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CAME: Content- and Context-Aware Music
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Abstract— Traditional recommendation methods suffer from
limited performance, which can be addressed by incorporating
abundant auxiliary/side information. This article focuses on
a personalized music recommender system that incorporates
rich content and context data in a unified and adaptive way to
address the abovementioned problems. The content information
includes music textual content, such as metadata, tags, and
lyrics, and the context data incorporate users’ behaviors,
including music listening records, music playing sequences,
and sessions. Specifically, a heterogeneous information network
(HIN) is first presented to incorporate different kinds of content
and context data. Then, a novel method called content- and
context-aware music embedding (CAME) is proposed to obtain
the low-dimension dense real-valued feature representations
(embeddings) of music pieces from HIN. Especially, one
music piece generally highlights different aspects when
interacting with various neighbors, and it should have different
representations separately. CAME seamlessly combines deep
learning techniques, including convolutional neural networks
and attention mechanisms, with the embedding model to capture
the intrinsic features of music pieces as well as their dynamic
relevance and interactions adaptively. Finally, we further infer
users’ general musical preferences as well as their contextual
preferences for music and propose a content- and context-aware
music recommendation method. Comprehensive experiments
as well as quantitative and qualitative evaluations have been
performed on real-world music data sets, and the results show
that the proposed recommendation approach outperforms state-
of-the-art baselines and is able to handle sparse data effectively.

Index Terms— Attention, content, context-aware, embedding,
recommender systems.

I. INTRODUCTION

THE digital music market has a rapid growth, which
benefits from innovation on mobile internet technologies

as well as smart digital devices. Based on the 2019 Inter-
national Federation of Phonographic Industry (IFPI) Global
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Music Report,1 the global recorded music market has achieved
growth by 9.7% in 2018, which is the fourth consecutive year
of growth. Specifically, 47% of the global revenue increase
is driven by online music revenue. Today, smart mobile
devices are capable of storing thousands of music pieces, and
mobile applications allow users to access millions of music
conveniently via mobile Internet. Meanwhile, it becomes more
and more difficult for users to obtain the music pieces that
meet their preferences.

Recommender systems [1]–[4] are proposed to decrease the
search costs by helping users to find the relevant items from
a huge amount of online content. The algorithmic advances
of recommendation methods applied in various fields [5], [6]
also have improved the performance of music recommenda-
tion. However, the traditional approaches usually suffer from
problems, such as low accuracy and data sparsity, especially
for a huge number of music pieces. Hybrid recommendation
approaches [7], [8] are developed to alleviate these problems
by combining traditional recommendation methods with sup-
plementary information, such as associated textual descriptions
and item metadata. Nevertheless, existing hybrid methods
cannot fully exploit interactive/context data and content infor-
mation in a unified and adaptive way.

Specifically, music listening is typical contextual behavior,
and the contexts can help predict users’ preferences precisely
as well as perform accurate music recommendation. In gen-
eral, the popularity of smartphones enables people to listen
to music almost anywhere at any time, which makes the
dynamic contexts difficult to obtain directly. Besides, music
content data, such as metadata, description, and lyrics, contain
various useful information, which can help learn the feature
representation of music and infer users’ musical preferences.
Furthermore, one music piece generally highlights specific
aspects dynamically when listened to together with different
music pieces or by different listeners. For instance, a piece
of pop–rock music may present more rock and roll features
when it is played together with other rock music pieces, and
the same music piece may show its pop styles when listened
to by pop music fans. Therefore, how to fully exploit rich
context information and kinds of content data is a key factor
to achieve better recommendations.

Based on the abovementioned analysis, we propose a
content- and context-aware music recommendation model
that can exploit heterogeneous information to perform pre-
cise music recommendation. Specifically, inspired by the

1https://www.ifpi.org/news/IFPI-GLOBAL-MUSIC-REPORT-2019
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Fig. 1. Overall framework of the proposed CAME approach. HIN can incorporate different kinds of data and information. Then, the structure component
in CAME is used to obtain the structure feature representation (structure embedding) from behavior information in HIN, such as users’ listening behaviors,
music playing sequences, and sessions. Besides, the text component in CAME is able to incorporate content information in HIN, including singer, album, tag,
description, and lyrics, as well as learn text embeddings for music vertices. (a) HIN. (b) Model framework and objective.

collaborative filtering (CF) method based on matrix factor-
ization, we propose a model to learn the latent real-value
low-dimension feature representations from both interac-
tive/context data and textual content data. The framework of
the proposed approach is shown in Fig. 1. First, we incor-
porate different kinds of data and information into a unified
model, namely, heterogeneous information network (HIN).
Specifically, content information includes music textual con-
tent, such as metadata, tags, and lyrics, and the context
data incorporate users’ behaviors, including music listening
records, music playing sequences, and sessions. Then, we pro-
pose a content- and context-aware music embedding (CAME)
method to obtain the low-dimension dense real-valued feature
vector (embedding) of music pieces from HIN. Especially,
we consider that one music piece generally highlights different
aspects when played together with various kinds of music,
and it should have different representations separately. CAME
can learn the content- and context-aware embeddings of music
pieces via network embedding and convolutional neural net-
works (CNNs) with attention mechanism and is able to model
the intrinsic features of music pieces as well as their relevance
and interactions precisely. Finally, we infer users’ general
musical preferences as well as their contextual preferences
for music and propose a content- and context-aware music
recommendation method.

Compared with existing methods, the proposed approach is
capable of: 1) incorporating and leveraging interactive context
data and textual content information to alleviate the data
sparsity problem; 2) adaptively coping with various aspects of
items (music) when interacting with different neighbors; and 3)
capturing dynamic features and relevance from heterogeneous
information precisely to further improve the performance of
recommendation.

We summarize the main contributions of this article as
follows.

1) We present HIN that can encode interactive/context data
and textual content data in a unified and flexible way.

2) We propose a novel CAME model that seamlessly
combines deep learning techniques, including CNN and
attention mechanism, with embedding model to learn the
content- and context-aware low-dimensional representa-
tions (embeddings) of music pieces from HIN precisely
and adaptively for a better recommendation.

3) Comprehensive experiments, including quantitative and
qualitative evaluations, are conducted on real-world data
sets, which demonstrate that the proposed model out-
performs state-of-the-art baselines and is able to handle
sparse data effectively.

The rest of this article is organized as follows. In Section II,
we discuss the related works. Problem definitions and the
proposed approach are presented in detail in Sections III and
IV. The experimental results and analysis are described in
Section V. In Section VI, we conclude a summary and give
future work.

II. RELATED WORK

We introduce related works from three aspects, including
music recommendation, network embeddings, and the atten-
tion mechanism that inspire this work.

A. Music Recommendation

Generally, existing works on music recommendation can
be divided into CF methods, content-based recommendation
methods, context-aware methods, and hybrid recommendation
methods [9].
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Specifically, CF methods [10] can be categorized into user-
based CF (UCF) and item-based CF (ICF). UCF approaches
estimate the relevance between users based on users’ behaviors
and perform music recommendations according to similar
users’ musical preferences, while ICF methods perform rec-
ommendations based on similarity or relevance between items.
Content-based recommendation approaches [11], [12] conduct
recommendations mainly based on music content information
as well as the profiles of users’ preferences, which can be
inferred from users’ historical listening records. Context-aware
recommendation methods [13], [14] incorporate the contexts
related to environments or users to achieve better recom-
mendation. The environment-related contexts include temporal
contexts [15], geographical contexts [16], and so on. The user-
related contexts include activity [17], emotional state [14], and
so on. Hybrid methods [8] try to alleviate the influence of data
sparsity by integrating different recommendation strategies and
usually obtain better results.

Lately, more and more works try to utilize users’ implicit
feedbacks in CF approaches [18], [19]. Compared with explicit
feedbacks, implicit feedbacks are usually more abundant and
easier to obtain. Besides, there are some works that try
applying long short-term memory (LSTM) neural networks
[20] and knowledge graph [21] in music recommendation, and
experiments confirm their effectiveness.

In this article, we focus on leveraging content and context
information by an HIN and use deep learning techniques to
capture dynamic features and relevance between music pieces
adaptively to further improve the performance of recommen-
dation.

B. Network Embedding

This work is also inspired by approaches of network embed-
ding [22]–[25] in general, which can map symbolic data from
a high-dimensional space with the dimension equal to the
number of data objects to a low-dimensional real-valued vector
space. By effectively capturing items’ intrinsic features and
relationships in the training set, the learned embeddings can
alleviate dimensional disaster and the problem of data sparsity.

Perozzi et al. [23] present DeepWalk that adopts a revised
random walk algorithm to learn the representation of vertices
in the information network. In this method, vertices with sim-
ilar structures have similar embeddings. Based on DeepWalk,
Yang et al. [25] propose an improved model named text-
associated DeepWalk (TADW) that takes the textual attributes
into consideration when learning the representation of ver-
tices. Tang et al. [24] propose a large-scale information
network embedding (LINE) method that combines the first-
and second-order information to obtain the representation
of vertices efficiently. The abovementioned methods have
achieved effective results on various tasks.

Recently, the techniques of network embedding are used by
lots of tasks, such as dimensionality reduction [26], knowledge
transfer [27], relation modeling [28], recommendation [29],
visual word mergence [30], object tracking [31], and question
answering [32].

C. Attention Mechanism

The attention mechanism in deep learning draws on the way
of human’s attention, and it has shown its effectiveness in lots
of fields and applications, such as computer vision [33], natural
language processing [34], [35], and prediction [36], [37].
Specifically, it is a weighted sum strategy that can automati-
cally and adaptively analyze which part of data or information
in the input is more significant. For instance, the attention
mechanism in machine translation is able to help measure
the relevance between words in source sentences and words
in target sentences. In brief, attention makes neural networks
more explainable and adaptive.

Recently, more works also try applying attention mecha-
nisms in recommender systems. For example, Pei et al. [38]
propose a model named interacting attention-gated recurrent
network (IARN) that uses attention mechanism to discriminate
the correlation between users and items, which increases
the interpretability of recommendation results. Miura et al.
[39] combine various kinds of information, including textual
content and user networks using attention model and recur-
rent neural network (RNN) in geolocation prediction, which
outperforms previous ensemble approaches. Chen et al. [40]
combine implicit feedback and a CF framework together with
attention model in both item level and component level for an
accurate multimedia recommendation. Attentional factoriza-
tion machines (AFMs) [41] adopt attention models to measure
the significance and relevance between different features as
well as their interactions in factorization machines (FMs).
Wang et al. [42] present an attentive deep model for better
article recommendation, which uses multiple text models to
adaptively capture important features of each article and then
utilizes attention-based network architecture to dynamically
assign influence factors on different models and effectively
learn editors’ dynamic selection criteria. Han et al. [43] pro-
pose a deep neural network-based recommendation framework
to learn the adaptive representations of users, and experiment
results show its effectiveness in the accurate recommendation.

III. DEFINITION

The definitions of key notations and symbols used in this
article are given in Table I. Formally, we define user set
as U = {u1, u2, u3 . . . , u|U |} and music set as M =
{m1, m2, m3 . . . , m|M |}, where |U | and |M| denote the
number of unique users and music pieces, respectively. H u =
{mu

1, mu
2, mu

3 . . . , mu|Hu |} represents user u’s historical music
playing sequence, and each music record mu

i ∈ M in the
sequence has corresponding time and devices information.

Furthermore, user u’s listening history H u can be divided
into different sessions Su = {Su

1 , Su
2 , Su

3 . . . , Su
|Su |} accord-

ing to time and device information. Specifically, user u’s nth
session is defined as Su

n = {mu
n,1, mu

n,2 . . . , mu
n,|Su

n |}, where
mu

n, j ∈ M . An example is given in Fig. 2. H u consists of eight
music pieces that are ordered according to their timestamps.
Obviously, m1

u , m2
u , and m3

u can be aggregated into session
Su

1 , and the other five music pieces can be assigned to session
Su

2 . Formally, Su = {Su
1 , Su

2 } is user u’s session set, where
Su

1 = {mu
1, mu

2, mu
3} and Su

2 = {mu
4, mu

5 , mu
6, mu

7, mu
8}. Note



TABLE I

SYMBOLS USED IN THIS ARTICLE

that Fig. 2 omits some information, such as playing devices
and description of music for simplicity.

Therefore, the recommendation task is defined as how to
recommend appropriate music piece to target user u according
to her/his historical records H u and Su and content informa-
tion of music.

IV. METHODOLOGY

The method that we present is composed of three com-
ponents: 1) HIN for incorporating various information; 2)
CAME for feature representation learning; and 3) content- and
context-aware music recommendation approach.

A. Heterogeneous Information Network

In order to learn the content- and context-aware embeddings
of music pieces from kinds of information, an HIN is presented
to incorporate the relationships between music pieces and
users as well as the content of music in a unified manner.
The definition of HIN and its edges are given as follows.

Definition 1: The user–music edges Eu,m ⊆ E are links
between users and the music pieces they have listened to,
and E is the edge set in HIN. User–music edges encode
correlations between music at the user level, which is similar to
the idea in CF approaches. For example, two music pieces may
be quite similar to each other if they are listened to by common
users, and the user–music edges in HIN can represent such
kind of information effectively. Besides, the user–music edges
also indicate users’ specific musical preferences as well as
the intrinsic features of music pieces. The user–music weight
wu,m ∈ [0, 1) is defined with hyperbolic tangent sigmoid
function as wu,m = tanh(w′) = (ew′ − e−w′

)/(ew′ + e−w′
),

where w′ ∈ (0,∞) is the frequency how often user u has
listened to music m.

Definition 2: The session–music edges Es,m ⊆ E are
links between sessions and the music pieces that appear in
the corresponding sessions. Generally, each user has specific
preferences for some time (during the session), and similar
music pieces are more likely to appear in the same sessions.

In other words, Es,m encodes music co-occurrence informa-
tion at the session level, which is equivalent to the idea in
context-/session-aware recommendation approaches. Similarly,
the weight of the session–music edge ws,m ∈ [0, 1) is defined
as ws,m = tanh(w′) = (ew′ − e−w′

)/(ew′ + e−w′
), where

w′ ∈ (0,∞) is the frequency that music piece m appears in
session s.

Definition 3: The music–music edges Em,m ⊆ E are links
between music pieces that are listened to together. Since
users’ preferences are relatively fixed especially during a short
period of time, music pieces that are close in the music
listening sequences generally have common styles or features.
In other words, music co-occurrence information indicates
music pieces’ features as well as users’ preferences. The
music–music edge weight wm,m ∈ [0, 1) is defined as wm,m =
tanh(w′) = (ew′ − e−w′

)/(ew′ + e−w′
), where w′ ∈ (0,∞) is

the frequency how often music mi and music m j appear in the
same context window of music sequence. In Fig. 2, the size
of context window is set as 2.

Definition 4: The music–content edges Em,c ⊆ E indi-
cate links between music pieces and their content features,
including singers, albums, tags, text description, and lyrics.
The music–content edge weight between music piece m and
its corresponding content cm is set to be 1.

Definition 5: The HIN is defined as N = (V , E, W ), where
V = (U, S, M, C) represents the vertex set, and U , S, M ,
and C are the user set, session set, music set, and content set,
separately. E is the set of edges, including user–music edges
Eu,m , session–music edges Es,m , music–music edges Em,m ,
and music–content edges Em,c, which are defined earlier. W is
the set of corresponding edges’ weights. Especially, the music–
content edges are static since the contents of music remain
basically unchanged, while the user–music edges, session–
music edges, and music–music edges will increase dynami-
cally as more interaction data are collected. Besides, the HIN
can be extended flexibly to incorporate various kinds of data,
such as social networks or music playlist.

B. Content- and Context-Aware Music Embedding

Given the context (user–music edge, session–music edge,
and music–music edge) and content features (music–content
edge), the CAME model is proposed to learn the feature
vectors (embeddings) of music pieces from HIN. Specifically,
the context information and content data in HIN indicate
music pieces’ features and their correlations, and the pro-
posed CAME can effectively make use of this information.
Especially, we consider that one music piece generally high-
lights different aspects when played together with various
kinds of music, and it should have different representations.
The proposed approach CAME can learn the content- and
context-aware embeddings of music pieces precisely via CNNs
with attention, which enables CAME to model the dynamic
relevance between music pieces as well as their interactions
adaptively.

Specifically, we adopt two types of embeddings for a vertex
v ∈ V in HIN, i.e., structure embedding vs and text embedding
vt . Specifically, structure embeddings can capture the context
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Fig. 2. Example of creating an HIN from interactive/context and textual content data. H u = {mu
1 , mu

2 , . . . , mu
8 } is user u’s historical music playing sequence,

and u’s listening history H u is aggregated into two sessions Su
1 and Su

2 .

structure information in the HIN, while text embeddings can
capture the textual meanings lying in vertex v’s associated
content information.

As shown in Fig. 1, the objective function of CAME consists
of structure objective and text objective. The structure objec-
tive incorporates edge information between user/music/session
vertices in HIN, and vertices with common neighbors/edges
will yield similar structure embeddings. The text objective
models the relationship between music pieces and their content
information using CNNs with attention dynamically. Espe-
cially, the attention mechanism enables CAME to adaptively
cope with various aspects of music when interacting with
different neighbors. Generally, music vertices with common
textual contents will have similar text embeddings.

Formally, CAME aims to maximize the overall objective of
edges, and the objective function is defined as

O =
∑
e∈E

Os(e) +
∑

e∈Em,m

Ot (e) + λ‖�‖2
2 (1)

where Os(e) is the structure objective and Ot (e) represents the
text objective. Specifically, only music pieces have contents,
so the text objective is calculated only on music–music edges
Em,m ⊆ E . ‖�‖2

2 is the regularization term of all parameters
�, and λ is the weight of regularization term. In the following,
we will introduce the structure objective and the text objective
in detail.

1) Structure Objective: The structure objective aims to
measure the log-likelihood of an edge using the structure
embeddings. For an edge e between vertices vi , v j ∈ V
in HIN, we define the corresponding joint probability with

softmax function as follows:

ps(vi , v j ) = exp
(
vs

i
� · vs

j

)
∑

vk∈V exp
(
vs

k
� · vs

j

) (2)

where vs
i ∈ Rd and vs

j ∈ Rd are the structure embeddings
of vertices vi and v j , and d is the dimension of structure
embeddings. ps(·, ·) in (2) is the distribution over vertex
space V × V . Then, we minimize the Kullback–Leibler (KL)
divergence between two distributions ps(·, ·) and p̂s(·, ·) to
retain the structure and context information in HIN, and the
corresponding cost function is defined as

Os (e) = −dKL( p̂s(·, ·), ps(·, ·)) (3)

where p̂s(·, ·) is the empirical distribution. Specifically,
the empirical distribution between two vertices vi ∈ V and
v j ∈ V should encode the structure and context information
in HIN, which is formally defined as

p̂s(vi , v j ) = wi, j∑
vk∈V wk, j

(4)

where wi, j ∈ W denotes the edge weight between vertices vi

and v j in HIN.
Based on (3) and (4), the structure objective function can

be defined as

Os(e) = −dKL( p̂s(·, ·), ps(·, ·))
= −dKL( p̂s(vi , v j ), ps(vi , v j ))

= − p̂s(vi , v j ) log
p̂s(vi , v j )

ps(vi , v j )

∝ wi, j log ps(vi , v j ). (5)

Then, the structure embeddings can be learned via maxi-
mizing the structure objective function defined earlier.



2) Text Objective: The text objective is used to incorporate 
content information, including singer, album, tag, description, 
lyrics, and so on, and learn text embeddings for vertices. The 
text objective consists of two parts, which is formally defined 
as

Ot (e) = Ott (e) + Ots(e) (6)

where Ott measures the log-likelihood of a music–music edge
using the text embeddings learned from music content and Ots

further maps the text embeddings and structure embeddings
into the same representation space. Formally, Ott is defined
with KL divergence as

Ott (e) = −dKL( p̂t (·, ·), pt (·, ·))
∝ wi, j log pt (vi , v j ) (7)

where pt (·, ·) and p̂t (·, ·) are joint distribution and empirical
distribution, and wi, j represents the weight of edge between
two music vertices vi ∈ M and v j ∈ M in HIN. Formally,
pt (vi , v j ) is defined as

pt (vi , v j ) = exp
(
vt

i
� · vt

j

)
∑

vk∈M exp
(
vt

k
� · vt

j

) (8)

where vt
i ∈ Rd and vt

j ∈ Rd are text embeddings for vi and v j ,
respectively. Ots tries mapping text embeddings and structure
embeddings into the same space but does not constrain them to
be identical for the consideration of their own characteristics.

Similarly, Ots is formally defined with KL divergence as

Ots(e) = −dKL( p̂ts(·, ·), pts(·, ·))
∝ wi, j log pts(vi , v j ) (9)

where pts(·, ·) and p̂ts(·, ·) are joint distribution and empirical
distribution based on content and context information, and
pts(vi , v j ) is defined as

pts(vi , v j )=
exp

(
vt

i
� · Ht s · vs

j

)
∑

vk∈M exp
(
vt

k
� · vs

j

) + exp
(
vs

i
� · Hst · vt

j

)
∑

vk∈M exp
(
vs

k
� · vt

j

)

(10)

where vt and vs are text embedding and structure embedding
of music vertex v ∈ M , and Ht s ∈ Rd×d and Hst ∈ Rd×d

are the harmonious embedding matrices that help coordinate
structure and text space. Specifically, Ht s ∈ Rd×d helps
harmonize the text embedding to structure latent space, and
Hst ∈ Rd×d helps harmonize the structure embedding to text
latent space.

The structure embeddings are trainable parameters, and
text embeddings are learned from associated textual content
information (words and sentences) of vertices. In this work,
we combine CNNs [44], [45] with attention mechanism [46]
to capture the local semantic dependence among words and
emphasize those words that indicate music pieces’ intrinsic
features as well as their relevance and then obtain the text
embeddings effectively. Specifically, the contents of all music
are preprocessed based on words’ term frequency–inverse
document frequency (TF-IDF) [47], and the words with lower
TF-IDF value will be removed from the data set. As shown

Fig. 3. Illustration of learning text embeddings using CNNs with attention
mechanism.

in Fig. 3, the CNN obtains the text embeddings through three
layers: looking-up layer, convolution layer, and pooling layer.

The looking-up layer transforms each word wi in the content
sentences of music piece into corresponding word embeddings
w ∈ Rd ′

with a word embedding matrix W′ ∈ Rd ′×m′
, where

d ′ denotes the dimension of word embeddings and m′ is the
size of the whole word vocabulary. Then, each music piece’s
content sequence with m words is represented with words
embedding sequence W = (w1; w2; . . . ; wm).

The convolution layer extracts local features from words
embedding sequence W ∈ Rd ′×m by performing convolution
operation with a convolution matrix C ∈ Rd×(l×d ′), and l
denotes the size of the sliding convolution window. Specifi-
cally, zero padding vectors are added at the edge of the content
sentence, so the output of the convolution layer for content
sequence of each music piece is a convolutional embedding
matrix X ∈ Rd×m .

In the pooling layer, the mean-pooling strategy together with
attention mechanism is applied over the embedding matrix to
obtain the text embedding vt

i of each music vertex vi ∈ M .
Specifically, one music piece generally highlights different
aspects when played together with various kinds of music,
and it should have different representations separately. The
attention mechanism enables the pooling layer to be aware of
music vertices pairs (edges) as well as their dynamic features
in the HIN and learns the specific representation of music
pieces adaptively. For example, the text embedding of a piece
of pop–rock music may show more rock and roll features
when it is played together with rock music pieces, and the
text embedding of the same music piece may show its pop
features when listened to together with pop music pieces.
In the following, we will illustrate how to learn the text
embedding with music–music edge e ∈ Em,m and its music
vertices vi ∈ M and v j ∈ M .

First, we obtain the words embedding sequence Wi =
(w1; w2; . . . ; wm) and W j = (w1; w2; . . . ; wn) via the
looking-up layer, where Wi ∈ Rd ′×m , W j ∈ Rd ′×n , m and
n are the length of corresponding content sequence, and d ′ is
the dimension of word embedding.

Second, the convolution layer (with zero padding vectors)
extracts local features from word embedding matrix Wi ∈
Rd ′×m and W j ∈ Rd ′×n , and d ′ and get convolutional
embedding matrix Xi ∈ Rd×m and X j ∈ Rd×n .
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Third, an attentive matrix A ∈ Rd×d is introduced to com-
pute the correlation matrix between convolutional embedding
matrix Xi and X j , which is defined as

R = tanh(Xi
� · A · X j ) (11)

where R[i, j ] represents the correlation between music ver-
tices’ corresponding words. Especially, the attentive matrix A
enables the correlation matrix R to capture the dynamic feature
correlations between music pieces in HIN.

Fourth, we apply row-pooling operation over R to generate
m-dimension attention vector of vertex vi as

ai =

⎡
⎢⎢⎢⎣

mean(R[1, 1], R[1, 2], . . . , R[1, n])
mean(R[2, 1], R[2, 2], . . . , R[2, n])

...
mean(R[m, 1], R[m, 2], . . . , R[m, n])

⎤
⎥⎥⎥⎦ . (12)

Similarly, the n-dimension attention vector of vertex v j is
computed with column-pooling operation as

b j =

⎡
⎢⎢⎢⎣

mean(R[1, 1], R[2, 1], . . . , R[m, 1])
mean(R[1, 2], R[2, 2], . . . , R[m, 2])

...
mean(R[1, n], R[2, n], . . . , R[m, n])

⎤
⎥⎥⎥⎦ . (13)

Then, the text embedding for music vertices vi ∈ M and
v j ∈ M can be obtained by multiplying the convolutional
embedding matrix with attention vectors, which are defined
as follows:

vt
i = Xi · ai

vt
j = X j · b j . (14)

Finally, the content- and context-aware embedding of vertex
v in HIN is learned as v = vt ⊕ vs , where vt and vs are the
corresponding text embedding and structure embedding and ⊕
is concatenation operation.

3) Learning: In the training stage, CAME minimizes the
log probability defined in (2), (8), and (10) over all data in
HIN. However, it is impractical to directly optimize the above
functions because the computation complexity of the full soft-
max functions in the abovementioned equations is proportional
to the vertex set size |V | (or music vertex set size |M|). There-
fore, we use negative sampling technique [48] to compute the
objective functions approximately and effectively. Specifically,
for each edge (vi , v j ) and the embedding vi and v j (including
structure embedding and text embedding) of corresponding
vertices, the negative sampling method computes the original
objective approximately with the following objective function:

log σ
(
v�

i · v j
) + k · Ei ′∼PI

[
log σ

( − v�
i ′ · v j

)]
(15)

where σ(x) = 1/(1 + e−x) and k represents the number of
negative samples, which is a small constant. i ′ is the negative
sample that is drawn according to the noise distribution PI

over all vertices (or music vertices) in HIN modeled by
empirical unigram distribution. Then, it becomes feasible
to optimize (2), (8), and (10) with the stochastic gradient
algorithm. In each step, an existing edge is sampled according
to its weight in HIN, and multiple negative edges are sampled
from a noise distribution PI at the same time. Here, we adopt

the edge sampling approach and the alias table method used
in [24] and [49], and it takes only O(1) time to repeatedly
draw edge samples from the same discrete distribution. More-
over, each step of optimization with negative sampling takes
O(d × t × (k + 1)) time, where d is the time taking for
one sampling, t is the time consumed by each KL-divergence
calculation or convolution, and k is negative sample number.
Furthermore, the total steps that the whole optimization takes
are proportional to the number of edges |E |, so the overall time
complexity of optimization is O(d×t ×(k+1)×|E |). Since d ,
t , and k depends on parameters that are set as constants when
training/testing, the final time complexity is linear to |E |.

C. Content- and Context-Aware Music Recommendation

With the learned embeddings, users’ general and contex-
tual preferences can be inferred from their historical music
listening records [13], [50]. Here, we use two typical aggre-
gation operations, including average pooling and max pooling
to obtain users’ preferences. The average-pooling strategy
assumes that different input embeddings are independent of
each other and also keeps the wholeness and smoothness of
the inputs with the linear transformation. Max-pooling strategy
tries modeling the interactions among the input embeddings
and only extracts significant features with nonlinear opera-
tions. As for the recommendation, mean pooling focuses on
overall interests, and max pooling puts more importance on
specific interests.

Specifically, the user u’s historical music playing sequence
H u indicates her/his general preferences for music, and it is
feasible to infer user’s interests via mean-pooling and max-
pooling operations over the embeddings of music pieces in
H u. Formally, user u’s general preference is defined as

pu
g = fmean(H u) + fmax(H u) (16)

where fmean(H u) = 1/(|H u|) ∑
vi ∈Hu vi , fmax(H u) =

{max(�v1[1], . . . , �v|Hu |[1]), . . . , max(�v1[d], . . . , �v|Hu |[d])},
and d is the dimension of embeddings.

Similarly, the user u’s recent music playing sequence Su

indicates her/his contextual preferences for music, and it is
feasible to infer user’s contextual interests via mean-pooling
and max-pooling operations over the embeddings of music
pieces in Su . Formally, user u’s contextual preference is
defined as

pu
c = fmean(Su) + fmax(Su). (17)

Given user u’s general preference pu
g and contextual pref-

erence pu
c , u’s preferences for each music piece mi consist

of two parts: general preferences and contextual preferences.
Formally, u’s preferences for mi are defined as follows:

p
(
mi |pu

g, pu
c

) = p
(
mi |pu

g

) + p
(
mi |pu

c

)
(18)

where p(mi |pu
g) = cos(vmi , pu

g) and p(mi |pu
c ) = cos(vmi , pu

c )
are u’s general and contextual preferences for music mi ,
respectively, and vmi is the embedding of music mi . Specifi-
cally, the embeddings (vectors) learned by the proposed model
can effectively represent music pieces’ features and users’
general/contextual preferences, and cosine metric cos (·, ·) is



TABLE II

STATISTICAL INFORMATION OF THE DATA SET

used for similarity measure between embeddings (vectors)
because of its effectiveness and efficiency.

Finally, we can rank music pieces according to (18) and
recommend the top n music pieces to the user.

V. EXPERIMENTS

We conduct comprehensive experiments as well as quan-
titative and qualitative evaluations to show the effectiveness
of the proposed approach CAME. First, we visualize the
learned embeddings (including structure embedding and text
embedding) in 2-D space. Then, we investigate the relevance
between the embeddings’ dimension and the recommenda-
tion performance and also compare CAME against baselines.
Finally, we evaluate how the sparsity of data set influences
recommendation accuracy.

A. Experimental Designs

In this section, we introduce the detailed experimental
designs, including data set partition, evaluation metrics, as well
as settings of parameters.

1) Data Set: We use a real-world data set crawled from
Xiami Music,2 which provides online music streaming.
As illustrated in Table II, the data set after preprocessing
is composed of 4 284 000 interactions between 4284 users
and 361 861 music pieces as well as the content information,
such as singer, album, tag, description, language, and lyrics.
Specifically, the contents of all music are preprocessed based
on words’ TF-IDF [47], and the words with lower TF-IDF
value will be removed from the data set. Besides, the average
length of the content sequence for each music is 32.9, and
the average number of music pieces for each user and each
session is 1000 and 25.9, respectively.

Furthermore, Fig. 4 illustrates popularity information (log-
arithm) of music pieces as well as the relationship between
the frequency and quality of textual contents (artist, album,
tag, and so on). The results are consistent with the power-
law distribution [51], and textual content data can be utilized
to help learn the effective embedding as well as improve the
performance of recommendation.

The whole data set is divided into two nonoverlapping
sets, i.e., the training set and testing set. The testing set
contains only 20% of users’ second half historical music
playing sequences, while all the remaining data are divided
into a training set. Note that the evaluation is performed based
on fivefold cross-validation.

2) Baselines: We compare the proposed approach with
nine state-of-the-art baselines, and the comparison of the
features and recommendation strategy between each method
is shown in Table III. Specifically, traditional methods, such

2http://www.xiami.com

Fig. 4. Popularity analysis of the data set. Popularity analysis of (a) music
pieces, (b) artists, (c) albums, and (d) tags.

as UserKNN, BPR, and FISM, only utilize the interactions
between users and items to carry out CF recommendations.
IPF combines temporal with traditional methods to implement
context-aware recommendations. FPMC, HRM, and CSM-UK
can extract correlations between items and behaviors as well
as the implicit contextual information from sequence informa-
tion. MEM, HIGE, and CAME can incorporate heterogeneous
information into a recommendation, users’ music listening
records, music playing sequences, sessions, and music textual
content, which can help further improve the performance and
alleviate data sparsity problem. Particularly, the user–music
edges in HIN enable CAME to model interactions between
users and music and incorporate the idea of CF. Besides,
the proposed approach CAME can fully exploit various textual
content information with CNN techniques and model music
pieces’ intrinsic features as well as their dynamic aspects from
via attention mechanism precisely and adaptively.

3) Evaluation Metrics: In recommendation stage, each
approach generates a recommendation list of n music pieces
(n = [5, 10, 15, 20, 25, 30]), denoted by R, which is evaluated
by three quality measures, including precision, recall, and
F1 score.

Precision is the proportion of relevant music pieces among
the recommended music pieces in R, which is defined as

Precision = 1

#(recs)

∑
1≤i≤#(recs)

|Ri ∩ Ti |
|Ri | a

where Ri is the recommendation list in the i th recommenda-
tion, Ti is the music list that users have listened to, and #(recs)
is the total number of recommendations.

Recall is the proportion of relevant music pieces that have
been recommended over the total number of relevant music
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TABLE III

COMPARISON BETWEEN THE PROPOSED APPROACH CAME AND BASELINES

TABLE IV

PARAMETER SETTINGS FOR TRAINING CAME

pieces, which is defined as

Recall = 1

#(recs)

∑
1≤i≤#(recs)

|Ri ∩ Ti |
|Ti | .

F1 score (also known as F-score or F-measure) considers
both precision and recall to evaluate the performance of
recommendation, which is defined as

F1 score = 2 × Precision × Recall

Precision + Recall
.

4) Parameter Settings and Experiment Environment: The
detailed configurations of important parameters in CAME and
the corresponding descriptions are given in Table IV.

Specifically, the context window size c plays an important
role in producing high-quality music embedding, and the
experimental results of c with embedding dimension as 50 are
shown in Table V. Larger c results in more training data,
which may increase recommendation accuracy at the cost of
more training time. Besides, the number of noise items also
increases when c is large, which reduces the recommendation
performance. Finally, we set the window size c as 3. Moreover,
the dimension varies from 50 to 300, and we will explore the
optimal value in Section V-C.

All experiments ran on the server with Intel Xeon Silver
4108 CPU, GeForce RTX 2080Ti, 128-GB memory, and
Ubuntu 18.04.

TABLE V

EFFECT OF CONTEXT WINDOW SIZE

B. Visual Illustration of Embedding

We first give the visual illustration of the learned content-
and context-aware embeddings (including structure embed-
dings and text embeddings).

1) Embeddings and Genre: We start with illustrating the
structure and text embeddings with t-SNE [59], which pro-
vides a visual display of high-dimensional vectors in low-
dimensional space. Fig. 5 shows the 2-D structure and text
embeddings of several different genres of music pieces.

First, music pieces with similar genres cluster tightly in the
visual space. Therefore, both structure and text embeddings
learned by CAME can capture music pieces’ important fea-
tures, such as genres and styles, from heterogeneous context
and content information effectively. In addition, both structure
embeddings and text embeddings reflect some slight differ-
ences in genres. For instance, instrumental soundtrack and
vocal soundtrack music pieces lie nearby in the 2-D, while
they form two close clusters, which also show the effectiveness
of the proposed approach CAME. Furthermore, the structure
embeddings emphasize relationships between music pieces in
the HIN, and the text embeddings lay more importance on the
textual content. Therefore, music pieces with common genres
tend to have similar text embeddings and generally cluster
more tightly.

Besides, the visualization results show the feasibility of
applying the embeddings (including the text embeddings and
structure embeddings) in various tasks, such as data visualiza-
tion, music tagging, music retrieval, genre classification, and
music clustering.

2) Embeddings and Artists: This section gives the illustra-
tion of the structure and text embeddings of top-ten popular
music pieces of selected artists with t-SNE. Specifically,



Fig. 5. Visualization of selected music pieces’ genre and embeddings in
2-D space. (a) Visualization of structure embeddings, for music pieces with
different genres. (b) Visualization of text embeddings for music pieces with
different genres. (c) Visualization of structure embeddings for music pieces
with different sub-genres. (d) Visualization of text embeddings for music
pieces with different sub-genres.

TABLE VI

STYLE INFORMATION OF SELECTED ARTISTS

Table VI gives eleven famous artists and their style informa-
tion. The 2-D structure embeddings and text embeddings of
selected music pieces are shown in Fig. 6.

First, it is interesting to observe that music pieces by the
same artist/singer are close in the visual space. The reason is
that each artist has her/his own styles, which is also reflected in
users’ music-listening behaviors as well as the content data,
and the proposed model CAME can effectively capture the
useful information.

Second, as stated earlier, the structure embeddings empha-
size interactions between music and users as well as music

Fig. 6. Visualization of artists’ embedding in 2-D space. Visualization of
artists’ (a) structure embeddings and (b) text embeddings.

Fig. 7. Visualization of the embeddings of different users’ listening records
in 2-D space. (a) Visualization of users’ structure embeddings. (b) Visualiza-
tion of users’ text embeddings.

playing sequences (context) in the HIN, and the text embed-
dings mainly depend on the textual content. Therefore, music
pieces with the common features tend to have similar text
embeddings, which cluster more closely than corresponding
structure embeddings.

3) Embeddings and Users: We now give another visual
analysis of text and structure embeddings of music pieces
in some users’ music listening sequences, and the results are
shown in Fig. 7.

First, the structure embeddings and text embeddings of
music pieces in each user’s listening records form one or sev-
eral clusters, which shows that users generally have specific
preferences. For instance, user 1 (blue) prefers only one kind
of music, while user 3 (red) likes listening to several kinds
of music. Second, the music pieces within the same session
generally have similar embeddings, and it shows that every
user has more specific contextual preferences that may be
different from their general preferences.

In brief, the results show that the structure and text embed-
dings learned by CAME from context and content information
can depict the features of music pieces effectively and also
capture their specific aspects as well as users’ musical interests
adaptively. On the other hand, CAME is also useful for many
tasks and applications, such as dimensionality reduction, rep-
resentation learning, similarity measure, corpus visualization,
automatic tagging, and classification.
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Fig. 8. Experimental results of the dimension’s effects.

Fig. 9. Performance comparison with baselines.

Fig. 10. Performance of n = 5 over data sets with a different sparsity.

C. Effects of Dimension
The dimension of the embeddings decides the fitting and

modeling ability of the proposed method CAME. Generally,
a higher dimension means that CAME can depict more useful
information and may have better performance in tasks, such as
recommendation. On the other hand, a higher dimension may
reduce the efficiency and cause risks of overfitting. Therefore,
the proposed approach CAME is evaluated on a different
dimension, which increases from 50 to 300, to investigate how
the dimension influences the performance of recommendation.

As shown in Fig. 8, the precision tends to increase and
then stabilizes as the dimension increases from 50 to 300.
The reason is that higher dimensional embeddings are able
to incorporate more useful information and represent music
pieces more precisely at the expense of inefficiency or over-
fitting. Besides, CAME with a low dimension (such as 100)
achieves a good performance as well. The reason is that the
attention mechanism improves CAME’s capacity of capturing
relevant features of music pieces adaptively. In addition,
as shown in Table VII, CAME with a higher dimension is more



TABLE VII

INFLUENCE OF DIMENSION ON EFFICIENCY

time-consuming, and we set the dimension to 250 to achieve
a balance between accuracy and efficiency in the following
experiments.

D. Comparison Against Baselines

The proposed method CAME is evaluated against nine state-
of-the-art baselines as well as CAME’s variants. The results
are given in Fig. 9, and we have the following conclusions.

1) The proposed approach CAME outperforms its variants
and baselines in all evaluation metrics, which shows that
CAME is able to model users’ preferences effectively
and perform accurate music recommendation.

2) CAME’s variants include CAME (text) and CAME
(structure), which only have text and structure com-
ponents, respectively. Specifically, CAME (structure)
has slightly better performance than CAME (text) and
CAME outperforms its variants. Therefore, both tex-
tual content data and structural context information are
important in the recommendation, which can be utilized
by CAME effectively.

3) CAME outperforms other embedding-based methods
(MEM, HRM, HIGE, and CSM-UK) because it can fully
exploit heterogeneous context and content information
with CNNs and learn the structure and text embeddings
effectively. Especially, the attention mechanism enables
CAME to capture the key features of music pieces as
well as their dynamic relevance adaptively and guides
CAME to emphasize the information that is important in
listening behavior modeling and music recommendation.

4) CAME outperforms FPMC because it can learn more
important information other than the relationships
between adjacent items and make full use of content and
context by using network embedding as well as attention
mechanism.

5) CAME outperforms BPR, FISM, and UserKNN, and
the reason is that it performs recommendations based
on both general and contextual preferences, but these
baselines only consider users’ general preferences.

Therefore, the proposed approach CAME can learn the
content- and context-aware embeddings precisely and adap-
tively and take both general and contextual preferences into
consideration to further improve the performance of recom-
mendation.

E. Effects of Data Sparsity

We now explore how the sparsity of data influences the
performance of the proposed method CAME as well as the
baselines by evaluating all methods on data sets with dif-
ferent sparsity {99.72%, 99.21%, 98.73%, 98.31%, 97.94%}.
Specifically, the data sets are generated via filtering music
pieces with low listening frequency, which is set as {0, 5,
10, 15, 20}, separately. The results are shown in Fig. 10, and
CAME outperforms all baselines over all data sets. The reason
is that CAME performs recommendations based on various
information, and it can handle sparse data effectively.

VI. CONCLUSION

In this article, we propose a content- and context-aware
music recommendation method based on network embedding
with attention mechanism and CNNs. Specifically, the pro-
posed method is composed of three components: HIN for
incorporating various information, CAME for feature rep-
resentation learning, and content- and context-aware music
recommendation approach. This work differs from previous
work in three aspects: 1) the proposed method incorporates
and leverages heterogeneous information to alleviate the data
sparsity problem; 2) it can cope with various aspects of music
when interacting with different neighbors adaptively; and 3)
it is able to capture music pieces’ dynamic features and
learning the structure and text embeddings precisely to further
improve the performance of recommendation. Comprehensive
experiments, including quantitative and qualitative evaluations,
have been performed on real-world music data sets, and we
can conclude that: 1) the proposed approach can effectively
learn the embedding of music from abundant auxiliary/side
information and apply them in recommendation tasks and
2) the context and content information is quite important in
achieving accurate personalized recommendation as well as
alleviating data sparsity problem.

In the future, we would like to combine advanced techniques
[60] with attention mechanisms to incorporate more data,
including implicit and explicit feedbacks as well as cross-
domain knowledge [61], and extract the key correlations
between them to further improve the recommendation results.
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