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Abstract

Robotic systems designed for physical Human-Robot Collaboration (pHRC) are being

increasingly used to augment the strength of a human co-worker by providing assistance

during the collaboration. The pose of the human body greatly affects the physical strength

of the human co-worker and is often difficult to measure in real pHRC applications due

to factors such as poor illumination, air quality and the close proximity of the human co-

worker to the robot. This thesis aims to address three research challenges in human pose

estimation during pHRC in practical industry applications: (1) the effect of interaction

between the human and the robot on the pose of the human; (2) whether the pose of the

human can be estimated by exploiting the Human-Robot Interaction (HRI); and (3) if

the estimated pose can be used to facilitate real-time appraisal of the human co-worker’s

physical strength.

The challenge in determining the pose of a human co-worker during pHRC was approached

in two ways. Firstly, experiments were performed to observe the effect that the interac-

tion between the human and the robot had on the adopted pose of the human upper

limb. This study determined whether existing pose estimation methods can be used in

real pHRC applications. The second approach was to exploit the HRI for estimating the

pose of the human in applications where the hand poses of the human co-worker were

able to be inferred from the interaction. Thus the nullPose method was developed to
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estimate the pose of the human upper body in real-time. The nullPose method integrates

sensor measurements and approximations to the pose of the upper body whilst ensuring

the estimated poses are humanly possible. The nullPose method was then used to per-

form a real-time appraisal of the human co-worker’s capability which was compared to a

conventional batch-processed method of estimating the human strength.

Experiments were conducted in two different environments to verify the methods. The

first environment was a motion capture lab which allowed the pose of the human to be

recorded such that the effect of HRI on the upper limb pose was able to be studied. This

environment also allowed the estimated pose from the nullPose method to be compared to

the real pose of the human co-worker. The second environment was an abrasive blasting

chamber where a real pHRC operation was performed. This environment was used to

determine the suitability of the nullPose method for use in real challenging industrial

environments where traditional methods of pose estimation were not able to be relied

upon.
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Glossary of Terms

Assistance The act of helping someone by sharing the work or load.

Bimanual Requiring two hands.

Capability The power or ability to perform a certain operation.

Collaboration The action of working with another human or robot to com-

plete an operation.

Fatigue The decline in the capability of a human.

Human co-worker The human collaborating with the robot to complete an op-

eration.

Inverse kinematics Calculation performed to determine the joint values given a

pose in Cartesian co-ordinates.

Kinematic chain An assembly of rigid bodies connected by joints.

Musculoskeletal Relating to the musculature and skeletal structure of a body.

Operation Work to be completed by the human and robot.

Real-time Able to respond to input immediately.

Physical strength The amount of force able to be generated or opposed at the

hand of the human co-worker.

Pose The position and orientation of an object such as the end

effector of a robot or the hand of the human co-worker.

Redundancy The ability to adopt a different configuration without affect-

ing the end-effector pose.

Swivel angle The angle between the vertical plane passing through the

shoulder and the wrist and the plane containing the whole

upper limb.
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Task Motion to be accommodated by the joints of the upper limb

kinematic models.

Target A kinematic constraint obtained through sensors or approx-

imations, used by the nullPose method to generate a better

upper body pose estimate.

Torso half The upper body of the human divided vertically in half.

Unimanual Using a single hand.

Upper body The human human from the waist up including the upper

limbs, torso and head.

Upper body half The human upper body from the waist up divided vertically

in half. Each upper body half consists of a torso half and an

upper limb.

Upper limb The human upper limb starting from the shoulder down to

the hand.



Chapter 1

Introduction

Fully autonomous robotic systems have been developed in order to eliminate the require-

ment of a human in operations which have high potential risks. An example of such a

robot is the Alpha 1 by Sabre Autonomous Solutions [11] which was used to clean metallic

surfaces in tight, confined spaces such as within the steel structure of a bridge. An opera-

tion which would have required a human worker to perform an abrasive blasting operation

in an enclosed space could be completed using a robot, eliminating the risk of injury and

other health issues to the human worker. These robots are designed to operate in confined

spaces, isolated from human workers and do not take them into account.

Through the development of sensing and actuation technologies and advancement in

robotics, the boundary between the human and the robot has been broken down [12].

A field of robotics that studies the physical interaction between a human and a robot is

physical Human-Robot Interaction (pHRI) [13]. pHRI considers physical interaction be-

tween human and robot, with an emphasis on maintaining human safety [14]. A subset of

pHRI, physical Human-Robot Collaboration (pHRC) refers to a type of human-robot in-

teraction in which the human controls the robot through direct physical contact, applying

forces onto the robot (Figure 1.1). In pHRC systems, the robot is often controlled through

well-defined interaction points such as handles for the human co-worker to hold on to.

Unlike fully automated robotic systems, by having the human in the loop in a pHRC

system, operations which were difficult for the robot or the human to complete individually

1
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Robot manipulator

Human operator

Tool attached to
robot end-effector

Figure 1.1: An example of a pHRC application where the human and the robot collab-
orate to complete an operation.

could be performed with less effort. The expertise of a skilled human co-worker in their

specialized profession could be leveraged to achieve a better outcome whilst reducing the

required physical strain on the human co-worker. This allows the task to be completed by

the human co-worker with a reduced risk of injury [15].

A common form of assistance that is provided by a pHRC robotic system is the removal

of unwanted vibrations [16] or the reduction of reaction loads. This allows the operation

to be completed by the human co-worker with a reduced human effort. One form of

assistance that has gained interest in rehabilitative application is Assistance-as-Needed

(AAN) paradigms. In these paradigms, the level of assistance to be provided to the

human co-worker is adapted based on the need of the human co-worker. One way in which

the need of the human can be estimated is through appraisal of the human capability, such

as the physical strength of the human co-worker.

If the physical strength of the human co-worker is able to be appraised, it is envisaged

that the interaction between the human and the robot is able to be improved through
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the adaptation of the assistance to be provided to the human. For a collaborative robot

to appraise the physical strength of a human co-worker in real-time, an estimate of the

human co-worker’s pose is required. Estimating the pose of the human co-worker can

be challenging, especially in practical industrial applications where factors such as poor

illumination and suspended particulates in the air may be prominent. Unlike other types

of Human-Robot Interaction (HRI), in pHRC the human co-worker and the robot work

in close proximity to one another, resulting in additional challenges when determining the

pose of the human co-worker. Non-ideal environments in which the collaboration takes

place can also increase the difficulty in estimating the pose of the human co-worker.

1.1 Background and Motivation

In the past, due to the limitation in technologies, humans and robots could not work in

the same environment. Risk of injury to the human is high when a human is in close

proximity with robots which are conventionally used in industrial applications. These

industrial robots are designed to perform repetitive or physically intensive and well defined

operations. Not all applications are able to be completed solely by a robot and may require

human input. Due to this, solutions such as commercial collaborative robots have been

developed to allow a human co-worker to collaborate with robots to achieve a common

goal.

Whereas conventional industrial robots often require an enclosed environment devoid of

human presence, in pHRI or pHRC applications the human input is necessary for the

robotic system. With the human in the loop, an operation which traditionally would be

required to be well defined could be perceived and interpreted by the human, allowing for

greater flexibility in the type of operations being performed. The adaptability to react

to an unexpected situation, as well as decision making capability of a human co-worker

complements the strength, endurance and precision of the robot such that a wide variety

of operations could be performed.

A human co-worker collaborating with a robot may receive various types of assistance from

the robot, such as increased precision [17] or motivation [18]. A common type of assistance
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to be provided by a robot is the reduction of large reaction loads from the operation to

reduce the fatigue of the human co-worker. Tasks which are often found to be difficult or

impossible for a human to complete alone are able to be performed with a reduced effort

through assistance provided by a collaborative robot.

As a human observing another human co-worker, a decision is made to determine whether

a co-worker is in need of assistance through various implicit cues such as the amount of

time spent on an operation, the co-worker’s posture or their performance with regards to

the operation. Robots do not have this innate ability to empathize with a struggling co-

worker during a human-robot collaboration and often require an explicit cue or command

in order to provide assistance to the human co-worker. A similar assistance behaviour in

pHRC is expected to be achieved if the robot can perceive and determine the appropriate

amount of support required by the human co-worker.

AAN paradigms have been developed to adapt the assistance provided by the robot based

on the current need of the human to assist patients to complete rehabilitation exercises

with a robot [19, 20]. The need of the human co-worker is commonly defined by a percep-

tion of the human co-worker’s performance (performance based AAN) or appraisal of the

human co-worker’s capability (model based AAN). An advantage of model based AAN in

industrial applications is that an appropriate level of assistance can be provided to the hu-

man co-worker without requiring a measure of the performance in the operation, allowing

for a larger variety of operations to be performed by the human co-worker and the robot.

Figure 1.2 shows a framework that could be used to provide adaptive assistance in a

model-based AAN paradigm. To determine how much assistance that is to be provided to

a human co-worker, three key components are present. The first is the capability of the

human which in this thesis is represented by physical strength. The second component

is the requirement from the application which relates to the forces required in order to

achieve a goal. The last component is the capability of the robot to ensure that the

required assistance is able to be supplied by the robot during the pHRC.

In Figure 1.2 the physical strength of the human has been simplified to two factors, the

current pose of the human body and a corresponding musculoskeletal model. Using these

two factors an estimate to the human physical strength is able to be obtained [21, 22].
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strength. It is envisaged that if the robot is able to appraise the physical strength of

the human co-worker, more intuitive assistance is able to be provided. The pose of the

human body, especially the upper body, greatly affects the physical strength of the human

co-worker [21, 23] and is often challenging to measure in real pHRC applications due to

factors such as poor illumination, suspended particulates in the air and the close proximity

of the human co-worker to the robot. The first research question explores the effect of the

interaction between the human and robot on the pose of the human. The second research

question explores whether the interaction in pHRC can be exploited to provide an estimate

to the pose of the human. The final research question explores the real-time appraisal of

the human co-worker’s physical strength in real pHRC applications using the estimated

pose of the human co-worker.

1.2.1 Research Question 1: Effect of Interaction Between the Human

and Robot on the Pose of the Human

Due to the redundancy in the upper body, a wide variety of poses are able to be adopted

by the human. Humans will generally adopt a pose that is deemed most natural to the

individual. Pose estimation models have been used in applications where it is difficult or

impractical to directly measure the pose of the human [8, 24]. For a human collaborating

with a robot, inherent constraints are placed onto the human which may result in a different

pose being adopted by the human [25]. An investigation was performed to determine

whether the pose of the human upper limb is affected by the interaction during pHRC.

Two main factors were investigated. The first factor is the direction and magnitude of the

force to be exerted in pHRC. The second factor is the effect of restricting the relative pose

between the two hands in a bimanual pHRC operation.

1.2.2 Research Question 2: Exploiting the Interaction in pHRC for Es-

timate the Pose of the Human

In a real pHRC application, it is often difficult to directly measure the pose of the human

co-worker. Tracking methods requiring specialized suits to be worn by the human worker

are unlikely to be used in practical industrial applications. In an outdoor environment
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or in environments where lighting is poor the feasibility of human tracking using sensors

such as a motion capture system is reduced. The close proximity of the robot to the

human increases the likelihood of occlusion of the human due to the robot, limiting the

capability of skeleton tracking algorithms. On the other hand, some pHRC applications

are able to provide information that can be exploited for estimation of the human pose,

for example, the pose of the human co-worker’s hands during the collaboration with the

robot. Alongside sensor measurements and approximations, the pose of the hands may be

able to be used to estimate the upper body pose.

1.2.3 Research Question 3: Appraisal of the Human Co-worker’s Phys-

ical Strength by using an Estimated Pose

Estimating the physical strength of a human co-worker is difficult due to the complexity of

the human body. In order to estimate the physical strength of the human, musculoskeletal

models can be used to estimate muscle path and activation given a specific pose or motion.

These models are conventionally used with a motion capture recording for batch processed

analysis of the motion. These analyses had to be performed as a batch process as real-time

Inverse Kinematic (IK) of the model using existing software packages are computationally

expensive. To estimate the physical strength of the human co-worker the real time pose of

the human co-worker is required. In practical pHRC applications, it is often not feasible

to measure the current pose of the human and thus an estimate is used. Errors in the

estimated pose will likely introduce error in the appraisal of the human physical strength.

Therefore an investigation needs to be performed to determine whether the error from

the estimated pose of the human results in an acceptable appraisal of the human physical

strength.

1.3 Scope

This thesis investigates real-time estimation of the human co-worker’s pose during pHRC

to improve the interaction between the human and the robot, addressing the three research

questions listed in Section 1.2. The work presented in this thesis focuses on pHRC where
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the human co-worker controls the robot by exerting forces on to the handles attached to

the end effector of the robot as shown in Figure 1.1. Although the methods and algorithms

detailed in this work are applied under an abrasive blasting environment with a pHRC

robot, it can be extended to other pHRC applications where sensory information is limited.

Sensory information may be limited in different robotic applications due to factors such

as occlusion of the necessary information or failure of sensors during the operation.

Unlike the free motion assumed by existing pose estimation models, constraints are placed

on the human co-worker during pHRC. To explore the effect of the interaction between the

human and the robot on the naturally adopted pose of the human co-worker, experiments

were performed with ten human subjects where the poses of the right upper limbs were

compared under different constraints. The constraints implemented in this thesis were

the direction and magnitude of the force as well as bimanual operation, where the human

subjects were required to place both hands on the end effector of the robot.

The nullPose method presented in this thesis is a method of estimating the pose of the

human upper body in pHRC applications where the hands of the human co-worker are

able to be inferred from the interaction between the human and the robot. In this thesis

the nullPose method was tested in pHRC applications where the hands of the human co-

worker are inferred from poses of the handles attached to the end effector of the robot.

In reality as long as the human co-worker’s hand poses are known, the nullPose method

is able to be used to provide the pose of the human upper body. Only the upper body of

the human co-worker is estimated by the nullPose method as the most common form of

interaction between the human and the robot is through the hand of the human co-worker.

Factors relating to the extension of the nullPose method to estimate the pose of the full

human body and directions for future works was discussed in Chapter 6.

The capability of the human co-worker was also appraised in real time by implementing

the nullPose method. The scope of the human capability that is addressed in this work is

the physical strength. Although the capability of a human to complete an operation is not

only limited to the physical strength of the human, the other factors are not considered

and may be addressed in future works. The aim of obtaining the physical strength of the

human is to allow the robot to adapt the assistance provided to the human through AAN
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paradigms. How the physical strength of the human may be used to adapt the assistance

was considered but was not discussed in details in this thesis.

To estimate the upper body pose of the human, a biomechanical model of the human upper

limb was used. This model provided a set of limits for each of the joints of the upper limb.

These joint limits were generic and not individualized. Work towards individualization of

such models was not included in this thesis. Similarly to practically appraise the physical

strength of the human co-worker in a pHRC operation, musculoskeletal models of the

upper limb were used. Generic upper body musculoskeletal models were used that reflect

the population rather than the individual. Work towards individualized musculoskeletal

models was not conducted in this thesis.

1.4 Contribution

The following are the main contributions from the work in this thesis:

• Effect of the interaction between a human and robot in a pHRC application on the

naturally adopted pose of the human upper limb. (Chapter 3)

• nullPose, a method of estimating the upper body pose of a human co-worker work-

ing collaboratively with a robot, capable of being used in practical unstructured

environments. (Chapter 4)

• Real-time appraisal of the human physical strength using the nullPose method during

a pHRC operation. (Chapter 5)

• Development towards the Assistance-as-Needed roBOT (ANBOT) prototype, a pHRC

robot designed to assist human workers in abrasive blasting operations.

1.5 Publications

• Khonasty, R., Carmichael, M. G., Liu, D. & Aldini S., Effect of External Force

and Bimanual Operation on Upper Limb Pose during Human-Robot Collaboration.



10 Chapter 1. Introduction

Australasian Conference on Robotics and Automation (ACRA), 2017, ISBN: 978-0-

9807404-8-6 ISSN: 1448-2053

• Khonasty, R., Carmichael, M. G., Liu, D. & Waldron K., Upper Body Pose Es-

timation Utilizing Kinematic Constraints from Physical Human-Robot Interaction.

Australasian Conference on Robotics and Automation (ACRA), 2017, ISBN: 978-0-

9807404-8-6 ISSN: 1448-2053

• Khonasty, R., Carmichael, M. G. & Liu, D., nullPose: An Upper Body Pose Estima-

tion Method for physical Human-Robot Collaboration. (to be submitted to IEEE

Transactions on Robotics)

• Carmichael M. G., Khonasty R. & Liu D., A multi-stage design framework for the

development of task-specific robotic exoskeletons, 2015 37th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Mi-

lan, 2015, pp. 1176-1180. doi: 10.1109/EMBC.2015.7318576

1.6 Thesis Outline

This thesis is organized as follows:

1.6.1 Chapter 2

In Chapter 2, a review of works related to this thesis is presented. In this chapter a variety

of pHRC systems are presented, highlighting the trend of humans and robots working

together to complete tasks. The notion of human strength and how it is beneficial for a

human-robot collaborative scenario is also explored. Lastly the concept of human tracking

with an emphasis on a pHRC setting is reviewed.

1.6.2 Chapter 3

In Chapter 3, an investigation was performed to determine the effect of interaction be-

tween the human and the robot on the adopted pose of the human upper limb. The two
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main factors tested were the effect of force exertion by the human as well as bimanual

operation with a pHRC robot. The experiments were conducted with human subjects in

a motion capture lab to determine whether existing pose estimation methods are able to

be implemented to provide the pose of the human upper body during pHRC.

1.6.3 Chapter 4

Chapter 4 presents the nullPose method, an upper body pose estimation method where the

poses of the human co-worker’s hands are known or able to be inferred from the interaction

between the human and the robot. A biomechanical model of the human upper limbs was

used to ensure that the estimated upper body pose is humanly feasible. The nullPose

method controls the upper limb models through differential kinematics to estimate the

pose of the full upper body. Redundancy in the upper body was resolved by incorporating

sensor measurements and approximations as tasks to be achieved by the upper body.

1.6.4 Chapter 5

Chapter 5 presents an implementation of the nullPose method to facilitate a real-time

appraisal of the human physical strength during a pHRC operation with a collaborative

robot. Experiments were conducted in two environments to assess the estimated physical

strength of the human co-worker. In the first environment, the estimated strength using the

nullPose method was compared to a commonly used batch processed method of estimating

strength. The second environment highlighted the advantage of the nullStrength method

in being able to estimate the strength of the human co-worker in difficult environments.

1.6.5 Chapter 6

In Chapter 6, a summary of the thesis and the conclusion is outlined. A discussion of the

limitations in the presented methods, as well as future works, are included in this chapter.





Chapter 2

Review of Related Work

This chapter presents the background information and research related to the estimation of

the human co-worker’s pose to facilitate appraisal of human capabilities in physical Human-

Robot Collaboration (pHRC). Section 2.1 introduces the field of pHRC and various robotic

systems used to assist humans performs a wide variety of operations. Robotic systems

presented in this section are often used to augment the strength of a human co-worker or

assist the human performing certain operations such that less effort is required from the

human.

Section 2.2 provides a review of Assistance-as-Needed (AAN) paradigms commonly used

by robotic systems to provide adaptive assistance to a human subject or patient. Two main

categories of AAN paradigms are discussed along with the benefits and disadvantages of

the different methods.

Section 2.3 explores the different methods that are commonly used to determine the pose

of the human co-worker and their applicability in a pHRC application. The pose of the

human co-worker is important in a pHRC application as the physical strength of the human

co-worker is able to be estimated from the pose. Methods of measuring or estimating the

pose of the human reviewed in this section have an emphasis on human-robot collaborative

applications set in an industrial environment where visibility is often not ideal.

Section 2.4 reviews the methodologies for determining the physical strength of the human.

The different applications that have utilized these methods are also reviewed. The physical

13
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strength of the human is important in pHRC as it provides a method of determining the

safety of the human and will also allow for the robot to provide a more intuitive form of

assistance.

2.1 Physical Human-Robot Collaboration

Whereas industrial robots used in the past have been separated from humans, improving

technologies have seen humans and robot interact with one another to complete an oper-

ation. Human-Robot Interaction (HRI) is a field of robotics that studies the interaction

between a human and a robot. A subset of this field is physical Human-Robot Collabo-

ration (pHRC) in which a human and a robot collaborate with sustained physical contact

between the human and the robot. This section presents works related to the assistance

being provided by these robots in various forms of HRI with a larger emphasis on pHRC.

2.1.1 Traditional Robots

Traditionally robots were developed to perform a variety of operations that are too difficult

for humans to perform [26]. Robots have also been implemented in operations which are

deemed too dangerous for humans, such as in military applications [27] and ordinance

disposal [28]. The precision and repeatability of the robot can be utilized to ensure a

standard quality of the outcome of the operation but are unable to adapt to unexpected

changes in the operation [29]. These robots require the operation to be well defined [30]

or for the robot to be controlled through teleoperation by a human operator [31].

In operations involving these types of robots, humans are not able to work in the sur-

rounding workspace whether it be due to the hazardous environment or the risk of injury

to the human due to collision or other risks. Industrial robots often have limited sensing

capabilities, requiring the robot to be enclosed in a cage to ensure that a human does not

wander into the workspace of the robot (Figure 2.1). Accidents that involve industrial

robots commonly occur when a human enters the workspace of the robot whether due to

the human negligence or during maintenance of the robot [32].
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Figure 2.1: Industrial robots being used in the automotive industry. Cages are setup
around the robot to ensure human workers do not accidentally enter the workspace of the

robot [1].

2.1.2 Autonomous Robots

Autonomous robots have been developed in tasks where it is difficult or impossible to pre-

define the problem to be completed by the robot. An example of an autonomous robot is

the inchworm inspired robot designed for inspection of a steel bridge where it is difficult

for a human to fit within the steel structure [33, 34] and the autonomous abrasive blasting

robot [35, 36] which is deployed in an enclosed environment full of suspended particle

unsuitable for human workers.

Similarly to traditional robots, these robots have little to no contact with the human

operators and are often deployed in environments that are deemed to be too hazardous for

humans. The advantage of the autonomous robot is that the robots are able to adapt to

the current environment and recognize the current situation to complete the operation [37].
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2.1.3 Collaborative Robots

Advancements in technology have seen human and machine work together, leading to the

development of human safe robots designed for collaborative operations such as ones shown

in Figure 2.2. These type of robots are designed to share their workspace with human

co-workers to achieve a common goal [38, 39]. Sensing and control algorithms have been

developed to ensure the safety of a human working in close proximity to robots [40, 41].

Compliant joints also increases the safety of the human in the event that a collision is to

occur between the human and the robot [42–44].

(a) (b) (c)

Figure 2.2: Examples of human safe robots designed for collaborative applications: (A)
Universal Robot UR10 [2] (B) Kuka LBR iiwa [3] (C) Rethink Robotics Sawyer [4].

In physical Human-Robot Interaction (pHRI) applications the main imperative is the

safety of the human [45]. Factors such as the amount of forces and torques produced by

the robot and the velocity of the end effector of the robot are some of the aspects that

have to be considered when a human is sharing the workspace with a robot [46, 47]. These

factors are often defined by standards such as [48–51].

In applications where the operation to be completed is well defined and structured, au-

tonomous robotic systems can be used to a high degree of accuracy and repeatability [52].

In applications where it is difficult to define the required operation or in applications set in

dynamic unstructured environments, the adaptability and expertise of the human is ben-

eficial. In this manner the complementary skills of the human and robot can be combined

to perform difficult operations [13].

A common form of assistance that a robot often provides is to increase the physical strength

of the human. These robots are designed as a device that provides humans with mechanical
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advantage [53], reducing the effort required by the human to complete the operation.

Unlike traditional industrial robots, collaborative robots are able to perform operations

with a human in the loop [54, 55]. The robot can be used to lighten the workload of

the human or to comply with the needs of the human co-worker [15], reducing the risk

of Workplace Musculoskeletal Disorder (WMSD). From a report by Safe Work Australia,

WMSDs accounted for 60 % of all serious work compensation claims over the five year

period between 2009-2014 [56].

2.1.3.1 Collaborative Robots for Strength Augmentation

A common type of robot designed to augment the physical strength of a human are ex-

oskeletons. These robots are designed to be worn by the human mimicking the movement

of the human body while providing assistance to the human. An example of an exoskeleton

is the Berkeley Lower Limb Exoskeleton (BLEEX) [5]. This robot is designed to be worn

by a human, attached to their lower body. The main purpose of BLEEX is to provide

the wearer with additional carrying capacity while reducing the strain placed on the hu-

man body. Another example is the ABLE exoskeleton [57] which has been used to assist

workers in a car manufacturing factory performing an overhead operation in an awkward

posture.

2.1.3.2 Collaborative Robots in Rehabilitation

Collaborative robots have been of interest in the field of rehabilitation [58–60]. Rehabili-

tation therapy to treat diseases such as stroke are often labour intensive and can be costly

[61]. Physically collaborative robots have been used to assist physiotherapists perform-

ing rehabilitation exercises with the patient [62, 63]. These robots reduce the physical

strain on the physiotherapist as no physical assistance is required from the therapist [64].

Another advantage of robot assisted therapy is the frequency in which the rehabilitation

exercise could be performed correctly [65]. Movements of the patient can be accommo-

dated by the robot, such as the one shown in Figure 2.4, to ensure the correct movements

are performed by the human subject. A robotic system can be brought to the patient’s
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Figure 2.3: A human wearing the BLEEX [5] used to support the human carry a heavy
load.

home to be used on a daily basis which will allow a correct exercise to be performed,

promoting the recovery of the patient.

Figure 2.4: An upper body exoskeleton the JEXO designed based on the range of motion
of the human shoulder to be used in upper limb rehabilitation [6].
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2.1.4 Types of Assistance

Assistance has been provided to humans from different robotic systems with varying effect.

In the case of the surgery devices such as the da Vinci robotic system [17], the assistance

provided increased the dexterity of the surgeons [66]. The study done in [67] shows that

for an operation being measured, the time required for an operation was largely improved

where robotic assistance was provided. Assistance could also be implemented to help

in training novice workers. In the study conducted in [68] the effect of assistance was

beneficial to novice surgeons training for a laparoscopic procedure. The assistance enabled

the novice operator to conduct the operation with increased speed and consistency over

several repetitions. In another study conducted on a manufacturing application, the use

of an assistive robot resulted in reduced performance in the operation [15]. The reduced

risk of injury to the human workers was deemed to outweigh the negative of the reduced

performance.

Although robotic assistance is able to positively influence the capabilities of human oper-

ators by extending their normal capabilities [66] or helping patients regain their previous

capability [59] there could be unwanted side effects. In [69] an orthosis for walking as-

sistance was developed. One of the positive outcomes that the authors discovered was

that the size of the step of the human wearing the orthosis was increased. A side effect

to the increase in performance which was observed in the patient is a higher muscle ac-

tivation. Although an increased step size meant that the performance of the patient is

theoretically increased, more muscles of the human were activated to stop the human from

overbalancing which results in an increased strain on the human body.

Effect of assistance has also been investigated in [70] where an Intelligent Assist Device

(IAD) was designed in operations requiring heavy loads to be moved up and down hills.

The IAD in [70] was designed to assist workers in log winching operations by slack pulling.

The IAD shows positive effects when the load is moved downhill as the work could be

completed with a single worker rather than requiring two workers. Although there was

a benefit to the slack puller IAD, it did not result in any reduction in the physiological

workload of the single human worker. The workload of the human worker was unable to

be reduced as the main cause of stress in the work was not being assisted by the IAD.
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2.1.5 Robots Providing Adaptive Assistance

From these studies, it can be seen that robotic assistance can be beneficial in improving

the performance of an operation being completed. Without eliminating or reducing the

primary stressors in the operation, the assistance may result in an increased effort from the

human in keeping up with the increased performance [69]. This may result in an increased

risk of injury when performing the operation for a prolonged period of time. Therefore it

can be argued that the assistance should be adapted based on the current operation being

performed.

An example of robots which adapt the assistance to be provided to the human are robots

which have been designed for rehabilitative applications [71]. These robots are often used

to assist patients undergoing therapy for diseases such as stroke, motor-neuron disease and

spinal cord injury. In the study conducted in [72], robot-assisted movement training was

found to have a better outcome than manual training. Another advantage of robot-assisted

therapy is in the engagement of the patient as well as the ability to provide high intensity

therapy with less effort required from the therapist reviewing the progress of the patient

[73].

Although adaptive assistance paradigms such as Assistance-as-Needed (AAN) have seen

some success in rehabilitative applications, adaptive assistance is difficult to implement in

real pHRC applications. Assistance being provided to humans in real pHRC applications is

usually designed to reduce the effort being contributed by the human [74] such as reducing

the load experienced by the human [75]. Another form of assistance is to provide the

human with the necessary tools during a manufacturing or assembly operation [76, 77]. A

difficult aspect in adapting the assistance to be provided by the robot is appraising the

capability of the human. In real applications, appraising the capability of the human is

difficult especially due to sensor limitations and the inherent non-deterministic nature of

the human.
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2.2 Adaptive Assistance

A paradigm which has found interest in rehabilitative application is AAN. AAN can

be viewed as a form of the challenge point theory. The challenge point theory states

that learning is related to the outcome of the operation and that the difficulty of the

operation should be catered to the skill level of the person performing the operation for

a better learning experience [78]. If an operation is considered too easy or too difficult

for the learner to accomplish, it is likely that the performance of the learner would be

reduced [79–81]. This theory has been used in applications ranging from novice surgeons

performing a new operation [82] to stroke sufferers performing rehabilitative upper limb

motions [83, 84] where it was found that novice learners were found to have a lower learning

rate when a constant amount of assistance was provided. AAN paradigms can often be

divided into two main categories. The first alters the amount of assistance to be provided

to the human based on the perceived performance of the human [82]. The second category

adapts the amount of assistance by estimating the current capability of the human [85].

2.2.1 Level of Assistance

Although collaborative robots are designed to assist the human perform certain difficult

operations, providing the full assistance to the human may not always be beneficial. An

intrinsic property of the human motor system is “slacking”, a method of minimizing the

amount of work required by the human [86, 87]. Therefore providing too much assistance

to accommodate the full operation requirement may detract from the outcome of the

operation. For example, in rehabilitative applications, providing the full amount of effort

required for a patient to complete the exercise could promote slacking by the patient,

leading to reduced engagement and impairing the therapy [88] and the progress of the

patient’s recovery.

Performing an operation which is too difficult for a worker or a patient will likely demoralize

the worker or patient, leading to a decrease in participation or effort in the operation

being attempted. In rehabilitative applications simple motion of the upper limb may be

too difficult for a patient to complete causing the patient to rely on the assistance from
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the rehabilitation specialist or robot. To reduce the reliance on assistance in rehabilitative

applications, AAN paradigms have been developed to adapt the amount of assistance

provided by the collaborative robot [19, 89, 90]. In [91] a normal assistance model was

compared to the AAN paradigm where it was shown that the AAN paradigm led to an

increased effort from the human. By minimally assisting the human to complete operations

which they would not have been able to complete individually, patients were shown to have

gained more from robotic assistance rehabilitation in comparison to traditional methods

[64].

2.2.2 Performance Based Assistance-as-Needed

Performance based AAN paradigms have been developed for various rehabilitative appli-

cations [92]. This type of AAN paradigm was used to assist patients perform rehabilitative

exercises based on the minimum amount of work required to assist the human complete

the operation [93, 94]. By creating successes in the rehabilitation exercise, engagement

is increased and the subject feels encouraged to continue the exercise [95]. Performance

based AAN has been used in robot assisted movement training following neurological in-

juries to reduce the physical workload of rehabilitation physicians and to increase the

reproducibility of the exercises.

The amount of assistance to be provided by the robot is often altered based on the assess-

ment of the therapist [95, 96] or through the assessment of the human performance by the

robot. In [97, 98], the force applied by the robot in the rehabilitation exercise is dependent

on the trajectory of the limb being exercised. If the trajectory is outside of a desired band

a higher force is applied to the human to reintroduce the motion to the patient.

Although this type of AAN is theoretically sound, it does not solve the slacking that occurs

with rehabilitation patients. An issue with this type of AAN is that the user may become

reliant on the assistance provided by the robot [90]. As the user becomes more and more

reliant, the amount of participation by the user reduces, leading to a poorer perceived

performance and an increase in assistance. This may lead to the assistance being provided

to gradually increase rather than decrease as intended.
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2.2.3 Model Based Assistance-as-Needed

To limit the reliance of a patient on the assistance provided by a robot, model based

AAN paradigms were developed [99–101]. In a similar fashion to the performance based

AAN paradigms, the assistance to be provided to the human is altered throughout the

interaction. A musculoskeletal model of the human body can be used as a method of

estimating the capability of the human [102]. The estimated capability is then used to

determine the amount of assistance to be provided to the human collaborating with the

robot [103].

Using musculoskeletal models allows the disability of the human to be accounted for [20]

when determining the capability of the human. The musculoskeletal models have also been

used alongside an Electromyography (EMG) to map muscle activation to the amount of

force produced by the human [104]. Other methods determine the maximum strength

based on the force to be opposed through an optimization procedure [21]. Impairment

of certain muscles of the human is able to be replicated in the musculoskeletal model to

obtain the estimated impaired strength of a patient [105]

An advantage of the model based approach to the performance based counterpart is that

the robot will provide assistance to the human without requiring a previous attempt from

the human. The model based AAN would be beneficial in an industrial application such

as abrasive blasting where failure in the operation could be dangerous to the human. The

model based AAN paradigm also reduces the reliance of the human on the assistance

provided by the robot which in turn should promote engagement in the operation and

increase awareness.

2.2.4 Assistance-as-Needed in practical pHRC applications

Various AAN paradigms have been developed for rehabilitation applications with varying

degrees of success. In industrial applications, assistance is often provided as a mean of

removing unwanted vibration to increase the precision of humans performing operations

such as welding [106] or calligraphy [107]. This type of assistance requires a means of

determining what constitutes a good performance in the specific operation. In certain
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operations the performance may be easily quantified but this is not always the case. For

example, when painting a wall with a collaborative robot, a simple performance measure

may be the amount of time taken to paint the wall whereas a more appropriate measure

may take into account factors such as the amount of overlap, the paint coverage as well as

the time taken.

Another way in which assistance has been implemented is to alter the control parameters

of a robot for novice workers such that the outcome of the operation is comparable to the

operation being performed by a more experienced worker. In [108] it was suggested that

in a welding operation involving untrained welders, the impedance should be increased in

the direction perpendicular to the direction of travel. It can be argued that maintaining

a constant level of assistance results in a reduced rate of learning by the novice user.

Collaborative robots such as the UR10 [2], Kuka LWR [3] and Sawyer [4] are designed to

be human safe but have reduced capabilities in comparison to traditional industrial robots.

For example the UR10 has a limited payload of 10 kg when close to the full extent of its

reach. In some industrial applications the limited payload of human safe robots may not

be able to account for the entire operation load and thus parts of the operation load would

need to be accounted for by a human co-worker.

The limitation in the robot’s capability in pHRI or pHRC applications may be beneficial

for the collaboration. By requiring the human to undertake some of the operation load,

the engagement and awareness of the human co-worker would be higher than when the

operation is fully accounted for by the robot. In a full assistance scenario, although the

human may not be physically fatigued, mental fatigue has also been shown to reduce per-

formance in physical activities [109–111]. With some of the physical load of the operation

being provided by the human, the human co-worker may be prompted to take rests which

will reduce mental fatigue [112, 113]. An AAN paradigm can be used in the assistance to

a human co-worker in industrial applications. The assistance to be provided to the human

could be altered depending on the needs of the human co-worker.

Performance based AAN requires a measure of how well the operation is going. This means

that the operation requires a criterion to define what constitutes a good performance versus

a poor performance. The operations performed in practical pHRC applications are often
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varied and requires flexibility. Therefore model based AAN, which provides assistance

based on an estimate of the human capability, may be better suited to practical pHRC

applications.

2.3 Human Pose Tracking

In order to adapt the assistance being provided by a robot to a human co-worker in pHRC

an estimate of the human capability is required. A factor that affects the amount of force

a human is able to exert or oppose in any given direction is the pose of the human body

[23, 114]. The physical strength of the human can be estimated using a musculoskeletal

model of the human alongside the current pose of the human [21, 22, 103]. Another benefit

in the robot being able to ascertain the pose of the human is that collision between the

human and the robot could be avoided [115, 116]. In this section various systems and

models are reviewed with an emphasis on tracking the human upper limbs such that the

strength of the human is able to be estimated for a force to be opposed at the hand.

2.3.1 Existing Pose Tracking Technologies

There are various methods of determining the pose of a human during a certain operation.

A common example of a human tracking technology is Motion Capture (MoCap). MoCap

allows for highly precise motion to be recorded, often involving markers to be tracked with

a special suit to be worn by the human [7]. There are also marker-less based tracking using

Inertial Measurement Unit (IMU) to be worn by the human on key parts of the body [117].

If high positional precision is required, marker based tracking is often preferable over IMU

based systems, but if acceleration values are more important, IMU based tracking provide

less noisy data without occlusion problems [118]. This technology often requires a well

calibrated set of sensors to track the object from multiple views to obtain a high accuracy

in the tracking [119]. Both IMU and marker based tracking are invasive, requiring the

human being tracked to wear the corresponding technology which may be inconvenient to

implement in practical applications.
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Figure 2.5: Motion capture suit worn to track a human using the OptiTrack system [7]

Another option which has been used to track the pose of a human is through the use of

RGB-D sensors. Low cost depth sensing cameras such as the Microsoft Kinect [120] and

Intel RealSense [121] provides a cheaper alternative to MoCap systems. These cameras

provide traditional RGB images as well as depth information which have been used to

track the skeleton of a human to varying levels of accuracy [122, 123].

Machine learning algorithms have also been implemented to classify the pose of the human

in various Two-Dimensional (2D) RGB images [124, 125]. These algorithms utilize a variety

of training images used to segment out the human from the 2D images, classifying parts

of the human body.

2.3.2 Pose Tracking Through Models

In applications where sensors are unavailable or unable to be used, models have been used

to approximate the pose of certain parts of the human body, such as the upper limb, to the

whole body based on limited information [126]. In [8] the redundancy in the human upper

limb was resolved by estimating the position of the elbow such that the manipulability of

the hand towards the head is maximized where the wrist pose relative to the shoulder is

known. This concept was then further extended by taking into account the effect of the

orientation of the wrist on the adopted upper limb pose [25]. In another work [127], the
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notion of an equilibrium upper limb posture was used to estimate the pose of upper limbs

for use with an exoskeleton robot.

Figure 2.6: (A) The redundancy in the human upper limb. (B) An example of a model
based upper limb redundancy resolution [8], based on the manipulability of the hand

towards the head where poses of the shoulder and wrist are known.

In [24, 128] the concept of minimization of work was used to determine the pose of the

upper limb. This concept is also supported by the work conducted in [129] where it was

concluded that the predicted upper limb pose is affected by the previous upper limb pose

and that the pose of the upper limb is affected by both the kinematics and dynamics of

the upper limb. Another method utilized a musculoskeletal model of the upper limb was

used to predict the natural reaching postures of the upper limb by estimating the muscle

effort necessary for the motion [130].

2.3.3 Limitations of Common Pose Tracking Technologies

In a real pHRC application existing pose tracking technologies are often difficult to imple-

ment or may become inaccurate. Marker based motion tracking systems require multiple

cameras to be placed in the environment. These cameras are required to be well calibrated

and are often situated such that an object being tracked is able to be seen by multiple

cameras. In real industrial applications, there are limitation to the placement and number

of cameras that could be used in a given environment. The environment in which the

collaboration will take place may not always be consistent which limits the use of motion

capture systems in real pHRC applications.
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Point Cloud Kinect Skeleton 
Tracking

Figure 2.7: A comparison of the point cloud data being observed by a Kinect for Xbox
360 camera (left) with the output of a skeleton tracking algorithm (right) showing that
the upper limbs adopted a default pose due to self occlusion during collaboration with a

robot.

Skeleton tracking algorithms using RGB-D cameras are also limited in their capability to

be used in real pHRC applications. Skeleton tracking algorithms often require the human

to be facing the camera as the algorithms do not take into account which way the human

is facing. When parts of the human body are unable to be seen, the algorithm will either

return no pose estimate or will assume a default pose (Figure. 2.7). In applications such

as pHRC there is a high probability that parts of the human body will be occluded by the

robot which will reduce the accuracy of the skeleton tracking algorithms [131].

Models that have been developed to estimate the pose of the upper limb often assume that

the upper limb is able to take any configuration and is free from any constraints. This is

not always the case as the close proximity between the human and the robot may restrict

the pose that could be adopted by the human. Interaction points such as handles on the

end effector of the robot will affect the adopted pose of the hand and wrist, which was

shown to alter the adopted pose of the upper limb [25].

In pHRC existing pose estimation methods are difficult to implement or have reduced

effectiveness. The environments in which the pHRC is to take place may limit the sensing

options able to be used. Models used to estimate the pose of the upper limb are often based

on free unconstrained motion which may not be applicable in certain pHRC operations

due to constraints placed onto the human from the interaction between the human and

the robot.
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Due to the invasive nature of and impracticality of human tracking methods such as

MoCap a practical method of estimating the pose of the human co-worker pose is needed

for pHRC applications. A factor that needs to be addressed if the pose of the human

co-worker is to be estimated is the effect of the interaction between the human and the

robot. The interaction between the human and the robot will likely restrict some of the

poses that are able to be adopted by the human co-worker which may reduce the accuracy

of the estimated pose using existing pose estimation models. Although some restrictions

are placed on the human co-worker, the interaction may be able to be used to aid in the

estimation of the human co-worker’s pose.

2.4 Human Physical Strength and pHRC

To determine the amount of assistance to be provided to the human, an estimate of the

human capability is required. Capability of a human may range from the skill level of

the human worker to the amount of physical load able to be resisted by the human. The

capability is dependent on factors such as the health of the human, the current pose of the

human body, the experience of the human as well as the type of operation being performed.

In this thesis, the capability of the human being explored is the physical strength of the

human during collaboration with a robot.

2.4.1 Physical Strength of the Human

Unlike the robot, the physical strength of the human is difficult to quantify. To exert forces

or perform certain motions, the central nervous system determines the required amount of

muscle activation [132]. Along with the muscle activation, the amount of force that each

muscle can exert is dependent on other factors such as fatigue, the distribution of muscle

fibre types and cross sectional area of the muscle [133].

Measurements of the human strength come in a variety of manners. EMG sensors are

one method of estimating the amount of work being conducted by the human[134]. These

sensors provide a measure of the activation of muscles which need to be normalized. EMG

sensors have also been used to control robotic systems based on the activation of targeted
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muscle groups [135, 136]. Although EMG is able to provide a measure of the muscle

activation, it does not measure the muscle force output.

Other methods of estimating the strength include performing a Magnetic Resonance Imag-

ing (MRI) scan of the human body to measure the volume of certain muscles in order to

estimate the force generation capability of the human [137]. Another method of estimating

strength which is less accurate is through visual judgement of the human [138]. Direct

measurement of exerted force has also been performed which targets specific area of the

human body, performed using load cells to measure the amount of force exerted [139, 140].

Most studies are conducted by targeting a specific area of the human body such as the

grip strength [141]. Tests are often performed offline to determine the maximum isometric

strength of the human. However maximum isometric strength does not always correlate

to an increase in performance. In [142], it was shown that athletes who had a higher

isometric strength relative to their weight performed similar vertical jump distance to

athletes who had a lower isometric strength relative to their weight. Therefore studies

performed to determine the maximum strength are unlikely to reflect the capability of a

human in performing a certain operation.

2.4.2 Musculoskeletal Models of the Human Body

Musculoskeletal models of the human body have been developed as a method of estimating

various information regarding the human body. Software such as OpenSim [143] can

analyze and simulate the human body. These musculoskeletal models facilitate studies on

the inner workings of various biomechanical systems, ranging from an ankle [144] to a full

human body [145]. Musculoskeletal models have also been used to provide the activation

of certain muscles to determine the stability of the glenohumeral joint in a lifting operation

[146].

Musculoskeletal models such as the upper extremity model [10] have been developed to

estimate the physicality of a human. These models often represent a statistical represen-

tation of a human, such as the physicality of a 50th percentile male, which may be scaled

to fit the specific person of interest. Musculoskeletal models have been used in a wide
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variety of applications ranging from movement studies [147] to adaptive control of robots

[144].

Using musculoskeletal models the capability of the human can be estimated in real-time.

In [148] a real-time motion capture system was used to provide the pose of a human to be

used alongside the musculoskeletal model. Similar works utilized a specialized suit with

embedded IMUs [149] in order to provide a real-time pose of the human. In these works

the real-time pose of the human is able to be used alongside software packages such as

OpenSim to perform rapid clinical evaluations.

2.4.3 Estimation of Human Physical Strength

The physical strength of a human considered in this thesis is the magnitude of the force

that a human is able to withstand at a given force direction. Determining the amount of

force that is able to be generated by a given individual is difficult without using direct

measurement through devices such as force/torque sensors [150]. One method of appraising

the physical strength of a human is through the use of models such as the musculoskeletal

model [103].

A common method of estimating the strength of a human limb or part of the human body

is through EMG. EMG is able to be used to provide a measure the muscle activity of the

human to be used alongside a musculoskeletal model to estimate the physical strength of

the human [151]. In [152] the forces applied by the human finger were estimated through

EMG electrodes placed on the forearm of the human subject. A linear regression model

was generated to estimate the finger force levels from normalized EMG signals. Others

used artificial neural networks to convert raw EMG signals to estimate the output force of

the human upper limb muscle [153]. Factors such as the stiffness of the human arms may

also affect the amount of force that a human can withstand [154]. Muscle forces have also

been estimated using the inverse dynamic using a lower limb musculoskeletal model based

on specific motions such as walking and known reaction force at the foot [155].

The forces that are experienced during certain operations or motion could also be used to

predict the amount of exertion that a human will experience. In [156] it was shown that
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the amount of force that is required for an operation performed by the same person is

quite repeatable. Measurements from force sensors attached to handles could be used to

record the amount of force required to accomplish an operation [157] which can be used

to estimate the required physical strength exertion of the human.

The operation or the motion being performed by the human greatly affect the amount of

force being generated by the human. The pose of the human greatly affects the amount of

force that a human is able to generate and therefore it is important for the robot to know

the pose of the human if the human strength is to be quantified by the robot.

2.4.4 Muscle Fatigue

Muscle fatigue is one of the main reasons leading to musculoskeletal disorders [158]. Muscle

fatigue is defined as a decrease in muscle force capacity often due to a mismatch between

central motor drive magnitude and mechanical muscle response [159]. When fatigued it

has been reported that humans matched the perceived effort to complete the operation

rather than the perceived force exerted by an unfatigued arm [160]. Muscle fatigue that

is localized in specific muscle groups may cause changes in the muscle coordination [161]

and the timing in the resultant movement outcome [162]. The performance of a fatigued

human has also been shown to have decreased in a path tracking operation [163].

Muscle fatigue can be monitored through sensors such as the one detailed in [164]. Models

have also been developed to estimate the muscle fatigue based on the required movements

of the joints as well as the forces experienced by the human body [165] which could be

potentially used to detect the risk of musculoskeletal disorders in workers [166]. In [167] a

muscle fatigue model was presented that considers the force production history of muscles

in a musculoskeletal model to estimate the fitness level of each muscle during an upper

limb motion[167].

2.4.5 Physical Strength Estimation in Practical pHRC Applications

In pHRC applications, the strength of the human co-worker could be used to adapt the

amount of assistance to be provided by the robot. Certain operations could be halted in
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order to maintain the safety of the human co-worker. Currently the strength of the human

is commonly measured through the use of direct force sensing. By directly measuring the

force applied by the human co-worker, the true capability of the co-worker is unable to

be known and thus the wrong assistance may be applied instead. EMG based strength

estimation is impractical for use in real operations due to the invasive nature of the sensor

which requires careful placement of electrodes on the skin or within the muscle of the

human.

For the human physical strength to be estimated in a practical pHRC application set in

an unstructured industrial environment, invasive sensors such as EMG and MoCap are

unlikely to be used due to the impracticality of the sensors. Therefore a non-invasive

method of estimating the physical strength of the human is required if a collaborative

robot is to take into account the physical strength of the human co-worker for adaptive

assistance paradigms such as AAN to be implemented on the robot. Using an estimated

pose of the human co-worker with a musculoskeletal model of the human is one method

of estimating physical strength. Errors in the estimated pose will likely introduce error in

the appraisal of the human physical strength and this needs to be addressed.

2.5 Summary

Robots for pHRC have been designed to assist humans perform a variety of operations.

These robots are utilized to provide various forms of assistance such as suppressing un-

wanted vibrations or reducing the load experienced by the human in strenuous operations.

Although providing assistance is able to reduce the physical strain experienced by the

human co-worker, providing too much assistance may result in a reduced growth of the

human co-worker’s capability, increasing the reliance of the human co-worker on the robot.

Model based AAN paradigms have been developed to adapt the level of assistance provided

to the human based on the estimated capability of the human such as the current physical

strength of the human co-worker. For such AAN paradigms to be implemented by pHRC

robotic systems, an estimate of the human co-worker’s physical strength is required.
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A factor that is important in appraising the physical strength of a human co-worker is

the pose of the human co-worker. Existing pose tracking methods are impractical to

implement in real pHRC applications whereas models estimating the pose of the human

co-worker assume free unconstrained motion of the human co-worker, which is not the

case. In pHRC the interaction between the human co-worker and the robot may place

constraints on the pose that is able to be adopted by the human co-worker. Therefore

the effect of the interaction on the pose of the human co-worker needs to be addressed

when considering the estimation of the human pose in pHRC applications. The constraints

placed onto the human from the interaction between the human and the robot may also

be beneficial when attempting to resolve the redundancy in the human body such that

a more accurate pose of the human body is able to be estimated. With the pose of the

human being estimated, the capability of the human is able to be appraised. Due to the

estimation of the pose, errors in the pose will likely result in error in the appraisal of the

physical strength. Thus the accuracy of the appraised physical strength will also need to

be addressed.



Chapter 3

Effect of External Force and

Bimanual Operation on Upper

Limb Pose

The redundancy in the human upper body allows for a wide variety of poses to be adopted

to perform an operation. In this chapter, the effect of the interaction between a human and

a robot in physical Human-Robot Collaboration (pHRC) on the pose of the human upper

limb is investigated. Existing estimation models of the human upper limb were developed

under the assumption that the human is able to move freely. In pHRC applications, the

interaction between the human and the robot restricts some of the poses that are able to

be adopted by the human. This chapter presents an investigation that was performed to

observe the effect of the interaction between the human and the robot on the pose of the

human upper limb. Experiments were conducted with human subjects collaborating with

a robot to perform a path-following operation. In Section 3.1 background information

is presented. Section 3.2 provides an overview of this study. Section 3.3 presents the

design of the experiments as well as the robotic platform used to conduct the experiments.

The obtained results are presented and discussed in Section 3.4. The findings are then

concluded in Section 3.5.

35
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3.1 Background Information

In physical Human-Robot Cooperation (pHRC), it is advantageous for the collaborative

robot to ascertain as much information as possible regarding the state of the human co-

worker. One of the important pieces of information to obtain is the pose of the human

co-worker. Knowing the pose of the human co-worker increases the situational awareness

of the robot, allowing for collision between the human [40] and the robot to be avoided.

The information of the co-worker pose could also be used to estimate the physical strength

of the human [21] and alter the assistance that the robot provides to the human co-worker

[90, 168].

Determining the pose of the human co-worker in a practical application is often challenging

due to several factors. In a pHRC operation, the human and the robot share a workspace

resulting in frequent occlusion of the human which reduces the effectiveness of sensors such

as RGB-D cameras to measure the pose of the human. One way in which occlusions of

the human could be minimized is by increasing the sensors in the environment. Increasing

the number of sensors may not always be practically feasible. For higher accuracy, sensors

require careful calibration and in a pHRC application where the workspace of the robot

and the human is dynamic it may be difficult to maintain the correct calibration for each

sensor. In outdoor or dusty environments, the effectiveness of vision based sensing is also

reduced, limiting the reliability of the measurements obtained from these sensors. Models

have been developed to predict the pose of the upper limb as an alternative to direct sensor

measurements of the upper limb pose [24, 25], such as estimating the position of the elbow

given the pose of the wrist relative to the shoulder [8].

In pHRC applications such as the one shown in Figure 3.1 the protective clothing to be

worn by the human worker increases the difficulty of measuring the pose of the human

using sensors. Hence models that estimate the worker’s pose are appealing for pHRC

applications. Models that predict the pose of the human co-worker performing a collabo-

rative operation with a robot may not be able to provide an accurate pose estimate. These

pose estimation models are often developed with an assumption that the human co-worker

is performing a free unconstrained motion, which is not the case in pHRC applications.

By having the robot in physical contact with the human co-worker, several constraints are
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Figure 3.1: A human co-worker working collaboratively with a robot in an abrasive
blasting operation.

placed on the poses that the human is able to undertake. Therefore an investigation was

performed on the effect that interaction between the human and the robot would have on

the pose of the human subject.

3.2 Overview

3.2.1 Redundancy in the Human Upper Limb and Pose Definition

The human body has a large number of Degrees of Freedom (DOF). This results in the

human body being able to adopt a pose that is deemed most natural to the individual.

As an example, for a given position and orientation of the hand relative to the shoulder,

the human is able to position their elbow in a wide variety of positions. Due to this

redundancy, there are a large variety of poses that are able to be adopted by the upper

limb.

The human upper limb is often simplified to a seven DOF system. The spherical joint of

the shoulder can be represented as three rotational DOF. One rotational DOF represents
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the hinge joint of the elbow and three rotational DOF represents the spherical joint at the

wrist. With the simplification of the upper limb into a seven DOF system and with the

hand position and orientation fixed, there is still one degree of redundancy in the pose of

the upper limb.

(a) (b) (c)

Figure 3.2: A) The human upper limb showing the positions of the shoulder pS , elbow
pE and wrist pW and the lengths of the upper arm U and lower arm L (B) Location of
the swivel coordinate frame pC in relation to the subject’s shoulder pS , elbow pE , wrist
pW and the angle α. (C) Swivel coordinate frame u× v showing the swivel angle φ and

direction of gravity g.

This redundancy means that even if the pose of the wrist is defined the current pose of

the upper limb is not. For a given position of the wrist with respect to the shoulder pW ,

consisting of [pW,x, pW,y, pW,z], the redundancy of the upper limb can be parameterized as

the swivel angle (φ) [169].

pC = pS + U cos(α) (3.1)

cos(α) =
L2 − U2 − ||pW − pS ||

2U ||pW − pS ||

The swivel angle, φ, refers to the angle relative to an imaginary coordinate frame positioned

along a vector between the wrist and the shoulder on the point pC . pC is located along a

vector between pS and pW , calculated using the position of the shoulder pS , the position

of the wrist pW , and the lengths of the upper and lower arm, U and L respectively as

shown in Equation 3.1.
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pE = r[cos(φ)u+ sin(φ)v] + pC (3.2)

r = U sin(α)

n =
(U sin(α)W − U sin(α)S)

||U sin(α)W − pS ||
, u =

g − (g · n)n

g − (g · n)n
, v = n× u (3.3)

The coordinate frame is arranged in such a way that the position of the elbow, pE (Equa-

tion 3.2), lies on the uv plane. The vector u is suggested to be aligned to the direction

of gravity g as shown in Figure 3.2 (Equation 3.3). The swivel angle φ of a given upper

limb pose can be calculated by determining the angle between u and −−−→pCpE .

Utilizing the swivel angle, the pose of the upper limb can be defined alongside the position

pS and orientation of the wrist RW (Equation 3.4). In this thesis, RW is represented as

a quaternion.

pose = [pW ,RW , φ] (3.4)

3.2.2 Physical Interaction Between the Human and the Robot

Previous works have shown that a prescribed wrist orientation can affect the pose of the

upper limb [25]. Due to the interaction between the human and the robot in pHRC the

configuration of interaction points such as the handle may also affect the pose of the upper

limb. To determine the effect of the interaction between the human and the robot, two

variables were investigated on its effect on the adopted pose of the upper limb. The two

variables were:

• The effect of bimanual operation (two handed vs single handed operation)

• The effect of force exertion (direction and magnitude)
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The first variable to be tested is whether operations involving both hands of the human

co-worker (bimanual operation) in pHRC affects the pose of the human upper limb. In a

practical pHRC, bimanual operations may be enforced by safety standards such as [170].

By enforcing the pHRC robot to be operated with both of the human co-worker’s hands,

risks of the hands being trapped by the robot can be reduced. Handles such as ones shown

in Figure 3.3 restricts the relative position and orientation of the left hand to the right

hand. A side effect of bimanual operation is a restriction in the pose that is able to be

adopted by the left and right hand of the human co-worker as the worker is restricted

to form a closed kinematic loop with the handles. Due to the bimanual operation, the

orientation of the wrist becomes restricted, which has been previously found to alter the

adopted pose of the human upper limb [25].

Figure 3.3: The end effector of a pHRC robot showing the left and right handle to be
held onto by the human co-worker.

The second variable to be tested is whether requiring the human co-worker to exert forces

in a pHRC operation causes the adopted upper limb pose to change. Forces are generally

exerted by the hand of the human co-worker onto the end effector of a robot to contribute

towards the operation or to control the robot. The magnitude and direction of the force

being exerted by the human co-worker is dependent on the type of operation being at-

tempted or the manner in which the robot is to be controlled. It has been previously shown

that the pose of the upper limb alters the exerted force at the hand [23, 103]. Therefore an

investigation was performed to determine whether the magnitude and direction of the force
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to be exerted will cause the adopted upper limb to change such that a more advantageous

pose is adopted by the human co-worker.

3.3 Design of Experiments

3.3.1 Robotic Platform

The Assistance-as-Needed roBOT (ANBOT) was used to facilitate experimentation in a

pHRC application (Figure 3.4). This robotic platform was designed at the Centre for Au-

tonomous Systems (CAS) in collaboration with Burwell Technologies to facilitate human-

robot collaboration in an abrasive blasting application. Abrasive blasting is a physically

intensive operation which is traditionally done manually with the human worker expe-

riencing reaction forces which have been measured to be around 100 N [171]. A side

effect of abrasive blasting is suspended particulate in the environment, which degrades the

capability of vision based sensors.

Figure 3.4: The ANBOT platform with a human co-worker performing a collaborative
abrasive blasting operation.

At the core of the ANBOT robotic platform is a Universal Robot UR10, a collaborative

robotic manipulator which was designed to be safe for use in close proximity to a human.

Attached to the end effector of the robot are two handlebars to be held onto by the human
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co-worker during the pHRC application. An ATI Mini45 force/torque sensor is fitted to

the end effector of the robot to detect the force input from the human co-worker which is

to be used to maneuver the end effector.

Mounted on a post extending upright from the base of the ANBOT are four Kinect v1

cameras, shown in Figure 3.5. These cameras are used to obtain a depth image of the

surrounding environment to avoid collision between the robot and the environment. The

Kinect cameras are also used to obtain point cloud of the human co-worker working with

the ANBOT as a method of estimating the centroid of the human co-worker’s torso.

Although sensors are placed on the robotic platform, due to environmental factors as well

as the non-deterministic nature of the human co-worker, sensors may not provide the

necessary information. Therefore methods which are less reliant on sensory information

are needed to provide feasible estimates of the human co-worker’s pose.

Figure 3.5: The field of view of the four Kinect v1 cameras on the ANBOT.

3.3.2 Experiments

The following experiments were performed to determine whether it would be feasible to

estimate the pose of the human co-worker during the physical collaboration between the

human and the robot. It was hypothesized that due to interaction forces being applied



Chapter 3. Effect of External Force and Bimanual Operation on Upper Limb Pose 43

by the human onto the robot, the pose adopted by the human will be affected. These

experiments also serve to determine whether simple methods of estimating the upper

limb configuration are appropriate in pHRC applications where forces are applied by the

human. In these experiments, which was published in [9], the end effector of the ANBOT

(Figure 3.6b) was set to move around a predefined path (Figure 3.6a) with the human

subject holding onto the end effector of the ANBOT. The path was programmed as an

end effector trajectory to be executed by the ANBOT to remove the human error in the

motion being performed. This ensures the repeatability of the experiments such that

comparison against other experiments or subjects were able to be made at set intervals

along the path. In each experiment the end effector moved along the path six times in

a counter-clockwise direction, starting and ending at Pt. 1 of the path. The orientation

of the end effector was kept constant throughout the experiment to remove the effect of

the wrist orientation on the pose of the upper limb as well as promoting movement of the

whole upper limb rather than just the wrist.

(a) (b)

Figure 3.6: (A) Path of the end effector to be followed during each experiment with the
coordinate system of the force to be applied by the human subjects. (B) Experimental
setup showing a subject with markers attached to their upper limb and the ANBOT

platform used for the experiment [9].

Different experiments required the human subjects to apply a given force magnitude and

direction onto the end effector of the ANBOT. In Experiments 1-2 the human subject

is constrained to apply no force onto the end effector in order to progress through the

preset trajectory of the path, whereas in Experiments 3-6 the human subject is required
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to apply a specified magnitude of force at a specified direction. Human force input was

measured and recorded using an ATI Mini45 sensor attached to the end effector of the

robot. Maintaining a specific force output at the hand while the robot moves is difficult

to achieve, therefore a ± 5N force window was set to ensure a smooth motion of the end

effector. Without a suitable force window the robot would stutter as the force applied

by the human varied in and out of range. The stuttering of the end effector had to be

removed as it may cause the adopted upper limb pose to change. A visual aid, shown

in Figure 3.7b, was used to display the forces being applied onto the end effector to aid

the user in applying the correct magnitude and direction of force. Visual cues dictated

the direction in which the force needed to be applied. The visual aid also served as a

distraction to the subject, with the intention of reducing the subject’s self-consciousness

in the movement of their upper limb, to promote a more natural upper limb pose.

(a) (b)

Figure 3.7: (A) Depiction of the force window applied by the human hand where the
region in green satisfies the set constraint and the region in red will cause the robot to
halt. (B) Visual aid used to display current Force/Torque sensor output alongside current
experimental requirements such as the magnitude and direction of the force required from

the subject and the current end effector motion.

Whilst the human subject satisfies the specified force constraints of each experiment, the

end effector was programmed to travel along the predefined trajectory at of 0.1 m/s. The

velocity of the end effector was chosen to minimize the effect of rapid movement of the

hand on the adopted pose of the upper limb. The low velocity of the end effector also

ensures a safe operation as the human subjects are required to be in close proximity to the

robot and those unfamiliar with the robot may feel uncomfortable at a higher velocity of
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the end effector. In the event that the human subject applied a force in the wrong direction

or outside of the specified force magnitude threshold, movement of the end effector halted

until the specified force constraints are satisfied. Figure 3.7a shows a representation of the

force magnitude threshold. The region shown in green represents a region where the force

applied by the subject’s hand (black arrow) would allow movement of the robot whereas

if the force was to be applied to the red region, the ANBOT will halt movement of the

end effector.

Six experiments were performed by each human subject to observe the pose that is adopted

by the human upper limb under different conditions or constraints. Experiments were

chosen to test the effect of the two variables. The experiments conducted were:

• Experiment 1: 1 hand, with 0 ± 5 N force applied by the human subject (1 Hand,

0 N force)

• Experiment 2: 2 hands, with 0 ± 5 N force applied by the human subject (2 Hands,

0 N force)

• Experiment 3: 1 hand, with 20 ± 5 N force being applied along the direction of the

operation (1 Hand, 20 N force, +X)

• Experiment 4: 1 hand, with 40 ± 5 N force being applied along the direction of the

operation (1 Hand, 40 N force, +X)

• Experiment 5: 1 hand, with 20 ± 5 N force being applied along the direction of

motion (1 Hand, 20 N force, YZ Plane)

• Experiment 6: 1 hand, with 40 ± 5 N force being applied along the direction of

motion (1 Hand, 40 N force, YZ Plane)

In Experiment 1, the human subject operating the robot is required to press the enabling

switch attached to the handle of the robot whilst the robot moves along the predefined

path. The robot continues along the preset trajectory of the end effector as long as the

human subject maintains a 0 ± 5 N of force being applied through the end effector. This

experiment was chosen to be the baseline to which the other experiments were to be
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compared against. This experiment represents a case where the human is required to

apply no load with the only constraint placed on the human subject being the pose of the

hand which is dependent on the pose of the end effector along the predefined trajectory.

The 0 ± 5 N force enforced in this experiment and Experiment 2 ensures that the human

subject does not rest their upper limb on the end effector, resulting in an unnatural pose

of the upper limb being recorded. In these two experiments, the robot was only used to

determine the trajectory of the human subject’s hand.

In Experiment 2, each subject was asked to place both hands onto the end effector for

a bimanual operation of the robot at specified handles for their right and left hand. In

this experiment, the effect of bimanual operation on the adopted pose of the right upper

limb was investigated. The motive behind this experiment is to test whether prescribing

a relative position and orientation between the left and right hand instigates a significant

change in the adopted pose of the upper limb.

Experiments 3 and 4 required the human subjects to place their right hand on the end

effector and push in the forward (+X) direction relative to their torso and perpendicular

to the end effector motion. These experiments are performed to simulate an abrasive

blasting operation where forces are directed along the nozzle towards the human co-worker.

In Experiment 3 the human subjects were required to push with 20 ± 5 N force. In

Experiment 4 a 40 ± 5 N force constraint was enforced in order to move the end effector

of the robot. The two experiments were designed to determine whether the requirement

of pushing in the +X direction alters the adopted pose of the human. By comparing the

adopted pose of the human upper limb in Experiments 3 and 4 the effect of the magnitude

of the exerted force can be investigated.

In Experiments 5 and 6 the force to be exerted by the human subject is aligned in the

direction of end effector motion represented by the arrows in (Figure 3.6a). For example,

between Pt. 1 and Pt. 2 the human subject was required to apply a force in the +Y

direction, whereas during the motion between Pt. 2 and Pt. 3 the force is to be applied in

the -Z direction. Similarly to Experiments 3 and 4 the force to be exerted by the human

subject is 20 ± 5 N and 40 ± 5 N for Experiments 5 and 6 respectively. Both of these
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experiments were designed to simulate the human subject being required to move a heavy

object or a slow responding end effector.

Ten healthy male subjects performed all six experiments with the ANBOT in the UTS

Data Arena, a lab equipped with motion capture capabilities. All subjects volunteered to

perform the experiments and are part of the Centre for Autonomous Systems. The heights

of the subjects range from 165 cm to 185 cm where two subjects were left handed. The

number of subjects was decided upon through literature review of similar works [8, 25]. In

all experiments other than Experiment 2 the right hand of the subjects was used regardless

of their dominant hand. A seat is placed to the right of robot base with the path plane set

to a distance based on the arm length of the individual subject as shown in Figure 3.8. The

seat placement was altered to ensure that the subject’s arm was never completely straight

as the swivel angle calculation becomes inaccurate, i.e. the straighter the arm, the closer

pE is to pC and a small change in pE results in a large change in the swivel angle φ. Each

subject was asked to maintain contact between their back and the backrest of the seat as

they perform the experiment. This ensures that the upper body of the subject does not

shift during the experiment and minimizes the rotation of the upper body which would

result in a different upper limb pose.

Reflective markers were attached to each subject’s shoulder, elbow and wrist to record

the adopted pose of the upper limb (Figure 3.6b). Markers were also attached to the end

effector of the robot to track the subject’s progress. The upper limb poses were recorded

using an OptiTrack motion capture system which used 12 OptiTrack Prime 17 W cameras

placed 3 m above the ground and evenly spaced around a 10 m diameter motion capture

lab (Figure 3.8). The upper limb data of each subject was recorded at 120 frames per

second.

3.4 Results and Discussion

The data obtained from the OptiTrack motion capture system were used to calculate the

swivel angle, φ, of the right upper limb at each recorded time frame (Equation 3.2). In

each experiment a mean and standard deviation of the swivel angle were calculated at
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Figure 3.8: The experimental setup showing the positions of the OptiTrack cameras as
well as the seat placement.

specific end effector points along the path. A comparison was then conducted using the

mean swivel angle obtained in Experiment 1 against data obtained in the other experi-

ments. The mean swivel angle from Experiment 1 was used as the baseline for comparison

against other experiments as this experiment represents an operation where the subject is

under no load other than gravity whilst still constrained by the robot on the position and

orientation of their hands. The mean swivel angles for each subject in Experiment 1 were

also compared to determine variability across the ten subjects tested. In the following fig-

ures, the horizontal axes correspond to the distance travelled by the end effector along the

path in the experiment. The vertical axes represent the calculated swivel angle measured

in degrees.

3.4.1 Experiment 1 - Unimanual Operation with No Force Applied

In Experiment 1, each subject was required to apply as little force as possible whilst

holding onto the end effector with their right hand. A 0 ± 5 N force window was enforced
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to ensure that the subject does not rest their upper limbs on the end effector during the

experiment such that a natural upper limb pose could be recorded.

Figure 3.9 shows the mean and standard deviation of the calculated swivel angle (marked

in red) in Experiment 1 for two subjects (Subjects 5 and 7). In Figure 3.9 it can be seen

that both subjects had exhibited a consistent swivel angle profile. A consistent swivel

angle indicates that the adopted pose of the upper limb on the specific point of the path is

similar. This trend of consistency of the adopted upper limb was able to be seen across all

ten subjects. In this experiment, it was observed that the swivel angle reaches a maximum

value between Pt. 1 and Pt. 2 then decreases until a minimum is reached between Pt. 3

and Pt. 4. The results of each subject can be seen in Appendix A. The mean swivel angle

values from Experiment 1 for each subject was also used as the baseline for comparison

with the swivel angles calculated from other experiments and subjects.

Figure 3.10 shows the mean swivel angle values for all ten subjects. Even though it was

shown that for a specific individual the calculated swivel angle is repeatable, this trend

was not visible when comparing one subject to another. Although each subject seemed to

exhibit a maximum swivel angle around Pt. 1 and Pt. 2 and a minimum swivel angle was

calculated around Pt. 3 and Pt. 4, there is a significant difference between the magnitude

of the swivel angles. Each subject was shown to adopt a different upper limb pose in order

to perform a similar trajectory of the hand. This trend is caused by the redundancy in

the human body allowing for a similar trajectory of the hand to be performed by adopting

different poses. The natural difference in the human body between each subject likely

resulted in a different upper limb pose to be preferred.

To calculate the dissimilarity in the adopted upper limb pose between different subjects,

a root mean square deviation (RMSD) calculation was performed. The RMSD was calcu-

lated using one subject’s mean swivel angle to the subject’s own or another subject’s raw

swivel angles throughout Experiment 1. Table 3.1 shows the RMSD of the adopted swivel

angle for each of the subjects in Experiment 1. A lower RMSD value represents a more

similar adopted upper limb pose.

As expected, the lowest RMSD value was observed for each individual’s recorded swivel

angle. Subjects 1-3 was shown to have performed Experiment 1 using a similar upper limb
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Figure 3.9: Calculated swivel angles of Subjects (A) 5 and (B) 7 in Experiment 1.
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Figure 3.10: Mean swivel angles of all ten subjects in Experiment 1.

Raw Swivel Angles [o]
Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 Sub 9 Sub 10

M
ea
n
S
w
iv
el

A
n
gl
e
[o
]

Sub 1 4.97 6.08 5.69 9.93 21.08 26.19 13.98 10.04 12.87 18.34
Sub 2 6.42 4.57 5.07 8.83 19.80 24.90 12.78 9.54 11.18 17.06
Sub 3 6.07 5.34 4.34 8.79 19.62 24.71 12.58 10.02 11.33 16.87
Sub 4 10.96 9.49 9.49 3.50 13.11 17.57 8.86 14.50 9.81 9.86
Sub 5 21.43 19.91 19.52 13.14 5.00 9.41 10.48 25.90 16.20 9.11
Sub 6 26.67 24.99 24.77 17.51 10.31 4.28 15.24 31.15 16.06 9.23
Sub 7 13.80 12.15 11.85 7.17 9.71 14.28 5.96 18.01 11.61 8.04
Sub 8 10.86 10.26 10.56 14.66 26.05 31.22 18.97 3.49 16.86 23.38
Sub 9 13.94 11.82 11.92 9.45 15.81 15.58 12.27 16.61 4.35 8.40
Sub 10 19.14 17.50 17.28 10.03 10.04 9.61 9.96 23.45 9.71 2.94

Table 3.1: Root mean square deviation of a subject’s mean swivel angle against the raw
swivel angles of all subjects calculated for Experiment 1.

pose but the trend was not shared with any other subjects. Results from Experiment 1

suggests that an individualized model for pose estimation will lead to a more accurate

estimated pose as the natural variance between different individuals seemed to greatly

affect the adopted pose of the upper limb.
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3.4.2 Experiment 2 - Bimanual Operation with No Force Applied

In Experiment 2, each subject was required to apply as little force as possible whilst

holding onto the end effector with both hands. In this experiment, the only difference is

the addition of the left hand onto the end effector of the robot, so that the effect of bimanual

operation can be tested. Similarly to results found in Experiment 1, the calculated swivel

angles in Experiment 2 were repeatable (Figure 3.11). Figure 3.12 shows the mean swivel

angles for all ten subjects where it can be seen that each subject performed Experiment 2

in a different manner.
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Figure 3.11: Calculated swivel angles of Subjects (A) 7 and (B) 9 in Experiment 2.

To determine the effect that bimanual operation places on the adopted upper limb pose,

the mean swivel angles in Experiments 1 and 2 were compared. Figure 3.13 shows the

comparison of the mean swivel angles for two subjects in Experiments 1 and 2. The trend

from these two subject shows that there is a slight change in the calculated swivel angle

in Experiment 2.

However, the effect of bimanual operation had differing effects when observing different

subjects. For Subject 8 (Figure 3.14a), bimanual operation resulted in a reduction of

swivel angle throughout the experiment. For Subject 10 (Figure 3.14b), the swivel angle
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Figure 3.12: Mean swivel angles of all ten subjects in Experiment 2.

was similar to Experiment 1 for the majority of the experiment, except between Pt. 3 and

Pt. 4.

The effect of bimanual operation on the swivel angle of the right upper limb is difficult to

ascertain from the results obtained in Experiment 2 with the ten subjects. It is hypothe-

sized that some subjects exhibited a change in the adopted swivel angle only around Pt. 1

of the path due to the left upper limb being close to its maximum reach surrounding this

area. For some subjects, the adopted swivel angle surrounding points 3 and 4 of the path

was also found to have less variation than in the rest of the experimental path. This is

likely due to the right upper limb of the subjects being close to the full reach, limiting the

variability in the adopted upper limb pose.

3.4.3 Experiments 3 and 4 - Unimanual Operation with 20N or 40N

Force in the +X Direction

In Experiments 3 and 4, each subject was required to apply a 20 ±5 N (Experiment 3) or a

40 ±5 N (Experiment 4) force in a direction forward relative to their torso (+X direction).

The direction of the force in this experiment was chosen to replicate physical operations



54 Chapter 3. Effect of External Force and Bimanual Operation on Upper Limb Pose

Pt.1 Pt.2 Pt.3 Pt.4 Pt.1
End Effector Position

0

10

20

30

40

50

60

70

80

90

M
ea

su
re

d 
Sw

iv
el

 A
ng

le
 [o ]

Comparing Pose for Subject:4 Exp 2: 2 Hands No Force

Exp 1: 1 Hand No Force  Exp 2: 2 Hands No Force

(a)

Pt.1 Pt.2 Pt.3 Pt.4 Pt.1
End Effector Position

0

10

20

30

40

50

60

70

80

90

M
ea

su
re

d 
Sw

iv
el

 A
ng

le
 [o ]

Comparing Pose for Subject:5 Exp 2: 2 Hands No Force

Exp 1: 1 Hand No Force  Exp 2: 2 Hands No Force

(b)

Figure 3.13: Comparison of the mean and standard deviation of the swivel angles of
Subjects (A) 4 and (B) 5 in Experiment 2 and Experiment 1.
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Figure 3.14: Comparison of the mean and standard deviation of the swivel angles of
Subjects (A) 8 and (B) 10 in Experiment 2 and Experiment 1.
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such as drilling or abrasive blasting, where the worker is required to push away from their

body. Similarly to the other experiments, as shown in Figure 3.15, the calculated swivel

angle for an individual in these two experiments were repeatable.
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Figure 3.15: Calculated swivel angles of Subject 4 in (A) Experiment 3 and (B) Exper-
iment 4.

Figure 3.16 shows the mean swivel angle of all 10 subjects in Experiments 3 and 4. By

Comparing the two figures, it can be clearly seen that as a whole, the 10 subjects adopted

a much lower swivel angle in Experiments 3 and 4. A lower swivel angle correlates with

the elbow being brought closer to the torso of the human subject. Figure 3.17 highlights

the trend that was exhibited across all ten subjects. In Experiment 3, the adopted swivel

angle was lower in value when compared to Experiment 1 (Figure 3.17a). Additionally,

seven out of ten subjects adopted swivel angle values which were on average lower in

Experiment 4 compared to Experiment 3. The other three subject adopted similar swivel

angle values to Experiment 3.

The trend from these two experiments seems to suggest that in order to accommodate for

a larger pushing force a lower swivel angle is adopted. The lower swivel angle means that

the elbow is brought closer to the torso of the human which allows for the forearm to be

aligned in the direction of the force which may allow the human body to exert a larger
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Figure 3.16: Mean swivel angles of all ten subjects in
(A) Experiment 3 and (B) Experiment 4.
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Figure 3.17: Comparison of the mean and standard deviation of the swivel angles of
Subject 5 in (A) Experiment 3 and (B) Experiment 4 to Experiment 1.
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force in the forward direction, in a similar manner to [23] where it was found that handle

orientation affected the maximum force that a human was able to exert.

3.4.4 Experiments 5 and 6 - Unimanual Operation with 20N or 40N

Force in the YZ Plane
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Figure 3.18: Calculated swivel angles of Subject 5 in (A) Experiment 5 and (B) Exper-
iment 6.

In Experiments 5 and 6 each subject was tasked with applying a 20 ±5 N or a 40 ±5 N

force in the direction of travel of the end effector. These experiments were used to simulate

movement of a heavy load around the path. Figure 3.18 shows that for an individual, the

adopted upper limb pose is still repeatable when the subject was required to apply forces

in the YZ plane. The mean swivel angle of all ten subjects in Experiments 5 and 6 are

shown in Figure 3.19.

Unlike the trend visible in Experiments 3 and 4, in Experiment 5 there are different effects

visible across the ten subjects. Figure 3.20 shows a comparison of the adopted swivel

angle in Experiment 5 for two subjects. In Figure 3.20, it can be seen that the effect of

applying forces in the YZ plane did not seem to affect the adopted pose greatly for these

two subjects.
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Figure 3.19: Mean swivel angles of all ten subjects in
(A) Experiment 5 and (B) Experiment 6.
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Figure 3.20: Comparison of the mean and standard deviation of the swivel angles of
Subjects (A) 5 and (B) 10 in Experiment 5 and Experiment 1.



62 Chapter 3. Effect of External Force and Bimanual Operation on Upper Limb Pose

Pt.1 Pt.2 Pt.3 Pt.4 Pt.1
End Effector Position

0

10

20

30

40

50

60

70

80

90

M
ea

su
re

d 
Sw

iv
el

 A
ng

le
 [o ]

Comparing Pose for Subject:1 Exp 5: 1 Hand 20N Force YZ Plane

Exp 1: 1 Hand No Force  Exp 5: 1 Hand 20N Force YZ Plane

(a)

Pt.1 Pt.2 Pt.3 Pt.4 Pt.1
End Effector Position

0

10

20

30

40

50

60

70

80

90

M
ea

su
re

d 
Sw

iv
el

 A
ng

le
 [o ]

Comparing Pose for Subject:9 Exp 5: 1 Hand 20N Force YZ Plane

Exp 1: 1 Hand No Force  Exp 5: 1 Hand 20N Force YZ Plane

(b)

Figure 3.21: Comparison of the mean and standard deviation of the swivel angles of
Subjects (A) 1 and (B) 9 in Experiment 5 and Experiment 1.
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Figure 3.22: Comparison of the mean and standard deviation of the swivel angles of
Subjects (A) 5 and (B) 9 in Experiment 6 and Experiment 1.
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Figure 3.21 shows the comparison of the adopted swivel angle in Experiment 5 for another

set of two subjects. As shown in these figures, the adopted swivel angle in the same

experiment varied depending on the subject. In Figure 3.21a the adopted swivel angle for

Subject 1 is shown to be overall higher whereas in Figure 3.21b the adopted swivel angle

is overall lower.

In Experiment 6 a different effect was shown when compared to Experiment 5. For example

whereas previously Subject 5 exhibited very little change in the adopted swivel angle, in

Experiment 6 a considerable change in the adopted swivel angle is visible between point 1

and 3 of the path (Figure 3.22a). For another subject (Subject 9) the variability in

the adopted swivel angle was increased in Experiment 6 (Figure 3.22b) in comparison to

Experiment 5 (Figure 3.21b).

The large change in adopted swivel angle in Experiment 6 is likely caused by the difficulty

experienced by the subjects in isolating the force that they applied in the different direc-

tions. There was visible readjustment of the upper limb in order to exert forces in the

required direction. Although no visible trend across all of the subjects was seen, this phe-

nomenon of readjusting the upper limb pose supports the trend visible in Experiments 3

and 4 where each user adopted a more advantageous upper limb pose in order to exert the

required forces.

3.4.5 Summary of Each Individual

Table 3.2 highlights the difference between the swivel angles from each experiment with

respect to each subject. Each column in the table shows the calculated RMSD of the

subject’s swivel angle when compared against the mean swivel angle calculated in Exper-

iment 1. RMSD values obtained for the same experiment were not consistent between

subjects. This further highlights that each individual had a different observed reaction to

the factors being considered in this paper.

Shown in Table 3.2, the difference in Experiment 3 to Experiment 1 shows that even

though the trend of lowering the swivel angle is visible across all subjects, the magnitude

in which the swivel angle is lowered differs between different subjects. In Experiment 4,
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Exp 2 Exp 3 Exp 4 Exp 5 Exp 6
Sub 1 13.37 17.83 17.41 22.34 14.14
Sub 2 7.96 25.81 29.43 9.27 8.75
Sub 3 9.22 14.08 9.32 14.51 19.67
Sub 4 11.31 11.86 14.00 14.36 16.28
Sub 5 7.25 18.72 28.75 6.31 14.91
Sub 6 10.26 15.60 35.66 17.84 17.00
Sub 7 8.25 16.95 18.87 8.88 8.70
Sub 8 13.98 11.83 16.87 17.53 21.48
Sub 9 7.11 24.45 28.80 18.03 22.68
Sub 10 6.38 8.52 11.15 6.74 9.34

Table 3.2: RMSD of the swivel angles in different experiments, measured against the
mean swivel angle of the same subject in Experiment 1.

eight out of ten subjects exhibited a greater difference in the swivel angle when compared

to Experiment 3. Subject 1 exhibited almost no difference from Experiment 3 to Exper-

iment 4, whereas Subject 3 exhibited a smaller magnitude of change in Experiment 4 to

Experiment 3 when compared to the natural motion in Experiment 1. Unlike Experi-

ments 3 and 4, in Experiment 5 and 6 there was no visible trend that was shared by all of

the subjects.

3.4.6 Strength Comparison using a Musculoskeletal Model

It was speculated that in Experiments 3 and 4, subjects adopted an upper limb pose with

the elbow closer to the torso in order to exert a larger forward force. To investigate the

trend of a lower swivel angle observed in Experiments 3 and 4, a musculoskeletal model of

the upper limb [10] was used to estimate the physical strength of Subject 5. Whereas [130]

minimized the muscle activation required to maintain a certain joint configuration, this

analysis attempts to estimate the maximum physical strength of the human for a given

pose of the upper limb. It was hypothesized that there was some form of biomechanical

advantage with a lower swivel angle and hence a lower swivel angle would be adopted when

each subject was required to exert a larger forward force at the hand. The upper limb

musculoskeletal model was used with the OpenSim software [143] to estimate the maximum

opposable strength at the hand. Experiments 1 and 4 were chosen as the two scenario to

be compared. Experiment 1 represents a case where the subject performed the operation

with minimal force interaction. Experiment 4 represented a case where the subject was
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required to apply a large force in the forward direction. These two experiments resulted in

a different pose being adopted by the user and it was expected that the maximum strength

of the subject would be different in these two experiments.

Figure 3.23: Comparison of the strength of Subject 5 during Experiment 1 and Exper-
iment 4

The standard procedure for performing a musculoskeletal modelling analysis was followed.

The positions of the reflective markers used to record the motion of the upper limb were

added to the musculoskeletal model. Using the recorded upper limb motion, the upper

limb musculoskeletal model was scaled using an inbuilt function of OpenSim.

Figure 3.23 shows the mean and standard deviation of the maximum opposable force at the

hand in the +X direction of subject 5 for upper limb poses adopted in Experiments 1 and 4.

The mean values of the maximum opposable force were shown to have little variation

and all values were greater than the 40 N specified in Experiment 4. The difference in

the adopted poses from Experiments 1 and 4 did not result in a large difference in the

maximum strength of the human to change, as the directions of the forces being opposed

by the human subject are similar in their workspace. The change in the upper limb pose

in Experiment 4 may have reduced the joint loading in the elbow similar to the findings

in [172]. In Experiment 1 the calculated standard deviations of the maximum opposable

force is on average smaller than those in Experiment 4. It is hypothesized that the increase
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in the standard deviation is likely due to the subject’s pose altering due to fatigue whereas

in Experiment 1 the maximum opposable forces were consistent due to the low strength

requirement of the operation.

3.5 Conclusion

From the experimental results collected on the upper limb poses adopted by the ten sub-

jects, it was found that for each subject the swivel angle was observed to be repeatable

with some variation. The difference in the adopted upper limb pose was significantly larger

when comparing poses across subjects for the same experiment. The calculated swivel an-

gle does not remain consistent when comparing two different subjects. This implies that

for a model designed to estimate the pose of the human upper limb, it is advantageous

to individualize the model rather than developing a general model that is designed to

fit a generic human. The natural variation in the body of different people was found to

affect the adopted pose of the upper limb even when a similar trajectory at the hand was

enforced.

The effect of bimanual operation on the upper limb pose differs between individuals. Al-

though no trend was visible in the adopted right upper limb pose across the ten subjects,

some subjects exhibited an alteration in the adopted pose surrounding the full reach of the

right upper limb. With the left hand being placed onto another handle on the same end

effector (Figure 3.3), some restrictions were likely placed on the right upper limb pose.

When the user was required to apply a force to push forward, it was found that this

force constraint resulted in an overall lower swivel angle. The magnitude of the force to be

applied further lowered the swivel angle adopted by eight out of ten subjects. The lowering

of the swivel angle correlates to the elbow being brought closer to the upper body, aligning

the forearm of the user to the required direction of force generation.

In experiments where the force is to be applied in the direction of motion, the magnitude

of the force had a larger impact in the adopted pose. Some subjects had difficulty in

producing the 40 N force in the specified direction, resulting in a large change to the

swivel angle which supports the findings in [173]. This suggests that the direction of the
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force in human-robot collaboration and the magnitude of force are important factors that

are likely to change the adopted pose of the user. Subjects were found to alter their pose

significantly to apply a force in certain directions.

The maximum opposable strength for Experiments 1 and 4 has shown that the muscu-

loskeletal model exhibited a similar strength profile even with the change in the swivel

angle. It is hypothesized that although the change in the swivel angle did not greatly alter

the maximum opposable force, the effect of bringing the elbow closer to the body allowed

a more comfortable pose to be adopted in order to generate the required force. Aligning

the forearm to the direction of force to be applied reduces the moment required to be

generated.

The results obtained have several implications for the development of robotic systems to

cooperate with humans. The experiments were able to show that each individual will adopt

a different upper limb pose given a similar hand pose. In order to achieve a good estimate

to the upper limb pose, where applicable, sensors should be used to provide information

regarding the current pose of the human co-worker. This is especially true in pHRC

scenarios where the current pose of the human co-worker may affect the performance of

the operation and the safety of the human co-worker.

The interaction between the human and the robot in pHRC operations was shown to affect

the pose of the human subjects in a different manner. The requirement of producing a

forward pushing force resulted in a lower adopted swivel angle for all ten subjects. This

suggests that for a pHRC operation where the human co-worker is required to exert forces

either to control the robot or to counteract the reaction forces from the operation, models

that assumes a free unconstrained motion may not be able to accurately estimate the true

pose of the human. Therefore in pHRC applications where the human pose is needed, a

different method of estimating the pose of the human operator is required.



Chapter 4

nullPose: an Upper Body Pose

Estimation Method

In Chapter 3 the effect of the interaction between a human and robot on the pose of the

human upper limb were investigated. From the investigation it was found that subjects

adopted different upper limb poses in order to perform a similar trajectory of the hand. It

was also found that the interaction between the human and robot resulted in a different

upper limb pose to be adopted. This suggests that existing human pose prediction models

are unlikely to provide an accurate estimate of the human pose in a physical Human-

Robot Collaboration (pHRC) operation, as these models are often developed based on

free unconstrained motions. Therefore in pHRC applications where the human pose is

needed, a different method of estimating the pose is required.

This chapter presents nullPose, a method of estimating the pose of the human upper

body designed for pHRC applications where the poses of the human co-worker’s hands are

known or able to be inferred from the interaction. This method utilizes the information

that exists during a pHRC operation where the robot is controlled through a direct contact

force exchange. Although the interaction between the human and the robot may lead to

uncertainty in the overall human pose, any known information regarding the human state

is valuable, especially in a difficult environment. The physical contact between the human

and the robot allows pose information of the human co-worker to be inferred, such as the

69
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pose of their hands. This information can then be used as the basis for the upper body

pose estimate.

Section 4.1 provides an overview of the nullPose method with the definitions and as-

sumptions. In Section 4.2 the algorithms used by the nullPose method are presented.

Section 4.3 outlines the experiments which were performed to verify and validate the null-

Pose method. In Section 4.4 the nullPose method was tested in an ideal situation where a

Motion Capture (MoCap) system was used as targets for the nullPose method to achieve.

The experiment performed in Section 4.5 compared the output of the nullPose method

against a MoCap system during a pHRC operation. The nullPose method was also tested

in a real world and highly challenging pHRC operation set in an abrasive blasting envi-

ronment (Section 4.6). The conclusions are presented in Section 4.7.

4.1 Overview of the Methodology

In pHRC applications, the presence of the robot is often a source of occlusion which makes

tracking the pose of the human co-worker challenging. When trying to estimate the pose

of a human co-worker, the number of possible solutions is huge. However the number

of possible solutions can be reduced by limiting the estimated poses to biomechanically

feasible poses. The number of possible solutions can be further reduced by exploiting

the kinematic constraints imparted by the physical interaction between the human and

the robot. The nullPose method exploits the kinematic constraints from the physical

interaction with the robot alongside a biomechanical model of the human body to provide

an estimate to the human co-worker’s upper body pose.

The upper body poses estimated by the nullPose method consists of the poses of the wrists,

elbows, shoulders and torso (Figure 4.1). The nullPose method can be used in applications

where the hand poses are known or able to be inferred. This makes the nullPose method

well suited for applications such as pHRC where the interaction points between the human

and the robot are specifically defined. Due to standards such as [170] such interactions

are likely required to ensure the safety of the human. The interaction between the human

and the robot usually occurs through handles to be held onto by the human or through
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attachments such as a forearm cuff to be worn by the human (Figure 4.2). From the

interaction points the poses of the hand are able to be inferred during a collaboration

between the human and the robot.

Figure 4.1: Poses of the upper body estimated by the nullPose method.

Figure 4.2: Human-Robot interaction through a forearm cuff.

The hand poses are used by the nullPose method as the basis to the upper body pose

solution. Since the human hand poses are assumed to be known, it is proposed that the

upper body is to be divided vertically in half as shown in Fig. 4.3. In this manner the

hand poses of the estimated upper body pose are ensured to always be equal to the known

hand poses. Each upper body half consists of a nine Degrees of Freedom (DOF) upper

limb as well as a torso half. The upper limbs are treated as kinematic chains, analogous
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to redundant robotic manipulators, which are controlled through differential kinematics.

The hand of each upper limb kinematic chain are treated as the base of the kinematic

chain as the poses of the hands are known (or able to be inferred) from the interaction

points of the collaborative robot.

Figure 4.3: The right and left upper body halves.

From the poses of the hands, one possible solution for the human co-worker’s pose can be

found by aligning the two torso halves to close the kinematic chain from the left hand to

the right. However this solution is unlikely to resemble the actual pose of the human co-

worker. To obtain a better estimate to the human co-worker’s upper body pose additional

kinematic constraints are used. These additional constraints are referred to as “targets”.

A target is implemented to obtain a more accurate estimate of the upper body pose. In an

ideal situation, sensor measurements are used to define targets that resolve the redundancy

in the human upper body to obtain an accurate pose of the human co-worker. In a practical

pHRC application it is not likely that sensor measurements are able to fully constrain the

pose of the human co-worker. Therefore, when sensor measurements of the human co-

worker’s pose are not able to be obtained, targets can be generated from approximations

of the human body based on heuristics or existing pose estimation models. Targets are

converted into “tasks” for the upper limbs to satisfy such that the estimated upper body

pose reflects the targets used as the input to the nullPose method. For example, the

model in [8] provides an elbow position approximation that could be used as a target
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Figure 4.4: A visualization of an elbow target and the corresponding task to move the
elbow towards the target.

such as shown in Figure 4.4. Another target could be point cloud data obtained from a

Kinect camera that provides measurements regarding the position and orientation of the

co-worker’s torso. Using the elbow target and the torso pose target, the nullPose method

is expected to generate an upper body pose estimate which is the same as the provided

targets.

A task represents the motion to be performed by the upper models. Tasks can be motions

that are defined by targets, such as shown in Figure 4.4, or motions used to ensure that

the estimated upper body poses are humanly feasible, such as avoiding collision between

the torso and the upper limbs. Each task is used alongside the respective task Jacobian

which converts the motion from the task space, such as Cartesian space, to the required

joint motions of the upper limb kinematic models while satisfying the biomechanical limit

of human upper limbs.

A key feature of the nullPose method is the prioritisation of different tasks that are in-

corporated into the upper body pose solution. The redundancy in the upper body means

that multiple tasks can be incorporated to define the pose of the upper body. Targets ob-

tained from different sources may also provide conflicting information. For example a task

obtained from a target that defines the pose of the human from a highly accurate sensor

would be given a higher priority compared to a task from a target which approximates the

torso pose based on heuristic. The priority ensures that the joint values for the upper limbs
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calculated using a task of a lower priority do not affect the outcome of the task of a higher

priority. Generally, tasks from sensor based targets are given a higher priority whereas

tasks from approximations are given a low priority as approximations may not reflect the

true pose of the human co-worker. In certain applications, these approximations may be

appropriate such as when limited sensor measurements are available as a more realistic

upper body pose is likely to be estimated using the approximations.

4.2 The nullPose Method

The nullPose method provides an upper body pose estimate by using two inputs as shown

in Figure 4.5. The first input consists of the poses of the hands. When a new hand pose

is received, the upper body halves are updated such that the pose of the hands of the

upper limb kinematic models matches that of the inputs. The pose of the left hand in the

global frame is denoted by GTLH ∈ SE(3) with GRLH ∈ SO(3) defining the orientation

and GpLH ∈ R3×1 the position. Likewise the right hand in the global frame is denoted

by GTRH ∈ SE(3) with GRRH ∈ SO(3) defining the orientation and GpRH ∈ R3×1 the

position. The second input to the nullPose method consists of targets for the estimated

upper body pose to achieve.

During a bimanual operation of a pHRC robot the human upper body forms a closed loop

kinematic chain. The nullPose method operates in two distinct modes which are dependent

on whether the two upper body halves form a closed kinematic chain. The kinematic chain

is considered closed when the pose of the left torso half is GTLT is approximately equal to

the pose of the right torso half GTRT (Equation 4.1). When the kinematic chain is closed,

the normal operating mode (Mode 1) is selected to resolve the redundancy in the human

upper body using the provided targets such that a good estimate of the upper body can be

obtained. In the event that the kinematic chain is open, such as during the initialization

of the two upper limb models, Mode 2 is selected to close the kinematic chain. In this

research the threshold used was a maximum relative rotation θTr of 0.01 radians and a

maximum separation distance ∆pT of 1 cm. This threshold can be relaxed to increase the

computational efficiency of the nullPose method whilst being strict enough such that the

two torso halves are adequately aligned.
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Figure 4.5: Flowchart of the nullPose method which updates the estimate to the upper
body pose when new hand poses are received.
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∆pT = pLT − pRT

∆RT = R′LT ×RRT

‖θ‖ = arccos

(
Tr(∆R)− 1

2

)
GTLT ≈G TRT when ‖θ‖ < θTr && ‖∆pT ‖ < ∆pTr (4.1)

The pose of the upper body is dictated by the joint configuration of the closed kinematic

chain from the left hand to the right, q ∈ R18×1. q combines the joint configurations of

the left and right upper limb kinematic model, qL ∈ R9×1 and qR ∈ R9×1 respectively, as

shown in Equation 4.2.

q =

qL
qR

 (4.2)

The taskStep function (Algorithm 1) is used to calculate ∆x which encompasses the

motion required to move the upper body such that the current pose GTC is moved towards

the desired pose GTD. In Mode 1 the taskStep function is used to convert the targets into

tasks for the upper body model to achieve. In Mode 2 the taskStep function calculates

the motion to bring the two torso halves towards one another.

The jointStep function (Algorithm 3) is used to calculate the necessary joint step, ∆q, for

the left and right upper limbs based on the task steps, ∆x. Through the calculation of ∆q

the upper body pose can be moved to reach targets or to ensure a humanly feasible upper

body pose. Each ∆q is calculated iteratively using the null space to ensure that the ∆q

calculated for a lower priority task does not detract from the outcome of a higher priority

task. Joint limit constraints, ∆Qmin and ∆Qmax calculated using the biomechanical model

of the upper limbs are used to ensure that the calculated ∆q is able to be performed by

human upper limbs.

The calculations performed in the two modes will continue repeatedly until certain end

conditions are met. In Mode 1 the nullPose method will end by outputting the estimated
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upper body pose once the targets are reached, new hand poses are received or when

a maximum number of iterations have been reached (N1 > Nt). N1 and N2 represent

counters which are initialised to start at 0 and are used in Mode 1 and Mode 2 respectively.

Nt represents the number of allowable iterations. Since Mode 2 is used to close the

kinematic chain, the nullPose method will not proceed to resolve the redundancy in the

upper body (Mode 1) until the two torso halves are brought together. In the unlikely

event that the two torso halves are unable to be brought together whether it be due to the

calculation limit being reached (N2 > Nt) or new hand poses being received, the upper

body poses are published alongside a warning to note the failure in closing the kinematic

chain.

4.2.1 Upper Limb Kinematic Model

To ensure that the estimated upper body pose results in a biomechanically feasible pose,

the Klopčar-Lenarčič model [174] was used. This model incorporates limits on the range

of motion (ROM) of each joint to match the movement of a human upper limb. To model

the whole upper body of a human, a left and right upper limb kinematic model was

used. The two upper limb models are visualized in Figure 4.6. The upper limb model

used consisted of nine DOF. Two DOF represent the inner shoulder which articulates the

shoulder girdle (SG). Three DOF represent the Glenohumeral (GH) joint which orientates

the humerus. Two DOF at the elbow control the elbow flexion/extension as well as the

forearm pronation/supination. The last two DOF at the hand represent the wrist deviation

and wrist flexion/extension. The maximum and minimum values of each joint used in the

upper limb model are listed in Table 4.1.

In the Klopčar-Lenarčič model, the motion of the SG is represented as two rotational

and one translational joint. The motion of the translational joint is prescribed by the two

rotational joints q1 and q2 to articulate the SG. This model also includes a series of coupled

equations which represent the joint limit of the shoulder. These equations represent a more

realistic limit to the shoulder rotational joints which ensures a biomechanically feasible

pose of the humerus relative to the torso. The range of motion of each joint is presented

in Table 4.2 along with the equations limiting the minimum and maximum value of the
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Figure 4.6: The nine DOF on each of the upper limb kinematic models.

Table 4.1: Joints limits of the upper limb model used by the nullPose method.

Joint Name Joint Number Min Parameter Max Parameter

SG elevation q1 φ1m = −14◦ φ1M = 30◦

SG retraction q2 φ2m = −26◦ φ2M = 30◦

GH abduction q3 φ3m = −10◦ φ3M = 170◦

GH flexion q4 φ4m = −60◦ φ4M = 170◦

GH rotation q5 φ5m = −90◦ φ5M = 60◦

Elbow flexion/extension q6 φ6m = −90◦ φ6M = 60◦

Forearm pronation/supination q7 φ7m = −90◦ φ7M = 90◦

Wrist deviation q8 φ8m = −25◦ φ8M = 10◦

Wrist flexion/extension q9 φ9m = −70◦ φ9M = 70◦

GH joints. Figure 4.7 shows a visualization of the movement the shoulder girdle using the

prescribed motion as the upper limbs are moved from a position where the elbow points

directly downward to an upward elbow position.

4.2.2 Task Composition

The taskStep function calculates a task step ∆x that represents a motion for a given

current pose GTC and desired pose GTD that satisfies the maximum position and angular

change, ∆pmax,∆θmax respectively. ∆x consists of a desired position ∆p and angular step

w in Cartesian space and is used by both modes to define how each upper limb should
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Table 4.2: Range of motion of each joint of the upper limb model

Joint Range

SG elevation q1 = [φ1m , φ1M ]
SG retraction q2 = [φ2m , φ2M ]
GH abduction q3 = [φ3m , φ3M ]
GH flexion q4 = [φ4m + 1

3q3 , φ4M − 1
6q3]

GH rotation q5 = [φ5m + 7
9q3 + 1

9q4 + 4
9π q3q4 , φ5M + 4

9q3 − 5
9q4 + 10

pπ q3q4]

Elbow flexion/extension q6 = [φ6m , φ6M ]
Forearm pronation/supination q7 = [φ7m , φ7M ]
Wrist deviation q8 = [φ8m , φ8M ]
Wrist flexion/extension q9 = [φ9m , φ9M ]

(a) (b)

Figure 4.7: Visualization of the shoulder girdle movement as the upper limb moves from
(A) a downward elbow position to (B) an upward elbow position.

be moved. GTC and GTD may range from poses that define the poses of parts of the

upper limb, such as the elbow or the shoulder, to poses of the torso halves. In Mode 1

this function is used to calculate the task steps that convert the targets, obtained through

sensor based information or approximations, to a desired upper body pose. The amount

and combination of targets to be used in this mode are determined by the implementer

based on the availability and accuracy of sensory measurements. In Mode 2 this function

is used to calculate the required transformation to align the two torso halves.
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Algorithm 1 taskStep Function

Function ∆x = taskStep(GTC ,
GTD,∆pmax,∆θmax)

∆p = pD − pC
if ‖∆p‖ > ∆pmax then

∆p = ∆pmax × ∆p
‖∆p‖

end if
∆R = R′C ×RD

Let θ = magnitude of the axis angle representation of ∆R

‖θ‖ = arccos

(
Tr(∆R)− 1

2

)
e =

1

2 sin θ

∆R3,2 −∆R2,3

∆R1,3 −∆R3,1

∆R2,1 −∆R1,2


w = e · θ
if ‖w‖ > ∆θmax then
w = ∆θmax × w

‖w‖
end if

∆x =

[
∆p
w

]

The position vectors of GTC and GTD are represented by pC and pD respectively. Rota-

tional aspect of the pose is denoted with R. Using this function the position step ∆p and

angular step w can be calculated within the distance ∆pmax threshold and the angular

threshold ∆θmax.

In the event that a certain task k does not constrain all of the dimensions, only the

constrained row is kept in the corresponding task Jacobian Jk. For example, setting the

torso of the co-worker to a certain height restricts only the z component of the torso

position, therefore only the component of Jk corresponding to the z axis is kept. For

example, the elbow task shown in Figure 4.4 shows a task of moving the elbow towards

an elbow target. This target only constrains the position of the elbow (i.e. ∆x = ∆p) so

only the rows of the Jacobian which corresponds to the position are used.

Certain tasks may be necessary in order to achieve a realistic pose of the upper body. For

example, although the biomechanical model of the upper limbs provides limits reflecting

the biomechanical model of the joint ROM it does not account for collision between the

upper limb and the torso. If a high priority task was to be implemented to move the torso

to a pose such that the colliding part is outside of the torso, a lower priority task from a

target regarding the torso position will be unlikely to contribute towards the final upper
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body pose estimate. Lowering the priority of the task to move the torso to avoid collision

with the upper limb will likely result in the upper limb to remain colliding with the torso.

Algorithm 2 Collision Avoidance for the Wrist

Function [∆xc,Jc] = collisionAvoidance()
if ((pw,x − pt,x)2 − (pw,y − pt,y)2) < t2r then

∆xc = t2r − ((pw,x − pt,x)2 − (pw,y − pt,y)2)
∆dir = 2× [pw,x − pt,x, pw,y − pt,y]
Jc = ∆dir × Jw,xy

end if

Algorithm 2 shows a task Xc and the corresponding Jacobian Jc that is implemented as

a high priority task in the event that the wrist of the upper limb is found to collide with

the torso. In this function the horizontal cross section of the torso is defined as a circle

with a radius tr centered on the torso position pt. In the event that the position of the

wrist pw in the xy plane is found to be within the torso boundary, a one dimensional

repulsion force is calculated for ∆xcol. A corresponding one dimensional Jacobian Jc is

calculated by incorporating the direction that the force is to be applied ∆dir alongside

the corresponding Jacobian that moves the wrist in the xy plane Jw,xy. Setting up the

task in this manner shifts the wrist outside of the torso whilst not specifying the exact

location of the wrist, allowing for a lower priority task to alter the pose of the upper limb

with minimal restrictions.

4.2.3 Task Prioritization

Different targets may result in conflicting tasks being considered in the redundancy resolu-

tion. The accuracy and reliability of the targets used to resolve the redundancy will affect

the estimated upper body pose. Tasks created from sensor based targets are generally

placed at a higher priority to tasks created from approximation based targets as measured

data should better reflect the current situation. Targets from approximations are used by

the nullPose method in order to provide partial upper body pose information in the event

that sensory measurements are unreliable or unavailable.

Multiple ∆x can be incorporated in order to resolve the redundancy in the upper body

pose in Mode 1. In the task priority array, X, ∆x of higher priority precede those of lower
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priority. For example, if ∆x1 is to specify the desired pose of the torso, solutions found

by a lower priority ∆xk will be restricted as the torso position should not change. For the

kth task vector ∆xk, an accompanying Jacobian Jk is required to calculate the new joint

angles of the upper limb models. Similarly, each task Jacobian is placed in the same order

to the corresponding task in the array J (Equation 4.3).

X = {∆x1,∆x2, . . . ,∆xk} (4.3)

J = {J1,J2, . . . ,Jk}

Currently the prioritization of the tasks is not dynamic and is determined manually. The

priority is determined based on what the implementer deems to be the reliable or accurate

source of information and is kept constant throughout the entire time the pose is to be

estimated. The task priority structure is useful as it allows for certain restrictions to be

placed to eliminate unlikely upper body poses. For example setting a task of keeping the

torso upright will remove the likelihood that the estimated pose results in the body being

parallel to the ground.

4.2.4 Joint Step Calculation

A variation of the velocity level saturation in the null space method [175] was implemented

to move the upper limbs to reflect the implemented tasks in X. A joint step ∆q is

iteratively calculated, accommodating tasks until all tasks within X are satisfied or all of

the joints in the upper limb model have reached the joint limits set by the biomechanical

model. By projecting through the null space, a joint step calculated using a lower priority

task ∆qk will not negatively affect the previously calculated joint step from a higher

priority task ∆qk−1.

In Algorithm 3 the symbol + denotes a Moore-Penrose pseudo-inversion of the matrix.

The limits to each joint are represented by the vectors, ∆Qmin,∆Qmax. For each task

∆xi for i = 1→ k, the current joint step ∆qk is calculated. The symbol P0 represents the

initial projection matrix and Pk−1 represents the subsequent projection matrices which
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Algorithm 3 jointStep Function

Function ∆q = jointStep(X,J,∆Qmin,∆Qmax, P0)
for k = 1 to m do
Wk = I,∆qN,k = 0, P̄k = Pk−1

while solution found == false do
P̃k = (I − (JkP̄k)

+Jk)((I −Wk)Pk−1)+

∆qk=∆qk−1+(JkP̄k)
+(∆xk−Jk∆qk−1)+P̃k∆qN,k

if any(∆qk < ∆Qmin‖∆qk > ∆Qmax) then
j = mostCriticalJoint(∆qk,∆Qmin,∆Qmax)
Wk(j, j) = 0

∆qN,k(j) =

{
∆Qmin,j ∆qk(j) < ∆Qmin,j

∆Qmax,j ∆qk(j) > ∆Qmax,j

P̄k = (I − ((I −Wk)P
+
k−1)Pk−1

if Wk == zero then
P̃k= (I − (JkP̄k)

+((I −Wk)Pk−1)+

∆qk=∆qk−1+(JkP̄k)
+(∆xk−Jk∆qk−1)+P̃k∆qN,k

solution found = true
end if

else
solution found = true

end if
end while
Pk = Pk−1 − (JkPk−1)+(JkPk−1)

end for
∆q = ∆qk
End Function

ensures that the solution found by incorporating the kth task does not interfere with the

outcome of any previous tasks.

Each time a new joint step for the kth task is calculated, a check is performed to ensure

that the current joint step ∆qk is within the set joint limits before proceeding to the next

task. If any of the joints are found to be outside of the limits, the mostCriticalJoint

function (Algorithm 4) is used to determine which joint exceeded the limit by the largest

margin. When joint j is found to exceed the set limits, the joint value is then set to the

limit and this joint is considered saturated.

A matrix W is used to represent an index of the joints of the upper limb which are within

set joint limits. Initially W is an identity matrix with a dimension m×m where m equals

the number of joints in the upper limb model. When a joint is saturated and is set to

the joint limit, the corresponding value of W is set to zero and ∆qk is recalculated with
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the saturated joint disabled. The calculation for ∆qk is repeated until all joints satisfy

the limit or until all joints become saturated. For each new task k, W is reset to an

identity matrix as the calculated ∆qk may result in previously saturated joints becoming

unsaturated whilst maintaining the same outcome of the previous task.

Algorithm 4 mostCriticalJoint Function

Function j = mostCriticalJoint(∆q,∆Qmin,∆Qmax)
a = ∆q −∆Qmax

b = ∆q −∆Qmin

a(a ≤ 0) = 0
b(b ≥ 0) = 0
c = a+ b
Let j be such that cj = max(|c|)

4.2.5 Mode 1 - Kinematic Chain Closed

The redundancy in the human upper body allows for different poses of the upper body to

be naturally adopted. To obtain a good estimate of the true upper body pose, additional

information are normally required to resolve the redundancy. In Mode 1, targets with

information regarding the human upper body pose are integrated into the upper body

pose estimate.

Targets that are able to be used by the nullPose method are dependent on the setup of

the robot and sensors. A camera placed behind the human co-worker could be used to

detect the position of the head [176] or a laser scanner could determine the position of the

co-worker’s legs or torso. These targets can be used to provide known position of parts of

the upper body, reducing the solution space for the upper body pose. The more reduced

the solution space, the more accurate the estimate of the upper body pose.

To avoid requiring sensor measurement of the complete upper body to resolve the upper

body pose, the nullPose method can make use of modeled approximations. One target

that is often difficult to obtain through sensors and can be approximated is the orientation

of the human co-worker’s torso. In certain pHRC applications, it may be appropriate to

assume that the co-worker is standing in a relatively upright position. This approximation

can be useful in determining the pose of the upper body when the measurements from the
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sensor is not useful or when the approximation is reasonable. Estimation models such as

the elbow position estimation in [8] could also be implemented as an approximation target

to aid in the redundancy resolution.

Integrating various targets in the redundancy resolution may result in the two torso halves

becoming separated. To ensure that the kinematic chain from the left hand to the right

hand is kept closed, a self motion projection P0 is used (Equation 4.4). The projection P0

ensures that motion of the left upper limb could be accommodated by motion of the right

and vice versa. The velocities of the left and right torso halves, G∆xLT and G∆xRT , need

to be equated in order to maintain the two torso halves being closed.

In Equation 4.4, GJLT and GJRT represent the Jacobian of the left and right torso halves

in the global frame with qL and qR being the current joint values for the left and right

upper limb model. Equating the velocities of the two torso halves allows the Jacobian J0

to be calculated. Using P0 in the jointStep function, calculated ∆q will ensure that the

two torso halves are kept together.

P0 = I − J+
0 J0 (4.4)

where:

G∆xLT =GJLT (qL) ·∆qL
G∆xRT =GJRT (qR) ·∆qR

GJLT ·∆qL =GJRT ·∆qR[
GJLT (qL)−GJRT (qR)

]
︸ ︷︷ ︸

J0

∆qL

∆qR

 = 0

Equation 4.5 shows the Jacobian Jk for a given task k. In order to accommodate velocity

of the upper body, ∆xk, the Jacobian of the left and right upper limb, Jk,L&Jk,R, are

placed along the diagonal to create the Jacobian for the upper body Jk.
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∆xk =

Jk,L 0

0 Jk,R


︸ ︷︷ ︸

Jk

∆qL

∆qR

 (4.5)

Algorithm 5 Inputs to the jointStep Function - Mode 1

for k = 1 to no. of Targets do
∆xk = taskStep(GTC ,

GTD, . . .)− [Algorithm 1]
end for
if upper limb is colliding with the torso then

[∆xc,Jc] = collisionAvoidance()− [Algorithm 2]
end if
J0 = [JLT ,−JRT ]
P0 = I − J+

0 J0

X = {∆xc,∆x1,∆x2, . . . ,∆xk}
J = {∆J c,J1,J2, . . . ,Jk}

4.2.6 Mode 2 - Kinematic Chain Open

Mode 2 is used in the event when the kinematic chain is open i.e. the torso halves are

separated. During initialization of the pose estimation, depending on the orientation and

position of the two hands, it is likely that the two torso halves are separated. When the

upper limb models are close to singularity, i.e. det(JLT )→ 0 or det(JRT )→ 0, calculated

joint steps may result in the two torso halves separating.

In this mode a single task is implemented for the left and right upper limbs, which is to align

the two torso halves and close the kinematic chain. The two upper body halves are treated

as separate kinematic chains with their own task and task Jacobian. The kinematic chains

are treated separately as the pose of the left and right limb may originate from different

hand poses thus it is unlikely that the left and right upper limbs will adopt a symmetrical

configuration. From the current joint values of the left and right upper limb models, qL

and qR, the poses of the two torso halves, LHTLT and RHTRT , are calculated. Using

LHTLT and RHTRT , the pose of the torso in the global frame GTLT and GTRT is able to

be calculated using Equation 4.6.
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GTLT = GTLH · LHTLT (4.6)

GTRT = GTRH · RHTRT

Where:

LHTLT =

(LTRLH)T −(LTRLH)T · LTpLH)

0 0 0 1



RHTRT =

(RTRRH)T −(RTRRH)T · RTpRH)

0 0 0 1



The taskStep function (Algorithm 1) is used to calculate the task step to iteratively

calculate the joint steps of the upper limb models to align the two torso halves. In this

mode, ∆xL is calculated to move the left torso half towards the right. A Jacobian that

moves the torso frame relative to the hand frame LHJLT , a vector of the minimum and

maximum joint step, ∆QL,min and ∆QL,max, and the task step ∆xL are used to calculate

the new joint step ∆ql. The projection P is set to an identity matrix I as the two torso

halves are not yet aligned. A similar calculation is performed for the right upper limb

until the two torso halves are sufficiently aligned within a set threshold, at which point

the kinematic chain is considered closed.

Algorithm 6 Mode 2 - Closing the Kinematic Chain

P0 = I
∆xL = taskStep(GTLT ,

GTRT , . . .)− [Algorithm 1]
∆xR = taskStep(GTRT ,

GTLT , . . .)− [Algorithm 1]
JL =LH JLT
JR =RH JRT

4.2.7 Task Composition and Prioritization Example

In this example, there are two sources of information available to be used by the nullPose

method to estimate the pose of the human. The first is the torso pose obtained through
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a Kinect RGB-D sensor and the second is the position of the left elbow through a model

approximation [8]. The torso and elbow information can be provided to the nullPose

method as 4 by 4 transformation matrices. Since the elbow information does not have a

rotational component, the rotational aspect of the matrix is kept as identity.

torsod =


cos(30o) −sin(30o) 0 0.1

sin(30o) cos(30o) 0 0

0 0 1 −0.2

0 0 0 1



elbowd,l =


1 0 0 −0.4

0 1 0 −0.3

0 0 1 0

0 0 0 1

 (4.7)

Equation 4.7 show the two poses, the torso pose and the left elbow pose, received by the

nullPose method as targets for the upper body model. Assuming that the current torso

pose and left elbow pose are shown by Equation 4.8, to reach the desired torso pose a

translation and rotation is required.

torsoc =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



elbowc,l =


1 0 0 −0.3

0 1 0 −0.4

0 0 1 0.2

0 0 0 1

 (4.8)

By inserting the current and the desired poses into Algorithm 1, ∆x can be obtained.

With ∆pmax set to 0.1 and ∆θmax set to 0.1, the calculations to obtain the task step for
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the torso, ∆xtorso, using Algorithm 1 are shown in Equation 4.9.

∆p =
[
0.1 0 −0.2

]′
Since ||∆p|| = 0.2236 > ∆pmax = 0.1

∆p = 0.1× ∆p

0.2236
=
[
0.0447 0 −0.0894

]′
Since θ =

π

6
> ∆θmax = 0.1

w = 0.1× ∆w
π
6

=
[
0 0 0.1π

6

]′
∆xtorso =

[
0.0447 0 −0.0894 0 0 0.1π

6

]′
(4.9)

Similarly to the calculations in Equation 4.9 the task step for the elbow, ∆xelbow, can be

found to be [−0.0408, 0.0408, −0.0817, 0, 0, 0]. Since there are no rotational constraint

for the elbow, the last three term of ∆xelbow can be removed which results in Equation 4.10.

The rows of the Jacobian for the elbow motion corresponding to the rotational component,

in this case the bottom three rows are also removed.

∆xtorso =
[
−0.0408 0.0408 −0.0817

]′
(4.10)

Equation 4.11 show the task array X and the Jacobian array J for the two task steps

calculated in this example. The torso task step was prioritized higher than the elbow task,

therefore the torso task step was placed before the elbow task step. In this manner, the

nullPose method will attempt to move the torso prior to moving the elbow.

X = {∆xtorso,∆xelbow} (4.11)

J = {Jtorso,Jelbow}

4.3 Experiment Setup

Three experiments were performed to validate and verify the nullPose method. Experi-

ments 1 and 2 were conducted in a motion capture lab to evaluate the nullPose by de-

termining the accuracy of the estimated upper body pose. An OptiTrack MoCap system
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was used to accurately track the upper body pose of the human co-worker during a pHRC

operation. The recorded upper body poses were used as the ground truth to validate

the estimated upper body poses from the nullPose method. The third experiment was

performed in an industrial abrasive blasting chamber to verify that the nullPose method

is able to be used in real pHRC applications. The abrasive blasting chamber represent

an environment where it is difficult to ascertain the pose of the human co-worker due to

factors such as suspended particulates in the air and protective equipment worn by the

worker.

Experiment 1 was performed to verify the capability of the nullPose method in estimating

the upper body pose of a human co-worker when the poses of the left and right hand are

known. In this experiment the poses of the hands as well as targets used to estimate the

upper body pose were obtained from the OptiTrack MoCap system. Experiments 2 and

3 were conducted to test the real application viability of the nullPose method with the

poses of the hand being provided from a pHRC robot with targets being provided from

additional sensors and approximations. In Experiments 2 and 3 the Assistance-as-Needed

roBOT (ANBOT), which was introduced in Chapter 3, was used as the robotic platform

for collaboration between the human and the robot. The interaction between the human

and the ANBOT occurs through two handles attached to the end effector of the robot.

During the collaboration the human co-worker is expected to firmly hold onto both handles

of the ANBOT, allowing for the poses of the co-worker’s hands to be inferred throughout

the experiments.

The pHRC operation being performed in all experiments is a collaborative abrasive blasting

operation. Abrasive blasting is a physically intensive task where grit is propelled through

highly pressurized air, often used in cleaning and maintenance operations. The abrasive

blasting environment represents a practical field application where visibility is often poor

due to abrasive media and fine dust suspended in the air. High speed rebound particulates

limit the placement of sensors such as cameras in the environment. Due to these factors,

no ground truth was able to be obtained in Experiment 3. Although no ground truth was

able to be obtained, this experiment was conducted as a proof of concept which shows the

capability of the nullPose method to be used in real environments.
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4.4 Experiment 1 - Verifying the nullPose Method in an

Ideal Environment

To verify the methodology behind nullPose method, several experiments were conducted

using a motion capture system. The experiments were performed by three subjects wear-

ing a motion capture suit for marker based tracking such that the position and orientation

of key body segments of the upper body can be recorded. The suit worn utilized reflec-

tive markers (Figure 4.8) processed with the MoCap system software. The motions were

recorded using twelve OptiTrack cameras. During each experiment handles were held by

the subject to provide the position and orientation of the subject’s hands. A set of re-

flective markers with a unique configuration were attached to each handle to distinguish

between the left and right hand of the human co-worker. For each time frame recorded

by the Optitrack MoCap system, the position and orientation of both hands of the human

from the tracked handles were used as an input to the nullPose method to estimate the

pose of the upper body.

(a) (b)

Figure 4.8: (A) The motion capture suit and handles used to track the human hands.
(B) The collaboration between the human and the robot being simulated in Motion 3.

In this experiment three sets of motion were performed by each individual, which are:

1. Motion 1: Subject moving to match set poses (Figure 4.9)

2. Motion 2: Subject moving freely for a period of one minute
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Figure 4.9: The poses being performed by the subjects in Motion 1.

3. Motion 3: Simulated pHRC abrasive blasting operation (Figure 4.8)

Motion 1 was used to test the capability of the nullPose method in estimating the pose of

the human co-worker as they perform various movements. During this motion, the handles

are firmly held by the human subject but the hands of the human are not constrained in

any manner. The experiment was conducted in this manner to highlight the potential of

the nullPose method to be used in various applications as long as the hand poses of the

human are known.

Motion 2 had each subject perform various motions of their own volition. The motions

performed for these experiments were used to show the capability of the nullPose method

to estimate the upper body pose in a wide variety of operations other than operations

involving robots.

Motion 3 represents a simulated pHRC abrasive blasting operation with a robot (Fig-

ure 4.8b). In this motion the position and orientation of the human hands are restricted

relative to each other due to the way the handles are configured (Figure 4.10). Each sub-

ject was asked to trace the outline of a box placed two meters in front of the subject using

a laser pointer attached to an end effector.
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Figure 4.10: The configuration of the two handles used in Motion 3.

4.4.1 Pose Estimation Scenarios

To test the capability of the nullPose method in estimating the upper body pose of the

human co-worker in different conditions, several scenarios were used based on the combi-

nation of targets to be used by the nullPose method. In this experiment, the targets were

generated from the recorded MoCap data. At each time interval the estimated position of

the elbow, shoulder and torso as well as the torso orientation were compared against the

recorded upper body pose.

Table 4.3 shows the different sets of targets that are being used in the different scenarios.

In this table, the number 1 represents the highest priority target to be completed whereas

the number 2 represents the second priority target. The columns of the table represents

the different targets able to be used by the nullPose method. T.Pos represents the torso

position, T.Ori represents the torso orientation and E.Pos represents the elbow position

which were obtained from the MoCap system. Approximations to the upper body are also

used as targets which were E.H2m, an approximation of the elbow position which is also

known as the hand to mouth approximation [8], and keeping the torso upright relative to

the ground plane to approximate the human co-worker standing upright (T.Lvl).

Table 4.3: Scenario list with targets used by the nullPose method for Experiment 1

Target -MoCap Target - Approximation

Scenario # T.Pos T.Ori E.Pos E.H2m T. Lvl

1 1 1 - - -

2 1 1 2 - -

3 1 1 - 2 -

4 1 - - - 2

5 1 - - - -
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In all of the different scenarios, motion capture data was used as the input to the nullPose.

This experiment was performed to verify that the nullPose method is capable of performing

as expected in an ideal scenario where the targets being received are highly accurate. Only

the subset of the motion capture data as specified for each scenario was used as the input.

The output of the nullPose method is the full upper body pose which is then compared to

the recorded pose of the human upper body.

4.4.2 Results and Discussion

The result of Experiment 1 is shown in Table 4.4. Each column in the table represent

the mean and standard deviation of euclidean distance error of the upper body pose

estimated using the nullPose against the recorded upper body pose. Elbow, shoulder

and torso position error were calculated in millimetres whereas the torso orientation error

was calculated in radians. The position errors Epos were calculated as the Euclidean

distance between two points whereas the orientation errors Eori were calculated as the

scalar component of an axis angle representation of the difference between the orientation

of the two poses (Equation 4.12). On average the model was able to solve for the pose of

the torso quite well, with a low mean error in the torso position.

Epos = ‖pest − prec‖ (4.12)

Eori = arccos

(
Tr(R′estRrec)− 1

2

)

Across all of the scenarios, the largest mean error in the torso position of 42.37 mm was

found in Subject 2 performing Motion 2 for Scenario 1 with the second largest torso

position error being 38.41 mm for Subject 1 performing Motion 1 for Scenario 5. In both

of these cases, there were no elbow targets being used by the nullPose method. Upon

examination of the recorded data, the poor results from the two cases can be attributed to

the joints of the upper limb kinematic models reaching the biomechanically feasible limits

during the closure of the kinematic chain. The addition of extra targets resulted in a much

more stable and accurate estimated upper body pose.
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Table 4.4: Results showing the mean and standard deviation of error in the upper body
pose estimates using different scenarios for each recorded data in Experiment 1.

Scenario # L. Elbow [mm] L. Shoulder [mm] Torso [mm] Torso [Rad] R. Elbow [mm] R. Shoulder [mm]

Subject: 1 Motion: 1

1 77.65 ± 47.00 52.99 ± 34.99 21.53 ± 35.75 0.0249 ± 0.0277 80.16 ± 48.96 45.92 ± 34.69
2 45.50 ± 25.03 43.65 ± 14.41 2.22 ± 10.69 0.0231 ± 0.0504 64.66 ± 35.30 39.63 ± 15.31
3 64.80 ± 26.44 44.53 ± 15.73 2.33 ± 11.14 0.0221 ± 0.0445 87.96 ± 32.71 42.82 ± 18.21
4 64.82 ± 29.65 56.65 ± 43.14 4.98 ± 15.74 0.1919 ± 0.3997 92.86 ± 35.22 58.87 ± 46.39
5 101.93 ± 75.67 82.04 ± 53.48 0.00 ± 0.08 0.8933 ± 0.4245 114.34 ± 69.65 102.11 ± 60.70

Subject: 1 Motion: 2

1 62.37 ± 40.01 49.73 ± 32.53 18.13 ± 37.75 0.0496 ± 0.1156 73.46 ± 48.98 39.73 ± 26.39
2 28.96 ± 14.37 34.92 ± 6.46 0.00 ± 0.00 0.0235 ± 0.0228 43.74 ± 12.23 31.14 ± 7.28
3 72.70 ± 26.24 41.76 ± 16.52 3.45 ± 16.07 0.0248 ± 0.0274 77.54 ± 30.03 38.02 ± 17.72
4 75.53 ± 47.80 50.37 ± 48.53 2.78 ± 22.02 0.1562 ± 0.3630 87.44 ± 54.10 42.02 ± 41.81
5 147.82 ± 69.04 164.11 ± 69.21 38.41 ± 100.41 1.1432 ± 0.4585 161.48 ± 89.41 147.62 ± 102.44

Subject: 1 Motion: 3

1 46.16 ± 15.77 43.27 ± 4.58 2.19 ± 4.87 0.0143 ± 0.0059 65.68 ± 24.47 36.54 ± 9.78
2 41.29 ± 10.10 38.35 ± 4.70 0.00 ± 0.00 0.0142 ± 0.0059 40.77 ± 9.47 35.55 ± 8.35
3 90.50 ± 20.11 56.32 ± 19.75 23.01 ± 25.21 0.0159 ± 0.0059 78.31 ± 25.67 53.86 ± 18.74
4 77.70 ± 11.23 43.12 ± 4.93 0.00 ± 0.00 0.0359 ± 0.0676 94.98 ± 25.93 37.79 ± 13.73
5 77.82 ± 19.82 107.54 ± 17.72 0.07 ± 0.51 0.7590 ± 0.2854 188.47 ± 36.02 70.98 ± 16.78

Subject: 2 Motion: 1

1 88.20 ± 62.53 77.51 ± 53.83 37.05 ± 56.02 0.0291 ± 0.0417 77.38 ± 44.09 67.32 ± 51.38
2 43.66 ± 27.75 47.18 ± 20.17 4.94 ± 17.51 0.0189 ± 0.0519 59.38 ± 32.37 43.95 ± 17.00
3 113.21 ± 81.32 56.26 ± 24.89 5.80 ± 20.42 0.0183 ± 0.0526 107.01 ± 60.56 51.29 ± 21.06
4 80.03 ± 43.15 51.65 ± 28.10 6.10 ± 20.27 0.0648 ± 0.1623 95.52 ± 35.99 50.96 ± 26.30
5 151.56 ± 85.82 125.14 ± 61.38 7.85 ± 23.80 0.9466 ± 0.4203 143.17 ± 59.35 104.55 ± 53.19

Subject: 2 Motion: 2

1 93.41 ± 69.02 65.79 ± 105.57 42.37 ± 112.37 0.0571 ± 0.1405 80.43 ± 58.23 63.98 ± 98.03
2 44.08 ± 48.73 61.70 ± 98.38 29.44 ± 109.06 0.0665 ± 0.2126 58.16 ± 52.50 58.02 ± 93.83
3 63.34 ± 48.37 64.42 ± 97.50 33.74 ± 111.87 0.0786 ± 0.2399 83.23 ± 52.14 65.62 ± 99.49
4 69.16 ± 45.04 48.23 ± 41.14 7.74 ± 45.59 0.1152 ± 0.2570 84.46 ± 35.80 50.66 ± 43.43
5 104.57 ± 65.32 93.65 ± 48.81 1.82 ± 13.33 1.0213 ± 0.4564 106.77 ± 71.56 72.97 ± 35.51

Subject: 2 Motion: 3

1 76.28 ± 21.14 42.01 ± 8.29 5.14 ± 10.58 0.0120 ± 0.0087 86.64 ± 28.65 33.46 ± 10.03
2 14.38 ± 10.69 36.51 ± 7.27 0.42 ± 1.60 0.0113 ± 0.0091 45.98 ± 24.72 31.97 ± 5.64
3 105.48 ± 22.18 44.60 ± 7.33 0.66 ± 2.60 0.0118 ± 0.0107 81.78 ± 19.70 30.65 ± 5.74
4 99.81 ± 25.57 44.13 ± 7.48 0.09 ± 2.90 0.0185 ± 0.0231 107.88 ± 29.11 29.99 ± 6.23
5 102.86 ± 26.42 98.77 ± 32.75 0.00 ± 0.09 0.7986 ± 0.4288 210.89 ± 20.39 63.06 ± 22.66

Subject: 3 Motion: 1

1 66.94 ± 31.03 48.55 ± 17.16 13.35 ± 19.37 0.0167 ± 0.0112 61.07 ± 28.02 45.66 ± 16.96
2 41.47 ± 33.92 40.58 ± 11.21 0.72 ± 3.45 0.0148 ± 0.0178 46.77 ± 29.78 38.60 ± 9.67
3 77.70 ± 41.51 38.58 ± 12.88 0.76 ± 3.69 0.0149 ± 0.0180 80.61 ± 40.55 38.93 ± 12.59
4 83.79 ± 32.46 40.55 ± 12.16 0.26 ± 1.06 0.0322 ± 0.0339 80.79 ± 28.81 41.82 ± 11.23
5 159.06 ± 67.70 155.60 ± 82.00 0.14 ± 0.63 1.2381 ± 0.4636 100.78 ± 36.49 202.73 ± 84.13

Subject: 3 Motion: 2

1 65.66 ± 46.92 38.15 ± 26.48 8.86 ± 30.20 0.0233 ± 0.0258 91.99 ± 57.80 36.16 ± 28.17
2 22.54 ± 18.12 30.88 ± 4.75 0.00 ± 0.00 0.0211 ± 0.0200 28.50 ± 13.97 30.79 ± 5.88
3 61.90 ± 44.48 40.23 ± 27.24 9.16 ± 31.16 0.0246 ± 0.0293 79.68 ± 59.30 38.07 ± 27.67
4 103.65 ± 45.60 35.29 ± 20.86 0.09 ± 0.89 0.0785 ± 0.1633 115.96 ± 70.61 33.78 ± 26.72
5 180.82 ± 68.41 152.03 ± 57.43 0.16 ± 2.49 1.3830 ± 0.4884 204.50 ± 86.88 203.80 ± 78.26

Subject: 3 Motion: 3

1 50.59 ± 10.22 35.64 ± 1.80 0.00 ± 0.00 0.0057 ± 0.0022 135.13 ± 4.90 23.79 ± 3.51
2 29.34 ± 1.80 31.42 ± 1.99 0.00 ± 0.00 0.0057 ± 0.0022 25.91 ± 0.73 27.90 ± 3.61
3 53.37 ± 10.70 34.36 ± 1.66 0.00 ± 0.00 0.0057 ± 0.0022 73.31 ± 4.18 25.08 ± 3.46
4 74.37 ± 11.39 36.59 ± 1.78 0.00 ± 0.00 0.0093 ± 0.0049 149.15 ± 5.06 23.69 ± 2.37
5 76.87 ± 9.32 92.33 ± 9.46 0.00 ± 0.00 0.3602 ± 0.0721 190.11 ± 10.92 43.61 ± 11.13

Overall, the nullPose method was able to estimate the pose of the torso reliably, with some

scenarios closely matching the recorded motion capture data such as Subject 3 performing

Motion 3. The low error in the torso poses were due to the torso position target being

placed as the highest priority in all of the scenarios that were tested. It is hypothesized that
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(a)

(b)

(c)

Figure 4.11: Graphed result of the mean error with standard deviations of the upper
body segments for Subject 1 in (A) Motion 1, (B) Motion 2 and (C) Motion 3.

Errors are shown in meters for position and radians for rotation.

in Motion 3 the accuracy in the torso estimate were on average higher because the motion

being performed in Motion 3 were more restrictive in comparison the other two motions.

In Motion 3 each subject was focused on performing the task of tracing the outline of a
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box using a laser pointer. The focus on the task as well as the prescribed hand poses likely

resulted in subjects having smaller upper limb motions which likely led to reduced changes

in the torso pose. The small change in the pose is beneficial for the nullPose method due

to the way that the pose is estimated. To be able to estimate an upper body pose in real

time, multiple calculations are performed until either an optimal result is found or until

the time limit between each pose estimation has been reached. Larger displacements in the

upper body pose targets may require more estimation iterations before they are reached

and may not be reached in time. This lead to sub-optimal estimates to be produced, which

may increase the error in the estimated upper body pose.

A summary of the effect the different scenarios had on the output of the pose estimation

is visualized in Figure 4.11. In this figure Elb represents the elbow, Shl represents the

shoulder and Trs represents the torso with the prefix L or R corresponding to the left

or right upper limb. Due to the elbow target from the recorded motion capture data

being used by the nullPose method in Scenario 2, this scenario resulted in a more accurate

estimation of the pose. The addition of the hand to mouth approximation in Scenario 3

resulted in a mixed result. For Subject 1 performing Motion 1 (Figure 4.11a) the addition

of the hand to mouth target in Scenario 3 resulted in a lower elbow position errors when

comparing against Scenario 1 where no elbow targets were used. Contrastingly for the

same subject performing Motion 3 the error from Scenario 3 was higher in comparison to

Scenario 1. From the results collected from the three subjects, the torso pose were overall

lower in Scenario 2 and 3 in comparison to Scenario 1. This is likely due to the elbow

constraint being placed may have reduced the likelihood of the joints in the upper limb

kinematic model reaching the biomechanical limits. Additional figures for Subjects 2 and

3 are included in Appendix C.

The mean and standard deviation error in the torso orientation were larger in Scenarios 4

and 5. This was expected as the only targets used in relation to torso orientation were

to keep the torso upright relative to the ground in Scenario 4. Scenario 5 made no use of

targets which constrained the torso orientation. Although an approximation to the torso

orientation was used in Scenario 4 the estimated torso pose in Scenario 4 were better in

comparison to the torso pose estimated in Scenario 5. When no torso orientation were used

in Scenario 5, the estimated upper body pose may result in the torso becoming parallel to
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the ground as long as the torso position constraint is met. Additionally this resulted in a

poorer estimate of the elbow and shoulder position.

As shown from the results obtained in Experiment 1, where the nullPose method was

provided with highly accurate upper body pose information, the level of accuracy obtained

by the nullPose method does not always match that of the OptiTrack motion capture

system. The main advantages of the nullPose method over motion capture systems or

skeleton tracking algorithms are the robustness of the method and the capability of it to

be used in real practical applications.

4.5 Experiment 2 - Determining the Accuracy of the null-

Pose Method in a Practical pHRC

Similarly to Experiment 1, Experiment 2 was performed in a motion capture lab. This

experiment was performed to determine the accuracy of the nullPose method in a practical

pHRC application. In this experiment, the MoCap system was only used to provide the

ground truth against which the estimated upper body pose was to be compared. In this

experiment, no recorded MoCap data was used in the pose estimation using the nullPose

method.

Five human subjects were asked to perform the simulated abrasive blasting operation

alongside the ANBOT. The subjects were all male and ranged in height from 165 cm to

185 cm. The operation being performed by each subject was to move the end effector of

the ANBOT to simulate abrasive blasting the three visible surfaces of a box placed 3 m

in front of the robot. A laser pointer was attached to the end effector of the ANBOT

to provide the human subjects with a relative measure of the nozzle orientation on the

surface being cleaned. Each subject was also restricted in the position of their body to

within a square with 40 cm width next to the robot standing with a relatively upright

posture. No other restriction or instructions were given to the subjects, allowing the task

to be completed in a manner that each subject naturally preferred.

To assist in the redundancy resolution, a Kinect v1 camera was used to provide some

upper body targets to the nullPose method. To ensure that the whole body of the subject
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was able to be seen, the Kinect camera was placed 2 m behind the subject. The whole

body needed to be captured to allow for skeleton tracking of the human subject to occur

using the OpenNI NITE library. At the start of every experiment, the human subject

was asked to face the camera and perform a calibration pose required for the skeleton

tracking procedure. Both the raw point cloud data from the Kinect as well as the output

of the skeleton tracking data of the human subject obtained by the Kinect v1 was used to

estimate the upper body pose of the human. All of the required data, such as the point

cloud data and the state of the robot, were recorded in the motion capture lab and were

played back in real-time for pose estimation with the nullPose method. The estimated

upper body pose was published at a rate of 30 Hz using a desktop computer with an intel

i7 7700K processor.

4.5.1 Pose Estimation Scenarios

To test the nullPose method, eight scenarios were used in Experiment 2 to represent

different combinations of targets used to resolve the redundancy in the upper body. Each

scenario assumes that only certain targets are available to be used by the nullPose method.

Although only eight scenarios were used, in reality a wide variety of different combinations

of targets could be implemented depending on the sensors available during the pHRC.

Table 4.5: The different combinations of targets used in Experiment 2.

Targets - Kinect Camera Targets - Approximation
Skeleton Tracking Point Cloud Model Heuristics

Scenario T.Pos T.Ori T.Pos T.Ori E.H2m T.Hgt T.Lvl

1 1 1 - - 2 - -

2 1 1 - - - - -

3 1 - - - 3 2

4 - - 1 1 2 - -

5 - - 1 1 - - -

6 - - 1 - 3 - 2

7 - - - - - 1 1

8 - - - - 2 1 1

Table 4.5 shows the different combinations of targets in the eight scenarios for Experi-

ment 2. In this table, the different targets are divided into two groups. The first is the

targets obtained using the Kinect camera. This group is further divided into the skele-

ton tracking based targets obtained using the OpenNI NITE library and the point cloud
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data. The second group is the approximations used which was divided into model based

approximations and heuristic based approximations.

The abbreviations T.Pos and T.Ori in Table 4.5 refer to the torso position and orientation

targets obtained using the Kinect skeleton tracking or point cloud data. E.H2m refers

to the approximated elbow position by maximizing the velocity of the hand towards the

mouth using the model presented in [8]. T.Hgt represent an approximation of maintaining

the torso height based on the measured standing height of the subjects. T.Lvl refers to

an approximation of the torso orientation such that the subject’s torso is kept upright

relative to the ground.

The position of the elbow is difficult to obtain reliably in a practical pHRC scenario.

Although skeleton tracking through the NITE library is capable of determining the position

of the elbow, it is often not reliable when the human is not facing the Kinect. In Fig. 4.12

it can be seen that the upper limb pose from the skeleton tracking was set to be the

default configuration when the upper limbs were obstructed from the view of the camera.

Increasing the number of sensors in the environment is an option but this option may not

be feasible in practical industry or field environments. Rather than increasing the number

of sensors, the model presented in [8] was used to provide an estimate of the elbow positions

(E.H2m in Scenarios 1,3,4,6 & 8).

Figure 4.12: A snapshot of the recorded point cloud of the human subject (left) and
the human pose obtained using skeleton tracking with the Kinect (right).
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In Scenarios 1 to 3 the task of moving the torso to match the torso pose from the Kinect

skeleton tracking was given the highest priority as it was the only sensor based target used

in these scenarios. The torso pose was obtained through the NITE library with a Kinect

camera. In Scenario 3 only the position obtained from the skeleton tracking was used.

The torso orientation target in Scenario 3 was replaced with an approximation of keeping

the torso upright.

In Scenarios 4 to 6, rather than using the torso pose from the Kinect skeleton tracking,

a torso pose was estimated from the point cloud data of the human subject. The point

cloud data was converted into a torso pose estimate by determining the centroid and the

principle components of the human subject’s point cloud. The axis of greatest variance

was assumed to be the torso Z axis representing the direction from torso centroid to the top

of the head. The second largest axis of variance was used as the torso X axis to represent

the direction from the torso centroid to the right shoulder. The final axis is obtained by

taking the cross product of the X and Z axes.

When no sensor measurements are available certain heuristics may be able to be used. In

Scenarios 7 and 8 it is assumed that the torso pose was not able to be obtained using the

Kinect skeleton tracking or the point cloud estimate. Therefore the heuristics of keeping

the torso at a certain height based on the human co-worker’s height and keeping the torso

upright were used as targets for the nullPose method. Keeping the torso at a certain

height poses a restriction to the torso position along the Z axis but pose no restrictions in

the X or Y positions and no orientation restrictions. Keeping the torso level or standing

upright pose restrictions on the X and Y orientation of the torso and no other restrictions.

These approximation based targets were used in the redundancy resolution to ensure that

estimated upper body pose is realistic when no sensor based targets are available i.e.

the estimated upper body pose does not result in the torso at an unreasonable height or

orientation such as the torso being parallel to the ground.

If the elbow or wrist was found to be colliding with the torso, a collision avoidance task

(Algorithm 2) was implemented. When implemented, these tasks are placed at the highest

priority, lowering the priority of the other tasks implemented in the scenario. Once the

upper limb was not colliding with the torso, these tasks were disabled.
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4.5.2 Results and Discussion

To determine the accuracy of the nullPose method, each estimated upper body pose using

the nullPose method throughout the experiment is compared to the upper body pose

captured by the motion capture system. In total 6400 estimated upper body poses from

all five subjects were collected and compared to the motion capture recording in each

scenario. Fig. 4.13 shows the distribution of the error between the upper body poses

captured in the motion capture lab and the upper body poses estimated by the nullPose

method in the eight scenarios. In Fig. 4.13 the horizontal axes of each plot represent the

scenarios (Table 4.5) used by the nullPose method. The vertical axes represent the errors

of the upper body poses.

Figure 4.13: Box and whiskers plots of the error in the upper body pose from all subjects
across the different scenarios in Experiment 2.

Table 4.6 shows the mean and standard deviation of the error in the upper body pose

in the different scenarios. Scenario 1 resulted in the lowest mean torso position error at

145.7 ± 37.6 mm. Overall Scenarios 1-3 which utilized the torso position and orienta-

tion from the Kinect skeleton tracking obtained the lowest mean error with the smallest

standard deviation in terms of torso position.

The mean and standard deviation of the torso orientation error was found to be the lowest

in Scenario 6 at 0.2086 ± 0.1049 radians. The next lowest torso orientation error was
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Table 4.6: Mean and standard deviation of the error of upper body poses for all subject
in Experiment 2.

Wrist Position Elbow Position
Scenario Left [mm] Right [mm] Left [mm] Right [mm]
1 68.8± 18.9 40.8± 19.9 68.7± 36.7 89.1± 29.4
2 68.9± 18.8 40.6± 19.8 64.2± 25.2 103.5± 34.1
3 68.8± 18.8 40.7± 19.7 71.8± 33.4 95.6± 40.3
4 68.8± 18.7 40.7± 19.7 106.1± 57.6 116.7± 58.0
5 68.9± 18.8 40.8± 19.7 108.4± 87.0 118.5± 71.1
6 69.0± 21.9 41.0± 22.8 100.0± 48.7 98.5± 40.9
7 71.6± 37.7 43.8± 37.4 120.4± 51.6 159.0± 92.6
8 71.7± 37.7 43.9± 37.4 106.1± 45.7 135.8± 71.8

Shoulder Position Torso Pose
Scenario Left [mm] Right [mm] Position [mm] Orientation [Rad]
1 158.5± 34.3 130.7± 33.8 140.8± 37.6 0.365± 0.122
2 163.6± 36.1 132.8± 34.2 142.7± 39.6 0.351± 0.120
3 172.1± 50.2 128.2± 45.1 144.0± 51.0 0.250± 0.183
4 171.5± 88.8 271.3± 92.6 176.1± 66.3 0.796± 0.307
5 203.6± 153.0 311.0± 126.7 213.0± 122.4 0.881± 0.369
6 181.1± 61.4 145.4± 66.7 144.6± 55.0 0.200± 0.105
7 259.9± 94.5 233.2± 102.8 241.4± 105.7 0.363± 0.331
8 237.6± 74.8 220.2± 103.9 222.2± 107.9 0.336± 0.214

found in Scenario 3 at 0.2498 ± 0.1831 radians. The torso position target used were the

Kinect skeleton tracking output and the point cloud approximation in Scenario 3 and 6

respectively. In both of these scenarios, upper body pose was resolved using an approxima-

tion based target which is to keep the torso in an upright orientation. This approximation

resulted in a marginally better result than Scenarios 1 and 2 where torso orientation target

was obtained using the Kinect skeleton tracking. When compared to Scenarios 4 and 5

where the torso orientation target is determined by the point cloud approximation, the

error using the upright torso orientation approximation in Scenario 6 is on average 0.59

radians lower. It was observed that the torso orientation from the Kinect skeleton track-

ing and the point cloud estimation often results in a noisy and fluctuating orientation of

the torso which may have resulted in the error when compared to the motion capture

readings. Therefore it may be argued that an approximation could replace poor sensor

readings, potentially resulting in a better estimate to the upper body pose.

The largest mean torso position was found in Scenario 7 in which no sensor based targets
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were used. Scenarios 7 and 8 represent a case where no sensor measurements are available

or the sensor measurements are poor, due to factors such as occlusion. The difference

between Scenario 7 and Scenario 8 is the inclusion of the elbow position approximation

(E.H2m in Table 4.5). The inclusion of the elbow approximation resulted in a lower upper

body pose error, likely due to the inclusion of the elbow approximation reducing the

solution space of the upper body pose which increased the accuracy of the overall upper

body pose.

When comparing the shoulder position error, it can be seen that the larger mean error

was observed in Scenarios 4, 5, 7 and 8. The high error in these scenarios is likely due to

a combination of a poor torso position and torso orientation target used by the nullPose

method. Scenario 6 utilized similar targets to Scenarios 4 and 5 but resulted in a better

shoulder position estimate due to a difference in the torso orientation target being used.

In Scenarios 7 and 8 the less restrictive torso position target resulted in a higher shoulder

position error.

The lowest elbow position error obtained was 68.9 ± 25.1 mm for the left elbow in Sce-

nario 2 and 93.8 ± 29.4 mm for the right elbow in Scenario 1. Scenario 1 utilized the elbow

position approximation whereas Scenario 2 had no elbow position target. When compar-

ing the elbow position error in Scenarios 1-3 to Scenarios 4-6, the elbow position error in

Scenarios 4-6 was found to be on average 36 mm higher. This change in error is higher

than comparing the effect of the elbow position approximation target on the resulting pose

of the elbow. This suggests that by obtaining a more accurate torso pose estimate will

result in a lower error even when no target is provided to the nullPose method regarding

the position of the elbow. Overall the errors from the estimated wrist position across all

scenarios were found to be low. The low error in the estimated wrist position is likely due

to the wrist frame being situated close to the hand frame.

Even with targets that should define the full upper body being provided to the nullPose

method, such as in Scenarios 1 and 4, the resulting upper body pose does not precisely

match the recorded motion capture system. This is likely caused by several factors. Firstly

the sensor measurements from the Kinect being used is less accurate when compared to

a motion capture system. Another factor that affected the estimated upper body pose
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of the nullPose method is the calibration that had to be performed to obtain a common

reference frame between the Kinect camera, the robot and the motion capture system

which likely introduced errors. The biomechanical upper limb models of the human used

by the nullPose method may also be kinematically different to the actual human co-worker

for which the upper body pose is to be estimated, which may also lead to errors in the

pose estimation.

It can be argued that a tracking algorithm such as the Kinect skeleton tracking using

the NITE library would perform similarly to the nullPose method if both methods were

provided with similar levels of information. A benefit of the nullPose method is the

potential of it being used in a real pHRC application with less dependence on the whole

human body within view of sensors. Unlike the skeleton tracking with NITE which adopts

a neutral pose of the upper limb when the upper limb is not able to be seen by the sensor,

the nullPose method can provide a better estimate of the upper body pose.

From the results obtained in Experiment 2 it can be seen that the nullPose method is able

to estimate the upper body pose of a human co-worker. Even when sensors are not able

to be used or provide poor upper body pose data, the nullPose method is able to provide

a realistic estimate of the full upper body pose. If a sensor is able to reliably track the

torso pose of the human to be used as a target for the nullPose method, a more accurate

pose of the rest of the upper body can be estimated, otherwise reasonable approximations

could be used as substitute targets.

4.6 Experiment 3 - Implementation of the nullPose Method

in a real pHRC application

In this experiment, a real abrasive blasting operation to clean a metallic plate was per-

formed by a human co-worker with the ANBOT. Due to the nature of the abrasive blasting

operation, this environment is often very dusty due to the suspended particulates in the

air. This experiment was performed to verify that the nullPose method is able to be used

in environments where sensing options are limited.
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For a human-robot collaboration set in a real industrial environment, which is often un-

structured, the number and types of sensors that can be used is limited. Experiment 3

was performed in such an environment, an enclosed abrasive blasting chamber. Due to the

space limitation in the blasting chamber, skeleton tracking with the Kinect and the NITE

library was not able to be implemented as the whole body of the human co-worker was not

able to be seen. An Intel RealSense r200 camera was mounted on a 2 m tall post attached

to the base of the ANBOT 1 m behind the human co-worker. The lower minimum range

of the r200 camera allowed the point cloud data of the human co-worker’s upper body to

be reliably recorded. An AR marker was also attached to the back of the protective suit

of the human co-worker as a means of obtaining an additional target for the torso pose.

4.6.1 Pose Estimation Scenarios

In Experiment 3, the AR marker attached to the human co-worker’s protective suit was

used to provide the torso pose target. Similarly to Scenarios 4-6 in Experiment 2, the point

cloud of the human co-worker was used to provide an alternative target of the human co-

worker’s torso.

Table 4.7: The two scenarios used in Experiment 3.

Targets - RealSense r200 Targets - Approximation
AR Marker Point Cloud Model

Scenario T.Pos T.Ori T.Pos T.Ori E.H2m

1 1 1 - - 2

2 - - 1 1 2

Two scenarios were implemented based on the torso targets from the two different sensing

options (Table 4.7). These two scenarios utilize the torso pose target, using the AR marker

or the point cloud estimate, in combination with the elbow position approximation in order

to resolve the redundancy in the upper body pose. Similarly to Experiment 2, in the event

that a section of the upper limb is found to collide with the torso, a task was included to

shift the colliding part out of the torso (Algorithm 2).



Chapter 4. nullPose: an Upper Body Pose Estimation Method 107

Figure 4.14: Box and whiskers plots of the torso position and orientation error com-
pared against the two targets, the AR marker (AR) in Scenario 1 and the point cloud

approximation (PCL) in Scenario 2.

4.6.2 Results and Discussion

The nullPose method was tested with two pose targets collected during the abrasive blast-

ing operation in the abrasive blasting environment. Torso pose targets from the AR marker

or from the point cloud, collected by a RealSense r200 camera, were used to estimate the

upper body pose of the human co-worker. In this environment the full upper body pose

of the human co-worker was not able to be measured and only the torso pose targets were

able to be used for comparison against the estimated upper body pose.

In Scenario 1 the torso pose target from the AR marker was used as the highest priority

task whereas in Scenario 2 the point cloud estimate of the torso pose from the r200 camera

was used as the highest priority target (Table 4.7). Fig. 4.14 shows the distribution of

the error in torso position and orientation in the two scenarios. The distributions of error

in torso poses were calculated by comparing the estimated torso pose from the nullPose

method against the target that is being used in the scenario, i.e. the torso pose from

the AR marker in Scenario 1 and the point cloud estimate of the torso pose (PCL) in

Scenario 2.

The estimated torso position using the point cloud estimate of the torso pose resulted in

an average difference of 74.6 ± 33.5 mm. The difference in torso position obtained using

the AR marker as the torso pose target was much larger (289.0 ± 35.3 mm). The larger

error in the estimated torso pose may be caused by the AR marker being attached to the
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protective suit of the human co-worker which may have resulted in a shift in the marker

relative to the torso of the co-worker.

Figure 4.15: A snapshot of estimated upper body pose with the two sets of torso targets
used in Experiment 3 viewed from different angles.

In this experiment, it was initially thought that the torso pose target from the AR marker

would be able to provide a more accurate torso pose when compared to the point cloud

estimate as the torso pose from the point cloud used a simple method of determining the

centroid of the human point cloud. Due to the harsh environment and low visibility in the

blasting chamber, the AR marker was not able to be detected reliably. Fig. 4.15 shows

visualization of the detected AR marker position. As shown in Fig. 4.15 the AR marker

was measured to be outside of the point cloud of the human co-worker with a considerable

margin. A mean distance to the point cloud was calculated and an offset was added to the

AR marker target to shift the AR marker position along the AR marker x-axis, towards

the centre of the co-worker’s torso. Even with the offset implemented, the error in the

estimated torso position was still larger than the error in the estimated torso position

using the point cloud estimate of the torso pose.

Another potential cause of the large torso position error in Scenario 1 is the torso position

and orientation task being given the same priority. As seen in Figure 4.14 the difference in

torso orientation was found to be on average 0.2137 ± 0.1506 radians. Since the position

and orientation targets are given the same priority, the torso position and orientation

errors have equal weightings. The pose of upper body being estimated is restricted due

to factors considered by the nullPose method such as the biomechanically set joint limits

and singularity. Certain poses may not be able to be reached without compromising these

factors. In this case, obtaining a more accurate torso position estimate may result in an
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increase in the torso orientation error. Achieving the low error in the torso orientation may

have resulted in the torso position being unable to be reached due to restrictions placed

by the biomechanical upper limb models. In the event that a certain aspect of the target,

such as the torso position, is known to be critical to the application, a higher priority

could be given to the torso position task and a lower priority given to the torso orientation

task. This will force the nullPose method to minimize the error in torso position before

minimizing the torso orientation error.

Figure 4.16: Box and whiskers plot of the torso position and orientation error using the
biomechanical limit vs no limit.

Figure 4.16 shows the distribution of the torso pose error when the biomechanical limits

of the upper limb were used against when the limits were removed in Scenario 1. Re-

moving the biomechanical limits resulted in a lower mean error to the torso pose, from

289.0 ± 35.3 mm to 70.1 ± 87.9 mm and from 0.2137 ± 0.1506 radians to 0.1733 ± 0.1681

radians. Although the difference in the torso pose was lower, the resultant pose is likely to

require the upper limb to adopt a pose that is not feasible for a human body to achieve.

The error from using the AR marker target highlights one of the benefits of the nullPose

method, which is humanly feasible poses of the upper body are estimated. Other methods

may result in the torso pose being equal to the torso pose obtained using the AR marker

but in doing so likely extends the length of the upper limb or results in the estimated

hand poses not being equal to the known hand poses. The biomechanical limits used in

the nullPose method along with the hands of the upper limb being placed on the handles

of the robot ensures that erroneous targets do not result in an unfeasible upper body pose.

Another advantage of the nullPose method is the capability of obtaining the full upper

body pose from limited sensor based targets as shown in Experiment 3.
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4.7 Conclusion

This chapter presented the nullPose method, an upper body pose estimation method in

applications where the hands of the human are known. The nullPose method was tested

in both a motion capture environment and in a real abrasive blasting physical Human-

Robot Collaboration (pHRC) operation. By comparing the estimated upper body pose to

recorded motion capture data obtained through a commercial motion capture system, the

error in torso position, torso orientation and both the left and right elbow position were

able to be quantified. Different scenarios were implemented based on the combination

of available targets used to resolve the redundancy in the upper body. The targets used

ranged from measured sensor measurements to heuristic based approximations such as

keeping the torso upright. The nullPose method was also tested in an abrasive blasting

chamber during a human-robot collaborative abrasive blasting operation. The method was

shown to be able to function robustly in an environment where vision is limited due to

suspended particulates in the air. This work has demonstrated that the nullPose method

is suitable for use in pHRC applications set in environments where it is difficult to directly

measure the full pose of the upper body.

Three experiments were performed to verify the capability of the nullPose method as well

as validate the potential of the nullPose to be used in pHRC. The first experiment showed

that under ideal conditions the nullPose method was able to perform reasonably well

when compared to a motion capture system. The second experiment shows the capability

of the nullPose method for use in a pHRC application to track the human upper body

pose without the need of a Motion Capture (MoCap) system. The third experiment

highlight the potential of the nullPose method to be used in a practical application. The

nullPose method was able to provide the pose of the full upper body where packages such

as the NITE skeleton tracking library fails due to occlusion as it incorporates both the

human upper limb biomechanical models as well as targets obtained from sensors and

approximations.

Utilizing the nullPose method, the upper body pose of the human co-worker is able to be

estimated, even where occlusions are prominent, allowing the collaboration between the

human and the robot to be improved. By being able to estimate the pose of the human
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co-worker during the collaboration between a human and a robot, the physical strength of

the human is able to be estimated which allows for the assistance provided to the human

to be altered. Adapting the assistance to suit the needs of the human could in turn provide

a more natural interaction between the human and the robot.





Chapter 5

Appraisal of Human Physical

Strength Using the nullPose

Method

In Chapter 4 the pose of the human upper body was able to be estimated during a col-

laboration between a human and a robot using the nullPose method. With the hand of

the human co-worker known, sensor measurements and approximations were integrated

into the estimated upper body pose. This chapter presents of one of the ways that the

nullPose method could be used in physical Human-Robot Collaboration (pHRC). In this

chapter the physical strength of a human co-worker is appraised in real-time by using the

estimated pose of the human upper body from the nullPose. If the physical strength of

the human co-worker is able to be obtained, the assistance being provided to the human

can be adapted without an explicit cue from the human co-worker, allowing for a more

intuitive form of assistance to be provided.

This chapter is divided as follows. Section 5.1 presents a conventional method in which

the physical strength of the human is able to be estimated and a method of estimating

the physical strength of the human co-worker in real time using the nullPose. Section 5.2

presents a method of converting the estimated upper body pose from the nullPose method

to the musculoskeletal model coordinates. Section 5.3 presents the optimization method

113
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used to obtain the maximum strength of the human upper limb for a given pose and force

direction. An experiment was then performed to compare the estimated strength of the

human co-worker using the nullPose method to a conventional method (Section 5.4) and

verify that the strength of the human co-worker is able to be performed in a practical

application (Section 5.5). A summary is then presented in Section 5.6.

5.1 Appraisal of Human Physical Strength

In this thesis, the human capability being appraised is physical strength. Physical Strength

of the human co-worker is defined as the maximum force that a human co-worker could

withstand for a given pose and force direction. Factors that are important for appraisal

of the human co-worker’s capability includes the current pose of the human body [23] and

the direction of the force to be opposed [173]. Whereas the direction of the force to be

opposed may be simple to determine, often being dictated by the type of operation being

performed, in a practical application, the pose of the human body is difficult to measure.

Using musculoskeletal models of the human body, physical capabilities are able to be

estimated. Software packages such as OpenSim [143] can be used to perform various

analyses to obtain information pertaining to the inner workings of the human body. For

example, the activation of each muscles in the human upper limbs could be estimated to

determine the effort being exerted by a human performing a certain motion.

In rehabilitative applications, the capability of a patient is appraised by a therapist as

the patient performs rehabilitation exercises. Another common method of appraising the

capability of a human employed systems such as Electromyography (EMG) to provide a

measure of human effort [160, 177] or by modeling of the human body. These methods

of appraising the capability are often conducted as a post-recording batch procedure. An

Inverse Kinematic (IK) analysis is performed in order to transform recorded human pose

into musculoskeletal model co-ordinates such that a variety of analyses could be performed

such as inverse dynamics. Due to complexity of musculoskeletal models representing the

human body, the IK is computationally expensive, limiting the viability of an IK analysis

to be performed for real-time applications.
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For practical applications, especially in pHRC, it would be beneficial to be able to ap-

praise the capability of the human in real-time. In [149], to reduce the computation

time of IK procedures, strategically placed Inertial Measurement Unit (IMU) markers are

placed on the human upper limb in order to obtain a real-time coordinate of an upper limb

musculoskeletal model so that additional studies can be performed within the OpenSim

framework. Another approach estimated the fatigue of a human co-worker through mea-

surements of muscle activities using a wireless EMG system in order to adapt the behavior

of the robot [178]. These methods are difficult or not feasible to implement in practical

applications due to the additional sensors to be worn by the human.

Strength Estimation

Musculoskeletal Model Joint Coordinates

Transformation of Upper Body
Pose to Musculoskeletal Model

RealTime Strength Appraisal
with the nullPose Method

Estimated Strength [N]

Hand 
Poses Targets

nullPose Method

Human Upper Body Pose

Real Time Processing

Batch Processing

Strength Estimation

Musculoskeletal Model Joint Coordinates

Opensim Inverse
Kinematics

Recorded Marker Positions

Motion Capture System

Conventional Batch Processing
Method

Estimated Strength [N]

Figure 5.1: The real-time strength appraisal method using the nullPose method (left)
and the conventional batch processed method (right).

Figure 5.1 shows a real-time strength appraisal method which utilizes the nullPose method,

shown on the left side of the figure. On the right side of Figure 5.1 is a conventional batch

processed method. The green blocks represent calculations that are able to be performed

in real-time whereas the red blocks represent processes which are commonly performed as

a batch process.
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The estimation performed by the batch processing is widely used and accepted as the

standard of musculoskeletal modelling. This method utilizes a musculoskeletal model

along with a motion capture system to perform further complex analyses such as inverse

dynamics. Due to difficulty in directly measuring human physical strength, methods such

as this one became widely used.

The pose of the upper body estimated by the nullPose method is then transformed to

the coordinates of the musculoskeletal model of the upper limb. The upper limb pose is

converted into joint coordinates such that the musculoskeletal model is moved to reflect

the estimated upper body pose. In this manner the computationally expensive IK analysis

can be skipped allowing for analyses using the musculoskeletal model of the human body

to be conducted in real time without the use of sensors such as IMU or EMG to be worn

by the human co-worker. Although the physical strength can be estimated in real-time it

may be less accurate when compared to the conventional batch processing method, due to

the pose of the human being estimated, but allows for the human strength to be accounted

for by the robot in real-time. Inaccuracy in estimating the physical strength of the human

co-worker may result in an unsuitable amount of assistance to be provided to the human

which would have to be taken into consideration when developing an AAN paradigm.

5.1.1 Musculoskeletal Model

The musculoskeletal model used to estimate the physical strength of the human co-worker

is the Upper Extremity Kinematic Model [10] shown in Figure 5.2. This upper limb

model consists of 15 Degrees of Freedom (DOF) with 50 Musculo-Tendon Units (MTU).

MTU refers to a system of muscle and tendon that function to move the skeleton through

contraction of the muscle. Each MTU in the musculoskeletal model is used to represent a

particular muscle group. This musculoskeletal model has been previously used to estimate

the maximum force able to be exerted at the hand of the model by estimating the activation

of each muscles in the model [21].

Although 15 DOF were able to be used to determine the pose of the musculoskeletal

model, only seven DOF (shown in Figure 5.2) were considered in the estimation of the

human strength. The additional DOF, corresponding to DOF of the hand and fingers,



Chapter 5. Appraisal of Human Physical Strength Using the nullPose Method 117

were kept constant at a neutral state as it was assumed that grip strength would not affect

the amount of force able to be opposed at the hand.

Since the strength of the whole upper body needs to be considered, a left musculoskeletal

model was created that mirrored the right upper limb model about the sagittal plane. For

the left musculoskeletal model to have a similar convention to the right counterpart in

terms of the range of motion (ROM), each DOF that rotates the limb inwards or outwards

relative to the body (rotations around the Y-axes of the model) was rotated by 180o.

The left and right musculoskeletal models were treated separately when determining the

strength of the upper limbs. Each musculoskeletal model was grounded at the thorax

frame (Figure 5.3) which was positioned to match the pose of the torso from the nullPose

method. An assumption is made such that the force exerted by the upper limbs is able to

be compensated by the human co-worker’s lower body and would not destabilize human

co-worker. This assumption is further discussed in Section 5.4.

5.2 Transforming the Upper Body Kinematic Model Pose

to Musculoskeletal Model Joint Coordinates

In order to estimate the physical strength of the human upper body, a left and right muscu-

loskeletal model of the upper limb was used to calculate the theoretical maximum strength

of the human co-worker given a pose of the upper limb. The upper limb biomechanical

model which was used by the nullPose method to estimate the pose of the human co-

worker is kinematically different to the musculoskeletal model. The main difference is the

way that the shoulder joint is defined, with the musculoskeletal model using generalized

coordinates that are related to anatomical motions.

The estimated upper body pose of the nullPose method needed to be transformed to

the musculoskeletal model coordinates. This transformation ensures that the pose of the

musculoskeletal model corresponds to the estimated upper body pose from the nullPose

method. To obtain the coordinate values of the musculoskeletal model, a rotational matrix

that represents the transformation of the upper limb relative to the shoulder of the biome-

chanical model was used. Certain elements of the rotational matrix, which can be found
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(a) (b)

(c) (d)

(e) (f) (g)

Figure 5.2: Musculoskeletal model of the right upper limb [10] showing the different
coordinates and their range of motion. (A) Elevation angle. (B) Shoulder Elevation. (C)
Shoulder Rotation. (D) Elbow Flexion. (E) Pronation/Supination. (F) Wrist Deviation.

(G) Wrist Flexion/Extension
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Figure 5.3: The musculoskeletal model of the right upper limb showing the thorax frame
which grounds the musculoskeletal model as well as the scapula frame and the humerus

frame.

in Appendix D, were then used to calculate the corresponding musculoskeletal model joint

coordinates in a similar manner to [149].

The order of the rotation with reference to the scapula frame to the humerus frame for the

musculoskeletal model of the right upper limb is shown in Equation 5.1. In this equation

scapRhum refers to the rotation matrix between the humerus frame to the scapula frame

(shown in Figure 5.3). The coordinates of the musculoskeletal model which rotates the

humerus relative to the shoulder are represented as shl elv, elv ang and shl rot as shown

in Figure 5.4. shl elv represents the shoulder elevation coordinate of the musculoskeletal

model, elv ang represents the elevation angle and shl rot represents the shoulder rotation.

scapRhum = Ry(elv ang)×Rx(shl elv)×Ry(−elv ang)×Ry(shl rot) (5.1)

Equations 5.2-5.4 shows corresponding values of the musculoskeletal model shoulder joint

coordinates relative to the rotation between the scapula frame to the humerus frame.

These equations are derived from the rotation matrix obtained in Equation 5.1, detailed

in Appendix D. [l] and [r] denotes the left and right musculoskeletal model as the rotations
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Figure 5.4: Order of rotation for the right upper limb musculoskeletal model.

between the two models are slightly different. In this notation R[i,j] refers to the element

of R in the ith row and the jth column.

shl elv = arccos scapRhum[3,3] (5.2)

elv ang =



arctan

scapRhum[1,3]
scapRhum[2,3]

...[l]

arctan
scapRhum[2,3]
scapRhum[1,3]

...[r]
(5.3)

shl rot =



arccos

AscapRhum[3,1]+BscapRhum[3,2]

A2+B2 ...[l]

arccos
AscapRhum[3,1]+BscapRhum[3,2]

A2+B2 ...[r]
(5.4)

A = sin(elv ang)sin(shl elv)

B = cos(elv ang)sin(shl elv)

Table 5.1 shows the seven musculoskeletal coordinates alongside the conversion for the rest

of the musculoskeletal model joint coordinates used.

Figure 5.5 shows the visualization of the conversion between the biomechanical model of

the upper body used by the nullPose method (visualized as the red, green and blue mesh)
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Biomechanical Conversion

Musculoskeletal Model Joint Coordinate
Right Upper

Limb
Left Upper Limb

Elevation Angle Equation 5.3 Equation 5.3

Shoulder Elevation Equation 5.2 Equation 5.2

Shoulder Rotation Equation 5.4 Equation 5.4

Elbow Flexion q6r + Π
2 q6l + Π

2

Elbow Pronation/Supination q7r q7l

Wrist Deviation −q8r −q8l

Wrist Flexion/Extension −q9r −q9l

Table 5.1: Table of the upper limb musculoskeletal model joint coordinates along with
the conversion from the biomechanical model of the upper limb used by the nullPose

method for both the right and left upper limbs of the human.

Figure 5.5: Visualization of the musculoskeletal model of the left and right upper limbs
within the biomechanical model used by the nullPose method.

to the musculoskeletal model of the right and left upper limb. The two different models are

positioned in such a way that the torso frame of the upper body model coincides directly

to the thorax frame of the two upper limb musculoskeletal model.
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5.3 Estimating the Physical Strength of the Human Co-

Worker

With the pose of the upper body obtained, the physical strength of the human operator is

able to be estimated. To estimate the physical strength of a human, the OpenSim API was

used alongside the Upper Extremity Kinematic model [10]. Depending on the pose of the

upper limb the amount of force that is able to be generated by a certain muscle in a given

direction varies. The method of calculating the physical strength through an optimization

procedure for a given upper body pose is detailed in [21, 103]. The strength estimation

process is summarized in this section for completeness, additional details regarding the

method can be found in [21, 103].

H(q)q̈ +C(q, q̇) + τg = τ + JTv fE (5.5)

Equation 5.5 represents a dynamic equation which equates the mass matrix H(q), cen-

trifugal and Coriolis effects C(q, q̇), and the joint torques due to gravity τg to τ , a vector

of generalized joint torques from muscle forces and the resultant torque of the external

force fe through the Jacobian Jv. The Jacobian matrix Jv relates the joint-space general-

ized coordinate velocities to the Cartesian linear velocity of a rigid body point where the

force generation capability of the musculoskeletal model is to be calculated.

τ =
[
−LTKAa

]
︸ ︷︷ ︸

τA

+
[
−LT fp

]
︸ ︷︷ ︸

τP

(5.6)

The MTU force produces torque about the musculoskeletal joints which can be decomposed

into active and passive components, τP and τA respectively. In Equation 5.6, L represents

a muscle Jacobian that relates the velocities of the muscles to the velocities of the joint

coordinates of the musculoskeletal model. The matrix KA represents the active muscle

force gain matrix which defines the amount of force that a muscle provides for a certain

activation a, fp denotes the passive force of the MTU.
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The optimization procedure is conducted for a given model state, where the musculoskele-

tal model coordinates, velocities and acceleration are defined. The inertial, velocity and

gravitational components of Equation 5.5 can be combined into a single torque vector

which will be denoted as τb, which results in Equation 5.7.

τb = τA + τP + rF0 (5.7)

In Equation 5.7 r refers to the moment arms of the external force about the generalized

coordinates of the model and can be calculated as r = JTv u where u represents the

direction of the force in Cartesian space.

F0 =
[
τbi−τPi

ri

]
+
[

[KALi]
T

ri

]
a (5.8)

To maximize the scalar value of F0, it is isolated by selecting a row in Equation 5.7 and

rearranging it to form Equation 5.8. To ensure integrity of the equation, the ith row

corresponding to the largest absolute value of ri is chosen.

A = [
r

ri
LTi −LT ]Ka (5.9)

b = τb − τP +
r

ri
(τPi − τbi) (5.10)

The objective function (Equation 5.8) does not take into account the intercoupling of joints

that satisfy Equation 5.7. In order to satisfy this the equality constraint is formulated in

the form of Ax = b where x = a and A and b are defined in Equation 5.9 and 5.10

respectively.
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5.4 Experiment 1: Comparison of Estimated Physical Strength

Using the nullPose Method to the Conventional Batch

Processed Method

The aim of Experiment 1 was to determine whether a real-time appraisal of the human

strength is able to perform similarly in comparison to the conventional batch processed

method in the estimation of the human co-worker’s physical strength. This experiment

was set in a motion capture lab such that the pose of the human subjects’ upper bodies are

able to be recorded using a motion capture system. In this manner the physical strength

of the human co-worker is able to be appraised with the conventional batch processed

method.

Five human subjects were asked to perform a simulated abrasive blasting operation with

the Assistance-as-Needed roBOT (ANBOT) in this experiment. Each subject wore a

motion capture suit fitted with reflective markers such that the upper body poses of the

human subjects were able to be recorded. No external force was applied to the human

subjects during the experiment so that a more natural upper body pose of the human

subjects are able to be recorded. Each subject’s feet were restricted to a 40 cm square

bounding box next to the ANBOT to promote movement of the upper limbs rather than

movement of the whole body. Attached to the end effector of the ANBOT are reflective

markers such that the motion of the end effector is able to be recorded. This allows the

recorded motion from the motion capture system to be synchronized to the recorded data

from the robot and the RGB-D camera.

As each subject performed the experiment the pose of the end effector and the point

cloud from the Kinect camera was recorded. The recorded motion capture data of each

subject was then batch processed through the IK analysis of the OpenSim desktop ap-

plication.Virtual markers were added to the upper limb musculoskeletal model to match

the placement of markers from the Motion Capture (MoCap) systems. This method of

pose analysis represents the most commonly used method of utilizing a musculoskeletal

model along with a MoCap system and forms the basis for more complex analyses such as

inverse dynamics. Markers of the hand were given a higher weighting to reduce the error
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in the orientation of the hand. From each IK analysis a set of joint coordinates for the

right and left upper limb musculoskeletal coordinates was outputted which was then used

to estimate the physical strength of each human subject (Equation 5.8).

In this experiment poses of the RGB-D images collected by a Kinect v1 camera were

also recorded alongside the joint states of the robot and the poses of the two handles

attached to the end effector. The Kinect v1 camera was placed 2 m behind the human

subject. The collected data from the robot, Kinect v1 camera and the OptiTrack MoCap

system allows for the physical strength of the human co-worker to be estimated using two

different methods. The recorded RGB-D data and the robot were used to estimate the

physical strength using the nullPose method whereas the MoCap data were used in the

batch processed method.

The physical strength of each human subject is to be estimated for a force to be opposed

at the left and right wrist of the musculoskeletal models. It is very difficult to measure

the maximum physical strength that a human is able to exert. Generation of strength

by a human muscle is a complex process and is often impractical to directly measure.

A method of estimating the strength of the human is to measure the activation of the

muscles using sensors such as surface electromyography (sEMG) but does not provide the

maximum strength of the human. Therefore musculoskeletal models are used to simulate

the human capabilities.

Parameters to the musculoskeletal model were kept consistent when comparing between

the real-time strength estimation with the nullPose method to the conventional batch

processed strength estimation. The blasting nozzle, as shown in Figure 5.6, dictates the

direction of the force that the human co-worker would be required to oppose in a real

abrasive blasting application. All of the recorded data were played back in real-time to be

processed in real time using the nullPose method. All of the computation required for the

real-time strength appraisal including the nullPose method was performed using a desktop

computer with an Intel i7-7700K processor.
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Figure 5.6: End effector of the ANBOT used in the experiments, showing the orientation
and position of the handles and the direction of the force to be opposed by the human

operator.

5.4.1 Pose Estimation Scenario

Experiment 1 was performed to determine the accuracy of the real-time appraisal to de-

termine whether it would be able to be used in practical pHRC applications. Only a

single combination of information was implemented to estimate the strength of the human

operator. The information used to estimate the pose of the human subject is shown in

Table 5.2.

Table 5.2: The combination of targets used by the nullPose method for Experiment 1
set in the motion capture environment.

Targets - Kinect Camera Targets - Approximation
Skeleton Tracking Model

Scenario T.Pos T.Ori E.H2m

1 1 1 2

The targets that were used in this experiment are the torso position (T.Pos) and orientation

(T.Ori) which is obtained from the Kinect v1 camera alongside the skeleton tracking

algorithm from the NITE library. To assist in the redundancy resolution an elbow position

approximation (E.H2m) was used. E.H2m is an approximation based on aligning the elbow

such that the velocity of the hand is highest towards the mouth of the human subject [8].

An additional target was implemented as the highest priority task, which was to shift any

parts of the upper limb colliding with the torso out of the torso region when applicable. In
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this experiment only a single combination was used as the main focus of the experiment

was to determine the physical strength of the human subjects rather than the accuracy of

the pose estimation using the nullPose method.

5.4.2 Results and Discussion

In Experiment 1 both methods were able to estimate the strength of the human subject

throughout the experiment. In both methods the musculoskeletal models were kept the

same. The musculoskeletal models of the left and right upper limbs were scaled to match

the body lengths of the human through the inbuilt scaling function of OpenSim. The main

difference between the performance of the two is the processing time of each method. With

the nullPose method, the strength of the human was able to be calculated consistently at

30 Hz in real-time, albeit a lower frame rate than the data from the MoCap system. The

advantage of the conventional batch processing method is that the true pose of the human

subjects is able to be obtained though the motion capture system. In the batch processed

method, the IK analysis was able to be performed at roughly 6 Hz but required the whole

recorded motion to be used as an input. The OptiTrack system was able to record the pose

of the human subjects at 120 Hz therefore the physical strength of the human subjects

was able to be calculated at the same frame rate when using the batch processed method.

The downfall of the batch processed method was that the physical strength of the human

is not able to be estimated in real-time, hence it cannot be incorporated into the control

paradigm of the robot.

A comparison was conducted on the estimated strength of the human operator using the

poses of the upper body being obtained from the conventional batch processed method

and the real-time strength appraisal when the nullPose method was used. Figure 5.7 shows

the estimated strength of a human subject using the poses from the two different methods.

As shown in Figure5.7 the real time strength appraisal method (nP) was able to obtain a

similar physical strength estimate to the conventional batch processed method (BP).

Although certain strength estimates were found to be similar between the nullPose method

and the conventional batch processing method, there are some differences among the five

subjects that performed the experiment. Table 5.3 shows the estimated physical strengths
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Figure 5.7: Estimated physical strength of the right (R) and left (L) upper limbs using
the nullPose method (nP) and the batch processed method (BP).

Table 5.3: Estimated physical strength with the mean error and standard deviation
using the nullPose method (nP) and the conventional batch processing method (BP)

Left Upper Limb Right Upper Limb
Mean Strength Difference Mean Strength Difference

Sub# BP [N] nP [N] Mean [N] St.Dev [N] Mean [%] BP [N] nP [N] Mean [N] St.Dev [N] Mean [%]

1 117.86 138.65 -21.29 27.75 -18.1 63.61 102.46 -36.68 25.84 -57.6

2 94.54 90.17 4.37 12.59 4.6 60.49 127.45 -67.05 42.54 -110.8

3 123.48 113.96 11.46 26.52 9.3 71.96 91.47 -19.50 13.11 -27.1

4 97.17 86.33 9.15 45.063 9.4 71.85 105.59 -33.73 39.15 -46.8

5 78.42 171.37 -98.18 34.91 -125.0 79.74 84.14 -4.40 7.22 -5.5

from the two methods as well as the mean error and standard deviation obtained for the

five subjects performing the same experiment. The error is calculated to be the difference

between the estimated strength from the two methods at the same time instance. Overall

the estimated strength of Subject 3 was found to have the lowest overall error for both the

left and right upper limbs. The lowest mean error was observed on the left upper limb of

Subject 2 at 4.4 N whereas the highest was found in Subject 5 at -98.2 N. The difference

in the estimated strength for Subject 5 can be seen in Fig. 5.8.

For the estimated strength of the left upper limb of Subject 5, it can be seen in Fig. 5.8 that

the estimated physical strength of the left upper limb differs greatly with instances where

the strength was not able to be estimated using the conventional batch processing method.

One of the reasons that the strength was unable to be estimated in the batch processing
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method was due to the motion capture system being unable to track the positions of the

human subject’s hands reliably. This was caused by several factors. The first was the

reflectiveness of the metallic end effector resulting in poor tracking of the operator’s hands

as the markers being tracked rely on their reflective property. The second factor was the

close proximity of the two hands, which meant that reflective markers used to obtain the

poses of the hands are close to each other, causing issues determining the true pose of the

hands.

Figure 5.8: Estimated strength of the right (R) and left (L) upper limbs using the
nullPose method (nP) and the batch processed method (BP) of a subject with a large

difference in estimated strength of left upper limb.

It was also found that the real-time appraisal of the human strength using the nullPose

often results in a more fluctuating strength estimate when compared to the conventional

batch processing method. The batch processing method used more accurate upper body

poses to perform the strength calculations. These poses were obtained by the motion

capture system at 120 Hz. Using the nullPose method, the pose of the upper body was

able to be processed such that the strength was able to be estimated in real-time at

30 Hz. Due to the restrictions of being real-time, the nullPose method may not be able

to perform the necessary calculations fast enough to reach the targeted upper body pose.

The accuracy of the upper body pose being estimated by the nullPose method was also

unable to match the capability of the motion capture system, potentially leading to a
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more fluctuating estimate of the upper body pose. This leads to a greater change in the

coordinate values of the musculoskeletal model from one time frame to the next. One

advantage of using the nullPose method is that the strength of the human operator can

be consistently estimated. This is likely due to the limits set by the biomechanical model.

This reduces the likelihood of an awkward upper body pose to be estimated especially

with the pose of the hands being defined from the pose of the handles of the robot.

5.5 Experiment 2: Estimating the Strength of a Human Co-

Worker in a Real pHRC Application

In this experiment, a real abrasive blasting operation to clean a metallic plate was per-

formed by a worker with the ANBOT in an industrial abrasive blasting chamber. Due

to the nature of the operation, abrasive blasting particulates are suspended in the air,

lowering the effectiveness of vision based sensing. This experiment was conducted in order

to highlight that the strength of the human co-worker is able to be estimated even in a

difficult environment where sensing options can be quite limited.

Due to the space limitation in the abrasive blasting chamber, skeleton tracking with the

Kinect v1 sensor was not able to be implemented as the whole body of the human operator

was not able to be seen from a camera placed behind the human operator. An Intel

RealSense r200 was used in the absence of the Kinect sensor, placed 1 m behind the

human operator. The RealSense camera was used to provide point cloud data of the

human operator’s upper body as it had a lower minimum range when compared to the

Kinect v1 camera. An AR marker was also attached to the back of the clothes of the

human worker to obtain a different source of information of the upper body.

This experiment was performed by an experienced abrasive blasting worker. Only a single

person performed the experiment as there was limited time available on site and the

experiment was only able to be performed by an actual worker due to the dangerousness

of the task. Figure 5.9 shows an example of the protective equipment to be worn by the

human worker during an abrasive blasting operation. Due to the loose fitting protective

clothes, the helmet and abrasive particulates in the air, equipment such as MoCap or
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EMG are unable to be used during the operation. Therefore, in this application, both the

physical strength and the pose of the human were not able to be directly measured. The

reaction load experienced by the human worker during an unassisted operation amounts to

forces of around 100 N [171] along the direction of the nozzle in the opposite direction to the

expelled particulates. Similarly to Experiment 1, the human operator did not experience

any reaction load from the task. No restrictions were placed on the human co-worker in

terms of how to perform the task such that a natural motion can be observed.

Figure 5.9: A human co-worker wearing a standard protective equipment for an abrasive
blasting operation with the ANBOT.

5.5.1 Pose Estimation Scenario

Similarly to Experiment 1, only a single combination of targets were used Experiment 2.

The targets used to estimate the pose of the human used are shown in Table 5.4.

Table 5.4: Scenario list with targets used by the nullPose method for Experiment 2:
Abrasive Blasting Chamber

Targets - RealSense r200 Targets - Approximation
Point Cloud Approximation

Scenario T.Pos T.Ori E.H2m

1 1 1 2

In this experiment, the targets used for the nullPose method were similar to the targets

used in Experiment 1. The only difference in the targets between the two experiments
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was the source of the targets (T.Pos & T.Ori) being obtained using a RealSense r200. In

the event that a section of the upper limb is found to collide with the torso, an additional

task was included to shift the colliding part out of the torso.

5.5.2 Results and Discussion

Figure 5.10: The abrasive blasting chamber where the experiment was performed for
Experiment 2.

In Experiment 2, the strength of the human operator was estimated in a real application

with the human performing an abrasive blasting task with the ANBOT. Figure 5.10 shows

the environment in which the collaboration between the human co-worker and the ANBOT

occurred. The strength of the human was estimated at 30 Hz throughout the experiment,

shown in Figure 5.11. In this experiment the pose of the human was estimated since there

was no ground truth for the pose of the human operator. This result shows that the human

strength was able to be estimated in a practical environment without a motion capture

system to provide the upper body pose of the human co-worker, as the nullPose method

was able to perform robustly, even in the poor condition of the blasting chamber.

Although the musculoskeletal model being used in this experiment is the same model used

in Experiment 1, the estimated strength of the experienced worker was several magnitudes
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Figure 5.11: Estimated strength of the left and right upper limbs in the abrasive blasting
operation (Experiment 2).

higher for the left upper limb compared to the results in Experiment 1. This is likely caused

by the experienced abrasive blasting worker adopting a pose such that their upper limb is

in a stronger pose. In this case the left upper limb of the human co-worker was found to

be consistently close to singular. With the left handle placed in front of the right handle

(Figure 5.6), the adopted pose of the left upper limb is likely to be close to singularity

(Figure 5.9). Adopting a singular configuration allows the operator to perform the task

with less effort but also causes the calculation of strength to become erroneous.

When the upper limb is straight and the direction of the force to be opposed is pointed to-

wards the torso along the upper limb, the moment-arm distance between the force and the

joints r (Equation 5.7) becomes small, leading to a large calculated physical strength. The

strength estimation method does not take into account other physiological limitations to

strength such as joint compression and stability. The estimated strength of the operator’s

right upper limb is lower than the left but the estimated strength is more consistent. Since

the estimated strength of the left upper limb is higher than the right, it may represent a

case where the left upper limb was used to provide support for the motion whereas the

right upper limb was used to manipulate the end effector.
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Due to the difficulty in measuring the actual maximum strength able to be exerted by

the human co-worker, AAN paradigms may instead utilise the change in strength rather

than the actual strength value itself. Certain regions in the workspace may result in the

maximum strength able to be exerted by the human co-worker to be significantly larger

than the forces required to do the task, therefore the amount of assistance to be provided

to the human could be reduced. If the estimated physical strength is lower or if the

physical strength could not be estimated then more assistance could be provided to the

human co-worker. Strategies could also be used to limit the estimated strength in singular

configurations, reducing the effect that singularity would have on the estimated physical

strength of the human co-worker.

During the experiment conducted with the human, different groups of muscles were ac-

tivated to achieve the strength output at the hand. Appendix E shows the distribution

of the muscle activations of the musculoskeletal model Experiment 2 from the human co-

worker. It was found that for the right hand the Deltoid muscles were observed to have a

larger contribution to the strength when compared to the muscle usage of the left upper

limb. This is likely due to the different pose being adopted by the left and right upper

limb based on the orientation of the handles of the ANBOT.

5.6 Conclusion

This chapter presents one of the ways in which the nullPose method could be used in a

pHRC application. By using the nullPose method a real-time appraisal of the human co-

worker’s capability was able to be performed. Using the nullPose method with an existing

method of strength estimation, the physical strength of a human performing a pHRC

operation was able to be estimated. In this manner the physical strength of the human

co-worker could potentially be used to augment the assistance provided to the human

co-worker.

Physical Strength of the human co-worker was estimated using two methods; the first

utilized the nullPose method such that the physical strength can be appraised in real

time. The second method was a conventional batch processed method. The conventional
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batch processing method utilized poses of the upper limb obtained through an OpenSim IK

procedure. The estimated strength obtained using both methods were compared where it

was found that the strength outputs were comparable. An advantage of using the nullPose

method was that the computationally expensive IK procedure could be avoided.

Using the nullPose method, the strength of the human was able to be robustly estimated in

two different environments. The first environment represented an environment where the

physical strength of the human is able to be estimated by the real-time strength appraisal

method as well as the conventional batch processed method. The second environment is a

harsh environment where the strength was not able to be estimated using the conventional

batch processed method as it is difficult to implement a MoCap system in the environment.

The two experiments performed demonstrated that the nullPose method was able to be

used as a substitute for computationally expensive IK procedures. The nullPose method

was used to estimate the upper body pose of a human co-worker in real pHRC applications

which was then used to obtain the musculoskeletal model joint coordinates. By allowing a

robotic platform to appraise the physical strength of a human co-worker in real-time, the

strength of the co-worker can be integrated into the control paradigm of the robot such

that the need of the human co-worker is able to be accounted for by the robot.





Chapter 6

Conclusion

This thesis investigated the challenges surrounding the estimation of the human co-worker’s

pose during physical Human-Robot Collaboration (pHRC) to facilitate the real-time ap-

praisal of the human co-worker’s physical strength. It is envisaged that by a robot being

able to appraise the physical strength of the human co-worker, a more intuitive form of

assistance is able to be provided to the human. Firstly the effect of the interaction between

the human and the robot on the adopted upper limb pose was investigated. The inter-

action between the human and the robot was then used to develop the nullPose method

to estimate the pose of the human co-worker during pHRC. The nullPose method was

then utilized to appraise the physical strength of a human co-worker in real-time during a

pHRC operation set in a challenging industrial environment.

In practical pHRC applications, the pose of the human co-worker is not easy to ascertain.

In the experiments performed with a collaborative robot platform, for a similar trajectory

of the hand, the human subjects were found to adopt a different pose of the upper limb.

During the interaction between the human and the robot, factors such as prescribed poses

of the handles and the forces exerted by the human affected the naturally adopted pose

of the human. The findings from the experiments conducted suggests that a generalized

model will likely result in a less accurate estimated pose, which motivated the development

of a pose estimation method that is suitable for pHRC.

137
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Although interaction between the human and the robot altered the natural pose of the

human upper body, there are information within the interaction that could be exploited

to solve the upper body pose of the human co-worker. Due to the specified interaction

points between the human and the robot in pHRC, the poses of the hands are able to

be inferred at all times during the collaboration. The nullPose method was developed

for applications where the hands of the human are known such as pHRC to estimate the

pose of the human upper body in real-time. The nullPose method utilizes a biomechanical

model of the human upper limbs to ensure the estimated upper body poses are humanly

feasible. Targets from sensor measurements or approximations were incorporated into the

upper body pose solution to provide a better estimate of the human co-worker’s upper

body pose.

The nullPose method was implemented to facilitate a real-time appraisal of the physi-

cal strength of a human co-worker. The upper body pose obtained through the nullPose

method was used to obtain the musculoskeletal model co-ordinates such that a muscu-

loskeletal model of the left and right upper limbs reflected the current pose of the human

co-worker. The two musculoskeletal models were then used to calculate the maximum

strength of the human co-worker in real-time. The strength of the human co-worker es-

timated in real-time was compared to the strength calculated in a conventional batch

processing method. Through the use of the nullPose method, the physical strength of the

human co-worker is able to be estimated by the robot which would allow for the assistance

to be provided to the human to be adapted. By appraising the physical strength of the

human co-worker, the interaction between the human and the robot could be improved.

Future development could see the appraised human co-worker’s strength to be used to

alter the behavior of the robot.



Chapter 6. Conclusion 139

6.1 Summary of Contributions

6.1.1 Effect of the Physical Interaction Between the Human and the

Robot on the Pose of the Human Co-Worker

To observe the effect of physical interaction between the human and the robot on the

pose of the human upper limb, experiments were performed such that the pose of the

human upper limbs were able to be recorded with a Motion Capture (MoCap) system.

The adopted poses of the upper limb were compared at specific points as the right hand of

each subject moved along the specified path. Individually, the adopted pose of the upper

limb of each subject, which was parameterized through the swivel angle, was observed to

be consistent. This trend was observed across the six experiments when comparing the

adopted upper limb poses within each experiment.

When comparing the adopted pose of different subjects, the variations in the upper limb

were larger. From the ten subjects being recorded, each subject appeared to adopt a

different pose to perform the same motion. The natural variation in each individual

seemed to have a large effect in the adopted pose of the upper limb. This suggests that

when estimating the pose of the human it is advantageous to individualize a model rather

than developing a generic model that is designed to fit the population.

Due to the interaction between the human and the robot happening through specified

interaction points such as handles attached onto the end effector of the robot, the adopted

pose of the upper limb was found to change. In a bimanual operation where both hands of

the human co-worker are used to maneuver the end effector of the robot, each individual

was observed to alter their adopted pose in a different manner. By requiring both hands

on the end effector of the robot, restrictions were likely placed on the poses that the right

upper limb could adopt.

Another experiment was performed to compare the effect of applying a forward pushing

force on the adopted pose of the upper limb to the natural motion where no forces were

applied by the human. Even though each subject was found to adopt a different upper limb

pose to perform the same trajectory, when asked to push forward, the calculated swivel
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angle was overall lower. A lower swivel angle corresponds to the elbow being brought

closer to the body. A calculation was performed to find the maximum opposable strength

to determine whether the elbow being brought closer to the body provided an advantage

in applying the pushing force. It was found that the two sets of poses resulted in a similar

maximum strength which suggests that bringing the elbow closer to the body may have

made exerting the force easier but did not affect the maximum strength.

Another set of experiments had each subject apply forces in the direction of motion.

Whereas applying forces in the forward direction was found to be straightforward, applying

forces horizontally and vertically in the torso plane was found to be quite difficult for some

subjects. In these experiments, certain subjects were found to alter their upper limb pose

significantly in order to apply the required force.

The experiments conducted with ten subjects suggests that each individual will adopt the

pose that is most comfortable to them. In a pHRC application where the current pose

of the human co-worker is essential to the performance of the operation and safety of the

human co-worker, sensors should be used to obtain a good measure or estimate of the

current human pose as it is likely that models that predict the human pose are based on

free unconstrained motion where no force is applied by the human.

6.1.2 nullPose: an Upper Body Pose Estimation Method for pHRC

The pose of the human upper body in a real pHRC application can be difficult to obtain

especially in a challenging environment where available sensors are limited. Determining

the pose of the human would allow for a wide variety of additional things to be incorporated

into the control of the robot system. The close proximity between the human and the robot

during the collaboration increases the difficulty in determining the pose of the human co-

worker.

To estimate the current upper body pose of the human co-worker in pHRC, the nullPose

method was developed. The nullPose method exploits the kinematic constraint that occurs

between the human and the robot during the interaction as the basis for the upper body

pose estimate. The poses of the human co-worker’s hands are able to be inferred through
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the interaction points between the human and the robot. Solutions of the upper body

that are estimated then must satisfy the condition that the hands are equal to the pose

obtained through the interaction points. A biomechanical model of the upper limb was

also implemented to ensure that all of the upper body estimates reflect humanly feasible

upper body poses.

Sensor measurements and approximations were used as targets which were converted to

tasks for the upper body kinematic model to achieve. These tasks are integrated into

the upper body pose through iterative calculation to resolve the redundancy in the upper

body. Using the null space, each task was prioritized such that a lower priority task that

conflicts with a higher priority task does not negatively affect the previously calculated

upper body estimate.

Experiments were performed to verify the accuracy of the nullPose method as well as

validate the potential use of the nullPose method in a practical pHRC application set in

difficult environments. The experiments were performed in both a lab environment where

the accuracy of the estimated upper body pose could be measured against a commercial

motion capture system as well as a dusty environment where abrasive blasting is performed.

The nullPose method provides a robust method of estimating the human co-worker’s up-

per body pose during pHRC, which is one of the prerequisites for robots being able to

appraise the capability of human co-workers and adapt the assistance based on the needs

of the human co-worker. Using this method the physical strength of the human could be

estimated allowing for assistance provided to the human to be adapted. An awkward or

dangerous pose could also be detected which will allow for the safety of the human to be

ensured whether by halting the collaboration or through collision avoidance.

6.1.3 Real-Time Appraisal of Human Strength Using the nullPose Method

Conventionally, estimating the capability of a human such as physical strength requires the

motion being performed by the human to be recorded using a motion capture system. The

recording is then processed through software packages such as the OpenSim software such

that various calculations could be performed to obtain information such as the exerted
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force during the motion. In a real pHRC application the use of motion capture systems

is not always feasible and post processing of recorded motion is likely to not contribute

towards the collaboration between the human and the robot.

The conventional method of estimating the strength of a human required the use of

recorded motions which was processed using a computationally expensive Inverse Kine-

matic (IK) analysis such that musculoskeletal model coordinates are able to be obtained.

Using the upper body pose estimated by the nullPose method, the IK analysis could be

avoided, allowing for the physical strength of the human to be appraised in real-time.

Experiments were conducted to determine the accuracy of the estimated strength using

the nullPose method in comparison to the conventional batch processed method. Experi-

ments performed to determine the accuracy of the estimated strength were performed in

a motion capture lab which allowed the upper body pose of the human co-worker to be

recorded. The recorded pose was then processed using the OpenSim software to obtain the

musculoskeletal model coordinates such that the physical strength of the human co-worker

is able to be obtained. The comparison of the strength output using the nullPose method

and the conventional batch processed method found that the strength profiles were compa-

rable. The real-time appraisal of the human strength using the nullPose method was also

tested in a practical environment, an abrasive blasting chamber where a motion capture

system was not able to be used.

6.2 Discussion and Limitations

There are several assumptions and limitations that were implemented during the devel-

opment of the nullPose method and in the case study where the human strength was

estimated. Various models were used to estimate the pose of the human body such that

the physical strength of the human was able to be appraised in real-time in both ideal and

practical environments. This section discusses the limitations surrounding the nullPose

method and the real-time appraisal of human strength.
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6.2.1 Inferring the Hand Poses in the nullPose Method

The assumption of inferring the hand poses through the pose of the interaction points in

the nullPose method is a limitation to the nullPose method. This assumption holds true

in cases where the interaction points are designed ergonomically with contours matching

the hand such that the hand of the human co-worker always adopts the same pose. If the

interaction point between the human and the robot is in the form of a cylindrical handle,

the hand of the human co-worker may be able to rotate around the handle. Obtaining

the correct pose of the hand is important as all of the upper body pose estimated by the

nullPose method utilizes the hand poses as the basis. Incorrect hand poses may lead to

certain joints of the upper limb reaching the biomechanical limits resulting in some upper

body poses to be unreachable. One method of resolving the assumption of the hand poses

being equal to the handle pose is discussed in the future work Section 6.3.1.

Another limitation in the nullPose method with regards to the hand poses is that the left

and right hand of the human co-worker is assumed to be able to be differentiated or that

interaction points are left or right hand specific. The manner in which certain end effectors

are designed may result in the left and right hand of the human co-worker being able to

adopt different left and right hand poses based on what is deemed most comfortable to

the human co-worker. In the experiments conducted in this thesis the left and right hand

of the operator is always defined such as shown in Figure 6.1.

Figure 6.1: Defined right and left hand poses on the end effector of the ANBOT.
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6.2.2 The Combination of Targets Used by the nullPose Method

To resolve the redundancy in the upper body pose estimate, the nullPose method utilized

various tasks based on the available targets. Based on the biomechanical model of the

human body, it is unlikely that all tasks are able to be completely achieved. A priority

was placed on each task to be used in the redundancy resolution such that calculations of

the upper body solution will attempt to accomplish a task with a higher priority before

a lower priority task is to be considered. Estimates of the upper body calculated with a

lower priority task is performed in the null space of the solution found using the higher

priority task. In the different combinations of targets tested in the various experiments

the torso pose target is always considered to be the highest priority task. The reason for

the torso pose target being placed as the highest priority target is due to the torso pose

target being a target that is likely to have the greatest change with respect to the pose of

the hand. The torso pose target also places the greatest constraint to the solution space of

the upper body pose (6 DOF when the torso position and orientation is used as a target).

Placing different priorities to the targets may allow the nullPose method to perform more

efficiently or accurately and further testing is required.

During all of the experiments it is assumed that all sensor measurements is available at

all times. In a real pHRC application it may not be possible to always rely on specific

sets of sensor measurements to be available at all times. The advantage of the nullPose

method is that this method does not require specific a target to be available in order to

produce an upper body estimate. Currently the tasks to be used and the priority of the

tasks are defined at the start of the algorithm. Ideally, the number or priority of tasks to

be accommodated by the nullPose method should be adapted based on the integrity of the

available sensor measurement. A method of dynamically adapting the task used by the

nullPose method is discussed in Section 6.3.2. Additional sensors could be implemented

on the handles such that the handedness of the human could be determined such as in

[179].
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6.2.3 Upper Limb Models Approximating the Human Body

In Chapter 3 it is discussed that when estimating the pose of the human body it is advan-

tageous to individualize models of the human body rather than attempting to generalize

the model to fit the general population. In Chapters 4 and 5, a musculoskeletal model of

the upper limb and a biomechanical model of the upper limbs used were generic models

that were developed to fit a subset of the population.

The kinematic model of the upper limb used by the nullPose method was based on the work

done in [174]. This model provided a realistic motion of the shoulder girdle and dynamic

limits to each joint based on experimental data. Although each individual’s joints may

not exactly match up with the limits provided by this model, the estimate provided using

the nullPose method utilized both the kinematic model of the upper limb as well as sensor

measurements which will take into account some aspects of the individualized nature of

the human co-worker. If it is deemed necessary to alter the limits of the biomechanical

model joints; these limits can be relaxed or set as a soft limit. An additional task can then

be implemented to bring the values of each joint to within the limits.

Similarly a musculoskeletal model of the upper limbs [10] was used to provide a method

of estimating the capability of the human co-worker. The musculoskeletal model and the

50 Musculo-Tendon Units (MTU) defined within are able to be used to estimate physical

strength. Factors such as the maximum isometric force of each MTU could potentially

be adapted such that the estimated strength of the human co-worker provides a better

estimate to fit a specific human co-worker.

6.2.4 Human Capability in pHRC

In the case study presented in this thesis, the capability of the human co-worker being

addressed is the physical strength. In reality a multitude of factors could determine the

outcome of a collaboration between the human and the robot. Physical Strength was

chosen as it reflects a value of the human capability that has been previously quantified.
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Other factors such as the experience of the human co-worker in the operation being per-

formed, comfort level working with a robot, confidence or physical and mental fatigue are

likely to have an effect on the performance of the human and robot collaboration team.

Several limitations also exist in the estimated physical strength of the human co-worker.

The physical strength is defined in this thesis as the maximum force that is able to be

generated or opposed at the limbs of the human co-worker. It is unlikely that the human

co-worker is able to exert the maximum strength at all times; neither is it likely that

an operation would require the human to do so. Instead the relative strength at varying

poses should be used as a measure of the human capability at a given time and whether

more assistance should be given to the human. Another assumption used in the method

used to estimate the physical strength of the human is that muscular strength is the only

limiting factor. Other factors such as joint stability or muscular fatigue were not taken

into account.

The estimated physical strength also assumes that the torso is grounded and that the

strength generated by the upper limbs is able to be supported by the lower limbs. This

simplification was done such that the physical strength appraisal of the human co-worker

could be performed in real-time. For a more accurate estimation of the human physical

strength, existing musculoskeletal models of the full human body could be implemented.

In this way, the lower body of the human could be taken into account when estimating

the strength of the human co-worker. To do so, improvements to the nullPose would be

required to provide poses of the lower limbs as well as the upper body, which is discussed

in Section 6.3.4.

6.2.5 Benefit of Assistance-as-Needed Paradigm in pHRC

All of the work conducted in this thesis was performed with the motivation of adapting

the assistance provided to the human such that a better interaction can be achieved.

Whereas an Assistance-as-Needed (AAN) paradigm is able to benefit a patient performing

a rehabilitation exercise and slowly regain their capability, the question of whether an AAN

paradigm should be implemented in a real pHRC application has not been addressed. The

assistance to be provided to the human may hinder the learning capability of humans in
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performing a new operation. One theory states that the difficulty of the operation should

be matched to the skill level of the human performing the operation [78]. In a pHRC

application, if the assistance being provided is below the need of the novice user, it would

likely cause the outcome of the operation to be poor. If too much assistance is being

provided to the novice user, it might reduce the rate in which the novice user is able to

learn the necessary skills for the operation [79, 82]. Additional investigations are required

to explore the benefit of an AAN in practical industrial applications.

6.3 Future Work

6.3.1 Accommodating the Rotation of the Human Co-Worker’s Hands

Around a Cylindrical Handle

The nullPose method presented in Chapter 4 utilized a biomechanical model of the human

upper limbs which was used to provide humanly feasible poses. An assumption was made

which is to equate the pose of the human co-worker’s hands to the pose of the handles

attached to the end effector of the robot. With the current setup, the nullPose method is

able to estimate the upper body pose of the human in real-time but the assumption made

can be quite limiting. If the interaction point of the human and the robot allowed for the

orientation of the hand relative to the handle to be different such as a cylindrical handle

(Figure 6.2) the assumption is likely to cause the estimated pose of the upper body to be

inaccurate. Joint limits set by the biomechanical limit are likely to restrict the ability of

the upper limb to reach certain targets. One method to counteract this is by relaxing the

joint limits of the wrist. Another way to solve this issue is through an additional joint to

be implemented at the hand of the human operator to allow for the orientation of the hand

to rotate around the axis of the handle. A method of estimating the hand orientation such

as [179] could then be implemented to provide an estimate of the hand orientation to be

used by the nullPose method as a means of obtaining the pose of the human co-worker’s

hands.
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Figure 6.2: The actual hand orientation in comparison to the cylindrical handle orien-
tation.

6.3.2 Dynamic Task Allocation Based on Available Sensor Measure-

ments for the nullPose Method

Robustness and performance of the nullPose method may be able to be improved by imple-

menting a method of dynamic task allocation. Tasks developed from sensor measurement

targets may have different output rate or certain targets may become unavailable due to

occlusion of the human or difficult environment. Resolving the redundancy of the upper

body can be performed with what is deemed to be the best set of currently available tasks.

The priority of each task may need to be set by the nullPose method itself rather than set

by the user. Certain factors may result in some targets becoming less accurate and thus

a lower priority should be given to tasks based on these targets. The type of targets may

also affect the priority of the tasks. Certain type of targets, such as the full pose of the

torso, is likely to be of higher importance than other types of targets, such as the position

of the elbow.

6.3.3 Determining the Minimum Combination of Tasks for the nullPose

Method

Similarly to the dynamic task allocation, setting the tasks to the minimum number required

will improve the performance of the nullPose method. Currently the upper body pose is
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calculated iteratively through each task being incorporated into the solution. Whereas too

few targets are likely to cause the accuracy of the estimate to be poor, too many targets

may result in a lower output rate. If a dynamic task allocation is to be implemented which

organizes the task array based on the priority of tasks, the computation can be costly

if more targets are to be incorporated into the upper body solution. Different targets

may also result in the same outcome being achieved. Appendix B shows a preliminary

work in which the different combination of targets were used to constrain the pose of the

upper body. An algorithm could be developed to select the minimum number of task to

be implemented such that the accuracy of the estimated upper body pose is within an

acceptable range.

6.3.4 Extending the nullPose Method for a Full Body Pose Estimation

In the case study for real-time strength appraisal, it is assumed that the lower body of

the human is able to support the physical strength being exerted by the upper limbs. In

reality if a force being exerted by the upper limb is too great, it is likely going to destabilize

the human. If the lower body of the human is to be incorporated in the estimation of the

human physical strength, the pose of the lower body may need to be estimated as well.

Similarly to the way the torso is divided into two parts at the start of the pose estimation

procedure, it is hypothesized that the hip or pelvis could be divided into two with a lower

limb attached to each section. The pose of the legs of the human co-worker may be able

to be obtained through the addition of a sensor such as a laser scan placed close to the

ground. An assumption may also be used such that the poses of the feet matches that

of the shoulders of the human in the event that no targets are able to be obtained with

respect to the pose of the lower limbs.

6.3.5 Implementing Assistance-as-Needed in pHRC

In an AAN paradigm, the amount of assistance to be provided by the robot is adapted

based on the capability of the human. The capability of the human being considered in

this thesis is the maximum strength of the human co-worker at the left and right hand.

In reality operations are not likely to require the maximum strength of the human. An
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operation may be completed by either hand when measuring only the maximum strength

of the human co-worker. Therefore a future work is required to determine the contribution

of each upper limb towards the operation as the operational load may not be shared evenly

between the two upper limbs. Overuse of one of the limbs may result in a higher risk of

injury which could be stopped if the contribution of each limb is able to be determined as

the collaboration occurs.

AAN paradigms have seen use in rehabilitative applications. The benefit of an AAN

paradigm in a real pHRC application needs to be examined. Experiments would need to

be conducted to determine the amount of exertion experienced by the human co-worker

during physically demanding operations with both adaptive assistance being provided as

well as full assistance being provided to the human. Although the AAN paradigm will

require more effort from the human co-worker, it is likely to have benefit in other aspects

of the operation such as engagement.
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Figure A.1: Comparison of the mean and standard deviation of the swivel angles of
subject 1 in (A) Experiment 2, (B) Experiment 3, (C) Experiment 4, (D) Experiment 5

and (E) Experiment 6 to Experiment 1.



Appendix A. Additional Results From Experiments in Chapter 3 153

Pt.1 Pt.2 Pt.3 Pt.4 Pt.1
End Effector Position

0

10

20

30

40

50

60

70

80

90

M
ea

su
re

d 
Sw

iv
el

 A
ng

le
 [o ]

Comparing Pose for Subject:2 Exp 2: 2 Hands No Force

Exp 1: 1 Hand No Force  Exp 2: 2 Hands No Force

(a)

Pt.1 Pt.2 Pt.3 Pt.4 Pt.1
End Effector Position

0

10

20

30

40

50

60

70

80

90

M
ea

su
re

d 
Sw

iv
el

 A
ng

le
 [o ]

Comparing Pose for Subject:2 Exp 3: 1 Hand 20N Force +X

Exp 1: 1 Hand No Force  Exp 3: 1 Hand 20N Force +X

(b)

Pt.1 Pt.2 Pt.3 Pt.4 Pt.1
End Effector Position

0

10

20

30

40

50

60

70

80

90

M
ea

su
re

d 
Sw

iv
el

 A
ng

le
 [o ]

Comparing Pose for Subject:2 Exp 4: 1 Hand 40N Force +X

Exp 1: 1 Hand No Force  Exp 4: 1 Hand 40N Force +X

(c)

Pt.1 Pt.2 Pt.3 Pt.4 Pt.1
End Effector Position

0

10

20

30

40

50

60

70

80

90
M

ea
su

re
d 

Sw
iv

el
 A

ng
le

 [o ]

Comparing Pose for Subject:2 Exp 5: 1 Hand 20N Force YZ Plane

Exp 1: 1 Hand No Force  Exp 5: 1 Hand 20N Force YZ Plane

(d)

Pt.1 Pt.2 Pt.3 Pt.4 Pt.1
End Effector Position

0

10

20

30

40

50

60

70

80

90

M
ea

su
re

d 
Sw

iv
el

 A
ng

le
 [o ]

Comparing Pose for Subject:2 Exp 6: 1 Hand 40N Force YZ Plane

Exp 1: 1 Hand No Force  Exp 6: 1 Hand 40N Force YZ Plane

(e)

Figure A.2: Comparison of the mean and standard deviation of the swivel angles of
subject 2 in (A) Experiment 2, (B) Experiment 3, (C) Experiment 4, (D) Experiment 5

and (E) Experiment 6 to Experiment 1.
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Figure A.3: Comparison of the mean and standard deviation of the swivel angles of
subject 3 in (A) Experiment 2, (B) Experiment 3, (C) Experiment 4, (D) Experiment 5

and (E) Experiment 6 to Experiment 1.
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Figure A.4: Comparison of the mean and standard deviation of the swivel angles of
subject 4 in (A) Experiment 2, (B) Experiment 3, (C) Experiment 4, (D) Experiment 5

and (E) Experiment 6 to Experiment 1.
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Figure A.5: Comparison of the mean and standard deviation of the swivel angles of
subject 5 in (A) Experiment 2, (B) Experiment 3, (C) Experiment 4, (D) Experiment 5

and (E) Experiment 6 to Experiment 1.
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Figure A.6: Comparison of the mean and standard deviation of the swivel angles of
subject 6 in (A) Experiment 2, (B) Experiment 3, (C) Experiment 4, (D) Experiment 5

and (E) Experiment 6 to Experiment 1.
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Figure A.7: Comparison of the mean and standard deviation of the swivel angles of
subject 7 in (A) Experiment 2, (B) Experiment 3, (C) Experiment 4, (D) Experiment 5

and (E) Experiment 6 to Experiment 1.
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Figure A.8: Comparison of the mean and standard deviation of the swivel angles of
subject 8 in (A) Experiment 2, (B) Experiment 3, (C) Experiment 4, (D) Experiment 5

and (E) Experiment 6 to Experiment 1.
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Figure A.9: Comparison of the mean and standard deviation of the swivel angles of
subject 9 in (A) Experiment 2, (B) Experiment 3, (C) Experiment 4, (D) Experiment 5

and (E) Experiment 6 to Experiment 1.
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Figure A.10: Comparison of the mean and standard deviation of the swivel angles of
subject 10 in (A) Experiment 2, (B) Experiment 3, (C) Experiment 4, (D) Experiment 5

and (E) Experiment 6 to Experiment 1.



Appendix B

nullPose method: Combinations of

Targets

Each task being used in the redundancy resolution acts as a constraint for the upper

body pose. For example an available elbow position target should constrain the pose of

the upper body such that the output of the nullPose matches the obtained target of the

elbow. As more and more targets are incorporated into the solution, the more constrained

the upper body pose becomes. The minimum number of targets that can be used to fully

constrain the upper body pose ranges based on the type of targets being used. Ideally a

fully constrained solution means that the output of the nullPose method reflects the true

pose of the human. Errors in the sensory measurements means that even with a fully

constrained solution, the estimated upper body pose may not be the same as the true

pose.

Figure B.1 shows a chart of the different combination that could be used to constrain

the pose of the human upper body. In this figure, the Hilbert-Schmidt norm is used to

calculate the redundancy in the upper body pose. The lower the norm means the more

constrained the upper body, with a zero Hilbert-Schmidt norm corresponding to a fully

constrained solution. The Hilbert-Schmidt norm NHS (Equation B.1 was calculated using

the projection into the null space matrix P (Equation 4.4).
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Figure B.1: The Hilbert-Schmidt Norm of the null space based on the different combi-
nation of tasks that can be implemented.

NHS =
√
Tr(P ∗ P ) where Tr(A) =

n∑
i=1

aii (B.1)

There are a wide variety of targets that could be used to assist the redundancy resolution

of the upper body pose. Table B.1 represent but a subset of targets that could be used

to assist in the resolution. Depending on the sensors that are available during the collab-

oration with the robot, the upper body pose were found to be fully constrained with a

minimum of seven targets.
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Target # Information Name

1 Maintaining a closed kinematic chain

2 Left torso half position

3 Right torso half position

4 Left torso half cross section from sensor such as a laser scan

5 Right torso half cross section from sensor such as a laser scan

6 Left torso position based on the height of the human co-worker

7 Right torso position based on the height of the human co-worker

8 Maintaining an upright left torso half orientation

9 Maintaining an upright right torso half orientation

10 Left elbow position

11 Right elbow position

12 Left shoulder position

13 Right shoulder position

14 Prescribing left inner shoulder motion

15 Prescribing right inner shoulder motion

Table B.1: A list of potential targets being used to resolve the redundancy of the upper
body pose.

Target #

Combination # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1

2 1 0 0 0 0 0 0 1 0 1 1 1 0 1 1

3 1 0 1 0 0 0 0 0 1 1 1 0 0 1 1

4 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1

Table B.2: The combination of seven sets of information being used to obtain a fully
constrained upper body pose where a 1 symbolize a target being used and a 0 symbolizes
an information that is not used. Target # corresponds to the information shown in

Table B.1
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(a)

(b)

(c)

Figure C.1: Graphed result of the mean error with standard deviations of the upper
body segments for Subject 2 in (A) Motion 1, (B) Motion 2 and (C) Motion 3.

Errors are shown in meters for position and radians for rotation.
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(a)

(b)

(c)

Figure C.2: Graphed result of the mean error with standard deviations of the upper
body segments for Subject 3 in (A) Motion 1, (B) Motion 2 and (C) Motion 3.

Errors are shown in meters for position and radians for rotation.



Appendix D

Shoulder Rotational Matrix

Conversion

D.1 Rotational matrix between the scapula frame to the

humerus frame of the right upper limb musculoskeletal

model

R =


C ∗ cos(shl rot) +A ∗ sin(shl rot) sin(elv ang)sin(shl elv) C ∗ sin(shl rot)−A ∗ cos(shl rot)

cos(elv ang)sin(shl elv)sin(shl rot)

−cos(shl rot)sin(elv ang)sin(shl elv)
cos(shl elv)

−sin(elv ang)sin(shl elv)sin(shl rot)

−cos(elv ang)cos(shl rot)sin(shl elv)

−B ∗ sin(shl rot)−A ∗ cos(shl rot) cos(elv ang)sin(shl elv) B ∗ cos(shl rot)−A ∗ sin(shl rot)

 (D.1)

where

A = cos(elv ang)sin(elv ang)− cos(elv ang)cos(shl elv)sin(elv ang)

B = cos(shl elv)cos(elv ang)2 + sin(elv ang)2

C = cos(elv ang)2 + cos(shl elv)sin(elv ang)2
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D.2 Rotational matrix between the scapula frame to the

humerus frame of the left upper limb musculoskeletal

model

R =


C ∗ cos(shl rot) +A ∗ sin(shl rot) −sin(elv ang)sin(shl elv) −C ∗ sin(shl rot) +A ∗ cos(shl rot)

−cos(elv ang)sin(shl elv)sin(shl rot)

+cos(shl rot)sin(elv ang)sin(shl elv)
cos(shl elv)

−sin(elv ang)sin(shl elv)sin(shl rot)

−cos(elv ang)cos(shl rot)sin(shl elv)

B ∗ sin(shl rot) +A ∗ cos(shl rot) cos(elv ang)sin(shl elv) B ∗ cos(shl rot)−A ∗ sin(shl rot)

 (D.2)

where

A = cos(elv ang)sin(elv ang)− cos(elv ang)cos(shl elv)sin(elv ang)

B = cos(shl elv)cos(elv ang)2 + sin(elv ang)2

C = cos(elv ang)2 + cos(shl elv)sin(elv ang)2
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Figure E.1: Estimated muscle activation of the right and left musculoskeletal model in
Experiment 2.



172 Appendix E. Distribution of Muscle Activation of the Musculoskeletal Models

Table E.1: List of muscles in the musculoskeletal model and their abbreviations [10]
pt.1.

Abbreviation Muscle

Shoulder
Deltoid
Anterior DELT1
Middle DELT2
Posterior DELT3

Supraspinatus SUPRA
Infraspinatus INFRA
Subscapularis SUBSCAP
Teres minor TMIN
Teres Major TMAJ
Pectoralis major
Clavicular PMAJ1
Sternal PMAJ2
Ribs PMAJ3

Latissimus dorsi
Thoracic LAT1
Lumbar LAT2
Iliac LAT3

Coracobrachialis CORB
Elbow

Triceps
Long TRIlong
Lateral TRIlat
Medial TRIlmed

Anconeus ANC
Supinator SUP
Biceps
Long BIClong
Short BICshort

Brachialis BRA
Brachioradialis BRD

Major wrist or forearm
Extensor carpi radialis longus ECRL
Extensor carpi radialis brevis ECRB
Extensor carpi ulnaris ECU
Flexor carpi radialis FCR
Flexor carpi ulnaris FCU
Palmaris longus PL
Pronator teres PT
Pronator quadratus PQ
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Table E.2: List of muscles in the musculoskeletal model and their abbreviations [10]
pt.2.

Abbreviation Muscle

Wrist/hand muscles
Flexor digitorum superficialis
Digit 5 FDSL
Digit 4 FDSR
Digit 3 FDSM
Digit 2 FDSI

Flexor digitorum profundus
Digit 5 FDPL
Digit 4 FDPR
Digit 3 FDPM
Digit 2 FDPI

Extensor digitorum communis
Digit 5 EDCL
Digit 4 EDCR
Digit 3 EDCM
Digit 2 EDCI

Extensor digiti minimi EDM
Extensor indicis propius EIP
Extensor pollicis longus EPL
Extensor pollicis brevis EPB
Flexor pollicis longus FPL
Abductor pollicis longus APL
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son. Evaluation of perceived and self-reported manual forces exerted in occupational

materials handling. Applied Ergonomics, 27(4):231–239, 1996. ISSN 00036870. doi:

10.1016/0003-6870(96)00006-3.

[157] Stephen Bao and Barbara Silverstein. Estimation of hand force in ergonomic

job evaluations. Ergonomics, 48(3):288–301, 2005. ISSN 00140139. doi:

10.1080/0014013042000327724.

[158] Rupesh Kumar and Shrawan Kumar. Musculoskeletal risk factors in cleaning

occupation-A literature review. International Journal of Industrial Ergonomics, 38

(2):158–170, 2008. ISSN 01698141. doi: 10.1016/j.ergon.2006.04.004.

[159] S.C. Gandevia. Spinal and Supraspinal Factors in Human Mus-

cle Fatigue. Physiological Reviews, 81(4):1725–1789, 2001. doi:

https://doi.org/10.1152/physrev.2001.81.4.1725.

[160] Florian Monjo and Nicolas Forestier. Muscle fatigue effects can be anticipated to

reproduce a movement kinematics learned without fatigue. Neuroscience, 339:100–

108, 2016. ISSN 18737544. doi: 10.1016/j.neuroscience.2016.09.042.

[161] M. Gorelick, J. M.M. Brown, and H. Groeller. Short-duration fatigue alters neuro-

muscular coordination of trunk musculature: Implications for injury. Applied Er-

gonomics, 34(4):317–325, 2003. ISSN 00036870. doi: 10.1016/S0003-6870(03)00039-

5.

http://dx.doi.org/10.1152/jn.00537.2010
http://dx.doi.org/10.1016/j.jbiomech.2012.01.010
http://dx.doi.org/10.1016/j.jbiomech.2012.01.010
http://dx.doi.org/10.1016/0003-6870(96)00006-3
http://dx.doi.org/10.1016/0003-6870(96)00006-3
http://dx.doi.org/10.1080/0014013042000327724
http://dx.doi.org/10.1080/0014013042000327724
http://dx.doi.org/10.1016/j.ergon.2006.04.004
http://dx.doi.org/https://doi.org/10.1152/physrev.2001.81.4.1725
http://dx.doi.org/https://doi.org/10.1152/physrev.2001.81.4.1725
http://dx.doi.org/10.1016/j.neuroscience.2016.09.042
http://dx.doi.org/10.1016/S0003-6870(03)00039-5
http://dx.doi.org/10.1016/S0003-6870(03)00039-5


Bibliography 195

[162] Jeffrey C. Cowley, Jonathan B. Dingwell, and Deanna H. Gates. Effects of local and

widespread muscle fatigue on movement timing. Experimental Brain Research, 232

(12):3939–3948, 2014. ISSN 14321106. doi: 10.1007/s00221-014-4020-z.

[163] M. A. Huysmans, M. J.M. Hoozemans, A. J. van der Beek, M. P. de Looze, and J. H.
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