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Abstract

Background: The literature in statistics presents methods by which autocorrelation can identify the best period of measurement
to improve the performance of a time-series prediction. The period of measurement plays an important role in improving the
performance of disease-count predictions. However, from the operational perspective in public health surveillance, there is a
limitation to the length of the measurement period that can offer meaningful and valuable predictions.

Objective: This study aimed to establish a method that identifies the shortest period of measurement without significantly
decreasing the prediction performance for time-series analysis of disease counts.

Methods: The data used in this evaluation include disease counts from 2007 to 2017 in northern Nevada. The disease counts
for chlamydia, salmonella, respiratory syncytial virus, gonorrhea, viral meningitis, and influenza A were predicted.

Results: Our results showed that autocorrelation could not guarantee the best performance for prediction of disease counts.
However, the proposed method with the change-point analysis suggests a period of measurement that is operationally acceptable
and performance that is not significantly different from the best prediction.

Conclusions: The use of change-point analysis with autocorrelation provides the best and most practical period of measurement.

(JMIR Public Health Surveill 2019;5(1):e11357)  doi: 10.2196/11357
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Introduction

Overview
In a time-series prediction for a population, a measurement is
the record of equally spaced disease counts over time. The length
of these measurements, or equivalently, the interval between
records, is the period of measurement [1]. Although time-series

predictions have been widely used in public health surveillance,
a body of literature in statistics presents methods by which
autocorrelation can detect the best periodicity. Periodicity
detection refers to the detection of periodic patterns in a
time-series database [2] and can improve the performance of
time-series prediction [3-5]. Autocorrelation is a measure of the
internal correlation within a time series [4] and a way of
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measuring and explaining internal association between
observations in a time series. The autocorrelation sequence of
a periodic time series has the same cyclic characteristics as the
time series itself. Thus, autocorrelation can help verify the
presence of cycles and determine their durations [3].
Autocorrelation is often used to identify the best periodicity for
time-series analysis [3-5]. This method selects the periodicity
in which the autocorrelation is maximized, which would provide
time series with better prediction performance [5]. The main
aim of this study was to establish a period of measurement in
which the autocorrelation is maximized and the periodicity is
the interval that its prediction outperforms.

The selection of the period of measurement determines the
interval for prediction. Thus, from the operational perspective,
for the prediction to be meaningful and valuable in public health
surveillance, there has to be a limit to its length. For example,
when predicting influenza A cases for the next year, although
the 8-week period of measurement may generate the best
performance for the prediction, it also produces predicted values
that are aggregated 8 weeks at a time. This period is too long
to provide any value for practitioners. The 8-week period would
cover most of the winter, which is expected to have more
influenza A cases even if there is no prediction. For many
diseases, particularly infectious diseases that are not disruptive
to the healthcare infrastructure (eg, influenza), a 1-week
prediction window is generally sufficient. However, for the
healthcare infrastructure, a greater prediction window would
be helpful to allow planning for potential changes, staffing, or
resource allocation. Ultimately, identification of the optimal
prediction window allows users to decide what is acceptable
for their role in the community.

In response to the operational concern discussed above, this
study aims to identify the shortest period of measurement
without significantly decreasing the performance. Although
autocorrelation provides the best period of measurement, this
period may be too long to be practically acceptable. Therefore,
we adopted a change-point analysis (CPA) to detect a shorter
period of prediction with no change point in between in order
to achieve similar performance with a shorter period. To this
end, our method aims to apply CPA for autocorrelations of
different periods of measurement. The objective is to identify
the shortest period of measurement that has an autocorrelation
value similar to the maximum value of autocorrelations.

Background and Significance

Public Health Surveillance
The initial target of public health surveillance was infectious
diseases; however, with the recent advancements in analytics,
data from surveillance systems are increasingly used to predict
future trends in a wide range of noninfectious disease
distributions. Data have been used for further resource planning
and initiating warning systems [6,7]; for example, the Centers
for Disease Control and Prevention organized a challenge to
predict the 2013-2014 United States influenza season [8]. The
ability to accurately forecast various diseases could facilitate
key preparedness actions such as the development and use of
medical countermeasures, communication strategies, and
healthcare resource management [9]. To achieve this goal,

different statistical methods have been used to forecast disease
counts; time-series prediction is a method often used in relevant
literature [1,10-12], wherein the analysis predicts disease counts
by modelling historical surveillance data [1,13]. However, the
literature in this area recommends the use of a wide range of
methods such as Autoregressive Integrated Moving Average
(ARIMA) [14] and structural equation modelling [15].

Time-Series Prediction in Public Health Surveillance
Prior work in time-series prediction of public health surveillance
has heavily relied on aberrancy-detection algorithms that are
used to detect temporal changes in the data, which may be
indicative of a disease outbreak [16]. The Centers for Disease
Control and Prevention's Early Aberration Reporting Systems
uses C algorithms. In terms of prediction capabilities, C1 only
supports moving average with a 7-day window, whereas C2
and C3 offer moving average with a 7-day window and 2-day
guard band. Similar to C1-C3, other algorithms [17-19] do not
have long-term predictive features that allow public health
authorities to achieve annual planning.

These algorithms are primarily designed on the basis of
conventional hypothesis testing for the existence of disease
outbreak. Aberrancy-detection algorithms only detect changes
in static disease activity at a given time when the outbreak
occurs and only notice the direction of changes in disease trends
at a single time point [20]. However, when the prediction is for
an annual disease count rather than a disease outbreak, ARIMA
models and machine learning can address the limitation of
aberrancy-detection algorithms [21].

ARIMA models are commonly used in public health surveillance
[14] and are built on three basic ideas: (1) the present value of
time-series is a linear function of its past values and random
noise in the AR model [22], (2) the present value of time-series
is a linear function of its present and past values of residuals in
the moving average model [23], and (3) the AR moving average
model [24] considers both the AR and moving average models
as well as the historical values and residuals. The ARIMA model
generally fits the time-series data based on a previous AR
moving average model [24] and includes a differentiating
process that effectively transforms nonstationary data required
for the abovementioned models into stationary data used in
ARIMA [14]. The ARIMA models have been widely used for
time-series prediction in public health surveillance [13,25],
including hemorrhagic fever with renal syndrome [26,27],
dengue fever [28], tuberculosis [29], and mental health [30].

Although methods in conventional statistics are designed to
assign most importance to immediate data, they work better
with short-term predictions. In addition, these techniques are
based on the notion that relationships among the constructs
would continue in future, which may not be true [30]. A growing
body of literature [31-35] addressed this issue through the use
of machine-learning approaches such as Artificial Neural
Networks (ANNs) for time-series prediction in public health
surveillance. ANNs are inspired by the ways in which biological
nervous systems such as the brain process information. It is
composed of a large number of highly interconnected processing
elements (similar to neurons) working in unison to recognize
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patterns in data. In addition, ANNs, like people, learn by
example.

The ability of ANN to recognize patterns in data allows for
better predictions and provides assistance for public health
surveillance because it is able to self-organize and self-learn
processes [36]. Public health surveillance uses ANN to forecast
diseases distributions, whereas Guan et al (2004) used ANN to
forecast incidents of hepatitis. Mehra et al (2016) also used
ANN to predict the preplanting risk of Stagonospora nodorum
blotch in winter wheat.

Since this study focuses on forecasting disease counts and
limitations of aberrancy-detection algorithms to detect disease
outbreak, we only discuss ARIMA and machine learning here.

Period of Measurement for Time-Series Prediction in
Public Health Surveillance
Several studies have focused on predicting diseases for public
health surveillance through the use of time-series methods such
as ARIMA and machine learning. However, it is necessary to
recognize that measurement periods play a significant role in
the performance of time series, as time-series prediction methods
may show different performances for the same population when
predicting in different measurement periods [37-39]. For better
surveillance of a disease, it is crucial to identify the period of
measurement in which the time-series methods demonstrate the
best performance for prediction in a particular population.

The performance indicators for time series, such as Q-score
[40], can be used to identify the period of measurement that
generates the best performance. However, they are
computationally expensive to run across multiple time-series
analysis for different periods of measurement and compare the
performance using the indicator. Therefore, the literature in this
field has suggested autocorrelation as one of the most commonly
used algorithms to identify the best period of measurement in
time series [5]. Autocorrelation refers to the correlation of a
time series with its own past and future values [3]. The main
objective of this method is to obtain an autocorrelation sequence
of a periodic signal with the same cyclic characteristics as the
signal itself, allowing autocorrelation to verify the presence of
cycles and determine their durations [4]. Therefore, the overall
goal is to determine the period of measurement that maximizes
the autocorrelation to provide better performance prediction
[5].

Although autocorrelation may suggest a periodicity mapped to
a period of measurement that is operationally too long to be
meaningful, the current study aims to use CPA in order to
identify the shortest period of measurement with an
autocorrelation value similar to the maximum autocorrelation
value. Therefore, we do not expect to see a significant drop in
the performance prediction.

Methods

Change-Point Analysis
CPA is exclusively designed to detect subtle changes and
characterize changing trends in a time-series [20,41]. The
literature has proposed several methods of CPA such as standard

normal homogeneity, two-phase regressions with a common
trend, and penalized likelihood criteria. In this study, we used
the pruned exact linear time (PELT) CPA method suggested by
Killick et al (2012) [42]. This method is based on the CPA
method of Jackson et al (2005) [43], but incorporates a pruning
step that reduces the computational cost of the method and does
not affect the exactness of the resulting segmentation. Although
many CPA methods that can only detect the most significant
change point, PELT can identify multiple change points.
Therefore, owing to its computational performance, this study
adopted the PELT method [44]. In addition, we used the R
package for CPA [45], which implements PELT. In this
algorithm, a change point is defined as the point that
characterizes changing trends. As such, the value for the change
point is significantly different from the point value immediately
before the change point.

The PELT algorithm uses a common approach to detect change
points through minimization of costs, which improves the
computation performance of PELT. To find multiple change
points, the PELT algorithm is first applied to the whole dataset
and iteratively and independently to each partition until no
further change points are detected. The main assumption of the
PELT algorithm is that the numbers of change points increase
linearly with the increase in the dataset; the change points are
spread throughout the data and are not restricted to one portion
of the data [44]. Since we used a small dataset in this study, this
assumption is met.

Proposed Method
Our method sorts the autocorrelations based on their period of
measurements, wherein the autocorrelation for the shortest
period of measurement occupies the first place and the
autocorrelation for the longest period of measurement occupies
the last place. After conducting CPA using the PELT algorithm
on autocorrelations, our method indicates the immediate
ascending change point (ACP) before the highest
autocorrelations. The autocorrelation of the ACP is the
autocorrelation for the shortest period of measurement with
similar performance as the highest autocorrelation. Since ACP
indicates the closest ACP to the highest autocorrelations, there
will be no ACP between the ACP and the highest
autocorrelations. This would result in similar performance
between the period of measurement associated with the ACP
and the period of measurement for the highest autocorrelations.
In addition, this will be the shortest period of measurement with
similar performance as the highest autocorrelations, because
we skip all periods of measurements between the ACP and the
highest autocorrelations. As such, the ACP is the shortest period
of measurement that has similar performance as the highest
autocorrelations.

If the immediate change point before the highest autocorrelations
is descending, there is no available period of measurement that
is shorter than the highest autocorrelations and has similar
performance as the highest autocorrelation. Therefore, the
highest autocorrelations indicates the aimed period of
measurement. If there is no change point before the highest
autocorrelation, we consider the first point as the immediate

JMIR Public Health Surveill 2019 | vol. 5 | iss. 1 | e11357 | p. 3http://publichealth.jmir.org/2019/1/e11357/
(page number not for citation purposes)

Talaei-Khoei et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


change point prior to the highest autocorrelation. Figure 1
presents the evaluation of the proposed method.

Data Description
We used the notifiable disease case counts by epidemiological
week from 2007 to 2017 in Washoe, Clark, and Carson Counties
in Northern Nevada. The data included case counts for
chlamydia, salmonella, respiratory syncytial virus (RSV),
gonorrhea, viral meningitis, and influenza A. The data were
deidentified and included patients of all age. For each disease,
the dataset provides the number of reported cases in each
epidemiological week. Therefore, for each week between 2007
and 2017, the dataset included all the reported cases of the
abovementioned diseases in the three counties, separated
according to the diseases.

Training and Test Datasets
The data were divided into training and test datasets in the ratio
of 10:1. The scaling guidelines proposed by Guyon [46] were
adopted to identify the size of the training and test sets. The
time-series analysis was trained using the dataset created from
the data of 2007-2016 and tested on the data for 2017. The
performance was subsequently reported.

The original datasets, mentioned in the Data Description section,
are measured at 1-week periods. Therefore, the minimum period
of measurement was 1 week. However, the study evaluated
periods of measurement from 1 to 8 weeks. Depending on the
period of measurement, the training and testing sets were
aggregated into groups of 1-8 weeks. For example, when we
look at the 3-week measurements, the 1-week measurements
are aggregated into groups of three. This aggregation starts from
week 1. Figure 2 presents the training and testing sets for period
measurements.

Figure 1. Evaluation of the proposed method.

Figure 2. Training and testing sets.
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Time-Series Analysis
In order to implement ARIMA, we used auto.arima from the R
package of forecast [47]. Considering the growing body of
literature on ANN for public health surveillance [36,48,49], we
selected the ANN model for machine learning. Depending on
the learning structure, there are many different types of ANNs.
In this study, we adopted a feed-forward perceptron-based ANN
[50] implemented by the R package CRAN: nnet (version,
7.3-5), as it was the most-suitable ANN for our data structure
in the preliminary analysis. The parameters were
model=multinomial log-linear models: maximum number of
iterations=100, fitting=least squares, initial random weights=0.7,
maximum allowable number of weights=1000, absolute stop

fit criterion=1.0e-4, relative stop fit criterion=1.0e-8, size of single
hidden layers=11, and weight decay=0.1. These parameters
were run for each disease separately, and the predictor variable
was time measured by the period of measurement. Figures 3-8
present the performance of ANN and ARIMA.

Performance Indicator: Q-Score
The performance of time-series analysis was measured using
the Q-score indicator proposed by Ghil et al (2011) [40]. This
indicator treats the data as continuous data, and therefore, the
predicted value or observed value can be any positive number
in the testing set. Formally, for each disease under the
evaluation, we consider the prediction values of P(t)∈[0,∞) and
the observation values of 0(t)∈[0,∞) with integer time 1≤t≤52
counting weeks within a year. The overall error of the prediction
is quantified by the total squared discrepancy between the
prediction values and observed values for the testing set (Figure
9).

To evaluate the performance of prediction, we compared the
time-series analysis under evaluation with the unskilled
prediction that predicts constant historic average count. This
formula is defined in Figure 10.

Figure 3. Evaluation of the proposed method for chlamydia cases. ANN: Artificial Neural Network; ARIMA: Autoregressive Integrated Moving
Average; AC: ascending change.

Figure 4. Evaluation of the proposed method for salmonella cases. ANN: Artificial Neural Network; ARIMA: Autoregressive Integrated Moving
Average; AC: ascending change.
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Finally, the Q-score was defined as the quadratic errors of
prediction under evaluation and the unskilled prediction
presenting as a constant average. Therefore, the Q-score was
defined as presented in Figure 11.

The Q-score may take positive values. It takes Q–score=1 if the
time-series prediction under evaluation generates similar results
as the unskilled prediction, producing a constant average. A
desired time-series analysis produces Q–score=1. Therefore,
the aim was to minimize the Q–score.

The Q-score for each period of measurement was calculated for
both ARIMA and ANN. Subsequently, a CPA was conducted
to determine if the suggested period of measurement generated
similar performance as the best performance prediction
generating the smallest Q-score with ARIMA and ANN.

This provides a comparative indicator to show the extent to
which a method improves unskilled random prediction, which
fits our study requirements. The Q-score uses unskilled
prediction as a basis and demonstrates how a method
outperforms an unskilled prediction. Therefore, the Q-score is
suitable for our purpose of comparing methods.

Figure 5. Evaluation of the proposed method for respiratory syncytial virus cases. ANN: Artificial Neural Network; ARIMA: Autoregressive Integrated
Moving Average; AC: ascending change.

Figure 6. Evaluation of the proposed method for gonorrhea cases. ANN: Artificial Neural Network; ARIMA: Autoregressive Integrated Moving
Average; AC: ascending change.
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Figure 7. Evaluation of the proposed method for viral meningitis cases. ANN: Artificial Neural Network; ARIMA: Autoregressive Integrated Moving
Average; AC: ascending change.

Figure 8. Evaluation of the proposed method for influenza A cases. ANN: Artificial Neural Network; ARIMA: Autoregressive Integrated Moving
Average; AC: ascending change.

Figure 9. Prediction error.

Figure 10. Historic average.
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Figure 11. Q-Score.

Results

Figure 3 depicts the evaluation of the proposed method for
chlamydia cases. The results show that the proposed method
suggests a period of measurement of <3 weeks, which is
operationally acceptable. Our result was validated against the
performance of ANN and ARIMA, measured by the Q-score
(Table 1).

Figure 3 and Table 1 present the evaluation of the proposed
method for chlamydia cases. The biggest AC is for the 4-week
period of measurement. However, the immediate ACP is in the
2-week period of measurement. Therefore, the autocorrelations
are similar in the 2- to 4-week periods of measurements. The
proposed method suggests that the 2-week period of
measurement yields a good performance, similar to the best
performance. The best performance measured by Q-score occurs
in 7-week period of measurement for ANN and the 5-week
period of measurement for ARIMA. Although there is no ACP,
the descending change point (DCP) is in the 2-week period of
measurement. As such, performance of ANN and ARIMA
remained similar for the 2-week period of measurement or
longer. Although the 7-week period of measurement for ANN
and 5-week period of measurement for ARIMA provided the
best performance, and the smallest Q-scores, our results show
that the 2-week period of measurement indicated by our
proposed method showed similar performance.

Although our proposed method suggests the 3-week period of
measurement for salmonella cases, the best performance occurs
in the 8-week period of measurement for both ANN and ARIMA
(Figure 4 and Table 2). However, the results of CPs on Q-scores

shows that that 3-week period of measurement generates similar
performance as the best Q-scores for ANN and ARIMA. The
results for RSV (Figure 5 and Table 3) and gonorrhea cases
(Figure 6 and Table 4) validate the proposed method.

Figure 7 and Table 5 demonstrate an interesting example for
viral meningitis. The 2-week period of measurement was
suggested by the proposed method, whereas the highest and
ACP for AC occurs in the 2-week period of measurement. For
ANN, the best performance measured by the Q-score occurs
for the 3-week period of measurement; however, the 2-week
period of measurement shows a DCP for the Q-scores of ANN.
Therefore, the 3-week period of measurement generates similar
performance as the 2-week period of measurement suggested
by the proposed method. For ARIMA, the best performance
occurs in the 2-week period of measurement, which has the
DCP as well. The proposed method was also validated for viral
meningitis.

Influenza A has attracted a lot of attention from time-series
analysis in public health. The biggest AC occurs in the 2-week
period of measurement, but the best performance is in the
1-week period of measurement for both ANN and ARIMA.
However, there is no change point until the 5-week period of
measurement for ANN and the 7-week period of measurement
for ARIMA when ACP occurs. Therefore, we can assume that
in both ANN and ARIMA, the performance of the 1-week period
of measurement with the best Q-score is similar to that of the
2-week period of measurement suggested by the proposed
method, because of the biggest AC with the DCP in the 2-week
period of measurement (Figure 8 and Table 6). In addition, the
proposed method improves the prediction of influenza A.

Table 1. Validation of the proposed method for chlamydia cases against the performance of Artificial Neural Networks and Autoregressive Integrated
Moving Average, measured by the Q-score.

Ascending changeQ-score of the Autoregressive Integrated
Moving Average

Q-score of the Artificial Neural
Networks

Period of measurement (week)

0.940.550.631

0.95 (ACPb)0.08 (DCPa)0.07 (DCPa)2

0.950.080.063

1.04c0.020.024

1.030.01d0.035

1.030.020.026

1.030.010d7

1.020.010.018

aDCP: descending change point.
bACP: ascending change point.
cBiggest ascending change.
dThe best performance measured by the Q-score for Artificial Neural Networks and Autoregressive Integrated Moving Average.
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Table 2. Validation of the proposed method for salmonella cases against the performance of Artificial Neural Networks and Autoregressive Integrated
Moving Average, measured by the Q-score.

Ascending changeQ-score of the Autoregressive Integrated
Moving Average

Q-score of the Artificial Neural
Networks

Period of measurement (week)

0.560.591.231

0.590.571.312

0.83 (ACPb)0.38 (DCPa)0.91 (DCPa)3

0.850.380.894

0.86c0.360.895

0.840.360.866

0.840.350.857

0.850.32d0.82d8

aDCP: descending change point.
bACP: ascending change point.
cBiggest ascending change.
dThe best performance measured by the Q-score for Artificial Neural Networks and Autoregressive Integrated Moving Average.

Table 3. Validation of the proposed method for respiratory syncytial virus cases against the performance of Artificial Neural Networks and Autoregressive
Integrated Moving Average, measured by the Q-score.

Ascending changeQ-score of the Autoregressive Integrated
Moving Average

Q-score of the Artificial Neural
Networks

Period of measurement (week)

0.82a0.320.431

0.98 (ACPc)0.09c (DCPb)0.04 (DCPb)2

0.990.10.03d3

0.990.110.094

1.010.120.125

1.020.110.146

1.030.230.177

1.040.150.148

aBiggest ascending change.
bDCP: descending change point.
cACP: ascending change point.
dThe best performance measured by the Q-score for Artificial Neural Networks and Autoregressive Integrated Moving Average.
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Table 4. Validation of the proposed method for gonorrhea cases against the performance of Artificial Neural Networks and Autoregressive Integrated
Moving Average, measured by the Q-score.

Ascending changeQ-score of the Autoregressive Integrated
Moving Average

Q-score of the Artificial Neural
Networks

Period of measurement (week)

1.42b0.01a0.04a1

1.010.020.332

0.980.020.343

0.930.020.394

0.880.021.385

0.820.41.366

0.810.51.597

0.310.054.38

aThe best performance measured by the Q-score for Artificial Neural Networks and Autoregressive Integrated Moving Average.
bBiggest ascending change.

Table 5. Validation of the proposed method for viral meningitis cases against the performance of Artificial Neural Networks and Autoregressive
Integrated Moving Average, measured by the Q-score.

Ascending changeQ-Score of the Autoregressive Integrated
Moving Average

Q-score of the Artificial Neural
Networks

Period of measurement (week)

0.631.170.911

0.92c (ACPd)0.39 (DCPb)0.17a (DCPb)2

0.470.34a0.993

0.430.821.014

0.410.871.045

0.410.891.056

0.380.931.077

0.370.941.078

aThe best performance measured by the Q-score for Artificial Neural Networks and Autoregressive Integrated Moving Average.
bDCP: descending change point.
cBiggest ascending change.
dACP: ascending change point.
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Table 6. Validation of the proposed method for influenza A cases against the performance of Artificial Neural Networks and Autoregressive Integrated
Moving Average, measured by the Q-score.

Ascending changeQ-score of the Autoregressive Integrated
Moving Average

Q-score of the Artificial Neural
Networks

Period of measurement (week)

0.630.07a0.01a1

0.92b (ACPc)0.090.032

0.470.100.023

0.430.10.034

0.410.10.19 (ACPc)5

0.410.130.26

0.380.49 (ACPc)0.27

0.370.940.228

aThe best performance measured by the Q-score for Artificial Neural Networks and Autoregressive Integrated Moving Average.
bBiggest ascending change.
cACP: ascending change point.

Discussion

Following the extensive use of time-series predictions in public
health surveillance, autocorrelation is commonly used in
statistics to identify the best period of measurement and improve
the performance of predictions [3-5]. However, the forecast
needs to address the operational perspective and offer
meaningful and valuable predictions. Therefore, practitioners
in public health surveillance may choose a shorter period of
measurement wherein the forecast results may not be as accurate
as those of analyses of longer periods of measurements. The
literature in statistics shows how the best period of measurement
suggested by autocorrelation can improve the performance of
a time-series prediction [3-5]. In addition, our empirical results
revealed that the most-outperforming period of measurement
is not always the shortest one. However, the long periods of
measurement that likely provide better prediction performance
may not be useful to practitioners because they are too long.
We have provided examples of such instances in the Introduction
section of the manuscript.

This study proposed a method that runs CPA on autocorrelations
and identifies the shortest period of measurement with a
performance prediction similar to the best performance
prediction. Our method was evaluated against ANN and ARIMA
methods for a time-series analysis of disease counts in Cark,
Carson, and Washoe Counties in Northern Nevada between
2007 and 2017, including case counts for chlamydia, salmonella,
RSV, gonorrhea, viral meningitis, and influenza A.

Unfortunately, autocorrelation cannot guarantee the best
performance for disease prediction. For example, for chlamydia,
the greatest autocorrelation occurred in the 4-week period of
measurement, the best performance of ANN was noted in the
7-week period, and the best performance of ARIMA was
observed in the 5-week period of measurement. This was also
the case for RSV, gonorrhea, viral meningitis, and influenza A.
However, the proposed method adopting CPA suggests that the
shortest period of measurement (to satisfy operational

perspective) ensures acceptable performance predictions similar
to the best Q-scores.

The current study has two implications for academics. First, the
study adds information on the importance of the period of
measurement as a factor for providing better disease count
forecasts. Second, it demonstrates the application of CPA in
providing operationally focused autocorrelation for a more
practical period of measurement that not only improves the
prediction performance but also generates practical insights.

From a practical perspective, time-series prediction is an
important tool for public health and clinical medicine to identify
seasonal periods of changes in the relative risk for disease
activity. Observed values that exceed predicted parameters do
not necessarily reflect a “failed” prediction, but rather, a pattern
of reported activity that was not observed in previous data. This
is an important adjunct to other methodologies for aberration
detection, such as the aforementioned Early Aberration
Reporting System. Predictions offer value to the unaware
practitioner by offering a “most likely” hypothesis for expected
disease activity, which may carry implications for proactive
education and disease-control policies.

Although the current study evaluated the proposed method for
a variety of diseases, the data were limited to Northern Nevada.
Therefore, expanding the datasets and re-evaluating the method
with a wider range of diseases from various geographical
locations and larger sample sizes would provide a better
understanding of the performance prediction of this method. In
addition, the proposed method was evaluated against only
ARIMA and ANN. This limitation can be addressed in future
studies by applying more time-series prediction methods.
Although this method uses autocorrelation, Fourier Transforms
have been used in the literature to identify the period of
measurement [51]. Thus, further research can compare the
performance of AC and Fourier Transforms adopted in the
method proposed in this study. In addition, the use ARIMA as
a predictive model despite its difficulties with periodic
prediction has limited the evaluation of our study. However,
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the purpose of this study was to compare ANN and ARIMA for
their applicability with the method proposed.

Although we chose ARIMA and ANN to demonstrate the
performance of the suggested method, researchers in this field
are encouraged to use other conventional or machine-learning
algorithms to evaluate the performance of this method in future.

The study has potential from a mathematical perspective, since
the different time series generated by autocorrelation are
mathematical manipulations of the original time series. For
example, they could be modelled as reindexed discrete-time
stochastic processes. This would open an avenue of future
research to mathematically study the behavior of these time
series.

The period of measurement plays an important role in the
performance of time-series analysis for disease counts. The
literature in statistics has been using autocorrelation to identify
the outperforming period of measurement. However, in
predicting disease counts, long periods may not provide
sufficient values for public health and surveillance practitioners.
Therefore, we used CPA to find the shortest period of

measurement, which has similar performance as the period
identified by AC.

In conclusion, through the adoption of autocorrelation and CPA,
we propose a novel method for identifying the period of
measurement, which can improve the performance of time-series
predictions for disease counts. Our method implements a
practical perspective through which we aim to determine the
shortest period of measurement that achieves a better prediction
performance. This finding makes the method practically
applicable in the field when longer periods of prediction, even
with better performance, are not operationally valuable to public
health professionals. Our method was evaluated against ANN
and ARIMA analyses for disease counts of chlamydia,
salmonella, RSV, gonorrhea, viral meningitis, and influenza A
between 2007 and 2017 in Northern Nevada. Future work should
focus on enhancing the evaluation of the method by using more
diverse datasets as well as assessing the use of Fourier
Transforms instead of AC. Moreover, we encourage researchers
to use a wide range of machine learning and alternative CPA
methods to improve the suggested approach.
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