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Abstract2

Self-assembled networks of nanoparticles and nanowires have recently emerged as3

promising systems for brain-like computation. Here we focus on percolating networks4

of nanoparticles which exhibit brain-like dynamics. We use a combination of exper-5

iments and simulations to show that the brain-like network dynamics emerge from6

atomic-scale switching dynamics inside tunnel gaps that are distributed throughout7

the network. The atomic-scale dynamics emulate leaky integrate and fire (LIF) mech-8

anisms in biological neurons leading to the generation of critical avalanches of signals.9

These avalanches are quantitatively the same as those observed in cortical tissue and10

are signatures of the correlations that are required for computation. We show that11

the avalanches are associated with dynamical restructuring of the networks which self-12

tune to balanced states consistent with self-organised criticality. Our simulations allow13

visualisation of the network states and detailed mechanisms of signal propagation.14
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Neuromorphic, or brain-like, computing is motivated both by the recognition that tradi-18

tional integrated circuit technologies are reaching fundamental limits,1,2 and by the remark-19

able capability of the biological brain to perform tasks such as pattern recognition in an20

extremely energy-efficient way.3–5 A wide variety of brain-inspired approaches to computing21

are being investigated, using for example CMOS neurons and synapses,6,7 memristors,8–1022

atomic switches,11,12 and phase change materials,13 but there have been relatively few at-23

tempts to develop intrinsically brain-like architectures which might support neuromorphic24

computing in a more natural way than standard (highly-organised) chip architectures.25

Motivated by calculations which show that optimal information processing is achieved26

by intrinsically complex architectures operating at criticality14,15 and that scale-free, hier-27

archical networks are valuable16 in enhancing neuromorphic approaches such as reservoir28

computing (RC),5,17,18 several groups have begun to explore the properties of self-assembled29

nanoscale networks.19,20 This approach was initially driven by investigations of networks30

of silver nanowires,12,21 which exhibit interesting dynamics and were used in first attempts31

to perform waveform regression tasks.22 More recently other nanowire systems have been32

investigated23,24 and it has emerged that percolating-tunneling networks of nanoparticles33

also exhibit complex dynamics,25–28 brain-like avalanches and criticality,29 and long-range34

temporal correlations (LRTCs) due to their intrinsically scale-free network architectures.3035

In this Letter we show that brain-like network dynamics in percolating networks of36

nanoparticles emerge from atomic scale dynamics inside tunnel junctions within the net-37

works. We first present experimental data that reveals the atomic scale dynamics and show38

that they emulate some of the functions of biological neurons. We then use computer simu-39

lations to demonstrate that, when coupled with the underlying scale-free network architec-40

ture,30 these dynamics lead to critical avalanches of signals that are similar to those observed41

experimentally, and which in turn are quantitatively the same as those observed in cortical42

tissue.15,31 We show that criticality emerges only in a parameter range where the network43

self-tunes to a state with an optimal number of pathways through the network, consistent44
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Figure 1: Atomic-scale dynamics in percolating nanoparticle networks. (a) Schematic illus-
trating two-terminal device geometry with the interconnected nanoparticle groups (different
colours) separated via tunnel gaps. (b) Representative conductance data, measured over
many hours with 100 ms sampling interval (see Methods), showing complex patterns of
switching events and bursty dynamics.29,30 Voltage stimulus (green), device conductance (G,
blue, in units of G0 = 2e2/h, the quantum of conductance), and event size (∆G, red).
(c) Low-voltage pulsed stimulus, focusing on a single switching event (time-window 2.5
mins), reveals clear signatures of signal integration prior to ‘firing’, corresponding to electric
field induced atomic hillock formation. (d) Electromigration-induced reverse process reduces
the average width of a pre-existing atomic filament (decreasing I), eventually resulting in
filament-breaking. (e) Schematic of atomic-filament formation/destruction process.33–35

with self-organised criticality.32 Finally, by comparing the experimental and simulational45

results, we show that the distribution of measured changes in conductance reflects the dy-46

namical structure of the network, and for the first time demonstrate the detailed mechanism47

for the propagation of critical avalanches in self-assembled networks.48

Our percolating networks of nanoparticles are formed through deposition of nanoparti-49
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cles onto silicon nitride substrates.25,26 Deposition is terminated when the fraction (p) of the50

surface area covered with conducting particles approaches the percolation threshold (pc ∼51

68%), which is a critical value separating the insulating and the conducting states.36 Fig-52

ure 1a shows a schematic of our two electrode devices: during deposition (see Methods),53

particles come into contact and form interconnected groups which are separated by tunnel54

gaps (which have a distribution of sizes37), and which have varying sizes and fractal geome-55

tries.30 Groups are collections of particles that are in Ohmic contact with one another. We56

emphasise that after deposition the overall structure of the network is fixed, in contrast to57

many other devices (see e.g. Ref. 38) where memristive behaviour results from significant58

re-arrangements of nanoparticles. This distinction is illustrated in Figure S6 and Figure S7.59

The tunnel gaps act as switching sites: upon application of an external voltage stimu-60

lus, atomic scale filaments can be formed (and subsequently broken) in the tunnel gaps,2561

resulting in changes in the network conductance (G) shown in Figure 1b. These switching62

events occur in bursts, or avalanches, that have been shown to exhibit29 the same statistical63

properties as avalanches of neuronal signals in the cortex,31 thus demonstrating the strong64

spatio-temporal correlations required for RC and strong potential for optimal information65

processing39 – see Refs. 29,30 for further details.66

The atomic scale switching processes that cause correlations and avalanches are yet to be67

studied in percolating networks, because most switching events occur on timescales11 that are68

far quicker than can be recorded by the measurement system. Here, using low-voltage pulsed69

stimulation, we have interrogated the switching processes and resolved for the first time the70

dynamics of some switching events. Figure 1c,d shows portions of experimental conductance71

traces, which capture formation (Figure 1c) and destruction (Figure 1d) of atomic scale72

filaments, following the behaviour shown schematically in Figure 1e and described in more73

detail in the next paragraph.74

Figure 1c shows an initial increase in conductance as Electric Field Induced Surface75

Diffusion (EFISD)33,34 causes atoms on the surface of the nanoparticles to accumulate in a76
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Figure 2: Switching dynamics in the experiments (left column), probabilistic-model (cen-
tre column) and deterministic model (right column). (a) Experimentally observed bursty
behavior, is reproduced by the deterministic model but is absent in the probabilistic model
(scale bar = 2000s). (b) The distribution of inter-event intervals (P(IEI)) is a power law for
the experimental data and the deterministic model (with a similar slope) but decays expo-
nentially for the probabilistic model (black: maximum likelihood fit). (c) Autocorrelation
function A(t) (red) is a power law for both experimental data and deterministic model with
t−0.14, but is essentially zero (i.e. below the confidence bound (dashed lines)) for the prob-
abilistic model. Shuffling the IEI sequence (grey) leads to a lower A(t) (see Ref. 29,30 and
refs therein). (d) Distribution of event sizes (P(∆G), blue) exhibits a heavy-tail in all cases.
The black dashed line (slope = −1) is a guide to the eye. The slopes in the simulations are
smaller (by a factor of 2) than observed experimentally due to the smaller system size in the
simulations.

‘hillock’ (yellow in Figure 1e), decreasing the size of the tunnel gap. During the second pulse,77

filament formation nearly reaches completion but because the applied electric field is close78

to the threshold for inducing atomic motion, fluctuations in the conductance are observed.79
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Towards the end of the pulse, the ‘hillock’ of atoms relaxes so that the conductance returns80

to a value near to its initial level. During the third pulse, the hillock of atoms extends81

completely across the tunnel gap, forming a filament (red in Figure 1e) that has relatively82

high conductance (of the order of the quantum of conductance, G0 = 2e2/h).25 This switching83

event causes an increase in observed network conductance, as well as a reduction of the84

potential difference between the two groups of nanoparticles. Figure 1d shows the reverse85

process, i.e., over three voltage pulses electromigration effects35 reduce the average width86

of a previously formed filament until it is broken, causing a clear decrease in the network87

conductance.88

An important feature of these results is that the effect of the applied electric field/current89

is cumulative, i.e., both formation and destruction of the atomic scale filaments can be90

viewed as integrating the applied signals until filament formation/destruction (‘firing’). The91

fluctuations40 in Figure 1c are consistent with surface energy effects,41 which attempt to92

return the gap/filament to its original size (‘leak’) when there is no current/voltage. As is93

shown in more detail in Figure S1 these processes are therefore qualitatively similar to leaky94

integration and fire (LIF) mechanisms in biological neurons.42,4395

We now show, using computer simulations, that when coupled with the intrinsically scale-96

free architecture of the percolating-tunneling network,30 this local integrate and fire (IF)97

mechanism leads to long-range temporal correlations and the generation of the avalanches of98

events that are very similar to those observed experimentally.[Note that detailed modelling99

of the atomic scale processes that lead to the LIF dynamics is potentially very interesting100

but would require significant extensions of the models of Refs. 33,34,38.] The experimental101

results are summarised in the left columns of Figures 2 and 3 – see captions and Methods102

for details. The essential points are (i) distributions of inter-event intervals (IEIs) and the103

autocorrelation functions (ACFs) in Figure 2 are power laws, which are characteristic of104

long-range temporal correlations (LRTC)30 and (ii) the power law avalanche distributions in105

Figure 3 are consistent with criticality.29,44 The heavy-tailed ∆G distributions (Figure 2d)106
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reflect the dynamical nature of the network, as discussed below.107

Numerical simulations have been used previously to show that the experimental networks108

of nanoparticles are well described by continuum models37,45 in which the conducting objects109

are represented by uniform discs, which are allowed to overlap, representing formation of110

groups of particles.37,46 Below the percolation threshold (p < pc), no single group spans the111

entire network and the conduction of the system is due to the tunnel currents flowing across112

small tunnel gaps which separate the groups of particles. It is assumed that the groups are113

large enough that both the charging energy of a connected group and the quantization of114

energy levels are negligible, and that the resistance between overlapping particles within a115

group is negligible, so that the only resistance in the system is due to the tunnel gaps. Each116

gap is assigned a conductance, Gi = A exp(−δLi), where A and δ are constants and Li is the117

size of the gap (in units of the particle diameter which is set to 1; A = 1Ω−1 and δ = 100118

for convenience).37 After the formation of a filament, the gap is assigned a conductance119

G = 10Ω−1; the precise conductance values are not important and could be scaled to match120

the experiments more closely, but we choose to maintain consistency with previous work.37121

We focus primarily on simulations of systems with a size of L×L particle diameters (L = 200122

is chosen to provide the best trade-off between computational time and finite-size effects)123

and surface coverage p < pc, but the results are substantially the same for 0.64 ≤ p < pc and124

for 200 ≤ L ≤ 400, consistent with Ref. 30.125

We first consider a probabilistic model.46 When the electric field in a gap or the current126

in a filament is greater than a threshold value, the switch is allowed to change state (switch127

on (↑) or off (↓)) with a well-defined probability (here p↑ = p↓ = 0.001, but the results128

are qualitatively independent of the parameter values). This model allows demonstration129

of interesting switching behaviour (and in particular the formation of connected pathways130

across the network46), as well as consequent redistribution of voltages and currents through131

the network. However, the results in the centre column in Figure 2(b, c) show that the IEI132

distribution is exponential (not power law, as in the experiments), and the corresponding133

8



Experimental Probabilistic Deterministic
a

b

c

d

Figure 3: Avalanche and criticality analysis for the experimental data (left column), prob-
abilistic model (centre column) and deterministic model (right column). (a and b) Sizes
(S) and durations (T ) of the avalanches are distributed as power laws for the experimental
data and the deterministic model, with slopes that are the same to within . 20%, but the
probabilistic model results in exponential distributions (black: maximum likelihood fit). (c)
Average avalanche size for given duration < S > (T ) ∼ T 1/σνz with exponent 1/σνz ∼
1.3-1.5 for experimental data and deterministic model (a difference of only ∼ 10%), whereas
probabilistic model yields 1/σνz ∼ 1. (d) Average avalanche shapes for each duration show-
ing collapse onto a universal scaling function (black line), and yield independent measures of
the critical exponent 1/σνz. The power law behaviour and agreement of estimates of 1/σνz
for the experimental data and deterministic model are consistent with criticality.29,44 See
also Table 1.

ACF shows an absence of correlations. Similarly, the centre column of Figure 3(a, b) shows134

that the distributions of avalanche sizes (S) and durations (T ) are exponential. The absence135

9



of correlations is not surprising – in the probabilistic model the switching events occur136

randomly, and so there is no possibility that correlated avalanches can emerge.137

We now consider a new deterministic model which captures the atomic scale dynamics138

of the switching process described in Figure 1. To emulate the experimentally observed139

behaviours, the size of each tunnel gap (di) changes in response to the electric field Ei in the140

gap according to141

∆di =


rd(Ei − ET ), if Ei ≥ ET

0, otherwise

(1)

and the current flow (Ij) in each existing filament causes electromigration effects35 that142

decrease its width (wj) according to143

∆wj =


rw(Ij − IT ), if Ij ≥ IT

0, otherwise

(2)

where rd and rw are parameters that control the rates at which d and w change when144

threshold fields (ET ) and currents (IT ), respectively, are exceeded. Here ET = 10V and145

IT = 0.01A, which are chosen to be consistent with estimates obtained from experiments.25146

The right column in Figure 2(b, c) shows that the deterministic model reproduces the147

power law IEI distribution and strong correlations observed in the experiments. The right148

column in Figure 3(a, b) shows that the deterministic model also reproduces the power149

law distributions of S and T . Furthermore, for the deterministic simulations, the three150

different estimates of the critical parameter 1/σνz shown in Table 1 are in good agreement,151

therefore satisfying rigorous criteria for criticality.29,31,44 The deterministic simulations are152

in excellent qualitative agreement with the experiments for a broad range of parameters153

(see below), while the probabilistic simulations fail to reproduce the observed power law154

behaviour. The already good quantitative agreement between the deterministic simulations155

and the experiments in Figures 2 and 3 could most likely be improved even further by156
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Table 1: Criticality in the experiments and deterministic simulations. The critical exponent
1/σνz is obtained from the crackling relationship (α− 1)/(τ − 1), mean avalanche size given
duration < S > (T ), and avalanche shape collapse for both representative experimental data
and the deterministic simulations. The agreement of these three independent estimates of
1/σνz is a rigorous requirement for criticality. See Refs. 29,31,44 for details of the criticality
analysis.

Exponents τ α Crackling
relationship

< S > (T ) Shape
collapse

Exp. 1.6 ± 0.1 2.0 ± 0.1 1.7 ± 0.2 1.49 ± 0.03 1.39 ± 0.07
Det. Sim. 2.1 ± 0.1 2.6 ± 0.1 1.2 ± 0.2 1.29 ± 0.02 1.35 ± 0.03

fine-tuning the model parameters. The optimum simulation parameters are expected to be157

material dependent.158

The deterministic simulations allow the generation of maps of the current and voltage dis-159

tributions in the network at each time step, providing a method to elucidate the mechanism160

for the propagation of the critical avalanches (Figure S2 and video V1). When an external161

stimulus (voltage) is applied, the formation (or annihilation) of an atomic filament at a tun-162

nel gap redistributes current across the entire network, thereby modifying local electric fields163

in other tunnel gaps. This in turn changes the rates at which tunnel gaps/filaments change164

size (see Eqs. 1 and 2), leading to further switching events. In other words, each switch-165

ing event influences subsequent switching events through internal feedforward and feedback,166

giving rise to temporal correlations. We emphasise that it is this correlated switching be-167

haviour in the deterministic simulations that leads to the critical dynamics; the absence of168

the correlated switching in the probabilistic case leads to non-critical dynamics.169

We now turn to a discussion of the distribution of ∆G values which, as shown in Figure 2d,170

are heavy-tailed for both experimental and simulational data. Both the deterministic and171

probabilistic models generate similar distributions (Figure 2d centre and right panels). The172

∆G distributions for the ensemble of switches, reflect both the positions of the individual173

switches in the network, and the number of times the switches open or close.30 Figure S3174

reveals that the values of ∆G measured for individual switching sites are also distributed175

over several orders of magnitude. As shown in Figure S4, this surprising result is due to176
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Figure 4: Maps of parameter space (rd, rw - see Eqs. 1,2) for the deterministic model
showing a self-tuned critical state. (a) Strength of correlations (integrated autocorrelation
Aint – see Methods) and (b) Characterisation of the power law (PL) and exponential (Exp.)
fits to the IEI distribution. Both (a) and (b) show a clear ridge (rd ∼ rw/25) corresponding
to strong correlations and criticality. (c) Average network conductance showing that the
ridge in parameter space corresponds to 〈G〉 ∼ 0.5Ω−1. Note that the parameters chosen
to illustrate the deterministic simulations in Figures 2 and 3 correspond to a point on this
ridge (rd = 5 × 10−7V −1, rw = 3 × 10−5A−1). (d) Initial states in which 5%, 10% and
30% of switches are ‘on’ all self-tune towards G ∼ 0.5Ω−1. (e) Corresponding experimental
data showing that under voltage stimulus devices with different surface coverages self-tune
towards critical states with 1 . G . 6G0. The difference between optimum values of G
in the experiment and simulation results from the choice of simulation parameters, which
maintains consistency with previous work.37

dynamical reconfiguration of the network: at different times each switch can find itself on177

different branches of the (fractal)30 arrangement of current paths. Hence, even though the178

change in conductance of any individual switch is essentially the same, each time the switch179

changes state the configuration of the rest of the network is different so a different value of180

∆G is measured.181
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Finally, we discuss the range of parameter space in the deterministic model in which182

correlations and critical avalanches are observed. Figures 4a and 4b show that strong183

correlations and power law IEI distributions are obtained along a diagonal ridge in the184

rd, rw parameter space. Figure 4c shows that this ridge corresponds to a narrow range of185

conductances, where the connectivity of the network is optimised for criticality: the number186

of switches in their ‘off’ or ‘on’ states is ‘balanced’. The nature of the balanced state is187

illustrated by the results of simulations in which the initial state of the network is chosen188

to have different numbers of switches in the ‘on’ state (Figure 4d). When the number of189

switches that are ‘on’ is high, the resulting high current will tend to break filaments and190

return the system to the balanced state. Conversely, if the number of switches that are ‘on’191

is low, higher electric fields in some tunnel gaps will cause additional switches to turn ‘on’,192

again returning the system to the balanced state. Hence the system always self-tunes to a193

dynamical state where the number of pathways through the network is close to an optimum194

value. This ‘balance’ is essential for critical avalanches to propagate.15,39195

Figure 4e shows that the experimental system self-tunes to achieve a similar balance.196

If the initial conductance of the network (Ginit, measured immediately after deposition) is197

either higher or lower than the narrow range (1 . G . 6G0) in which correlations and198

criticality are observed,29 switches change state so as to move the system back into that G199

range.200

In summary, we have presented experimental evidence for atomic-scale integrate and fire201

mechanisms within our percolating networks and shown by detailed modelling that these202

processes facilitate critical avalanches. Both experimental and simulational results are con-203

sistent with optimally balanced network states similar to the self-organized-critical states204

reported in biological neuronal networks.47,48 These results provide a significant step to-205

wards understanding the dynamics of nanoscale switching networks, and will facilitate the206

development of applications. For example, as discussed in some detail in Refs. 29,30, per-207

formance of pattern recognition algorithms based on reservoir computing5,17,18 is believed to208
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be optimised for scale-free16 and critical14,15 networks, and we believe there are many new209

opportunities to be explored in the field of unsupervised learning.10210

Methods211

Experimental methods and analysis have been described in detail in Refs. 29 and 30, and212

so we provide here only a brief summary.213

Device fabrication. Our percolating devices are fabricated by simple nanoparticle deposi-214

tion processes.25,26,49 7 nm Sn nanoparticles are deposited between gold electrodes (spacing215

100 µm) on a silicon nitride surface and coalesce to form particles of 20 nm diameter. De-216

position is terminated at the onset of conduction, which corresponds to the percolation217

threshold.36,49 The deposition takes place in a controlled environment with a well-defined218

partial pressure of air and humidity, as described in Ref. 26. This process leads to controlled219

coalescence and fabrication of robust structures which function for many months, but which220

yet allow atomic scale switching processes to take place unhindered.221

Electrical stimulus and measurement. Electrical stimuli are applied to the electrode222

on one side of the percolating device, while the opposite electrode of the system is held at223

ground potential. DC Measurements over long time periods are necessary to avoid signifi-224

cant cut-offs in power law distributions.50,51 Pulsed measurements are used to probe atomic225

scale dynamics. The conductance measurements reported here are performed with 100 ms226

sampling intervals, but we have shown previously29,30 that quantitatively the same behavior227

is observed for much shorter sampling intervals.228

Data Analysis. The data analysis methods used to identify avalanches of switching events229

are substantially the same as those developed in the neuroscience community to analyse230

micro-electrode array recordings from biological brain tissue, and described in detail in Ref.231

29.232

To quantify the correlations in the simulated event trains, we use the Autocorrelation233
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Function (ACF). Since the initial values of the ACFs (commonly called ‘lag-1’) may be234

affected by finite sampling rate, we use the integrated value of the ACF from t=0 to 1000s235

as an indicator of the correlation strength, and we use the slope of the ACF to quantify the236

timescale of the correlations.237

Following Refs. 29,31, both in the experiments and simulations, the size (S) and duration238

(T ) of each avalanche of signals is defined by counting the total number of events in the239

avalanche and the number of time bins over which the avalanche propagates. The time bins240

have widths corresponding to the mean IEI.241

Fitting and goodness-of-fit. As described in detail in Ref. 29 we follow the maximum242

likelihood (ML) approach of Ref. 50,51 to estimate power law exponents in the IEI and243

avalanche size distributions. The ML estimators are obtained for both power law and expo-244

nential distributions. We use the Akaike information criterion52 to identify which distribution245

is more likely and find in all cases that it is the power law. In all cases, we fail to reject246

the null hypothesis that distributions are power-law-distributed (we require p-values > 0.2),247

but we do reject the null hypothesis that the distributions are exponentially distributed (we248

find p-values < 0.01). We do not fit the event size (∆G) distributions because the precise249

shape of the distributions is not important to the analysis – they are however, well-fitted by250

long-tailed functions such as a weakly truncated power law.251

ML methods cannot be applied to data which is not in the form of a probability dis-252

tribution and so the standard linear regression techniques are used to obtain the measured253

exponents for A(t) and < S > (T ).254
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Figure S1: Leaky integrate and fire (LIF) mechanism due to atomic-scale dynamics. (a)
Applied voltage pulses (green) cause the formation of an atomic-scale hillock in one tunnel
gap (see schematic in Figure 1e). The hillock reduces the size of the tunnel gap and slightly
increases the current (black). The corresponding increase in conductance (blue) is imper-
ceptible on this scale. When the applied voltage returns to a ‘read’ level (0.1V between
pulses) before the atomic-filament formation process is complete, the hillock relaxes back
(‘leaks’), recovering the original current level (as emphasised by pink lines). After several
pulses, the hillock grows across the tunnel gap (Figure 1e) and atomic-filament formation
is completed, resulting in a switching event with a large change in conductance (‘fire’). (b)
Similarly, when filaments start to break due to electromigration it is possible to see a partial
recovery of the current during the time between voltage pulses. The pink lines again show
that this is a ‘leaky’ process. Again, signal integration resumes during the subsequent pulse
and is completed when the filament breaks completely (large decrease in G).

19



c

d

e

f

g

h

a b

Figure S2: Simulations showing mechanism for propagation of critical avalanches. (a)
Percolating network structure from a simulation with a system size of 200x200 particle di-
ameters. Near the percolation threshold, groups of particles (represented by different colors)
are separated by tunnel gaps which dominate the electrical transport. (b) Map of possible
connections (i.e. the tunnel gaps) between the different groups of particles shown in (a). In
response to an applied electric field, the tunnel gaps may be bridged by atomic scale filaments
but the arrangement of particles shown in (a) does not change. (c-h) Maps of current path-
ways (left column) and voltage-distributions (right column). Each atomic-filament formation
(green) or annihilation (yellow), triggers a subsequent temporally correlated switching-event
in a new location, resulting in dynamic restructuring of the network. Video V1 shows the
avalanche propagation in more detail.
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Figure S3: Large variation of measured values of change in network conductance (∆G). The
distribution of event sizes P(∆G) in the deterministic simulations is shown, both for a large
number of individual sites within the network (grey) and for all sites (black). The data from
each of four representative sites are highlighted with different colours showing that events
occuring at the same site can lead to very different ∆G. The broad range of ∆G values is
generated because the complex network is constantly being restructured and so each time
an event occurs at one physical location the network around it is different – see Figure S4.
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a b

Figure S4: Dynamical reconfiguration of the network. (a) Percolating network structure
and (b) map of possible connections (i.e. tunnel gaps) for the same parameters as in Figure
S2. (c-f) The plots show examples of the distribution of current pathways (left column) and
voltages (right column), after switching at a single site (highlighted with green and yellow,
corresponding to increases and decreases in ∆G respectively). Due to reconfiguration of the
network, in these examples switching at this one site results in the network conductance
G undergoing (a) a small increase ∼ 0.001Ω−1, (b) a large increase ∼ 1.15Ω−1, (c) a small
decrease ∼ −0.005Ω−1 or (d) a large decrease ∼ −1.15Ω−1.
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a b
Experimental Deterministic 

Figure S5: Effect of additional conduction pathways on the ∆G distribution. (a) Ex-
periment. Application of high voltages (first measurement; blue) results in destruction of
filaments connecting groups of particles so that during the second measurement (red) the
slope of P(∆G) decreases and there is an absence of events with large ∆G. (b) Similar effect
in the deterministic model. At low surface coverage (red) there are less conducting pathways
and therefore a lower slope and absence of large ∆G events.
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Comparison between percolating and memristive devices such as physically evolv-292

ing networks293

The differences in the structure of our percolating networks of nanoparticles25,29,37,46,49294

and the arrangement of nanoparticles in certain memristive devices4,9,38 is highlighted in295

Figure S6. For simplicity we focus on a comparison with the physically evolving networks296

(PENs) described in Ref. 38. The essential point is that in Ref. 38 the structure of the297

nanoparticle assembly changes after signals are applied: physical tracks through the particle298

network are observed after signals are applied. In contrast, in our devices no changes to the299

arrangement of nanoparticles occur at the usual operating voltages.300

For completeness we make the following further detailed comments on the distinctions301

between our devices and those of Ref. 38.302

1) We present SEM images showing the lack of structural changes in our devices at303

moderate voltages in Figure S7. We include also images of devices exposed to higher voltages304

which do show physical restructuring. We emphasise such restructuring is observed only at305

high voltages.306

2) While it is common in the literature to describe devices such as PENs38 as ’percolating’,307

percolation theory36 requires that the components (the nanoparticles) fill space randomly,308

which is indeed the case in our devices (see Refs. 25–27,30 and especially Refs. 29,36,37,46,49309

for a detailed description) but is not the case in Ref. 38.310

3) In Ref. 38 pathways through the network are formed by 3 processes (ionisation, migra-311

tion and reduction) that lead to restructuring of the nanoparticles and formation of nanoscale312

filaments that connect the electrodes. Similar processes are at work in our devices but ad-313

ditionally field-induced diffusion and evaporation are important.33,34,38 These processes take314

place on a local scale (i.e. between the nanoparticles) and hence lead to atomic scale switch-315

ing processes.11,12,22316

4) Typical memristive devices4,9,38 have sub-micron separations between electrodes, whereas317

our devices are 100µm across. Since the applied voltages are the same in Ref. 38 as in our318
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work, in our case the larger network means that active electric field near each particle is much319

smaller and wholesale re-arrangements of the nanoparticles are not possible (see Figure S7).320

Furthermore, the small devices of Ref. 38 do not allow the complexity and long-range spatial321

correlations required for criticality.322

Figure S6: Illustration of the structure of the percolating network and comparison with
memristive devices which exhibit formation of nanoscale conduction paths, as exemplified
by the physically evolving networks (PENs) described in Ref. 38. Top row: before application
of input signals (voltages). The percolating network consists of groups of particles that can
be modelled as overlapping discs37 whereas the PEN comprises discrete particles formed
by diffusion and aggregation processes.4,9,38 Bottom row: after application of input signals
(voltages). The physical structure of the percolating network is unchanged, but some tunnel
gaps (red symbols) are bridged by atomic-scale filaments (orange symbols) that connect
groups of particles. Hence the conductivity in the network is modified by the formation (and
subsequent breaking) of atomic filaments. In the PEN the application of voltages causes
modifications of the physical structure and the formation of nanoscale conducting filaments
which connect the electrodes.
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5 µm 500 nm

5 µm 500 nm

Figure S7: Scanning electron micrographs of the percolating network after application of
moderate and high input signals (top and bottom rows, respectively). The left and right
panels show the same films at different magnifications. At the moderate voltages used for our
measurements the physical structure of the percolating network is unchanged. In contrast,
application of high voltages causes obvious modifications of the physical structure. The
nanoscale conducting filaments are similar to those observed in PENs.38

26



References323

(1) Waldrop, M. M. The chips are down for Moore’s law. Nature 2016, 530, 144–147.324

(2) Markov, I. L. Limits on fundamental limits to computation. Nature 2014, 512, 147–154.325

(3) Bullmore, E.; Sporns, O. The economy of brain network organization. Nature Reviews326

Neuroscience 2012, 13, 336–349.327

(4) Wang, Z.; Wu, H.; Burr, G. W.; Hwang, C. S.; Wang, K. L.; Xia, Q.; Yang, J. J. Resistive328

switching materials for information processing. Nature Reviews Materials 2020, 5, 173–329

195.330

(5) Torrejon, J.; Riou, M.; Araujo, F. A.; Tsunegi, S.; Khalsa, G.; Querlioz, D.; Bor-331

tolotti, P.; Cros, V.; Yakushiji, K.; Fukushima, A.; Kubota, H.; Yuasa, S.; Stiles, M. D.;332

Grollier, J. Neuromorphic computing with nanoscale spintronic oscillators. Nature333

2017, 547, 428–431.334

(6) Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable com-335

munication network and interface. Science 2014, 345, 668–673.336

(7) Davies, M. et al. Loihi: A Neuromorphic Manycore Processor with On-Chip Learning.337

IEEE Micro 2018, 38, 82–99.338

(8) Jo, S. H.; Chang, T.; Ebong, I.; Bhadviya, B. B.; Mazumder, P.; Lu, W. Nanoscale339

memristor device as synapse in neuromorphic systems. Nano Letters 2010, 10, 1297–340

1301.341

(9) Burr, G. W. et al. Neuromorphic computing using non-volatile memory. Advances in342

Physics: X 2017, 2, 89–124.343

(10) Wang, Z. et al. Fully memristive neural networks for pattern classification with unsu-344

pervised learning. Nature Electronics 2018, 1, 137–145.345

27



(11) Terabe, K.; Hasegawa, T.; Nakayama, T.; Aono, M. Quantized conductance atomic346

switch. Nature 2005, 433, 47–50.347

(12) Stieg, A. Z.; Avizienis, A. V.; Sillin, H. O.; Martin-Olmos, C.; Aono, M.;348

Gimzewski, J. K. Emergent Criticality in Complex Turing B-Type Atomic Switch Net-349

works. Advanced Materials 2012, 24, 286–293.350

(13) Tuma, T.; Pantazi, A.; Le Gallo, M.; Sebastian, A.; Eleftheriou, E. Stochastic phase-351

change neurons. Nature Nanotechnology 2016, 11, 693–699.352

(14) Srinivasa, N.; Stepp, N. D.; Cruz-Albrecht, J. Criticality as a Set-Point for Adaptive353

Behavior in Neuromorphic Hardware. Frontiers in Neuroscience 2015, 9, 449.354
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