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Improving the Generalization Performance of Deep Networks by Dual Pattern
Learning with Adversarial Adaptation

Haimin Zhanga, Min Xua,∗

aSchool of Electrical and Data Engineering, University of Technology Sydney
81 Broadway, Ultimo, NSW 2007, Australia

Abstract

In this paper, we present a dual pattern learning network architecture with adversarial adaptation (DPLAANet). Unlike
conventional networks, the proposed network has two input branches and two loss functions. This architecture forces
the network to learn robust features by analyzing dual inputs. The dual input structure allows the network to have
a considerably large number of image pairs, which can help address the overfitting issue due to limited training data.
In addition, we propose to associate the two input branches with two random interest values during training. As a
stochastic regularization technique, this method can improve generalization performance. Moreover, we introduce to use
the adversarial training approach to reduce the domain difference between fused image features and single image features.
Extensive experiments on CIFAR-10, CIFAR-100, FI-8, the Google commands dataset, and MNIST demonstrate that our
DPLAANets exhibit better performance than benchmark networks. The experimental results on subsets of CIFAR-10,
CIFAR-100, and MNIST demonstrate that DPLAANets have good generalization performance on small datasets. The
propose architecture can be easily extended to have more than two input branches. The experimental results on subsets
of MNIST show that the architecture with three branches outperforms two branches when training set is extremely small.

Keywords: Image classification, deep neural networks, domain adaptation

1. Introduction

Convolutional neural networks (CNNs) have become a
dominant approach for various machine learning applica-
tions such as computer vision [1, 2, 3, 4, 5], natural language
processing [6, 7, 8], and reinforcement learning [9, 10]. In-5

tegrating feature learning and classifiers in an end-to-end
manner, deep neural networks can learn features automati-
cally from training data without human involvement during
training. It has been shown that features learned by CNNs
are much discriminative compared to hand-crafted features10

[1], and that features extracted from a CNN pretrained
on a large scale image dataset can be transferred to other
visual recognition tasks [11, 12].

Researchers have spent much effort in designing network
architectures to improve the performance of CNNs. He15

et al. [2] proposed the residual learning framework. This
framework eases the training of deep neural networks, and
enables them to be considerably deep. Residual networks
(ResNets) have led to performance improvement in both
visual and non-visual tasks. Huang et al. [13] proposed20

densely connected networks (DenseNets), in which each
layer is connected to every other layer in a feed-forward
fashion. This architecture substantially reduces the number
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of parameters, and is highly computationally efficient as a
result of feature reuse.25

State-of-the-art deep neural networks usually consist
of many layers with a large number of parameters. The
ResNeXt-19 (8× 64d) [14] contains approximately 3× 107

parameters to model the 5 × 104 images in CIFAR-10
[15]. The VGGNet-16 [16] has around 108 parameters to30

model the 106 images in ImageNet [17]. The large number
of parameters makes deep networks prone to overfitting;
therefore, training deep networks requires huge amounts
of data. However, collecting data and labelling them are
laborious work, especially when domain experts are neces-35

sary to distinguish between fine-grained visual categories.
For some tasks, it is extremely difficult to collect samples.
In this work, we focus on efficient feature learning with

limited data using CNNs. We observe that humans can
learn knowledge from two given images by analyzing and40

comparing two images. An illustration is shown in Figure
1. Inspired by this observation, we propose a dual pattern
learning (DPL) network architecture, referred to as DPLNet
in this paper. Unlike previous deep networks, the DPLNet
is trained using image pairs. The number of image pairs45

can be significantly large even for small datasets. This can
help to address the overfitting issue due to lack of training
data.
As shown in Figure 2, we design two input branches

and two loss functions so that the DPLNet can perform50

dual pattern learning. Two input images are processed
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Figure 1: An illustration that shows humans learn knowledge by
analyzing dual images. They may have more interest in learning
one image than the other image. In this figure, the human is more
interested in, or pays more attention to, learning dog (boldness of
lines represents interest value).

by the two input branches in parallel, and feature maps
generated by the two branches are then fused together to
backbone network. Analyzing dual inputs simultaneously,
this architecture is able to learn robust features. In ad-55

dition, we observe that people may have more interest in
one image than the other image when given two images
to learn. This might be due to reasons such as personal
preference and/or prior knowledge. Inspired by this ob-
servation, we propose to associate the two input branches60

with two random interest values for learning corresponding
images during training. This method can help improve the
generalization performance.
Moreover, we introduce to use the adversarial training

framework [18] to minimize the domain difference between65

fused image features and single image features. We refer
to the DPLNet with adversarial adaptation as DPLAANet
in this paper. State-of-the-art deep networks can be easily
adapted to DPLAANets. We show that our DPLAANets
exhibit better performance.70

There has been research which uses the mixture of two
images as for training deep neural networks, such as Mixup
[19] and between class (BC) learning [20]. Unlike their work,
we propose a new architecture with dual input branches
which are trained using image pairs. Moreover, we incor-75

porate the adversarial training framework to reduce the
domain difference between fused image features and single
image features.

This paper provides the following three contributions:

• We propose the DPLAANet architecture towards learn-80

ing with limited data. The dual input structure of the
DPLAANet enables the network to learn robust fea-
tures by analyzing dual inputs simultaneously. With
the dual input structure, we have a large number im-
age pairs to train the network. This helps to address85

the overfitting issue due to lack of training data.

• The adversarial training framework is incorporated
to reduce the domain difference between fused image
features and single image features. We show that

this method effectively contributes to performance90

improvement.

• The DPLAANets are evaluated on five benchmark
datasets, i.e., CIFAR-10, CIFAR-100, FI-8, Google
commands dataset, and MNIST, wherein they lead to
performance improvement compared to benchmark95

networks. The experimental results on subsets of
CIFAR-10, CIFAR-10, and MNIST demonstrate that
our DPLNets have outstanding generalization perfor-
mance on small datasets. Extended experiments on
subsets of MNIST show that the architecture with100

three branches outperforms two branches when train-
ing set is extremely small.

The rest of the paper is organized as follows. Section
2 reviews related work on deep networks. The proposed
DPLAANet architecture is introduced in section 3. Exper-105

imental results are presented and discussed in section 4.
Finally, we conclude this paper in section 5.

2. Related Work

2.1. Deep Neural Networks
Neocognitron [21], which was proposed by Fukushima110

et al., in 1980, is the first type of CNNs. It is a hierarchi-
cal multi-layered network inspired by neurophysiological
findings on the visual systems of mammals. Later, LeCun
et al., [22] proposed a CNN architecture called LeNet-5
for handwritten digit recognition in 1998. While CNNs115

have a long history, the success of CNNs has been achieved
only recently thanks to the availability of large scale visual
datasets and powerful GPU computing resources. In 2012,
Krizhevsky et al. [1] proposed the AlexNet architecture,
which consists of five convolutional layers and three fully120

connected layers. This is the first CNN model proposed
for large scale image classification. The AlexNet achieved
superior performance compared to hand-crafted features.

Since the introduction of AlexNet, many CNN architec-
tures have been developed to improve performance. These125

studies include exploring increasing the depth (the number
of layer) and increasing the width (the number of chan-
nels in each layer) of CNNs. For example, Simonyan et
al. [16] investigated the effect of the network depth on its
accuracy, and proposed VGGNets with 16 and 19 layers.130

In [2], He et al. introduced identity shortcut connections,
and proposed the ResNet architecture. This architecture
makes very deep networks easy to optimize. ResNets have
achieved performance improvement for many tasks. In [13],
Huang et al. explored increasing the width of networks and135

proposed densely connected networks (DenseNets). For
each layer in DenseNets, the feature-maps of all preceding
layers are used as inputs. The DenseNet architecture en-
courages feature reuse, and can considerably reduce the
number of parameters. In addition to exploring increasing140

depth and width, Xie et al. [14] researched increasing the
cardinality of CNNs, which refers to the size of the set of

2
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transformations, and proposed the ResNeXt architecture.
The ResNeXt is constructed by repeating a building block
that aggregates a set of transformations with the same145

topology. They showed that increasing cardinality is effec-
tive to improve performance compared to increasing the
depth or the width of CNNs.
Deep neural networks usually contain a large number

of parameters; therefore, training deep neural networks150

requires huge amounts of data to reduce overfitting. To
reduce overfitting on training data, label-preserving trans-
formations [1] are often applied to enlarge training data.
Commonly used data augmentation methods include ran-
dom crop, color jittering, horizontal or vertical flip of im-155

ages. Recently, researcher started to use generative adver-
sarial networks to generate adversarial samples for data
augmentation. For example, Zheng et al. [23] proposed to
use adversarial samples to improve person re-identification
baselines. Xie et al. [24] proposed to employ adversarial160

samples for semantic segmentation and object detection.
In addition to network development and data augmen-

tation methods, researchers have developed regularization
techniques to improve the generalization performance. For
example, Srivastava et al. [25] proposed a method referred165

to as dropout. The key idea of dropout is to randomly
drop units of the neural network during training phase.
The neurons which are dropped out in this way do not
contribute to the forward pass and do not participate in
back-propagation. This technique forces networks to learn170

more robust features that are useful in conjunction with
many different random subsets of the other neurons. Ioffe
et al. [26] proposed the batch normalization method. This
method draws its strength from making normalization a
part of the model architecture and performing the nor-175

malization for each training mini-batch. With Batch nor-
malization, we can use much higher learning rates and be
less careful about parameters initialization to train deep
networks.

2.2. Domain adaptation180

Domain adaptation methods attempt to transfer the
knowledge obtained from source domain to target domain.
Over the last few years, adversarial approaches have been
explored to domain adaptation [27, 28]. The adversarial
approaches are based on generative adversarial networks185

(GANs) [18]. A typical GAN framework contains two mod-
els: a generative model G that captures the data distribu-
tion, and a discriminative model D that learns to determine
whether a sample is from the training data or the generator
G. In [27], Tzeng proposed the adversarial discriminative190

domain adaptation (ADDA) framework, which attempts
to learn a discriminative mapping of target images to the
source feature space by fooling a domain discriminator. The
ADDA method achieved good performance on cross-domain
digit classification and cross-modality object classification195

tasks. In [29], Zhang proposed collaborative and adversar-
ial networks (CAN) for unsupervised domain adaptation.
In the CAN model, each CNN block is connected to a

domain classifier. Using this method, CAN models can
learn domain informative representations at lower blocks200

by collaborative learning and learn domain uninformative
representations from higher blocks by adversarial learning.

3. Methodology

3.1. Dual pattern learning
Empirical risk minimization (ERM) [30] has been the205

rule for training neural networks. Given a training dataset
D = {(xi, yi)}Ni=1 with N labelled training data, where
xi and yi represent the i-th data and its corresponding
label, respectively. Under the ERM rule, a neural network
f(x; θf ) with parameters θf is trained by minimizing the210

following risk:

R(f) =
1

N

N∑

i=1

`(f(xi), yi), (1)

where f takes a single image as input and ` is a loss
function for penalizing errors between prediction result and
actual target.

In this paper, we propose a dual pattern learning archi-215

tecture. This architecture intends to predict for dual inputs
simultaneously. Unlike f for empirical risk minimization,
the prediction function g(x,x′; θg) with parameters θg for
dual pattern learning takes two samples as input, and is
obtained by minimizing dual prediction risk, which is given220

below:

RDPL(f) =
1

N

∑
i
`(g(x1

i ,x
2
i ), y

1
i , y

2
i ), (2)

where the loss function ` is to be defined to penalize dual
prediction errors. We refer to training neural networks by
minimizing Equation (2) as empirical dual prediction risk
minimization.225

An overview of the proposed DPLNet architecture is
shown in Figure 2. The DPLNet contains several blocks,
each of which consists of a number of convolutional layers.
Feature maps generated within the same block have the
same height and width. We design two input branches230

and use a loss function to penalize dual prediction er-
rors. Two input images are processed by the two input
branches in parallel, and feature maps generated by the
two input branches are then fused together to backbone
network which ends with a fully connected layer with soft-235

max. The two input branches share the same parameters.
This guarantees that the two input branches generate con-
sistent feature maps for dual inputs, which means that
feature maps fused to backbone network are the same re-
gardless of input orders. The DPLNet architecture forces240

the network to learn discriminative features by analyzing
dual inputs simultaneously; therefore, DPLNets encourage
learned features to have large inter-class margins compared
to conventional networks.
We use random weighted combination of feature maps

generated by the two input branches as input to backbone
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Figure 2: An illustration of the proposed DPLAANet framework. This framework consists of a DPLNet and an adversarial adaptation module.
The DPLNet has two input branches which share the same parameters. Feature maps generated by the two input branches are fused together
to backbone network. We perform random weighted fusion. A value λ is sampled from the standard uniform distribution as weight for
one branch, and 1 − λ for the other branch. The weight associated with each branch can be considered as an interest value for learning
the corresponding image. A third branch is introduced for adaptation, and a domain discriminator is defined to distinguish training data
distribution from testing data distribution at feature level.

network during training. In particular, we randomly sample
a value λ from the standard uniform distribution, as given
below:

λ ∼ Uniform(0, 1). (3)

The value of λ is used as weight for one branch, and 1− λ245

for the other branch. The two weights can be considered
as interest values for learning corresponding input. When
λ is close to 0 or 1, the fused feature maps come primarily
from one branch. In this case, the network is close to using
a single input branch like conventional deep networks. In250

our experiments, we clamp λ into range [0.2, 0.8]. This
achieves a little bit better performance than without using
clamping, because the effectiveness of the dual pattern
learning approach for performance improvement. The fused
feature maps is represented as the convex combination of255

the two sets of feature maps:

Conv = λConv1 + (1− λ)Conv2, (4)

whereConv1 andConv2 represent feature maps generated
by the two branches, respectively. The fused feature maps
Conv are taken as input to a backbone network which is
followed by a global average pooling layer and ends with a260

softmax activation layer.

The overall loss function of the DPLNet is defined to
penalize dual prediction errors, which is given as follows:

LDPL = λ`cls(p,y
(1)) + (1− λ)`cls(p,y(2))

= −λ
C∑

i=1

y
(1)
i log(pi)− (1− λ)

C∑

i=1

y
(2)
i log(pi),

(5)

where λ is the same as in Equation (4), C represents
the number of output categories, p = (p1, ..., pC) ∈ RC

denotes the predicted probability distribution produced by
the softmax layer, and y(1) and y(2) are one-hot encoding
labels for images given as input to the first branch and the
second branch, respectively. As shown in Equation 5, the
cross entropy loss is used as classification loss `cls. Let
the output vector before the softmax layer be denoted a =
(a1, ..., aC), probability pi can be represented as follows:

pi =
exp(ai)∑C
j=1 exp(aj)

, i = 1, ...C. (6)

If 0.5 < λ ≤ 0.8, the DPLNet is more interested in learning
the corresponding image than the other image, and it
receives more supervision for learning this image. In this
case, the other image can be seen as an auxiliary image265

for learning. If λ is equal to 0.5, the DPLNet has equal
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Figure 3: Two test approaches at test time: (a) Pass a test image
to both input branches and set λ to 0.5; (b) Give an image as input
to one branch and set corresponding λ to 1 while ignoring the other
input branch.

interest in learning two input images. If 0.2 ≤ λ < 0.5,
the DPLNet is more interested in learning the other input
images.

At test time, there are two approaches to test an image270

(see Figure 3). We do not use random image pairs for
testing as our goal is to use the trained network for single
image classification. The first approach is to pass the
test image to the two input branches while setting λ to
0.5. The other approach is to pass the image to one input275

branch and set the corresponding λ to 1 while ignoring the
other input branch. The final softmax layer produces a
probability distribution over all categories. Because the
parameters of the two input branches are tied and feature
maps generated by the two branches are fused by convex280

combination, the fused feature maps are the same for the
two test approaches. Therefore, the two test approaches
produces the same prediction result. In our experiments,
we use the second approach for testing for time efficiency.

3.2. Adversarial domain adaptation285

Domain adaptation aims to address the domain shift
issue, i.e., training data and testing data have different
distributions in feature space. In the dual pattern learning
framework, models are trained using random image pairs.
We wish to use trained models for single image classification.290

As introduced in section 3.1, our test approach equivalently
uses a test image and its duplicate as a pair for testing.
We see that the distribution of training data is different
from that of testing data. In this work, we propose to add

a domain adaptation module to the DPLNet to reduce the295

domain difference between training data and testing data.
We employ the adversarial learning method for domain

adaptation. As shown in Figure 2, we add a third branch,
and define a discriminator D to distinguish training data
distribution from testing data distribution. As with in the300

GAN framework, the discriminator D(h; θd) is a multilayer
neural network with parameters θd which outputs a single
scalar. We train D to maximize the probability of assigning
the correct label to to both feature maps from the DPLNet
and feature maps produced by the third branch. The305

adaptation is performed at feature level [31] instead of at
pixel-level [32]. We refer to the DPLNet with adversarial
adaptation as DPLAANet in this paper. We update the
discriminator and the DPLNet by alternating two steps.
Given a batch of image pairs x = {x1i , x2i }Bi=1 and a batch310

of images t = {ti}Bi=1. Let the feature maps for the image
pairs and the feature maps for the real images be denoted
zxi

and zti , respectively. At the first step, the two sets of
feature are taken as input to the domain discriminator D,
and we update the parameters of the domain discriminator315

D using the following hinge loss [33]:

LD =
∑

i
min(0,−1 +D(zxi

))

+
∑

j
min(0,−1−D(ztj )).

(7)

At the second step, we fix D and update the parameters of
the dual pattern learning network using the following loss:

LC = LDPL − β
∑

i
D(zxi

), (8)

where LDPL is the dual prediction loss (see Equation 5)
and β is the weight for adjusting the losses. The spectral
normalization method [33] is used to normalize the layers
of D. This guarantees the discriminator satisfies the 1-320

Lipschitz constraint.
Unlike convectional network architectures, the proposed

architecture has two characteristics: (1) With the dual
input structure, we can have a considerably large number
of image pairs to train the network, which can help address325

the overfitting issue due to limited training data. Our
networks are suitable for tasks wherein training data are
difficult to collect. (2) A adversarial training module is
introduced to reduce the domain different between training
data and testing data. The two characteristics make the330

proposed architecture perform better than conventional
networks.

4. Experiments

We conducted experiments on a diverse of recognition
tasks to show that the proposed framework is a general335

technique to improve the performance of deep networks.
We further evaluated DPLAANets on small datasets to
show their usefulness when training dataset is small.
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Model Error rate (%)
CIFAR-10 CIFAR-100

ResNet-18 4.96 22.78
ResNet-18 + DPLAANet 4.45 19.95

ResNet-34 4.86 21.64
ResNet-34 + DPLAANet 4.10 19.28

ResNet-50 4.62 21.89
ResNet-50 + DPLAANet 3.96 18.75

ResNet-101 4.44 20.81
ResNet-101 + DPLAANet 3.81 18.32

Table 1: Test errors (%) on CIFAR-10 and CIFAR-100.

Model Error rate (%)
CIFAR-10 CIFAR-100

PreAct ResNet-18 4.90 22.48
PreAct ResNet-18 + DPLAANet 4.02 19.44

PreAct ResNet-34 4.69 21.08
PreAct ResNet-34 + DPLAANet 3.97 18.97

PreAct ResNet-50 4.52 20.60
PreAct ResNet-50 + DPLAANet 3.88 18.53

PreAct ResNet-101 4.38 20.51
PreAct ResNet-101 + DPLAANet 3.74 18.02

Table 2: Test errors (%) on CIFAR-10 and CIFAR-100.

4.1. CIFAR-10 and CIFAR-100
We first conducted experiments on CIFAR-10 and340

CIFAR-100 [15]. The CIFAR-10 and CIFAR-100 datasets
consist of 32× 32 color images categorized into 10 and 100
classes, respectively. The training and testing sets contain
50,000 and 10,000 images, respectively.
We used PyTorch [34] for implementation. We imple-345

mented DPLAANets based on four state-of-the-art deep
networks, i.e., ResNets, pre-activation ResNets (PreAct
ResNets) [35], DenseNets and ResNeXts. The classifica-
tion accuracies achieved by the vanilla ResNets are used
as baselines for comparison. Each input branch of our350

DPLAANets consists of one block, and the backbone net-
works consist of two/three blocks. Following [2, 35, 13], we
applied zero-padding of four pixels to training images for
training DPLAANets based on ResNets, PreAct ResNets,
and DenseNets. Following [14], we applied zero-padding355

of eight pixels to training images for training DPLAANets
based on ResNeXts. A 32×32 image was randomly cropped
from the padded image or its horizontal flip as input data
to train the models. Each channel of input data were
normalized to have zero mean and unit variance. We did360

not use dropout, following the practice in [26]. All models
were trained from scratch using SGD for 300 epochs with
a mini-batch of 128/64 examples. The learning rate for
training DPLNets started from 0.1 and was divided by 10
at epoch 150 and 225. The values of weight decay and365

momentum were set to 0.0005 and 0.9, respectively. We
used the Adam [36] algorithm to train the discriminator.
The learning rate for training discriminators was set to

Model Error rate (%)
CIFAR-10 CIFAR-100

DenseNet-121 (k = 32) 4.55 22.0
DenseNet121 + DPLAANet 4.21 18.75

DenseNet-169 (k = 32) 4.46 20.21
DenseNet-169 + DPLAANet 4.14 18.05

Table 3: Test errors (%) on CIFAR-10 and CIFAR-100. k indicates
the growth rate of network.

Model Error rate (%)
CIFAR-10 CIFAR-100

ResNeXt-29 8× 64d [14] 3.65 17.77
ResNeXt-29 8× 64d + DPLAANet 3.27 16.93

ResNeXt-29 16× 64d [14] 3.58 17.31
ResNeXt-29 16× 64d + DPLAANet 3.08 16.66

Table 4: Test errors (%) on CIFAR-10 and CIFAR-100.

2e-4. At test time, we only evaluated the original 32× 32
image. The value of λ was chosen from 0.01, 0.001, 0.0001370

and 0.00001.

4.1.1. DPLAANets based on ReseNets
We implemented DPLAANets based on four ResNet ar-

chitectures, i.e., ResNet-18, ResNet-34, ResNet-50, and
ResNet-101. The experimental results are shown in Table375

1. From this table, we observe that as with ResNets, the
performance of our DPLAANets improves as the number
of layers increases. The DPLAANet based on ResNet-101
achieves the best performance on the two datasets, whereby
it achieves 3.81% and 18.32% error rates, respectively. By380

using the proposed framework, performance improves for
the four ResNet architectures, with at least 0.51% and
2.49% performance improvements on the two datasets, re-
spectively. On average, DPLAANets achieve 0.64% and
2.71% performance gains on the two datasets, respectively.385

The performance improvements yielded by using DPL with
adversarial adaptation are higher on CIFAR-10 than on
CIFAR-100.

4.1.2. DPLAANets based on PreAct ReseNets
We investigated DPLAANets based on four PreAct390

ResNets architectures, i.e., PreAct ResNet-18, PreAct
ResNet-34, PreAct ResNet-50, and PreAct ResNet-101.
The experimental results are shown in Table 2. From this
table, we find that using the proposed method helps to
improve classification accuracy for the four PreAct ResNet395

architectures. The DPLAANets based on PreAct ResNet-
101 achieve the best performance on the two datasets.
The DPLNets exhibit better performance based on PreAct
ResNet than based on ResNet.

4.1.3. DPLAANets based on DenseNets400

We implemented DPLAANets based on two DenseNet
architectures, i.e., DenseNet-121 and DenseNet-169. The
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Model Num. of
input branches

Error rate (%)
CIFAR-10 CIFAR-100

ResNet-18 + DPLAANet
1 (vanilla) 4.96 22.78
2 4.45 19.95
3 4.71 19.98

ResNet-34 + DPLAANet
1 (vanilla) 4.86 21.64
2 4.10 19.28
3 4.16 19.35

Table 6: Impact of number of input branches on performance. We did not use adversarial adaptation for branch number equal to 1.

Base model Method Error rate (%)
CIFAR-10 CIFAR-100

ResNet-18
Vanilla 4.96 22.78
DPLNet 4.63 20.70

DPLADNet 4.45 19.95

ResNet-34
Vanilla 4.86 21.64
DPLNet 4.35 19.83

DPLAANet 4.10 19.28

Table 5: Ablation study. Performance comparison among
DPLAANets, DPLNets, and vanilla ResNets on CIFAR-10 and
CIFAR-100.

experimental results are shown in Table 3. We see from
Table 3 that our DPLAANets achieve better performance
than vanilla DenseNets. On average, the DPLAANets405

achieve 0.33% and 2.71% performance improvements on
the two datasets, respectively.

4.1.4. DPLAANets based on ResNeXts
We investigated DPLNets based on two ResNeXt ar-

chitectures, i.e., ResNeXt-29 (8×64d) and ResNeXt-410

29 (16×64d). The comparison of results between our
DPLAANets and vanilla ResNeXts is show in Table 4.
From this table, we observe that by using dual pattern
learning with adversarial adaptation, performance improves
compared to original ResNeXts. The DPLAANet based415

on ResNeXt-29 (16×64d) achieves the best performance
on the two datasets, wherein it achieves 3.08% and 16.66%
error rates, respectively.

We have seen that the proposed DPLAANet architecture
helps to improve performance based on the four types of420

deep network architectures, i.e., ResNets, PreAct ResNets,
DenseNets, and ResNeXts. This demonstrates that the
performance of the DPLAANet framework is stable. We
observe that the performance improvements achieved by
DPLAANets are more significant on CIFAR-100 than on425

CIFAR-10. In CIFAR-10 and CIFAR-100, each category
has 5000 and 500 samples, respectively. The results show
that DPLNets are very helpful for small training sets.

We conducted an ablation study to understand how each
module of the proposed method contributes performance430

improvement. We trained DPLNets based on ResNet-

18 and ResNet-34. The performance comparison among
ResNets, DPLNets, and DPLAANets are shown in Table
5. We observe that the performance improves 0.42% and
1.95% on the two datasets, respectively, on average by using435

dual pattern learning. The adversarial adaptation module
further yields 0.22% and 0.65% improvements on average on
on the two datasets, respectively. The test errors evolutions
on CIFAR-10 and CIFAR-100 for ResNets, DPLNets, and
DPLAANets are shown in Figure 4. We further evaluated440

the impact of the number of input branches on performance.
The experimental results are shown in Table 6, from which
we see that increasing input branch number from 2 to 3
can not further improve classification accuracy.

Comparison with previous work To show the ad-445

vantage of the proposed approach, we compared the per-
formance of the proposed approach with recent work on
CIFAR-10 and CIFAR-100. The comparison results are
shown in Table 7.

We see from Table 7 that the proposed method achieves450

comparable performance with the recent work. The ideas
behind mixup [19] and between-class (BC) learning [20] are
the same. They use a mixture of two images as input to
train deep networks; however, the mixture of two images
does not visually make sense. Based on PreAct ResNet-18,455

our DPLNets and DPLAANets achieve low error rates on
the two datasets compared to the mixup method. While
the proposed method does not perform as good as the BC
method on CIFAR-10 based on ResNeXt-29, our DPLNets
and DPLAANets achive 1.03% and 1.27% lower error rates460

on CIFAR-100 than the BC+ method.

4.2. Image emotion recognition

For image emotion recognition, experiments were carried
out on the FI-8 dataset [43]. This dataset was collected
from Flickr and Instagram. There are totally 23,308 images465

labelled with eight emotion categories. The FI-8 dataset is
randomly split into 80% training, 5% validation, and 15%
testing sets. In our experiments, all training images were
resized with the size of the shorter side equal to 256 while
maintaining the original aspect ratio. A 224×224 image470

was randomly cropped from original image or its horizontal
flip as input data to networks. Each channel of input data
was normalized to have zero mean and unit variance. At
test time, the network made a prediction by cropping 10
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Model Error rate (%)
CIFAR-10 CIFAR-100

ResNet with stochastic depth [37] 5.25 24.98
ResNet-1001 [35] 4.92 22.71

Wide ResNet-28 [38] 4.17 20.50
PyramidNet [39] 4.70 22.77
CliqueNet [40] 5.06 21.83
DCNet-32 [41] 4.75 20.23

ResNet-18 + cutout [42] 3.99 21.96
ResNet-18 + DPLAANet (Ours) 4.45 19.95
PreAct ResNet-18 + mixup [19] 4.20 21.10
PreAct ResNet-18 + DPL (Ours) 4.16 20.15

PreAct ResNet-18 + DPLAANet (Ours) 4.02 19.44
ResNeXt-29 + BC+ [20] 2.81 17.93

ResNeXt-29 + DPL (Ours) 3.32 16.90
ResNeXt-29 + DPLAA (Ours) 3.08 16.66

Table 7: Comparison with previous work on CIFAR-10 and CIFAR-100.

Figure 4: Test errors on CIFAR-10 and CIFAR-100 for ResNets, DPLNets, and DPLAANets.

regions of the size of 224×224 (four corners and one center,475

and their horizontal flip) from a test image, and averaging
the predictions made by the network’s softmax layer on
the ten patches.

We implemented DPLAANets based on ResNets which
are pre-trained on ImageNet. Each input branch of the480

DPLAANets consists of one block, and the backbone net-
works consist of three blocks. We trained the DPLAANets
using SGD for 90 epochs with a mini-batch of size 128/64.
The values of weight decay and momentum were set to
0.0001 and 0.9, respectively. The learning rate for training485

DPLNets started from 0.1 and was divided by 10 after
30 and 60 epochs. We used the Adam algorithm to train

Model Recognition accuracy (%)
ResNet-18 64.48

ResNet-18 + DPLAANet 66.56
ResNet-34 65.08

ResNet-34 + DPLAANet 68.17
ResNet-50 65.99

ResNet-50 + DPLAANet 68.60
ResNet-101 66.56

ResNet-101 + DPLAANet 69.24

Table 8: Recognition accuracies (%) on FI-8.
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Num. of samples per category 100 200 300 400 500
ResNet-18 45.76 34.70 27.57 21.07 18.46

ResNet-18 + DPLAANet 38.02 25.14 18.84 16.25 14.47
PreAct ResNet-18 45.32 33.61 25.62 20.71 18.38

PreAct ResNet-18 + DPLAANet 33.45 22.97 17.89 15.60 13.91

Table 11: Error rates (%) on subsets of CIFAR-10.

Num. of samples per category 100 200 300 400 500 (Full dataset)
ResNet-18 44.65 32.58 27.06 24.22 22.78

ResNet-18 + DPLAANet 38.21 27.79 23.02 20.80 19.95
PreAct ResNet-18 55.95 33.03 28.16 25.05 22.48

PreAct ResNet-18 + DPLAANet 37.63 26.96 23.34 22.92 19.44

Table 12: Error rates (%) on subsets of CIFAR-100.

Num. of samples per category 10 20 30 50 100
LeNet-5 28.73 16.97 12.81 8.31 4.58

LeNet-5 + DPLAANet 20.57 13.89 10.21 6.73 3.94
LeNet-5 + TPLAANet 20.04 13.83 9.98 6.62 3.74

Table 13: Error rates (%) on subsets of MNIST. TPLAANet represents triple pattern learning with adversarial adaptation networks, in which
three input branches are used.

Model Validation set Test set
LeNet-5 9.8 10.3

LeNet-5 + Mixup (α = 0.1) 10.1 10.8
LeNet-5 + DPLAANet 8.2 8.5

Table 9: Error rates (%) on the Google commands dataset.

Model Test set
LeNet-5 [no distortions] [22] 0.95
LeNet-5 [huge distortions] [22] 0.85

LeNet-5 [distortions] [22] 0.8
LeNet-5 [no distortions] + DPLAANet 0.52

Table 10: Error rates (%) on MNIST.

the discriminator. The learning rate was set to 2e-4. The
value of λ was chosen from 0.01, 0.001, 0.0001 and 0.00001.
The experimental results are shown in Table 8. From this490

table, we observe that as with ResNets, the performance
of DPLAANets improves as the number of layers increases.
The DPLAANets achieve better performance than original
ResNets. The DPLAANet based on ResNet-101 achieves
the best classification accuracy of 69.24% on this dataset.495

Using the proposed DPLAANet framework yields an aver-
age of 2.63% performance improvement.

4.3. Google commands dataset
We further conducted experiments on speech data. We

used the Google commands dataset [44]. This dataset con-500

sists of 65,000 utterances which were recorded by thousands
of different people. There are totally 30 categories. Each
utterance is about one-second long and belongs to one
out of 30 short words, such as “yes", “no", “down", and
“left". Following the work of [19], we down-sampled from505

the original waveforms with the sampling rate equal to
16 kHz, and extracted normalized spectrograms. We ap-
plied zero-padding to the spectrograms such that their size
equal to 160× 101. We implemented DPLAANet based on
LeNet-5 [22]. Each input branch consists of a convolutional510

and a subsampling layer, and feature maps generated by
two input branches are then fused to backbone network.
The first fully connected layer contains 16280 neurons, and
the second fully connected layer contains 1000 neurons.
The models were trained using SGD with a mini-batch of515

100 examples. The learning rated started at 0.001 and
was divided by 10 after 50 epochs. The discriminator was
trained using the Adam [10] algorithm with learning rate
set to 2e-4. The experimental results are shown in Table 9.
From this table, we see that our DPLAANet yields 1.6%520

and 1.8% performance improvement on the validation set
and the testing set, respectively.

4.4. MNIST classification

The MNIST digit dataset consists of 60,000 training and
10,000 testing images of ten handwritten digits (“0" to “9"),525

each with 28 × 28 pixels. We implemented DPLAANet
based on LeNet-5 [22]. The LeNet-5 consists of two convo-
lutional layers, which are followed by subsampling layers,
and three fully connected layers with a final softmax. In
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our implementation, each input branch contains a convolu-530

tional and a subsampling layer, and the backbone network
consists of a convolutional layer, a subsampling layer, and
three fully connected layers. The model was trained from
scratch using Adam for 500 epochs with a mini-batch of 128
examples. The learning rate was set to 0.001 and 2e-4 for535

training the DPLNet and the discriminator, respectively.
The experimental results are shown in Table 10. From this
table, we find the DPLAANet achieves 0.43% higher per-
formance than original LeNet-5. Our approach also achieve
better performance than LeNet-5 trained with distortions540

of input.

4.5. Experiments on Small Datasets
We conducted experiments on small datasets to demon-

strate the advantage of DPLAANets when training data
are extremely small. We used subsets of CIFAR-10, CIFAR-545

100, and MNIST. For experiments on subsets of CIFAR-
10 and CIFAR-100, we randomly selected 100, 200, 300,
400, and 500 training samples from each category. The
DPLAANets were implemented based on ResNet-18 and
PreAct ResNet-18. The parameter setting and the training550

procedures were the same as in section 4.1. For experi-
ments on subsets of MNIST, we randomly selected 10, 20,
30, 50, and 100 training samples from each category. We
used the same DPLAANet structure, parameter setting,
and training procedures as in section 4.4, excepted that we555

used a smaller batch size of 50. The experimental results,
which are calculated by averaging three runs, are shown in
Table 11, Table 12, and Table 13, respectively.

From Table 11, we find that the DPLAANet based on
ResNet-18 and the DPLAANet based on PreAct ResNet-560

18 yield the heighest performance improvements of 9.56%
and 11.87%, respectively, with each category has 200 and
100 training samples, respectively, on CIFAR-10. As the
number of training samples in each category increases from
200 to 500, the performance improvement decreases. Over-565

all, they achieve at least 3.99% and 4.47% performance
improvements, respectively. The DPLAANets achieve an
average of 4.30% and 6.87% performance improvement on
subsets of CIFAR-100, respectively, compared to original
networks. The performance improvements are higher on570

CIFAR-10 than on CIFAR-100. This is because CIFAR-
100 has more categories, which makes network difficult to
distinguish from each other. The DPLAANet yields an
average of 3.76% performance improvement on MNIST (see
Table 13). Moreover, we see from Table 13 that increasing575

the number of input branches from 2 to 3 further improves
performance.
A general observation from the three tables is that the

performance improvement yielded by DPLAANets is high
on subsets with each category has a small number of sam-580

ples. The experimental results show that the proposed dual
patter learning with adversarial adaptation framework is
very much helpful when training data are limited. This
framework would be promising for other tasks in which
training samples are extremely difficult to collect.585

5. Conclusion

In this paper, we have presented the DPLAANet ar-
chitecture which comprises a DPLNet and an adversarial
adaptation module. This DPLNet can learn robust fea-
tures by analyzing dual inputs simultaneously compared590

to conventional networks. The dual input structure of the
DPLNet enables the network to have a large number of
image pairs to train the network, which can help address
the overfitting issue due to limited training data. The
adversarial training approach is incorporate to reduce the595

domain difference between fused image features and sin-
gle image features. We evaluated DPLAANets on on a
diverse of classification tasks including image classification,
image emotion recognition, handwritten digit recognition
and speech recognition. The experimental results show600

that DPLAANets could lead to performance improvement
over state-of-the-art networks. The experimental results
on small datasets show that our DPLAANets have good
generalization performance when limited training samples
are available. This paper provides a promising approach for605

applying deep neural networks to tasks in which training
samples are extremely difficult to collect.
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