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Abstract

Complex Three-Dimensional (3D) truss structures such as power transmission towers re-

quire regular inspection and maintenance during their service life. Developing a robot to

climb and explore such complex structures is challenging. Changing lighting conditions

can render vision sensors unreliable; therefore, the robot should be endowed with a com-

plementary sensory modality such as touch for accurate perception of the environment,

including recognising a structural beam member and its properties of cross-sectional shape,

size and the grasping Angle-of-Approach (AoA).

The research presented in this thesis addresses three questions related to grasping and

touch based perception of beam members in truss structures. (1) Methods for designing

adaptive grippers for grasping a wide variety of structural beam member cross-sectional

shapes and sizes; (2) Sensing for data collection and methods for classifying beam mem-

ber properties; and (3) Efficient methods for selecting the next best grasping action to

confidently recognise a beam member.

A stiffness constrained topology optimisation design method is developed and applied in

designing a soft gripper for grasping a variety of cross-sectional shapes of beam members.

The gripper design is verified through both simulation and experiments. It is found that

the gripper is proficient in grasping different shapes and sizes of beam members, with

adequate contact points.
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A comparative study of commonly used machine learning classifiers is conducted to analyse

the effectiveness of recognising a structural beam member and its properties. Using data

collected during grasping with a soft gripper, the cross-sectional shape, size and grasping

AoA of a beam member are classified. Evaluation of the various classifiers revealed that a

Random Forest (RF) classifier with 100 trees achieved high classification accuracies, with

short training and classification times.

An information-based method for selecting the next best grasping AoA to confidently

recognise a beam member is developed. This method is verified through simulation using

grasping data collected with a soft gripper. The results show that this method can correctly

recognise a structural beam member and its properties, typically with fewer than four

grasping actions. This method can be generally used with many different gripper designs

and sensor arrangements.



Acknowledgements

First and foremost, I would like to thank my supervisor Professor Dikai Liu for his support

during the past four years. Thank you for giving me direction throughout this journey,

and for giving me the opportunity to pursue a research degree before the TEPCO project

was secured. I appreciate the independence I have had during the course of this research

and I have thoroughly enjoyed having the freedom to chase after the research topics which

have interested me most.

Thank you to those from the CAS TEPCO project team over the years who facilitated

interesting meetings with creative inputs, particularly at the inception of the project. This

creativity encouraged me to pursue my growing passion and interest in soft robotics as a

research topic.

I am grateful to have had the time to enjoy so many hours playing futsal with a great group

of core people from UTS in the RMSH. A special mention must go out to both Krzysztof

Komsta and Leigh Monahan for their dedication with organising multiple weekly futsal

games. Clocking up the hours in the sports hall has been an important part of my work-life

balance while I’ve been studying at UTS, so I am very thankful that this once sporadic

booking arrangement grew into regular weekly events. Thank you to all of those who

have joined our games over the last few years. Without the right number of players, these

games never would have happened.

Thanks must also go out to all my friends who have provided words of wisdom and lent

their ears when I have needed it most. To my dear friend, Em, thank you for being there

for me through some tough times during the course of this research degree. Your support

means so much to me and I couldn’t have got to the end without you. In fact, I couldn’t

have got to where I am today without you. I am so grateful to have you in my life. I

promise that I will eventually get around to building you that robot you have been asking

me about for years.

I am very lucky to have met a very important person during this research journey. To my

partner, Craig, your itemised thank you list is immeasurable. Thank you for everything

you have done on a daily basis to help me push forward and get to this finish line. I’ve

vii



viii

been so fortunate to be able to spend so much time with you, discussing all manner of

topics. Your knowledge and wittiness has helped me to overcome many hurdles along the

way; both in research and in life.

Last, but certainly not least, thank you to my family for your ongoing encouragement and

support during this degree. To mum and dad, you have both been amazingly supportive.

Thank you for nurturing me and fostering my passion for learning from a young age. You

have both undoubtedly given me the confidence I’ve needed to get through to this point in

life. I simply cannot thank you both enough. To my brother, Tamás, thank you for being

there to talk all things PhD research with me. It’s funny to think that after all these years

of combined studies, we will both be doctors of engineering. Thank you for sharing many

German biers, laughs and plane spotting sessions with me, it’s often been just the thing

I’ve needed at the end of a week (or day).

To my dear cousin Amy, I miss you immensely.



Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

List of Figures xiii

List of Tables xvii

Nomenclature xxiii

Glossary of Terms xxvii

1 Introduction 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Motivating Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1.1 Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1.3 Human Safety Issues . . . . . . . . . . . . . . . . . . . . . . 8

1.1.2 Robotic Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Review of Related Work 17

2.1 Robot Grippers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Industrial Robot Grippers . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.2 Climbing Robot Grippers . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.3 Underactuated Grippers for Manipulation of Household Objects . . 24

2.1.3.1 Rigid Underactuated Grippers . . . . . . . . . . . . . . . . 26

2.1.3.2 Soft Underactuated Grippers . . . . . . . . . . . . . . . . . 30

ix



3.1 Overview

x Contents

2.2 Sensing Technology for Grippers . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Proprioception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.1.1 Sensing in Rigid Grippers . . . . . . . . . . . . . . . . . . . 37

2.2.1.2 Sensing in Soft Grippers . . . . . . . . . . . . . . . . . . . 38

2.2.2 Exteroception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.2.1 Sensing for Rigid Grippers . . . . . . . . . . . . . . . . . . 42

2.2.2.2 Sensing for Soft Grippers . . . . . . . . . . . . . . . . . . . 43

2.3 Object Identification and Recognition Using Touch Based Exploration . . . 46

2.3.1 Human Haptic Perception . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.2 Robotic Haptic Perception . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.2.1 Haptic Perception Using Rigid Grippers . . . . . . . . . . . 50

2.3.2.2 Haptic Perception Using Soft and Hybrid Grippers . . . . . 52

2.3.2.3 Selecting the Next Best Action for Object Identification
and Recognition . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 Stiffness Constrained Topology Optimisation Method 61

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Design Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.1 Topology Optimisation Method . . . . . . . . . . . . . . . . . . . . . 65

3.2.1.1 Core Topology Optimisation Algorithm . . . . . . . . . . . 66

3.2.1.2 Stiffness Constrained Topology Optimisation Algorithm . . 67

3.2.2 Optimal Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Verification of Stiffness Constrained Topology Optimisation Method . . . . 71

3.3.1 Gripper Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3.2.1 Simulation 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3.2.2 Simulation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.3.1 Simulation 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.3.2 Simulation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4 Verification of a Prototype Soft Gripper . . . . . . . . . . . . . . . . . . . . 83

3.4.1 Gripper Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4.1.1 Gripper #2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4.1.2 Gripper #4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4.1.3 Gripper #5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4.1.4 Gripper #6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4.2 Simulations and Experiments . . . . . . . . . . . . . . . . . . . . . . 93

3.4.2.1 Simulation 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.4.2.2 Simulation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.4.2.3 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.4.2.4 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.4.3.1 Simulation 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 98



Contents xi

3.4.3.2 Simulation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.4.3.3 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.4.3.4 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.5.1 Verification of Stiffness Constrained Topology Optimisation Method 106

3.5.2 Verification of a Prototype Soft Gripper . . . . . . . . . . . . . . . . 109

3.5.2.1 Actuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.5.2.2 Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4 Comparative Study of Machine Learning Classifiers for Beam Member
Recognition 113

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2 Classification Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2.1 k-Nearest Neighbours (k-NN) . . . . . . . . . . . . . . . . . . . . . . 118

4.2.2 Linear Discriminant Analysis (LDA) . . . . . . . . . . . . . . . . . . 119

4.2.3 Multiclass Support Vector Machine (SVM) . . . . . . . . . . . . . . 120
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