River Flow, Vicksburg
Mod No of Trainin % RMSE
No. el Hidde c  NSE RMSE NRMSE  Time lmprovement
) Run n Compared to
Notes 1000 Nodes
| ELM Training =~ 0997 0993 81237 0082 -
4-1  Testing 0996 0991 73451  0.093 se¢ -
ELM Training 0.999 0998 43043  0.044
2 42 Testing %% 0999 0998 367.04  0.047 <lsec -
ELM Training 0.999 0998 41422  0.042
343 Testing 2% 0999 0998 34541  0.044 <lsec -
ELM Training 0.999 0998 40333  0.041
Y44 Testing %0 0999 0998 33128  0.042 <lsec -
ELM Training 0.999 0.998 399.53  0.041 -
> 45 Testing 9% 0099 0998 32407  0.041 3.2sec
ELM Training 0.999 0998 398.10  0.040
6 46  Testing %% 0999 0998 32189 0041 13.2sec 0.7
ELM Training 0.999 0998 397.12  0.040
T 47 Testing %% 0999 00998 32059 0041 = AIsec L1
ELM Training 0.999 0998 396.82  0.040
8 48  Testing "% 00999 0998 32032 0041 70.3sec 12
ELM Training 0.999 0998 39657  0.040
49  Testing %% 0099 0998 32015 0041  10075€c 1.2
ELM Training 0.999 0998 396.55  0.040
1070 Tesing 2% 0999 0998 32000  0.041 104sec 1.2

For Duckmaloi Weir catchment, the best model (ELM2) was run for a series of hidden

nodes to understand the influence of hidden nodes on the prediction accuracy. The number of
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hidden nodes ranges from 10 to 7000. The results in terms of CC, NSE, RMSE and NRMSE and
the ELM training times are in Table 5. 6. Table 5. 6 shows reasonable results for any number of
hidden nodes with the CC and NSE values always greater than 0.9 and 0.8 respectively. ELM
training time requires time less than 1s for 10 nodes to 2.63mins for 7000 nodes. The prediction
accuracies in terms of RMSE decrease with the increase of hidden nodes (see Figure 5. 11). The
RMSE and NRMSE are 50.381 and 0.432 for 10 hidden nodes (ELM2-1) and 33.184 and 0.284
for 7000 hidden nodes (ELM2-9). Table 5. 6 also shows that though the accuracy of ELM is not
significantly improved if the number of hidden nodes is further increased above 4000, the training
time is increased from 50.19s to 2.63min for 7000 nodes to get only 1.9% improvement in terms
of RMSE (see Figure 5. 11 and Table 5. 6). This suggests that ELM is capable of producing
similar solutions very fast with modest number of hidden nodes. However, the higher number

of hidden nodes generally generates slightly less error in terms of RMSE and NRMSE.

Table S. 6: Influence of Number of Hidden Nodes on Prediction Accuracy for Duckmaloi
Weir Catchment

Mod No of Trainin % RMSE
No. el Hidde c NGE RMSE NRMSE  Time  lmprovement
) Run n Compared to
Notes 4000 Nodes
| ELM Training = 0934 0748 61872 0502 lecc
2-1  Testing 0909 0.814 50381  0.432 -
ELM Training 0951 0818 52.629 0427
2 20 Testing %0 0019 0843 46180  0.396 <lsec -
ELM Training 0954 0.827 51301 0416
323 Testing 2% 0923 0851 45033 0386 <lsec -
ELM Training 0957 0.837 49733  0.404
Y04 Tesing 2% 0936 0876 41165 0353 1.31sec -
ELM Training 0959 0.844 48659  0.395 -
> 25 Testing 0% 0944 0892 38412 0329 3.93sec
ELM Training 0960 0.848 48.011  0.390
6 5%  Testing %% 0052 0906 35807 0307  \393sec -
ELM Training 0961 0.852 47.505  0.385
T 27 Testing %90 0957 0916 33835 0200  O0-19sec -
ELM Training 0.961  0.852  47.361 0.384 .
8 28  Testing %% 0958 0918 33420 0286  °°min 1.23
ELM Training 0.961 0.854 47.141  0.383 .
29 Testing %% 0950 0919 33184 o284  263min 1.92
ELM Training 0.924 0.854 47.124 0.382
10 75" Tesing /7 0959 0920 33.099  0.284 3.14 2.18
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Figure 5. 11: Influence of Hidden Nodes on ELM Model Accuracy - Duckmaloi Weir
Catchment

5.3.3 Improvement of Regularization Coefficient (C)

The ELM4-5 (hidden nodes = 1000, Table 5. 4 and Table 5. 5) was used to test the
impact of C on the model performance for Tryggevalde and Mississippi River Catchments only
to compare the performance of ELM with other published techniques. In all previous runs, a C
value of 1 was used by default. Here, the value of C was increased in each run to improve the
results. Table 5. 7 shows the improvement in the performance. The best result was obtained when
the C value is 1E3 in 12.8sec for Tryggevelde Catchment and 1E10 in 32sec for Mississippi
River Catchment. The prediction accuracy for training dataset in terms of RMSE decreased from
0.507 to 0.483 (4.7%) for Tryggevalde Catchment and from 399.53 to 347.74 (12.9%) for
Mississippi River catchment. Similarly, the RMSE values for testing dataset decreased from
0.508 to 0.486 (4.3%) for Tryggevelde Catchment and from 324.07 to 296.82 (8.4%) for
Mississippi River Catchment. The NRMSE behaves similarly. The comparison of observed and

predicted flows using this improved ELM model is shown Figure 5. 12. The ELM4-5 model with
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1000 hidden nodes and best performing value of C was used to investigate ELM’s ability to

extrapolate flows (section 5.3.5) and to give higher lead-day predictions (section 5.3.6).

Table 5. 7: Improvement of Prediction Accuracy by Changing C Values

No of X Trainin
Catchment Hidde ¢ cc NSE RMSE NRMSp &7Time
Notes
Training 0929 0862 0507  0.371
Tryggevaeld Testing 000 I 0938 0869 0508 0348 7€
e Training 0.935 0.875 0483 0354
Tesing 1000 1000 5943 0889 0486 0333  128sec
Training 0.999 0998 39953  0.041
Mississippi  Testing 1000 L 0999 00998 32407 0041  2%€¢
River  Training w0999 0.999 34774  0.035
Testing 1000 197 4999 0099 20682 0037 320%¢c

* = regularization coefficient
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Figure 5. 12: Scatter Plot of Testing Dataset for, (a) Tryggevzalde Catchment and (b)
Mississippi River Catchment with Improved ELM

5.3.4  Comparison with Other Techniques

The performances of different ELM models against other type of Al models (GP and
EC-SVM) are summarized in Table 5. 8 for testing dataset. The EC-SVM model results used for
comparison were sourced from Yu et al. (2004) and Yu and Liong (2007) as they applied their
method on the same case studies. EC-SVM was selected for comparison with ELM because EC-
SVM performed better than other alternative techniques such as Standard Chaos Technique,
Naive, ARIMA and Inverse Approach reported by Yu et al. (2004) and ANN, FL and wavelet

models by Fotovatikhah et al. (2018).
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Five ELM models (see Table 5. 8) were used for comparison. ELM, in general, showed
better results compared to other methods when the number of hidden nodes is higher than 1000.
However, the ELM model with 500 hidden was also included in Table 5. 8 for comparison.

The best performing GP model obtained with two lagged variables (m=2) which took
77,082 iterations and 202.8sec had prediction errors of 0.551 for RMSE and 0.378 for NRMSE
for Tryggevalde Catchment. Table 5. 8 shows that ELM with two lagged variables (see ELM2
model in Table 5. 1 and Table 5. 2) outperformed GP model and improved the results in terms
of RMSE. ELM2 reached this solution and in less than 105sec on a Windows Intel 17@2.67GHz
machine. Better results (RMSE < 0.514 and NRMSE < 0.353) from ELM were obtained when
number of lagged variables were two or above (see Table 5. 1 and Table 5. 2). The best
performing ELM model (ELM4-5d) compared to GP was more accurate by 11.8% for

Tryggevalde Catchment and 7.7% for Mississippi River Catchment.

Table 5. 8: Comparison of Prediction Accuracies

Method (m,C) (d,7r7) RMSE NRMSE Iterations Training
Time
GP 2,-) - 0.551 0.378 77,082 202.8sec’
EC-SVM (Yu et al. 2004) - 3,1) 0514 0.352 151,668 207.67sec’
EC-SVM (Yu and Liong, - (5,1) 0501 0344 824 Shr 25min®
2007)
Tryggeveeld ELM2 (6204%) 2,1 - 0.514 0.353 Single 99sec®
e ELM4 (6204%) 4, 1) - 0.495 0.339 Single 99sec®
ELM4-5 (1000%) 4,1) - 0.508 0.348 Single 3.2sec’
ELM4-5d (1000°) .
(Improved ELM) (4,1000) - 0.486 0.333 4 12.8sec
ELM4-4 (5004 4,1 - 0.515 0.353 Single <lsec®
GP 2, -) - 32170 0.041 181,892 8min
20sec®
EC-SVM (Yu et al. 2004) - (2,1) 306.58 0.039 1,732,579  53.93min®
EC-SVM S)((;l;)lnd Liong, - 4,1) 320.44 0.041 1,214 Rhr 40min®
M‘;Siljzlrpp‘ ELM2 (6204%) 2,1) - 31577 0.04 Single 105sec
ELM4 (6204%) 4,1 - 320.00 0.041 Single 104sec®
ELM4-5 (1000%) 4,1) - 324.07  0.041 Single 3.2sec’
ELM4-5d (1000*) 10 ) b
(Improved ELM) (4, 10" 296.82 0.037 10 32.0sec
ELM4-4 (500%) 4,1) - 331.28  0.042 Single <lsec®

“Number of Hidden Nodes; *Windows Intel i7@2.67GHz ‘Linux Pentium [[@333MHz
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ELM (ELM4-4) with 500 hidden nodes yielded similar results (RMSE = 0.515 and
NRMSE = 0.353) compared to EC-SVM (Yu et al., 2004). However, ELM’s training time was a
fraction of 1sec on a Windows Intel 17@2.67GHz machine. EC-SVM (Yu et al., 2004) needed
151,668 iterations and 207.66sec on a Linux Pentium II@333mHz machine. Table 5. 8 shows
how the accuracy improves when the number of hidden nodes increases. ELM4-5d model
(number of hidden nodes = 1000) improved the accuracy (RMSE = 0.486 and NRMSE = 0.333)
for Tryggevalde Catchment beyond the EC-SVM model (Yu et al., 2004). Similar results were
obtained for the Mississippi River Catchment using the same model. The RMSE and NRMSE
reduced to 296.82 and 0.037 respectively for the ELM4-5d model compared to 306.58 and 0.039
obtained by EC-SVM (Yu et al., 2004). The results demonstrate that any number of hidden nodes
in ELM greater than or equal to 1000 produced better results than GP and EC-SVM (see Table
5.4 and Table 5. 5). ELM4-5d model required 12.8sec and 32sec for two different catchments
respectively on the Windows Machine and ran much faster than GP and EC-SVM. The
computational time discussed is not completely comparable since two different types of machines
were used. The major strength demonstrated in this analysis was ELM’s ability to reach more
accurate solutions faster than GP and EC-SVM. ELM requires only a single iteration and the run
time, depending on the number of hidden nodes, varies between a fraction of a second to less
than 2 minutes.

5.3.5 ELM’s Ability to Extrapolate

The maximum flow in the Tryggevalde Catchment of approximately 11 m*/s (Figure 4.
1) occurred in early 1982 and 1991; and for the Mississippi River (Figure 4. 2) a flow above
50,000 m*/s occurred in 1975 and 1983. The portion of the dataset containing the two years with
highest recorded flows were selected for testing ELM model. The other portion of the data
excluding the highest peak was used for training. The results are summarized in Table 5. 9. The

CC and NSE were above 0.9 and 0.8 respectively for both training and testing datasets. The errors
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in predicting testing data in terms of RMSE and NRMSE were 0.664 and 0.419 for Tryggevealde
Catchment and 512.98 and 0.042 for Mississippi River Catchment respectively. The maximum
flow extrapolated by ELM model was 10.643 m3/s which was 97% of the observed flow for
Tryggevaelde Catchment. For Mississippi River Catchment, the predicted flow of 50,600 m?/s
was within 99% of the observed flow (52,109 m?/s). The ability of ELM to extrapolate is shown
in a scatter plot (Figure 5. 13). It shows reasonable results with flows around the line of agreement
(1:1) for both catchments.

Similarly, for Ducmaloi Weir catchment, the maximum flow of approximately 36 m3/s
occurred in the middle of 1964 (see Figure 5. 2). This year of data is excluded from training and
is selected for testing purpose. Table 5. 10 shows that the CC and NSE are above 0.9 and 0.8
respectively for both training and testing dataset. The errors in terms of RMSE and NRMSE are
104.812 and 0.340 for testing data and 41.153 and 0.365 for training data respectively. This
concludes that ELM performs reasonably well in the extrapolation for the prediction of flow in
Ducmaloi Weir Catchment. These results show that ELM performed reasonably well in
extrapolating and predicting the maximum flow values even when these were excluded from the

learning process in training.

Table S. 9: Extrapolation Capability of ELM

Catchment CC NSE RMSE NRMSE
Training  0.939 0.883  0.462 0.343
Testing 0.908 0.824 0.664 0.419
Mississippi Training  0.999 0.999 345.68 0.037
River Testing 0.999 0998 512.98 0.042

Tryggevaelde
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Figure 5. 13: Scatter Plot of Testing Dataset for, (a) Tryggevalde Catchment and (b)
Mississippi River Catchment for Extrapolation

Table 5. 10: Extrapolation Capability of ELM for Duckmaloi Weir Catchment

ELM Model CC NSE RMSE NRMSE
Run

Training 0.931 0.867 41.153 0.365
Testing 0.936 0.840 104.812 0.340

5.3.6  Higher Lead Days Prediction

Table 5. 11 shows ELM’s performance in terms of CC, NSE, RMSE and NRMSE for

2, 3 and 5 lead-days predictions. For the Tryggevalde Catchment, the CC values ranged from

0.83 (2 lead-days) to 0.638 (5 lead-days) and NSE values from 0.688 (2 lead-days) and 0.406 (5

lead-days). For Mississippi River Catchment, both CC and NSE values were above 0.9 and 0.8

for all three lead-days predictions. As expected, the prediction error increases for longer lead-

day predictions.

Table S. 11: Prediction Accuracy for Different Lead-Day Prediction

Lead- ELM . EC-SVM (Q)"

Days Time Time

Catchment CC NSE RMSE NRMSE (sec) NRMSE (h:min)

2 0.83 0.688 0.814 0.558 32 0.574 1:22

Tryggevealde 3 0.75 0.563  0.963 0.661 3.2 0.661 1:09

5 0.638 0.406 1.123 0.771 3.0 0.768 0:55

L 2 0.997 0.994  629.00 0.0797 2.9 0.0859 1:44
Mississippi .

River 3 0.992 0.983 1027.51 0.1302 32 0.1383 0:21

5 0.972 0.944 1870.00 0.2370 3.1 0.2469 2:17

®Yu and Liong, 2007; PIV 2.4 GHz PC.
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Compared to 1-day lead prediction the RMSE values increase to 0.814 for 2 lead days,
0.963 for 3 lead-days and 1.123 for 5 lead-days prediction for Tryggevalde Catchment. The
corresponding NRMSE values change to 0.558, 0.661 and 0.771 respectively for 2, 3 and 5 lead-
days predictions for this catchment. Similar behavior is observed for Mississippi River
Catchment. The errors in terms of RMSE increase to 629.00, 1027.51 and 1870.00 and NRMSE
t0 0.0797, 0.1302 and 0.2370 for 2, 3 and 5 lead-days predictions. The last two columns of Table
5.7 also show the NRMSE and time to achieve the results from EC-SVM (Yu and Liong, 2007).
Table 5.7 shows that ELM produces similar or better results than EC-SVM in a very short time
(approximately 3sec) on Windows Intel i7@2.67GHz machine. For example, ELM required only
3.1sec for 5 lead-days prediction for the Mississippi River Catchment, obtaining NRMSE of
0.2370 compared to EC-SVM that needed 2 hour 17min to achieve NRMSE of 0.2469 (on PIV
2.4 GHz PC). For Duckmaloi Weir catchment, similar prediction accuracies are for higher lead-
days (1, 2 and 3) prediction (Table 5. 12). The accuracies increase from RMSE of 33.99 to

45.285. The results demonstrate ELM’s fast learning capability for longer lead-days predictions.

Table 5. 12: Accuracy for different lead-day prediction for Duckmaloi Weir Catchment
Model  Method Lead-Day CC NSE RMSE NRMSE Time

Run (min)
1 ELM2-1 1 0.959 0.920 33.099 0.284 3.14
2 ELM2-2 2 0.931 0.876  40.961 0.351 3.14
3 ELM2-3 3 0.923 0.850 45.285 0.388 3.14
5.4 Discussion

In this study ELM, an Al Technique was presented to predict hydrological flow series.
ELM’s performance was demonstrated with data from three different catchment sizes i.e. a
relatively smaller catchment (130.5 km?) called the Tryggevalde Catchment (Denmark), the
large Mississippi River (USA) catchment (3,220,000 km?) and Duckmaloi Weir catchment (112
km?). ELM proved to be fast and did not depend on complex network architectures. Firstly,

ELM’s performance based on different lagged flows (1 to 7 days) was tested. The best results
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were obtained when 2-4 lagged flows were used in the input dataset. In this analysis, the number
of hidden nodes were the same as number of training samples. The results showed that all
catchment models with two to four lagged flows had the better prediction accuracies (e.g.
minimum RMSE values). The lagged variables indicate how far back observed flows have impact
on future flow prediction. A smaller catchment (Tryggevaelde Catchment) required more lagged
variables (4 lagged input variables) as this responded to change in climatic condition quicker
than a bigger catchment (e.g. 2 lagged variables for Mississippi River Catchment). The
robustness of the models with four lagged variables was analyzed further.

The performance of ELM, in terms of run time and accuracy was improved by altering
the number of hidden nodes and the value of regularization coefficient for Tryggevelde and
Mississippi river catchments only for comparison purposes. A suitable value of C improves the
accuracy of a model with a smaller number of hidden nodes and reduce the run time. ELM
produced acceptable results very quickly (less than a second) from a modest number of hidden
nodes (e.g. 1000). With higher number of hidden nodes (>1000), the accuracy improved
modestly (less than 3%) though requiring a much longer time (30-100 times longer). The
accuracy of ELM was improved by manually changing the value of C. Changing C improved the
accuracy of ELM with hidden nodes equal to 1000 (see Table 5. 7) compared to base ELM4 (C
unchanged, hidden nodes = 6404, see Table 5. 1) i.e. C more than compensated for the reduced
accuracy of the model with a lower number of hidden nodes. The performance of ELM model
with modified C values improved the prediction accuracies significantly from 0.508 to 0.486 for
Tryggevalde Catchment and 324.07 to 296.82 for Mississippi River Catchment.

A model’s ability to extrapolate is important for practical application in flood
forecasting and prediction. The improved ELM model was applied to extrapolate a flow time
series for all catchments. The highest flows were excluded from training dataset to investigate

ELM’s extrapolation capability. The model was able to predict the flows reasonably and quickly
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even after the exclusion of highest recorded flows from training samples. It produced reasonable
results (CC > 0.9 and NSE > 0.8) for all three catchments.

ELM was computationally much faster and produced comparable or better results
compared to leading Al methods (GP and EC-SVM) when predicting flow series from the same
first two catchments. ELM performed better with two to four lagged variables and where the
number of hidden nodes were greater than or equal to1000. ELM required a very short time
(approximately 3sec) in 2, 3 and 5 lead-days prediction and produced similar or better results
than EC-SVM (required computational time between 20min to 2hours). This is because ELM
resolves the problem analytically in single iteration.

This chapter demonstrates ELM’s potential application for real-time prediction of
hydrological time-series and where quick model response and ability to extrapolate is vital for
decision making in application such as flood warning and forecasting systems, real time
operation, etc. Its better accuracy means that it has application in water resources planning and

management.

5.5 Summary

The application of ELM was demonstrated in the prediction of hydrological flows from
three different catchment sizes from three different climatic conditions (Tryggevalde Catchment,
Denmark; Mississippi River, USA and Duckmaloi Weir catchment, Australia). Literature shows
that EC-SVM performed better than ANN, ANFIS, Fuzzy Logic in the prediction flows. ELM’s
performance was compared with EC-SVM and GP. The results showed how ELM improved
prediction accuracies and reached the solutions very quickly compared to other techniques (e.g.
EC-SVM). ELM resolves the output analytically in a single iteration which reduces the

computational run time. The study also concluded that:
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e ELM showed reasonable results with all combination of lagged input variables (flows)
for 1-day lead prediction in terms of CC (>0.9) and NSE (>0.8). The minimum errors in
terms of RMSE and NRMSE were obtained where 2-4 lagged flows were applied as input
variables. For smaller catchment, higher number of lagged variables (2 or more for
Tryggevalde Catchment) produces better prediction as the catchment responses rapidly
to change in climatic condition. A bigger catchment (Mississippi River) has a slow
response and similarly accurate results were obtained with 2 lagged variables;

e ELM produced satisfactory results very rapidly from less than a second where the number
of hidden nodes of the hidden layer were ten to two minutes for maximum number of
hidden nodes (number of training samples). A higher number of hidden nodes (above
1000) generally produced better results in ELM. However, higher number of hidden
nodes increased the computational run time significantly (from less than a second to two
minutes) with a minor improvement in accuracy (<3%);

e ELM was able to extrapolate reasonably well where the input variables with highest flows
were excluded from training dataset;

e ELM showed improved results when the parameter of regularization coefficient was fine-
tuned; and

e ELM produced similar or better results compared to GP and EC-SVM with a shorter
computational time.

The study demonstrates ELM’s ability for rapid prediction and has potential application
in real-time forecasting and in water resources planning and management. However, the ELM
(node based) applied in this chapter is further improved using Kernel function. The application
of Kernel based ELM and comparison with node based ELM and other published techniques are

investigated and reported in Chapter 6.
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CHAPTER 6

KERNEL AND NODE BASED EXTREME
LEARNING MACHINES TO PREDICT
HYDROLOGICAL TIME-SERIES

This chapter includes the major part of
e Atiquzzaman, M. and Kandasamy, J. (2019). “Kernel and node based extreme

learning machines to predict hydrological time-series.”, Paper prepared for the
submission to a journal.
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6. Kernel and Node Based Extreme Learning Machines to Predict
Hydrological Time-Series

6.1 Introduction

Prediction of flows from a catchment depends on many complex hydrological
parameters. Traditionally, numerical modelling was a popular method to determine these
parameters for estimating catchment yield. With the advent of high-performance computers and
the availability of catchment data including hydrological flow-series, researchers and water
managers have moved their focus to data-driven modelling techniques, mainly to accelerate the
water management process analysis and evaluation and hasten their decision making.

Extreme Learning Machines (ELM) has become popular due to its ability to quickly
learn and solve complex problems. The hydrological flow time-series were predicted using node
based ELM (NELM) in the previous chapters. In addition, Kernel based ELM (KELM) is applied
in this chapter. The predictive capabilities of both NELM and KELM were presented using data
from Tryggevalde catchment (Denmark), Mississippi River at Vicksburg (USA) and Duckmaloi
catchment (Australia). The results were compared with those obtained with Genetic
Programming (GP) and with evolutionary computation based Support Vector Machine (EC-
SVM), the later obtained from literature. The results show that both NELM and KELM
predictions were better than GP and EC-SVM. KELM ran faster than any other model. KELM

can be a viable alternative for real-time forecasting of hydrological variables.

6.2 Model Data
The model data for this analysis consist of the same three catchments as described in
Chapter 4 and Chapter 5 which are Tryggevalde catchment (Denmark), Mississippi River at

Vicksburg (USA) and Duckmaloi catchment (Australia).
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6.3 Modelling Technique
ELM and GP were applied to estimate the catchment runoff using the past and current
information of rainfall data and past catchment flow as input data. Mathematically, the

relationship can be expressed as:

Qt+At = f (Qt > Qt—At IRRRR Qt—mAt) (la)

if only the past historical flow series is considered.

Qt+At =/ (Rr+At9Rr’Rt—At »----Rr—mAt»Qtan—Az» ----- Qt—mAt) (1b)

if current rainfall, past rainfall and the past historical flow series are considered.
where, QO is the flow (m?/s), R is the rainfall (mm), and m represents how far back the recorded
time series (flows) affects the flow prediction. At is time interval.

The GP algorithm used in this analysis is called Eureqa (Schmidt and Lipson, 2009)
which has the ability to discard the input variables that do not have a significant impact on the

output.

6.4 Model Parameters and Input Variables

NELM requires two parameters namely the number of hidden nodes and C. Usually, the
accuracy of NELM improves with a larger number of hidden nodes. Huang et al. (2012) obtained
good generalization capability with more than 1000 hidden nodes. In this chapter, the number
of hidden nodes of 500, 1000 and the number of training samples (6204) in NELM (refer to
Section 5.3.2), were considered for comparison purpose. Further investigation of NELM with
number of hidden nodes of 6204 was undertaken. Initially, the C value was set at 1. Subsequently
the C value was changed in a series of iterations to achieve a better training model and prediction
result.

For KELM, the model requires two parameters namely, C and y (see Sections 2.3.3).

These parameters were changed linearly to optimize the model and achieve better results.
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The input and output data were normalized to the interval [-1, +1] using the following

equation to non-dimensionalise the variables.

x =2 X Hmin _ 4 (3)

Xmax—Xmin

where, Xmax and xui, represent the maximum and minimum values in the original datasets.

6.5 Performance Measures

The model prediction accuracies were determined based on Correlation Coefficient
(CC), Nash-Sutcliffe Efficiency (NSE), Root Mean Square Error (RMSE) and Normalized
Root Mean Square Error (NRMSE) (see Atiquzzaman and Kandasamy, 2016b). The

mathematical equations of these are described below:

2(Qo,- 0,)(Qy,—0y)

CC= = = )
\/Z(QOt - QO)ZZ(QMt - QM )2
Z(QOt _QMt)2
NSE =1-=! — )
Z(QOI _QO)2
RMSE = %i(Qot ~0y)’ (6)
NRMSE = \/Zil (QOt _QMt)2 /Zjil [(QOz _Q0]2 (7)

where, Qo and QO denote observed and modelled flows at time #; N is the number of

observations and QO and Q ' represents the mean observed and modelled flows, respectively.

CC provides information on linear dependence between observed and simulated values (Kisi et
al., 2013). The CC lies between 0 and 1 where 0 means no correlation whereas and 1 means that

the dispersion of prediction is equal to that of the observation. RMSE represents the forecasting
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error and estimates the sample standard deviation of the differences between predicted values
and observed values. A RMSE value of zero indicates perfect match whereas higher values
represents a smaller match between the observed and modelled output. It is a good measure when
large model errors are not desirable. NSE is frequently used and provides a measure of the
model’s ability to predict observed values. In general, high values of NSE (up to 100%) and small

values for RMSE indicate good model predictions.

6.6 Results
6.6.1 Tryggevaelde Catchment

Three NELM model results (NELM1, NELM2, NELM3) (refer to Section 5.3.2) each
with different number of hidden nodes (500, 1000 and 6204) in terms of CC, NSE, RMSE and
NRMSE for both training and testing dataset are presented in Table 6. 1. Table 6. 1 shows good
predictions with all having CC and NSE values of more than 0.9 and 0.8 respectively for training
and testing datasets. The RMSE ranged from 0.498-0.512 for training and 0.495-0.515 for testing
data. The corresponding NRMSE varied from 0.364-0.365 for training and 0.339-0.353 for
testing data. The lowest RMSE of 0.495 and NRMSE of 0.339 (Table 6. 1) for the testing dataset
were obtained when the highest number of hidden nodes (number of training samples) was
applied (i.e. in NELM3). In all these runs, the training time was relatively short as no further
iteration was required and varied from less than a second (for 500 nodes) to 99sec (6204 nodes)

on a Windows Intel 17@2.67GHz machine (Table 6. 1).
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Table 6. 1: Prediction accuracy for Tryggevalde Catchment

Hidde Iterations

Model Run n C y CC NSE RMSE NRMSE Training
Nodes
Training 0.927  0.867 0.512 0.365 <lsec
NEIML - pecing 2% 1 - 0036 0867 0515 0353 !
Training 0929 0869 0507 0362 3sec
NELM2 - fogiing 1909 1= 5938 0869 0508  0.348 !
Training 0931 0867 0498  0.364 .
NELM3  pocing @204 1 - goa1 0885 0495 0339 ! 99s
Npvg TR T 0937 0878 0477 0349 . ool
Testing 0943 0889 0486 0333 S
Training 0936 0876 0474 0347 .
KEIM resting © B2 1 om0 0887 0487 0334 3 21s
EC-SVM! Testing - - - - - 0.514 0.352 151,668 207.67s°
EC-SVM? Testing - S - 0501 0344 824 Sh 25m®
GP Testing - - - - 0.551 0.378 77,082 202.8sec?

(Yu et al. 2004)"; (Yu and Liong, 2007)% *Windows Intel i7@2.67GHz; °Linux Pentium I[@333MHz

The highest number of hidden nodes was then fixed (number of training samples = 6204)
and the C value was changed sequentially in a series of iterations. Commencing with a value of
1, C was changed in each iteration by a factor of 10. Within 4 iterations, a C value of 1.00x10?
was found which gave CC and NSE values above 0.9 and 0.8 for both training and testing dataset
(see NELM 4 in Table 6. 1). C values higher than 1.00x10* did not further improve the accuracy
(for details refer to section 5.3.3). The RMSE and NRMSE values were 0.477 and 0.349 for
training dataset and 0.486 and 0.333 for testing dataset. In this analysis, NELM4 required 6min
21sec from 4 iterations to learn the input data on the same Windows machine (Intel
17@?2.67GHz).

In KELM, the value of C and y were selected by changing them sequentially in a series
of iterations initially commencing with a value of 1. First C was changed by a factor of 10 in
each iteration. Once C was selected, y was changed by a factor of 10 in subsequent iterations.
The results were less sensitive to values of y and therefore it was changed only after C was
selected. Within a few iterations (3), KELM produced RMSE and NRMSE of 0.474 and 0.347

for training dataset and 0.487 and 0.334 for testing dataset (Table 6. 1) with the values C and y

127


mailto:i7@2.67GHz
mailto:i7@2.67GHz

of 100 and 1 respectively. The CC and NSE values were above 0.9 and 0.8. The model did not
show any improvement with further increase of C and y values. Figure 6. 1 and Figure 6. 2 depict
the comparisons of observed and predicted KELM flows in terms of scatter plot for training and
testing dataset respectively. The results from KELM are similar to that obtained from NELM4

although KELM ran faster and required 21sec to train the model.
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Figure 6. 1 Comparison of Observed and Predicted Flows from KELM for Tryggevzlde
Catchment - Scatter Plot for Training Dataset
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Predicted Discharge (m”3/s)

Observed Discharge (m~3/s)

Figure 6. 2: Comparison of Observed and Predicted Flows from KELM for Tryggevalde
Catchment - Scatter Plot for Testing Dataset
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The performances of NELM and KLEM were compared in Table 6. 1 with GP and
previously published results of EC-SVM by Yu et al. (2004) and Yu and Liong (2007). GP model
was run with the same input variables (lagged flows) for comparison. All ELMs (NELM and
KLEM) yielded better results (minimum RMSE of 0.486 and NRMSE of 0.333) compared to GP
(0.551 for RMSE and 0.378 for NRMSE), EC-SVM (Yu et al., 2004) (RMSE = 0.514, NRMSE
=0.352) and EC-SVM (Yu and Liong, 2007) (RMSE = 0.501, NRMSE = 0.344). Compared to
GP, EC-SVM (Yu et al., 2004) and EC-SVM (Yu and Liong, 2007), NELM4 reduced RMSE by
11.90%, 5.4% and 3.2% respectively and KELM by 11.64%, 5.11% and 2.9% respectively.
KELM ran faster and took 21sec, while NELM4 took 6min 21sec. NELM3 ran faster (99 sec)
than NELM4, being marginally less accurate. GP failed to reach a better solution. GP required
77,082 iterations and a training time of 202.8sec on the same windows machine. EC-SVM (Yu
et al., 2004) and EC-SVM (Yu and Liong, 2007) required 151,668 iterations and 207.66sec (see
Table 2 in Yu et al., 2004) and 824 iterations and Shr 25min (see Table 6 in Yu and Liong, 2007)

respectively on a Linux Pentium I[I@333mHz machine.

6.6.2  Mississippi River at Vicksburg

Three NELM model results (NELM1, NELM2, NELM3) (refer to Section 5.3.2) each
with different number of hidden nodes (500, 1000 and 6204) in terms of CC, NSE, RMSE and
NRMSE for both training and testing dataset are presented in Table 6. 2. All models were run
with a C value of 1. These models showed good predictions with the values of both CC and NSE
above 0.9 for all training and testing datasets. The RMSE ranged from 396.55 to 403.33 for
training and 320.15 to 331.28 for testing data. The corresponding NRMSE was 0.040-0.041 for
training and 0.041-0.042 for testing data. The lowest RMSE of 320.15 for testing dataset was
obtained when the highest number of hidden nodes (i.e. 6204 in NELM3) was applied (Table 6.

2). The training times for all three NELM were relatively short varying from less than a second
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(for 500 nodes) to 104sec (6204 nodes) on a Windows Intel 17@2.67GHz machine (Table 6. 2).

The C value of NELM3 model was modified in the same manner as outlined in the
previous case. Within a few iterations (i.e. 9), an optimum C value of 1.00x10® was obtained with
CC and NSE above 0.9. This model is called NELM4 in Table 6. 2. The results of NELM4 (Table
6. 2) improved significantly and the RMSE and NRMSE reduced to 353.89 and 0.036 for the
training dataset and 297.91 and 0.038 for the testing dataset. The training time for the model was

14min and 55sec on the same Windows machine.

Table 6. 2: Prediction accuracy for Mississippi River Flow, Vicksburg

i Tterati ini
Model Run Hidden '~ cc NSE RMSE NRMSE coatons  Training
Nodes Time
Training 0999 0998 40333  0.041 <Tsec
NELML - poging 2% 1 - 5999 0998 33128  0.042 !
Training 0.999 0.998 399.53 0.041 3sec
NELM2 - reging 1090 1 - 5999 0998 32407  0.041 !
Training T 0999 0998 39655  0.040 .
NELM3 - rogting 0204 1 0.999 0998  320.15  0.041 ! 104s
ping | Trmng T 0999 0999 35389  0.036 . .
Testing T 0999 0999 29791  0.038 14m 53s
KELM  Training g g 099 0998 32781 0033 . .
Training 0999 0998  297.25  0.038 s
EC.SVM!  Testing ) . - 30658 0039 1,732,579 53.93m’
EC-SVM?  Testing ] A - 32044 0.041 1214 8h 40m®
GP  Testing ] ; ; 32170 0.041 181,892 8m 20s*

(Yu et al. 2004)'; (Yu and Liong, 2007)% *Windows Intel i7@2.67GHz; *Linux Pentium I[@333MHz

Similarly, in KELM the values of C and y were selected in the same manner as outlined
previously. Table 6. 2 shows KELM produced RMSE and NRMSE of 327.81 and 0.033 for
training dataset and 297.25 and 0.038 for testing dataset with the C and y values of 1.00x10® and
1 respectively. The CC and NSE values were above 0.9. Figure 6. 3 and Figure 6. 4 show a very
good agreement between the observed and predicted KELM flows for training and testing dataset
respectively. The results from KELM were slightly better than that obtained using NELM4.
However, KELM ran faster and took only 57sec to train the model on the same Windows
machine.

Table 6. 2 provides comparisons of Mississippi River flows prediction from different
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ELM models, other previously published results of EC-SVM (Yu et al., 2004; Yu and Liong,
2007) and GP. GP model was run with the same input variables for comparison. Table 6. 2 shows
that the two ELM models (NELM4 and KELM) yielded better solutions (RMSE <=297.91 and
NRMSE of 0.038) than GP (321.70 for RMSE and 0.041 for NRMSE), EC-SVM (Yu et al.,
2004) (RMSE =306.58, NRMSE =0.039) and EC-SVM (Yu and Liong, 2007) (RMSE = 320.44,
NRMSE = 0.041). The prediction error (RMSE) using KELM was smaller by 7.60%, 3.0% and
7.23% compared to GP, EC-SVM (Yu et al., 2004) and EC-SVM (Yu and Liong, 2007)

respectively. NELM4 also performed similarly.
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Observed Discharge (m”3/s)

Figure 6. 3: Comparison of Observed and Predicted Flows from KELM for Mississippi
River Catchment, Vicksburg - Scatter Plot for Training Dataset
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Figure 6. 4: Comparison of Observed and Predicted Flows from KELM for Mississippi
River Catchment, Vicksburg - Scatter Plot for Testing Dataset

The time required by NELM4 and KELM to train input data were 14min 55sec and
57sec respectively from 9 iterations on a Windows Intel 17@2.67GHz machine. On the same
machine, GP took 8min 20 sec and 181,892 iterations to train the model. The number of iterations
and the training time required for EC-SVM (Yu et al., 2004) were 1,732,579 iterations and
53.93min respectively (see Table 4 in Yu et al., 2004) and for EC-SVM (Yu and Liong, 2007)
were 1,214 iterations and 8hr 40min (Table 6, Yu and Liong, 2007) respectively on a Linux
Pentium [1@333mHz machine. KELM produced the best results converging very quickly in a

few iterations (< 10) to achieve the best results among the models compared.

6.6.3 Duckmaloi Catchment

ELM was applied to the Duckmaloi catchment with the lagged flow and rainfall data as
inputs (equation 1b). The number of hidden nodes in NELM1, NELM2 and NELM3 were 500,
1000 and 7745 respectively (refer to section 5.3.2 for details). These models used a C value of 1.
All three models ran fast and the maximum time required to train the model (NELM3) was

3.14min (Table 6. 3) on Windows Intel 17(@2.67GHz machine. The models predict well and the
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lowest RMSE and NRMSE for the testing dataset were obtained in the model with the highest
number of hidden nodes (7745 in NELM3). The CC and NSE values were above 0.9 and 0.8
respectively for all training and testing datasets. The RMSE ranged between 47.124-49.733 for
training and 33.099-41.165 for testing data (Table 6. 3). The corresponding NRMSE was between

0.382-0.404 for training and 0.284-0.353 for testing results.

Table 6. 3: Prediction Accuracy for Duckmaloi Weir Catchment

i Iterati ini
Model Run Hidden . cc NSE RMSE NRMSE cavens  Training
Nodes Time
Training 0.915 0.837 49.733 0.404 1.31sec
NELML  resting 500 - 0936 0876 41165 0.353 !
Training 0919  0.844 48659  0.395 3.95sec
NELM2 - peting 1900 1 - gosas 0892 38412 0329 !
Training Z 0924 0854  47.124 0382 ,
NELM3  rogting 774 1 0959 0920  33.099  0.284 ! 3.14m
NpLay | Temne 0929 0862 45766 0371 , o3
Testing T 0962 0923 32487 0278 mos
KELM  Training 0929 0862 45748 0371 .
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*Windows Intel i7-@2.67GHz

The C value was then selected in a manner similar to previous cases and took two
iterations (see mode NELM4 in Table 6. 3) to improve the results with CC and NSE values above
0.9 and 0.8 respectively. The RMSE improved by 2.9% (from 47.124 to 45.766) for training
samples and 1.8% (from 33.099 to 32.487) for testing samples compared to NELM3 (see Table
6. 3). The NRMSE also reduced by 2.8% (from 0.382 to 0.371) for training dataset and 2.1%
(from 0.284 to 0.278) for testing dataset respectively. NELM4 took 6min 3sec to train the model.

The selection of parameters (C and y) in KELM took five iterations to improve the
results with CC and NSE values above 0.9 and 0.8 respectively. The minimum RMSE values
obtained from this model were 45.748 and 32.404 and NRMSE were 0.371 and 0.278 for training
and testing datasets respectively (see Table 6. 3). Figure 6.5 and Figure 6.6 show the graphical
representation of scatter plot between the observed and predicted flows for training and testing

dataset. KELM required a short time (Imin 6sec) to obtain this result.

133



N W W
u o u»

[y
o un

Predicted Discharge (m”3/s)
N
o

ul

0 10 20 30 40
Observed Discharge (m~3/s)

Figure 6. 5: Comparison of Observed and Predicted Flows from KELM for Duckmaloi
Weir Catchment - Scatter Plot for Training Dataset
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Figure 6. 6: Comparison of Observed and Predicted Flows from KELM for Duckmaloi
Weir Catchment - Scatter Plot for Testing Dataset

The performances of different ELM and GP models are compared in Table 6. 3. No
results were available for EC-SVM (Yu et al., 2004) or EC-SVM (Yu and Liong, 2007). ELM
models performed better than GP. Specifically, NELM4 and KELM reduced RMSE by more
than 46% compared to GP. GP required 255,473 iterations and 12.52mins to generate results with
a RMSE of 60.715 and NRMSE of 0.520. Both NELM4 and KELM produced similar results.

NELM4 ran slower than KELM as the run time of the former depended on the number of hidden
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nodes in hidden layer.

6.7 Discussion

This chapter demonstrates the application of a fast Al technique called ELM.
Predictions of yields were undertaken for three catchments located in different continents each
with different climates namely the Tryggevealde catchment in Denmark, Mississippi River Flow
at Vicksburg in USA and Duckmaloi catchment in Australia. In the former two, lagged flows
were used as input consistent with other published techniques. In the later lagged flows and
rainfall were used as input. Performances of different types of ELMs (node based and kernel
based) were assessed in terms of CC, NSE, RMSE and NRMSE.

All NELM models generated good results (CC > 0.9 and NSE > 0.8). The best results
were obtained where the number of hidden nodes was set to the number of training samples in
node based ELM (NELM3). The performance was further improved by fine tuning the C
parameter in NELM4. It was found that within a few trials, the RMSE reduced to 0.486 (1.8%)
for Tryggevelde catchment, 297.91 (6.9%) for Mississippi River Catchment and 32.487 (1.8%)
for Duckmaloi catchment compared to NELM3. KELM produced similar or better results
compared to NELM4.

Both NELM4 and KELM produced better results compared to GP and EC-SVM when
predicting flow series for all three catchments. Compared to GP, KELM improved the prediction
accuracy by between 7.6-46.6% for these catchments. Similarly, KELM’s results were better
than that of EC-SVM (Yu and Liong, 2007) and showed improvement of 2.8% for Tryggevelde
catchment and 7.2% for Mississippi River catchment. KELM was also better than EC-SVM (Yu
et al., 2004). The performance of NELM4 was similarly better.

KELM was computationally much faster in training models than NELM, GP and EC-

SVM for all catchments noting that the computational time was not completely comparable since
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two different types of machines were used. The performance of EC-SVM using Linux Pentium
[I@333mHz machine was obtained from literature. ELM’s learning algorithm is much simpler,
and the learning speed is extremely fast as it avoids iterative tuning to determine the input weights
(Huang et al., 2006). KELM ran faster than NELM4 (Table 6. 1- Table 6. 3) as KELM does not
require information on the number of hidden nodes.

This analysis shows that even when using a simple parameter selection technique,
KELM produced results with better accuracy in much faster run time than any other model
studied here. Indeed, using a more sophisticated optimization techniques to select parameters C
and y may further improve the performance of KELM (and NELM4) in terms of prediction
accuracy.

The major strength demonstrated in this analysis was KELM’s ability to reach similar
or better solutions much faster than NELM, GP and EC-SVM. It adds to its attractiveness for use
in actual river and flood operations and its potential for real-time prediction of hydrological time-
series and where quick model response is vital for decision making in application such as flood
warning and forecasting systems. It can make significant contribution in real-time control

applications.

6.8 Summary

The application of node and kernel based ELMs (NELM and KELM) were applied to
predict flows from three different catchments (Tryggevalde catchment, Denmark; Mississippi
River, USA and Duckmaloi catchment, Australia). The performances from different ELM
models were also compared with GP and EC-SVM. Predictions of daily flow time series from
all catchments showed how ELM could improve the prediction accuracies and reached the
optimal solutions faster than GP and EC-SVM. The study findings concluded that:

e KFELM and NELM obtained good prediction accuracies for all catchments where CC
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and NSE were greater than 0.9 and 0.8 respectively;

e NELM produced good results for all catchments where the number of hidden nodes was
greater than 1000. However, better results are obtained where the number of hidden
nodes was the same as the number of training samples. The time required to train the
model varied from less than a second to a few minutes.

e KELM produced similar or better results than NELM;

e Both NELM and KELM models were capable of producing better results compared to
GP and EC-SVM; and

e KELM computationally runs faster than NELM and other models as KELM does not
require hidden nodes.

This analysis shows that KELM produced more accurate results in much faster run
times than other models studied. The study demonstrates ELM’s ability, especially KELM’s,
for rapid prediction and has potential application in real-time river and flood forecasting and in

water resources planning and management.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS
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7. Conclusions and Recommendations

7.1 Summary

Application of Artificial intelligence (AI) techniques to resolve complex nonlinear
hydrological flow prediction problem was demonstrated in this study as calibration of such
physical hydrological models using a trial and error method or optimization algorithm requires
considerable effort and experience particularly when the number of the calibration parameters is
large. Al based machine learning techniques have proven superior by the researchers in this
modeling process (e.g. flow prediction) compared to other conceptual and stochastic models
including Autoregressive (AR), Autoregressive Moving Average (ARMA), Autoregressive
Integrated Moving Average (ARIMA), Autoregressive moving average with Exogenous Inputs
(ARMAX) and Sacramento model. However, many of the AI based data-driven modelling
methods including traditional ANN learning algorithms are slow requiring numerous iterations
to generate optimal solutions and may not be suitable for real-time prediction where fast response
is desirable (e.g. flood control). In this study, GP was first applied to fill the data gaps and predict
long term flows from a dam catchment using a hybrid approach (linked with MIKE11-NAM).
While the application was successful and produced better results, it was found that GP suffered
from computational overhead in the learning process. A relatively new machine learning
technique, called Extreme Learning Machine (ELM) was proposed in this study. Three different
catchments from three different continents were considered.

Initially, AI model using GP was developed for the daily real-time flow prediction at
the Duckmaloi Weir catchment located in Oberon, Australia considering present and past
rainfalls and past measured flows. GP model showed better results than ANN and Sacramento
model. GP model is further improved by using hybrid method with MIKE11-NAM (refer to
Chapter 3). This approach is used when the measured or gauged flows are not complete or

missing and long-term inflow prediction is required for reservoir management. The future 100
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year flows were predicted assuming two hypothetical rainfall time series. The results from this
hypothetical rainfall analysis show how the flow conditions vary in the dam catchment in drought
conditions. The analysis provides information about the potential application of the GP and
hybrid models in operation and management of water resources.

Chapter 4 presents the application of ELM for predicting hydrological flow time-series
for the Tryggevelde Catchment (Denmark) and Mississippi River at Vicksburg (USA). It is
demonstrated that ELM overcomes the slow learning issue and predicted hydrological time-
series very quickly. The results also show that the prediction accuracies of ELM are better than
ANN and other previously published techniques (e.g. EC-SVM, Standard Chaotic Approach and
Inverse Approach). The real strength of ELM is the short computational run-time to reach
solutions comparable with other techniques including EC-SVM. This is because ELM does not
require iteration whereas other techniques (e.g. EC-SVM) may require thousands of iterations
and much longer processing time to predict the same flow time-series and yet with less accuracy.

The robustness of ELM’s capability in predicting flows is described in Chapter 5 using
the same two catchments, e.g. Tryggevaelde Catchment, Denmark and Mississippi River, USA
and also Duckmaloi Weir catchment, Australia. ELM’s performance is compared with EC-SVM
and GP especially for the first two catchment obtained from the literature. The results showed
how ELM improved prediction accuracies and reached the solutions very quickly compared to
GP and EC-SVM.

In addition to general node based ELM (NELM), the performance of a kernel based
ELM is reported in Chapter 6. The prediction accuracies from NELM and KELM are compared
for the two catchments as described above plus another catchment, Duckmaloi catchment from
Australia. The performances from different ELM models were also compared with GP and EC-
SVM. Predictions of daily flow time series from all three catchments showed how KELM could

improve the prediction accuracies and reached the optimal solutions faster than NELM, GP and
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EC-SVM.

7.2

Conclusions

The conclusions of this study are described below:

Application of GP

GP model showed better results than ANN and Sacramento model in the prediction of
daily flow from Duckmaloi Weir catchment located in Oberon, Australia.

The hybrid model by linking GP model with MIKE11-NAM improved the results further.
This model is applicable when the measured or gauged flows are not complete or missing.
and long-term inflow prediction is required for reservoir management.

The future 100 year flows were predicted assuming two hypothetical rainfall time series
using the hybrid model. These predicted flows can be used to manage extended drought

or flood conditions.

Application of ELM

The application of ELM in the predictions of flows for Tryggevalde Catchment
(Denmark) and Mississippi River at Vicksburg (USA) showed better accuracies
compared to ANN and other previously published techniques (e.g. EC-SVM, Standard
Chaotic Approach and Inverse Approach).

ELM predicted the same hydrological time-series faster than ANN and other previously

published techniques (e.g. EC-SVM, Standard Chaotic Approach and Inverse Approach).

Robustness of ELM

ELM showed reasonable results with all combination of lagged input variables (two or
higher lagged variables) for 1-day lead prediction in terms of CC (>0.9) and NSE (>0.8).

For smaller catchment, higher number of lagged variables (2 or more for Tryggevelde
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Catchment) produced better prediction as the catchment responds rapidly to change in
climatic condition (e.g. rainfall). However, a bigger catchment (e.g. Mississippi River)
responds slowly and higher number of lagged variables have minimal impact on the
prediction.

ELM produced satisfactory results very rapidly when the number of hidden nodes was
greater than or equal to 1000. The computational time required by ELM ranges from less
than a second where the number of hidden nodes of the hidden layer were ten to two
minutes for maximum number of hidden nodes (number of training samples). The
number of hidden nodes higher than 1000 increased the computational run time
significantly (from less than a second to two minutes) with a minor improvement in
accuracy (<3%).

ELM was able to extrapolate reasonably well where the input variables with highest flows
were excluded from training dataset.

ELM showed improved results when the parameter of regularization coefficient was fine-
tuned.

ELM generated reasonable results for higher number of lead days (e.g. second and third)
predictions.

ELM produced similar or better results compared to GP and EC-SVM with a shorter

computational time for prediction of flow series from the same catchment.

Performance of Kernel ELM (KELM) compared to node ELM (NELM)

KELM produced similar or more accurate results in much faster run times than NELM,
GP and EC-SVM. The study demonstrates ELM’s ability, especially KELM’s, for rapid
prediction and has potential application in real-time river and flood forecasting.

ELM’s fast learning capability from a training dataset means that it would be more

suitable for on-line and real-time applications where quick processing is important or
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vital. The study demonstrates ELM’s ability for rapid prediction and has potential

application in real-time forecasting and in water resources planning and management.

7.3 Limitations of the Study
Some of the limitations of the study are described below:

e Parameters including actual or potential evapotranspiration, antecedent
precipitation index, temperatures were not included in the input data.

e Important catchment characteristics including initial loss, continuous loss, area,
slope were not considered.

e The performances of the ELM model (NELM or KELM) were not tested for
real time prediction.

e ELM was not applied for different regional local catchments with different

climatic conditions.

7.4 Recommendations for Further Studies
The following recommendations are made for future extensions of this research work.

e Hydrological systems are generally complex and nonlinear. Time series of other
important and sensitive variables, e.g. total precipitation, antecedent
precipitation index, maximum temperature and evapotranspiration should be
considered if they are available. These additional inputs information may further
improve the prediction accuracies of the flows.

e This study has applied manual trial and error method to fine-tune some of the
parameters related to relevant Al techniques. Evolutionary algorithms including
both single-objectives and multi-objectives optimization are available. Single

objective algorithms, e.g. SCE, GA and PSO and multi-objective algorithm, e.g.
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non-dominated sorting genetic algorithm (NSGA-II) should be linked with ELM
to automatically optimise the parameters such as regularisation coefficient (C)
and kernel parameter. Applying these automatic optimization algorithms may
improve the predictions significantly.

ELM’s application was limited to three catchments obtained from the literature.
Further research will include ELM’s application to catchments from a wider

range of climatic condition and flow scenarios.

ELM was applied to predict a single output. However, ELM’s performance in
predicting multiple outputs (objectives) should be investigated in the resolution

of complex problem.
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