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ABSTRACT Background: EEG signals are extremely complex in comparison to other biomedical signals,
thus require an efficient feature selection as well as classification approach. Traditional feature extraction
and classification methods require to reshape the data into vectors that results in losing the structural
information exist in the original featured matrix. Aim: The aim of this work is to design an efficient approach
for robust feature extraction and classification for the classification of EEG signals. Method: In order to
extract robust feature matrix and reduce the dimensionality of from original epileptic EEG data, in this
paper, we have applied robust joint sparse PCA (RISPCA), Outliers Robust PCA (ORPCA) and compare
their performance with different matrix base feature extraction methods, followed by classification through
support matrix machine. The combination of joint sparse PCA with robust support matrix machine showed
good generalization performance for classification of EEG data due to their convex optimization. Results:
A comprehensive experimental study on the publicly available EEG datasets is carried out to validate the
robustness of the proposed approach against outliers. Conclusion: The experiment results, supported by
the theoretical analysis and statistical test, show the effectiveness of the proposed framework for solving
classification of EEG signals.

INDEX TERMS Brain-computer interfaces, Electroencephalography (EEG), Principal component Analysis

(PCA), Brain disorder.

I. INTRODUCTION

Electroencephalography (EEG) signals are electrophysiolog-
ical monitoring recording of electrical potentials to capture
the activity of the brain. Clinically, it refers to the signals
of brain’s spontaneous electrical activity over a short period
of time. EEG signals analysis has been actively used by
clinicians to identify abnormalities in human brain such as
depth of anesthesia, coma, sleep disorders, encephalopathies
and brain death etc. Early days, the investigations were
based on visual inspection by trained clinical, thus are
prone to error, qualitative and require extensive training.
The advancement in data acquisition devices and computer
technology have made it possible to identify abnormalities
successfully [27], [29].

EEG signals are extremely complex in comparison to other
biomedical signals, thus requires efficient feature selection
as well as classification approaches. Selection of important
and discriminant features is the process of selecting useful

subset of discriminant patterns. It is a key component for any
machine learning problem, aiming to identify, a new unseen
set of observation belong to which class based on the set of
training samples that consist of known observations. Selec-
tion of discriminant patterns not only help to improve the clas-
sification accuracy and reduces the computational complexity
but also helps to improve the generalization capability as
well as alleviates the effect of the curse of dimensionality by
reducing the dimensionality of the data [31], [33]. Traditional
dimensionality reduction approaches such as Principal com-
ponent Analysis (PCA), Linear discriminate Analysis (LDA)
etc. could be used for dimensionality reduction, however,
either these methods fail to select important pattern or show
poor performance in the presence of outliers.

To overcome the complexity challenge involved due
to high dimensionality of data, recently several methods
based on vector data have been applied and different vari-
ants of these methods have been proposed to improve
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the performance against outliers such as PCA [32], [36],
LDA [3], [28], LPP [7], SPP [25] and NPE [7] etc. Among
these dimensionality reduction methods, PCA is one of the
commonly used dimensionality reduction methods associ-
ated with multivariate analysis since its introduction by
Pearson [22] and Hotelling [9]. It projects the input high
dimensional data to linear orthogonal space that is much low
in dimensionality as compare to original data, with the aim to
sequentially extracts those uncorrelated orthogonal features
that maximizes the variability of the data, thus it guarantee
minimal loss of information. However, its major drawback
is that PCA is a linear combination of all variables and
loading (that are typically non-zero). There is additional cost
involved in extraction and processing of each features [14].
Furthermore, there may be several features that are not impor-
tant for potential application, that in results affect not only
accuracy but computational performance. Thus, dimension-
ality reduction and selection of important pattern is very
important, however, traditional methods are still sensitive to
outliers [32]. Furthermore, most of the methods require to to
reshape the data into vector form that present in the form of
matrix, which results in losing the structural information exist
in the original featured matrix that is very important for the
task where such information is an important factor i.e. EEG
signals consist of voltage fluctuations at several electrodes
with respect to time, thus have strong correlation with respect
to certain frequency band and channels. Thus, methods based
on vector data fail to deal with such data i.e. data is required
to be transform in to vector form before applying traditional
methods for dimensionality reduction (i.e. PCA and LDA),
consequently, such methods may not be able to exploit the
embeded structural information very well in results affecting
the performance. Recently, several variants of PCA have been
presented to design robust dimensionality approach that not
only able to select useful features but also robust against
outliers [21].

Vector based methods have been successively applied
for the high dimensional data classification and has shown
promising classification performance. State-of-the-art vec-
tor based methods are (LDA) [24], [34], [40], support vec-
tor machines (SVM) [6], [10], [41], K nearest neighbor
(KNN) [5], [16], [20]. However, with all these methods,
we need to transform the matrix/tensor data in the form
of vectors, thus affecting the classification performance due
to the loss of structural information embedded in the data.
An alternative approach to overcome this problem is to
concatenate the matrix in to vectors before data classifi-
cation which in turns in increasing the the data dimen-
sion that results in model over-fitting. To deal such data,
recently researcher suppress the matrix into vectors using
common spatial patterns [1], [13], [15], [17], [35], [39].
Although, these methods are able to deal with matrix/tensor
data directly, however ignore the topological structure exist in
the matrix, whereas considering such structural information
provides an additional advantage to improve the classification
performance.
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Recently, sparse principal component analysis is being
widely used to deal with the dimensionality challenge as well
as to reduce the number of explicitly used variables. Inspired
by perform of sparse PCA and its variants, in this paper,
we performed feature selection using sparse methods and
used support matrix machines as classifier. Results showed
that sparse based dimensionality methods outperform the tra-
ditional dimensionality methods. Moreover, analysis shows
that methods based on matrix directly, showed much better
performance as compare to vector based methods. Compared
to the state-of-art featured selection methods, the key con-
tributions of this work as follows: Redundancy in the high
dimensional data makes it a good candidate sparse represen-
tation, thus we utilized sparse principal component analy-
sis and its variants for dimensionality reduction. Reshaping
the data into vectors could ultimately destroy the structural
information, thus, we have applied dimensionality reduction
and classification methods directly on matrix data to preserve
the structural information embedded in data. To validate the
gain in performance, we have applied matrix based classi-
fication on be three benchmark EEG datasets. Experimental
evaluation (discriminant features and classification) shows
the considerable improvement in most cases.

Il. MATERIALS AND METHODS

This study present a framework for the classification of
epileptic EEG signals. The aim of this work is to explore
the feature selection and classification methods based on
matrix data. In this work, we investigates the robust feature
extraction based on sparse component analysis (RISPCA,
ORPCA) and compared their perofrmance with state of the
art feature selection methods. The feature extraction based
on RJISPCA and ORPCA are robust against outliers and much
efficient for dimensionality reduction. For classification pur-
pose, we have used support matrix machines. Furthermore,
we have used multiclass support matrix machines via maxi-
mizing the inter-class margin, that is computational efficient.

A. PREPROCESSING

Motor imagery-based brain computer interaction translates
the mental imagination of human movement into commands,
consist of huge inter-subject variability with respect to the
characteristics of signals of brain [2]. Moreover, EEG signals
may consist of non-stationary and transitory behaviour such
as measurement artifacts, outliers as well as non-standard
noise in the EEG signal makes it difficult to classify. Due
to the complexity of the EEG signals, we can not extract
features directly. In order to overcome the variations involved
in EEG signals, spatial filtering could be used as an effective
approach to reduce the variability of EEG signals i.e. elim-
ination of uncorrelated formations. We first need to deter-
mine the appropriate sample size of EEG signal. The desired
sample unit is calculated as n = @, where n is the
number of sample size, p is an estimated proportion attributes,
Z is the standard normal variate and e is the margin of error.
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TABLE 1. Summary of dataset.

Dataset subjects ~ Dimensions  Training Set  Test Set
BCI VI2a 54 240 x 150 72 72
BCIIIIVa 5 120 x 300 140 140
BCIVI2b 9 150 x 24 200 160

In case of finite population, sample size can be calculated as
n = m, where N is the size of population. In case
if p is unknown, we have used 0.50 to produce the largest
sample size. In this work, we have set the value of p =
0.50 for maximum sample size, and Z = 2.58, N = 4097 and
e = 0.01 for 99% confidence level.

EEG data is stochastic and non-stationary, thus EEG
signals are required to be stationary before classification.
To make it stationary, we have divided the signals into several
segments based on specific time interval in order to make it
stationary for that short interval. We have segmented the EEG
signals in to S number of sub sample based on T interval of
time by defining S number of windows over EEG signals.
In this experiment, we have divided the EEG signals into
4 windows (size of 1024, 1024, 1024 and 1025) with respect
to time. In order to remove the artifacts as well as unrelated
sensorimotor rhythms, in this work, we applied Filter Bank
Common Spatial Pattern (FBCSP) algorithm [2] and perform
autonomous selection of discriminative subject-specific fre-
quency range in order to perfrm band-pass filtering of the
EEG measurements. In order to select the dominant channels
in each motor imagery, we applied CSP [15]. We further
applied time domain parameters for feature selection [23] due
to its proven robust performance [37], [42], [43]. The next
task is allocation of sample size among S number of windows.
We have calculated the best sample size for nth window OA.

ISP 2
N; =1 Varl-yj

n(i) = ey

where n is the sample size required for ith window, Var is the
variance of jth chanel in ith window.

B. FEATURE EXTRACTION

Feature selection is the process of choosing those pattern
that are small in numbers as compare to original data and
can best describe the data. It is the key component for
any machine learning problem, aiming to identify, to which
set of categories, a new unseen observation belongs on the
basis of a training set of data containing known observa-
tions. It does not only help to increase the classification
performance but also overcome the computational complex-
ity. Moreover, it improves the generalization capability and
alleviates the effect of the curse of dimensionality. Traditional
feature extraction and classification methods require data to
be transformed in the form of vectors before processing,
which results in losing of structural information embedded
in the original data matrix. In this work, we applied different
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variants of PCA on time domain parameters for efficient
feature selection and dimensionality reduction.

Although principal component analysis and its different
variants are able to improve the performance by overcoming
the outliers to some extent, however the major disadvantage
of these variants is that they even select those features that
are already selected in other principal components thus fea-
ture are redundant. Furthermore, these methods are unable
to select the required important features that could helps to
improve the classification performance, however, selection
of robust, discriminative and useful features could helps to
improve the classification performance thus are important
especially in the case, when selected features have some
physical meaning. In order to overcome the redundancy,
an alternative and simple approach is to consider the only
loadings that are greater than threshold, however, it is inef-
ficient and is not able to select important features. Spar-
sity could be achieved by imposing the £( coefficient on
the regression coefficient which penalizes the number of
non-zero coefficient whereas the loss term helps to minimizes
the reconstruction error simultaneously.

min = min |X — ATBX|% + A ;
arg A,IB arg A,IB I Iz +AllBillo

subject to ATA = I 2)

The above objective function is able to determine infor-
mative features individually, however, it does not consider
the structural relationship among mulitple features. SCoT-
LASS successfully derives sparse loadings using the lasso
constraint in PCA, however, it is computationally inefficient,
and lacks a good rule to pick tuning parameter [11]. To derive
principal components with sparse loadings, several methods
have been proposed to achieve the sparseness goal. Sparse
PCA produces modified principal components with sparse
loadings that are obtained by imposing the lasso constraint
on the regression coefficients [45].

n

arg min = arg min E lxi — ABTx,-||2
A,B AB =
=

k k
Ha D IBIF D aliBilh 3
j=1 j=1

However, SPCA does not jointly select the useful features
as £1-norm is imposed on each transformation vector whereas
£1-norm is not able to select consistent features. In addition,
£>-norm is imposed on loss term, thus, it still suffers from
outliers. Yi et al. presented JSPCA that select useful features
jointly which helps to enhance the robustness of objective
function against outliers [38]. In other words, JSPCA imposes
the joint sparse constraints i.e., £2 (-norm is imposed on
loss term as well as on the regularization term respectively,

to improve the robustness of algorithms.

argminJ(B, A) = argmin | X —AB"X|l21 + MIBl21 4

Khan et al. presented joint group sparse PCA (JGSPCA)
that ensure the group sparsity and forces the basic coefficient
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corresponding to a group of features to be jointly sparse [14].
The group sparsity ensure that the structurally integrity of
the features. JGSPCA is able to select important features
jointly and ensure the group sparsity, however, it is sensitive
to outliers due to sensitivity of F-norm against outliers.

8 8
in= in|X—Y XeATBE|2+2) nilBCIF (5
argmin=argmin |X =3 XcA"BUIj+13_ nilB%IF (5)

i=1 i=1

Razzak el al. introduced outliers robust two dimensional
principal component analysis (ORPCA) by imposing the joint
constraints. ORPCA relaxes the orthogonal constraints and
penalizes the regression coefficient as a result ORPCA is
able to selects important features and in the meantime it
ignores the same features that have already be selected in
other principal components [31], [32].

N
2
min /(0. P) = rg}g; 1% - xi0P" |+ a0} 6
]:

Most of the existing methods, the projection involves the
selection of all the original features thus there may be irrel-
evant and redundant features. Furthermore, considering the
outliers presence in the data, to integrate selection of the
features process into subspace to exclude redundant features
and select optimal feature set, robust 2D-joint sparse PCA
(2D-JSPCA) has freedom to jointly select the useful fea-
tures as well as discard the features that already exist in
other principal components [30]. It effectively combines the
sparsity-inducing regularization and robustness of 2D-PCA
by imposing the jointly sparse constraints on its objective
function. The addition of penalty term makes the objective
function robust against outliers as it penalizes all regression
coefficient correspond to single feature as a whole.

N
2
inJ(0, P)=min Y |X; - X;0P" |
B/ D =i - xort],
j:

+AalQIF + 2l Qll21 (7)

Besides intra-sample outliers, traditional classifiers either
vector based or matrix based support machines are extremely
fragile to the presence of outliers and are efficient to classify
the corrupted data. Recently, low rank matrix completion
methods have proven its important for exact matrix recovery
from only partial of observation i.e. suppose we are given
partially observed matrix, and we know that the full matrix
can be decomposed as X = L 4 S, where matrix L is low
rank and S is sparse and consist of only few non zero columns.
Here, both matrices L and S have arbitrary magnitude, rank of
matrix L as well as position and number of corrupted columns
of matrix S are unknown.

1211;1||L||*+)»||S||1 st.X=L+S, ®
where A is the tuning parameter. RPCA helps to decrease the
interclass variability. In RPCA, the low rank matrix L consist

of meaningful features where as the sparse matrix S is the
residual matrix tht consist of only few non zeros columns.
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IIl. CLASSIFICATION
The classical soft margin SVM is defined as

1
arg min Ezr(wTw) +CY 1=ylr@Tx) + b1, 9)

where 1 — y;[tr(WTX;) + b] . is the hinge loss, W € RP? is
the vector of regression coefficients, b € RPY is an offset term
and C is a regularization parameter.

In equation 9, we need to reshape the matrix into vectors
which result in losing the correlation among columns or rows
in the matrix. By directly transforming the equation 9 for
matrix, we get

1
argmin Ztr(WTW)+C Y 1 —yiltr(WIXp) + b1, (10)

It is known that tr(WWT) = vec(W)vec(WT) and
tr(WTX;) = vec(W) vec(X;), thus the above objective func-
tion cannot capture the intrinsic structure of each input matrix
efficiently, due to the loss of structural information during
the reshaping process. To take the advantage of intrinsic
structural information within each matrix, one intuitive way
is to capture the correlation within each matrix through
low-rank constraints on the regression parameter. Recently,
Razzak et al. introduced robust support matrix machine (as
shown in equation 11) which is a combination of hinge loss
and regularization terms ({1 norm and nuclear norm) as
spectral elastic net penalty [26]. The regularization terms pro-
motes the structural sparsity and shares similar sparsity pat-
terns across multiple predictors. RSMM is able to maximize
the inter-class margins and considers the strong correlation of
rows and columns in the matrix, thus, in this work, we have
used it for the classification of EEG signls.

argminy |[Wlla1 +tl|W[l. +C Y &

wixi+b>1-¢, ifyi=jwlx+b<—1+8,
if yi #J€ =0 (11)
where S{ = l—yl-[tr(WTX,')wLb]Jr is the hinge loss,

W e RPY is the vector of regression coefficients, b € RPY
is an offset term and C is a regularization parameter.

IV. RESULTS AND EVALUATION

The main goal of this work is to elucidate the best comparable
performance as compared to state of the art approaches.
In this experiment, we have used four evaluation measures to
compare the performance of proposed approach with seven
state of the art approaches on four publicly EEG data-sets.
In this section, we describe the experimental setup and eval-
uate the feature selection on EEG classification. As our
objective is matrix data classification, thus, for evaluation
purpose, we have used datasets where the data is naturally
in the form of matrix and structural information is very
important such i.e. voltage fluctuations of EEG signal have
very strong correlation with respect to certain frequency band
and channels. We used different types of publicly avail-
able benchmark real-world datasets for EEG classification,
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TABLE 2. Classification performance (accuracy) of different algorithms on dataset BCI 2B.

Classifier SVM SVM SVM SMM SMM

SMM

SMM SMM SMM RSMM RSMM RSMM

Subject/Feature BCI win PCA RPCA 2DPCA 2DRPCA

RPCA

JGSPCA ORPCA RISPCA RPCA ORPCA RISPCA

S1 0.60 0.68 0.73 0.69 0.69

0.68

0.68 0.71 0.72 0.72 0.73 0.74

S2 0.40 0.50 0.53 0.51 0.51

0.51

0.52 0.52 0.54 0.55 0.56 0.55

S3 0.21 0.52 0.54 0.53 0.51

0.53

0.53 0.51 0.54 0.55 0.56 0.56

S4 0.95 0.91 0.91 0.92 0.87

0.93

0.93 0.95 0.93 0.95 0.97 0.96

S5 0.86 0.83 0.82 0.80

0.84

0.83 0.84 0. 86 0.87 0.88 0.87

S6 0.61 0.73 0.82 0.76 0.79

0.74

0.75 0.74 0.76 0.78 0.79 0.82

S7 0.56 0.69 0.76 0.75 0.72

0.71

0.72 0.71 0.75 0.76 0.78 0.77

S8 0.85 0.82 0.91 0.87 0.85

0.86

0.83 0.90 0.90 0.90 0.92 0.92

S9 0.74 0.74 0.84 0.77 0.78

0.76

0.76 0.79 0.81 0.84 0.83 0.86

Avg. 0.67 0.71 0.76 0.74 0.72

0.73

0.73 0.75 0.74 0.76 0.78 0.78

we have used two three EEG classification datasets BCI-III
IVa, BCI-VI 2a and BCI-VI 2b. The summary of datasets
is described Table 2 II-A. Notice that, the dimension of data
is much higher than the number of images with in training
set for vector classification due to reshaping the matrix data
into vectors. This makes the data classification task not only
complex but also affect the classification accuracy.

To validate the effectiveness of the proposed classifier,
we extensively evaluate the proposed approach and compare
it with both vector based classifiers (i.e. SVM [4], [8], Sparse
SVM (SSVM) [44], LSVM [19], BSVM [12]) as well as with
state of the art matrix based classifiers.

A. DATASET

In this experiment, we have used four publicly available
benchmark data-sets namely IIIa,' IVa? of of BCI competi-
tion IIT and IIa,? TIb* of BCI competition IV. Illa consisted
of 60 channel single trial EEG signal obtained from three
subjects(k3b, k6b and 11b) while performing four classes
of motor imagery (left-hand, right-hand, foot and tongue
labeled as class 1, 2, 3 and 4 respectively). IIla consisted
of 45, 30, 30 trials per class for subject k3b, k6b and 11b
respectively. Dataset IVa consist of 128 channel, recorded
in four session without feedback from five healthy subjects
sitting on comfortable chair with arms resting on armrests
while performing right-hand or foot motor imagery. IVa con-
sist of 280 trials for each subject with sample rate 100Hz.
Similarly, ITa data-set collected in two sessions from nine
subjects performing four classes of motor imagery (left-
hand, right-hand, foot and tongue ). Ila consisted of 288 in
total (72 trails per motor imagery). It consisted of 22 EEG
channels and 3 monopoloar EOG channels. Illa and Ila are
sampled with 250 Hz and band-pass filtered between 0.5 Hz
and 100 Hz. In this experiment, we have considered two
subjects (k6b and 11b) for IIla data-set and EEG channel
for Ila dataset. To evaluate, we transformed the multiclass
classification problem into binary class problem and gener-
ated CZ = 6 binary subjects namely, L-vs-R, L-vs-F, L-vsT,
R-vs-F, R-vs-T and F-vs-T. The dataset IIb is also collected
in five sessions (first two without feedback and last three

1 http://www.bbci.de/competition/iii/#download
2http://vvvvw.bbci.de/competition/iii/#ifdatfset,iva
3 http://www.bbci.de/competition/iv/#dataset2a
4http://WWW.bbci.de:/competition/iv/#dataset2b
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FIGURE 1. Comparative evaluation of feature extraction methods on IVa
dataset.

with feedback) from 9 right-handed subjects having normal
vision, sitting Im away from flat screen monitor. The IIb
dataset of BCI competation IV was collected from nine sub-
jects while performing left-hand or right-hand motor imagery.
IIb consist of 400 trials that are recorded at 3 bipolar channel
with sampling rate 250Hz. Thus, in total, we have 71 EEG
subject.

B. EVALUATION METRICS

In order to evaluate the performance of proposed classifier,
we employed different evaluation metrics such as kappa
coefficient, precision, recall and F-measure. Furthermore,
we have also compared the training time with state of the art
approaches. Kappa measure provide evaluation comparison
as it consider the the accuracy occurring by chance better.
higher the value of k means gain is better classification perfor-
mance and £ > 0 shows the gain is better than random guess.
It is defined as k = “=2—F2 Here, p, is the random guess
i.e. for a k-class dataset with balanced sample sizes among
different classes, we have p, % The other evaluation
measures we have used are precision, recall and F-measure.
Precision is a measure of classification relevancy i.e. low
precision indicates many false positives. Recall is measure
of classification completeness and low recall indicates many
false negatives. F Score or the F Measure is the weighted
harmonic mean of precision and recall.

Furthermore, in this experiment, we have performed
k-cross validation (k = 5) to see the generalization of the
results by randomizing partitioning the data in to five equal
size set and used four set to train classifier and one is used for

VOLUME 7, 2019



I. Razzak et al.: Robust Sparse Representation and Multiclass Support Matrix Machines

|EEE Journal of Translational

Engineering in
Health and Medicine

®JSPCA m JGSPCA = ORPCA = RISPCA

0s
083
os
075
07
055
06
st u]
os
1 2 - as as a7
075
%]
088
06
EES
o
1 2 " as a5 A7
os
05
0e
075
k]
055
06
nse
s
as as as a7

AL Az A3

a8 A3

a8 A3

a8 A3

os

0.5

08

075

o7 .

o5

oe

055

os -

s A3 As AT RS aS

AL Az A3

085
08
075
0
D58
0
s
0 -
Az s s A7 s A3

Al A2 3

0z
035
08
075
07
055
0s
035
0s -
AL a2 a3 & as As A7 A8 A9

FIGURE 2. Comparative evaluation of feature extraction methods on llla dataset.

validation to evaluate the model. The approach is repeated
five times such that each of the ten subsets is used exactly
once as the validation data.

We first evaluted the performance on BCI-IV-2a EEG
dataset of BCI competition-IV. BCI-IV 2a dataset consists of
EEG data from 9 healthy subjects recorded in two different
sessions performing four classes of motor imagery (left-hand,
right-hand, foot and tongue labeled as class 1, 2, 3 and
4 respectively). There are 72 trials per motor imagery task
and 288 trials in total per session for each individuals.

C. RESULTS

Motor imagery-based BCI, which translates the mental imag-
ination of movement to commands, is the huge inter-subject
variability with respect to the characteristics of the brain sig-
nals [2]. Furthermore, poor characteristics of EEG data such
as measurement artifacts, outliers and non-standard noises
make it challenging task. In order to reduce the variations,
spatial filtering has prevent itself as an effective method
for extraction of features has been used as a preprocessing
technique to explore the discriminative spatial patterns and
eliminate uncorrelated information. In this paper, we have
used Filter Bank Common Spatial Pattern (FBCSP) algo-
rithm [2] to filter out the artifacts and unrelated sensor motor
rhythms by performing autonomous selection of discrimina-
tive subject-specific frequency range for band-pass filtering
of the EEG measurements. To select dominant channels for
each motor imagery task, we have applied CSP [15] followed
by Time domain parameters for feature selection [23] due to
its robust performance [37], [42], [43]. We further applied
PCA and its variants to select robust features from time
domain parameters. As we have selected binary classifier,
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TABLE 3. Comparative evaluation of classification performance of
different algorithms on IlIA data-set.

Method Kappa Precision Recall F'7 Score
PCA-SVM 0.732 0.768 0.799 0.804
2DPCA-SMM 0.784 0.85 0.838 0.844
JSPCA-SVM 0.871 091 0.903 0.906
JGSPCA-SMM 0.782 0.847 0.836 0.841
ORPCA-SMM 0.901 0911 0.901 0.907
RISPCA-SMM 0.905 0.906 0.897 0.904
ORPCA-RSMM 0914 0.926 0915 0.931
RPCA-RSMM 0916 0.924 0.920 0.924
RISPCA-RSMM 0916 0.927 0918 0.935

thus thus, to evaluate, we transformed the multiclass clas-
sification problem into binary class problem and generated
Cf = 6 binary subjects namely, L-vs-R, L-vs-F, L-vsT,
R-vs-F, R-vs-T and F-vs-T. We have fed the time domain
parameters to support matrix machines for classifications and
averaged the classification accuracy of nine subjects for each
subset. Table 2 and Table 3 shows the comparative evaluation
on BCI EEG dataset. Results showed its strong efficiency
in the task of EEG signal classification by outperforming
state of the art matrix based classification methods. This is
due to the fact that EEG signals are strong correlated and
sparse. RSSM leverages the structural information as well as
dimensionality challenge and promote structural sparsity and
model the intrinsic structure. As a result, the regularization
term £ ; norm along with the nuclear norm and loss not only
helps to avoid the inevitable upper bound for the number of
selected features but also combines the property of low-rank
and sparsity together. Furthermore, the loss function based
on {31 and the nuclear norm could help to overcome the
outliers as methods based on £, [18] and £ [42] are sensitive
to outliers.

We further evaluated the performance of feature selection
methods on BCI-IV 2b EEG dataset used for the detection
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FIGURE 3. Behaviour of A on on the classification performance for Ila and llla datasets.

of motor imagery with left and right hand from nine healthy
subjects. For each subject, five sessions are recorded, first two
sessions ( feedback are not considered) are used for training
and last three session (recorded with feedback) are used for
classification. The evaluation results of all algorithms on
the testing set are reported in table 2 and table III. Results
showed that RISPCA provided better classification accuracy
as compared to state of the art matrix classification methods
that shows that RISPCA is powerful in selection of robust
features. Further mover, we have noticed that RSSM pro-
vide considerably better performance as compared to support
matrix machines and support vector machines.

We further evaluated the performance of RSSM on
BCI III-IVa dataset. The BCI III-IVa dataset consist of
118-channel EEG signals recorded from five subjects (aa, al,
av, aw and ay) sampled at 100Hz. The signals are sampled
with 250 Hz and band-pass filtered between 0.5 Hz and
100 Hz. For preoprocessing and feature extraction, we per-
formed same techniques that are applied on BCI-IV 2a
EEG dataset. The evaluation results of all algorithms on the
testing set are reported in figure 2, figure 3, table 2 and
table 3. Results showed that matrix based classifier outper-
form vector based classifiers on all subjects. In comparison
to matrix based methods, ORPCA and RJSPCA achieves best
performance.

D. DISCUSSION

In this section, we provide the comprehensive analysis of
feature selection and classification methods. Notice that,
the JGSPCA and RJSPCA achieved better performance as
compared to the state of the art feature selection methods.
he proposed framework not only results in high classification
performance but also low FAR. Comprehensive evaluation on
benchmark EEG dataset showed that dimensioanlity reduc-
tion and classification that directly based on matrix are much
better than vector based methods. Figure 3 and Table 2 shows
the comparative evaluation on BCI competition IIla and BCI
competition IVa respectively. Notice that, methods based on
vector showed poor performance in comprasion to matrix
based methods. This is due to the loss of structural infor-
mation that exisit in the data. Moreover, methods based on
vector are computationally complex and feature dimensions
are high due to reshaping of matrix into vector. From matrix
based methods, feature selection using RISPCA and ORPCA
provided better classification rate. This is due to the robust

2000508

and joint feature selection for RJISPCA. Similarly, robust
PCA that help to deal with outliers through matrix recovery.
This shows that RISPCA and ORPCA suppress the role of
outliers by joint feature selection and low rank minimization
respectively. The proposed approach reveals the geometric
structure due to the fact that it select the features by maintain-
ing the spatial structural information of the image. In terms
of results both RISPCA and ORPCA based classification
are comparable, however, RISPCA is better in term of com-
putational complexity. In results, we can say, that matrix
based methods such as ORPCA, RJSPCA are able to finds
the representative features from high-dimensional space that
are used for classification. It reveals the geometric structure
embedded in the data due to the fact that it select the fea-
tures by maintaining the spatial structural information of the
matrix. Figure 3 shows the behaviour of sparse and low rank
on classification performance by capturing the correlation of
data matrix.

V. CONCLUSION

In this work, we validated that direct matrix based classi-
fication improves the classification performance as vector
based methods ignore the topological structure embedded
in the matrix data. We performed evaluation on benchmark
EEG datasets. The proposed framework not only results in
high classification performance but also low FAR. Compre-
hensive evaluation showed that dimensioanlity reduction and
classification that directly based on matrix are much better
than vector based methods. Results showed that RISPCA and
ORPCA provided better classification rate. This is due to
the robust and joint feature selection for RISPCA. Similarly,
robust PCA that help to deal with outliers through matrix
recovery. In terms of results both RISPCA and ORPCA based
classification are compareable, however, RISPCA is better in
term of computational complexity.
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