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Abstract: Significant enhancements in the capabilities of software agents can result through improving how they
acquire information. Decision making depends on getting the right information, but the issue of what actually
constitutes the right information is complex. This paper outlines important characteristics of information
acquisition in agents and suggests how to improve the effectiveness of information acquisition in agents in virtual
worlds. By taking an affordance oriented approach it is possible to identify information resources that are
efficient. reusable and weI/matched to the capabilities of game agents.
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1. Introduction
It is pretty much axioma tic that good decisions depend on good information. The complete absence of
information makes decision making a process of guesswork. Extraneous information makes finding the
good information harder and can lead to confusion. Because agents are involved in making decisions the
nature and quality of the information they receive is important. Information acquisition (or sensing) must
articulate with the decision architecture of the agent, but there are also broader issues of what constitutes
good information, how it can be identified, and how agents systems should acquire it.

In most AI research investigation of information acquisition is often subordinate to consideration of
decision making architectures. In practice, sensory mechanisms are often unsophistic ated compared to
their partner decision architectures. Existing investigation of information have emphasised the total value
of specific pieces of information (for example [17]) rather than what information should be provided to an
agent. Other approaches that have improved the information available to agents have substantially
improved agent interactions with the environment. One approach has been annotated environments, which
have enhanced particular kinds of behaviour by placing specific information about how to use objects in
the world. Using this approach it has been possible to create virtual worlds where actors show a
substantial level of behavioural sophistication, while actually being quite simple in operation [2,3, 4, 10,16].
The increase in the sophistication of agent behaviour that results from annotations suggests that further
focus on the information environment of agents can substantially improve their behaviour.

There are many things that agents need to do that are not suited to an annotation approach. Annotations
do not provide a mechanism for agents to show general, flexible, innovative actions. Annotations are like
schemata, which tell an agent that something should be used in a particular way that follows a behavioural
formula[12]. Idenifying ways of providing information to agents that improves the way they interact with
their environment in a more general and less defined fashion requires something that goes beyond
annotation. An approach drawn from affordance theory [5] could be one way of generating adaptable
interaction with the environment. Affordance theory emphasizes the relationship between the capabilities
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of an entity and the information it obtains from the environment. Affordances are about identifying the
mutual interactions between an agent in a setting, both what it can do and what can be done to it.
Effective sensory mechanisms should help agents interact more accurately and efficiently, and the
emphasis of affordance oriented perception is about seeing what can be done in the environment. This
focus on affordance based sensing requires identifying what capabilities the actor has, what sort of
information is relevant to these capabilities, and how to make these sensory processes efficient.

2. Architectural Influences on Sensing
The sensory processes of agents are closely coupled with their decision making architectures. The sense
data acquired by an agent needs to correspond to the material it uses for making decisions, and the sort of
actions it takes in the environment. Agents need to sense within the constraints of their environment and
the software architecture of virtual worlds creates a hard limit on what an agent can perceive and do.
Within these limits, the architecture of the agent determines what information is meaningful to an agent.
Narayek[13] describes several architecture based categories of agents, with an emphasis on their decision
making mechanisms. Differences between the decision architectures are paralleled by differences in the
sort of information they sense and use.

1.1 Reactive agents
Reactive agents operate via a stimulus-response mechanism and retain no internal state[13]. Particular
sense inputs activate matched response mechanisms without regard to previous or possible events. For
these types of agents, sense data might be boolean, such as the presence or absence of a foe, or variable,
such as distance, likability or health. For these agents, all sensory inputs are state-independent, as they
must be meaningful, no matter whether the agent has encountered it many times before or not at all. The
information required by reactive systems is meaningful on a moment by moment basis. Information can be
useful even when it is disconnected from preceding or succeeding events.

Many agents operating in First Person Shooter (FPS) environments have used highly reactive
architectures, with the result that sensory data is immediate and atomically meaningful, For example
Ledgewalker[7] is a Counterstrike bot that mainly uses reactive elements. Its sensory systems are
matched to associated actuator systems to form behaviours, which are primed to trigger whenever
appropriate sense data is received. For example, the shooting actuator uses positional sensors for enemy
location to determine where to shoot. Inputs to the shoot actuator is based on spatial inputs, and any
variability in performance is due to errors introduced into sensing, rather than in the actuator process. This
operational independence means sense data for each behaviour actuator must be discrete. The sort of
information acquired by the sensors reflects this. Dedicated sensors acquire information about entities,
such as the nearest enemy, and events, such as nearby sounds. This approach can deliver competent
behaviour, especially in settings where an agent can operate reflexively. Discrete information is the
material of reflex and reaction, well suited to purely reactive mechanisms.

1.2 Trigger agents
Trigger agents differ from reactive agents as they have internal states which adjust to new information
over time[13]. Like reactive agents, they have a fixed repertoire of hard wired responses to sensory
stimuli, but these responses are altered by changes in agent state. Trigger agents can operate reflexively
like reactive agents, but they also have variable internal characteristics such as beliefs that alter the way
they interact with the environment. Because of this their information environment is a lot richer, as they
can use this information in different ways. More signifIcantly they can also use information that wculd be
meaningless without temporal or causal context.



One type of information unavailable to purely reactive agents is temporal information. Chase behaviours are
substantially improved by keeping positional information for a time, as it helps an agent track rmving targets more
effectively[18]. These predictive capabilities require an agent to relate positional and time information which serves
as a predictive mechanism for chase or flight interactions with other moving objects.
Internal states also permit agents a more sophisticated behavioural repertoire, as they influence the context
and relevance of information to an agent. They can be used to alter an agents receptivity to a stimulus, or
to contribute to more complex predictive mechanisms. The sensory mechanisms used in the Thief series
used stateful characteristics to represent differing levels of sensory awareness[9]. Differing levels of
alertness altered agent sensory acuity and thereby influenced the likelihood of responding to objects in the
sensory field While the information available to the agents remains constant, the salience of information
varies depending on agent state. The SOAR architecture[8] used similar sensory mechanisms to human
players to build a model of likely opponent behaviour, permitting the agent to preempt the actions of other
entities in the environment. The information sensed by stateful agents is similar to the stimuli used by
reactive agents, but they can use it to self-generate information. Without the faculties to generate
contextual stimuli, agents are limited to operating on information that is conceptually discrete. Stateful
information requires the presence mechanisms such as temporal sensitivity or internal context.

1.3 Anytime agents
Anytime agents demonstrate adaptable behaviours that move beyond the fixed responses of reactive and
trigger agents[13]. These agents use a basic set of capabilities that can be variably combined to create
more complex behaviours, and can be re-applied to the same event in different ways. The information
used by these systems needs to be similarly modular so that the information applies to a range of candidate
actions and plans.

One example of this approach is Goal Oriened Action Planning [15, 16], which dynamically generates
plans from a repertoire of behaviours in order to achieve a goal. GOAP matches this information by
mapping goals and actions to available resources using a plan searching mechanism. Each goal specifies
the conditions in the world that need to be fulfilled using a reatively simple data structure. The agent looks
for sequences of actions that will fulfill the goal condition by searching through sequences of actions that
generate the desired world state. To determine appropriate actions, agents use sensors matched to
appropriate action subsystem to query the environment for appropriate objects, which are tagged
according to their purpose.

Agents using a GOAP architecture demonstrate sophisticated interactions with their environment. For
example, Orkin [15] describes the following behaviour generated by GOAP:

While testing a new feature that allows the player to steal an NPC's weapon, a developer was
surprised when the NPC responded by running to grab a pipe off the wall and returning to
flog the player with it!

The scphistication of this behaviour is partially due to the improved decision making architecture of the
agents, and partially due to the type of information the agents acquire. To acquire information about
opportunities in the environment the agent used sensory mechanisms that similar to most other
contemporary approaches, as it used dedicated sensors paired with action subsystems[14]. In this
example, the pipe is tagged as a weapon, permitting the sensor to recognise it as an appropriate resource.
Despite the flexibility of the planning mechanism, objects are still defined according to specific roles. The
information available to agents in this approach is contained in a repository of categories and properties of
objects termed Smart Objects[16]. This information is a distillation of the developer's knowledge and
intelligence into information that is useful to an AI. While the planning mechanisms available to the agent
are flexible and integrable, the information available to the agent is static.



3. Enhancing Information Resources
The type of information that an agent needs depends on how it is supposed to use it, but there are other
issues associated with sensing. While the architecture of an agent determines what sort of information is
meaningful, another issue is what features, characteristics and elements of the environment reach the
agent. Information must be salient as well as structurally comprehensible. Given the need to do some
particular thing, what information is the most effective? Similarly, what sort of information is the most
useful for a range of actions an agent might perform? Selecting what an agent should sense requires
balancing specificity (and behavioural brittleness) with generality (but possibly suboptimal behaviour).

1.4 Generalisation and Behavioural Fit
Most of the time it is possible for agents to act on relatively non-specific information. By dealing with
generalities rather than specifics whenever possible it is more likely that the cost of acquiring and
processing information will be reduced. In many environments, there are highly portable characteristics
that translate across a range of scenarios. Consider a high-ceilinged warehouse, with an elevated office
supported by poles at the rear of the building. There are stairs leading to one door at the front of the office,
while another door at the side connects to a walkway that runs across the back wall and side opposite the
stairs, with a ladder down to the floor. Underneath the walkway is a large truck. There are several routes
to the office from the front of the building, including the stairs, the ladder and clambering onto the truck
and then the walkway. Converting the scenario to a jungle setting does not change the problem. If a tree
house replaces the office, branches replace the walkway, vines replace the ladder and an imperturbable
elephant replaces the truck the nature of the problem and the salient features of the environment remains
the same. In either setting, only limited features of the objects are relevant to the problems the agent faces
and there is a lot of information that can be used in a general way.

This argument for generality has been made effectively by Hamard [6]. His argument is that
categorisation is a way of managing variability in sense data. An ability to categorise and identify invariant
features is an essential part of figuring out what is important in the environment. This categorisation
process is mutable- we might look at a garden of flowers and differentiate between the primroses and
other types of flowers, (J differentiate between the flowers and other plants [6]. Without a means of
weighting input, any two entities are as similar as any other two[19] so categories result from grouping by
general criteria. Categorisation provides a heuristic for handling sensory information in manageable
chunks. Identifying how to condense the information available to an agent is an important issue. It affects
the cognitive capabilities of the agent by determining how the agent identifies generalities, and it affects
the effie iency of the agent by altering how wide reaching its sensory and cognitive mechanisms must be.

Generalising information resonates with the way many objects are used in virtual worlds. An object that
features in many games is the trusty crate. Their common use illustrates potential benefits of
categorisation that minimise extraneous information. In games, crates are often used for cover, de-facto
ramps and occasionally storage. A crate is rarely actually used as a crate! A crate used as a ramp or
cover could be replaced with a chest, box or bale with no change in utility. WordNet[ 11] uses a semantic
network of words and concepts to provide information about their relationship with other words and
concepts. A feature of WordNet is the ability to detail the component parts of a crate. The edited
meronym query for crate in Figure 1 shows how little agents actually need to sense about crates. In many
environments, all agents need to know about crates are that they can be climbed on, provide cover, can be
moved, and are heavy enough to cause damage if they fall on someone.



crate -- (a rugged box (usually made of wood); used for shipping)
=> box -- (a (usually rectangular) container; may have a lid)
HAS PART: base -- (a flat bottom on which something is intended to sit)
HAS PART: lid -- (a movable top or cover (hinged or separate) for closing the opening of a container)
HAS PART: lock-- (a fastener fitted to a door or drawer to keep it firmly closed)
HAS PART: bolt, deadbolt-- (the part ofa lock that is engaged or withdrawn with a key)
HAS PART: keyhole-- (the hole where a key is inserted)
HAS PART: tumbler -- (a movable obstruction in a lock that must be adjusted to a given position (as
bv a key) before the bolt can be thrown)

Figure 1: Component features of a crate.

Generalising information offers additional advantages. Generalised information is potentially more durable
and less situationally fragile than scripted uses of objects. An agent attempting to push a crate onto an
intruder is really just looking for is something solid and heavy. This could be achieved by scripting the
action into the crates. However, if there are other solid heavy objects nearby, they would need to have
scripts attached as well. While embedding scripts into the environment is a powerful tool it also limits the
extent to which an agent can innovate in the environment. An alternative approach is to make information
about the attributes that make an object worth pushing available to agents. Some of this information exists
in the object, aich as its size and weight. Other information exists in its relationships, such as whether it
can be pushed to an appropriate destination (in this case off an edge). Of course other knowledge is also
important, such as when it is appropriate to push things onto people.

4. Matching Capabilities to Characteristics
From an affordance perspective, the actions available to an agent in the environment are its capabilities.
Because several actions may be possible in a particular setting, the information that reaches the agent
should indicate what capabilities can be used, and what they can be used on. This information needs to be
fitted to the capabilities an agent has, as they might only marginally differ in what makes them feasible.
Providing information in a general way permits an agent to ask several questions about what they can do
with the environment. One question is "what can I do with the things around me?", and another is "where
is something I can use in a particular way?".

The properties of the crate examined previously illustrate how this information can be presented in a way
that fits the capabilities of an agent. Consider an agent with three capabilities that deal with moving things
around: carry, throw and push. Each of these capabilities has common requirements, as objects must be
movable and solid, but they also have differing requirements such as the size and weight of the object.
Thus, the information relevant to these capabilities could be classified as movable, size, and weight.
Movable describes the physical constraints on the object. If the object is bolted to the door (or is the door)
it would be a complex process to relocate it, so generally the object is immovable. Size and weight are
measurements, so they need to provide an estimate of value. One simple categorisation might break them
into 4 categories. Size could be generalised as small (carry in one hand), medium (2 hands), large (2
people) or massive (> 2 people). Weight could be generalised as light (an apple), medium (a person),
heavy (a pano) or really heavy (a truck). The articulation between the properties of the crate and an
agents capabilities are shown in Table 1. The prerequisites for a particular capability compared to the
attributes of a particular object indicate whether a particular capability can be used on an object. By using
these simple generalisations, it is possible to provide an agent with a lot of information about their
environment in a condensed and reusable form.
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Capability Requirements Properties Feasible

Movable Movable
Carry Small- Medium Size Medium N

Light-Medium Weight Heavy

Movable Movable
Throw SmallSize Medium N

Light Weight Heavy

Movable Movable
Push Medium - Massive Size Medium y

Light - Heavy Weight Heavy

It may seem more efficient to simply flag what can be done to an object instead of indicating the
properties an object has. Simply tagging an object with possible actions makes sense, subject to certain
conditions. If all the potential actors on the object have identical capabilities, the properties of the
environment are identical for each participant. However, if the innate capabilities of agents vary, this
approach will result in mismatches between what the agent can do, and what the agent is told it can do.
For example, a robotic spider might have substantially different capabilities to a human. It may be weaker
(and therefore less capable of pushing things) but it may be able to climb vertical surfaces. Moreover, the
physical properties of each object are relatively constant in a virtual environment. A crate has the same
dimensions and weight, no matter whether the actor is weak or strong, short or tall. What changes is
which of those properties relate to an agent, and to the particular capabilities the agent possesses. This
approach of viewing object properties as constant also accommodates environments that have characters
with variable skills. To revisit Table 1, the requirements for the throw capability can be extended to include
heavy objects if the strength of an agent improves. This approach means that the environment does not
need to change when the agent does.

Making information simpler by generalising it helps agents obtain information in a manageable way. It also
reduces the details agents need to deal with. This approach helps the agent, but it doesn't necessarily make
for quality AI. The argument against this approach parallels that of Chalmers et al.[l]. They argue that
much of what constitutes intelligence comes from being able to extract the important information from the
environment, and that having an experimenter or designer do this on behalf of the agent detracts from the
AI itself This limitation holds for the approach in this paper. If the information available to an AI is filtered
by the designer, much of the intelligence is siphoned away from the AI. While this criticism is important
and valid, it needs to be treated pragmatically. Generalising information for the consumption of an agent
may not be ideal, but it provides a means of testing how agents that use this type of information can
perform. The results of this approach peels back another layer of the problem and provides impetus for
future work looking to improve this part of information acquisition.

5. Conclusion
Paying closer attention to the processes of information acquisition can enhance the way that agents in
virtual worlds operate. The need to get good information is paramount but the issue has seen very little
direct analysis, at least within the domain of AI. In part, this is because there are plenty of other
worthwhile issues to be tackled. However, whenever a piece of software is used to provide analysis and
decision making based on some information, the questions of what is important to know and how the
information can be sensed should be asked. Addressing information acquisition implicitly foregos the
opportunity to examine the nature of the information environment and to apply information-oriented



approaches to AI. These approaches include wider examination of the aspects of information acquisition,
including material drawn from the cognitive sciences.

This preliminary analysis suggests that agents will benefit from acqumng information that closely
articulates with what they can do in their environment, and is efficient and reusable. Agents need to
acquire information about a range of issues that extend beyond object properties. These include identifying
the relationships between objects and information about other actors. Actors also need to be able to adjust
their perceptual focus based on their motivation and circumstances. There are many approaches that can
suggest ways of improving information acquisition as sensing has been an issue for psychologists and
philosophers for far longer than computers lave existed. However, what computing based sensing does is
bring flexible tools and perspectives into the field. The ability to easily specify and manipulate information
in a virtual worlds provides an interesting and flexible way of examining the issue.
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