Size effects on flow stress and springback behaviour in micro metal forming

A thesis submitted in partial fulfilment of the requirements for the award of the degree of

Master of Engineering (Research)

From

University of Technology Sydney

By

Mandeep Singh

Mandeepsingh@student.uts.edu.au

B. Tech, M. Tech

School of Mechanical and Mechatronic Engineering

Faculty of Engineering and Information Technology

Certificate of original authorship

I, [Mandeep Singh], declare that this thesis is submitted in fulfilment of the requirements for the award of Master of Engineering (Research) in the Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature: Signature removed prior to publication.

Date: 22/02/2019

Acknowledgement

Firstly, I would like to express my sincere appreciation and deepest gratitude to my supervisor, Dr. Dongbin Wei (Associate Professor), for the opportunity he offered, and for his valuable guidance, support, encouragement and friendship during my Masters of engineering (Research) candidature. It has been a great pleasure working with him.

I am deeply grateful to Dr. Jinchen Ji for his strong guidance, valuable discussion and close supervision. Without his support, it would be difficult to achieve this goal.

I am deeply thankful to Dr. GL Samuel and Indian Institute of Technology, Madras to give me an opportunity to do a joint research collaboration work under the UTS '<u>2018 FEIT HDR</u> <u>Students Research Collaboration Experience award</u>'. I would like to convey my appreciation from the bottom of my heart and my gratitude to Dr. GL Samuel for his absolute help, support and warmth towards me. Many thanks as well to Mr. CK Golpalakrishnan and Mr. Srikanth who contributed to design and carry out instrumental analysis in my experimental works at IIT, Madras- India.

I would like to acknowledge senior mechanical engineer Vahik Avakian and Chris Chapman for their help and support in the laboratory and the administrative support from Kara and David as well. I also would like to thank to Mr. Alexander Angeloski from technical support services who gave me enormous help and assistance.

Family is always have been a source of my inspiration, without my family support, I would not have achieved my goals and no words can describe the appreciation for my family for supporting me and encouraging me to enhance my knowledge. At this point, I would definitely like to take this opportunity to express my gratefulness towards, my sister Gurpreet Kaur, brother-in-law Hardeep Singh and my parents for their sacrifices, love, patience, understanding and selfless dedication. They are all to me. Cheers for everything!

Special thanks to my DAD and MOM, love you.

Mandeep Singh

List of Publications

1. Singh, M., Hossain, A. Mishra, P.K. 2019. "Effects of grain size on surface roughness of thin pure Cooper sheets in metal micro forming" *Test Engineering and Management*. Vol. 82, pp. 12673-12678.

http://www.testmagzine.biz/index.php/testmagzine/article/view/2878

2. Singh, M., Hossian, A. & Wei, D. 2019 "A Hybrid Model for Studying the Size Effects on Flow Stress in Micro-Forming with the Consideration of Grain Hardening", *Key Engineering Materials*, Vol. 794, pp. 97-104.

https://doi.org/10.4028/www.scientific.net/KEM.794.97

3. Singh, M. & Wei, D. 2018 "Size effects in Micro Forming: A review", *International Review of Mechanical Engineering* (IREME) ISSN 1970-8734, Special issue (print form). https://www.scribd.com/document/385504833/Mandeep2018-Dongbin

4. Singh, M., Sharma, S & Sharma, S. 2017 "Criticality of Micro-Forming Process - A Review", *International Journal of Emerging Trends in Engineering and Development*. 7(4), pp.191-198. RS publication.

Table of contents

Acknowledgement	iii
List of Publications	iv
Table of Contents	V
List of Figures	viii
List of Tables	xii
List of Abbreviations and Symbols	xiii
Abstract	XV
Chapter 1. Introduction	1
1.1 Research background	1
1.2 Significances of research	3
1.3 Outline of the thesis	4
Chapter 2. Literature review	5
2.1 Size effects	5
2.2 Size effects in micro forming processes	9
2.3 Summary and objectives of this research	20
Chapter 3. Material and methods	22
3.1 Material	22
3.2 Material sectioning	22
3.3 Heat treatment	23
3.4 Sample preparation	24
3.5 3D laser-confocal microscopes	25
3.6 Average grain size (line intercept method)	26
3.7 Micro tensile test	27

3.8 Micro V-bending test	28
3.9 Software applied for numerical simulation and analytical solution	29
3.10 Research methodology	30
3.11 Summary	30
Chapter 4. Size effects on flow stress and surface roughness	31
4.1 Introduction	31
4.2 Micro tensile test	32
4.3 Effect of T/D on flow stress	33
4.4 Constitutive model	34
4.5 Verification	37
4.6 Effect of T/D on surface roughness	39
4.7 Summary	42
Chapter 5. Analytical and experimental determination of modified material intr	insic
Chapter 5. Analytical and experimental determination of modified material intr length of strain gradient hardening for micro V-bending test of pure copper	insic 44
Chapter 5. Analytical and experimental determination of modified material intr length of strain gradient hardening for micro V-bending test of pure copper 5.1 Introduction	insic 44 44
 Chapter 5. Analytical and experimental determination of modified material intr length of strain gradient hardening for micro V-bending test of pure copper 5.1 Introduction 5.2 Analytical determination of material intrinsic length (<i>l</i>) 	insic 44 44 45
 Chapter 5. Analytical and experimental determination of modified material intr length of strain gradient hardening for micro V-bending test of pure copper 5.1 Introduction 5.2 Analytical determination of material intrinsic length (<i>l</i>) 5.3 Micro V-bending testing 	 insic 44 44 45 48
 Chapter 5. Analytical and experimental determination of modified material intr length of strain gradient hardening for micro V-bending test of pure copper 5.1 Introduction 5.2 Analytical determination of material intrinsic length (<i>l</i>) 5.3 Micro V-bending testing 5.4 A combined constitutive model incorporating microstructure and strain gradient 	 insic 44 44 45 48
 Chapter 5. Analytical and experimental determination of modified material intr length of strain gradient hardening for micro V-bending test of pure copper 5.1 Introduction 5.2 Analytical determination of material intrinsic length (<i>l</i>) 5.3 Micro V-bending testing 5.4 A combined constitutive model incorporating microstructure and strain gradient effects 	 insic 44 44 45 48 49
 Chapter 5. Analytical and experimental determination of modified material intr length of strain gradient hardening for micro V-bending test of pure copper 5.1 Introduction 5.2 Analytical determination of material intrinsic length (<i>l</i>) 5.3 Micro V-bending testing 5.4 A combined constitutive model incorporating microstructure and strain gradient effects 5.5 Calculation of springback 	 insic 44 44 45 48 49 55
 Chapter 5. Analytical and experimental determination of modified material intr length of strain gradient hardening for micro V-bending test of pure copper 5.1 Introduction 5.2 Analytical determination of material intrinsic length (<i>l</i>) 5.3 Micro V-bending testing 5.4 A combined constitutive model incorporating microstructure and strain gradient effects 5.5 Calculation of springback 5.6 Prediction of springback angle 	 insic 44 44 45 48 49 55 56
 Chapter 5. Analytical and experimental determination of modified material intr length of strain gradient hardening for micro V-bending test of pure copper 5.1 Introduction 5.2 Analytical determination of material intrinsic length (<i>l</i>) 5.3 Micro V-bending testing 5.4 A combined constitutive model incorporating microstructure and strain gradient effects 5.5 Calculation of springback 5.6 Prediction of springback angle 5.7 Summary 	 insic 44 44 45 48 49 55 56 57
 Chapter 5. Analytical and experimental determination of modified material intr length of strain gradient hardening for micro V-bending test of pure copper 5.1 Introduction 5.2 Analytical determination of material intrinsic length (<i>l</i>) 5.3 Micro V-bending testing 5.4 A combined constitutive model incorporating microstructure and strain gradient effects 5.5 Calculation of springback 5.6 Prediction of springback angle 5.7 Summary Chapter 6. Development of a compact and portable universal testing machine (UTM 	 insic 44 44 45 48 49 55 56 57 57 (b) for
 Chapter 5. Analytical and experimental determination of modified material intr length of strain gradient hardening for micro V-bending test of pure copper 5.1 Introduction 5.2 Analytical determination of material intrinsic length (<i>l</i>) 5.3 Micro V-bending testing 5.4 A combined constitutive model incorporating microstructure and strain gradient effects 5.5 Calculation of springback 5.6 Prediction of springback angle 5.7 Summary Chapter 6. Development of a compact and portable universal testing machine (UTM in-situ micro-observation of size effects in micro metal forming 	 insic 44 44 45 48 49 55 56 57 56 57 57 58

Appendix-A	81
References	74
7.2 Future work	73
7.1 General conclusion	72
Chapter 7. Conclusion and recommendations for future work	72
6.5 Summary	70
6.4 Performance and validation	65
6.3 Design Concept	60
6.2 Specifications of the developed UTM	59

List of Figures

Figure 1.1: The increase in micro parts from the industrial revolution onward	2
Figure 2.1: Issues related to size effect in micro forming system	5
Figure 2.2: Relation of surface grain to volume grains	6
Figure 2.3: Source of size effects	6
Figure 2.4: Schematic representations of the three main groups of size effects, F force, FA adhesion force, FF friction force, Fc gravity Variation of flow stress with T/D	8
Figure 2.5: Variation of flow stress with T/D	10
Figure 2.6: The microstructure of workpieces at different temperature	10
Figure 2.7: The microstructure of compresses specimen annealed at different temperatur	e11
Figure 2.8: Variation in yield stress with T/D	11
Figure 2.9: Different size scaled central headed parts	13
Figure 2.10: Variation of fracture strain with T/D	13
Figure 2.11: Fracture of the tested tensile samples	14
Figure 2.12: Formed geometry in different size scaled achieved in double cup extrusion	15
Figure 2.13: (a) Strip drawing test (b) Change of friction coefficient	16
Figure 2.14: Three-point bending test	18
Figure 2.15: Springback angle vs grain size	18
Figure 2.16: Most common adopted techniques for researching springback	19
Figure 2.17: (a) Springback vs thickness and (b) springback vs T/D	19
Figure 3.1: The microstructure of pure copper	22
Figure 3.2: (a) Tesile test specimen (b) Schematic of micro tensile samples, (c) Schemat of micro V-bending samples	ic 23
Figure 3.3: Dog-bone samples preparation method	24
Figure 3.4: Vacuum tube annealing furnace	24

Figure 3.5: Polished sample	25
Figure 3.6: Grinder and polish machine	25
Figure 3.7: 3D laser-confocal microscope	25
Figure 3.8: Sample under microscope	26
Figure 3.9: Microstructure analysis	26
Figure 3.10: Micrograph with random line segments	26
Figure 3.11: Optimization of average grain size in 'ImageJ' software	27
Figure 3.12: METEX universal testing machine	27
Figure 3.13: (a) Schematic of micro V-bending punch and die (unit: mm), (b) Real photo micro V-bending punch and die.	os of 28
Figure 4.1: Real copper specimen	32
Figure 4.2: Micro tensile testing	33
Figure 4.3: The stress-strain curve of copper samples annealed at 700°C	34
Figure 4.4: (a) Rectangular gage section, (b) Gage section geometry	35
Figure 4.5: FEM analysis	37
Figure 4.6: (a) Calculated stress (T/D >2.6) from FEM analysis, (b) Experimental and calculated stress	38
Figure 4.7: Simulation vs experimental comparison of stress-strain curve	38
Figure 4.8: Real copper samples	40
Figure 4.9: Surface roughness testing	40
Figure 4.10: Roughness and waiveness profiles of (a) $T/D = 0.78$, (b) $T/D = 1.04$, (c) $T/D = 2.38$	341
Figure 4.11: 3D surface texture of (a) T/D = 0.78, (b) T/D = 1.04, (c) T/D = 2.38	42
Figure 4.12: Surface roughness vs T/D	42
Figure 5.1: Geometrically necessary dislocation morphology in plastic bending of metal	47
Figure 5.2: Stress-strain curves	48

Figure 5.3: V-bending configuration	49
Figure 5.4: (a-b) Actual V-bending test	49
Figure 5.5: Geometric model	52
Figure 5.6: Coordinate diagram defining the spatial quantities	52
Figure 5.7: Stress distribution along the sheet thickness direction	54
Figure 5.8: Schematic diagram of sheet curvature before and after springback	56
Figure 5.9: Springback angle of analysis equations and experimental data	56
Figure 6.1: Overall Structure of the testing machine: (1) stepper motor, (2) coupling, (3) screw, (4) supported columns (5) Tensile test fixtures, (6) LVDT, (7) Load-cell	lead 60
Figure 6.2: (a) Original CNC table, (b) Original specifications of CNC linear sliding (unit: mm)	table 61
Figure 6.3: Modified specifications of CNC linear sliding table (unit: mm)	61
Figure 6.4: (a) Drawing of specimen holder (unit: mm) (b) Actual specimen holder	62
Figure 6.5: (a) Drawing of specimen holder (unit: mm) (b) Actual specimen holder	62
Figure 6.6: (a) Drawing of specimen holder (unit: mm), (b) Actual specimen holder	62
Figure 6.7: (a) Drawing of V-bending punch (unit: mm), (b) Actual V-bending punch	62
Figure 6.8: (a) High-speed 3-axis vertical CNC machine, (b) Machined fixture	63
Figure 6.9: The overall electronic system	64
Figure 6.10: NEMA Stepper motor	64
Figure 6.11: (a) Circuit diagram of the stepper motor, (b) Circuit of the stepper motor	64
Figure 6.12: (a) Load cell with an amplifier, (b) Load cell interface Arduino	64
Figure 6.13: (a) Load cell interface Arduino, (b) LVDT interface Arduino	65
Figure 6.14: Static calibration curve for the load cell	66
Figure 6.15: Load vs displcement graph	66
Figure 6.16: Displacement vs time graph	66

Figure 6.17: Actual tensile testing on newly developed testing device	67
Figure 6.18: Stress-strain curves obtained from commercial Instron and newly devel	oped
testing apparatus	67
Figure 6.19: Stress-strain curve obtained from new testing apparatus	68
Figure 6.20: Stress-strain curve obtained from commercial UTM	68
Figure 6.21: The testing apparatus under the laser microscope	69
Figure 6.22: Schematic illustration of testing setup	69
Figure 6.23: 3D surface profile of copper foil obtained from laser microscope	70

List of Tables

Table 1.1: Typical micro-manufacturing process	1
Table 2.1: Size effects in micro metal forming	20
Table 3.1: Chemical composition of pure copper (Cu), wt%	22
Table 3.2: Sample preparation procedure for microstructural analysis	25
Table 4.1: Microstructure and grain size of the specimen before the tensile test	33
Table 4.2: The values of the parameters used in simulations	37
Table 4.3: Heat treatment and average grain size for surface roughness analysis	39
Table 5.1: Material and experimental set-up parameters	55
Table 6.1: Specifications of the developed apparatus	60
Table 6.2: Average values of a tensile test obtained from home-made machine	68
Table 6.3: Average values of a tensile test obtained from commercial UTM	68
Table 6.4: Calculated mechanical properties	69

List of Abbreviations and symbols

1. Abbreviations

LVDT	-	Linear variable differential transformers
DCE	-	Double cup extrusion
ASTM	-	American society for testing and materials
MEMS	-	Micro-electromechanical systems
FEA	-	Finite element analysis
CAE	-	Computer aided engineering
AGI	-	Average grain intercept
SSD	-	Statistically stored dislocations
GND	-	Geometrically necessary dislocations
UTM	-	Universal testing machine
3D	-	Three-dimensional

2. Symbols

Т	-	Thickness
D	-	Grain size
Ε	-	Young's modulus
3	-	Plastic strain
λ	-	Scaling factor
V	-	Punch velocity
3	-	Logarithmic strain
σ _c	-	Flow stress in the cell interior
σ_w	-	Flow stress in the cell wall
ρ	-	Density

l	-	Material intrinsic length
l_m	-	Modified material intrinsic length
P	-	Conventional effective plastic strain
ŕ	-	Nye factor
Ζ	-	Taylor factor
Mp	-	Plastic bending moment
M_E	-	Elastic bending moment
θ_s	-	Springback angle
Γε	-	Strain gradient effect
R _a	-	Arithmetic average of the roughness profile
V	-	Voltage

Abstract

The continuing trend of micro metallic devices and product miniaturization has motivated studies on micro metal forming technologies. A better understanding of material deformation behaviours with size effects is important for the design and operations of micro metal forming processes. In this dissertation, uniaxial micro tensile testing was conducted on copper specimens with characteristic dimensions to micro scales. The experimental results disclose the existence of size effects and reveal the inadequacies of the existing material models. Micro tensile experiments were carried out on copper specimens with varying grain sizes. The size effects on plastic deformation were demonstrated and were further elucidated by comparison between experimental results and the output of finite element simulations. The surface roughness assessment on tensile tested copper specimen showed the significant influences of size effects in micro metal forming process. Micro V-bending was conducted on copper foils with varying thicknesses and grain sizes. The material intrinsic length was observed and modified according to the average number of grains along the characteristic scale direction of specimen. The analytical model of springback with modified material intrinsic length was established and evaluated by employing MATLAB. This study also presents a research work aiming at the design and manufacturing of a compact UTM compatible with a 3D laserconfocal microscope for observing the deformation behaviour of materials in real-time.