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Thesis Structure 
 

 

The structure of the Thesis is the “Conventional Thesis”, adhering to the “2019 UTS 

Graduate Research Candidature Management, Thesis Preparation and Submission 

Procedures”. The structure of Thesis is as follows: 

 

 Publications – this is a list of published academic conference and journal 

papers, as well as journal paper submitted and under peer-review at the time 

of Thesis submission. 

 

 Patents – this is a list of published patents, including world international 

patent (WIPO), US patent and filed provisional Australian IP (AusPat) 

applications. 

 

 Statement of Contribution – this is a summary section documenting the 

contributions of the Thesis to the knowledge of the non-contact sleep 

monitoring field. 

 

 List of Tables – this section provides a list of tables in the Thesis. 

 

 List of Figures – this section provides a list of figures in the Thesis. 

 

 Acronyms and Abbreviations – this section provides a list of acronyms 

and abbreviations in the Thesis. 

 

 Abstract – this is a summary of the research works in the Thesis. 

 

 Chapter 1: Literature Review (Thesis Contribution 1 – Knowledge) – 

Chapter 1 provides a comprehensive review of the current state of the non-

contact microwave Doppler radar sleep monitoring technology. It also 
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outlines the current challenges and recommendations for future research 

directions. 

 

 Chapter 2: Sleep Disorders (Thesis Contribution 1 – Knowledge) – 

Chapter 2 provides an overview of the sleep disorders and focuses on 

obstructive sleep apnea (OSA). The purpose of chapter 2 is to outline the 

basic fundamentals of sleep disorders and to provide the background 

knowledge for the research work in the Thesis. 

 

 Chapter 3: Relative Demodulation (Thesis Contribution 2 – Novel 

Theory 1) – Chapter 3 presents a novel real-time demodulation theory and 

technique for the non-contact microwave Doppler radar system. Included in 

this chapter, is a novel respiratory and heart rates estimation algorithm, 

using the non-contact microwave Doppler radar. 

 

 Chapter 4: Pulmonary Ventilation Mathematical Model (Thesis 

Contribution 3 – Novel Theory 2) – Chapter 4 presents a novel pulmonary 

ventilation mathematical model that defines the relationship between the 

intrapulmonary pressure and the chest displacement. Included is this 

chapter, is a novel tidal volume estimation algorithm, using the non-contact 

microwave Doppler radar. 

 

 Chapter 5: External Ventilation Mathematical Model (Thesis 

Contribution 4 – Novel Theory 3) – Chapter 5 presents a novel 

mathematical model that quantitatively defines the relationships between the 

arterial oxygen saturation (SaO2), the arterial partial pressure of oxygen 

(PaO2) and the arterial partial pressure of carbon dioxide (PaCO2). Included 

in this chapter is a novel non-contact algorithm that utilizes the 

mathematical model, multilayer perceptron (MLP) artificial neural network 

(ANN) and the non-contact microwave Doppler radar, to translate the 

human periodic chest displacements caused by respiratory efforts into 

peripheral capillary oxygen saturation (SpO2) measurements. 
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 Chapter 6: 3-Dimensional Feature Representation and Extraction 

Technique (Thesis Contribution 5 – Novel Theory 4) – Chapter 6 presents 

a novel 3-dimensional feature representation and extraction technique, 

consisting of two methods, Spatial Dimensions Transform (SDT) and 

Spatial Dimensions Decomposition (SDD). SDT and SDD when combined 

can achieve data transformation, augmentation, normalization, scaling, and 

feature extraction in a single process. 

 

 Chapter 7: Novel Real-life Applications and Results of Non-Contact 

Sleep Monitoring (Thesis Contribution 6 – Novel Real-Life Applications 

and Results) – Chapter 7 presents the real-life non-contact sleep monitoring 

applications of the novel contributions theories and techniques presented in 

chapters 3, 4, 5 and 6. The applications demonstrate the non-contact 

monitoring of the following sleep parameters: 

 

1. Respiratory rate. 

2. Heart rate. 

3. Tidal volume. 

4. Body orientations, i.e., “Prone”, “Upright”, “Supine”, “Right” 

and “Left” sleep orientations. 

5. Oxygen saturation. 

 

 Conclusion – this section includes the “Statement of Conclusion” for the 

research presented in the Thesis. 

 

 Appendix I – this section includes the descriptions of the non-contact 

microwave Doppler radar biosensor used in the research and presented in 

the Thesis. 

 

 Appendix II – this section includes the descriptions of the patients’ 

databases, including ethics approval used in the research and presented in 

the Thesis. Additionally, this section also includes the justifications for the 

data exclusions, selections and partitions. 
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 Appendix III – this section includes the descriptions of common 

hyperparameters utilized in the artificial neural networks (ANN) and 

covered in the Thesis. 

 

 References – this section includes a list of references utilized in the Thesis. 
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Statement of Contribution 
 

 

The Thesis is a response to the demands for non-contact sleep monitoring systems. The 

demands arise due to the limitations of the polysomnography (PSG) system, the 

importance of early screening for obstructive sleep apnea (OSA), the need for long-term 

continuous monitoring and the concern with respect to patient discomfort when using 

the current gold-standard PSG system. 

 

The Thesis presents novel theories, real-life applications and the results of the non-

contact sleep monitoring using the microwave Doppler radar, including the “non-

stationary” and the “non-direct facing” subjects’ measurements in the complex sleep 

environment. 

 

The Thesis includes six contributions to the knowledge of the non-contact sleep 

monitoring field. The six contributions in its entirety, are my own work. 

 

1. Contribution 1: Knowledge 
 

Chapter 1: Literature Review – Chapter 1 adds to the knowledge and understanding 

of non-contact sleep monitoring field by presenting a comprehensive review of the 

current state of the non-contact Doppler radar sleep monitoring technology. This chapter 

includes an outline of the current challenges and recommendations on future research 

directions. 

 

Chapter 2: Sleep Disorders – Chapter 2 adds to the knowledge and understanding of 

the non-contact sleep monitoring field and the research work by presenting an overview 

of the sleep disorders with the focus on obstructive sleep apnea (OSA). The overview 

includes the epidemiology, pathophysiology, comorbidities and cardiovascular 

comorbidities associated with OSA. 
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2. Contribution 2: Novel Theory 1 
 

Chapter 3: Relative Demodulation – Chapter 3 contributes to the field of non-contact 

sleep monitoring by introducing “Relative Demodulation”, a novel real-time 

demodulation theory and technique for the non-contact microwave Doppler radar 

system. The novelty of the “Relative Demodulation” technique is that it pivots from 

conventional displacements analysis to introduce derivatives analysis. Included in this 

chapter, is a novel respiratory and heart rates estimation algorithm that utilizes the 

“Relative Demodulation” technique and the non-contact microwave Doppler radar. 

 

3. Contribution 3: Novel Theory 2 
 

Chapter 4: Pulmonary Ventilation Mathematical Model – Chapter 4 contributes to 

the field of non-contact sleep monitoring by introducing a novel pulmonary ventilation 

mathematical model that defines the relationship between the intrapulmonary pressure 

and the chest displacement. The novelty of the mathematical model is that it enables the 

capability to estimate tidal volume using the non-contact microwave Doppler radar. 

Included in this chapter, is a novel tidal volume estimation algorithm that utilizes the 

mathematical model and the non-contact microwave Doppler radar. 

 

4. Contribution 4: Novel Theory 3 
 

Chapter 5: External Ventilation Mathematical Model – Chapter 5 contributes to the 

field of non-contact sleep monitoring by introducing a novel oxygen-hemoglobin 

dissociation mathematical model that quantitatively defines the relationships between 

the arterial oxygen saturation (SaO2), the arterial partial pressure of oxygen (PaO2) and 

the arterial partial pressure of carbon dioxide (PaCO2). The novelty of the mathematical 

model is that it enables the capability to estimate oxygen saturation using non-contact 

microwave Doppler radar. Included in this chapter, is a novel non-contact algorithm that 

utilizes the mathematical model, multilayer perceptron (MLP) artificial neural network 

(ANN) and non-contact microwave Doppler radar to translate the human periodic chest 
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displacements caused by respiratory efforts into peripheral capillary oxygen saturation 

(SpO2) measurements. 

 

5. Contribution 5: Novel Theory 4 
 

Chapter 6: 3-Dimensional Feature Representation and Extraction Technique – 

Chapter 6 contributes to the field of non-contact sleep monitoring by introducing a 

novel 3-dimensional feature representation and extraction technique, consisting of two 

methods, Spatial Dimensions Transform (SDT) and Spatial Dimensions Decomposition 

(SDD). The SDT and SDD when combined can achieve data transformation, 

augmentation, normalization, scaling, and feature extraction in a single process. The 

novelty of SDT and SDD is that the feature engineering process is not required. The 

preprocessing of signals, DC-offsets removal, signals filtering, expert domain 

knowledge, wavelet packet decomposition and/or time-frequency domain analysis are 

not required in the process of feature extraction. This technique is applicable to both 

classification and dynamic time-series regression applications. 

 

6. Contribution 6: Novel Real-Life Applications and Results 
 

Chapter 7: Novel Real-Life Applications and Results of Non-Contact Sleep 

Monitoring – Chapter 7 contributes to the field of non-contact sleep monitoring by 

presenting the real-life non-contact sleep monitoring applications and the results of the 

contributions presented in chapters 3, 4, 5 and 6. The contributions of chapter 7 include 

the novel high accuracy non-contact estimations/predictions of the following sleep 

monitoring parameters: 

 

1. Respiratory rate. 

2. Heart rate. 

3. Tidal volume. 

4. Body orientations, i.e., “Prone”, “Upright”, “Supine”, “Right” and “Left” 

sleep orientations. 

5. Oxygen saturation. 
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ABSTRACT 
 

 

Obstructive sleep apnea (OSA) is a common and potentially lethal sleep disorder 

affecting at least 4% of adult males and 2% of adult females worldwide. Early detection, 

treatment and continuous monitoring of OSA are extremely important as it may reduce 

the risks associated with cardiovascular comorbidities. Polysomnography (PSG) is the 

gold-standard to diagnose OSA, however there are limitations, such as its unsuitability 

for long-term continuous monitoring. 

 

The Thesis is a response to the demands for the non-contact sleep monitoring systems. 

The demands arise due to the limitations of the PSG system, the importance of early 

screening for OSA, the need for long-term continuous monitoring and the concern with 

respect to patient discomfort when using the gold-standard PSG system. The research 

presented in the Thesis are the novel theories, real-life applications and the results of the 

non-contact sleep monitoring using the non-contact microwave Doppler radar, including 

the “non-stationary” and “non-direct facing” subjects’ measurements in the complex 

sleep environment. 

 

The novel theories that the Thesis contributes to the field of non-contact sleep 

monitoring are: 

 

1. Relative Demodulation – a novel theory and technique for real-time 

demodulation of the subject’s chest or abdomen periodic motions using non-

contact microwave Doppler radar. 

 

2. Pulmonary Ventilation Mathematical Model – a novel mathematical model 

of the physiological pulmonary ventilation that enables the estimation of 

tidal volume using non-contact microwave Doppler radar. 

 

3. External Ventilation Mathematical Model – a novel mathematical model of 

the physiological external ventilation that enables the estimation of oxygen 
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saturation using non-contact microwave Doppler radar. 

 

4. 3-Dimensional Feature Representation and Extraction – a novel theory and 

technique that represents and extracts features in 3-dimensional space. This 

technique, when combine with the artificial neural networks (ANN) will 

enable the predictions of body orientations and oxygen saturation using non-

contact microwave Doppler radar. 

 

The novel non-contact sleep monitoring real-life applications and results that the Thesis 

contributes to the field of non-contact sleep monitoring are: 

 

1. Respiratory rate – achieves 91.53% accuracy with median error of ±1.30 

breaths/min. 

 

2. Heart rate – achieves 91.28% accuracy with median error of ±6.20 

beats/min. 

 

3. Tidal volume – achieves 83.13% accuracy with median error of 57.32 

milliliters. 

 

4. Body orientations – achieve high correct classification rate of 99.9%. The 

misclassification is at a negligible rate of 0.1%. 

 

5. Oxygen saturation – achieves correlation coefficient of 0.92 and the 95% 

limits of agreement is ±2.7 (% oxygen saturation). 

 

The contributions of the novel theories, real-life applications and the results presented in 

the Thesis demonstrated a good level of accuracies. The potential applications include 

non-contact sleep early screening and/or continuous monitoring of the respiratory and 

heart rates, tidal volume, body orientations and saturation oxygen during sleep. This can 

be use in homes, hospitals, primary care sectors, nursing home facilities and/or sleep 

laboratories. 
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INTRODUCTION 
 
 

Obstructive sleep apnea (OSA) is a common and potentially lethal sleep disorder 

affecting at least 4% of adult males and 2% of adult females world-wide [1]. OSA is 

define as the cessation of airflow for at least 10 seconds due to the collapse of the upper 

airway during sleep. This can occur at any age from infancy to old age [2]. OSA is 

recognized as an important cause of medical morbidity and mortality [3] and is an 

independent risk factor for a number of other disorders [4]. The treatment of severe and 

moderate OSA is associated with a 64% reduction in cardiovascular risk independent of 

age, comorbidities and the preexisting cardiovascular disease [5]. It is therefore 

extremely important for OSA patients with associated comorbidities to be diagnosed 

through early screening, to have treatments and be continuously monitored. 

 

The gold-standard for OSA diagnosis is the use of polysomnography (PSG) to monitor 

the patient’s overnight sleep activities. However, the PSG is not well suited for long-

term continuous monitoring [6] due to limited mobility and discomfort to the patient 

during the monitoring process [7]. These limitations have led to stronger demands for 

non-contact sleep monitoring systems. 

 

The non-contact biosensor such as microwave Doppler radar, used for physiological 

vital signs monitoring, had been discovered in the 1970’s. There are evidences 

documented in literatures that showed the “stationary” and “direct-facing” subject’s 

measurements using the Doppler radar for physiological vital signs estimations, such as 

respiratory and heart rates are feasible and can achieve good level of accuracy. 

However, “stationary” and “direct-facing” subject measurements are not an ideal 

scenario for sleep monitoring. There are also documented evidences that the “non-

stationary” and “non-direct facing” subject’s measurements can pose a greater challenge 

in the signal processing of the non-contact Doppler radar system [8, 9]. 

 
The Thesis is a response to the demands for a non-contact sleep monitoring systems, 

recognizing the limitations of the PSG system, the importance of early screening for 
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obstructive sleep apnea (OSA), the need for long-term continuous monitoring and the 

concern with respect to patient discomfort when using the PSG system. The aim, 

objectives and methodologies of the research are documented in the subsequent 

subsections. 

 

 

Research Aim 
 

The principle aim of the Thesis is to develop novel theories, demonstrate real-life 

applications and record the tested results of non-contact sleep monitoring using the non-

contact microwave Doppler radar, including the “non-stationary” and “non-direct 

facing” subjects’ measurements in the complex of sleep environment. 

 

 

Research Objectives 
 

The research objectives are: 

 

1. Develop novel theories that enable the utilization of non-contact microwave 

Doppler radar to continuously monitor the physiological vital signs and 

sleep body orientations in the complex sleep environment. 

 

2. Develop novel “non-stationary” and “non-direct facing” subjects’ 

measurements applications that will achieve good level of accuracy in the 

estimation of the following sleep monitoring parameters: 

 

1. Respiratory rate. 

2. Heart rate. 

3. Tidal volume. 

4. Body orientations, i.e., “Prone”, “Upright”, “Supine”, “Right” 

and “Left” sleep orientations. 

5. Oxygen saturation. 
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Research Methodologies 
 

The research methodologies include 

 

1. Utilizing mathematics, physiology and anatomy knowledge and 

understanding to develop the novel physiological mathematical models. 

 

2. Utilizing machine learning methodologies and artificial neural network 

(ANN) models to achieve classifications and dynamic time-series 

regressions applications. 

 

3. Obtaining real patients’ measurements in the complex sleep environment 

with the “non-stationary” and “non-direct facing” criteria. 

 

4. Using real patients’ database in the developments and verifications of the 

non-contact sleep monitoring when non-contact microwave Doppler radar 

applications is utilized. 
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CHAPTER 1:  LITERATURE REVIEW 
Thesis Contribution 1: Knowledge 

 

 

ABSTRACT 
 

 

Today’s rapid growth of elderly populations, aging problems and the prevalence of 

obstructive sleep apnea (OSA) and other health related issues have affected many 

aspects of society. This has led to high demands for a more robust healthcare 

monitoring, diagnosing and treatments facilities. In Sleep Medicine, sleep has a key role 

to play in both physical and mental health. The quality and duration of sleep have a 

direct and significant impact on people’s learning, memory, metabolism, weight, safety, 

mood, cardio-vascular health, diseases, and immune system function. The gold-standard 

for OSA diagnosis is the overnight sleep monitoring system, using polysomnography 

(PSG). However, despite the quality and reliability of the PSG system, it is not well 

suited for long-term continuous usage due to limited mobility as well as causing 

possible irritation, distress, and discomfort to patients during the monitoring process. 

These limitations have led to stronger demands for the non-contact sleep monitoring 

systems. The aim of chapter 1 is to provide a comprehensive review of the current state 

of the non-contact Doppler radar sleep monitoring technology, provide an outline of 

current challenges and make recommendations on future research directions to 

practically realize and commercialize the technology for everyday usage. 

 

1 

C
h

a
p
t
e
r
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INTRODUCTION 
 

 

Obstructive sleep apnea (OSA) is a common and potentially lethal sleep disorder 

affecting at least 4% of adult males and 2% of adult females world-wide [1]. The 

statistics published in 2013 reported that the prevalence of OSA had increased between 

10–17% for adult males and 3–9% for adult females in the United States of America 

(USA) [10]. 

 

OSA is the cessation of airflow due to the collapse of the upper airway during sleep and 

can occur at any age from infancy to old age. The statistics shown that the male to 

female ratio is about 2:1 and probably affects prepubertal males and females at equal 

rate [11]. There is evidence that OSA is associated with ischemic heart disease, increase 

prevalence of stroke, coronary artery disease, atrial fibrillation (AF), chronic heart 

failure (CHF), and cardiac sudden death [12]. In addition, OSA may also be associated 

with increase in cholesterol, hypertension [13], type 2 diabetes [14, 15], and cancer 

mortality [16]. OSA can also lead to oxygen desaturations, oxidative stress, blood 

pressure, heart rate changes, and interrupted sleep [17, 18]. 

 

The gold-standard for OSA diagnosis is the overnight sleep monitoring system using 

polysomnography (PSG). This records the electric potentials of the brain, heart, eye 

movement, muscle activity, respiratory effort, airflow, oxygen saturation and leg 

movements throughout the night [19]. Despite the quality and reliability of the PSG 

system, it is not well suited for long-term continuous monitoring usage [6] due to 

limited mobility as well as causing possible irritation, distress, and discomfort to 

patients during the monitoring process [7]. These limitations have led to stronger 

demands for the non-contact sleep monitoring systems. 

 

Non-contact biosensor such as microwave Doppler radar for physiological vital signs 

monitoring had been discovered in the 1970s and there are published literatures 

regarding the non-contact assessments of respiratory and heart rates. However, the 



Page | 6  

 

reported achievements were based on “stationary” and “direct-facing” subject 

measurements, which is not an ideal scenario for the complex sleep environment. 

 

As documented in literatures, the issue with getting an accurate reading from a non-

contact monitoring device is due to background clutter, phase-nulling or null point, DC 

offsets, motion artefacts and electromagnetic interferences [7]. In addition, for 

continuous sleep monitoring in particular, the challenges are in the complex sleep 

environment, the noises associated with the unpredictability of body movements, body 

orientations, the changes in sleeping posture, multi-subjects cancellation, undesired 

harmonics and intermodulation [8, 9]. 

 

There had been numerous reviews, comparison studies [20-23], and smart systems 

designs [24, 25] regarding unobtrusive [26], nonintrusive [27] and non-contact 

physiological vital signs monitoring for sleep monitoring. However, a comprehensive 

review of the non-contact Doppler radar for health monitoring for OSA diagnosis has 

been limited. This is the primary motivation of chapter 1. 

 

The aim of chapter 1 is to provide a comprehensive review on the current state of the 

non-contact Doppler radar for sleep monitoring technology. This includes a review of 

the system theoretical fundamentals, signal processing methodologies, techniques, 

achievements and challenges. In addition, chapter 1 also discussed the potential future 

research directions, as well as, potential applications of this technology in the daily life. 

 

The searched topic used for the research is “sleep monitoring using non-contact Doppler 

radar”. The searched for relevant literatures was done across multiple databases and 

online journals; including the University of Technology Sydney (UTS, Ultimo NSW 

2007, Australia) databases, PubMed, ScienceDirect, IEEE Xplore, and many more. The 

inclusions and/or exclusions of articles were based on its relevance to the field of non-

contact Doppler radar physiological vital signs estimations and sleep indices 

predictions. 
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1.1 RADAR Overview 
 

1.1.1 Radar – Definition 
 

Radar is an acronym for RAdio Detection And Ranging. Radar is an object-detection 

system that transmits electromagnetic signal towards an object. The transmitted signal 

can be in the form of continuous-wave (CW), frequency-modulated continuous-wave 

(FMCW) or pulsed-wave (PW). The echo signal from an object is then used to 

determine the range, altitude, direction, and/or speed of the object [28]. The object’s 

information can be derived from the following radar characteristics: 

 

 Phase-shift – the time delay between the transmitted signal and the echo 

signal indicates the distance to the object. 

 

 Frequency-shift – the frequency shifts between the transmitted signal and 

the echo signal enables calculation of the object’s velocity. 

 

 Signal-strengths – the strength of the echo signal reveals the object’s radar 

cross section, providing information regarding the object’s size, geometry, 

and composition. 

 

Radar system operates at microwave frequencies and depending on its application, the 

frequencies can vary from a few megahertz (MHz) to well beyond optical frequencies.  

A major advantage of microwave frequencies is in its ability to penetrate through 

objects and allowing the detection of concealed objects. 

 

Radar was initially developed for military purposes such as surveillance and weapon 

control. However, radar is presently use in many significant civil applications such as 

aircraft, ships, spacecraft, environment remote sensing especially weather, law 

enforcement, physiological monitoring and many other applications. 
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1.1.2 Radar – Architecture 
 

Radar architecture typically consists of a transmitter, a duplexer, an antenna, a receiver 

and a signal processing component. The signal processing component can be 

implemented as hardware and/or software. An illustration of the radar architecture is in 

Fig. 1.1.2.1. 

 
 

Figure 1.1.2.1 – Radar Architecture 

 

 Transmitter – generates waveform at operating frequency, amplify the 

signal to the required transmission power and stabilize the signal for 

transmission. 

 

 Duplexer – is the “Protector” of the radar, which acts as a rapid switch to 

protect the “Receiver” when the “Transmitter” is active. When the 

“Transmitter” is inactive, the “Duplexer” redirects the weak echo signal to 

the “Receiver” rather than to the “Transmitter”. 

 

 Antenna – radiates the transmitter power into space and concentrates the 

energy into a narrow beam towards an object. The antenna size will depend 

in part, on the operating frequency of the radar system. 

Transmitter 

Receiver 

Duplexer 

Signal 

Processing 

Object 
Transmitted signal 

Echo signal 

Antenna 
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 Receiver – serve two purposes: (1) perform filtering to eliminate noise and 

other interfering signals from the desired signal and (2) amplify the desired 

signal sufficiently to enable the signal processing process to follow. 

 

 Signal Processing – there has been no general agreement about the signal-

processing function, however it is usually use to reject clutter and out-of-

band noise, while passing the desired signal and to derive information from 

the signal. 

 

Depending on the radar system configuration and the type of the transmitted signal, the 

detection of the range and/or angle to the target, the size and shape of the target and the 

linear and/or rotational velocity of the target can be obtained [28]. In addition, 

depending on which of these parameters are consider important to capture, as well as 

the range and the nature of the targeted object, different radar topologies may be 

adopted.  Here are some of the radar topologies: 

 

1. Continuous-wave (CW) – detects moving targets via the Doppler shift of the 

received signal, however, this system cannot detect the range. CW systems 

are commonly use when the rotational velocity of the target needs to be 

detected. Police radar systems typically sense the speed of cars with pure 

CW radar systems because they are difficult to detect and interfere with 

[29]. 

 

2. Frequency-modulated continuous-wave (FMCW) – detects both the range to 

and the velocity of the target. Altimeters and Doppler navigation devices 

use FMCW radar systems [29]. 

 

3. Pulsed-wave (PW) – enables the transmitting and receiving to occur at 

different times. This topology is use when there is difficulty in sensing the 

received signal in the presence of the transmitted signal because the echo 

signal is much smaller than the transmitted signal. PW radar is also useful 

when the peak power of the transmitted signal needs to be much higher than 

the average power [28].  There are three major groups of PW radar: (1) 
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pulse compression radar, (2) moving target indicator (MTI) radar, and (3) 

pulsed Doppler radar. 

 

1.1.3 Radar – A Brief Historical Journey 
 

In 1842, Christian Andreas Doppler, an Austrian physicist, was the first to observe and 

describe the frequency of light and sound waves that were affected by the relative 

motion of the source and the detector [30]. This phenomenon was latter known as the 

“Doppler Effect”. In 1864, James Clerk Maxwell, a Scottish mathematical physicist, 

pioneered the use of electromagnetic waves and developed the equations governing the 

electromagnetic waves. In 1886, Heinrich Hertz, a German physicist, expanded 

Maxwell’s work and demonstrated the transmission and reflection of radio waves [31]. 

The use of reflected electromagnetic waves to detect objects was not explored until the 

1920s when the “Doppler Effect” was used to detect moving objects. 

 

In 1924, Sir Edward Victor Appleton, an English physicist, used what is now refer to as 

the FMCW radar to prove the existence of and measure the distance to the ionosphere. 

The ionosphere is consider to be the first object detected by radar [31]. In 1937, Dr. 

Albert Hoyt Taylor, a radio engineer of the Naval Research Laboratory, known as the 

“Father of Naval Radar”, developed a radar system for ship tracking purpose and his 

invention was the first to successfully install on a ship [28]. In 1916, Sir Robert 

Alexander Watson-Watt of Britain developed a radar system to detect storms while 

working at the British Meteorological Office. Latter in 1935, Sir Watson-Watt joined 

British Air Ministry, Bawdsey Research Station, located in Bawdsey Manor near 

Felixstowe, Suffolk, and developed a radar system for detecting enemy aircrafts before 

they were visible. His invention patented as the first pulsed radar system. By 1939, 

Britain had a chain of radar stations along its coasts to detect enemy arrivals by air and 

by sea, which was instrumental in the World War II [31]. Additionally, imaging radars 

and sweep displays were also developed during World War II [28]. 

 

After the end of World War II, the use of radar by civilians began to proliferate. In the 

1950s, the first weather imaging radar systems were developed. In the 1960s, a network 

of Doppler weather radar systems, known as NexRad, was installed to observe rainfall 
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rate, mean radial velocity and the spread in wind speed. In the 1960s, the Federal 

Aviation Administration began to build radar systems for air route surveillance. 

Progressing through to the second millennium, airborne weather avoidance radar used 

the Doppler information to indicate turbulence, windshear and downbursts to 

commercial airline pilots. FMCW radar is also use in wind profiling to detect both the 

velocity and the location of the wind shifts [32]. 

 

In contrast, the use of the continuous-wave (CW) radar systems are limited because it is 

only effective in detecting moving objects and not effective in detecting stationary or 

slow-moving clutter. The CW radar is predominately use in detecting low-flying 

aircrafts that are lost in clutter with pulsed radar systems. The low-altitude Hawk radar 

system, first developed in the 1960s, uses CW radar to detect moving targets amidst 

clutter. The CW radar systems are commonly use in target illumination, such as in semi-

active radar-homing air-to-air missiles. Additionally, CW radar has a low probability of 

detection since it has a very narrow bandwidth [29]. 

 

 

1.2 Non-Contact Doppler Radar 

Architecture 
 

1.2.1 Heterodyne versus Homodyne Topology 
 

Heterodyning is a radio signal processing technique used to create new frequencies by 

combining or mixing two frequencies, these new frequencies are called “Heterodynes”. 

Heterodyne transceiver usually contains a separate local oscillator (LO) oscillating at 

the radar’s operating frequency (RF) to radiate and transmit signal (Tx). The received 

signal (Rx), filtered by a band-pass filter (BPF) and is mixed with another separate LO 

oscillating at different frequency compared to the RF. This means that the mixed signal 

is modulated on a non-zero intermediate frequency (IF) rather than being converted 

directly to baseband. The mixed signal is also filtered by another BPF, followed by a 

low noise amplifier (LNA), and demodulated directly or mixed down to baseband 
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before demodulation [7, 22, 33]. An illustration of the heterodyne transceiver topology 

is shown in Fig. 1.2.1.1. 

 

 
 

Figure 1.2.1.1 – Heterodyne Transceiver Topology 

 

The advantage of heterodyne topology is that the different received frequencies can be 

converted to the same IF prior to the amplification or filtering processes and the IF is 

also at a considerably lower frequency than the RF. However, a major disadvantage of 

the heterodyne topology is the high number of circuitry components and passives [7, 22, 

33]. 

 

Homodyne is often referring to as direct-conversion receiver (DCR), synchrodyne or 

zero-IF receiver. The received signal is mixed with a LO at the RF, i.e., the same 

frequency as its carrier, which converts the signal to baseband. The baseband signal is 

filtered using baseband BPF and is amplified using baseband LNA prior to baseband 

demodulator process or digitizer [7, 22, 33]. An illustration of the homodyne transceiver 

topology is shown in Fig. 1.2.1.2. 
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Figure 1.2.1.2 – Homodyne Transceiver Topology 

 

The advantage of homodyne topology is the simplification of the basic circuit 

complexity. However, a major disadvantage of homodyne topology is the amount of DC 

offsets introduced by the system, which can cause saturation for digitizer process [7, 22, 

33]. 

 

1.2.2 Continuous-Wave versus Pulsed-Wave Architecture 
 

The continuous-wave (CW) radar system continuously transmits and receives narrow 

bandwidth signal. The CW radar consists of a signal source that can be used for both 

transmitting and receiving. Either heterodyne or homodyne topology can be used in CW 

radar system. However, homodyne topology is more commonly use in CW. This radar 

system has the advantages of simplicity, potential of minimal spread in the transmitted 

spectrum and can unambiguously measure velocity of targets. In addition, CW radar 

simplifies the filters at each stage of the receiver, and the signal processing is seemingly 

straightforward if the velocity or displacement information is target. However, a 

disadvantage of the CW radar system is the inability to separate reflections temporally, 

causing DC offsets and low-frequency noises to be introduced in the received signal 

[34]. 

 

A pulsed-wave (PW) radar system requires a switch to pulse the transmitting and 

receiving signals and has a wider bandwidth. The advantage of the PW radar is in its 
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ability to instantaneously measure the target range, temporally separate transmitter 

leakages, and strong short-range echoes from the weaker echoes of long-range targets. 

However, a disadvantage of the PW radar system is the ambiguity in both the range and 

velocity measurements. In non-contact physiological vital signs monitoring, the target is 

typically at the same or shorter range than the nearest clutter therefore, the PW radar 

advantage is limited to the elimination of leakage. Since range measurements does not 

aid the physiological motions monitoring, the increased in complexity of the PW radar 

over the CW radar does not result in a commensurate increase in benefits [34]. 

 

1.2.3 Single versus Quadrature Architecture 
 

The Doppler radar transceivers can be build based on a single-channel or a quadrature 

design. The performance of single-channel, known to be sensitive to the position of the 

targets and in the worst case of null-point, produced virtually no phase-modulated signal 

for the estimation of physiological motions. The quadrature transceiver is mainly use to 

mitigate the null-point issue in single-channel transceiver by selecting the better of the 

quadrature, i.e., I-channel (in-phase) or Q-channel (90° out-of-phases) for optimum 

signal demodulation [7, 33, 35]. The illustrations of the single-channel and quadrature 

designs are in Figure 1.2.3.1 and Fig. 1.2.3.2. 

 

 
 

Figure 1.2.3.1 – Single-Channel Architecture 
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Figure 1.2.3.2 – Quadrature Architecture 

 

 

1.3 Non-Contact Doppler Radar Principle 
 

1.3.1 Theoretically Analysis 
 

The Doppler radar for physiological vital signs monitoring was discovered in the 1970s. 

The use of the Doppler radar was demonstrated for detection of respiratory rate in 1975 

and heart rate in 1979. Since the 1980s, the use of pulsed-wave (PW), continuous-wave 

(CW), frequency-modulated continuous-wave (FMCW), linear-frequency-modulated 

continuous-wave (LFMCW), and ultra-wide band (UWB) radars have also been 

explored for physiological sensing [34, 36-40]. 

 

The basic principle of Doppler radar is to transmit a microwave signal towards a target. 

The transmitted frequency of the microwave signal is usually within the unlicensed, not 

unregulated Industrial, Scientific, and Medical (ISM) radio bands, e.g., 5.8 GHz, 10 

GHz, or 24 GHz. The phase-modulated of the backscattered signal is then measure to 
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estimate the periodic motions between the target and the source of transmission. This 

technology utilized the principle known as the “Doppler Effect”. 

 

The “Doppler Effect” occurs when there is a shift in the frequency of the signal, either 

in the transmitted or echo signal, due to relative motion between the transmitter and the 

receiver. In other words, when the target has a time-varying position with a net zero 

velocity, the echo signal is phase-modulated proportionally to the target variation [36, 

41, 42]. 

 

In a general case, the Doppler shift in frequency can be expressed as [29] [43] [44]: 

 

𝑓𝑑(𝑡) =
2𝑓

𝑐
𝑣(𝑡) =

2𝑣(𝑡)

𝜆
 (1) 

 

The time-varying phase shift proportional to the displacement “x(t)” can be expressed as 

[45] [44] [46]: 

 

𝛷𝑟(𝑡) =
2𝑓

𝑐
2𝜋𝑥(𝑡) =

4𝜋𝑥(𝑡)

𝜆
 (2) 

 

Let’s assume that a continuous-wave Doppler radar transmit a single-tone signal called 

“T(t)”, the equation representing the transmitting signal can be expressed as [43] [47] 

[48] [49] [50]: 

 

𝑇(𝑡) = 𝐴𝑇𝑐𝑜𝑠(2𝜋𝑓𝑡 + ∅(𝑡)) (3) 

 

Where: 

 

 AT – the amplitude of the transmitted signal in voltage (V). 

 f – the oscillation frequency in Hertz (Hz). 

 t – the elapsed time in second (sec). 

 ∅(t)  – the phase noise of the oscillation in radian (rad). 
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Let the distance from the target to the continuous-wave Doppler radar transmitter be 

denoted as “d0”, and the time-varying position with a net zero velocity of the echo 

signal be denoted as “x(t)”. The equation representing the distance travelled by the echo 

signal between the transmitter source and the target can be expressed as [43]: 

 

𝑑(𝑡) = 𝑑0 + 𝑥(𝑡) (4) 

 

As the human chest-wall has a time-varying displacement, the distance travelled by the 

signal at the time of reflection is given as [43]: 

 

𝑑(𝑡𝑟𝑓) = 𝑑 (𝑡 −
𝑑(𝑡)

𝑐
) (5) 

 

The time delay by the time the signal is received can be expressed as [43]: 

 

𝑡𝑑 =
2𝑑 (𝑡 −

𝑑(𝑡)
𝑐 )

𝑐
=

2(𝑑0 + 𝑥 (𝑡 −
𝑑(𝑡)
𝑐 ))

𝑐
 

(6) 

 

Let the echo signal received by the receiver be denoted as “R(t)”, which is the time-

delayed version of the transmitted signal given in equation (3). The representing 

equation for “R(t)” can be expressed as [43]: 

 

𝑅(𝑡) = 𝐴𝑅𝑐𝑜𝑠[(2𝜋𝑓(𝑡 − 𝑡𝑑) + ∅(𝑡 − 𝑡𝑑) + 𝜃)] (7) 

 

Substituting for “td” from equation (6) in equation (7), “R(t)” becomes: 

 

𝑅(𝑡) = 𝐴𝑅𝑐𝑜𝑠

[
 
 
 
 

2𝜋𝑓

(

 
 
𝑡 −

2(𝑑0 + 𝑥 (𝑡 −
𝑑(𝑡)
𝑐
))

𝑐

)

 
 
+ ∅

(

 
 
𝑡 −

2(𝑑0 + 𝑥 (𝑡 −
𝑑(𝑡)
𝑐
))

𝑐

)

 
 
+ 𝜃

]
 
 
 
 

 (8) 

 

The wavelength “λ” in meter (m) is define as the velocity of the wave “c” divided by 

the frequency “f” and can be expressed as: 
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𝜆 = 
𝑐

𝑓
 (9) 

 

Equation (8) can now be represented as: 

 

𝑅(𝑡) = 𝐴𝑅𝑐𝑜𝑠 [2𝜋𝑓𝑡 −
4𝜋𝑑0
𝜆

−
4𝜋𝑥 (𝑡 −

𝑑(𝑡)
𝑐
)

𝜆
+ ∅(𝑡 −

2𝑑0
𝑐
−
2𝑥 (𝑡 −

𝑑(𝑡)
𝑐
)

𝑐
) + 𝜃] (10) 

 

There are two components in equation (10) that can be neglected: 

 

 4𝜋𝑥 (
𝑑(𝑡)

𝑐
)  –  this is because the period of the chest movement for both 

respiratory and heart rates has a time period much greater than “d0 / c” [43]. 

 

 ∅(
2𝑥(𝑡−

𝑑(𝑡)

𝑐
)

𝑐
)  –  this is because the displacement of the chest movement 

generally in the order of 1 centimeter, which is much smaller compared to 

the distance between the transmitter and the target ranging from 50 

centimeters to 2 meters [43]. 

 

Finally, the echo signal received by the receiver denoted as “R(t)” can be represented as 

[43] [47] [48] [49] [50]: 

 

𝑅(𝑡) ≈ 𝐴𝑅𝑐𝑜𝑠 [2𝜋𝑓𝑡 −
4𝜋𝑑0
𝜆

−
4𝜋𝑥(𝑡)

𝜆
+ ∅ (𝑡 −

2𝑑0
𝑐
) + 𝜃] (11) 

 

𝜃 = 
4𝜋𝑑0
𝜆

+ 𝜃0 (12) 

 

Where: 

 

 AR – the amplitude of the received signal in voltage (V). 

 f – the oscillation frequency in Hertz (Hz). 

 t – the elapsed time in second (sec). 
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 d0 – the distance from the target to the continuous wave Doppler radar 

transmitter in meter (m). 

 λ – the wave length of the signal in meter (m) 

 c – the signal propagation velocity in meter per second (ms-1). 

 ∅(t) – the phase noise of the oscillation in radian (rad). 

 θ – the constant phase-shift determined by the distance to the target in 

radian (rad). 

 θ0 – the contributing phase-shift of the mixer and the antenna. 

 

In the case of physiological vital signs monitoring, the target object is usually the 

subject’s chest or abdominal region. The echo signal is then demodulate in the receiver 

to obtain information regarding the subject’s chest or abdominal movements. Typically, 

the movements contain information for both respiratory and heart rates [36, 41, 42]. It 

has also been reported that abdominal movements cause stronger Doppler shift due to 

higher amplitude and deeper displacement compared to chest movements [41]. 

 

The demodulated baseband quadrature outputs I and Q channels are generally expressed 

as: 

 

𝐼(𝑡) = 𝑉𝐼 + 𝐴𝐼𝑐𝑜𝑠(𝜃0 +
4𝜋𝑑0
𝜆

+
4𝜋𝑥(𝑡)

𝜆
+
4𝜋𝑦(𝑡)

𝜆
+ Δ𝜙(𝑡)) (13) 

  

𝑄(𝑡) = 𝑉𝑄 + 𝐴𝑄𝑠𝑖𝑛(𝜃0 +
4𝜋𝑑0
𝜆

+
4𝜋𝑥(𝑡)

𝜆
+
4𝜋𝑦(𝑡)

𝜆
+ Δ𝜙(𝑡)) (14) 

  

Δ𝜙(𝑡) = 𝜙(𝑡) − 𝜙 (𝑡 −
2𝑑0
𝑐
) (15) 

 

Where: 

 

 VI & VQ – the DC offsets of the channels in volt (V). 

 AI & AQ – are the amplitude gain constants of the channels in volt (V). 

 θ0 – the initial constant phase-shift of the system in radian (rad). 
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 λ – the wave length of the signal in meter (m), which equal the signal 

propagation velocity “c” (ms-1) divided by the radar operating frequency in 

Hertz (Hz). 

 c – the signal propagation velocity in meter per second (ms-1), which in this 

case is equivalent to the speed of light, i.e., 299,792,458 ms-1. 

 d0 – the initial distant between the radar and the subject’s chest or abdomen 

in meter (m). 

 ∅(t) – the phase noise of the system oscillation in radian (rad). 

 x(t) – the function of respiratory that causes change in the chest 

displacement in meter (m). 

 y(t) – the function of heart that causes change in the chest displacement in 

meter (m). 

 

Typically, Doppler radar is design for measuring velocity of moving targets and 

therefore the scope of its applications are more restricted. However, it is not limited to 

respiratory and/or cardiac activity monitoring in a single subject [51]. The information 

for both respiratory and heart rates can be extracted from the phase-modulated by the 

time varying physiological periodic movement of the chest-wall. Nevertheless, such 

physiological motions are elastic, deformable with clothing which can create significant 

noise issue and will adversely affect the sensitivity of the system [41]. An illustration of 

the non-contact Doppler radar setup in a sleep laboratory or at home is in Figure 1.3.1.1. 

 

 
 

Figure 1.3.1.1 – Non-Contact Doppler Radar Setup in a Sleep Laboratory or at Home 



Page | 21  

 

The physiological parameters and sleep indices that are feasible for estimation and/or 

prediction using non-contact microwave Doppler radar is in Table 1.3.1.1. 

 

Physiological Parameters Reference Comment 

Respiratory rate [9, 52-57] Ref. [56] and [57] are the 

author’s published works 

presented in chapter 3 and 

chapter 7 of the Thesis. 

 

Ref. [58] is the author’s 

published work presented in 

chapter 4 and chapter 7 of the 

Thesis. 

 

Ref. [59] is the author’s 

published work presented in 

chapter 7 of the Thesis. 

Heart rate [8, 9, 55-57] 

Heart rate variability [60] 

Pulse pressure [61] 

Intrapulmonary pressure [58] 

Tidal volume [58, 62, 63] 

Sleep/wake pattern [6, 64] 

Apnea-hypopnea index [21, 65, 66] 

Cheyne-Stokes Respiration [67] 

Body orientations [59, 68] 

 

Table 1.3.1.1 – Parameters That Can Be Estimated Using Non-Contact Doppler Radar 

 

The applications of the Ultra-Wide Band (UWB) radars, utilizing the “Doppler Effect” 

principle for sensing physiological vital signs, reported in literatures mainly focus on 

through-wall life-signs detection targeting respiratory and heart rates. The most 

challenging task is the registration of respiration activity of an unconscious person. The 

other focus is aimed at sensing some key physiological bio-markers of astronauts during 

intra-vehicular and extra-vehicular activities [69, 70]. 
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1.4 Sources of Noise in Non-Contact 

Doppler Radar 
 

1.4.1 Clutter and DC Offset 
 

In a radar system, clutters are generally echoes from all objects other than the target. 

Clutter detected at the receiver is commonly in the form of a single-tone component of 

the same frequency as the local oscillator (LO), however, with a different phase offset. 

The constant phase-shift is the function of the surface reflectivity and the size of the 

stationary portion of the target. When clutters are mixed with the LO, it will result in a 

DC offset in the baseband signal, and it is therefore difficult to separate in the frequency 

domain. If there is a significant DC component present at the signal output, the output is 

no longer linearly proportional to the displacement [71, 72]. As a result, the DC offset 

can saturate and desensitize the receiver in conventional CW radar system and this is a 

critical issue [73]. 

 

1.4.2 Phase-Nulling or Null-Point 
 

In a Doppler radar system, the most important limitation in measuring periodic motions 

such as the respiratory and the heart rate, is the presence of phase-nulling or null-point. 

The null-point occurs when the received signal is either in-phase or 180° out-of-phases 

compared to the local oscillator [42]. The null-point occurs at the target’s distance with 

every quarter of the radar transmitted signal wave-length (λ/4), and in the worst case 

produced virtually no phase-modulated signal for the estimation of physiological 

motions [35, 42, 73]. 

 

1.4.3 Others Sources of Noise 
 

Beside clutters, other issues such as DC offsets, phase-nulling contributions, motions 

artefacts and electromagnetic interferences are also posing as a challenge to the signal 

processing of the Doppler radar signals [7, 74]. Another major challenge in sleep 
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monitoring application is the noise associated with the unpredictable body movements, 

body orientations, changes in sleeping posture, multi-subjects cancellation, undesired 

harmonics and intermodulation [8, 9, 56]. 

 

 

1.5 Non-Contact Doppler Radar Signal 

Processing 
 

It has been decades since the first observation of non-contact Doppler radar in 

measuring physiological motions such as respiratory and heart rates. However, to date, a 

complete understanding of the mechanism and causes of the observed modulations, 

frequency penetrations and body electromagnetic radiation absorptions are not yet fully 

achieved. 

 

There had been numerous attempts made either in the form of experimental or 

simulation to investigate the contributions of blood perfusion, internal body organ 

movements, body surface movement, and black-body radiation (due to temperature 

variations) to the phase-modulated of the received signal [75]. However, the most 

dominating theory on the cause of the observed modulations is still believe to be the 

small periodic movements of the chest wall (due to respiratory and heart motions) 

resulting in a small phase changes in the received signal. 

 

The single and multiple Doppler radar systems were explored in the estimation of the 

physiological vital signs. Advances in the hardware circuitry design, antenna 

exploratory, signal processing techniques, and the classification algorithms had also 

been considered. However, the main challenge in using the Doppler radar systems for 

physiological measurement is still in the analysis and processing of the received signal 

data [76]. 
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1.5.1 Clutter and DC Offset Cancellation 
 

Earlier work on the Doppler radar system used a single antenna with a circulator to 

isolate the transmitting and receiving paths [60], however a major disadvantage in using 

a circular was self-mixing, which translate to DC offsets on the output signal [55]. The 

dual-antennas with separated transmit and receive paths had also been explored with the 

advantage of reduced DC offsets [35, 77]. 

 

Low-pass filters, high-pass filters, notch filters, and complex digital signal processing 

algorithms had also been considered for noise filtering and DC offsets elimination [35, 

36, 42, 77-79]. The reported filters are types of Sallen-Key [77, 80-82], Elliptic [78, 83], 

Butterworth and RC passive filters [42, 72, 76, 84]. The Phase and Self-Injection-

Locked (PSIL) oscillator with dual-tuning voltage-controlled oscillator were reported as 

achieving high signal-to-noise ratio [73]. The filtering at the signal processing level, 

including Finite Impulse Response (FIR) with Kaiser window [53, 77, 85], Infinite 

Impulse Response (IIR) [38] and Savitzky-Golay Polynomial Least Squares (SG) [41] 

filters had also been proposed. 

 

There were other phase-modulation methods proposed to address the DC offset. These 

include using arctangent demodulation technique with DC offset calibrated through 

empty-room measurements [72], or at predetermined displacement range and periodic 

motions measurements [86]. However, these methods may not be valid because the DC 

offset value will depend on the surface reflectivity, the size of the stationary portion of 

the target and it cannot be calibrated other than the subject under test [72]. Complex 

signal demodulation method using Bessel’s functions were explored to remove DC 

offset; however, it is still affected by the even order harmonics that are present in the 

baseband signal [87]. 

 

1.5.2 Phase-Nulling Cancellation 
 

The main limitation in the Doppler radar measurement of periodic motions is the 

presence of phase-nulling or null-point. The most prevailing solution is the quadrature 

(I/Q) architecture, where at least one of the outputs I/Q is not at null-point. Channel 
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selection is then required to select the most optimum channel for processing at any 

given point in time [36, 41, 73]. However, the I/Q output channels are not always in 

quadrature because of the inherent amplitude and phase imbalance due to the imperfect 

system components [86]. The contribution of extra flicker noise caused by the mixers 

also contribute to the degradation of the detection accuracy [73]. 

 

The arctangent demodulation method combines the in-phase and quadrature (i.e., ±90° 

out-of-phases) baseband signals into a single channel to eliminate null-point. The 

equation that governs the extraction of angle/phase from I and Q channels is provided in 

(16), where Фr(t) is the demodulated Doppler angle/phase in radians. 

  

𝛷𝑟(𝑡) = 𝑡𝑎𝑛−1 (
𝑄(𝑡)

𝐼(𝑡)
) (16) 

 

The successful arctangent demodulation depends on the correction of channel 

imbalances and the removal of undesired DC offsets [88]. Channel imbalances can be 

corrected by using Gram-Schmidt procedure [88], however complex calibrations on the 

DC offsets are required for accurate demodulation [36, 73]. 

 

The Self-Injection-Locked (PSIL) oscillator with dual-tuning, voltage-controlled 

oscillator and single-channel receiver topology, using path-diversity transmission 

(where one path is 90° out-of-phases) was proposed to address the null-point issue. The 

path-diversity proposal is the periodic switching, to ensure at least one path is at optimal 

point while other experienced a null-point. The reported advantage of path-diversity 

transmission is the reduced average transmitted power. In other words, PSIL with path-

diversity is more similar to the pulsed-wave radar topology [73]. 

 

There are several other radar topologies explored to overcome the phase-nulling issue. 

Topologies such as phase-diversity using phase-shifted two-channel receiver, two-

channel receiver with displaced antennas, single-channel receiver with variable phase-

shifter, and frequency-diversity (e.g., double sideband) transmission (to ensure at least 

one of the sidebands is not at null-point) were reported [42]. 
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A “Relative Demodulation1” technique had also been proposed to address the phase-

nulling and DC offsets issues in quadrature (I/Q) architecture demodulation. This 

technique pivoted from the conventional displacement and/or phase-shift analysis to 

introduce derivatives analysis. The “Relative Demodulation” technique provides real-

time DC offsets, clutters, and null-points automatic elimination. The technique also 

approximates the instantaneous derivatives of the subject’s chest periodic motions with 

the separation of the instantaneous subject’s respiratory and heart periodic 

displacements [57]. The “Relative Demodulation” equation that governs the extraction 

of the chest motions velocity (v(t)) is in (17) and (18). 

  

𝑣(𝑡) =
𝜆

8𝜋
(

𝑘𝑄′(𝑡)

(𝐼(𝑡) − 𝑉𝐼)
−

𝐼′(𝑡)

𝑘(𝑄(𝑡) − 𝑉𝑄)
) (𝑚𝑠−1) (17) 

  

𝑘 =
𝐴𝐼
𝐴𝑄

 (18) 

 

Where: “AI” and “AQ” are the amplitude gain constants of I and Q channels. 

 

1.5.3 Multi-Targets and Motions Artefacts Cancellation 
 

Even through the literatures that are reported to have addressed noises associated with 

the Doppler radar for physiological measurements in a single-subject, the focus on 

addressing multi-targets cancellation methodologies has rather been limited. 

 

One of the limitations of a non-contact Doppler radar system when measuring 

physiological vital signs is in its sensitivity to non-physiological motions of the subject, 

such as any background motions, body movements, body orientations, and multi-targets 

motions. For these types of interference, once occurred at the same frequency band as 

that of the physiological motion, it is extremely difficult to remove using simple 

filtering techniques. The consequence is the degradation of accuracy in the estimation of 

the physiological vital signs. 

 

                                                           
1 “Relative Demodulation” is the author’s published work in [57] and is presented in chapter 3 and chapter 7 of the Thesis. 
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In an attempt to address the multi-targets cancellation problem, a technique referred to 

as Generalized Likelihood Ratio Test (GLRT), based on a model of the heartbeat was 

proposed to firstly distinguish between the presence of 2, 1, or 0 subjects using a single-

antenna Doppler radar system. Using multiple antennas will also result in the detection 

of up to 2N-1 subjects. The use of a single antenna method is based on the subject’s 

heartbeat signature in the frequency domain, and the use of the multiple antennas 

method is based on the angle of signal arrival. The results demonstrated the theoretical 

concept, however the accuracy and reliability were not consistent when this method is 

used [89]. 

 

Multiple transceivers system had been reported to cancel the noise caused by random 

body movements. Additionally, the use of differential front-end Doppler radar operating 

at two different frequencies, with dual helical antennas, had also been reported to 

improve the performance in cancelling motion artefacts [90]. 

 

An alternative approach to quantify the physical characteristics of the subjects (such as 

orientations, body size, body mass index, sleeping positions, body responses to 

illuminating waves) had also been explored through the vital signs cross section 

approach [71, 91]. This approach considers the similarity between the conventional 

radar cross section affected by target geometry to the orientations and material 

composition. Regardless of the motions of the respiratory rate or heart rate, the vital 

sign cross section remains unchanged. This is a key element in human cardiopulmonary 

activity and can be used to distinguish the front and side torso of the measuring subject. 

The indicated body position can also be linked to the use of multi-targets cancellation 

and random body movements. 

 

Arctangent demodulation and complex signal demodulation method using Bessel’s 

functions and dual-radar systems had been reported to address the random body 

movements and DC offsets issues. The complex signal demodulation is simpler in 

implementation, robust in DC offsets elimination, and is more favorable for random 

body movement cancellation. However, the arctangent demodulation has the advantage 

of eliminating the harmonic and intermodulation interference at high frequencies using 
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high gain antennas. The common challenge faced by these methods is the present of 

even order harmonics in the baseband signal [7, 87, 92]. 

 

The Empirical Mode Decomposition (EMD) noted in the literatures as an effective 

method for analyzing non-stationary and non-linear signals. Its application for non-

contact Doppler radar system in separating and removing motions artefacts was also 

proposed. As documented in the literatures, EMD can be used for breaking down the 

radar signal output into its Intrinsic Mode Functions (IMFs). The removal of the 

motions artefacts interferences is achieved by selecting the proper IMFs. However, the 

proposed EMD application has its limitation in handling the interferences that occurred 

at frequencies very close to the heart rate. EMD is also limited in removing 

interferences of the same type from the background objects [93]. 

 

A separation of mixed respiratory signals between two individuals, using dual-radar 

system and applying Blind Source Separation (BSS) signal processing technique had 

also been proposed. The method was confirmed using simulated and experimental 

results, however, the sample data was deemed to be too low to provide convincing 

evidence of the reported accuracy and reliability [94]. 

 

Chen et al. proposed a separation of mixed respiratory signals between two individuals 

using dual-radar system and Blind Source Separation (BSS). The method was validated 

against simulated and experimental results; however, the sample data was too low to 

provide convincing evidence regarding the accuracy and reliability of the method. [94]. 

 

The Cyclostationary approach for body movement cancellation using the Doppler radar 

system had previously been proposed and the theory is believe to be one of the most 

suitable methods for analyzing signals that have a cyclic pattern of statistical properties. 

The advantage of this approach is the robustness of the cyclostationary processing in an 

environment with high noise and interferences. The numerical results demonstrated that 

the vital signs can be extracted as cyclic frequencies, independent of signal to noise 

ratio (SNR) and without any filtering or phase unwrapping. Experimental results also 

illustrate that when applying cyclostationary theory to a complex radar signal, the 

respiratory and heart rates can accurately be estimated in an environment with high 
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noise volume, long ranges and weak signals. This includes high body movement 

artefacts without the need of phase unwrapping or demodulation [95]. 

 

A frequency domain signal processing method had been reported as being able to 

extract both respiratory and heart rates for single and multiple subjects [96]. For a 

single-subject, the signal processing method utilized a digital FIR filter with Kaiser 

Window functions to achieve a relatively smooth pass-band amplitude response and to 

increase the stop-band attenuation. For two-subjects, two-radars are used with natural 

gradient Blind Source Separation (BSS) algorithm to separate the mixed signals in real-

time. The average respiratory rate error percentage ranges between 4.25–6.6% and the 

heart rate is approximately around 6.25%. The paper noted that the respiratory and heart 

rates can be successfully extracted from a single subject, and mixed signals can be 

separated with two subjects. However, the number of population samples is too low and 

could not effectively conclude the robustness, accuracy or reliability of the method. 

 

 

1.6 Categories of Non-Contact Doppler 

Radar Signal Processing Techniques 
 

To-date, signal processing techniques being investigated and reported in literatures for 

the non-contact Doppler radar can be categorized into the following four categories: 

 

1. Time-Frequency Analysis – this methodology uses time-series and 

frequency domain as the basis of signals analysis. 

 

2. Numerical Analysis – this methodology uses numerical techniques such as 

statistical, transformation and complex frequency as the basis of signals 

analysis. 

 

3. Classification and Training – this methodology utilizes machine learning 

methodologies and algorithms as the basis of signals analysis and 

prediction. 
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4. Other Methodologies: these methodologies utilize experimental and 

mathematical modelling as the basis of signals analysis and estimation. 

 

The subsequent sub-sections provide details on each of the identified categories. 

 

1.6.1 Time-Frequency Analysis 
 

Numerous works had been explored using the time-domain autocorrelation with peak 

detection, autocorrelation output with Fast Fourier Transform (FFT) [35, 77] and 

statistical analysis [36, 41, 79] to detect both respiratory and heart rate peaks. The time-

domain peak detection method, with the addition of smoothing methods, such as the 

Newton relation, had been reported in the literatures as having achieved the detection of 

the variability of peaks interval, revealing information such as heart rate variability 

(HRV) for diagnosis and prognosis [36, 60, 97]. 

 

Frequency-domain analysis applying FFT or alternative Chirp Z-Transform (CZT) [42] 

with or without Fourier Spectral Subtraction (FSS) [98], had been proposed to identify 

the highest peak on the frequency-domain at a specific bandwidth targeting respiratory 

or heart rate. The highest peak at the frequency detected correlates to the rate of the 

targeted physiological measurement such as respiratory or heart rates. The ranges of the 

reported filter bandwidth frequencies for respiratory rate are from 0.1–0.5 Hz which is 

equivalent to 6–30 breaths per minute. The heart rate frequencies are from 0.8–2.0 Hz 

which is equivalent to 48–120 beats per minute [7, 35, 41, 56, 57, 76, 77, 79, 81, 85]. 

 

Another time-frequency domain analysis proposed was the application of Gabor 

transform, which is basically a Short Time Fourier Transform (STFT) component 

selection and Gabor expansion, to identify patterns in the time-frequency domain and to 

extract vital signs such as respiratory and heart rates. This approach differs from the 

conventional approach of phase observation in the baseband signal. The experimental 

results noted an accuracy of less than three beats per minute error in measuring heart 

rate with motion artefacts. However, identifying a best fit pattern for the vital signs in 

time-frequency domain, especially for respiratory, still poses a difficult challenge for 

this approach [99]. 
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Additionally, it had also been reported in literatures that since there is a large difference 

in respiratory and heartbeat induced displacements, the simultaneous measures of the 

respiratory and heart rates will require a large dynamic range to cover the substantial 

difference in signal levels. The higher order harmonics of the respiratory rate near the 

heart rate may appear and can cause an error in the heart rate measurement. Complex 

signal demodulation without the need for DC offset calibration in the frequency-domain 

had also been proposed to eliminate the harmonics interference problem. Experimental 

results demonstrated that when the harmonics of the respiration signal is strong, the 

proposed harmonics cancellation method can reduce the average error from 15.9% to 

3.2% [100]. 

 

There are studies which reported some commendable achievements, such as error of 

less than 0.5 breath per minute for respiratory rate and one beat per minute for heart rate 

[35, 36, 77]. In addition, the achieved accuracy of the Doppler radar in measuring 

physiological parameters, such as respiratory rate is 92% [56], heart rate is 88% [56, 76, 

97] to 91% [57], and with the addition of harmonics interference, the average error can 

be reduced further to 3.2% [100]. However, conventional FFT may not always be able 

to reliably separate the rich sinusoidal components due to smearing and leakage 

problems, particularly from the limited data samples [90]. The number of samples under 

study is also often too low to conclusively verify and validate the accuracy, reliability, 

and robustness of the proposed methods. 

 

1.6.2 Numerical Analysis 
 

There are a number of discretized numerical signal processing algorithms reported for 

the physiological vital signs estimations [101]. The first and simplest approach reported 

is the Mean of Signals (MEAN) method, with the assumption of phase changes varying 

between 0–2π uniformly and the offset is stable in a single window. The second 

approach is the Least Squares (LS) method, where the offset is fixed in small duration 

and the selected data samples fitted on a circle (the circle is plotted on Lissajous curve). 

The third is the Hough Transformation (HOUGH) method, applicable for data samples 

that distributed inhomogeneously, for example, when the target has no motion and 

caused biased estimation. The fourth approach is the Particle Filter (PF) method, a kind 
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of Bayesian Filter, which features robust estimation of the state and less restriction on 

the filter design. The fifth approach is the Direct Phase Estimation, based on Vector 

Difference (DIFF) method to estimate the phase changes by calculating the angle 

differences in which the estimation of offsets is not required. The experimental results 

demonstrated that the phase estimation based on LS method, is the most preferable 

approach for respiratory measurements and with respect to accuracy and calculation 

time. 

 

The Extended Kalman Filter (EKF) approach for both respiratory and heart rates 

estimation had also been proposed [102]. The proposed EKF is a non-linear extension 

of the earlier conventional Kalman Filter (KF) proposal. The EKF algorithm is base on 

defining a state space model of the quadrature I/Q signals in combination with EKF to 

simultaneously estimate the respiratory and heart rates using unified statistically 

approach. The experimental results illustrate an acceptable level of accuracy with an 

error of approximately 1.7 beats per minute for heart rate. However, there is still a lack 

of dynamic modelling for other sources of noise and the comparison against other 

current methodologies and techniques [88]. 

 

The use of the Wavelet Transform (WT) [103], Wavelet Filter [104], Wavelet Packet 

Decomposition (WPD) [56], Discrete Wavelet Transform (DWT) and Complex Wavelet 

Transform (CWT) with Morlet mother wavelet [38] had also been proposed in 

literatures for the respiratory and heart rate estimations. The advantage of the Wavelet 

analysis over conventional methods, such as FFT, is that Wavelet design to operate on 

non-stationary signals and retains time and frequency information, providing good 

frequency resolution at lower frequencies. The experimental results demonstrate that the 

wavelet frequency has an absence of harmonics, which is an advantage over the 

conventional FFT. Harmonics in conventional FFT can cause difficulty in detecting 

heart rates when the third and fourth harmonics of respiratory rate overlaps with the 

heart rate [103]. 

 

Another approach reported in literatures is the parametric and cyclic optimization 

approach referred to as the RELAX algorithm. RELAX is a spectral estimation and it is 

computationally efficient in comparison to many other spectral estimation algorithms. 
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However, it is still more computationally demanding than the conventional 

Periodogram. Both theoretical and experimental results have demonstrated success in 

mitigating the effects of smearing and leakage problems of the conventional 

Periodogram. The smearing and leakage problems are often due to limited data length of 

both respiratory and heart rates [105]. 

 

The Lomb-Scargle Periodogram had also been reported in literatures for respiratory rate 

estimation. An application of the Lomb-Scargle Periodogram as signal processing 

technique to identify respiratory rate in sleeping subjects had also been reported. When 

the Lomb-Scargle Periodogram is used, the corrupted signals, which are often cause by 

intermittent movements or motion artefacts, can be excluded by treating those portions 

as missing data segments. The results demonstrated that the Lomb-Scargle Periodogram  

had successfully used evenly sampled data, with periods of missing data, to achieve an 

average error of less than 0.4 breath per minute and standard deviation of 0.3 breath per 

minute for respiratory rate estimation [106]. 

 

1.6.3 Classification and Training 
 

The Support Vector Machine (SVM) had been explored for the detection of aspiration 

and apnea events for those subjects in lying position [107]. The calculation of the SVM 

utilized the training sets of three portions and one test data portion with the assumption 

of near ideal low-disturbance environment. However, the results did not support the 

accuracy and reliability of the machine. 

 

Sleep stages classification algorithm based on bodily movements and the variability of 

the respiratory changes had been proposed for the sleep/wake pattern recognition. The 

long-noted characteristic of the respiratory rate did appear to be steadier in both 

frequency and amplitude during the rapid-eye-movement (REM) stage compared to the 

wakefulness stage. The body movements also changed between sleep stages, with the 

proposed algorithm demonstrating an accuracy level of 69% for the awake state and 

88% for the sleep stages. In general, there is good performance results demonstrated for 

this classification method in recognizing the five standard sleep stages (Stages I-IV and 

REM) [6] (sleep stages that are prior to AASM classification in 2007). 
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Additionally, a linear discriminants classifier based on bio-motions had also been 

proposed for sleep/wake pattern recognition. This method applied the initial training 

sets of six recordings to train the linear discriminants classifier in classifying sleep/wake 

states in sleeping subjects. The experimental results reported an overall per-subject 

accuracy of 78% [64]. 

 

Linear discriminants classifier-based detection algorithms using feature extraction, 

vector transformation and pattern recognition techniques had also been proposed to 

recognize Cheyne-Stokes respiration (CSR) and apnea-hypopnea index (AHI) events. 

The detection of CSR & AHI via non-contact Doppler radar is relatively new and very 

few attempts had been made. The experiments demonstrated promising result with 

correlation co-efficient of 0.87 with %CSR > 5.0 and 0.8 with AHI > 15.0. However 

tested samples were too low and require a larger study cohort to confirm the diagnostic 

value [66, 67]. 

 

1.6.4 Other Methodologies 
 

The other methodologies category includes the DC reconstruction and calibration 

techniques that are proposed to extract the tidal volume measurement from the non-

contact Doppler radar signal [62]. The experiments indicated that there is a linear 

relationship between lung volume and chest-wall displacement during unobstructed 

breathing. The relationship is then used to detect and estimate the lung volume or tidal 

volume measurement based on the output of the non-contact Doppler radar signal. The 

proposed DC reconstruction employs the integration of the AC-coupled signal and the 

calibration of the signal amplitude as a ratio against the spirometer sensors. The 

experimental results reported an average mean difference of 38.9 mL in seated subjects 

and 23.5 mL in supine subjects. 

 

A pulmonary ventilation mathematical model and algorithm2 that defines the 

relationship between the intrapulmonary pressure and the chest displacement had also 

been proposed [58]. The mathematical model and algorithm estimate the tidal volume 

from the non-contact Doppler radar I/Q signals from a set of 24 chronic heart failure 
                                                           

2 Pulmonary ventilation mathematical model and algorithm is the author’s published work in [58] and is presented in chapter 4 
and chapter 7 of the Thesis. 
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(CHF) patients with median sleep duration of 7.76 h. The tidal volume estimation 

median accuracy achieved is 83.13%, with a median error of 57.32 milliliters. 

 

These works demonstrated a potential application of non-contact continuous monitoring 

of intrapulmonary pressure and tidal volume during sleep in the home. 

 

 

1.7 Ultra-Wide Band Doppler Radar 
 

A simple architecture of ultra-wide band (UWB) system, as proposed in [69], requires 

only one antenna and a rather simple signal processing algorithms in frequency-domain 

(FFT analysis) to extract respiratory motions and to compensate for the body 

movements. The results demonstrated feasibility of concept however, it is deem not 

suitable for real-life applications. The reason for its unsuitability is due to the unrealistic 

hypothesis that respiration frequency is constant during body movement. 

 

An alternative signal processing method for UWB radar using 2-D FFT and time–

frequency analysis method S-Transform (ST) to detect and identify the subject’s 

respiratory motions under strong clutter with high SNR had also been reported. Even 

though the results were promising, limitations such as using experimental data and low-

sample population with stationary standing subjects, resulted in demonstrating 

feasibility of the method only [108]. 

 

Dual-pair sensors impulse UWB radar to track a single subject’s respiratory motions 

had also been proposed. The signal processing technique is the Hidden Markov Model 

(HMM) based method, where the respiratory rate of the subject is estimated from the 

backscattered signals from the dual-pair receiver antennas. The results showed the 

estimated respiratory rate can be successfully extracted with an accuracy of 81% [109]. 

 

Another proposed detection algorithm, with three stages finite impulse response (FIR) 

filters in the fast-time domain and linear trend subtraction (LTS) algorithm, is also use 

for clutter suppression. The respiratory rate is estimated using improved harmogram 

matrix threshold-based detection method. Analysis of the results showed that 
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approximately 1.5 dB improvement of SNR and signal to clutter and noise (SNCR) in 

comparison with the algorithm proposed by Xu et al. [110]. 

 

Impulse UWB radar for both respiratory and heart rates detection for non-line-of-sight 

(NLOS) had also been reported. The proposed signal processing technique is derive 

from the Developed Adaptive Line Enhancer (DALE) technique. This technique 

processes the signals in discrete form with DALE FIR filter and the respiratory and the 

heart rates are estimated by finding the maximum peak. The results demonstrated that 

both respiratory and heart rates can be extracted using UWB, with the target subject 

located at non-line-of-sight, however, clutter, motions, and non-stationary complex 

scenarios still posed as a challenge [111]. 

 

A measurement method based on MUltiple SIgnal Classification (MUSIC) algorithm 

for through-wall life-signs detection had also been proposed. This method analyses the 

phase modulation, spatial smoothing de-correlation strategy that applied to the 

traditional algorithm for MUSIC, mandated to single out the spectral components of the 

received phase signal. The results indicated feasibility of the algorithm. However, 

performance is an area that will require further improvement [112]. 

 

Another signal processing methodology had been proposed to estimate sleep apnea 

detection and respiratory rate from a single-subject measurement [113]. The signal 

processing incorporates the suppressing of clutter, body movement and body orientation 

detection. The signal processing uses digitalized frequency domain technique with the 

estimation of respiratory rate determined from Lomb Periodogram algorithm. The 

removal of quasi-static clutter to enhance the breathing signal detection is achieve using 

a moving averaging filter. The body movements are removed using a threshold method, 

and motion is detected using the time delay that maximizes the received signal after a 

clutter removing algorithm is applied. The apnea periods detected after the clutter 

removal is define by the cessation of respiratory efforts. The results indicated that 

respiratory rates and apnea event detection can be successfully extracted. However, a 

major challenge for the practical application of night breathing monitoring system is the 

noise signal produced by the body motion, where it is difficult to estimate the breathing 

rate during motion periods. 
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1.8 Challenges and Future Research 

Directions 
 

1.8.1 Current Achievements 
 

Prior to identifying the challenges and future research directions, it is important to 

provide an overview of the current achievements of sleep monitoring using non-contact 

Doppler radar. 

 

The current achievements are summarized in Table 1.8.1.1. 

 

Physiological 

Parameters 
Achievements 

Year & 

References 

Respiratory rate3 
Up to 91.52% accuracy with error up to ±1.31 

breaths per minute. 

2010 – 2015 

[9, 52-57] 

Heart rate3 
Up to 91.29% accuracy with error up to ±6.16 

beats per minute. 

2013 – 2015 

[8, 9, 55-57] 

Heart rate 

variability 

Error between 3–11% for single antenna, and 

1–6% for dual antenna. 

2012 

[60] 

Pulse pressure 

Preliminary observation was made on the 

correlation between the pulse pressure and 

cardiac motion. 

2011 

[61] 

Intrapulmonary 

pressure4 

Demonstrated as feasible through modelling 

and interrelated to the tidal volume estimation 

accuracy. 

2016 

[58] 

Tidal volume4 
Up to 83.13% accuracy with error up to 57.32 

milliliters. 

2013 – 2016 

[58, 62, 63] 

Sleep/wake Up to 69% for awake state and 88% for sleep 2008 & 2011 

                                                           
3 Part of respiratory rate and heart rate achievements are the author’s published work in [57] and are presented in chapter 3 and 

chapter 7 of the Thesis. 
4 Intrapulmonary pressure and tidal volume achievement is the author’s published work in [58] and is presented in chapter 4 and 

chapter 7 of the Thesis. 
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pattern stages. [6, 64] 

Apnea-hypopnea 

index 

Overall accuracy of 85.8% with 70% 

sensitivity and 89% specificity. 

2009 – 2016 

[21, 65, 66] 

Cheyne-Stokes 

Respiration 

Correlation coefficient of 0.87 with %CSR > 5 

and 0.8 with AHI > 15. 

2013 

[67] 

Body 

orientations5 
Overall accuracy of 99.2%. 

2017 

[59] 

 

Table 1.8.1.1 – Sleep Monitoring Using Non-Contact Doppler Radar Achievements 

 

1.8.2 Challenges and Future Research Directions  
 

There are numerous published examples in the literatures regarding non-contact 

assessments of respiratory and heart rates, however there has been limited attempts 

made for the non-contact assessment of heart rate variability. It is also important to 

emphasize that the tendencies of the reported achievements on the non-contact 

physiological vital signs estimations, is based on “stationary” and “direct-facing” 

subject measurements, which is not an ideal scenario for sleep monitoring. There is 

recognition that the assessment of non-contact heart rate and heart rate variability, with 

“non-stationary” and “non-direct facing” subject poses a greater challenge in the signal 

processing of the non-contact Doppler radar system [8, 9]. In conjunction with 

continuous improvements on the accuracy of non-contact physiological vital signs 

estimations, there are two important areas in the non-contact sleep monitoring space that 

future researches may want to consider: 

 

1. Firstly, it is recommended that future research be broadened to include non-

contact assessment of the heart rate and the heart rate variability, as well as, 

targeting sleep monitoring with “non-stationary” and “non-direct facing” 

subject measurements. Additionally, pulse pressure, intrapulmonary 

pressure, tidal volume, minute ventilation, air flow, oxygen saturation, and 

Cheyne-Stokes respirations estimations are also encourage to be explored 

extensively. The future achievements in these areas will significantly 
                                                           

5 Body orientations prediction is the author’s published work in [59] and is presented in chapter 7 of the Thesis. 
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contribute to the screening, diagnosing and monitoring of cardiovascular 

comorbidity in obstructive sleep apnea (OSA) patients. This will also lead to 

new opportunities and market potentials towards Cardiology in Sleep 

Disordered Breathing (SDB). 

 

2. Secondly, it is recommended that future research be broadened to include 

the complex sleep environment, such as noises associated with 

unpredictable body movements, body orientations, the change in sleeping 

posture, multi-subjects’ cancellation, undesired harmonics and 

intermodulation. The future achievements in these areas will significantly 

contribute to the practical realization and commercialization of non-contact 

sleep monitoring and diagnosing technology. 

 

With the increasing prevalence of OSA and its comorbidities, particularly 

cardiovascular comorbidity, there are substantial market potentials for the realization of 

non-contact continuous sleep monitoring technology. The most current prevailing 

market potential is the non-contact remote monitoring and screening of OSA at home. 

The applications of the non-contact Doppler radar for sleep monitoring can widely be 

utilized in homes, hospitals, primary care sectors, nursing home facilities and sleep 

laboratories. 

 

 

1.9 Conclusion 
 

Chapter 1 presented a comprehensive review of the non-contact Doppler radar 

technology for monitoring different physiological parameters during sleep. The 

presented information, covering most aspects of the current research field, can be used 

as foundational knowledge. Along with the challenges identified, the recommended 

future research directions can help facilitate the practical realization and 

commercialization of the technology, especially for obstructive sleep apnea (OSA) 

screening and monitoring which can be used in everyday life. The work presented in 

Chapter 1 is published in [114]. 
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CHAPTER 2: SLEEP DISORDERS 
Thesis Contribution 1: Knowledge 

 

 

INTRODUCTION 
 

 

Chapter 2 presents a general brief overview of the sleep disorders and focuses on one 

particular type of sleep disorders, i.e., the obstructive sleep apnea (OSA). The aim of 

chapter 2 is to outline the basic fundamentals of sleep disorders, which will provide 

background knowledge to the research works presented in the subsequent chapters of 

the Thesis. 

 

 

2.1 Sleep Disorders 
 

2.1.1 Sleep Disorders – Classification 
 

According to the International Classification of Sleep Disorders (ICSD) revised edition 

published in 2001, sleep disorders (SD) is categorized into four main categories [115]: 

 

1. Dyssomnias – disorders that produce either difficulty initiating or 

maintaining sleep or excessive sleepiness. 

2 
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2. Parasomnias – disorders of arousal, partial arousal and sleep-stage 

transition. 

 

3. Sleep Disorders Associated with Mental, Neurologic, or Other Medical 

Disorders – disorders that are not primarily sleep disorders but are mental, 

neurologic, or other medical disorders that have either sleep disturbance or 

excessive sleepiness as a major feature of the disorder. 

 

4. Proposed Sleep Disorders – disorders for which there is insufficient 

information available to confirm their acceptance as definitive sleep 

disorders. 

 

2.1.2 Sleep Disordered Breathing – Definition 
 

ICSD also categorized Dyssomnias into 3 subcategories: 

 

1. Intrinsic Sleep Disorders – are primarily sleep disorders that either originate 

or develop within the body or arise from causes within the body. 

 

2. Extrinsic Sleep Disorders – include those disorders that originate or develop 

from causes outside of the body. 

 

3. Circadian Rhythm Sleep Disorders –  is the misalignment between actual 

sleep pattern and the sleep pattern that is desire or regard as the societal 

norm. 

 

The Intrinsic Sleep Orders, subcategory (1) of Dyssomnias, is divided into the following 

12 subgroups: 

 

1. Psychophysiologic Insomnia 

2. Sleep State Misperception 

3. Idiopathic Insomnia 

4. Narcolepsy 
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5. Recurrent Hypersomnia 

6. Idiopathic Hypersomnia 

7. Posttraumatic Hypersomnia 

8. Obstructive Sleep Apnea Syndrome 

9. Central Sleep Apnea Syndrome 

10. Central Alveolar Hypoventilation Syndrome 

11. Periodic Limb Movement Disorder 

12. Restless Legs Syndrome  

 

The Sleep Disordered Breathing (SDB) is the general term use to describe any sleep 

related breathing abnormalities. As described above, SDB falls under the Dyssomnias 

category, Intrinsic Sleep Disorders subcategory and it describes number of disorders 

including Obstructive Sleep Apnea Syndrome (OSAS) and Central Sleep Apnea 

Syndrome (CSAS). 

 

It is also important to recognize that Obstructive Sleep Apnea Syndrome (OSAS) is the 

most common type of sleep disorder breathing [116]. 

 

 

2.2 Obstructive Sleep Apnea 
 

2.2.1 Epidemiology 
 

The Obstructive Sleep Apnea (OSA) is a widely spread phenomenon and over the last 

30 years, there had been numerous medical literatures that reported the prevalence of 

OSA over the world-wide populations. OSA is increasingly recognize as an important 

cause of medical morbidity and mortality [3] affecting at least 4% of adult males and 

2% of adult females [117]. In a study published in 2013, the prevalence of OSA had 

increased especially in the Unites State of America (USA) to 10–17% for adult males 

and 3–9% for adult females [118]. 
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There are a number of studies conducted using large samples to represent the general 

population. These studies had been published in countries such as United States, 

Australia, Italy, Israel, Spain, India, China (specifically Hong Kong), Korea and 

ethnicity group of Danish populations. The world-wide OSA prevalence statistics are 

summarized in Table 2.2.1.1. 

 

Country / 

Ethnicity 
Samples 

Prevalence 
References 

Men Women 

 

United States 

602 4.0 % 2.0 % Young et al. 1993 [117] 

1741 3.9 % 1.2 % Bixler et al. 2001 [119] 

 1520 10–17% 3–9% Peppard et al. 2013 [118] 

Australia 294 3.0 % – Bearpark et al. 1995 [120] 

Italy 365 – 7.7 % 
Ferini-Strambi et al. 1999 

[121] 

Israel 1502 3.0 % – 
Lavie 1983 cited in 

Provini et al. 2003 [122] 

Spain 1360 2.2 % 0.8 % Marin et al. 1997 [123] 

India 250 7.5 % – Udwadia et al. 2004 [124] 

Hong Kong 
153 4.1 % – Ip et al. 2001 [125] 

106 – 2.1 % Ip et al. 2004 [126] 

Korea 457 4.5 % 3.2 % Kim et al. 2004 [127] 

Danish 

population 
748 1.9 % 0.9 % Jennum & Sjol 1992 [128] 

 

Table 2.2.1.1 – OSA Prevalence Statistics World-Wide 

 

2.2.2 Pathophysiology 
 

The obstructive sleep apnea (OSA) pathophysiological mechanism relates to the upper 

airway obstruction during sleep. It is important to provide a brief overview of the 

human pharynx anatomy, gas exchange, cardiovascular function and the automatic 

nervous system activity. 
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The human pharynx in Fig. 2.2.2.1 is a complex structure composed of more than 20 

muscles and the pharyngeal passage is divided into four sections: nasopharynx (from 

the nasal turbinates to the start of the soft palate), velopharynx (from the start of the soft 

palate to the tip of the uvula), oropharynx (from the tip of the uvula to the tip of the 

epiglottis), and hypopharynx or laryngopharynx (from the tip of the epiglottis to the 

level of the vocal cords). The pharyngeal passage is utilized for three critical functions 

of respiration (maintain gas exchange), swallowing (facilitate movement of liquids and 

solids from the pharynx to the esophagus), and phonation or speech [129] [130]. 

 

 
 

Figure 2.2.2.1 – Pharynx Anatomy 

 

The risk of obstruction is interrelated to the geometric changes in the pharyngeal 

passage. When there is a relative increase in the intraluminal pressure during expiratory, 

the airway tends to enlarge, and vice versa, when there is a relative reduction in the 

intraluminal pressure during inspiratory, the airway tends to decrease in size. 

Particularly during sleep, if the intraluminal pressure is sufficiently negative it may 

facilitate a total collapse of the airway as illustrated in Fig. 2.2.2.2. In addition, when 

the muscles around the pharyngeal passage lose tone, there is an increased risk of 

airflow resistance during sleep and this can cause the upper airway to be obstructed. 

This in turn will create a predisposition to OSA [129] [130]. 
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Figure 2.2.2.2 – Airway Obstruction During Sleep and Adenoids & Tonsil 

 

There are number of anatomical abnormalities that can also lead to OSA including 

enlarged tonsils and adenoids, neck and jaw position, obesity, alcohol and some 

medications that can reduce the tone of the pharynx muscles [131] [130]. 

 

Gas exchange consequences often occur during an apnea event. When breathing ceases 

or when a person hyperventilates, the partial pressure of the oxygen in arterial blood 

(PaO2) may decrease and the partial pressure of carbon dioxide in arterial blood 

(PaCO2) may increase, causing changes in oxygen saturation (SaO2) and impact the 

oxygen stores in the lung and carbon dioxide (CO2) stores in the body. These will 

determine the degree of hypoxemia and hypercapnia that can occur following an apneic 

episode [132] [130]. 

 

Cardiovascular consequences from an apneic episode could result in hypoxemia and 

hypercapnia, leading to a change in the activity of the automatic nervous system. These 

changes to both the sympathetic and parasympathetic functions and will directly affect 

the cardiovascular function as illustrated in Fig. 2.2.2.3. Cardiac arrhythmias, 

bradycardia and tachycardia are reported as common symptoms for patients with OSA. 
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Importantly, the changes in cardiac rhythms may result in profound brady-arrhythmias 

or even asystole [130]. 

 

 
 

Figure 2.2.2.3 – Central Nervous System: Automatic Nervous System Activity 

 

OSA is define as cessation of airflow due to the collapse of the upper airway for at least 

10 seconds. Apnea Index (AI) is define as the number of apnea events per hour [133].  

There are three types of apnea [134]: 

 

1. Obstructive Apnea – this can occur when the respiratory effort is 

maintaining but ventilation decreases or disappears because of partial or 

total occlusion in the upper airway. 

 

2. Central Apnea – this can occur when the respiratory effort is reduce 

resulting in reduced or absent ventilation. 

 

3. Mixed Apnea – is an event that starts with the central apnea but ends with 

the obstructive apnea event. 
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Hypopnea is defined as a reduction in airflow by approximately 30% to 50% and often 

follows an arousal from sleep or a decrease in oxyhemoglobin saturation from 3% to 

4%. Hypopnea Index (HI) is define as the number of hypopnea events per hour. These 

events are generally most prominent during the rapid-eye-movement (REM) sleep 

because of the hypotonia characteristics of the upper-airway muscles at this stage of 

sleep [133] [134] [135] [136]. 

 

Sleep apnea severity is assess based on the apnea-hypopnea index (AHI), which is the 

number of apnea and hypopnea events per hour of sleep [134]. According to the 

American Academy of Sleep Medicine [115] recommendations, the level of OSA is 

define using the AHI > 5 scoring system. Mild OSA will have AHI of 5 to 15, moderate 

OSA with AHI of 16 to 30, and severe OSA with AHI > 30. 

 

The signs, symptoms and consequences of OSA as reported in the literatures include 

excessive daytime sleepiness due to abnormal sleep structure, tiredness with 

neuropsychological dysfunction, memory impairment, headache (especially during early 

hours of the day), abnormalities in gas exchange and cardiovascular function [133] 

[130]. These are a direct result of the derangements that occur due to the repetitive 

collapse of the upper airway, sleep fragmentation, hypoxemia, hypercapnia, marked 

swings in intrathoracic pressures, and the increase in sympathetic activity [137] [134]. 

 

2.2.3 Comorbidities 
 

As cited in Valderas et al, 2011 [138], the term “comorbidity” was originally defined by 

Feinstein in 1970 as “any distinct additional clinical entity that has existed or may 

occur during the clinical course of a patient who has the index disease under study”. 

 

Research over the last 31 years, tracing back to the Wisconsin Study of 1988, indicates 

that OSA is an independent risk factor for a number of other disorders. OSA 

significantly increases the risk of many serious health condition and untreated OSA is 

significantly linked to the increased in morbidity and mortality [4]. 
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In addition, the research publications over the last 20 years ranked the percentage of 

OSA comorbidities as follows: 

 

1. 83% of patients with drug-resistance hypertension [139]. 

2. 77% of obesity [140]. 

3. 76% of congestive heart failure (CHF) [141]. 

4. 59% of pacemakers [142]. 

5. 49 % of atrial fibrillation (AF) [143]. 

6. 48% of type 2 diabetes mellitus [144]. 

7. 37% of all hypertensions (male subject only) [145]. 

8. 30% of coronary artery disease [146]. 

 

The graphical representation of the comorbidities statistics for patients with disorders 

who is also diagnose with OSA is included in Fig. 2.2.3.1. 

 

 
 

Figure 2.2.3.1 – Obstructive Sleep Apnea and Comorbidities Statistics 

 

2.2.4 Obstructive Sleep Apnea & Cardiovascular Comorbidities 
 

In the 1988 Wisconsin Study, an 18-year mortality follow-up study conducted on the 

population-based Wisconsin Sleep Cohort sample (n = 1,522), the results showed that 

people with untreated severe OSA (AHI ≥ 30), independent of sex, BMI, age, and other 
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potential confounders, had increased cardiovascular mortality of 5.2 times when 

compared to those with normal breathing during sleep.  This study underscored the need 

for heightened clinical recognition and treatment of OSA [4]. 

 

As cited in Leung & Bradley, 2001 [147], according to the Sleep Heart Health Study, 

the first large-scale population-based study to examine the potential relationship 

between OSA and stroke in 6,424 subjects indicated that: 

 

1. OSA modestly increased prevalence of stroke by 1.58 times (AHI > 11). 

 

2. OSA was found to be an independent risk factor for coronary artery disease 

with an increased prevalence of 1.27 times (AHI > 11). 

 

3. OSA and chronic heart failure (CHF) are associated with an increased 

prevalence of 2.38 times (AHI > 11) independent of other known risk 

factors. 

 

It is also important to recognize that the treatment of severe and moderate OSA is 

associated with a 64% reduction in cardiovascular risk, independent of age, 

comorbidities and the pre-existing cardiovascular disease [5]. 

 

 

2.3 Conclusion 
 

Chapter 2 presented an overview of sleep disorders and focuses on obstructive sleep 

apnea (OSA). The basic fundamentals of sleep disorders have been outlined and the 

background knowledge provided to assist in the understanding of the research works in 

the subsequent chapters of the Thesis. 
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CHAPTER 3: RELATIVE DEMODULATION 
Thesis Contribution 2: Novel Theory 1 

 

 

INTRODUCTION 
 

 

Chapter 3 presents a novel real-time demodulation theory and technique for non-contact 

microwave Doppler radar system, named “Relative Demodulation”. The name is given 

as an attribute to the application of “Relativity” concept in the demodulation of the 

subject’s chest or abdomen periodic motions. In addition, a novel respiratory and heart 

rates estimation algorithm that utilizes the “Relative Demodulation” technique and the 

non-contact microwave Doppler radar is also presented. 

 

 

3.1 Theory of Relative Demodulation 
 

3.1.1 Continuous Time Domain 
 

The non-contact Doppler radar system baseband quadrature outputs I and Q channels 

generally expressed as: 

 

3 

C
h

a
p
t
e
r
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𝐼(𝑡) = 𝑉𝐼 + 𝐴𝐼𝑐𝑜𝑠 (𝜃 +
4𝜋𝑥(𝑡)

𝜆
+
4𝜋𝑦(𝑡)

𝜆
+ ∆∅(𝑡)) (1) 

  

𝑄(𝑡) = 𝑉𝑄 + 𝐴𝑄𝑠𝑖𝑛 (𝜃 +
4𝜋𝑥(𝑡)

𝜆
+
4𝜋𝑦(𝑡)

𝜆
+ ∆∅(𝑡)) (2) 

  

𝜃 = 
4𝜋𝑑0
𝜆

+ 𝜃0 (3) 

  

∆∅(𝑡) = ∅(𝑡) − ∅(𝑡 −
2𝑑0
𝑐
) (4) 

 

Where: 

 

 VI & VQ – the DC offsets of the channels. 

 AI & AQ – the amplitude gains constants of the channels. 

 θ0 – the initial constant phase-shift of the system in radian. 

 λ – the wave length, which equal to the speed of light divided by the radar 

operating frequency in Hertz. 

 c – speed of light, i.e., 299,792,458 ms-1. 

 ∆Φ – the phase noise of the system oscillation in radian. 

 x(t) – function of respiratory that causes changes in the chest displacement 

in meter. 

 y(t) – function of heart that causes changes in the chest displacement in 

meter. 

 

For physiological vital signs monitoring, the subject’s chest or abdomen distance is 

usually within 0.5–3.0 m, which can make the “∆ϕ(t)” approaches zero, therefore, 

“∆ϕ(t)” can be neglected. 

 

In context of “Relative Demodulation”, I and Q channels from this point onwards are to 

be referred to as “Observer I” and “Observer Q”. The subject’s chest or abdomen 

periodic motion is to be referred to as “Observation Target”. The fundamental “Relative 

Demodulation” concept for non-contact Doppler bio-motion system is as follows: 
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 Both “Observer I” and “Observer Q” are moving at the same speed, 

however, at different phases. 

 

 The instantaneous derivatives of the “Observer I” and “Observer Q” are 

“relative to” and “impacted by” the instantaneous derivatives of the 

“Observation Target”. 

 

 At any given point in time, both “Observer I” and “Observer Q” observed 

the same “Observation Target” instantaneous derivatives with respect to the 

other “Observer”. 

 

The “Relative Demodulation” concept diagram is present in Fig. 3.1.1.1. 

 

 
 

Figure 3.1.1.1 – Relative Demodulation Concept Diagram 

 

The “Observation Target” instantaneous velocity as observed by “Observer I” with 

respect to “Observer Q” with unit “ms-1” is defined as: 

 

𝑑

𝑑𝑡
𝐼(𝑡) = −

4𝜋

𝜆
(
𝑑

𝑑𝑡
𝑥(𝑡) +

𝑑

𝑑𝑡
𝑦(𝑡))𝐴𝐼𝑠𝑖𝑛 (𝜃0 +

4𝜋

𝜆
(𝑑0 + 𝑥(𝑡) + 𝑦(𝑡))) (5) 

  

𝑑

𝑑𝑡
𝑥(𝑡) +

𝑑

𝑑𝑡
𝑦(𝑡) = −

𝜆

4𝜋
(

𝐴𝑄𝐼
′(𝑡)

𝐴𝐼(𝑄(𝑡) − 𝑉𝑄)
) (𝑚𝑠−1) (6) 

 

The “Observation Target” instantaneous velocity as observed by “Observer Q” with 

respect to “Observer I” with unit “ms-1” is defined as: 

 

Observer I 

Observer Q 

Observation Target 
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𝑑

𝑑𝑡
𝑄(𝑡) =

4𝜋

𝜆
(
𝑑

𝑑𝑡
𝑥(𝑡) +

𝑑

𝑑𝑡
𝑦(𝑡))𝐴𝑄𝑐𝑜𝑠 (𝜃0 +

4𝜋

𝜆
(𝑑0 + 𝑥(𝑡) + 𝑦(𝑡))) (7) 

  

𝑑

𝑑𝑡
𝑥(𝑡) +

𝑑

𝑑𝑡
𝑦(𝑡) =

𝜆

4𝜋
(

𝐴𝐼𝑄
′(𝑡)

𝐴𝑄(𝐼(𝑡) − 𝑉𝐼)
) (𝑚𝑠−1) (8) 

 

As shown in (6) and (8), both “Observer I” and “Observer Q” observed the same 

“Observation Target” instantaneous velocity. The null-points can be eliminated by 

averaging the observed instantaneous velocity of both “Observer I” and “Observer Q”. 

Therefore, the resultant “Observation Target” instantaneous velocity “v(t)” with unit 

“ms-1” is defined as: 

 

𝑣(𝑡) = 𝑥′(𝑡) + 𝑦′(𝑡) =
𝜆

8𝜋
(

𝐴𝐼𝑄
′(𝑡)

𝐴𝑄(𝐼(𝑡) − 𝑉𝐼)
−

𝐴𝑄𝐼
′(𝑡)

𝐴𝐼(𝑄(𝑡) − 𝑉𝑄)
) (𝑚𝑠−1) (9) 

 

As shown in (9) the DC offsets of the channels eliminated by the subtraction of “VI” 

and “VQ”. The constant phase-shift and clutters also eliminated by the first derivative. 

 

Let “hr(t)” be the respiratory band-pass filter (RBPF), which has the frequency 

bandwidth of normal respiratory rate range. The filter type and bandwidth will be 

discussed in details in section 3.2.3. By convoluting the RBPF with the resultant 

“Observation Target” instantaneous velocity, the “Observation Target” instantaneous 

respiratory velocity with unit “ms-1” is defined as: 

 

𝑥′(𝑡) = (ℎ𝑟(𝑡) ∗ 𝑣(𝑡)) (𝑚𝑠−1) (10) 

 

The “Observation Target” instantaneous respiratory displacement “x(t)” with unit “m” 

is obtain by integration and defined as: 

 

𝑥(𝑡) = ∫(ℎ𝑟(𝑡) ∗ 𝑣(𝑡))𝑑𝑡 (𝑚) (11) 

 

According to anatomy and physiology, respiration requires inspiration and expiration 

efforts, which contains both velocity and acceleration. The heart systole (contraction) 
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and diastole (relaxation) also contains both velocity and acceleration. The chest periodic 

displacements are cause by the velocity and acceleration of the inspiration-expiration 

and systole-diastole cycles in combination. Physics indicated that the third derivative, 

often referred to as “jerk” describes the changes of acceleration. Therefore, to describe 

the changes that the heart acceleration acted on the respiration acceleration, the resultant 

“Observation Target” instantaneous jerk has to be derived. Therefore, the resultant 

“Observation Target” instantaneous jerk with unit “ms-3” is defined as: 

 

𝑥′′′(𝑡) + 𝑦′′′(𝑡) =
𝜆

8𝜋
(
𝑄′(𝑡)

𝐼(𝑡) − 𝑉
−

𝐼′(𝑡)

𝑄(𝑡) − 𝑉
)

′′

 (12) 

 

Let “hh(t)” be the heart band-pass filter (HBPF), which has the frequency bandwidth of 

normal heart rate range. The filter type and bandwidth will be discussed in details in 

section 3.2.3. By convoluting the HBPF with the resultant “Observation Target” 

instantaneous jerk, the “Observation Target” instantaneous heart jerk with unit “ms-3” is 

defined as: 

 

𝑦′′′(𝑡) = (ℎℎ(𝑡) ∗ 𝑣
′′(𝑡)) (𝑚𝑠−3) (13) 

 

The “Observation Target” instantaneous heart displacement with unit “m” can also be 

obtained by integration and defined as: 

 

𝑦(𝑡) = ∫(ℎℎ(𝑡) ∗ 𝑣
′′(𝑡))𝑑𝑡 (𝑚) (14) 

 

3.1.2 Discretized Time Domain 

 

Backwards-difference numerical approximation has been selected for its simplicity in 

implementation to discretize the real-time “Relative Demodulation” derivatives. 

 

𝑣[𝑛] =
𝜆

8𝜋
𝑓𝑠 [
𝐴𝐼[𝑄[𝑛] − 𝑄[𝑛 − 1]]

𝐴𝑄[𝐼[𝑛] − 𝑉𝐼]
−
𝐴𝑄[𝐼[𝑛] − 𝐼[𝑛 − 1]]

𝐴𝐼[𝑄[𝑛] − 𝑉𝑄]
] (𝑚𝑠−1) (15) 
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𝑥′[𝑛] = 𝑓𝑠[ℎ𝑟[𝑛] ∗ 𝑣[𝑛]] (𝑚𝑠−1) (16) 

  

𝑥′′′[𝑛] + 𝑦′′′[𝑛] = 𝑓𝑠
2[𝑣[𝑛] − 2𝑣[𝑛 − 1] + 𝑣[𝑛 − 2]] (𝑚𝑠−3) (17) 

 

𝑦′′′[𝑛] = 𝑓𝑠
2 [ℎℎ[𝑛] ∗ [𝑣[𝑛] − 2𝑣[𝑛 − 1] + 𝑣[𝑛 − 2]]] (𝑚𝑠−3) (18) 

 

Trapezoidal numerical integration approximation with unit spacing was selected for its 

simplicity in implementation to discretize the real-time “Relative Demodulation” 

displacements. The discretized real-time “Relative Demodulation” equations with “fs” 

as the analogue-to-digital (ADC) sample rate in Hertz are defined as: 

 

𝑥[𝑛] = 𝑥[𝑛 − 1] + [
𝑥′[𝑛] + 𝑥′[𝑛 − 1]

2𝑓𝑠
] (𝑚) (19) 

 

𝑎ℎ[𝑛] = 𝑎ℎ[𝑛 − 1] + [
𝑦′′′[𝑛] + 𝑦′′′[𝑛 − 1]

2𝑓𝑠
] (𝑚𝑠−2) (20) 

 

𝑣ℎ[𝑛] = 𝑣ℎ[𝑛 − 1] + [
𝑎ℎ[𝑛] + 𝑎ℎ[𝑛 − 1]

2𝑓𝑠
] (𝑚𝑠−1) (21) 

 

𝑦[𝑛] = 𝑦[𝑛 − 1] + [
𝑣ℎ[𝑛] + 𝑣ℎ[𝑛 − 1]

2𝑓𝑠
] (𝑚) (22) 

Where: 

 

 ah[n] – the “Observation Target” instantaneous heart acceleration. 

 vh[n] – the “Observation Target” instantaneous heart velocity. 

 

In real-world system implementation, a high-pass filter is required to be applied to the 

instantaneous velocity prior to deriving the instantaneous displacement. This is to 

eliminate the non-zero offsets or DC base wanders and to prevent DC accumulation in 

integration. 
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3.2 Respiratory and Heart Rates Estimation 

Algorithm 
 

Section 3.2 introduces the novel inspiration and expiration detection, systole and 

diastole detection, and respiratory and heart rates estimation algorithms. The novelty of 

these algorithms include real-time, simple, fast, accurate, low computational, applicable 

for the embedded applications and it does not require advanced signal processing 

methods, such as, Wavelet Packet Decomposition (WPD), Fast Fourier Transform 

(FFT), Short Time Fourier Transform (STFT), local maxima detection or other 

nonlinear numerical techniques. 

 

3.2.1 Algorithm Block Diagram 
 

The block diagram of the respiratory and heart rates estimation algorithm is in Fig. 

3.2.1.1. 

 

 
 

Figure 3.2.1.1 – Respiratory and Heart Rates Estimation Algorithm Block Diagram 
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3.2.2 DC Offsets and Amplitude Gain Constants 
 

As documented in Appendix I, section A.I.I, the SleepMinderTM analogue-to-digital 

converter (ADC) voltage resolution is 0–3.2 V. The voltage mean value, which is the 

reference DC offset, is equal to 1.6 V. Therefore, “VI” and “VQ” are also approximately 

equal to 1.6 V. Due to the Intellectual Property (IP) agreement with ResMed Pty Ltd., 

the SleepMinderTM unpublished and undisclosed technical papers will not be referenced 

in the Thesis. However, information with respect to the amplitude gain constants can be 

included. As specified in the SleepMinderTM technical papers, the amplitude gain 

constants are approximately equaled for both channels “I” and “Q” and are typically 

15–20 dB. Therefore, the amplitude gains constants “AI” and “AQ” are approximately 

equaled and their ratio “k” is also approximately equaled to 1.0. 

 

3.2.3 Band-Pass Filter Type and Frequency Bandwidth 
 

The Butterworth band-pass filter was chosen to be implemented both the respiratory 

band-pass filter (RBPF) and the heart band-pass filter (HBPF). The reason for choosing 

this type of filter is because the frequency response of the Butterworth filter is 

maximally flat (i.e. has no ripples) in the pass-band and it rolls off towards zero in the 

stop-band. In addition, the implementation of the Butterworth filter is much simpler and 

performs much faster compared to other finite impulse response (FIR) filters, which is 

more applicable for embedded applications. 

 

The selected frequency bandwidth for RBPF is between 0.2–0.5 Hz corresponds to 12–

30 breaths per minute for respiratory rate. The selected frequency bandwidth for HBPF 

is between 0.7–1.6 Hz corresponds to 42–96 beats per minute for heart rate. The 

Butterworth band-pass filter minimum order has been chosen to be at 6th order with 

unity gain. 
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3.2.4 Inspiration and Expiration Detection Algorithm 
 

The inspiration and expiration detection algorithm relied on the discretized 

“Observation Target” instantaneous respiratory velocity as specified in (16). Peaks and 

troughs detection using displacements may produce unreliable results due to the 

additions of heart displacements, body motions and noises. Relying on the peaks and 

troughs alone will not always guarantee that the inspiration and expiration are correctly 

detected, especially during periods of significant body movements. Using the velocity 

approach will give a better and reliable result with the property of zero-crossing when 

velocity changes direction, which should also correspond to inspiration and expiration. 

Inspirations are those zero-crossing with negative tangent and expirations are those 

zero-crossing with positive tangent. By incorporating a set of the detection rules, the 

inspiration and expiration can reliably be detected. The detection rule for inspiration 

“i[n]” and expiration “e[n]” is defined as: 

 

𝑖[𝑛] = {
1 , 𝑥′[𝑛] ≤ 0 ∧ 𝑥′[𝑛 − 1] > 0
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (23) 

 

𝑒[𝑛] = {
1 , 𝑥′[𝑛] ≥ 0 ∧ 𝑥′[𝑛 − 1] < 0
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (24) 

 

The additional rules, acting as additional filtering, for inspiration and expiration 

detection are as follows: 

 

1. The current detected inspiration/expiration index with value equal to 1, 

subtracting the previous detected inspiration/expiration index with value 

equal to 1, have to be greater than or equal to “2fs”, where “fs” is the ADC 

sample rate in Hertz. This allows up to a maximum of 0.5 Hz, and 

corresponds to 30 breaths/min to be detected, any higher frequency will be 

ignored. 

 

2. The current detected inspiration/expiration index with value equal to 1, 

subtracting the previous detected expiration/inspiration index with value 

equal to 1, have to be greater than or equal to “fs”. 
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3.2.5 Systole and Diastole Detection Algorithm 
 

The key to the systole and diastole detection algorithm is the reliance on the discretized 

“Observation Target” instantaneous heart jerk as specified in (18). Using jerk will give a 

better and reliable result with the property of zero-crossing when jerk changes direction, 

this corresponds to the systole and diastole. Systoles are those zero-crossing with 

negative tangent and diastoles are those zero-crossing with positive tangent. By 

incorporating a set of detection rules, the systole and diastole can reliably be detected. 

The detection rule for systole “s[n]” and diastole “d[n]” is defined as: 

 

𝑠[𝑛] = {
1 , 𝑦′′′[𝑛] ≤ 0 ∧ 𝑦′′′[𝑛 − 1] > 0
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (25) 

 

𝑑[𝑛] = {
1 , 𝑦′′′[𝑛] ≥ 0 ∧ 𝑦′′′[𝑛 − 1] < 0
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (26) 

 

The additional rules, acting as additional filtering, for the systole and diastole detection 

are as follows: 

 

1. The current detected systole/diastole index with value equal to 1, subtracting 

the previous detected systole/diastole index with value equal to 1, have to be 

greater than or equal to “0.5 fs”, where “fs” is the ADC sample rate in Hertz. 

This allows up to a maximum of 2 Hz, and corresponds to 120 beats/min to 

be detected, any higher frequency will be ignored. 

 

2. The current detected systole/diastole index with value equal to 1, subtracting 

the previous detected diastole/systole index with value equal to 1, have to be 

greater than or equal to “0.25fs”. 

 

3.2.6 Respiratory and Heart Rate Estimation Algorithm 
 

The respiratory rate can easily be estimated from the averaged sum of the detected 

inspiration and expiration cycles per selected window-width. 
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The heart rate can easily be estimated from the averaged sum of the detected systole and 

diastole cycles per selected window-width. 

 

The algorithms are flexible in window-width selection, however, for the research works 

presented in the Thesis, a fixed window-width of 60 seconds (2 epochs6) and a sliding 

fixed window-width of 30 seconds (1 epoch) are employed. 

 

 

3.3 Conclusion 
 

Chapter 3 contributes to the field of non-contact sleep monitoring by introducing 

“Relative Demodulation”, a novel real-time demodulation theory and technique for the 

non-contact microwave Doppler radar system. The novelty of “Relative Demodulation” 

technique is that it pivots from conventional displacements analysis to introduce 

derivatives analysis. This technique is real-time, simple, fast, accurate, low 

computational, applicable for embedded applications and provides the following 

advantages: 

 

1. Null-points automatic elimination. 

2. Constant phase-shift and clutters automatic elimination. 

3. DC offsets automatic elimination. 

4. Real-time approximations of the instantaneous derivatives of the subject’s 

chest or abdomen periodic motions. 

5. Real-time approximations and separation of the instantaneous subject’s 

respiratory and heart periodic displacements. 

 

In addition, based on the real-time respiratory and heart displacements approximated by 

“Relative Demodulation”, the subject’s respiratory and heart rates can also be estimated. 

The real-life applications and results of “Relative Demodulation” in non-contact sleep 

monitoring is presented in Chapter 7, section 7.1 of the Thesis. The work presented in 

Chapter 3 is published in [57] and patented in [148-150]. 

                                                           
6 Epoch term in sleep is define as 30 seconds block interval. This definition is given by the American Academy of Sleep 

Medicine (AASM). 
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CHAPTER 4: PULMONARY VENTILATION 

MATHEMATICAL MODEL 
Thesis Contribution 3: Novel Theory 2 

 

 

INTRODUCTION 
 

 

Chapter 4 presents a novel pulmonary ventilation mathematical model that defines the 

relationship between the intrapulmonary pressure and the chest displacement. In 

addition, a novel tidal volume estimation algorithm that utilizes the mathematical model 

and the non-contact microwave Doppler radar is also presented. 

 

 

4.1 Pulmonary Ventilation Model 
 

4.1.1 Theoretical Analysis and Modeling  
 

The process of gas exchange in human body consists of three basic steps: pulmonary 

ventilation, external respiration and internal respiration. The focus of pulmonary 

ventilation is to derive a novel mathematical model that defines the relationship between 
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the intrapulmonary pressure and the chest displacement. The outcome of the derived 

relationship is the estimation of tidal volume based on the chest displacement. The 

model takes an engineering approach with the utilization of electronic elements to 

describe the time-varying differential relationships. The lungs are model as a container 

of certain volume that can hold a certain amount of pressurized gas, which can be 

described using capacitor “C”. The resistance and elasticity in the respiratory system are 

describe using resistor “R” and inductor “L”. The model presented in the Laplace’s 

transform s-domain; this is for mathematical convenience in analyzing the time-varying 

differential parameters. The novel pulmonary ventilation model is in Fig. 4.1.1.1. 

 

 
 

Figure 4.1.1.1 – Pulmonary Ventilation Model 

 

The descriptions of the used symbols are as follows: 

 

 Dc(s) – chest displacement in meter (m). 

 g – standard gravitational constant, i.e., 9.80665 ms-2. 

 ML & MR – left and right mass portion of the total subject’s body mass in 

kilograms (kg) residing at the chest area. 

 CLA & CRA – left and right lungs volume that can hold a certain amount of 

pressurized gas. 

 LLBR & LRBR – left and right bronchiole and terminal bronchiole elasticity, 

which cause changes in resistance due to changes in gas pressure. 

 RLB & RRB – left and right secondary and tertiary bronchus resistance. 
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 RL – larynx and trachea resistance. 

 RU – upper respiratory system airway resistance, including the nose, 

pharynx & associated structures. 

 PI(s) – intrapulmonary pressure. 

 

From Fig. 4.1.1.1, the transfer function of the pulmonary ventilation model is defined as: 

 

𝑃𝐼(𝑠)

𝐷𝑐(𝑠)
= 𝑔𝑅𝐿𝑅𝑈 (𝑀𝐿𝑅𝐿𝐵 (

1 − 𝐿𝐿𝐵𝑅𝐶𝐿𝐴𝑠
2

𝐶𝐿𝐴𝑠
) + 𝑀𝑅𝑅𝑅𝐵 (

1 − 𝐿𝑅𝐵𝑅𝐶𝑅𝐴𝑠
2

𝐶𝑅𝐴𝑠
)) (1) 

 

The following assumptions applied to the pulmonary ventilation model as shown in Fig. 

4.1.1.1: 

 

 The left lung volume that can hold a certain amount of pressurized gas is 

approximately equal to the right lung volume, denoted by “CA”. 

 

 The left bronchiole and terminal bronchiole elasticity are approximately 

equal to the right bronchiole and terminal bronchiole elasticity, denoted by 

“LBR”. 

 

 The left secondary and tertiary bronchus resistance is approximately equal to 

the right secondary and tertiary bronchus resistance, denoted by “RB”. 

 

Applying the specified assumptions simplifies (1) to: 

 

𝑃𝐼(𝑠)

𝐷𝑐(𝑠)
= −𝐾 (

𝑠2 − 𝑓𝑅𝑅
𝑠

) 𝑤ℎ𝑒𝑟𝑒

𝐾 = 𝑔(𝑀𝐿 +𝑀𝑅)𝐿𝐵𝑅𝑅𝐵𝑅𝐿𝑅𝑈

𝑓𝑅𝑅 =
1

𝐿𝐵𝑅𝐶𝐴

 (2) 

 

The negative sign on the coefficient “K” in (2) indicates that when the lung volume 

increases due to the contraction of the diaphragm, which results in the increase of the 

chest displacement, the intrapulmonary pressure decreases for inspiration to occur, and 

vice versa for expiration. The bronchiole and terminal bronchiole elasticity “LBR” in (2) 
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can be neglected for constant “K”. This is because the changes in “LBR” will impact the 

intrapulmonary pressure, which in turn is reflected through the reduction of the chest 

displacement magnitude “Dc(s)”. The secondary and tertiary bronchus resistance “RB”, 

larynx and trachea resistance “RL”, upper respiratory system airway resistance, including 

the nose, pharynx and associated structures “RU” in (2), can also be neglected for 

constant “K”. The changes in these resistances also reflected through the reduction of the 

chest displacement magnitude “Dc(s)”. The product of coefficients “LBR” and “CA” in (2) 

can be seen as a time constant (τ), which is the period of the pressure accumulation in the 

alveoli. The inverse of “τ”, i.e. “fRR”, is, in fact, the frequency of breathing in Hertz. 

Therefore, “fRR” is approximately equal to the respiratory rate (breaths per minute) 

divided by 60 seconds. 

 

𝑓𝑅𝑅 =
𝑅𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑜𝑟𝑦𝑅𝑎𝑡𝑒

60
(𝐻𝑧) (3) 

 

The “s2” term in (2) indicates a second derivative, which in this case is the chest 

acceleration due to respiration efforts. The chest acceleration multiplied by a constant 

“K” indicates both Force (F) and Work (W) acted on the chest area. According to 

physics, W = mgh (Nm), where “m” is a mass in kilograms, “g” is the standard 

gravitational constant, and “h” is the height in meters, which in this case is the chest 

displacement “Dc(s)”. The force (F) acted on the subject’s chest is dependent on the mass 

portion of the total subject’s body mass in kilograms residing at the chest area, i.e., “(ML 

+ MR)” and gravity “g”. 

 

Interestingly, Quetelet  stated in his book on page 66 that “... the weight of developed 

persons, of different heights, is nearly as the square of the stature.” and “... a transverse 

section, giving both the breadth and thickness, is just proportioned to the height of the 

individual” [151]. Therefore, it is reasonable to assume that the mass portion of the total 

subject’s body mass in kilograms residing at the chest area, i.e., “(ML + MR)” can be 

estimated using the Quetelet’s Index. In 1842, the relationship between the body’s 

weight and height was known as Quetelet’s Index, however, in 1972, it was renamed to 

Body Mass Index (BMI). Therefore, the constant “K” in (2) can be redefined in relation 

to the subject’s actual body mass “M” in kilograms, actual height “H” in meters, and “g” 

as the standard gravitational constant, i.e., 9.80665 ms-2: 
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𝐾 = 𝑔(𝑀𝑝𝐿 +𝑀𝑝𝑅) = 𝑔
𝑀

𝐻2
= 𝑔𝐵𝑀𝐼 (𝑘𝑔𝑚−1𝑠−2) (4) 

 

To determine the units for the transfer function in (2), all units need to be combined. The 

gravity and the chest acceleration unit is ms-2, the BMI unit is kgm-2, and the 

denominator “s” unit is s-1. The combination of units is kgms-2m-2s-1, which equal to Nm-

2s-1. Pressure is measure in SI unit of Pascal (Pa), equals to 1 Nm-2. Therefore, the unit 

for the transfer function in (2) is Pascal per second (Pas-1). The relationship between the 

intrapulmonary pressure “PI” and the chest displacement “dc” can now be defined as: 

 

𝑑

𝑑𝑡
𝑃𝐼(𝑡) = −𝑔𝐵𝑀𝐼 (

𝑑2

𝑑𝑡2
𝑑𝑐(𝑡) − 𝑓𝑅𝑅𝑑𝑐(𝑡)) (𝑃𝑎𝑠−1) (5) 

 

For the discrete-time implementation of the pulmonary ventilation model, the matched 

Z-transform method, i.e., z = esTs, was chosen for the conversion of s-domain 

relationships to z-domain, where “Ts” is the sampling time in second and “fs” is the 

sampling rate in Hertz: 

 

𝑃𝐼(𝑠)

𝐷𝑐(𝑠)
= −𝐾 (

𝑠2 − 𝑓𝑅𝑅
𝑠

) = −𝐾 (
1

𝑠
) (𝑠 − √𝑓𝑅𝑅)(𝑠 + √𝑓𝑅𝑅) (6) 

 

𝑃𝐼(𝑧)

𝐷𝐶(𝑧)
= −𝑔𝐵𝑀𝐼 (

𝑧

𝑧 − 1
)(
(𝑧 − 𝑒𝑇𝑠√𝑓𝑅𝑅)

𝑧
)(

(𝑧 − 𝑒−𝑇𝑠√𝑓𝑅𝑅)

𝑧
) (7) 

 

𝑃𝐼(𝑧)

𝐷𝐶(𝑧)
= −𝑔𝐵𝑀𝐼 (

𝑧2 − (𝑒𝑇𝑠√𝑓𝑅𝑅 + 𝑒−𝑇𝑠√𝑓𝑅𝑅) 𝑧 + (𝑒𝑇𝑠√𝑓𝑅𝑅𝑒−𝑇𝑠√𝑓𝑅𝑅)

𝑧(𝑧 − 1)
) (8) 

 

𝑃𝐼(𝑧)

𝐷𝑐(𝑧)
= −𝑔𝐵𝑀𝐼 (

1 − 𝑘𝑧𝑧
−1 + 𝑧−2

1 − 𝑧−1
) 𝑤ℎ𝑒𝑟𝑒 𝑘𝑧 = 2 cosh(𝑇𝑠√𝑓𝑅𝑅) (9) 

 

The discrete-time instantaneous rate of change of the intrapulmonary pressure is defined 

as: 
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∆𝑃𝐼[𝑛] = −𝑔𝐵𝑀𝐼𝑓𝑠
2[𝑑𝑐[𝑛] − 𝑘𝑧[𝑛]𝑑𝑐[𝑛 − 1] + 𝑑𝑐[𝑛 − 2]] (𝑃𝑎𝑠−1) (10) 

 

𝑘𝑧[𝑛] = 2 cosh [𝑇𝑠√
𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑜𝑟𝑦𝑟𝑎𝑡𝑒[𝑛]

60
] (11) 

 

Where the square of “fs” in (10) is the amplitude gain constant when differentiate in 

discrete-time. 

 

Trapezoidal numerical integration over 3 sample points (due to chest acceleration) yields 

the discrete-time instantaneous intrapulmonary pressure: 

 

𝑃𝐼[𝑛] = 𝑃𝐼[𝑛 − 1] − 𝑔𝐵𝑀𝐼𝑓𝑠

[
 
 
 
 

(𝑑𝑐[𝑛])

(−[𝑘𝑧[𝑛] − 1]𝑑𝑐[𝑛 − 1])

([1 − 𝑘𝑧[𝑛 − 1]]𝑑𝑐[𝑛 − 2])

(𝑑𝑐[𝑛 − 3]) ]
 
 
 
 

(𝑃𝑎) (12) 

 

Applying Boyle’s law relationship between pressure and volume in a closed system, the 

discrete-time instantaneous tidal volume (Vt) in milliliters, i.e., tidal value at a particular 

instance not the tidal volume per breath is defined as: 

 

𝑉𝑡[𝑛] = {
𝑉𝑇𝐿𝐶 [

𝑃𝐼[𝑛 − 1]

𝑃𝐼[𝑛]
− 1] , 𝑃𝐼[𝑛] ≠ 0

0 , 𝑃𝐼[𝑛] = 0

} (𝑚𝐿) (13) 

 

Noting that the initial lung volume is unknown (and is not required to be known), thus, 

the estimated volume will have the reference line at 0.  This is the reason for subtracting 

value of 1 in (13). 

 

“VTLC” is the subject’s total lung capacity (TLC) in milliliters. Adopting the power law 

prediction parameters for respiratory variables in mammals by Stahl [152] and the 

height-weight covariance by Livingston and Lee [153], “VTLC” can be expressed in form 

of “allometric” formula, where “Wt” is the subject’s predicted ideal body mass in 

kilograms and “Ht” is the subject’s actual height in centimeters: 
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𝑉𝑇𝐿𝐶 = 53.5𝑊𝑡
1.06 (𝑚𝐿) 𝑤ℎ𝑒𝑟𝑒 𝑊𝑡 =  (

𝐻𝑡

33.34
)
0.3922−1

(𝑘𝑔) (14) 

 

The functional residual capacity (FRC) is unknown, and it is not required to be known, 

therefore, the discrete-time instantaneous tidal volume (Vt) will have a reference line at 

0. This is also the reason for subtracting the value of 1 in (13). 

 

To compensate for any noises and/or unwanted body movements, the subject’s predicted 

tidal volume (Vpt) in milliliters must be calculated and used as the artefacts rejection 

criteria. According to Stahl [152], Livingston and Lee [153], “Vpt” can be expressed in 

form of  “allometric” formula, where “Wt” and “Ht” as described above in relation to 

(11): 

 

𝑉𝑝𝑡 = 7.69𝑊𝑡
1.04 (𝑚𝐿) 𝑤ℎ𝑒𝑟𝑒 𝑊𝑡 =  (

𝐻𝑡

33.34
)
0.3922−1

(𝑘𝑔) (15) 

 

Therefore, the discrete-time instantaneous tidal volume with the inclusion of artefact 

rejection criteria (Vt*) in milliliters is defined as: 

 

𝑉𝑡
∗[𝑛] = {

𝑉𝑡[𝑛] , |𝑉𝑡[𝑛]| ≤ 𝑉𝑝𝑡

𝑉𝑡
∗[𝑛 − 1] , |𝑉𝑡[𝑛]| > 𝑉𝑝𝑡

} (𝑚𝐿) (16) 

 

 
 

4.2 Tidal Volume Estimation Algorithm 
 

4.2.1 Algorithm Block Diagram 
 

A block diagram of the novel tidal volume estimation algorithm is in Fig. 4.2.1.1: 
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Figure 4.2.1.1 – Tidal Volume Estimation Algorithm 

 

The “Relative Demodulation” technique presented in Chapter 3 is utilize to obtain the 

real-time chest displacement and respiratory rate. 

 

The “Estimate Intrapulmonary Pressure” (EIP) implements the equation “PI” as stated in 

(12) section 4.1.1. The “Estimate Volume by Pressure” (EVBP) implements the 

equation “Vt
*” as stated in (16) section 4.1.1. 

 

The Butterworth band-pass filter had been chosen to implement the “Respiratory Band-

Pass Filter” (RBPF). The reason for choosing this type of filter is the simplicity in 

implementation and faster performance when compared to other FIR filters. The 

selected frequency bandwidth for RBPF is 0.2–0.5 Hz which corresponds to 12–30 

breaths per minute. 
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The “Estimate Tidal Volume” (ETV) identifies the peak locations of the estimated 

instantaneous “Vt
*” waveform. One tidal cycle is determine by the current and previous 

identified peak of “Vt
*”. The maximum and minimum values are then identify per cycle. 

The tidal volume is then estimated as the difference between the maximum and the 

minimum values of “Vt
*” over a cycle. The value of “Vpt” is also apply as a conditional 

rule, i.e., if the current estimated tidal volume is greater than “Vpt”, then the current 

estimated tidal is equal to the previous estimated tidal volume. 

 

The “Estimate Mean Tidal Volume” (EMTV) calculates the mean value of the tidal 

volume per selected window-width. For the research works presented in the Thesis, a 

fixed window-width of 60 seconds (2 epochs) and a sliding window-width of 30 

seconds (1 epoch) are employ. 

 

 

4.3 Conclusion 
 

Chapter 4 contributes to the field of non-contact sleep monitoring by introducing a 

novel pulmonary ventilation mathematical model that enables the capability of tidal 

volume estimation using the non-contact microwave Doppler radar. The novelty of the 

pulmonary ventilation mathematical model is that it defines the relationship between the 

intrapulmonary pressure and the chest displacement. The tidal volume can also be 

estimated via the mathematical model. 

 

It is also important to emphasize that the pulmonary ventilation mathematical model is 

derive from the understanding of anatomy and physiology, it is not simply an 

application of regressions between the chest displacement and intrapulmonary pressure 

or tidal volume values. 

 

The real-life applications and results of “Pulmonary Ventilation Mathematical Model” 

in non-contact sleep monitoring is presented in Chapter 7, section 7.2 of the Thesis. 

 

The work presented in Chapter 4 is published in [58] and patented in [148, 150, 154]. 

  



Page | 70  

 

 
 

CHAPTER 5: EXTERNAL VENTILATION 

MATHEMATICAL MODEL 
Thesis Contribution 4: Novel Theory 3 

 

 

INTRODUCTION 
 

 

Chapter 5 presents a novel mathematical model that quantitatively defines the 

relationships between the arterial oxygen saturation (SaO2), the arterial partial pressure 

of oxygen (PaO2) and the arterial partial pressure of carbon dioxide (PaCO2). In 

addition, a novel non-contact algorithm that utilizes the mathematical model, multilayer 

perceptron (MLP) artificial neural network (ANN) and the non-contact microwave 

Doppler radar to translate the human periodic chest displacements caused by respiratory 

efforts into peripheral capillary oxygen saturation (SpO2) measurements is also 

presented. 

 

 

5.1 Oxygen-Hemoglobin Dissociation Model 
 

Section 5.1 presents a novel oxygen-hemoglobin dissociation mathematical model that 

quantitatively defines the relationships between the arterial oxygen saturation (SaO2), 
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the arterial partial pressure of oxygen (PaO2), and the arterial partial pressure of carbon 

dioxide (PaCO2). A generalized SaO2 equation is also presented. 

 

5.1.1 Theoretical Analysis and Modeling  
 

The oxygen-hemoglobin dissociation curve (ODC), as shown in Fig. 5.1.1.1, is a 

replicate of Christian Harald Lauritz Peter Emil Bohr’s original laboratory data 

published in 1904 [155]. ODC is an important tool in clinical medicine to understand 

how blood carries and releases oxygen. ODC indicates the relationship between the 

oxygen-hemoglobin percentage of saturation (SO2), the partial pressure of oxygen (PO2) 

and the partial pressure of carbon dioxide (PCO2). This relationship is known as the 

“hemoglobin affinity for oxygen”, i.e., how readily hemoglobin acquires and releases 

oxygen molecules into the fluid that surrounds it [156, 157]. 

 

 
 

Figure 5.1.1.1 – Bohr’s Oxygen-Hemoglobin Dissociation Curve (ODC) 

 

The hemoglobin affinity for oxygen is also affected by the blood pH (potential of 

Hydrogen), body temperature and the concentration in the red cells of 2,3-

bisphosphoglycerate (2,3-BPG) [156, 157]. However, these factors are not consider in 

the mathematical model. The principle aim of the model is to quantitatively defines the 

physiological relationships between SaO2, PaO2 and PaCO2, excluding 

pathophysiological factors. 
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Simulated step responses of generic overdamped second-order transfer functions with 5 

simulated ζ and ωn values are presented in Fig. 5.1.1.2. The purpose of presenting these 

simulation curves is to highlight the visual similarities between the step responses and 

the ODC as in Fig. 5.1.1.1. 

 

 
 

Figure 5.1.1.2 – Simulated Step Responses of Second-Order Transfer Functions 

 

As can be seen in Fig. 5.1.1.1 and Fig. 5.1.1.2, with the associations of x-axis “PO2 

(mmgH)” in Fig. 5.1.1.1 to “Time (seconds)” in Fig. 5.1.1.2 and y-axis “SO2 (%)” in 

Fig. 5.1.1.1 to “Amplitude” in Fig. 5.1.1.2, the responses of ODC are analogous to that 

of step responses in overdamped second-order transfer functions. A second-order is a 

reasonable choice in system modeling to balance between accuracy and complexity. 

Higher orders increase complexity and does not result in a commensurate increase in 

benefits. 

 

Therefore, for this observed visual similarities, a second-order transfer function with a 

unit step response in Laplace’s s-domain were chosen to represent the ODC as shown in 

Fig. 5.1.1.1. The Laplace’s s-domain was chosen for the mathematical convenience 

purpose. The transfer function is defined as: 

 

𝑆𝑎𝑂2(𝑠)

𝑃𝑎𝑂2(𝑠)
= 𝐾 (

1

𝑠
) (

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛 + 𝜔𝑛2
) (1) 
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The descriptions of the symbols used in (1) are: 

 

1. SaO2 – The arterial oxygen saturation. The unit for SaO2 is %. SO2 is 

equivalent to SaO2 in the context of arterial blood. 

 

2. PaO2 – The arterial partial pressure of oxygen. The unit for PaO2 is mmHg. 

PO2 is equivalent to PaO2 in the context of arterial blood, assuming 

alveolar–arterial O2 gradient equal to 0 mmHg. 

 

3. K – The gain constant that determine the size of steady-state response. The 

gain constant (K) is equal to 100. 

 

4. ζ – The damping ratio which determines how much the model oscillates as 

the response decays toward steady state. ζ is dimensionless. 

 

5. ωn – The natural frequency which determine how fast the model oscillates 

during any transient response. The unit for ωn is rads-1. 

 

Heuristic method of “trial-and-error” is performed to empirically estimate the two 

unknown values of ζ and ωn. The aim is to simulate the model to produce responses that 

closely matches the ODC as shown in Fig. 5.1.1.1. The estimates of ζ and ωn are shown 

in Table 5.1.1.1. PaCO2 unit is mmHg and is equivalent to PCO2 in the context of 

arterial blood. 

 

PaCO2 (mmHg) zeta Wn (rads-1) 

5 1.3850 0.1382 

10 1.1592 0.0942 

20 1.0934 0.0754 

40 1.0076 0.0565 

80 0.9055 0.0390 

 

Table 5.1.1.1 – Empirical Estimates of Zeta and Wn 
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Based on the estimates shown in Table 5.1.1.1, a natural log linear regression analysis 

for ωn versus PaCO2 is performed. The line of best fit equation with Pearson correlation 

coefficient of determination “r2” of 0.9908 is defined as: 

 

𝑙𝑛(𝜔𝑛) = −0.4486 𝑙𝑛(𝑃𝑎𝐶𝑂2) − 1.2714 (2) 

 

Therefore, the continuous time-domain solution for ωn(t) relationship to PaCO2(t) is 

defined as: 

 

𝜔𝑛(𝑡) = 0.28𝑃𝑎𝐶𝑂2(𝑡)
−0.45 (𝑟𝑎𝑑𝑠−1) (3) 

 

Based on the estimates shown in Table 5.1.1.1, a linear regression analysis for ζ versus 

ωn is performed. The line of best fit equation with Pearson correlation coefficient of 

determination “r2” of 0.9966 is defined as: 

 

𝜁 = 4.6599𝜔𝑛 + 0.7333 (4) 

 

Therefore, the continuous time-domain solution for ζ(t) relationship to PaCO2(t) is 

defined as: 

 

𝜁(𝑡) = 1.31𝑃𝑎𝐶𝑂2(𝑡)
−0.45 + 0.73 (5) 

 

Equation (5) indicates that both ζ(t) and PaCO2(t) must be greater than zero. Therefore, 

to solve the transfer function stated in (1), three cases are require to be considered, i.e., ζ 

> 1, ζ = 1, and 0 < ζ < 1. 

 

5.1.2 Case 1 – Overdamped Solution (ζ > 1) 
 

The transfer function stated in (1) for overdamped criteria can be re-written as: 

 

𝑆𝑎𝑂2(𝑠)

𝑃𝑎𝑂2(𝑠)
= 𝐾 (

1

𝑠
) (

𝛼𝛽

(𝑠 + 𝛼)(𝑠 + 𝛽)
) (6) 
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Where: 

𝛼 = 𝜔𝑛 (−𝜁 + √𝜁2 − 1) (𝑟𝑎𝑑𝑠−1) (7) 

𝛽 = 𝜔𝑛 (−𝜁 − √𝜁2 − 1) (𝑟𝑎𝑑𝑠−1) (8) 

 

Perform inverse Laplace transform using partial fraction expansion, the time-domain 

solution for SaO2(t) is defined as: 

 

𝑆𝑎𝑂2(𝑡) = 𝐾 (1 −
𝑓𝛼𝛽(𝑡)

𝛽(𝑡) − 𝛼(𝑡)
) (%) (9) 

 

Where: 

 

𝑓𝛼𝛽(𝑡) = 𝛽(𝑡)𝑒𝛼(𝑡)𝑃𝑎𝑂2(𝑡) − 𝛼(𝑡)𝑒𝛽(𝑡)𝑃𝑎𝑂2(𝑡) (10) 

 

5.1.3 Case 2 – Critically Damped Solution (ζ = 1) 
 

The transfer function stated in (1) for critically damped criteria can be re-written as: 

 

𝑆𝑎𝑂2(𝑠)

𝑃𝑎𝑂2(𝑠)
= 𝐾 (

1

𝑠
) (

𝜔𝑛
𝑠 + 𝜔𝑛

)
2

 (11) 

 

Perform inverse Laplace transform using partial fraction expansion, the time-domain 

solution for SaO2(t) is defined as: 

 

𝑆𝑎𝑂2(𝑡) = 𝐾 (1 − 𝑒−𝜔𝑛(𝑡)𝑃𝑎𝑂2(𝑡)𝑓𝜔𝑛(𝑡)) (%) (12) 

 

Where: 

 

𝑓𝜔𝑛(𝑡) = 1 + 𝜔𝑛(𝑡)𝑃𝑎𝑂2(𝑡) (13) 
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5.1.4 Case 3 – Underdamped Solution (0 < ζ < 1) 
 

Perform inverse Laplace transform using partial fraction expansion for the transfer 

function stated in (1), the time-domain solution for SaO2(t) is defined as: 

 

𝑆𝑎𝑂2(𝑡) = 𝐾 (1 − 𝐴(𝑡)𝑒−𝛾(𝑡)𝑃𝑎𝑂2(𝑡)𝑓𝑠𝑖𝑛(𝑡)) (%) (14) 

 

Where: 

 

𝐴(𝑡) =
𝜔𝑛(𝑡)

𝜔𝑠𝑖𝑛(𝑡)
 (15) 

 

𝛾(𝑡) = 𝜁(𝑡)𝜔𝑛(𝑡) (𝑟𝑎𝑑𝑠−1) (16) 

 

𝑓𝑠𝑖𝑛(𝑡) = 𝑠𝑖𝑛(𝜔𝑠𝑖𝑛(𝑡)𝑃𝑎𝑂2(𝑡) + 𝜙(𝑡)) (17) 

 

𝜔𝑠𝑖𝑛(𝑡) = 𝜔𝑛(𝑡)√1 − 𝜁(𝑡)2 (𝑟𝑎𝑑𝑠−1) (18) 

 

𝜙(𝑡) = 𝑐𝑜𝑠−1 𝜁(𝑡) (𝑟𝑎𝑑𝑠−1) (19) 

 

5.1.5 Generalized SaO2 Equation 
 

Therefore, the mathematical model of the oxygen-hemoglobin dissociation that 

quantitatively defines the relationships between SaO2 to the activation functions of 

amplitude (fA), PaCO2 (fPaCO2) and PaO2 (fPaO2) is defined as: 

 

𝑆𝑎𝑂2(𝑡) = 𝐾 (1 − 𝑓𝐴(𝑡)𝑒
−𝑓𝑃𝑎𝐶𝑂2(𝑡)𝑃𝑎𝑂2(𝑡)𝑓𝑃𝑎𝑂2(𝑡)) (%) (20) 

 

The activation functions are defined as: 
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𝑓𝐴(𝑡) = {
(𝛽(𝑡) − 𝛼(𝑡))

−1
, 𝜁(𝑡) > 1

1 , 𝜁(𝑡) = 1

𝐴(𝑡) , 0 < 𝜁(𝑡) < 1

} (21) 

 

𝑓𝑃𝑎𝐶𝑂2(𝑡) = {

0 , 𝜁(𝑡) > 1

𝜔𝑛(𝑡) , 𝜁(𝑡) = 1

𝛾(𝑡) , 0 < 𝜁(𝑡) < 1

} (22) 

 

𝑓𝑃𝑎𝑂2(𝑡) = {

𝑓𝛼𝛽(𝑡) , 𝜁(𝑡) > 1

𝑓𝜔𝑛(𝑡) , 𝜁(𝑡) = 1

𝑓𝑠𝑖𝑛(𝑡) , 0 < 𝜁(𝑡) < 1

} (23) 

 

Based on the relationships between ζ(t) and PaCO2(t) in (5), the ζ(t) criteria in (21), (22) 

and (23) can be expressed in terms of PaCO2(t) criteria as follows: 

 

𝜁(𝑡) > 1 ≈ 0 < 𝑃𝑎𝐶𝑂2(𝑡) < 34.56

𝜁(𝑡) = 1 ≈ 𝑃𝑎𝐶𝑂2(𝑡) ≅ 34.56

0 < 𝜁(𝑡) < 1 ≈ 𝑃𝑎𝐶𝑂2(𝑡) > 34.56

(𝑚𝑚𝐻𝑔)

(𝑚𝑚𝐻𝑔)

(𝑚𝑚𝐻𝑔)
 (24) 

 

Any short-term rise in PaCO2 above 40 mmHg due to decrease ventilation results in 

respiratory acidosis. Any short-term decrease in ventilation that lowers PaCO2 below 35 

mmHg results in respiratory alkalosis [156]. The activation functions in (21), (22) and 

(23) are design to be activated according to the respiratory alkalosis, adequate 

ventilation and respiratory acidosis conditions. 

 

 

5.2 Relationships of the Alveolar Partial 

Pressures 
 

Section 5.2 integrates published research findings and established relationships of the 

alveolar partial pressures, as specified in [152, 153, 156-158], to present the novel sets 

of alveolar parameters equations that are the inputs to the mathematical model presented 

in section 5.1.1. The principle aim is to estimate the actual time-domain “PaCO2(t)” and 
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“PaO2(t)”. The alveolar ventilation “VA(t)” and carbon dioxide production “VCO2(t)” are 

also require to be estimated as it is require in the “PaCO2(t)” estimation. The 

methodologies are detailed in the subsequent sub-sections of section 5.2. 

 

5.2.1 Alveolar Ventilation Relationship to Subject’s Height 
 

According to Hart [158], the subject’s predicted “anatomic” respiratory dead-space 

volume “VD” in milliliters relationship to the subject’s actual height “Ht” in centimeters 

can be estimated as: 

 

𝑉𝐷 = 7.585𝐻𝑡2.363 × 10−4 (𝑚𝐿) (25) 

 

Combining Stahl [152], Livingston and Lee [153] published research findings, the 

subject’s predicted tidal volume “VT” in milliliters can be estimated as: 

 

𝑉𝑇 = 7.038𝐻𝑡
2.652 × 10−4 (𝑚𝐿) (26) 

 

Therefore, the “anatomic” respiratory dead-space ratio “RD” is defined as: 

 

𝑅𝐷 =
𝑉𝐷
𝑉𝑇
= 1.078𝐻𝑡−0.289 (27) 

 

In the context of the mathematical model of the oxygen-hemoglobin dissociation, the 

“physiological” respiratory dead-space volume is assume to be negligible. Therefore, 

the actual real-time alveolar ventilation “VA(t)” in liters per minute relationship to the 

subject’s actual height is defined as: 

 

�̇�𝐴(𝑡) = (1 − 1.078𝐻𝑡
−0.289)�̇�𝐸(𝑡) (𝐿𝑚−1) (28) 

 

Where: VE(t) is the subject’s actual minute ventilation in liters per minute (Lm-1). 
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5.2.2 Carbon Dioxide Production Relationships to Subject’s 

Heart Rate and Respiratory Quotient 
 

According to Stahl [152],  the subject’s predicted oxygen consumption “VO2” in 

milliliters per minute, cardiac output “CO” in milliliters per minute and heart rate “HR” 

in beats per minute relationships to the subject’s actual body mass in kilograms “Wt” 

can be estimated as: 

 

𝑉𝑂2 = 11.6𝑊𝑡
0.76 (𝑚𝐿𝑚𝑖𝑛−1) (29) 

 

𝐶𝑂 = 187𝑊𝑡0.81 (𝑚𝐿𝑚𝑖𝑛−1) (30) 

 

𝐻𝑅 = 241𝑊𝑡−0.25 (𝑏𝑝𝑚) (31) 

 

By dividing (30) by (31), the subject’s predicted stroke volume “SV” in milliliters per 

beat is defined as: 

 

𝑆𝑉 =
𝐶𝑂

𝐻𝑅
= 0.776𝑊𝑡1.06 (

𝑚𝑙

𝑏𝑒𝑎𝑡
) (32) 

 

Fick’s principle [156] indicates that the oxygen consumption “VO2” is the product of 

cardiac output “CO” and arteriovenous oxygen difference “CaO2 – CvO2”. Therefore, VO2 

can be expressed as: 

 

�̇�𝑂2 = 𝐶𝑂(𝐶𝑎𝑂2 − 𝐶𝑣𝑂2) (𝑚𝐿𝑚𝑖𝑛−1) (33) 

 

By dividing (29) by (30) and rearranging (33), the subject’s predicted “CaO2 – CvO2” is 

defined as: 

 

𝐶𝑎𝑂2 − 𝐶𝑣𝑂2 =
�̇�𝑂2
𝐶𝑂

= 0.062𝑊𝑡−0.05 (
𝑚𝐿

100𝑚𝐿
) (34) 

 

The respiratory quotient (RQ) is defined as: 



Page | 80  

 

𝑅𝑄 =
�̇�𝐶𝑂2
�̇�𝑂2

 (35) 

 

RQ is approximately equal to 1.0 for the subject receiving an intravenous glucose 

solution. RQ is approximately equal to 0.7 for the subject with hypoglycemic or diabetic 

and relying on fatty acid metabolism. RQ is approximately equal to 0.8 for the subject 

with mixes of fuels, i.e., fat and glucose [156, 157]. 

 

By combining (32), (33), (34), (35) and replacing the subject’s predicted HR in (32) 

with the actual heart rate (HR(t)), the actual VCO2(t) in milliliters per minute 

relationships to the subject’s actual weight in kg, heart rate and respiratory quotient is 

defined as: 

 

𝑉𝐶𝑂2(𝑡) = 0.048𝑊𝑡
1.01 × 𝐻𝑅(𝑡) × 𝑅𝑄 (𝑚𝐿𝑚𝑖𝑛−1) (36) 

 

5.2.3 Arterial Partial Pressure of Carbon Dioxide Relationships 

to Alveolar Ventilation and Carbon Dioxide Production 
 

One of the important physiological relationship between PaCO2 and VA is that dead-

space does not participate in the gas exchange process; all of the expired carbon dioxide 

comes from the alveolar gas. The amount of VCO2 excreted by the lungs equals to VA 

times the fraction of alveolar carbon dioxide “FACO2”. Since PaCO2 = FACO2 times 

the total alveolar gas pressure [156, 157]. Therefore, PaCO2 in mmHg relationships to 

the alveolar ventilation and carbon dioxide production is defined as: 

 

𝑃𝑎𝐶𝑂2(𝑡) =
𝐾𝑐𝑉𝐶𝑂2(𝑡)

�̇�𝐴(𝑡)
=
0.041𝑊𝑡1.01 × 𝐻𝑅(𝑡) × 𝑅𝑄

(1 − 1.078𝐻𝑡−0.289)�̇�𝐸(𝑡)
(𝑚𝑚𝐻𝑔) (37) 

 

Where: “KC” is a constant that equates dissimilar units for VCO2 (mLmin-1) and VA 

(Lmin-1) to PaCO2 pressure unit (mmHg), as well as the conversion of FACO2 to 

PaCO2. The constant “KC” is equal to 0.863 [156, 157]. 
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To compensate for any unwanted fluctuations caused by noises and other means of 

disturbances, the criteria of PaCO2(t) must be within the range of a minimum of 0 

mmHg to a maximum of 125 mmHg. The reason for applying this range is that 

physiologically PaCO2(t) must be greater than 0 mmHg and PaO2(t) approaches 0 

mmHg when PaCO2(t) approaches 125 mmHg. Therefore, PaCO2*(t), i.e., with the 

inclusion of artefact rejection criteria is defined as: 

 

𝑃𝑎𝐶𝑂2
∗(𝑡) = {

𝑃𝑎𝐶𝑂2(𝑡) , 0 ≤ 𝑃𝑎𝐶𝑂2(𝑡) ≤ 125

𝑃𝑎𝐶𝑂2
∗(𝑡−1) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} (38) 

 

The expression ‘t –1’ refers to the value at the previous instance of time. 

 

5.2.4 Arterial Partial Pressure of Oxygen Relationship to Arterial 

Partial Pressure Carbon Dioxide 
 

It is by passive diffusion down a partial pressure gradient that pulmonary capillary 

blood is oxygenated. According to the established alveolar gas equation (AGE) [156, 

157], PaO2 in mmHg relationship to PaCO2 in mmHg is defined as: 

 

𝑃𝑎𝑂2(𝑡) = 𝑃𝑖𝑂2 − 𝑃𝑎𝐶𝑂2
∗(𝑡) (

1 − 𝐹𝑖𝑂2(1 − 𝑅𝑄)

𝑅𝑄
) (𝑚𝑚𝐻𝑔) (39) 

 

Where: 

𝑃𝑖𝑂2 = 𝐹𝑖𝑂2(𝑃𝑎𝑡𝑚 − 𝑃𝐻2𝑂) (40) 

 

The descriptions of the symbols used in (39) and (40) are: 

 

1. FiO2 – Fractional content of inspired oxygen of air. Natural air includes 

20.95% of oxygen, which is equivalent to FiO2 of 0.2095. Oxygen-enriched 

air has greater than 20.95% to 100% of oxygen. However, FiO2 is typically 

maintain below 0.5 even with mechanical ventilation to prevent oxygen 

toxicity [159]. 
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2. Patm – Barometric or atmospheric pressure. Patm is approximately equal to 

760 mmHg at sea level. However, Patm can varies depending on 

geographical locations and altitudes [156, 157]. 

 

3. PH20 – Vapor pressure of water in the alveoli. PH20 is fully saturated at body 

temperature of 37°C and is approximately equal to 47 mmHg. However, 

PH20 can varies depending on body temperatures [156, 157]. 

 

To compensate for any unwanted fluctuations caused by noises and other means of 

disturbances, the criteria of PaO2(t) must be within the range of a minimum of 0 mmHg 

to a maximum of 150 mmHg. The reason for applying this range is that physiologically 

PaO2(t) must be greater than 0 mmHg and oxygen-hemoglobin is fully saturated, i.e., 

100% when PaO2(t) approaches 150 mmHg. Therefore, PaO2*(t), i.e., with the inclusion 

of artefact rejection criteria is defined as:  

 

𝑃𝑎𝑂2
∗(𝑡) = {

𝑃𝑎𝑂2(𝑡) , 0 ≤ 𝑃𝑎𝑂2(𝑡) ≤ 150

𝑃𝑎𝑂2
∗(𝑡−1) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} (41) 

  

 

5.3 Non-Contact Prediction of Oxygen 

Saturation Algorithm 
 

The challenges to the processing of the non-contact Doppler radar signals are clutters, 

DC offsets, phase-nulling, motions artefacts and electromagnetic interferences. Another 

major challenge in sleep monitoring application is the noise associated with 

unpredictable body movements, body orientations, changes in sleeping posture, multi-

subjects’ cancellation, undesired harmonics and intermodulation. 

 

Therefore, section 5.3 presents a novel non-contact algorithm that utilizes the 

mathematical model, MLP neural network, and patented microwave Doppler radar to 

translate the human periodic chest displacements caused by respiratory efforts into SpO2 

measurements. SpO2 refers to peripheral capillary oxygen saturation measured from 
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pulse oximeter, whilst SaO2 refers to arterial oxygen saturation measured from arterial 

blood gas (ABG) analysis. The target output used to train the MLP artificial neural 

network is obtain from PSG SpO2 measured from a pulse oximeter. This is the reason 

why the non-contact oxygen saturation prediction algorithm uses the term SpO2 instead 

of SaO2. 

 

The purpose of utilizing patented sensor system is that the issues of motions artefacts, 

electromagnetic interferences, multi-subjects’ cancellation, undesired harmonics and 

intermodulation have been addressed by the sensor’s design, which is detailed in 

Appendix I, section A.I.I. 

 

The motivation for utilizing MLP artificial neural network in conjunction with the 

mathematical model is to enable the capability to train and compensate for the noises 

associated with the complex sleep environment, such as, motions artefacts, 

unpredictable body movements, body orientations, and changes in sleeping posture. The 

inclusion of MLP artificial neural network increases the accuracy and robustness of the 

SpO2 predictions. 

 

5.3.1 Algorithm Block Diagram 
 

The block diagram of the non-contact prediction of SpO2 algorithm is in Fig. 5.3.1.1. 
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Figure 5.3.1.1 – Non-Contact Prediction of SpO2 Algorithm Block Diagram 

 

The “Relative Demodulation” technique and “Respiratory and Heart Rate Estimation” 

algorithm presented in Chapter 3 are utilize to obtain the absolute chest displacements 

in meters, respiratory rates in breaths per minute, and heart rates in beats per minute 

(bpm). This technique was chosen over conventional “Arctangent Demodulation” 

because the demodulated chest displacements are absolute, addressed clutters, DC 

offsets, phase-nulling and less sensitive to quadrature orthogonal issues. In addition, the 

estimations of respiratory and heart rates are also accurate. 

 

The “Pulmonary Ventilation Model” and “Tidal Volume Estimation” algorithm 

presented in Chapter 4 are also utilize to obtain the mean tidal volume in milliliters 

(mL). The mean tidal volume is not a mean value across the entire duration; it is the 

mean value within a fixed window-width of 60 seconds (2 epochs) and a sliding 

window-width of 30 seconds (1 epoch). This technique was chosen as it gives the ability 
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to convert the absolute chest displacements, which obtained from the “Relative 

Demodulation” technique, to tidal volume via mathematical model derived from 

anatomy and physiology instead of simply applying regressions between the chest 

displacement and tidal volume values. 

 

The “Minute Ventilation” (VE(t)) is estimated by the multiplication of the respiratory 

rate and mean tidal volume. The VE(t) is then converted to liters per minute. 

 

The “Alveolar Partial Pressures Estimation” and “Oxygen-Hemoglobin Dissociation 

Model” (OHDM) implements the equations stated in section 5.1 and 5.2. The following 

assumptions was applied to OHDM: 

 

1. RQ – The patients’ mean age is 69.05 years with overweight BMI of 28.01. 

People who are overweight or have obesity will have additional pressure on 

their body’s ability to use insulin to properly control blood sugar levels. 

Therefore, diabetes is more likely to be developed. It is assume that the 

patients are most likely to be diabetic and RQ is approximately equal to 0.7. 

 

2. FiO2 – The CHF patients are admitted in the sleep laboratory for OSA 

diagnoses and neither oxygen-enriched air nor positive airway pressure 

therapy are prescribed during the entire duration of the sleep test. Therefore, 

it is assume that the patients consumed natural air and FiO2 is approximately 

equal to 0.2095. 

 

3. Patm – It is assume that the atmospheric pressure is approximately equal to 

760 mmHg at sea level. 

 

4. PH20 – There are neither evidences nor records to indicate that the CHF 

patients experienced hypothermia or hyperthermia during the entire duration 

of the sleep test.  It is assume that the patient’s body temperature is normal 

at 37°C and PH20 is approximately equal to 47 mmHg. 
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A “Median Filter” with a fixed window-width of 60 seconds (2 epochs) and a sliding 

window-width of 30 seconds (1 epoch) is apply to smooth the estimated SaO2 values. 

 

5.3.2 Feature Extraction Process 
 

There are 5 chosen inputs to the feature extraction process, which are the chest 

displacement, respiratory rate, heart rate, mean tidal volume and estimated SaO2 from 

the mathematical model. The feature extraction process extract features as per fixed 

window-width of 60 seconds (2 epochs) and a sliding window-width of 30 seconds (1 

epoch) for the entire length of the input signal. The terminology “epoch” is refer to the 

interval of 30 seconds in the sleep analysis defined by the American Academy of Sleep 

Medicine (AASM). This is the standardized block of analysis in OSA diagnosis 

recommended by AASM, and the feature extraction window is an adherence to the 

epoch standard. Table 5.3.2.1 indicate the chosen 8 time-domain statistical features as 

per window, where “x” is the selected signal at the selected window. The statistical 

methods for obtaining the features are mean, variance (var), standard deviation (std) and 

median-absolute-deviation (mad). 

 

mean(x) mean(x2) var(x) var(x2) 

std(x) std(x2) mad(x) mad(x2) 

 

Table 5.3.2.1 – Time-Domain Statistical Features 

 

The feature extraction process produces a total of 40 features, which is the product of 5 

input signals and 8 time-domain statistical features. The total 40 features are then re-

scale to the range of -1.0 to 1.0. 

 

5.3.3 SpO2 Multilayer Perceptron Artificial Neural Network 

Architecture 
 

The MLP artificial neural network architecture for SpO2 prediction is presented in Fig. 

5.3.3.1. The MLP artificial neural network is a simple fully connected with hyperbolic 
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tangent sigmoid (tansig) as activation function for the hidden layers and identity (linear) 

as activation function for the output layer. The MLP artificial neural network contains 3 

layers, in which 2 layers are hidden layers and 1 output layer. The output layer contains 

regression values for SpO2. 

 

 
 

Figure 5.3.3.1 – SpO2 MLP Artificial Neural Network Architecture 

 

The summary of SpO2 MLP artificial neural network hyperparameters are shown in 

Table 5.3.3.1. 

 

 Hidden Layer 1 Hidden Layer 2 Output Layer 

Number of Neuron 80 40 1 

Activation Function Hyperbolic Tangent Sigmoid Identity 

 

Table 5.3.3.1 – SpO2 MLP Artificial Neural Network Architecture Characteristics 

 

The common training characteristics of the artificial neural network are summarized in 

Appendix III, Table A.III.1. 

 

 

5.4 Conclusion 
 

Chapter 5 contributes to the field of non-contact sleep monitoring by introducing a 

novel oxygen-hemoglobin dissociation mathematical model that quantitatively defines 

the relationships between SaO2, PaO2 and PaCO2. The novelty of the mathematical 

model is that it enables the capability to estimate oxygen saturation using the non-

contact microwave Doppler radar. 
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However, to increase the accuracy and robustness in the complex sleep environment, a 

novel non-contact algorithm that utilizes the mathematical model, MLP artificial neural 

network and microwave Doppler radar is also introduce to translate the human periodic 

chest displacements caused by respiratory efforts into peripheral capillary oxygen 

saturation (SpO2) measurements. 

 

It is also important to emphasize that the oxygen-hemoglobin dissociation mathematical 

model is theoretically generic and not restricted to non-contact applications. 

 

The real-life applications and results of “External Ventilation Mathematical Model” in 

non-contact sleep monitoring is presented in Chapter 7, section 7.3 of the Thesis. 

 

The work presented in Chapter 5 is published in [160] and patented in [161]. 
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CHAPTER 6: 3-DIMENSIONAL 

FEATURE REPRESENTATION AND 

EXTRACTION TECHNIQUE 
Thesis Contribution 5: Novel Theory 4 

 

 

INTRODUCTION 
 

 

Deep artificial neural networks, i.e., with multiple layers, usually require significant 

amount of training data to achieve good performance and generalization. However, 

acquiring significant amount of training data is always a challenge. Hand-crafted and/or 

algorithm-based feature extraction often requires certain degree of expert domain 

knowledge. In addition, feature engineering process does not achieve data 

transformation, augmentation, normalization, scaling and feature extraction in a single 

process. 

 

Therefore, chapter 6 presents a novel 3-dimensional feature representation and 

extraction technique, consisting of two methods, Spatial Dimensions Transform (SDT) 

and Spatial Dimensions Decomposition (SDD). SDT and SDD when combined can 

6 

C
h

a
p
t
e
r
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achieve data transformation, augmentation, normalization, scaling and feature extraction 

in a single process. 

 

 

6.1 Spatial Dimensions Transform 
 

Section 6.1 presents the theory and methodologies of Spatial Dimensions Transform 

(SDT) and inverse Spatial Dimensions Transform (iSDT). The principle aim of SDT is 

to transpose any given function, scalar values (minimum 2 values) or vector onto 3-

dimensional Cartesian coordinates. The SDT rules and methodologies are detailed in 

subsections 6.1.1 and 6.1.2. The iSDT methodology is detailed in subsection 6.1.3. 

 

6.1.1 SDT Rules 
 

1. For any given function, scalar values (minimum 2 values) or vector, denoted 

as function “f(t)”, at any two instances, denoted as “f(tn-1)” and “f(tn)”, is 

define as the transpose window, denoted as “Tw”. 

 

2. As per “Tw”, a straight line is connected between the magnitudes of “f(tn-1)” 

and “f(tn)”, and referred to as the hypotenuse of a right-angle triangle or 

simply a line segment. 

 

3. As per “Tw”, the angle between the magnitude-axis and instance-axis “t” is 

denote as “θ(tn)”. 

 

4. As per “Tw”, the magnitude of “f(tn)” at “tn”, is define as the spatial 

magnitude and denoted as “A(tn)”. The aim is to preserve the data integrity 

of the given function, scalar values (minimum 2 values) or vector. 
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Figure 6.1.1.1 – Spatial Dimensions Transform Theory Graphical Representation 

 

6.1.2 SDT Methodology 
 

The angle “θ” (theta) between the magnitude-axis and instance-axis is defined as: 

 

𝜃(𝑡𝑛) = tan
−1 (

𝑓(𝑡𝑛) − 𝑓(𝑡𝑛−1)

𝑡𝑛 − 𝑡𝑛−1
) (𝑟𝑎𝑑𝑠−1) (1) 

 

Therefore, in general, the vector “θ” is defined as: 

 

𝜃 = tan−1 (
𝑑

𝑑𝑡
𝑓(𝑡)) (𝑟𝑎𝑑𝑠−1) (2) 

 

Let’s introduce “φ” (phi) as an amplification factor for the rate of change of “f(tn)”, 

where “φ” is any real number: 

 

𝜃 = tan−1 (𝜑
𝑑

𝑑𝑡
𝑓(𝑡)) (𝑟𝑎𝑑𝑠−1) (3) 

 

The spatial magnitude vector is defined as: 

 

𝐴 = 𝑓(𝑡) (4) 
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Let the directional cosines of the spatial vector relative to the “x-coordinate” be alpha 

(α), “y-coordinate” be beta (β) and “z-coordinate” be gamma (γ) as shown in Fig. 

6.1.2.1. 

 

 
 

Figure 6.1.2.1 – Spatial Dimensions Directional Cosines 

 

 

Therefore, the directional cosines are: 

 

cos(𝛼) =
𝐴𝑥
𝐴

 (5) 

 

cos(𝛽) =
𝐴𝑦

𝐴
 (6) 

 

cos(𝛾) =
𝐴𝑧
𝐴

 (7) 

 

The constraint of the directional cosines is defined as: 

 

cos2(𝛼) + cos2(𝛽) + cos2(𝛾) = 1 (8) 

 

The unit vector “u” along the vector “A” is defined as: 

 

𝑢 = cos(𝛼) 𝑖 + cos(𝛽) 𝑗 + cos(𝛾) 𝑘 (9) 
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𝑢 =
𝐴𝑥
𝐴
𝑖 +

𝐴𝑦

𝐴
𝑗 +

𝐴𝑧
𝐴
𝑘 (10) 

 

Let’s transpose the angle “θ” onto 3-dimensional Cartesian coordinates relative to 

vector “A” as shown in Fig. 6.1.2.2. 

 

 
 

Figure 6.1.2.2 – Spatial Dimensions Theta Transposition 

 

The magnitudes of the coordinates are: 

 

𝐴𝑥𝑦 = 𝐴 cos 𝜃 (11) 

 

𝐴𝑥 = 𝐴𝑥𝑦 cos 𝜃 (12) 

 

𝐴𝑦 = 𝐴𝑥𝑦 sin 𝜃 (13) 

 

𝐴𝑦 = 𝐴𝑥𝑦 sin 𝜃 (14) 

 

Therefore, the unit vector “u” along the vector “A” relationship to “θ” is defined as: 

 

𝑢 = cos2 𝜃 𝑖 + sin 𝜃 cos 𝜃 𝑗 + sin 𝜃 𝑘 (15) 

 

Using Trigonometry to represent the unit vector “u” relationship to φ d

dt
f(t) as follows: 
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sin 𝜃 = sin (tan−1 (𝜑
𝑑

𝑑𝑡
𝑓(𝑡))) =

𝜑
𝑑
𝑑𝑡
𝑓(𝑡)

√(𝜑
𝑑
𝑑𝑡
𝑓(𝑡))

2

+ 1

 
(16) 

 

cos 𝜃 = cos (tan−1 (𝜑
𝑑

𝑑𝑡
𝑓(𝑡))) =

1

√(𝜑
𝑑
𝑑𝑡
𝑓(𝑡))

2

+ 1

 
(17) 

 

𝑢 =
1

(𝜑
𝑑
𝑑𝑡
𝑓(𝑡))

2

+ 1

𝑖 +
𝜑
𝑑
𝑑𝑡
𝑓(𝑡)

(𝜑
𝑑
𝑑𝑡
𝑓(𝑡))

2

+ 1

𝑗 +
𝜑
𝑑
𝑑𝑡
𝑓(𝑡)

√(𝜑
𝑑
𝑑𝑡
𝑓(𝑡))

2

+ 1

𝑘 
(18) 

 

Therefore, the Unit Spatial Dimensions Transform (USDT) matrix is defined as: 

 

𝑈 =

[
 
 
 
 1

(𝜑
𝑑
𝑑𝑡
𝑓(𝑡))

2

+ 1

𝜑
𝑑
𝑑𝑡
𝑓(𝑡)

(𝜑
𝑑
𝑑𝑡
𝑓(𝑡))

2

+ 1

𝜑
𝑑
𝑑𝑡
𝑓(𝑡)

√(𝜑
𝑑
𝑑𝑡
𝑓(𝑡))

2

+ 1
]
 
 
 
 

 (19) 

 

To determine the ranges of the “i”, “j” and “k” coordinates, limits approaches ±∞, 0, 

and 1 are apply as follows: 

 

lim
𝜑
𝑑
𝑑𝑡
𝑓(𝑡)→±∞

𝑈 = [0 0 ±1] (20) 

 

lim
𝜑
𝑑
𝑑𝑡
𝑓(𝑡)→0

𝑈 = [1 0 0] (21) 

 

lim
𝜑
𝑑
𝑑𝑡
𝑓(𝑡)→±1

𝑈 = [
1

2
±
1

2
±
1

√2
] (22) 

 

Therefore, the “i”, “j” and “k” coordinates ranges are: 
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0 ≤ 𝑖𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 ≤ 1 (23) 

 

−
1

2
≤ 𝑗𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 ≤

1

2
 (24) 

 

−1 ≤ 𝑘𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 ≤ 1 (25) 

 

Let’s investigate the effects of the amplification factor “φ”: 

 

lim
𝜑→±∞

𝑈 = [0 0 ±1] (26) 

 

lim
𝜑→0

𝑈 = [1 0 0] (27) 

 

lim
𝜑→±1

𝑈 =

[
 
 
 
 1

(
𝑑
𝑑𝑡
𝑓(𝑡))

2

+ 1

±
𝑑
𝑑𝑡
𝑓(𝑡)

(
𝑑
𝑑𝑡
𝑓(𝑡))

2

+ 1

±
𝑑
𝑑𝑡
𝑓(𝑡)

√(
𝑑
𝑑𝑡
𝑓(𝑡))

2

+ 1
]
 
 
 
 

 (28) 

 

The effects of the amplification factor “φ” can be summarized as follows: 

 

 “φ” = 0 – saturate the transformation state. 

 

 “φ” = 1 – unscaled transformation state, where the rate of change of “f(t)” is 

not amplify. 

 

 “φ” = –1 – unscaled transformation state, however, for “j” and “k” 

coordinates, the rate of change is inverse.  

 

 “φ” positive increase – decreases in “i” coordinate and increases in “j” and 

“k” coordinates. This will amplify the effects of small changes and saturate 

large changes. 

 

 “φ” negative decrease – decreases in “i” coordinate and inversely increases 



Page | 96  

 

in “j” and “k” coordinates. This will inversely amplify the effects of small 

changes and saturate large changes. 

 

Therefore, the value of “φ” is introduced to enhance and control the small changes in 

data and saturate large changes to minimize the effects of noises. In practice, the value 

of “φ” is an arbitrary number and can be selected via trial and error mechanism. 

 

It is important to emphasize that USDT automatically transform, normalize and scale 

the data to the range between negative 1.0 to positive 1.0. The transformation of the data 

is achieve by the removal of offsets using derivatives and the modulations of the 

amplification factor. The normalization and scaling of the data is achieve by the 

derivatives in unit vector dimensions. 

 

To enforce the directional cosines constraint as defined in (8), USDT is square and 

defined as: 

 

𝑈2 =

[
 
 
 
 
 

1

((𝜑
𝑑
𝑑𝑡
𝑓(𝑡))

2

+ 1)

2

(𝜑
𝑑
𝑑𝑡
𝑓(𝑡))

2

((𝜑
𝑑
𝑑𝑡
𝑓(𝑡))

2

+ 1)

2

(𝜑
𝑑
𝑑𝑡
𝑓(𝑡))

2

(𝜑
𝑑
𝑑𝑡
𝑓(𝑡))

2

+ 1
]
 
 
 
 
 

 (29) 

 

0 ≤ 𝑈2 ≤ 1 (30) 

 

The key feature of U2 is that the sum of its “i”, “j” and “k” coordinates is equal to 1.0. 

Therefore, the data is consistently transform, normalize and scale to the range between 

0.0 and 1.0, which is well suited for artificial neural networks (ANN) inputs. 

 

The SDT matrix denoted as “S”, which preserves the data integrity of the function, 

scalar values (minimum 2 values) or vector is: 

 

𝑆 = 𝐴⊙𝑈 (31) 
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𝑆 = 𝑓(𝑡) ⊙

[
 
 
 
 1

(𝜑
𝑑
𝑑𝑡
𝑓(𝑡))

2

+ 1

𝜑
𝑑
𝑑𝑡
𝑓(𝑡)

(𝜑
𝑑
𝑑𝑡
𝑓(𝑡))

2

+ 1

𝜑
𝑑
𝑑𝑡
𝑓(𝑡)

√(𝜑
𝑑
𝑑𝑡
𝑓(𝑡))

2

+ 1
]
 
 
 
 

(32) 

 

To visualize the SDT for a time-series signal, a simulation of a sinewave and transposed 

using SDT is shown in Fig. 6.1.2.3. 

 
Figure 6.1.2.3 – Spatial Dimensions Transform of Simulated Time-Series Signal 

 

Figure 6.1.2.3 plotted in time-series the values of the “i” (blue), “j” (red) and “k” 

(green) coordinates for the matrix “U” and “U2”. The “x” (blue), “y” (red) and “z” 

(green) coordinates for the matrix “S”. The 3D surface plots of “S”, “U” and “U2” also 

plotted in Fig. 6.1.2.3. 
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As shown in Fig. 6.1.2.3, SDT represent the data as vectors on 3-dimensional Cartesian 

coordinates. Each of the coordinates is one representation of the data and can be 

selected as an augmented data. 

 

To visualize the SDT for an image data, a public domain image of the Sydney Opera 

House, which released under Creative Commons CC0 by Pixabay, is downloaded and 

transposed using SDT. The image is shown in Fig. 6.1.2.4. 

 

 
 

Figure 6.1.2.4 – Spatial Dimensions Transform of An Image 

 

As shown in Fig. 6.1.2.4, SDT transposed the original image into 3 separate images, 

which are the “x-dimension”, “y-dimension” and “z-dimension” representations. It can 

be observed that the rate of change in the image contrast, brightness, color intensity and 

edges are highlighted on different scales. SDT, when it is applied to the image data, 

besides the data augmentation and features extraction capabilities, can also deliver the 

benefit of edge detection. 
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6.1.3 Inverse SDT 
 

A transform method cannot be completed if the methodology to inverse the transformed 

matrix to recover the original data is not defined. Therefore, section 6.1.3 presents the 

inverse process of the SDT named inverse Spatial Dimensions Transform (iSDT). This 

technique can be used to recover the original data when only SDT matrix is provided. 

The iSDT is defined as: 

 

iSDT(𝑡) =
1

𝜑
∫
sin 𝜃 cos 𝜃

cos2 𝜃
𝑑𝜃 + 𝑐0 (33) 

  

iSDT(𝑡) =
1

𝜑
∫

sin (tan−1 (𝜑
𝑑
𝑑𝑡
𝑓(𝑡)))

cos (tan−1 (𝜑
𝑑
𝑑𝑡
𝑓(𝑡)))

𝑑𝑡 + 𝑐0 (34) 

 

iSDT(𝑡) = {

1

𝜑
∫
𝑈𝑗(𝑡)

𝑈𝑖(𝑡)
𝑑𝑡 , 𝑈𝑖(𝑡) ≠ 0

0 , 𝑈𝑖(𝑡) = 0

} + 𝑐0 (35) 

 

Where: “c0” is a constant of the initial value. 

 

 

6.2 Spatial Dimensions Decomposition 
 

Section 6.2 presents the methodologies in data transformation, augmentation, 

normalization, scaling and feature extraction, named Spatial Dimensions 

Decomposition (SDD). The principle aim of SDD is to decompose any given function, 

scalar values (minimum 2 values) or vector into flattened matrix consisting of multi-

coordinates columns according to the decomposition level. The SDD methodology, 

decomposition tree and algorithm are detailed in subsections 6.2.1, 6.2.2 and 6.2.3. The 

SDD approaches on data transformation, augmentation and feature extraction are 

detailed in subsections 6.2.4, 6.2.5 and 6.2.6. 



Page | 100  

 

6.2.1 SDD Methodology 
 

SDD is an iterative SDT according to the decomposition level. The number of flattened 

multi-coordinates columns “C” according to the decomposition level is: 

 

𝐶 = ∑3𝑑
𝐷

𝑑=1

 (36) 

 

Where: “C” is the number of flattened multi-coordinates columns and “D” is the 

decomposition level. 

 

6.2.2 SDD Decomposition Tree 
 

The visualization of the SDD decomposition tree is shown in Fig. 6.2.2.1. 

 

 
 

Figure 6.2.2.1 – Spatial Dimensions Decomposition Tree 
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6.2.3 SDD Algorithm 
 

 

 

6.2.4 SDD Approach on Data Transformation 
 

SDT and SDD are design to automatically transform, normalize and scale the data in a 

single process. SDD can be used as multi-dimensional data transformation for any given 

function, scalar values (minimum 2 values) or vector. The term “data” also encapsulate 

variations of data types, such as, image, text, dynamic time-series or speech signals. 

 

6.2.5 SDD Approach on Data Augmentation 
 

The decomposed flattened multi-coordinates columns produced by SDD represent the 

data in multi 3-dimensional coordinates. Each of the flattened coordinates is by itself an 

augmented representation of the data. In addition, the iSDT of each of the decompose 

level is also an augmented representation of the data. 

 

6.2.6 SDD Approach on Feature Extraction 
 

There are many features that can be extracted from SDD depending on the application. 

[S_temp, U_temp, U2_temp] = SDT _function(f); 
S(:, 1:3) = S_temp; 
U(:, 1:3) = U_temp; 
U2(:, 1:3) = U2_temp; 
pointer = 1; 
start_column = 4; 
for i = 2 : decompose_level 

iteration = 3^i / 3; 
for j = 1 : iteration 

[f] = S(:, pointer); 
end_column = start_column + 2; 
[S_temp, U_temp, U2_temp] = SDT_function (f); 
S(:, start_column:end_column) = S_temp; 
U(:, start_column:end_column) = U_temp; 
U2(:, start_column:end_column) = U2_temp; 
pointer = pointer + 1; 
start_column = start_column + 3; 

end 
end 
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In the context of simplicity, section 6.2.6 only presents the basic features extraction 

methods as an initial guide. 

 

SDT and SDD are generic, however, section 6.2.6 only focuses on supervised learning 

applications, which is either “classification” or “regression” applications. 

 

1. Classification Features – For classification application, to reduce the 

variations in each of the SDD flattened multi-coordinates columns; a basic 

statistical features are applied. The basic statistical features extract features 

as per window-based, with a fixed window-width, denoted as “Wf”, and a 

sliding window-width, denoted as “Ws”, for the entire length of each of the 

flattened multi-coordinates columns. 

 

2. Regression Features – For regression application, the features in the most 

simplistic form are the SDD flattened multi-coordinates columns according 

to the decomposition level. The higher the decomposition level, the higher 

numbers of features are obtained. In addition, iSDT can be used to augment 

the data, and follow by a transformation using SDT. In either case, basic 

statistical features then apply similar to the classification features approach 

as described above. 

 

3. Statistical Features – The basic statistical methods for obtaining the features 

are: “mean”, “standard deviation” and “variance”. 

 

The number of statistical features, denoted as “Fstat” is: 

 

𝐹𝑠𝑡𝑎𝑡 = 𝑚𝐶 = 𝑚∑3𝑑
𝐷

𝑑=1

 (37) 

 

Where: “m” is the number of statistical methods. 
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6.3 Conclusion 
 

Chapter 6 contributes to the field of non-contact sleep monitoring by introducing a 

novel 3-dimensional feature representation and extraction technique, consisting of two 

methods named Spatial Dimensions Transform (SDT) and Spatial Dimensions 

Decomposition (SDD). SDT and SDD when combined can achieve data transformation, 

augmentation, normalization, scaling, and feature extraction in a single process. The 

novelty of SDT and SDD is that feature engineering process is not required. The pre-

processing of signals, DC-offsets removal, signals filtering, expert domain knowledge, 

wavelet decomposition and/or time-frequency domain analysis are not required in the 

process of extracting the features. 

 

The real-life applications and results of “SDT and SDD” in non-contact sleep 

monitoring is presented in Chapter 7, section 7.3 and 7.4 of the Thesis. 

 

The work presented in Chapter 6 is patented in [162, 163]. 
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CHAPTER 7: NOVEL REAL-LIFE 

APPLICATIONS AND RESULTS OF 

NON-CONTACT SLEEP 

MONITORING 
Thesis Contribution 6: 

Novel Real-Life Applications and Results 
 

 

INTRODUCTION 
 

 

Chapter 7 is a response to the demands for non-contact sleep monitoring systems. The 

demands arise due to the limitations of the polysomnography (PSG) system, the 

importance of early screening for obstructive sleep apnea (OSA), the need for long-term 

continuous monitoring and the concern with respect to patient discomfort when using 

current devices. In this chapter, real-life applications and the results of the non-contact 

sleep monitoring using the microwave Doppler radar in the complex sleep environment, 

including “non-stationary” and “non-direct facing” subject’s measurements are 

presented. The contribution of chapter 7 is the novel high accuracy non-contact 

estimations/predictions of the following sleep monitoring parameters: 

7 

C
h

a
p
t
e
r
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1. Respiratory rate. 

2. Heart rate. 

3. Tidal volume. 

4. Body orientations, i.e., “Prone”, “Upright”, “Supine”, “Right” and “Left” 

sleep orientations. 

5. Oxygen saturation. 

 

The importance of continuous monitoring of the above vital signs and sleep orientations 

are due to the following reasons: 

 

 Respiratory Rate – Respiratory parameters have been widely used in 

psychophysiology to index the effects of stress and emotions [164] [165]. 

Psychological distress generally leads to increases in respiration rate, minute 

volume and a shift from abdominal to thoracic breathing. In extreme cases 

this may lead to a lowering of carbon dioxide partial pressure (pCO2) values 

with concomitant symptoms of the hyperventilation syndrome [166]. 

 

In addition, sleep causes certain impairment in breathing for normal people 

and exaggerates instability in breathing pattern. The rapid-eye-movement 

(REM) sleep stage has specific effects on breathing with variability in 

breathing pattern [167]. 

 

 Heart Rate – Heart rate (HR) among other vital signs, such as, respiration 

rate, blood oxygen saturation and blood pressure, is one of the most 

commonly measured and monitored health indicator. The HR is considered 

the primary vital sign information needed from patients in both emergency 

and clinical situations [168] [169]. The HR data is related to the analysis of 

the circadian rhythm (in sleep), temperature regulation, cardiac sympathetic 

nervous activity and synchronization with respiration rate [169]. It is also 

important to recognize that increased autonomic nervous system (ANS) 

activity during the REM sleep may increase the risk of ventricular 

arrhythmia or exacerbate underlying pathology [167]. 
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 Tidal Volume – Sleep in general and especially in the REM often decreases 

the tidal volume and ventilation. The effects are exaggerated significantly in 

patients with OSA and respiratory disease [167]. 

 

 Body Orientations – Sleep body orientations reveal the relationships to 

OSA, insomnia, and periodic limb movement disorder (PLMD). Analyzing 

the body orientations during sleep will also help determine the sleep quality 

and irregular sleeping patterns. 

 

 Oxygen saturation – Continuous monitoring of oxygen saturation level is 

crucial because it provides important information about the severity of the 

respiratory dysfunction. 

 

 

7.1 Non-Contact Respiratory and Heart 

Rates Estimation 
 

The aim of section 7.1 is to present two novel real-life applications, “non-stationary” 

and “non-direct facing”, including the results of the non-contact respiratory and heart 

rates estimation using the microwave Doppler radar in the complex sleep environment. 

 

The first application utilizes an automated estimation algorithm, comprising of signals 

separation, reconstruction, demodulation, respiratory and heart rates estimation to 

estimate the respiratory and heart rates during sleep. 

 

The second application utilizes the “Relative Demodulation” and “Respiratory and 

Heart Rates Estimation Algorithm” theory and technique presented in Chapter 3 to 

estimate the respiratory and heart rates during sleep. 

 

A comparison of the respiratory and heart rates estimation accuracy between the two 

applications and results is also presented. 
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7.1.1 Patients’ Dataset for Respiratory and Heart Rates 

Estimation 
 

A sample of twenty chronic heart failure (CHF) patients, selected from the patients’ 

database as documented in Appendix II, section A.II.IV, were utilized for the 

verification of the respiratory and heart rates estimation accuracy for both applications. 

Refer to Appendix II, section A.II.IV, for further details on the dataset. 

 

7.1.2 Respiratory and Heart Rates Estimations using Automated 

Estimation Algorithm 
 

Subsection 7.1.2 presents a novel automated estimation algorithm that estimates the 

respiratory and heart rates for CHF patients in the complex sleep environment. The 

automated estimation algorithm is design based on the arrangement of three key 

components: 

 

 Signals Separation & Reconstruction (SSR). 

 Signals Demodulation (SD). 

 Respiratory and Heart Rates Estimation (RHE). 

 

The automated estimation algorithm is presented in a block diagram as shown in Fig. 

7.1.2.1. The “Detrend” and “Wavelet Packet Decomposition” are sub-components of 

SSR component. The “Gram-Schmidt Orthogonalization”, “Arctangent Demodulation”, 

“Motion Scaling” and “Butterworth Filters” are sub-components of SD component. The 

two final rates estimation blocks are the sub-components of the RHE component. 
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Figure 7.1.2.1 – Automated Estimation Algorithm Block Diagram 

 

7.1.2.1 Signal Separation & Reconstruction Component 
 

Wavelet analysis is a powerful and popular tool used in the analysis of the non-stationary 

signals. The Wavelet Packet Decomposition (WPD) was chosen instead of the Discrete 

Wavelet Transform (DWT) because both the “approximations” and “details” coefficients 

are required to separate the respiratory and heart signals. To determine the choice of the 

wavelet filter and order, a “trial-and-error” approach was adopted to compare the 

performance of some known wavelet families, such as, Haar, Daubechies, Symlets and 

Coiflets. The performance results indicated that the Symlet wavelet with filter order of 4 

provides the most optimum accuracy level and a balance of computational time. 

 

Prior to decomposing the signals, DC offsets were removed by applying the Detrend 

method, which subtracts the mean from the signals. Based on the SleepMinderTM (SM) 
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sample rate, both I and Q channels are decomposed to 4th level with both 

“approximations” and “details” coefficients decomposed. From the decomposed 

“approximations” and “details” coefficients, the frequency band of interest for 

respiratory signal is 0–5 Hz, which corresponds to the 0–30 breaths per minute and the 

heart signal is 0.5–2.0 Hz, which corresponds to the 30–120 beats per minute. The 

decomposed I and Q respiratory signals are then reconstructed at the 4th level using the 

“approximations” coefficients. The decomposed I and Q heart signals are then 

reconstructed from the sum of both 3rd and 4th level using the “details” coefficients. 

 

7.1.2.2 Signal Demodulation Component 
 

In the Doppler radar system, the most important limitation when measuring periodic 

motions such as respiratory and heart rates is the presence of null-points. The arctangent 

demodulation method is a solution that combines the in-phase and quadrature baseband 

signals into single channel to eliminate null-points. 

 

Prior to the demodulation, the Gram-Schmidt procedure was employed to correct both 

respiratory and heart signals imbalances. The arctangent demodulation is then performed 

to extract the phase-modulated signals. The extracted phase-modulated is then multiplied 

with a motion scaling factor to obtain the respiratory and heart motions. The motion 

scaling factor is (λ / 4π), where λ = 299,792,458 ms-1 / 5.8 x 106 Hz. 

 

A Butterworth 6th order band pass filter (BPF) with frequency bandwidth of 0.2–0.5 Hz 

corresponds to 12–30 breaths/min is applied to the respiratory motions to eliminate 

clutters, heart motions, movements and noises. 

 

A Butterworth 6th order BPF with frequency bandwidth of 0.7–1.6 Hz corresponds to 

42–96 beats/min is applied to the heart motions to eliminate respiratory motions, 

movements and noises. 
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7.1.2.3 Respiratory and Heart Rates Estimation Component 
 

The estimation of the respiratory and heart rates employs two analysis methods. The 

respiratory rate estimation uses spectral analysis, which employs Short Time Fourier 

Transform (STFT) with a fixed window width of 60 seconds (2 epochs) and a sliding 

fixed window width of 30 seconds (1 epoch). The terminology “epoch” is refer to the 

interval of 30 seconds in the sleep analysis defined by the American Academy of Sleep 

Medicine (AASM). This is the standardized block of analysis in OSA diagnosis 

recommended by AASM, and the selected window is an adherence to the epoch 

standard. For each fixed window width, Fast Fourier Transform (FFT) is performed and 

the spectrum magnitudes are smoothed by applying cubic Savitzky-Golay filter. The 

smoothed magnitude peaks are then identified and sorted in descending order. 

 

The respiratory rate is then calculated from the associated frequency of the first sorted 

peak, multiplied by 60 seconds to obtain the breaths per minute. The heart rate 

estimation uses time-domain peaks analysis with the same window and sliding window 

width as used in spectral analysis. For each fixed window width, local maxima are 

identified and the heart rate is then calculated from the sum of the number of identified 

local maxima to obtain the beats per minute. 

 

7.1.2.4 Performance Measures 
 

In order to compare the outputs of the algorithm with the gold-standard PSG recordings, 

the PSG respiratory inductive plethysmography (RIP) thorax sample at 32Hz and 

electrocardiogram (ECG) sample at 256Hz signals were selected. However, since the 

sample rate of the PSG signals differs from the SM sample rate, the RIP thorax signal is 

down-sampled to the SM sample rate and the SM extracted heart motions is up-sampled 

to the ECG sample rate. The respiratory rate estimation of the down-sampled RIP thorax 

is performed via Detrend, WPD, respiratory Butterworth 6th order BPF and spectral 

analysis. This ensures similar mechanism is applied to both SM and PSG respiratory rate 

estimations for accurate comparison. The ECG heart rate estimation utilized a reliable 

real-time QRS detection algorithm by Pan-Tompkins [170] to extract the R-wave peaks. 

The ECG heart rate is then calculated from the number of identified R-peaks within the 
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fixed window as used by SM peaks analysis to obtain the beats per minute. This ensures 

reliable and accurate comparison. 

 

Equation (1) is used to find the mean accuracy percentage for a single patient with “N” 

equal to the total number of estimated data points: 

 

𝑥 =
100

𝑁
∑

{
 
 

 
 𝑆𝑀[𝑛]

𝑃𝑆𝐺[𝑛]
, 𝑆𝑀[𝑛] ≤ 𝑃𝑆𝐺[𝑛]

2𝑃𝑆𝐺[𝑛] − 𝑆𝑀[𝑛]

𝑃𝑆𝐺[𝑛]
, 𝑆𝑀[𝑛] > 𝑃𝑆𝐺[𝑛]

}
 
 

 
 𝑁

𝑛=1

 (1) 

 

Equation (2) is used to find the mean error for a single patient and compares between the 

SM estimated rate and the PSG estimated rate: 

 

𝑒 =
1

𝑁
∑|𝑃𝑆𝐺[𝑛] − 𝑆𝑀[𝑛]|

𝑁

𝑛=1

 (2) 

 

7.1.2.5 Results and Discussions 
 

One patient (from a sample size of twenty patients) was selected to demonstrate the 

accuracy of the automated estimation algorithm and this is shown in Fig. 7.1.2.2. The 

SM estimated respiratory and heart rates tracked exceptionally well with the PSG RIP 

thorax and ECG estimated respiratory and heart rates for the whole duration of the sleep 

recording of 6 hours 23 minutes and 19.1875 seconds (367,987 samples at 16Hz). The 

spikes are in those periods which correspond to the significant body movements and the 

differences in the x-axis are due to the down-sampled and up-sampled data. 
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Figure 7.1.2.2 – SleepMinderTM versus PSG Estimated Respiratory and Heart Rates 

 

The performance measures were obtained for all twenty patients and are shown in Fig. 

7.1.2.3 and Fig. 7.1.2.4. Across all the twenty patients’ recordings, the respiratory rate 

estimation median accuracy achieved is 92.68% with a median error of ±1.22 breaths per 

minute. The heart rate estimation median accuracy achieved is 88.26% with a median 

error of ±7.85 beats per minute. 

 

The outliers on the statistical analysis box whisker plot, for the respiratory rate 

estimation correspond to those patients whose PSG and SM data contain significant body 

movements, noises and signals dropouts during the sleep recording. The main challenge 

that affects the accuracy of the heart rate estimation is a condition referred to as 

“bradycardia” or “tachycardia” which affect the body movements during sleep. 

Predefined signal decomposition, demodulation and static filtering have not been able to 

adapt in this case. CHF patients in particular, or sleep subjects in general, pose a greater 

challenge in the non-contact signal processing of heart rate estimation. 
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Figure 7.1.2.3 – SleepMinderTM Estimated Respiratory Rate Mean Accuracy and Error 

 

 
Figure 7.1.2.4 – SleepMinderTM Estimated Heart Rate Mean Accuracy and Error 
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7.1.2.6 Conclusion 
 

Subsection 7.1.2 demonstrates the proven methodology of using an automated 

estimation algorithm and the non-contact microwave Doppler radar, to estimate both 

respiratory and heart rates in the complex sleep environment with good accuracy rate. 

 

The respiratory rate estimation median accuracy achieved is 92.68% with median error 

of ±1.22 breaths per minute. The heart rate estimation median accuracy achieved is 

88.26% with median error of ±7.85 beats per minute. A potential application is the non-

contact continuous sleep and circadian rhythm monitoring which can be used at home. 

 

7.1.3 Respiratory and Heart Rates Estimations using Relative 

Demodulation and Respiratory and Heart Rates Estimation 

Algorithm 
 

Section 7.1.3 presents the results of the application of the “Relative Demodulation” and 

“Respiratory and Heart Rates Estimation” algorithm presented in Chapter 3. A detailed 

discussion on the results is also provided. 

 

7.1.3.1 Results and Discussions 
 

In order to compare the outputs of the algorithms with the gold-standard PSG 

recordings, the PSG RIP thorax sample at 32Hz and ECG sample at 256Hz signals were 

selected. However, since the sample rate of the PSG signals differs from the SM sample 

rate, the RIP thorax signal is down-sampled to SM sample rate and the SM demodulated 

heart jerk is up-sampled to ECG sample rate. 

 

The respiratory rate estimation for the down-sampled RIP Thorax is performed via 

RBPF, inspiration and expiration detection, and respiration rate estimation algorithms. 

This ensures similar mechanisms are applied to both SM and PSG respiratory rate 

estimations for accurate comparison. 
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The ECG heart rate estimation utilized a reliable real-time QRS detection algorithm by 

Pan-Tompkins [170] to extract the R-wave peaks. The ECG heart rate is then calculated 

from the number of identified R-peaks as per selected window-width. This ensures 

reliable and accurate reference for heart rate comparison. 

 

One patient (from a sample size of twenty patients) was selected to demonstrate the 

accuracy of the real-time “Relative Demodulation” technique and estimation algorithm, 

which is shown in Fig. 7.1.3.1 and Fig. 7.1.3.2. 

 

 
 

Figure 7.1.3.1 – SleepMinderTM Demodulated Respiratory and Heart Displacements 

 

Fig. 7.1.3.1, the top and bottom left hand side graphs with a data segment of 60 seconds 

shows that the respiratory displacement has accurately demodulated compared to the 

PSG RIP Thorax (resampled and filtered) respiratory signal. The inspirations and 

expirations also accurately detected. The time delay is due to the filtering effects and 

numerical approximations. 
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Fig. 7.1.3.1, the top and bottom right hand side graphs with a data segment of 10 

seconds shows that the heart displacement (resampled) has accurately demodulated 

compared to the PSG ECG signal. The systoles (troughs) and diastoles (peaks) also 

accurately detected. The time delay is due to the filtering effects and numerical 

approximations. 

 

Fig. 7.1.3.2 shows that the SM estimated respiratory and heart rates track exceptionally 

well with the PSG RIP Thorax and ECG estimated respiratory and heart rates for the 

entire duration of the sleep recording of 6 hours 23 minutes and 19.1875 seconds 

(367,987 samples at 16Hz). The differences in the x-axis are due to the down-sampled 

and up-sampled data. 

 

 
 

Figure 7.1.3.2 – SleepMinderTM versus PSG Estimated Respiratory and Heart Rates 
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The performance measures were obtained for all twenty patients and are shown in Fig. 

7.1.3.3 and Fig. 7.1.3.4. Across the twenty patients’ recordings, the respiratory rate 

estimation median accuracy achieved is 91.53% with median error of ±1.30 

breaths/min. The heart rate estimation median accuracy achieved is 91.28% with 

median error of ±6.20 beats/min. 

 

 
 

Figure 7.1.3.3 – SleepMinderTM Estimated Respiratory Rate Mean Accuracy and Error 
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Figure 7.1.3.4 – SleepMinderTM Estimated Heart Rate Mean Accuracy and Error 

 

7.1.3.2 Conclusion 
 

Subsection 7.1.3 demonstrates the proven methodology using the “Relative 

Demodulation”, “Respiratory and Heart Rates Estimation Algorithm” and the non-

contact microwave Doppler radar to estimate both respiratory and heart rates. This is 

done in real-time, in the complex sleep environment and with good accuracy rate. 

 

The respiratory rate estimation median accuracy achieved is 91.53% with median error 

of ±1.30 breaths/min. The heart rate estimation median accuracy achieved is 91.28% 

with median error of ±6.20 beats/min. A potential application is the non-contact 

continuous sleep and circadian rhythm monitoring which can be done at home. 

 

7.1.4 Remarks 
 

Section 7.1 demonstrates the proven methodology of the “non-stationary” and “non-

direct facing” respiratory and heart rates estimations using the non-contact microwave 
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Doppler radar in the complex sleep environment. The two approaches presented has 

good accuracy results. An accuracy comparison between the respiratory and heart rates 

estimation presented in section 7.1.2 and 7.1.3 is shown in Table 7.1.4.1. 

 

 

Automated 

Estimation 

Algorithm 

(section 7.1.2) 

Relative Demodulation 

Respiratory and Heart 

Rates Estimation 

Algorithm 

(section 7.1.3) 

Accuracy 

Comparison 

Relative 

Demodulation as 

Reference 

Respiratory 

Rate 

92.68% 

±1.22 breaths/min 

91.53% 

±1.30 breaths/min 

 Decrease accuracy by 

1.15% 

 Increase error by 0.08 

breaths/min 

Heart Rate 
88.26% 

±7.85 beats/min 

91.28% 

±6.20 beats/min 

Increase accuracy by 

3.02% 

 Decrease error by 

1.65 beats/min 

 

Table 7.1.4.1 – Respiratory and Heart Rates Accuracy Comparison 

 

As shown in Table 7.1.4.1, the “Relative Demodulation” approach in section 7.1.3 

outperforms the “Automated Estimation Algorithm” in section 7.1.2 with respect to heart 

rate estimation accuracy and error. However, there is an insignificant decrease in the 

respiratory rate accuracy and error. The key benefits of the “Relative Demodulation” 

approach is that it is real-time, simple, fast, accurate, low computational and applicable 

for embedded system. On the other hand, the “Automated Estimation Algorithm” utilizes 

the wavelet packet decomposition (WPD) and the arctangent demodulation but it is post-

processing. 

 

In conclusion, the two novel approach presented can be utilized for the non-contact 

respiratory and heart rates monitoring during sleep. However, if real-time capability is 

the priority, then the “Relative Demodulation” method is the preferred approach. 
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7.2 Non-Contact Tidal Volume Estimation 
 

The aim of section 7.2 is to present the “non-stationary” and “non-direct facing” real-

life application and the results of the non-contact tidal volume estimation using the 

microwave Doppler radar in the complex sleep environment. The application utilizes 

“Pulmonary Ventilation Mathematical Model” and “Tidal Volume Estimation 

Algorithm” presented in Chapter 4 to estimate the tidal volume during sleep. 

 

7.2.1 Patients’ Dataset for Tidal Volume Estimation 
 

A sample of twenty CHF patients, selected from the patients’ database as documented 

in Appendix II, section A.II.V, Table V.1, were utilized for the verification of the tidal 

volume estimation application. Refer to Appendix II, section A.II.V, Table V.1, for 

further details on the dataset. 

 

7.2.2 Tidal Volume Estimations using Pulmonary Ventilation 

Model and Tidal Volume Estimation Algorithm 
 

Section 7.2.2 presents the results of the application of pulmonary ventilation model and 

tidal volume estimation algorithm presented in chapter 4. A detailed discussion on the 

results is also provided. 

 

7.2.2.1 Results and Discussions 
 

In order to compare the output of the algorithm with the gold-standard PSG recordings, 

the PSG pressure signal from the cannula pressure sensor sample at 8Hz was selected as 

the reference signal. However, since the sample rate of the PSG pressure differs from 

the SleepMinderTM (SM) sample rate, the PSG pressure signal was first up-sampled to 

the SM sample rate. 
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The tidal volume estimation for the up-sampled pressure signal was performed via 

EVBP, RBPF, ETV, and EMTV as described in section 4.2.1 Fig. 4.2.1.1. This ensures 

that identical mechanisms are applied to both SM and PSG estimations for accurate 

comparison. 

 

Equation (1) is use to find the mean accuracy percentage for single patient, with “N” 

equal to the total number of estimated data points: 

 

𝑥 =
100

𝑁
∑

{
 
 

 
 𝑆𝑀[𝑛]

𝑃𝑆𝐺[𝑛]
, 𝑆𝑀[𝑛] ≤ 𝑃𝑆𝐺[𝑛]

2𝑃𝑆𝐺[𝑛] − 𝑆𝑀[𝑛]

𝑃𝑆𝐺[𝑛]
, 𝑆𝑀[𝑛] > 𝑃𝑆𝐺[𝑛]

}
 
 

 
 𝑁

𝑛=1

 (1) 

 

Equation (2) is use to find the mean error for single patient, comparing the SM estimated 

rate and PSG estimated rate: 

 

𝑒 =
1

𝑁
∑|𝑃𝑆𝐺[𝑛] − 𝑆𝑀[𝑛]|

𝑁

𝑛=1

 (2) 

 

The accuracy percentages, as well as the errors per patient, were calculated by 

comparing each sample, the estimated mean tidal volume value from the SM to the PSG 

for the entire sleep recording duration. The resultant median accuracy percentage and 

error values were then obtained over the patient’s entire recording duration. The final 

median accuracy percentage and error over the entire sample population, i.e., the twenty 

CHF patients, were obtained via statistical analysis as shown in Fig. 7.2.2.1. 
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Figure 7.2.2.1 – SleepMinderTM Estimated Tidal Volume Median Accuracy and Error 

 

The performance measures were obtained for all twenty CHF patients and are shown in 

Fig. 7.2.2.1. Across all twenty CHF patients’ recordings with mean recorded sleep 

duration of 7 hours, 45 minutes and 36 seconds (446,976 samples at 16Hz), the tidal 

volume estimation median accuracy achieved is 83.13% with a median error of 57.32 

milliliters. 

 

The accuracy of the tidal volume estimation is impacted by the real-time chest 

displacement magnitude and the respiratory rate. However, these are hard to measure in 

the complex sleep environment because of the unpredictable body movements, body 

orientation, and interferences. The undesired harmonics, body movements and body 

orientation in the complex sleep environment are the main challenges in the non-contact 

signal processing. 

 

7.2.2.2 Conclusion 
 

Subsection 7.2.2 demonstrates the proven methodology using pulmonary ventilation 

mathematical model, tidal volume estimation algorithm, and the non-contact microwave 
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Doppler radar to estimate tidal volume in the complex sleep environment with good 

accuracy level. 

 

Across all twenty CHF patients’ recordings with a total sleep duration of 155 hours, 6 

minutes and 36 seconds, a mean sleep duration of 7 hours, 45 minutes and 36 seconds, 

and more than 17 million sample points, the tidal volume estimation median accuracy 

achieved is 83.13% with a median error of 57.32 milliliters. A potential application is 

the non-contact continuous monitoring of tidal volume during sleep in the home. 

 

It is important to emphasize that the pulmonary ventilation mathematical model is not 

restricted to the non-contact applications, it is a novel mathematical model that can also 

be applied to the PSG systems or to home sleep test devices. 

 

 

7.3 Non-Contact Body Orientations 

Prediction 
 

The aim of section 7.3 is to firstly present two “non-stationary” and “non-direct facing” 

real-life applications and the results of the non-contact nocturnal body orientations 

prediction using the microwave Doppler radar in the complex sleep environment. 

 

The first application utilizes the wavelet packet decomposition (WPD) as a feature 

extraction mechanism and a deep artificial neural network. It is implemented using the 

multilayer perceptron (MLP) architecture to predict the body orientations during sleep. 

 

The second application utilizes the Spatial Dimensions Transform (SDT) and the Spatial 

Dimensions Decomposition (SDD), as presented in Chapter 6, as a 3-dimensional 

feature extraction mechanism and multilayer perceptron (MLP) artificial neural network 

to predict the body orientations during sleep. 

 

A comparison of the body orientations predictions, the performance and the accuracy 

level between the two applications including the results is also presented. 
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The aim of section 7.3 is also to illustrate the application of the SDT and SDD when 

combined with artificial neural network (ANN). This can be applied to solve real-life 

complex challenge such as “non-stationary”, “non-direct facing” and non-contact 

prediction of nocturnal body orientations in the complex sleep environment. 

 

7.3.1 Patients’ Dataset Partitions for Body Orientations 

Prediction 
 

A sample of twenty-four CHF patients, selected from the patients’ database as 

documented in Appendix II, section A.II.VI, were utilized for the “Training”, 

“Validation” and “Test” of the body orientations prediction for both applications. Refer 

to Appendix II, section A.II.VI, for further details on the dataset. 

 

7.3.2 Body Orientations Prediction using Wavelet Packet 

Decomposition and Deep Neural Network 
 

7.3.2.1 Wavelet Packet Decomposition Process 
 

Body orientations prediction during sleep is a challenging task in non-contact sleep 

monitoring due to the unpredictable body orientations and positions of a patient during 

sleep. There is multiple interplay of signal frequencies that are superimposed especially 

for non-contact sleep monitoring system that uses microwave Doppler radar. The 

frequencies spectrum consists of multi factors, such as, slow body movements, fast or 

sudden turn of body orientation, respiratory and heart motions. The complexity 

increases when patient have other related disorders, such as, restless leg syndrome 

(RLS) that causes undesired motions in the frequencies spectrum. 

 

In able to predict a patient’s body orientations during sleep, Wavelet Packet 

Decomposition (WPD) is chosen to separate the wavelets at different frequencies that 

correspond to physical phenomena, such as, slow/fast body movements, respiratory and 

heart motions. The reason for utilizing WPD is that the wavelet packet method localized 

both in time and frequency, and well-suited for non-linear signal analysis. 



Page | 125  

 

A block diagram illustrating the process of wavelets extraction from the raw I and Q 

channels is shown in Fig. 7.3.2.1. 

 

 
 

Figure 7.3.2.1 – Wavelets Extraction Process Block Diagram 

 

Prior to applying the wavelet packet decomposition (WPD), the signal was filtered and 

the DC offsets were removed by subtracting the mean from the raw I and Q channels. 

The detrended I and Q channels were decomposed to 7th level with both the 

“approximations” and “details” coefficients decomposed. The mother wavelet for the 

WPD is the “Symlet” wavelet with 4th order filter. The reason for choosing the “Symlet” 

wavelet is for its performance and accuracy as detailed in section 7.1.2.1 and the author’s 

published work in [56]. 

 

The categories of frequency bandwidth are: 

 

 Slow body movements – The Doppler signatures are reflected at frequencies 

between greater than 0Hz and 0.25Hz. 

SleepMinderTM 
I & Q Raw Channels 

Detrend I & Q 

Wavelet Packet 
Decomposition 

Reconstruct Wavelet 
Packet Coefficients 

WPT Level [3 1] 
1 – 2 Hz 

WPT Level [4 1] 
0.5 – 1 Hz 

WPT Level [5 1] 
0.25 – 0.5 Hz 

WPT Level [6 1] 
0.125 – 0.25 Hz 

WPT Level [7 1] 
0.0625 – 0.125 Hz 

Normalize 
Unit Length 

Normalize 
Unit Length 

 

Normalize 
Unit Length 

 

Normalize 
Unit Length 

 

Normalize 
Unit Length 

 
Magnitude & 

Euclidean 
Magnitude & 

Euclidean 
  

Magnitude & 
Euclidean 

  

Magnitude & 
Euclidean 

  

Magnitude & 
Euclidean 

  
5 Magnitude Wavelets & 5 Euclidean Distance Wavelets 

Total of 10 Wavelets 

Legend 
 
Blue – I Channel 
Red – Q Channel 
Green – Magnitude 
Purple – Euclidean Distance 
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 Respiratory chest movements – The Doppler signatures are reflected at 

frequencies between 0.25Hz and 0.5Hz, which correspond to 7.5–30 breaths 

per minute. 

 

 Heart chest movements – The Doppler signatures are reflected at frequencies 

between 0.5Hz and 1.0Hz, which correspond to 30–120 heart beats per 

minute. 

 

 Fast body movements – The Doppler signatures are reflected at frequencies 

between 1.0Hz and 2.0Hz. 

 

Therefore, only the “details” coefficients are of interest. The decomposed “details” 

coefficients were reconstructed at the wavelet packet tree (WPT) levels as indicated in 

Fig. 7.3.2.1. The reconstructed wavelets were normalized to unit length. 

 

To combine the normalized I and Q wavelets, the magnitude of I & Q and the Euclidean 

distance of I & Q are calculated for each of the normalized I & Q wavelets. This 

produces a total of 10 unique wavelets, which contains 5 unique magnitude wavelets 

and 5 unique Euclidean distance wavelets. 

 

7.3.2.2 Feature Extraction Process 
 

This process extract features as per wavelet, with a fixed window-width of 60 seconds (2 

epochs) and a sliding window-width of 30 seconds (1 epoch) for the entire length of the 

wavelet. There are two types of features extracted as per window, one being the time-

domain statistical features and the other is the frequency-domain features. 

 

Table 7.3.2.1 illustrates the 11 time-domain statistical features as per window, where “x” 

is the selected signal at the selected window. The statistical methods for obtaining the 

features include mean, variance, median-absolute-deviation (mad), standard deviation, 

natural logarithm of mean and geometric mean. 
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mean(x) mean(x2) ln(mean(x)) ln(mean(x2)) 

var(x) var(x2) std(x) std(x2) 

mad(x) mad(x2) geomean(x2)  

 

Table 7.3.2.1 – Time-Domain Statistical Features 

 

Table 7.3.2.2 demonstrates the methods for obtaining the frequency-domain features as 

per window. The Fast Fourier transform (FFT) was performed on the selected window. 

The absolute magnitudes of the frequency components and the derivative of the absolute 

magnitudes were calculated. The sum of the absolute magnitudes and the sum of the 

derivative of the absolute magnitudes was obtained as features.  

 

The power spectral density (PSD) was performed on the selected window. The PSD 

magnitudes and the derivative of the PSD magnitudes were calculated. The sum of the 

PSD magnitudes and the sum of the derivative of the PSD magnitudes was obtained as 

features. 

 

sum(abs_mag) sum(psd) 

sum(diff_abs_mag) sum(diff_psd) 

 

Table 7.3.2.2 – Frequency-Domain Features 

 

The features extraction process produced a total of 150 features, which is the product of 

10 wavelets and the sum of 11 time-domain statistical features and 4 frequency-domain 

features. The total 150 features were then re-scaled to the range of -1.0 to 1.0. 

 

7.3.2.3 Deep Artificial Neural Network Architecture 
 

The deep artificial neural network architecture for body orientations prediction is 

presented in Fig. 7.3.2.2. The deep artificial neural network architecture is implemented 

using fully connected multilayer perceptron (MLP) with logistic sigmoid activation for 

the hidden layers and Softmax activation for the output layer. The deep artificial neural 

network contains 5 layers, of which 4 layers are hidden layers and 1 output layer. The 
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output layer contains 5 binary classes, “Prone”, “Upright”, “Supine”, “Right”, and 

“Left” body orientations. 

 

 
 

Figure 7.3.2.2 – Deep Artificial Neural Network Architecture For Body Orientations 

Prediction 

 

A summary of the deep neural network architecture characteristics is shown in Table 

7.3.2.4. The number of neurons per layer selected is equal to half of the total number of 

neurons in the previous layer. The goal is to reduce the non-linear high-dimensional 

features as propagated through each of the network layer. The total sum of neuron 

across all the hidden layers is 150. 

 

 
Hidden 

Layer 1 

Hidden 

Layer 2 

Hidden 

Layer 3 

Hidden 

Layer 4 

Output 

Layer 

Number of 

Neuron 
80 40 20 10 5 

Activation 

Function 

Logistic 

Sigmoid 

Logistic 

Sigmoid 

Logistic 

Sigmoid 

Logistic 

Sigmoid 
Softmax 

 

Table 7.3.2.3 – Deep Artificial Neural Network Architecture Characteristics 

 

7.3.2.4 Deep Artificial Neural Network Training Characteristics 
 

Common training characteristics of the artificial neural network are summarized in 

Appendix III, Table A.III.1. 
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7.3.2.5 Results and Discussions 
 

The deep artificial neural network is trained with a maximum validation fail criteria of 6 

epochs, i.e., the training will stop after a maximum of 6 consecutive epochs of 

“Validation” errors compared to “Training” errors. Based on the maximum validation 

fail criteria, the network stopped at 32,941 epochs. The epoch, prior to the first validation 

fail criteria is recorded at 32,935 and this is referred to as the “best validation” epoch. 

The network’s weights are obtained at the “best validation” epoch. 

 

The training performance of the deep artificial neural network is presented in Fig. 

7.3.2.3. As shown in Fig. 7.3.2.3, all errors with respect to “Training”, “Validation” and 

“Test” decreases and approaches zero as the training progress. This indicates that the 

input features are predictable, the dataset size is adequate to prevent under-fitting, the 

network is well regularized to prevent over-fitting and the network has successfully 

learned the features characteristics. It is important to emphasize that the “Test” dataset is 

used for independent monitoring purpose only and does not participate in training 

performance criteria. 

 

 
 

Figure 7.3.2.3 – Deep Artificial Neural Network Training Performance 
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The results of the body orientations prediction are presented in Fig. 7.3.2.4 as Confusion 

Matrix. As shown in Fig. 7.3.2.4, the “Training”, “Validation” and “Test” accuracy 

achieved a coherence and highly correct classification rate of 99.2% for the 5 binary 

classes of body orientations. The misclassification also cohered to a negligible rate of 

0.8%. Figure 7.3.2.4 class label “1” corresponds to “Prone”, “2” corresponds to 

“Upright”, “3” corresponds to “Supine”, “4” corresponds to “Right” and “5” corresponds 

to “Left” body orientations. 

 

 
 

Figure 7.3.2.4 – Deep Artificial Neural Network Confusion Matrix 

 



Page | 131  
 

Figure 7.3.2.5 presents the body orientations prediction for the “Test” dataset. As shown 

in Fig. 7.3.2.5, the non-contact prediction of the nocturnal body orientations, using the 

deep artificial neural network accurately predicts the correct body orientations 

compared to the reference body orientations recorded by the PSG system. The accuracy 

achieved is 99.2% for a total sleep duration of 65 hours. This result proves the 

feasibility of nocturnal body orientations prediction using the deep artificial neural 

network and the non-contact microwave Doppler radar for CHF patients in the complex 

sleep environment. 

 

 
 

Figure 7.3.2.5 – Nocturnal Body Orientations Prediction For “Test” Dataset 

 

Figure 7.3.2.6 presents the non-contact prediction of the nocturnal body orientations for 

a CHF patient. As shown in Fig. 7.3.2.6, the non-contact body orientations prediction is 
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exceptionally accurate compared to the reference body orientations recorded by the PSG 

system. 

 

 
 

Figure 7.3.2.6 – Nocturnal Body Orientations Prediction for a CHF Patient 

 

Figure 7.3.2.7 is a time-series illustration of the features for a CHF patient. A total of 

150 features were plotted against the patients’ entire sleep duration samples to assist in 

the visualization of the corresponding body orientations. However, the features do not 

correspond to any meaningful phenomenon. The features are therefore only applicable 

to the machine learning applications and are incomprehensible to human logic. 
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Figure 7.3.2.7 – Time-series Illustration Of The Features For A CHF Patient 

7.3.2.6 Conclusion 

Subsection 7.3.2 demonstrates the proven methodology of the non-contact microwave 

Doppler radar prediction of nocturnal body orientations using wavelet packet 

decomposition (WPD) and deep artificial neural network for CHF patients in the 

complex sleep environment. The achievement is a highly correct classification rate of 

99.2% for the 5 classes of “Prone”, “Upright”, “Supine”, “Right”, and “Left” body 

orientations. The misclassification is at a negligible rate of 0.8%. 
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7.3.3 Body Orientations Prediction using SDT, SDD and 

Multilayer Perceptron 
 

7.3.3.1 Feature Extraction using SDT and SDD 
 

SDT and SDD, presented in Chapter 6, are employed as data transformation, 

augmentation, normalization, scaling and feature extraction for body orientations. I and 

Q raw channels are the inputs to the SDT and SDD. 

 

For the body orientations classification application, the SDD decomposition level “D” is 

3 and “φ” (phi) is 1. The fixed window-width “Wf” is 60 seconds (2 sleep epochs) and 

the sliding window-width “Ws” is 30 seconds (1 sleep epoch). This means that the 

classification MLP artificial neural network has a resolution of 30 seconds with an 

initial delay of 60 seconds. The total number of extracted features is 234, which uses the 

standard statistical features. 

 

7.3.3.2 Multilayer Perceptron Artificial Neural Network Architecture 
 

The multilayer perceptron (MLP) artificial neural network architecture is similar to the 

deep artificial neural network architecture presented in section 7.3.2.3, however, the 

MLP is modified with less neurons and hidden layers. The aim is to compare the MLP 

training performance and accuracy level when the SDT and SDD are employed. 

 

The MLP artificial neural network architecture for body orientations is presented in Fig. 

7.3.3.1. The network architecture is fully connected with the logistic sigmoid as 

activation function for the hidden layers and Softmax as activation function for the 

output layer. 

 

 
Figure 7.3.3.1 – Body Orientations MLP Artificial Neural Network Architecture 



Page | 135  

 

The MLP artificial neural network contains 3 layers, 2 are hidden layers and 1 output 

layer. The output layer contains 5 binary classes, “Prone”, “Upright”, “Supine”, “Right” 

and “Left”. A summary of the body orientations MLP artificial neural network 

hyperparameters are shown in Table 7.3.3.1. 

 

 
Hidden 

Layer 1 

Hidden 

Layer 2 
Output Layer 

Number of Neuron 80 40 5 

Activation Function Logistic Sigmoid Softmax 

 

Table 7.3.3.1 – MLP Artificial Neural Network Architecture Characteristics 

 

7.3.3.3 Multilayer Perceptron Artificial Neural Network Training 

Characteristics 
 

Common training characteristics of the artificial neural network are summarized in 

Appendix III, Table A.III.1. 

 

7.3.3.4 Results and Discussions 
 

In accordance with the maximum validation fail criteria, the body orientations MLP 

artificial neural network stopped at 22,284 epochs. The epoch, prior to the first 

validation fail criteria is recorded at 22,278 and this is referred to as the “best 

validation” epoch. The network’s weights are obtained at the “best validation” epoch. 

The training performance is presented in Fig. 7.3.3.2. 

 

The results of the body orientations prediction are presented in Fig. 7.3.3.3 as Confusion 

Matrix. As shown in Fig. 7.3.3.3, the “Training”, “Validation” and independent “Test” 

accuracy achieved an exceptionally high correct classification rate of 99.9% for 5 binary 

classes of body orientations. The misclassification is at a negligible rate of 0.1%. Figure 

7.3.3.3 class label “1” corresponds to “Prone”, “2” corresponds to “Upright”, “3” 

corresponds to “Supine”, “4” corresponds to “Right” and “5” corresponds to “Left” 

body orientations. 
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Figure 7.3.3.2 – Body Orientations MLP Artificial Neural Network Training 

Performance 

 

 
 

Figure 7.3.3.3 – Body Orientations MLP Artificial Neural Network Confusion Matrix 
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Figure 7.3.3.4 presents the body orientations prediction for the independent “Test” 

dataset with a total sleep duration of 65 hours. As shown in Fig. 7.3.3.4, the non-contact 

prediction of the nocturnal body orientations, using the SDT, SDD and MLP artificial 

neural network accurately predicts the correct body orientations compared to the 

reference body orientations recorded by the PSG system. The independent “Test” 

achieved an impressive 99.94% accuracy rate for a total sleep duration of 65 hours. 

 

 
 

Figure 7.3.3.4 – Nocturnal Body Orientations Prediction For “Test” Dataset 

 

Figure 7.3.3.5 presents the non-contact prediction of nocturnal body orientations for a 

CHF patient. As shown in Fig. 7.3.3.5, the non-contact body orientations prediction is 

exceptionally accurate compared to the reference body orientations recorded by the PSG 

system. 
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Figure 7.3.3.5 – Nocturnal Body Orientations Prediction For A CHF Patient 

 

7.3.3.5 Conclusion 
 

Subsection 7.3.3 demonstrates the proven methodology of the non-contact microwave 

Doppler radar prediction of nocturnal body orientations using SDT, SDD and MLP 

artificial neural network for CHF patients in the complex sleep environment. The 

achievement is at a high correct classification rate of 99.9% for 5 classes of “Prone”, 

“Upright”, “Supine”, “Right”, and “Left” body orientations. The misclassification is at a 

negligible rate of 0.1%. 

 

7.3.4 Remarks 
 

Section 7.3 demonstrates the proven methodology of the “non-stationary” and “non-

direct facing” body orientations prediction using the non-contact microwave Doppler 
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radar in the complex sleep environment. The two approach presented has demonstrated 

good accuracy results. 

 

A comparison of the artificial neural network architectures, the training performance 

and the accuracy level between the application of the SDT and SDD in section 7.3.3 and 

the application in section 7.3.2 is detailed in Table 7.3.3.2. As shown in Table 7.3.3.2, 

the application of the SDT and SDD with respect to data transformation, augmentation, 

normalization, scaling, and feature extraction, has resulted in the artificial neural 

network architecture, the training performance and the accuracy level being 

significantly improved and optimized. This result demonstrates the superiority of the 

SDT and SDD compared to section 7.3.2 on identical application of the non-contact 

nocturnal body orientations prediction. 

 

It is also important to emphasize that the SDT and SDD, presented in Chapter 6, can 

deliver the capability of the automatic feature extraction without the associated cost of 

the feature engineering process. 

 

 

Section 

7.3.2.5 

Results 

Section 

7.3.3.4 

Results 

Optimization (%) 

SDT and SDD as 

Reference 

Total Number of Hidden 

Neurons 
120 150 20% decrease 

Number of Hidden Layers 2 4 50% decrease 

Total Training Epochs 22284 32941 32.36% faster 

Best Validation Epoch 22278 32935 32.36% faster 

Correct Classification (%) 99.9 99.2 0.7% more accurate 

Misclassification (%) 0.1 0.8 
0.7% reduction in 

misclassification. 

 

Table 7.3.4.1 – Body Orientations Prediction Performance and Accuracy Comparison 

 

In conclusion, the two novel approach presented can be utilized for the “non-

stationary”, “non-direct facing” and non-contact body orientations monitoring during 
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sleep. However, if self-extracting features is the priority, then SDT and SDD is the 

preferred approach. 

 

 

7.4 Non-Contact Oxygen Saturation 

Prediction 
 

The aim of section 7.4 is to firstly present two “non-stationary” and “non-direct facing” 

real-life applications and the results of the non-contact oxygen saturation prediction 

using the Doppler radar in the complex sleep environment. 

 

The first application utilizes the oxygen-hemoglobin dissociation mathematical model, 

the alveolar partial pressure equations and the non-contact algorithms presented in 

Chapter 5, to predict the patient’s oxygen saturation during sleep. 

 

The second application utilizes the Spatial Dimensions Transform (SDT) and the Spatial 

Dimensions Decomposition (SDD), presented in Chapter 6, as a 3-dimensional feature 

extraction mechanism and multilayer perceptron (MLP) artificial neural network to 

predict the patient’s oxygen saturation during sleep. 

 

A comparison of the oxygen saturation estimation, the performance and the accuracy 

level between the two applications including the results is also presented. 

 

The aim of section 7.4 is also to illustrate the application of the SDT and SDD when 

combined with the artificial neural network (ANN). This can be applied to solve real-

life complex challenge such as “non-stationary”, “non-direct facing” and non-contact 

estimation of the oxygen saturation in the complex sleep environment. 
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7.4.1 Patients’ Database for Oxygen Saturation Estimation 
 

7.4.1.1 Adjusted Patients’ Database and Patients’ Data Partitions 

for External Ventilation Mathematical Model 
 

A sample of twenty CHF patients, selected from the patients’ database as documented 

in Appendix II, section A.II.V, Table V.2, were utilized for the “Training”, “Validation” 

and “Test” of the oxygen saturation prediction. Refer to Appendix II, section A.II.V, 

Table V.2, for further details on the dataset. 

 

7.4.1.2 Adjusted Patients’ Database and Patients’ Data Partitions 

for SDD and SDT 

 

A sample of twenty-one CHF patients, selected from the patients’ database as 

documented in Appendix II, section A.II.VII, were utilized for the “Training”, 

“Validation” and “Test” of the oxygen saturation prediction. Refer to Appendix II, 

section A.II.VII, for further details on the dataset. 

 

7.4.2 Oxygen Saturation Estimation using External Ventilation 

Mathematical Model 
 

Section 7.4.2 presents the results of the application of the oxygen-hemoglobin 

dissociation mathematical model, the alveolar partial pressure equations, and the non-

contact prediction of oxygen saturation algorithm presented in Chapter 5. A detailed 

discussion on the results is also provided. 

 

7.4.2.1 Results and Discussions 
 

The verifications of the mathematical model and the non-contact SpO2 prediction 

algorithm were performed in 2 stages. 
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Stage one of the verification is the comparison based on Bohr’s PO2 reference values 

ranging from 0–150 mmHg and PCO2 reference values of 5, 10, 20, 40 and 80 mmHg. 

The mathematical model estimated the SaO2 values for all PO2 and PCO2 reference 

values. The estimated SaO2 values were then combined with Bohr’s measured SO2 

values into a single two-column dataset. Bland-Altman analysis is then performed to 

compute the correlation and limits of agreement between the mathematical model 

estimated SaO2 values and Bohr’s measured SO2 values for all PO2 and PCO2 reference 

values. 

 

The Bland-Altman plot is presented in Fig. 7.4.2.1. As shown in Fig. 7.4.2.1, the 

correlation coefficient “r” is 0.9987 with error sum of squares (SSE) of 1.8 (% of 

oxygen saturation). These results indicate a very strong positive correlation between 

Bohr’s measured SO2 values and the model’s estimated SaO2 values. The mean error 

between the Bohr’s measured SO2 values and the model’s estimated SaO2 values is 

0.015 (% of oxygen saturation), which is an insignificant mean error. The bias for 95% 

limits of agreement (LoA) is 3.7 (% of oxygen saturation) for SO2 values ranging from 

50% – 100% and negative 3.7 (% of oxygen saturation) for SO2 values ranging from 0% 

– 50%. The third quartile (75th percentile) of the bias is 1.1 (% of oxygen saturation), 

which is an insignificant margin error. Therefore, the oxygen-hemoglobin dissociation 

mathematical model is comparable to Bohr’s oxygen-hemoglobin dissociation curve. 

 

 
 

Figure 7.4.2.1 – Bland-Altman Plot of Bohr’s Measured SO2 and Model’s SaO2 
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A plot of both Bohr’s laboratory recorded values and the model’s estimated values for 

the oxygen-hemoglobin dissociation curve (ODC) are also presented in Fig. 7.4.2.2. As 

shown in Fig. 7.4.2.2, the model’s curves successfully mapped to Bohr’s laboratory 

recorded values. These results prove the accuracy of the mathematical model in 

representing Bohr’s oxygen-hemoglobin dissociation curve as shown in chapter 5, 

section 5.1.1, Fig. 5.1.1.1. 

 
Figure 7.4.2.2 – Bohr and Model Oxygen-Hemoglobin Dissociation Curve 

 

Stage two of the verification is the comparison between the SpO2 prediction algorithm 

and the PSG recordings. The PSG SpO2 measured from a pulse oximeter sample at 4Hz 

was selected as the reference (target output) signal. This is the reason for the non-

contact oxygen saturation prediction algorithm to use the terminology of SpO2 instead 

of SaO2. Since the sample rate of the PSG SpO2 differs from the SM sample rate, the 

PSG SpO2 was first up-sampled to the SM sample rate. A “Median Filter” with a fixed 

window-width of 60 seconds (2 epochs) and a sliding window-width of 30 seconds (1 

epoch) is then applied to smooth the PSG SpO2. 

 

The MLP artificial neural network for SpO2 is trained with a maximum validation fail 

criteria of 6 epochs. The training will stop after the maximum validation fail criteria 

have been reached. The validation fail criterion is defined as “Validation” error 
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increases while the “Training” error decreases. 

 

In accordance to the maximum validation fail criteria, the SpO2 MLP artificial neural 

network stopped at 29897 epochs. The epoch prior to the first validation fail criteria is 

recorded at 29891. The network’s weights are obtained at the “best validation” epoch. 

The training performance is presented in Fig. 7.4.3.2. 

 

 
 

Figure 7.4.2.3 – SpO2 MLP Artificial Neural Network Training Performance 

 

The SpO2 regression correlation “r” and mean squared error (MSE) is detailed in Table 

7.4.2.3. 

 

 Training Validation Test 

Regression correlation “r” 0.93133 0.93098 0.93099 

Mean squared error (MSE) 

(% oxygen saturation) 
1.5298 1.5310 1.5362 

 

Table 7.4.2.1 – SpO2 MLP Artificial Neural Network Mean Squared Error (MSE) 

 

The SpO2 “Training”, “Validation”, “Test” and “All” regression performance is 

presented in Fig. 7.4.2.4. 
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Figure 7.4.2.4 – SpO2 MLP Artificial Neural Network Regression Performance 

 

Figure 7.4.2.4 presents the SpO2 predictions for the independent “Test” dataset with a 

total sleep duration of 54 hours, 15 minutes and 31.5 seconds. As shown in Fig. 7.4.2.4, 

the non-contact predictions of SpO2 is able to track along the changes with reference to 

the PSG SpO2. The mean accuracy percentage achieved is 99.06% compared to the 

reference PSG SpO2 values. 

 

The third plot in Fig. 7.4.2.4 is the zoomed window of 20 minutes and 49.8 seconds. 

This is to highlight the fluctuations between 55–100% of the SpO2 during the night due 

to multiple apneic episodes and Cheyne-Stokes respirations (CSR). The fourth plot in 

Fig. 7.4.2.4 is the zoomed window of 20 minutes and 49.8 seconds to highlight a stable 

SpO2 between 90–100% during the night. For the fluctuations as well as the stable 

scenarios, the SpO2 prediction is able to track the changes accordingly. The tracking 

does result in some errors, however the overall performance still achieved a good 

accuracy level of 99.06%. 
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Figure 7.4.2.5 – Nocturnal SpO2 Prediction for “Test” Dataset 

 

The Bland-Altman (B&A) plots are presented in Fig. 7.4.2.6 to Fig. 7.4.2.9 to analyze 

the 95% limits of agreement (LoA) between the SM predicted SpO2 and the reference 

PSG SpO2 measurements. The B&A plots and analyses demonstrated that the maximum 

differences between the SM predicted SpO2 and the reference PSG SpO2 measurements 

is 4 (% of oxygen saturation). The 95% limits of agreement, which is the same as the 

reproducibility coefficient (RPC) for “Training”, “Validation” and “Test” is ±2.5 and 

overall is ±2.5 (% of oxygen saturation). An RPC of 2.5 (% of oxygen saturation) is still 
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an acceptable bias range as the fluctuations of oxygen saturation at this value does not 

consider to be clinical significant. The overall sum of squared errors (SSE) is 1.3 (% of 

oxygen saturation) and the coefficient of variation (CV), which is the standard 

deviations of the mean differences is 1.4 (% of oxygen saturation). The average mean 

error across “Training”, “Validation” and “Test” is 0.0018 (% of oxygen saturation), 

which is an insignificant mean error. Therefore, it can be considered that the non-

contact prediction of SpO2 results are comparable to the pulse oximeter measurements. 

 

 
 

Figure 7.4.2.6 – Bland-Altman (B&A) Plot for “Training” 

 

 
 

Figure 7.4.2.7 – Bland-Altman (B&A) Plot for “Validation” 
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Figure 7.4.2.8– Bland-Altman (B&A) Plot for “Test” 

 

 
 

Figure 7.4.2.9 – Bland-Altman (B&A) Plot for “All” 

 

The B&A plots highlighted that there are higher variations of differences in predicted 

SpO2 between 85–100% and lower variations between 50–85%. This is due to the 

patients’ conditions, such as multiple apneic episodes and CSR, which caused the 

desaturations to occur and resulted in fluctuations of SpO2 measurements. Even though 

the non-contact predictions of the SpO2 is still able to track along the fluctuations, the 

variations of the differences may need further improvements in the future. 
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Figure 7.4.2.10 and Fig. 7.4.2.11 presents the non-contact SpO2 predictions with the 

estimated PaCO2, PCO2, VA, CO and VCO2 for a random OSA and CHF patient, within 

the “Test” dataset with sleep duration of 8 hours 47 minutes and 20.06 seconds. As 

shown in Fig. 7.4.2.10 and Fig. 7.4.2.11, the non-contact SpO2 predictions achieved 

good accuracy level of 98.94% compared to the reference SpO2 recorded by the PSG 

system. 

 

Overall, the results demonstrate the proven methodology of the non-contact SpO2 

predictions, using the microwave Doppler radar in the complex sleep environment. The 

benefit of utilizing the mathematical model is the capability to apply non-contact 

monitoring of multiple parameters, such as, SpO2, PaCO2, PCO2, VA, CO and VCO2. 

 

 
 

Figure 7.4.2.10 – SleepMinderTM Estimated SaO2, PaO2 and PaCO2 
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Figure 7.4.2.11 – SleepMinderTM Estimated VA, CO and VCO2 

 

7.4.2.2 Conclusion 
 

Subsection 7.4.2 demonstrates the proven methodology of using the oxygen-hemoglobin 

dissociation mathematical model, the alveolar partial pressure equations, the non-contact 

prediction of the oxygen saturation algorithm presented in Chapter 5, and the non-contact 

microwave Doppler radar to predict oxygen saturation in the complex sleep environment 

with a good accuracy level. 

 

For the SpO2 independent “Test” dataset with a total sleep duration of 54 hours, 15 

minutes and 31.5 seconds, the SpO2 correlation coefficient achieved is 0.93. The mean 

squared error (MSE) is 1.54 (% oxygen saturation) and the 95% limits of agreement is 

±2.5 (% oxygen saturation). A potential application is a non-contact system that can 

continuously monitor the oxygen saturation level during sleep and can be used at home. 

 

However, due to the non-contact predictions of the SpO2 overall 95% limits of 

agreement of ±2.5 (% of oxygen saturation), it may not be applicable as a replacement 
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for the PSG pulse oximeter. This is due to the SpO2 desaturation criteria of 2–5% in 

sleep diagnosis as specified by the American Academy of Sleep Medicine (AASM) 

[11]. Nevertheless, a potential application could be the non-contact early screening of 

oxygen saturation level during sleep, which can be used at home. 

 

It is also important to emphasize that the mathematical model is theoretically generic 

and is not restricted to the non-contact applications. Even though the model and the 

non-contact algorithm was used to verify against the OSA and CHF patients’ data, its 

applications is not constrained. The model and the non-contact algorithm can be applied 

against the general healthy populations or patients that have other health conditions. 

 

7.4.3 Oxygen Saturation Estimation using SDT, SDD and 

Multilayer Perceptron 
 

7.4.3.1 Feature Extraction using SDT and SDD 
 

SDT and SDD, presented in Chapter 6, are employed as data transformation, 

augmentation, normalization, scaling and feature extraction for the SpO2 prediction. I 

and Q raw channels are the inputs to the SDT and SDD. 

 

For the SpO2 regression application, the SDD decomposition level “D” is 3 and “φ” 

(phi) is 4. The SDD flattened multi-coordinates columns are extracted and followed by 

iSDT to obtain 78 augmented inputs signals. The augmented inputs are then transposed 

using SDT. The standard statistical features are then applied with a fixed window-width 

“Wf” of 30 seconds (1 sleep epoch) and the sliding window-width “Ws” of 2 seconds. 

This means that the regression MLP artificial neural network has a resolution of 2 

seconds with an initial delay of 30 seconds. The total number of extracted features is 

234. 

 

All features are automatically normalized and scaled to 0 and 1 by the directional cosine 

constraint of U2 matrix. 
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It is important to emphasize that the pre-processing of I and Q raw channels are not 

required. That is, neither the DC-offsets removal, signals filtering, expert domain 

knowledge, wavelet decomposition and/or time-frequency domain analysis are 

applicable in the process of extracting the features. 

 

7.4.3.2 Multilayer Perceptron Artificial Neural Network Architecture 
 

The MLP artificial neural network architecture for SpO2 is presented in Fig. 7.4.3.1. 

The network architecture is fully connected with radial basis (exponential) as activation 

function for the hidden layers and identity (linear) as activation function for the output 

layer. 

 

 
 

Figure 7.4.3.1 – SpO2 MLP Artificial Neural Network Architecture 

 

The MLP artificial neural network contains 5 layers, of which 4 layers are hidden layers 

and 1 output layer. The output layer contains regression values for SpO2. A summary of 

the SpO2 MLP artificial neural network hyperparameters is shown in Table 7.4.3.1. 

 

 
Hidden 

Layer 1 

Hidden 

Layer 2 

Hidden 

Layer 3 

Hidden 

Layer 4 

Output 

Layer 

Number of 

Neuron 
120 60 30 15 1 

Activation 

Function 
Radial Basis (𝑒−𝑛2) Identity 

 

Table 7.4.3.1 – SpO2 MLP Artificial Neural Network Architecture Characteristics 
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7.4.3.3 Multilayer Perceptron Artificial Neural Network Training 

Characteristics 
 

The common training characteristics of the artificial neural network are summarized in 

Appendix III, Table A.III.1. 

 

7.4.3.4 Results and Discussions 
 

The MLP artificial neural network for SpO2 is trained with a maximum validation fail 

criteria of 10 epochs. The training will stop after the maximum validation fail criteria 

have been reached. The validation fail criterion is defined as “Validation” error 

increases while “Training” error decreases. 

 

In accordance to the maximum validation fail criteria, the SpO2 MLP artificial neural 

network stopped at 19230 epochs. The epoch just prior to the first validation fail criteria 

is recorded at 19220. The network’s weights are obtained at the “best validation” epoch. 

The training performance is presented in Fig. 7.4.3.2. 

 

 
 

Figure 7.4.3.2 – SpO2 MLP Artificial Neural Network Training Performance 

 

The SpO2 regression correlation “r” and mean squared error (MSE) is detailed in Table 

7.4.3.2. 
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 Training Validation Test 

Regression correlation “r” 0.9286 0.9198 0.9195 

Mean squared error (MSE) 1.6103 1.7870 1.7971 

 

Table 7.4.3.2 – SpO2 MLP Artificial Neural Network Mean Squared Error (MSE) 

 

The SpO2 “Training”, “Validation”, “Test” and “All” regression performance is 

presented in Fig. 7.4.3.3. 

 

 
 

Figure 7.4.3.3 – SpO2 MLP Artificial Neural Network Regression Performance 

 

Figure 7.4.3.4 presents the SpO2 prediction for the independent “Test” dataset with a 

total sleep duration of 56 hours 57 minutes and 46.5 seconds. As shown in Fig. 7.4.3.4, 

the non-contact prediction of the SpO2 using SDT, SDD and MLP artificial neural 
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network is able to track along the changes with reference to the PSG SpO2. The mean 

accuracy percentage achieved is 98.95% compared to the reference PSG SpO2 values. 

 

The third plot in Fig. 7.4.3.4 is the zoomed window of 10 minutes. This is to highlight 

the fluctuations between 75–100% of the SpO2 during the night due to multiple apneic 

episodes and Cheyne-Stokes respirations (CSR). The fourth plot in Fig. 7.4.3.4 is the 

zoomed window of 10 minutes to highlight a more stable SpO2 between 87–97% during 

the night. 

 
Figure 7.4.3.4 – Nocturnal SpO2 Prediction for “Test” Dataset 
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Under the high fluctuations as well as more stable scenarios, the SpO2 and the non-

contact SpO2 predictions are able to track the changes accordingly. The tracking of the 

rapid changes does result in some errors as can be seen in Fig. 7.4.3.4. However, the 

overall performance still achieved a good accuracy level of 98.94%. 

 

The Bland-Altman (B&A) plots are presented in Fig. 7.4.3.5 to Fig. 7.4.3.8 to analyze 

the 95% limits of agreement between the SM predicted SpO2 and the reference PSG 

SpO2 measurements. The B&A plots and analyses demonstrated that the maximum 

differences between the SM predicted SpO2 and the reference PSG SpO2 measurements 

is 5 (% of oxygen saturation). The 95% limits of agreement, which is the same as the 

reproducibility coefficient (RPC) for “Training” is ±2.6, “Validation” & “Test” is ±2.7 

and overall is ±2.6 (% of oxygen saturation). An RPC of 2.6 (% of oxygen saturation) is 

still an acceptable bias range as the fluctuations of oxygen saturation at this value does 

not consider to be clinical significant. The overall sum of squared errors (SSE) is 1.3 (% 

of oxygen saturation) and the coefficient of variation (CV), which is the standard 

deviations of the mean differences is 1.4 (% of oxygen saturation). The average mean 

error across “Training”, “Validation” and “Test” is 0.0008 (% of oxygen saturation), 

which is an insignificant mean error. Therefore, it can be considered that the non-

contact prediction of SpO2 results are comparable to the pulse oximeter measurements. 

 

 
 

Figure 7.4.3.5 – Bland-Altman (B&A) Plot for “Training” 
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Figure 7.4.3.6 – Bland-Altman (B&A) Plot for “Validation” 

 

 
 

Figure 7.4.3.7– Bland-Altman (B&A) Plot for “Test” 
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Figure 7.4.3.8 – Bland-Altman (B&A) Plot for “All” 

 

The B&A plots also highlighted that there are higher variations of differences in SpO2 

between 70–100% and lower variations between 50–70%. This is due to the patients’ 

conditions, such as multiple apneic episodes and CSR, which caused the desaturations 

to occur and resulted in fluctuations of SpO2 measurements. This means that even 

though the non-contact prediction of the SpO2 is still able to track along the 

fluctuations, the variations of the differences may need further improvements in the 

future. 

 

Figure 7.4.3.9 presents the non-contact prediction of the nocturnal SpO2 for a CHF 

patient with a sleep duration of 7 hours 38 minutes and 20 seconds. As shown in Fig. 

7.4.3.9, the non-contact SpO2 prediction achieved a good accuracy level when 

compared to the reference SpO2 recorded by the PSG system. 
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Figure 7.4.3.9  – Nocturnal SpO2 Prediction for a CHF Patient 

 

Overall, the results demonstrate the proven methodology of the SpO2 predictions using 

the non-contact microwave Doppler radar in the complex sleep environment. It is also 

important to emphasize that the SDT and SDD can deliver the capability of the 

automatic feature extraction without the associated cost of the feature engineering 

process. 
 

7.4.3.5 Conclusion 
 

Subsection 7.4.3 demonstrates the proven methodology of using the SDT, SDD, MLP 

artificial neural network, and the non-contact microwave Doppler radar to estimate the 

oxygen saturation in the complex sleep environment with a good accuracy level. 

 

For the SpO2 independent “Test” with a total sleep duration of 56 hours, 57 minutes and 

46.5 seconds, the SpO2 correlation coefficient achieved is 0.92. The mean squared error 

(MSE) is 1.80 (% oxygen saturation) and the 95% limits of agreement is ±2.7 (% 
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oxygen saturation). A potential application is a non-contact system that can 

continuously monitor the oxygen saturation level during sleep and can be used at home. 

 

However, due to the non-contact predictions of the SpO2 overall 95% limits of 

agreement of ±2.7 (% of oxygen saturation), it may not be applicable as a replacement 

for the PSG pulse oximeter. This is due to the SpO2 desaturation criteria of 2–5% in 

sleep diagnosis as specified by the American Academy of Sleep Medicine (AASM) 

[11]. Nevertheless, a potential application could be the non-contact early screening of 

oxygen saturation level during sleep, which can be used at home. 

 

7.4.4 Remarks 
 

Section 7.4 demonstrates the proven methodology of the “non-stationary” and “non-

direct facing” SpO2 prediction, using the non-contact microwave Doppler radar in the 

complex sleep environment. The two applications presented has demonstrated good 

accuracy results. 

 

A comparison of the performance and accuracy between the application of external 

ventilation mathematical model in section 7.4.2, and the SDT & SDD in section 7.4.3 is 

detailed in Table 7.4.4.1. As shown in Table 7.4.4.1, the application of the SDT and 

SDD with respect to data transformation, augmentation, normalization, scaling, and 

feature extraction, has insignificant performance and accuracy variations. This result 

demonstrates the capability of the SDT and SDD compared to the application of the 

non-contact SpO2 prediction outlined in section 7.4.2. 

 

 

Section 

7.4.2.1 

Results 

Section 

7.4.3.4 

Results 

Performance Comparison 

SDT and SDD as 

Reference 

Correlation 

Coefficient “r” 
0.93 0.92 

Decrease correlation 

coefficient by 0.01 

Mean Squared Error 

(MSE) 
1.54 1.80 Increase MSE by 0.26 
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95% limits of 

agreement 
±2.5 ±2.7 

Increase 95% limits of 

agreement by 0.2 

 

Table 7.4.4.1 – SpO2 Prediction Performance and Accuracy Comparison 

 

The nature of using the artificial neural network model with an automatic feature 

extraction approach is that the features cannot always be explainable and or correspond 

to the natural or physical phenomena. In contrast, the mathematical modeling approach 

offers explainable processes and results that may correspond to the natural or physical 

phenomena. However, this approach requires build-in assumptions and constraints, 

which may lead to complex data variations in the data boundaries and may result in 

increased complexity and impact the accuracy level. 

 

In conclusion, the two novel approach presented can be utilized for the non-contact 

oxygen saturation monitoring during sleep. However, if the accuracy level and the self-

extracting features are determined to be more important than the explainable features 

and processes, then the SDT and SDD is the preferred approach. 

 

 

7.5 Conclusion 
 

Chapter 7 contributes to the field of non-contact sleep monitoring by presenting the 

real-life non-contact sleep monitoring applications and the results, along with the 

contributions presented in Chapters 3, 4, 5 and 6. The novel non-contact sleep 

monitoring real-life applications and the results that the Thesis contributes to the field of 

non-contact sleep monitoring include: 

 

1. Respiratory rate – achieved 91.53% accuracy level with median error of 

±1.30 breaths/min. 

 

2. Heart rate – achieved 91.28% with median error of ±6.20 beats/min. 
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3. Tidal volume – achieved 83.13% accuracy level with a median error of 

57.32 milliliters. 

 

4. Body orientations – achieved high correct classification rate of 99.9%. The 

misclassification is at a negligible rate of 0.1%. 

 

5. Oxygen saturation – achieved correlation coefficient of 0.92 and the 95% 

limits of agreement is ±2.7 (% oxygen saturation). 

 

A potential application is the non-contact sleep early screening and/or continuous 

monitoring of the respiratory and heart rates, tidal volume, body orientations, and 

saturation oxygen level during sleep. This can be used in homes, hospitals, primary care 

sectors, nursing home facilities and/or sleep laboratories. 
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CHAPTER 8: SUMMARY, FUTURE 

RESEARCH, and CONCLUSION 
 

 

INTRODUCTION 
 

 

The Thesis is a response to the demands for the non-contact sleep monitoring systems. 

The demands arise due to the limitations of the PSG system, the importance of early 

screening for OSA, the need for long-term continuous monitoring and the concern with 

respect to patient discomfort when using the gold-standard PSG system. 

 

The contributions of the Thesis are the novel theories, real-life applications and the 

results of the non-contact sleep monitoring using the non-contact microwave Doppler 

radar, including the “non-stationary” and “non-direct facing” subjects’ measurements in 

the complex sleep environment. 

 

Chapter 8 provides the summary of the Thesis contributions, recommendations for the 

future research directions and conclude the work presented in the Thesis. 

 

 

8 
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8.1 Thesis Summary 
 

The highlights of the novel theories and applications that the Thesis contributes to the 

field of non-contact sleep monitoring are: 

 

1. Relative Demodulation – A novel real-time demodulation theory and 

technique for the non-contact microwave Doppler radar system is propose in 

Chapter 3. In addition, a novel respiratory and heart rates estimation 

algorithm, using the non-contact microwave Doppler radar is also proposed. 

The novelty of “Relative Demodulation” technique is that it pivots from 

conventional displacements analysis to introduce derivatives analysis. This 

technique offers real-time, simple, fast, accurate, low computational and 

applicable for embedded applications. “Relative Demodulation” technique 

is verified against the real-life sleep monitoring application with 20 chronic 

heart failure (CHF) and diagnosed obstructive sleep apnea (OSA) patients 

for the respiratory and heart rates estimations during sleep. The respiratory 

rate estimation median accuracy achieved is 91.53% with median error of 

±1.30 breaths/min. The heart rate estimation median accuracy achieved is 

91.28% with median error of ±6.20 beats/min. The “Relative 

Demodulation” technique accuracy and performance is also compared 

against an automated estimation algorithm. The results indicated that the 

performance is comparable, however, the “Relative Demodulation” 

distinctive feature is the real-time estimation capability with high accuracy. 

 

2. Pulmonary Ventilation Mathematical Model – A novel pulmonary 

ventilation mathematical model that defines the relationship between the 

intrapulmonary pressure and the chest displacement is propose in Chapter 4. 

In addition, a novel tidal volume estimation algorithm, using the non-

contact microwave Doppler radar is also proposed. The novelty of the 

pulmonary ventilation mathematical model is that it defines the relationship 

between the intrapulmonary pressure and the chest displacement. The tidal 

volume can then be estimated via the mathematical model. It is also 

important to emphasize that the pulmonary ventilation mathematical model 
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is derive from the understanding of anatomy and physiology, it is not simply 

an application of regressions between the chest displacement and 

intrapulmonary pressure or tidal volume values. The propose pulmonary 

ventilation mathematical model is verified against the real-life sleep 

monitoring application with 20 CHF and diagnosed OSA patients for the 

tidal volume estimation during sleep. The tidal volume estimation median 

accuracy achieved is 83.13% with a median error of 57.32 milliliters. It is 

important to emphasize that the pulmonary ventilation mathematical model 

is not restricted to the non-contact applications, it is a novel mathematical 

model that can also be applied to the PSG systems or to home sleep test 

devices. 

 

3. External Ventilation Mathematical Model – A novel external ventilation 

mathematical model that quantitatively defines the relationships between the 

arterial oxygen saturation (SaO2), the arterial partial pressure of oxygen 

(PaO2) and the arterial partial pressure of carbon dioxide (PaCO2) is propose 

in Chapter 5. In addition, a novel non-contact algorithm that utilizes the 

propose mathematical model, multilayer perceptron (MLP) artificial neural 

network (ANN), and the non-contact microwave Doppler radar, to translate 

the human periodic chest displacements caused by respiratory efforts into 

peripheral capillary oxygen saturation (SpO2) measurements is also 

proposed. The novelty of the external ventilation mathematical model is that 

it enables the capability to estimate oxygen saturation using the non-contact 

microwave Doppler radar. The propose model and MLP ANN is verified 

against the real-life sleep monitoring application with 20 CHF and 

diagnosed OSA patients for the SpO2 estimation during sleep. The SpO2 

correlation coefficient achieved is 0.93. The mean squared error (MSE) is 

1.54 (% oxygen saturation) and the 95% limits of agreement is ±2.5 (% 

oxygen saturation). It is also important to emphasize that the external 

ventilation mathematical model is theoretically generic and not restricted to 

non-contact applications. 
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4. 3-Dimensional Feature Representation and Extraction Technique – A 

novel 3-dimensional feature representation and extraction technique, 

consisting of two methods, Spatial Dimensions Transform (SDT) and 

Spatial Dimensions Decomposition (SDD) is propose in Chapter 6. SDT and 

SDD when combined can achieve data transformation, augmentation, 

normalization, scaling, and feature extraction in a single process. The 

novelty of SDT and SDD is that feature engineering process is not required 

in the process of extracting the features. The propose SDT and SDD is 

applied as automatic feature extraction and representation, in conjunction 

with MLP ANN for both classification and regression applications to 

classify the sleep body orientations and predict SpO2 during sleep. The 

propose methodology is verified against the real-life sleep monitoring 

application with 24 CHF and diagnosed OSA patients for sleep body 

orientations classifications and 21 patients for SpO2 predictions during 

sleep. Sleep body orientations achieved a high correct classification rate of 

99.9% for 5 classes of “Prone”, “Upright”, “Supine”, “Right”, and “Left” 

body orientations. The SpO2 correlation coefficient achieved is 0.92. The 

mean squared error (MSE) is 1.80 (% oxygen saturation) and the 95% limits 

of agreement is ±2.7 (% oxygen saturation). 

 

The propose novel theories and techniques are verified through real-life applications in 

the complex sleep environment, including “non-stationary” and “non-direct facing” 

subjects’ measurements. The high accuracy and performance verification results in 

Chapter 7 indicate the feasibility, integrity and reliability of the novel theories and 

techniques in the non-contact sleep monitoring applications. 

 

It is also important to emphasize that the Thesis pioneer the real-time monitoring of the 

respiratory and heart rates, the interval-based monitoring of the tidal volume and SpO2, 

and the classification of sleep body orientations in real-life, complex, “non-stationary” 

and “non-direct facing” sleep environment using microwave Doppler radar. 
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8.2 Recommendations for Future Research 
 

In relation to the theories and applications presents in the Thesis, there are two specific 

research opportunities that could advance the field of non-contact sleep monitoring. The 

recommendations for future research directions as per opportunity are outlined as 

follows: 

 

1. Moving towards to non-contact Cardiology in Sleep Disordered Breathing 

(SDB): 

 

a. Extend the research utilizing “Relative Demodulation” technique, 

which provide the absolute chest displacements, respiratory and heart 

rates, to estimate the heart rate variability (HRV) during sleep. 

 

b. Extend the research utilizing “Pulmonary Ventilation Mathematical 

Model” with different types of neural networks to increase the 

accuracy and reliability of the tidal volume, as well as, the estimation 

of the pulse pressure, minute ventilation and air flow/volume during 

sleep. 

 

c. Extend the research utilizing “External Ventilation Mathematical 

Model”, “3-Dimensional Feature Representation and Extraction” 

techniques, and different types of neural networks to extend the 

classifications of Cheyne-Stokes respirations, sleep/wake stages, 

apnea-hypopnea index (AHI), apnea index (AI), hypopnea index (HI), 

snore index, and/or hypercapnia (also known as carbon dioxide (CO2) 

retention). 

 

The area of focus should be in the disturbance management due to the 

complex nature existed in the sleep environment. The continual research 

achievements in these areas will enable the possibilities of screening, 

diagnosing and monitoring of cardiovascular comorbidity in OSA patients. 
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2. Moving towards to practical realization and commercialization: 

 

a. Extend the research for the theories and techniques presented in the 

Thesis to wider patients’ populations and groups, ranging from 

healthy to critical care patients. There are also opportunities to 

leverage multi-techniques in combination to complement the accuracy 

and performance. The goal is to achieve generalization for the non-

contact sleep monitoring system. The focus should be in the adaption 

of the theories and techniques to “big data” and general populations, 

while maintaining or increasing the accuracy and performance of the 

system. 

 

The continual research achievements in these areas will enable the possibilities of 

practical realization and commercialization of the non-contact sleep monitoring and 

diagnosing technology. 

 

 

8.3 Conclusion 
 

The Thesis contributes to the field of the non-contact sleep monitoring by developing 

novel physiological mathematical models, 3-dimensional feature representation and 

extraction technique, and artificial neural network applications, to enable non-contact 

continuous monitoring of physiological vital signs and sleep body orientations in the 

complex sleep environment. 

 

The novel theories and applications introduced in the Thesis addresses real-life 

challenges for the “non-stationary” and “non-direct facing” measurements issues, and 

provide solutions to enable non-contact sleep monitoring. The achievements and 

contributions of the Thesis include: 
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Sleep Monitoring 

Parameters 
Achieve Performance and Accuracy 

Respiratory Rate 91.53% accuracy with median error of ±1.30 breaths/min. 

Heart Rate 91.28% with median error of ±6.20 beats/min. 

Tidal Volume 83.13% accuracy with a median error of 57.32 milliliters. 

Body Orientations 
High correct classification rate of 99.9%. 

The misclassification is at a negligible rate of 0.1%. 

Saturation Oxygen 
Correlation coefficient of 0.92 and the 95% limits of 

agreement is ±2.7 (% oxygen saturation). 

 

A potential application is the non-contact sleep early screening and/or continuous 

monitoring of the respiratory and heart rates, tidal volume, body orientations, and 

saturation oxygen in the home. More importantly, the non-contact sleep monitoring 

system eliminates the need for body-contact sensors, which in turn addresses the PSG 

limitations, such as limited mobility, irritations, distress and discomforts to patients 

during the monitoring process. 

 

The novel theories and applications presents in the Thesis will open up possibilities and 

opportunities for the practical realization of the non-contact sleep monitoring 

technology that can be used in everyday life, including in homes, hospitals, primary 

care sectors, nursing home facilities and/or sleep laboratories. 

 

The optimistic future research directions are the applications of screening and 

monitoring of cardiovascular comorbidity in OSA patients. This will also lead to new 

opportunities and market potentials for Cardiology in Sleep Disordered Breathing 

(SDB). 
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APPENDIX I 
 

 

A.I Biosensor 
 

A.I.I SleepMinderTM 
 

The SleepMinderTM (SM) is a ResMed Asia Pacific Ltd. patented (WO/2013/177621) 

[171] novel sensor technology for contactless and convenient measurement of sleep and 

breathing in the home. SleepMinderTM was originally developed by BiancaMed Ltd. 

(Dublin, Ireland) and acquired by ResMed Inc. (San Diego, USA) in 2011. 

 

SM is a dual pulsed-wave (PW) Doppler system designed to transmit two short pulses 

of radio frequency energy at 5.8 GHz, each pulse is approximately 5 ns long, emits an 

average power less than 1 mW, and is capable of measuring movements at a distance 

between 0.5–3.0 m, nominally. 

 

The core architecture of SM is that it generates pairs of pulses with the first pulse as the 

transmit pulse and the second pulse as the mixer pulse. The first pulse reflects nearby 

objects to create an echo pulse that is received back to the sensor. By multiplying the 

echo pulse with the mixer pulse inside the receiver, a continuous output signal 

proportionate to any phase shift of the echo pulse is generated [64, 171, 172]. Even 

though SM transmits PW, its novel circuitry design generates continuous output signals 

and corresponds to the continuous-wave (CW) Doppler radar system, which is a unique 

feature of SleepMinderTM. 

 

SM sensor also employed quadrature detection technique to overcome a well-known 

limitation in radio frequency sensing referred to as the range-correlation effect (or 

phase-nulling), which leads to two estimates of the movements signals, called I and Q 

channels. The DC value of I and Q channels will depend on the local static 

environment. In the case of two people lying on the bed, a combination of the 
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sophisticated sensor design, called “Range Gating”, and the intelligent on board signal 

processing, will result in measuring only the motions of the person nearest to the sensor 

[64, 65, 171, 172]. 

 

The outputs I and Q channels are internally pre-filtered by an active analogue low-pass 

filters at 1.6Hz, and sampled at 64Hz with 12 bits resolution and with 0–3.2 V voltage 

resolution. The 64Hz samples are then averaged over 4 samples, producing two 16Hz 

channels and saved to the SM flash SD memory card in a proprietary binary format. 

 

Images of the SleepMinderTM and the innovative re-design S+ by ResMed Asia Pacific 

Ltd. are shown below in Fig. I.1 and Fig. I.2. 

 

  
 

Figure I.1 – SleepMinderTM by BiancaMed 

 

Figure I.2 – S+ by ResMed 
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APPENDIX II 
 

 

A.II Patients’ Database 
 

A.II.I Total Patients 
 

The patients’ database was obtained under the “ResMed IP Agreement” and the 

“Student Placement Agreement” between ResMed Asia Pacific Ltd. (Bella Vista, NSW 

2153, Australia) and the University of Technology Sydney (UTS) (Ultimo, NSW 2007, 

Australia). The agreements were signed by the author, the principle supervisor from 

UTS, the Director of Research and Innovation Office from UTS, and the Vice President 

of Technology and Applied Research from ResMed Asia Pacific Ltd. 

 

The patients’ database consists of: 

 

 thirty chronic heart failure (CHF) patients sleep recordings. 

 two females out of 30 CHF patients. 

 twenty-seven males out of 30 CHF patients. 

 one undisclosed gender out of 30 CHF patients. 

 

The patients were diagnosed with chronic heart failure (CHF) of Class II & III New 

York Heart Association (NYHA) classification. The patients were sequentially admitted 

in the Royal Brompton Centre for Sleep, London, UK, between 26-Sep-2011 and 21-

Nov-2012 for the diagnosis of sleep apnea, disordered sleep, or both. The patients had 

the clinic’s ethics approval and written consent obtained, and underwent full 

polysomnography (PSG) analysis with manually scored by sleep experts. 

 

ResMed Asia Pacific Ltd. patented SleepMinderTM sensor (WO/2013/177621) [171] 

was installed in the sleep laboratory and its bio-motions signals were recorded 

simultaneously with the PSG signals. SleepMinderTM was installed in the sleep 
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laboratory and its bio-signals were recorded simultaneously with the PSG signals. The 

SleepMinderTM was positioned facing the patient and in line with the chest, at a distance 

of 0.5 m, and an elevation of 0.5 m from the edge of the bed. An illustration of the 

SleepMinderTM setup in a sleep laboratory or at home is shown in Fig. I.1. 

 

 
 

Figure I.1 – SleepMinderTM Setup in a Sleep Laboratory or at Home 

 

A.II.II Patients Exclusions 
 

The following patients’ recordings were excluded due to the following reasons: 

 

1. Three deidentified patients with patients’ IDs of “LONPSG01”, 

“LONPSG06” and “LONPSG08” were identified as missing the recorded 

PSG’s European data format (EDF) files. Therefore, these patients’ records 

are deemed invalid and excluded from the patients’ database. 

 

2. Three deidentified patients with patients’ IDs of “LONPSG14”, 

“LONPSG24” and “LONPSG25” do have the PSG signals recorded, 

however, the recorded signals are very short in duration, this is due to the  

operator’s errors during the data collection process. Therefore, it is deemed 

unusable and excluded from the patients’ database. 
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The patients’ demographics and recorded sleep duration is presented in Table II.1. 

 

Patient ID 
Age 

(yr) 

Height 

(m) 

Weight 

(kg) 
BMI 

Gender 

(Male / 

Female) 

(M/F) 

NYHA 

Class 

Recorded 

Sleep 

Duration 

(hr) 

LONPSG01 Invalid patient record. Refer to section A.II.II point 1. 

LONPSG02 66 1.67 98.0 35 M II 8.79 

LONPSG03 81 1.67 73.0 26 M II 9.61 

LONPSG04 74 1.74 76.8 25 M II 10.30 

LONPSG05 89 1.57 65.6 27 F III 8.53 

LONPSG06 Invalid patient record. Refer to section A.II.II point 1. 

LONPSG07 73 1.72 60.8 21 M II 7.24 

LONPSG08 Invalid patient record. Refer to section A.II.II point 1. 

LONPSG09 72 1.65 85.0 31 M II 7.90 

LONPSG10 66 1.75 89.5 29 M II 7.37 

LONPSG11 81 1.75 95.9 31 M II 9.18 

LONPSG12 74 1.72 83.9 28 M III 7.66 
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LONPSG13 84 1.67 70.0 25 M II 7.91 

LONPSG14 Invalid patient record. Refer to A.II.II point 2. 

LONPSG15 74 1.72 83.9 28 M III 6.86 

LONPSG16 72 1.77 79.0 25 M II 6.39 

LONPSG17 57 1.70 95.4 33 F II 7.36 

LONPSG18 33 1.72 74.3 25 M II 6.74 

LONPSG19 46 1.80 157.0 48 M II 8.22 

LONPSG20 72 1.77 103.1 33 M II 6.87 

LONPSG21 74 1.60 59.0 23 M III 8.37 

LONPSG22 74 1.72 84.8 29 M III 7.04 

LONPSG23 48 1.67 84.0 30 M III 7.59 

LONPSG24 Invalid patient record. Refer to A.II.II point 2. 

LONPSG25 Invalid patient record. Refer to A.II.II point 2. 

LONPSG26 73 1.72 77.3 26 M III 7.47 

LONPSG27 55 1.88 102.0 29 M II 7.28 
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LONPSG28 UD UD UD UD UD UD 7.49 

LONPSG29 55 1.88 102 29 M II 6.01 

LONPSG30 80 UD UD UD M II 7.65 

 

Table II.1 – Patients’ Demographics and Recorded Sleep Duration 

 

Note: 

 

 “UD” – undisclosed information according to patient’s consent. 

 

 “NYHA” – New York Heart Association classification system for patients 

with cardiac diseases. 

 

 NYHA Class II – patients that have cardiac disease resulting in slight 

limitation of physical activity. They are comfortable at rest. Ordinary 

physical activity results in fatigue, palpitation, dyspnea or anginal pain. 

 

 NYHA Class III – patients that have cardiac disease resulting in marked 

limitation of physical activity. They are comfortable at rest. Less than 

ordinary physical activity causes fatigue, palpitation, dyspnea or anginal 

pain. 

 

A.II.III Selected Patients’ Database 
 

The selected patients’ database for the work presented in the Thesis include: 

 

 twenty-four chronic heart failure (CHF) patients sleep recordings. 

 two females out of 24 CHF patients. 

 twenty-one males out of 24 CHF patients. 
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 one undisclosed gender out of 24 CHF patients. 

 

The summary of the selected patients’ data is presented in Table III.1. 

 

Total 

Sample 

Length 

(16 Hz) 

Total 

Recorded 

Sleep 

Duration 

(hr) 

Mean 

Recorded 

Sleep 

Duration 

(hr) 

Mean 

Age 

(yr) 

Mean 

Height 

(m) 

Mean 

Weight 

(kg) 

Mean 

BMI 

10,786,680 187.27 7.80 68.39 1.72 86.38 28.99 

 

Table III.1 – Selected Patients’ Database Summary 

 

A.II.IV Adjusted Patients’ Database for Respiratory and Heart 

Rates Estimations 
 

There were additional patients’ data records which have also been excluded from the 

selected patients’ database as stated in subsection A.II.III due to the following reasons: 

 

1. Three deidentified patients with patients’ IDs of “LONPSG05”, 

“LONPSG09” and “LONPSG28” demonstrated tachycardia condition, 

which is outside the SleepMinderTM internal motions frequency range due to 

device internal filter bandwidth. Therefore, these patients were excluded 

from the selected patients’ database. 

 

2. One deidentified patient with patient’s ID of “LONPSG23” demonstrated 

bradycardia condition, which is outside the SleepMinderTM internal motions 

frequency range due to device internal filter bandwidth. Therefore, the 

patient was excluded from the selected patients’ database. 
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The adjusted patients’ database for the respiratory and heart rates estimations presented 

in the Thesis include: 

 

 twenty chronic heart failure (CHF) patients sleep recordings. 

 one female out of twenty CHF patients. 

 nineteen males out of twenty CHF patients. 

 

A summary of the selected patients’ data is presented in Table IV.1. 

 

Total 

Sample 

Length 

(16 Hz) 

Total 

Recorded 

Sleep 

Duration 

(hr) 

Mean 

Recorded 

Sleep 

Duration 

(hr) 

Mean 

Age 

(yr) 

Mean 

Height 

(m) 

Mean 

Weight 

(kg) 

Mean 

BMI 

8,927,700 154.99 7.75 68.20 1.74 87.67 28.94 

 

Table IV.1 – Adjusted Patients’ Database Summary for Respiratory and Heart Rates 

 

A.II.V Adjusted Patients’ Database for Tidal Volume and 

Oxygen Saturation Estimations by External Ventilation 

Mathematical Models 
 

There were additional patients’ data records which have also been excluded from the 

selected patients’ database as stated in section A.II.III due to the following reasons: 

 

1. Two deidentified patients with patients’ IDs of “LONPSG28” and 

“LONPSG30” does not contains the patients’ weight and height 

information. The mathematical models required these information for the 

calculations, therefore, these patients have been excluded from the selected 

patients’ database. 
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2. One deidentified patient with patient’s ID of “LONPSG10” does not have 

the reference PSG Pressure signal recorded. This is the required signal for 

the verification of the mathematical models. Therefore, the patient has been 

excluded from the selected patients’ database. 
 

3. One deidentified patient with patient’s ID of “LONPSG19” contains 

multiple dropouts (periods of no data) in SleepMinderTM signals due to the 

operator’s errors during the data collection process. It is not recommended 

to be included as these errors may cause incorrect or skewness in the results. 

Therefore, this patient has been excluded from the selected patients’ 

database. 

 

The adjusted patients’ database for the respiratory and heart rates estimations presented 

in the Thesis is: 

 

 twenty chronic heart failure (CHF) patients sleep recordings. 

 two females out of twenty CHF patients. 

 eighteen males out of twenty CHF patients.  

 

The summary of the selected patients’ data is presented in Table V.1. 

 

Total 

Sample 

Length 

(16 Hz) 

Total 

Recorded 

Sleep 

Duration 

(hr) 

Mean 

Recorded 

Sleep 

Duration 

(hr) 

Mean 

Age 

(yr) 

Mean 

Height 

(m) 

Mean 

Weight 

(kg) 

Mean 

BMI 

8,981,668 155.93 7.80 69.05 1.72 82.69 28.01 

 

Table V.1 – Adjusted Patients’ Database Summary for Tidal Volume & Oxygen 

Saturation by Mathematical Models 
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A summary of the selected patients’ data partitions for the “Training”, “Validation” and 

“Test” of the oxygen saturation prediction using external ventilation mathematical 

model is presented in Table V.2. 

 

Sample Rate 

at 16 HZ 

Dataset 

(100%) 

Training 

(50%) 

Validation 

(15%) 

Test 

(35%) 

Sample Count 8,929,440 4,464,720 1,339,416 3,125,304 

Sleep Hour 155.03 77.51 23.25 54.26 

 

Table V.2 – Selected Patients’ Database Partitions for Saturation Oxygen 
 

A.II.VI Patients’ Database Partitions for Body Orientations 

Prediction 
 

Predicting body orientations does not impact by cardiac conditions, such as, tachycardia 

or bradycardia and/or the availability of patients’ weight and height information. 

Patients exclusions was not necessary as the reference PSG body orientations signals 

are all available and valid in the recordings. Therefore the total twenty four CHF 

patients from the selected patients’ database stated in section A.II.III are randomly 

concatenated into a single dataset with a total sleep duration of 185.7 hours. The 

concatenated dataset is then randomly partitioned into 3 datasets of “Training”, 

“Validation” and “Test”. The dataset partition categories are summarized in Table 

A.VI.1. 

 

Sample Rate at 16 HZ 
Dataset 

(100%) 

Training 

(50%) 

Validation 

(15%) 

Test 

(35%) 

Sample Count 

Total 10698240 5349120 1604736 3744384 

Prone 95520 47709 14345 33466 

Upright 566387 283456 84402 198529 

Supine 2412959 1206070 362890 843999 

Right 2381283 1190890 357192 833201 

Left 5242091 2620995 785907 1835189 
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Sleep Duration 

(hr) 

Total 185.7 92.9 27.9 65.0 

Prone 1.7 0.8 0.2 0.6 

Upright 9.8 4.9 1.5 3.4 

Supine 41.9 20.9 6.3 14.7 

Right 41.3 20.7 6.2 14.5 

Left 91.0 45.5 13.6 31.9 

Percentage of 

Total Sample 

(%) 

Prone 0.9 0.9 0.9 0.9 

Upright 5.3 5.3 5.3 5.3 

Supine 22.5 22.5 22.5 22.5 

Right 22.3 22.3 22.3 22.3 

Left 49.0 49.0 49.0 49.0 

 

Table VI.1 – Selected Patients’ Database Partitions for Body Orientations 

 

A.II.VII Patients’ Database Partitions for Oxygen Saturation 

Prediction by SDT and SDD 
 

Only twenty one out of the twenty four CHF patients from the selected patients’ 

database stated in section A.II.III are selected for the oxygen saturation (SpO2) 

prediction application. The reasons for excluding three patients are: 

 

1. One deidentified patient with patient’s ID of “LONPSG28” does not have 

the reference PSG SpO2 signal recorded. This is the required signal to verify 

the SpO2 prediction. Therefore, this patient has been excluded from the 

selected patients’ database. 

 

2. Two deidentified patients with patients’ IDs of “LONPSG17” and 

“LONPSG19” have multiple PSG SpO2 signal dropouts during the nights. 

This is due to the patients’ movements during sleep which caused the pulse 

oximeter fingertip connection to be disengaged. Therefore, these patients 

have been excluded from the selected patients’ database. 
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The 16 Hz SM data is down sampled to the PSG SpO2 sample rate at 4 Hz. The 

patients’ data are randomly concatenated and partitioned into 3 datasets of “Training”, 

“Validation” and independent “Test”. The dataset partitions are summarized in Table 

VII.1. 

 

Sample Rate 

at 4 HZ 

Dataset 

(100%) 

Training 

(50%) 

Validation 

(15%) 

Test 

(35%) 

Sample Count 2,343,696 1,171,848 351,554 820,294 

Sleep Hour 162.76 81.38 24.41 56.96 

 

Table VII.1 – Selected Patients’ Database Partitions for Saturation Oxygen 
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APPENDIX III 
 

 

A.III Common Neural Network Training 

Characteristics 
 

A.III.I Hyperparameters 
 

The common training characteristics of the artificial neural network used in the Thesis 

are summarized in Table III.1. 

 

Derivative 

Function 

Network 

Initialization 

Performance 

Function 
Training Function 

Static derivative 

function (chain 

rule) 

Layer-by-layer: 

Nguyen-Widrow 

initialization 

function 

Cross Entropy 

 

Regularization: 

0.001 

Normalization: 

none 

Scaled Conjugate 

Gradient 

σ: 0.005 

λ: 0.0005 

 

Table I.1 – Artificial Neural Network Training Characteristics 
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