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Privacy Preserving Location Data Publishing:
A Machine Learning Approach
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Abstract—Publishing datasets plays an essential role in open data research and promoting transparency of government agencies.
However, such data publication might reveal users’ private information. One of the most sensitive sources of data is spatiotemporal
trajectory datasets. Unfortunately, merely removing unique identifiers cannot preserve the privacy of users. Adversaries may know
parts of the trajectories or be able to link the published dataset to other sources for the purpose of user identification. Therefore, it is
crucial to apply privacy preserving techniques before the publication of spatiotemporal trajectory datasets. In this paper, we propose a
robust framework for the anonymization of spatiotemporal trajectory datasets termed as machine learning based anonymization (MLA).
By introducing a new formulation of the problem, we are able to apply machine learning algorithms for clustering the trajectories and
propose to use k-means algorithm for this purpose. A variation of k-means algorithm is also proposed to preserve the privacy in overly
sensitive datasets. Moreover, we improve the alignment process by considering multiple sequence alignment as part of the MLA. The

framework and all the proposed algorithms are applied to T-Drive, Geolife, and Gowalla location datasets. The experimental results
indicate a significantly higher utility of datasets by anonymization based on MLA framework.

Index Terms—k-anonymity, spatiotemporal trajectories, longitudinal dataset, machine learning, privacy preservation.

1 INTRODUCTION

UBLICATION of data by different organizations and in-
P stitutes is crucial for open research and transparency of
government agencies. Just in Australia, since 2013, over 7000
additional datasets have been published on ’‘data.gov.au,’
a dedicated website for the publication of datasets by
the Australian government. Moreover, the new Australian
government data sharing legislation encourage government
agencies to publish their data, and as early as 2019, many
of them will have to do so [2]. Unfortunately, the process
of data publication can be highly risky as it may disclose
individuals’ sensitive information. Hence, an essential step
before publishing datasets is to remove any uniquely iden-
tifiable information from them. However, such an opera-
tion is not sufficient for preserving the privacy of users.
Adversaries can re-identify individuals in datasets based
on common attributes called quasi-identifiers or may have
prior knowledge about the trajectories traveled by the users.
Such side information enables them to reveal sensitive infor-
mation that can cause physical, financial, and reputational
harms to people.

One of the most sensitive sources of data is location
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trajectories or spatiotemporal trajectories. Despite numerous
use cases that the publication of spatiotemporal data can
provide to users and researchers, it poses a significant threat
to users’ privacy. As an example, consider a person who has
been using GPS navigation to travel from home to work
every morning of weekdays. If an adversary has some prior
knowledge about a user, such as the home address, it is
possible to identify the user. Such an inference attack can
compromise user privacy, such as revealing the user’s health
condition and how often the user visits his/her medical
specialist. Therefore, it is crucial to anonymize spatiotem-
poral datasets before publishing them to the public. The
privacy issue gets even more severe if the adversary links
identified users to other databases, such as the database
of medical records. That is the very reason why nowadays
most companies are reluctant to publish any spatiotemporal
trajectory datasets without applying an effective privacy
preserving technique.

A widely accepted privacy metric for the publication
of spatiotemporal datasets is k-anonymity. This metric can
be summarized as ensuring that every trajectory in the
published dataset is indistinguishable from at least k — 1
other trajectories. The authors in [3], adopted the notion
of k-anonymity for spatiotemporal datasets and proposed
an anonymization algorithm based on generalization. Xu
et al. [4] investigated the effects of factors such as spa-
tiotemporal resolution and the number of users released
on the anonymization process. Dong et al. [5] focused on
improving the existing clustering approaches. They pro-
posed an anonymization scheme based on achieving k-
anonymity by grouping similar trajectories and removing
the highly dissimilar ones. More recently, the authors in
[6] developed an algorithm called k-merge to anonymize
the trajectory datasets while preserving the privacy of users
from probabilistic attacks. Local suppression and splitting
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techniques were also considered to protect privacy in [7].
However, there are three major problems with the afore-
mentioned approaches.

o Lack of a well-defined method to cluster trajectories
as there is not an easy way to measure the cost
of clustering when considering the distances among
trajectories rather than simply the locations.

o The existing literature focuses on pairwise sequence
alignment, which results in a high amount of infor-
mation loss [3], [6], [8]-[10].

o There is no unified metric to evaluate and compare
the existing anonymization methods.

In this paper, we address the mentioned problems by
proposing an enhanced anonymization framework termed
machine learning based anonymization (MLA) to preserve
the privacy of users in the publication of spatiotemporal
trajectory datasets. MLA consists of two interworking algo-
rithms: clustering and alignment. We have summarized our
main contributions in the following bullet points.

e By formulating the anonymization process as an op-
timization problem and finding an alternative repre-
sentation of the system, we are able to apply machine
clustering algorithms for clustering trajectories. We
propose to use k’-means ! algorithm for this purpose,
as part of the MLA framework.

o We propose a variation of k’-means algorithm to
preserve the privacy of users in the publication of
overly sensitive spatiotemporal trajectory datasets.

e We enhance the performance of sequence alignment
in clusters by considering multiple sequence align-
ment instead of pairwise sequence alignment.

o We propose a utility metric to evaluate and compare
the anonymization frameworks.

MLA and all algorithms associated with it are applied on
two real-life GPS datasets following different distributions
in time and spatial domains. The experimental results indi-
cate a significantly higher utility levels while maintaining
k-anonymity of trajectories.

The rest of this paper is organized as follows. First, a
comprehensive review of the currently existing literature is
presented in Section 2, followed by the system model used
in Section 3. Next, the proposed framework is explained and
analyzed in Sections 4 and 5, respectively. Several real-world
applications of the framework are elaborated in Section 6,
and finally, the paper is concluded in Section 7.

2 RELATED WORK

Unfortunately, merely removing unique identifiers of users
cannot protect their privacy, as databases can be linked
to each other based on their quasi-identifiers. Doing so,
adversaries can reveal sensitive information about the users
and compromise their privacy. In this section, we review the
existing approaches for the anonymization of spatiotempo-
ral datasets.

1. The prime notation on the top of variable “k” is to distinguish
between the variable k in the clustering algorithm and the variable k
used in the definition of k-anonymity.

2.1 Generalization Technique

Generalization is currently one of the mainstream ap-
proaches for the anonymization of spatiotemporal trajectory
datasets. The generalization technique is predicated on two
interrelated mechanisms: clustering and alignment. Cluster-
ing aims at finding the best grouping of trajectories that
minimizes a predefined cost function, and the alignment
process aligns trajectories in each group.

The notion of k-anonymity was adopted in [8] for
anonymization of spatiotemporal datasets . The authors
proved that the anonymization process is NP-hard and
followed a heuristic approach to cluster the trajectories. The
use of ‘edit distance’ metric for anonymization of spatiotem-
poral datasets was proposed in [9]. In this work, the authors
target grouping the trajectories based on their similarity and
choose a cluster head for each cluster to represent the cluster.
Also, dummy trajectories were added to anonymize the
datasets further. Yarovoy et al. [10] proposed to use Hilbert
indexing for clustering trajectories. The authors in [5], [11]
chose to avoid alignment by selecting trajectories with the
highest similarity as representatives of clusters. Poulis et
al. [12] investigated applying restriction on the amount of
generalization that can be applied by proposing a user-
defined utility metric. Takahashi et al. [13] proposed an
approach termed as CMAO to anonymize the real-time pub-
lication of spatiotemporal trajectories. The proposed idea is
based on generalizing each queried location point with £ —1
other queried location by other users, and hence, achieving
k-anonmity.

The current state-of-art technique for applying gereliza-
tion to spatiotemporal datasets is based on generalization
hierarchy (DGH) trees. In essence, DGH can be seen as a
coding scheme to anonymize trajectories. We have catego-
rized types of DGHs in the literature as:

e Full-domain generalization: This technique empha-
sizes on the level that each value of an attribute is
located in the generalization tree. If a value of an
attribute is generalized to its parent node, all values
of that attribute in the dataset must be generalized to
the same level [14]-[16].

o Subtree generalization: In this method, if a value of
an attribute is generalized to its parent node, all other
child nodes of that parent node need to be replaced
with the parent node as well [17], [18].

e Cell generalization: This generalization technique
considers each cell in the table separately. One cell
can be generalized to its parent node while other
values of that attribute remain unchanged [19]-[21].

2.2 Other Anonymization Techniques

Aside from the generalization technique, we have catego-
rized the existing methods for the anonymization spatiotem-
poral datasets into three major groups:

e Perturbation anonymizes location datasets by addi-
tion of noise to data;

o ID swapping swaps user IDs in road junctions to
anonymize location datasets;

o Splitting divides trajectories into shorter lengths to
anonymize location datasets.
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The authors in [22] proposed an algorithm that swaps
the IDs of users in trajectories once they reach an inter-
section. Doing so, the algorithm prevents adversaries from
identifying a particular user. Cicek et al. [23] made a dis-
tinction between sensitive and insensitive location nodes of
trajectories. Their proposed algorithm only groups the paths
around the sensitive nodes and exploits generalization to
create supernodes.

Moreover, Cristina et al. [24] shifted the burden of pri-
vacy preservation in data publishing to the user side. The
authors attempted to anonymize the data on the mobile
phones before storage on the database as they would have
more control over their privacy. Instead of clustering tra-
jectories for anonymization, Cicek et al. in [23] focused on
the obfuscation of underlying map for sensitive locations.
Brito et al. [25] minimized the information loss during
the data anonymization by suppressing key locations. The
Local suppression and splitting techniques were considered
for trajectory anonymization in [7]. Although the proposed
approach is useful for a predefined number of locations, it
cannot be generalized to system models in which the users
can make queries from an arbitrary location on the map.
Naghizadeh et al. [26] focused on the stop points along
trajectories. A sensitivity measure is introduced in this work,
which relies on the amount of time users spend in different
locations. Sensitive locations are replaced or displaced with
a less sensitive location to preserve the privacy of users.
Jiang et al. [27] considered the perturbation of locations
by adding noise to preserve the privacy of users. Adding
noise can generate fake trajectories that do not correspond
to realistic scenarios.

3 SyYSTEM MODEL

We assume that a map has been discretized into an € x ¢
grid and the time is discretized into bins with length ¢;.
Therefore, each point in the dataset represents a snapshot
of a real-world location query including x-coordinate, y-
coordinate, and time. The datasets with continuous time
or space data can fit into our model using interpolation.
The level of spatial-temporal granularity in discretization
does not affect the effectiveness of the proposed model.
In our model, we consider a spatiotemporal trajectory
datasets denoted by T'. The dataset consists of trajectories
tri,...,tr, where n represents the number of trajectories in
the dataset (I' = {¢r1, ..., trn}, |T| = n). The i-th trajectory
tr; is an ordered set of /; spatiotemporal 3D points (i.e.,
tr; = {p1,...,p;}, [tri] = ;). Each point p; is defined
by a triplet < x;,y;,t; >, where x;,y;,t; indicate the x-
coordinate, y-coordinate, and the time of query, respectively.

3.1 Generalization Model

Our proposed framework is based on the generalization
technique to anonymize the spatiotemporal datasets. To
apply this technique, we use the domain generalization
hierarchy (DGH) trees and quantify the information loss
accordingly.

3.1.1 Domain Generalization Hierarchies

DGH tree is defined formally in Definition 1. To clarify the
construction of DGHs, an example of such a tree for spa-
tiotemporal datasets is provided in Example 1. In our model,

3

we utilize three dimensions: x-coordinate, y-coordinate, and
the time of queries in hours.

Definition 1. A DGH tree for an attribute A, denoted as H 4,
is a partially ordered tree structure, which maps specific and
generalized values of the attribute A. The root of the tree is

the most generalized value and is returned by the function
RT.

Example 1. Consider an 4 x 8 map shown in Example 1.
As can be seen in the figure, the generalization technique is
applied by three DGH trees, each of them corresponding to
one of the attributes. For instance, the z-coordinate attribute
can have 8 possible values (0,1, ...,7). At the lowest level
of the tree, each coordinate needs three bits of information
to be shown that indicates the maximum information bits.
As we go higher up the DGH tree, more information loss
incurs, and less number of bits are used to represent the
coordinates.

Each node on a DGH tree can be generalized by moving
up one or multiple levels of the DGH. The process of gen-
eralizing node; to one of its parent nodes node; is denoted
using node; — node;. A special case of generalization, in
which the node is generalized to the root of the DGH, is
referred to as suppression.

For generalizing two nodes, it is necessary to find the
lowest common ancestor (LCA). The LCA is a critical point
in the generalization process due to its corresponding sub-
tree that entails both the nodes and achieves the lowest
information loss for the generalization of two nodes. The
definition of LCA is given in Definition 2.

Definition 2. The LCA of node; and node; in H 4 is de-
fined as the lowest common parent root of the two nodes.
Function LC A returns the LCA.

For instance, in Example 1, if two leaf nodes ‘000" and
‘010" are to be generalized, their LCA corresponds to the
parent node ‘0". Hence, in the dataset, the x-coordinates ‘000’
and ‘010" will be replaced by ‘0" to prevent adversaries from
distinguishing between these two nodes.

3.1.2 Information Loss
The information loss incurred by generalizing node; to
node; in DGH H 4 is defined as

LS(node;,node;) = log, LF(node;) —log, LF(node;) bits,

)
where LF(.) function returns the number of leaves in the
subtree generated by a node, and LS(.) function returns the
loss incurred by the generalization of nodes. The calculation
of information loss is elaborated in Example 2.

Example 2. Consider the x-coordinate DGH tree given in
Fig. 1, the information loss incurred by generalizing node
10" to “1’ can be calculated as log, 4 — log, 2 = 1 bits.

Moreover, Lemma 1 can be used to derive the total loss
incurred by the generalization of two nodes to their LCA.
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Figure 1: An example of DGHs for the attributes of spatiotemporal datasets.

Lemma 1. The total loss incurred by generalizing node; and
node; in H 4 to their LCA, node,, can be calculated as

LS (node; + node;, nodey,) =
LS (node;, node,) + LS(node;, nodey). (2)

The total loss incurred during anonymization of a tra-
jectory and a dataset are defined in Definitions 3 and 4,
respectively.

Definition 3. The total loss rendered by the generalization
of trajectory tr to achieve the anonymized trajectory ¢r with
respect to attribute A can be calculated as

|tr]
LS(tr, A) = > LS(tr;. A tr;. A). ©)
i=1
where tr;.A indicates the i-th location of the trajectory t¢r
with respect to the attribute A. Here, A could denote z-
coordinate, y-coordinate, or time.

Definition 4. The total loss with respect to an attribute A in
an anonymized dataset T' can be computed as
- IT|
S(T,A) =Y LS(tr, A) ()

treT

3.2 Privacy Model
3.2.1 Adversary Model

In our work, we consider coordinates and the time of queries
both to be quasi-identifiers, as they can be linked to other
databases and compromise the privacy of users. We also
assume that no uniquely identifiable information is released
while publishing the dataset. However, the adversary may:

o already know about part of the released trajectory for
an individual and attempt to identify the rest of the
trajectory. For instance, the adversary is aware of the
workplace of an individual and attempts to identify
his or her home address.

o already know the whole trajectory that an individual
has traveled, but try to access other information
released while publishing the dataset by identifying
the user in the dataset. For instance, the published

dataset may also include the type of services pro-
vided to users and if the adversary can identify a
user by its trajectory, it can also know the services
provided to that user.

To this end, our aim is to protect users against the ad-
versary’s attempt to access sensitive information that may
compromise user privacy.

3.2.2 Privacy Metric

In this paper, we use a well-known metric called k-
anonymity [28] to ensure the privacy of users. The k-
anonymity in our dataset implies that a given trajectory
in the original dataset can at best be linked to £ — 1 other
trajectories in the anonymized dataset. Definition 5 formally
defines the k-anonymity in the context of dataset.

Definition 5. k-anonymous dataset: A trajectory dataset T
is a k-anonymization of a trajectory dataset 1" if for every
trajectory in the anonymized dataset T, there are at least
k — 1 other trajectories with exactly the same set of points,
and there is a one to one mapping relation between the
trajectories in 7 and 7.

3.2.3 Spatial Utility Metric

The Fk-anonymity metric ensures that the users are k-
anonymous, implying that they cannot be identified from
at least £ — 1 other users in the anonymized published
dataset. To achieve k-anonymity, significant loss of infor-
mation incurs during the generalization process of different
algorithms. However, there is no unified metric to measure
how much information has actually been lost to achieve k-
anonymity. The metric explained in Section 3.1.2 is a viable
option for this purpose and can be used to measure the
amount of information lost based on different algorithms.
However, there are two major drawbacks associated with
the metric: (I) It is only applicable when the algorithms are
using DGH trees as their principle encoding scheme. (II)
The DGH tree used in the algorithms must be identical to
generate comparable results. These two drawbacks signif-
icantly limit the practicality of the information loss metric
for the purpose of comparison among various developed
approaches. To address this challenge, we propose to use
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the average released area per location to assess and compare
the anonymization schemes.

Any anonymization approach aims to maximize utility
while preserving the privacy of users. Utility in general-
ization techniques refers to the area released for locations
in the dataset. Consider a location in the dataset T with
coordinates < x1,y;,t; > and an arbitrary generalization
function F : T — T. After the anonymization process,
< x1,Y1,t1 > is generalized with a number of other lo-
cations < o, Yo, ts >,..., < Tq, Ya, tq > in the dataset and an
area S would be released representing these locations. For
instance, if generalization returns the minimum rectangle
surrounding the locations, the generalized area is given by:

S = (mfx{%} - Inl,in{l’i}) X (mflx{yz'} - miin{yi}). )

Once the anonymization is conducted, assume that n;
locations are generalized to area 51, ng locations are gener-
alized to area S3,..., ny, locations are generalized to area 5.
In this case, the average released area per location can be

calculated as
b b
O i x S/ _ma), (6)
i=1 i=1

in which no location belongs to more than one area. Av-
erage released area per location helps to understand how
efficiently the data has been generalized and how much loss
of spatial utility has occurred by the generalization. Having
k-anonymous locations, a smaller released area per location
indicates a higher spatial utility of data while preserving the
privacy of users.

3.3 Problem Formulation

The problem we seek to answer in this paper is formally
presented in Problem 1 as follows.

Problem 1. Given a trajectory dataset T', a privacy require-
ment k, quasi-identifiers x-coordinate, y-coordinate, and time,
how to generate an anonymized dataset T which achieves the
k-anonymity privacy metric and minimizes the total loss with
respect to all quasi-identifiers, which can be explicitly formulated
as

Minimize{LS(T,z) + LS(T,y) + LS(T,t)}.  (7)

4 MLA

In this section, we present our proposed framework, MLA,
for anonymization of spatiotemporal datasets.

4.1 Overview of the MLA Framework

Fig. 2 demonstrates the overview of our proposed frame-
work. The original dataset and the value of k are the inputs
of the framework, and the output is the anonymized dataset
preserving the privacy of users. The MLA framework con-
sists of three mechanisms working together to anonymize
spatiotemporal datasets, i.e., clustering, alignment, and gen-
eralization. A short description of each mechanism is pro-
vided as follows.

Original
Dataset

Value of the
privacy metric

(k)

¥

_—__“

MLA Framework
_—— _—— _—— _—— _—— -J

==
—_——

Clustering \
Objective: To minimize information loss

Method: k’-means

mignment
Objective: To minimize information loss
Method: Progressive sequence alignment

EIIE I - - . .,
- - - - - - -

Z

Anonymized
Dataset
Figure 2: Overview of our proposed MLA framework.

o Clustering: At the highest level of the MLA frame-
work, clustering is applied to seek for the most
suitable grouping of trajectories that minimizes infor-
mation loss. We propose to use k’-means clustering
algorithm and a variation of it for overly sensitive
datasets. Moreover, to have a baseline for compar-
ison purposes, we develop a heuristic approach to
cluster datasets. Our proposed clustering approaches
are elaborated in Section 4.3.

e Alignment: For a given trajectory cluster, we propose
to use progressive sequence alignment to find the ar-
rangement of trajectories that results in the minimum
information loss. Our approach for the alignment of
trajectories is explained in Section 4.2.

o Generalization: At the heart of MLA framework re-
sides the generalization approach. The generalization
process is conducted based on DGHs explained in
Section 3.1.

Note that these mechanisms are not independent of each,
and they all work together with the objective to minimize
the incurred information loss. The information loss incurred
as a result of an arbitrary clustering of trajectories can
only be known if the alignment and the generalization are
applied in each cluster.

4.2 Alignment

The process of alignment is defined as finding the best
match between two trajectories in order to minimize the
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Figure 3: An overview of progressive SA for alignment of
four trajectories and generating the anonymized trajectory.

overall cost of generalization and suppression. The process
of alignment between two trajectories has been studied in
different domains mostly referred to as sequence alignment
(SA). In this paper, we adopt a multiple SA technique called
progressive SA [29] for anonymization of spatiotemporal
trajectories.

4.2.1 Progressive Sequence Alignment

The progressive SA is commonly used for SA of a set of
protein sequences. Progressive SA is a greedy approach for
multiple SA. As a part of the algorithm, pairwise alignment
of the trajectories is required. We use dynamic SA for this
purpose. Dynamic SA is based on dynamic programming
and commonly used in DNA SA [30], [31]. Fig. 3 illustrates
an example of how the progressive SA works for four hy-
pothetical sequences tr, = {a1, aq, as, as}, try, = {b1, b2 },
tr. = {c1, co, c3} and trq = {d;, d2} to generate the resul-
tant aligned trajectory tr, = {r1, r2, r3, r4}. The longest
path tr, is chosen as the basis and it is aligned with a
randomly chosen trajectory try. The pairwise alignment
process is implemented using dynamic SA. Then, the re-
sultant trajectory is aligned with a third trajectory. The
process continues until all trajectories are aligned. Instead of
choosing the trajectories randomly during the progressive
SA, the algorithm can choose the trajectory resulting in
the lowest loss during the alignment. In Fig. 3, the way
trajectory elements are located with respect to the longest
path is referred to as the structure of the shorter path, and
also, the spaces indicate the suppression operation during
the alignment.

The dynamic SA algorithm is formally represented in Al-
gorithm 1. Dynamic SA is based on dividing the problem of
finding the best SA to subproblems and storing the solutions
of subproblems in a table or matrix referred to as SAmatriz
in the pseudocode. The objective is to achieve the minimal
cost for SA. As before, the cost of alignment refers to the
loss incurred during the alignment for different attributes of
the sequence, which are z-coordinate, y-coordinate, and the
time of the query.

The algorithm starts by creating a (m+1) x (n+1) matrix
(SAmatriz), where m and n denote the length of the trajec-
tories. The matrix will be used to store the minimum cost of
each cell of the grid. Moreover, a list called code stores how
cells have been reached. Cell [j+1, i+ 1] can be reached from
three cells [j,7+ 1], [j +1,4], [J, ¢]. Each path corresponds to
one of the subproblems explained. After finding all values

Algorithm 1: DynamicSA(try, tre, H,, Hy, Hy).

Required variables: tr1 = {p1, , P2, ..., P },

tro = {(117 7 G2y ey qn}/ H,, Hy/ H;

S Amatriz < np.zeros([m + 1,n + 1])

for i in range(m) do

Loss < LS(p;.x, rt(Hy)) + LS(pi.y, rt(Hy))
+LS(p;.t, rt(Hy))

SAmatrizli + 1,0] < SAmatriz[i,0] + Loss

end

for i inrange(n) do

Loss < LS(q;.x, rt(H,)) + LS(q;-y, rt(H;))
+LS(g;.t, rt(Hy))

8 | SAmatriz(0,i+ 1] < SAmatriz[0,4] + Loss

9 end

10 options < np.zeros(3)

11 code < list()

12 for i inrange(m) do

W N =

NS G e

13 | for jinrange(n) do

14 Loss < loss incurred by generalizing p; and
95

15 options|0] < SAmatriz[i, j] + Loss

16 Loss < loss incurred by suppressing g;

17 options[l] «— SAmatriz[i + 1, j] + Loss

18 Loss < loss incurred by suppressing p;

19 options[2] < SAmatriz[i,j + 1] + Loss

20 BestOption < np.argmin (options)

21 SAmatrizli + 1,7 + 1] <
options[BestOption)

22 code.append(index of option with minimum
value)

23 end

24 end

25 TotLoss < S Amatrizim,n)

26 GenT'raj < trace back the code to generate the
aligned trajectory

27 ShoT'rajStr < trace back the code to find out
structure of shorter trajectory while alignment

28 Return GenT'raj, ShoTrajStr, TotLoss

of the matrix and tracing back the list code, the outputs
of the algorithm are the value of cell [m,n| indicating the
minimum value of the total loss (T'otLoss) required for
the dynamic SA, the aligned trajectory (GenI'raj), and the
structure of the shorter path compared to the longer path as
ShoTrajStr.

4.3 Clustering

Clustering can be seen as a search for hidden patterns that
may exist in datasets. In simple words, it refers to grouping
data entries in disjointed clusters so that the members
of each cluster are very similar to each other. Clustering
techniques are applied in many application areas, such
as data analysis and pattern recognition. There are three
clustering approaches considered in this work, i.e., heuristic,
k’-means, and iterative k’-means. The latter two algorithms
are our proposed approaches to significantly improve the
utility of published spatiotemporal datasets. The heuristic
algorithm is presented for the purpose of comparison. Each
one of these approaches works independently and can be
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Algorithm 2: HeuristicClustering(Original Dataset, k).

T
1 NumO fClus < HITH
2 T + Original Dataset
3 Let Clusters be a two-dimensional array storing the

clusters and their corresponding trajectories
for cinrange(0, NumO fClus) do

'S

5 Select a trajectory randomly from 7" and append
it to cluster|c] while removing it from T
6 | foriinrange(l,k) do
7 for jinrange(1,|T]) do
8 Add the trajectory to the cluster cluster]c]
9 Align based on DynamicSA and store the
information loss
10 Remove the trajectory from cluster]c|
11 end
12 Append the trajectory resulting in the
minimum loss to cluster|c| and remove it
from the dataset
13 | en
14 end

15 (T, Loss) +GenerateAnonymizedDataset(cluster,
Original Dataset)
16 Return (T, Loss)

embedded in the MLA framework to cluster trajectories. A
short description of these algorithms is provided as follows.

o The heuristic algorithm is a widely used scheme in
the literature [3], [8]. This algorithm is often applied
for optimizing different objective functions, however,
with a similar structure. We have used this approach
as a benchmark to compare our proposed algorithms.

e The k’-means algorithm is our proposed scheme for
clustering the spatiotemporal trajectories, which can
significantly improve the utility of published spa-
tiotemporal datasets. The algorithm provides robust
performance, but some of the users may not achieve
k-anonymity due to the possibility that some of the
clusters may include less than k trajectories.

o The iterative k’-means algorithm is a variation of
the k’-means algorithm, we have proposed to ad-
dress the privacy issue for overly sensitive datasets.
This approach guarantees privacy requirements for
all users with the cost of higher information loss
compared with the £’-means algorithm.

4.3.1 Heuristic Approach

The heuristic approach for clustering spatiotemporal tra-
jectory datasets is detailed in Algorithm 2 and its helper
function in Algorithm 3. The intuition behind the heuristic
algorithm is to form the clusters by sequentially adding
the most suitable trajectory that minimizes the total loss in-
curred by generalization and suppression for z-coordinate,
y-coordinate, and the time of query, given their DGHs H,,
H,, H;.

The algorithm starts by calculating the number of clus-
ters that need to be generated and making a duplicate of
the dataset called T. Moreover, a two-dimensional list is
created, which holds the trajectory IDs for each cluster. For

Algorithm 3: GenerateAnonymizedDataset(cluster,
Original Dataset).

1 Let the T'otal Loss store the total loss incurred by
applying progressive SA

2 Let T be an empty set that will store the
anonymized dataset

3 for iinrange(0,len(cluster)) do

4 | Apply progressive SA on trajectories in cluster]i]

5 Add the incurred loss to T'otalLoss

6 Append the generated trajectory to T'

7 end

s Return (T, Total Loss)

each cluster (i.e., cluster ¢), the algorithm appends a random
trajectory from T'. This trajectory is removed for 7' and
would be the first member of the cluster c. Then, given the
privacy requirement k, k—1 other members of the cluster are
chosen in a greedy approach. For every remaining trajectory
in the dataset, the algorithm calculates the information loss
incurred by applying dynamic alignment and determine
the trajectory that results in the minimum loss. The chosen
trajectory will be added to the cluster and removed from
the dataset. The process continues until all members of
the cluster are chosen. After clustering the trajectories, the
helper function GenerateAnonymizedDataset is called in
order to generate the anonymized dataset (') and the total
incurred loss.

The helper function (GenerateAnonymizedDataset)
takes the original dataset and the two-dimensional list of
clusters as inputs. The target of the algorithm is to find the
total loss and anonymize the dataset. The algorithm starts
by initializing the total loss to zero and creating an empty
list () to hold the generated anonymized dataset. Then, for
each cluster, the progressive SA is applied to calculate the
incurred loss in addition to the generalized trajectory. In the
next step, the total loss is accumulated, and the generalized
trajectory is appended to the anonymized dataset 7. Even-
tually, the anonymized dataset and the overall information
loss happened due to alignment are returned.

4.3.2 k'-means Clustering Approach

k'-means algorithm [32] is an attractive clustering algorithm
currently used in many applications, especially in data
analysis and pattern recognition [33]. The main advantage
of the k’-means algorithm is simplicity and fast execution.
The algorithm aims to partition the input dataset into &’
clusters. The only inputs to the algorithm are the number
of clusters k&’ and the dataset. Clusters are represented by
adaptively-changing cluster centres. The initial values of
the cluster centres are chosen randomly. In each stage, the
algorithm computes the Euclidean distance of data from the
centroids and partition them based on the nearest centroid
to each data. More formally, representing the set of all
centroids by C' = {cy, c...., ¢ }, each point in the dataset,
denoted by z, is assigned to a centroid that has the shortest
Euclidean distance to the point. This can be written as

argmin dist(z, ¢;)?, )
c,eC
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7]
Total loss = Y _(LS(try.x, RT(H,)) + LS(tri.y, RT(H,)) + LS(tr;.t, RT(H,))) -
i=1
A
|cluster||cluster]i]
Z Z (LS(hj.x, RT(H,)) + LS(hj.y, RT(H,)) + LS(h;.t, RT(Hy)))). ®)
B
where the function dist(.) returns the Euclidean distance equation (12) can be written as
between two points. Denoting the set of assigned data to
the i-th cluster by \S;, new centroids are calculated in the Total loss = (13)
second stage via k-1
> > (ILS(hja, RT(H,)) — LS(tr., RT(H,)|
c;i = Z T;. (10) — )
|S ‘ j=0 trecluster(j]
e + LS (hy.y, RT(H,)) — LS tr.y, RT(H,)|
The algorithm continues the same process until the values + |LS(hy.t, RT(HL)) — LS(tr-t, RT(HY))). (14)

of centroids no longer change. The k’-means algorithm is
guaranteed to converge [34].

In the rest of this section, we first present a Lemma
followed by explaining how the k’-means algorithm can
be applied to trajectory datasets to reinforce the privacy
preservation of users.

Lemma 2. The total loss incurred by generalizing node; and
node; with respect to H 4 can be calculated as

LS (node;,node;) =
|LS(node;, RT'(H 1)) — LS(nodej, RT(H 4))|.

(11)

Example 3. Lemma 2 provides an alternative way to
calculate the information loss by generalizing node; and
node; in a given DGH. For instance, based on Lemma
2, the information loss incurred by generalizing node ‘10
to ‘1” in Fig. 1 (x-coordinate DGH), can be calculated as
|(logy 8 — log, 2) — (log, 8 — log, 4)| = 1 bit.

Lemma 2 indicates that the loss incurred by generalizing
two nodes is equal to the difference between losses incurred
by their suppression. As before, for any clustering outcome
of data, assume that cluster is a two-dimensional list, in
which the j-th element of the list returns the IDs of the
trajectories in the j-th cluster. Moreover, we denote the j-
th cluster head after generalization and suppression for all
trajectories as h;. Therefore, the total loss can be written as

Total loss = LS(T JZ) + LS(T,y) + LS(T,t)

j=0 trecluster[j]
+ LS(hj.y,tr.y) + LS(hj.t,trt)).
(12)

(LS(hj.x, tr.z)

As explained in (7), the objective of clustering algorithms
is to minimize this equation. Therefore, using Lemma 2 the

Rearranging (13), the objective equation can be found by
minimizing total loss formulated in (8). This can be done by
maximizing part B and minimizing part A. Since the cluster
heads are generated based on the clustering algorithm,
they cannot be used as part of the optimization process.
Therefore, we aim at minimizing part A in (8).

Part A in the equation (8) refers to finding the total
distance of each trajectory from DGH root of the attributes.
Therefore, for each trajectory, a three-dimensional vector
< dg, dy, d; > is constructed, where d, d,, d; store the
loss incurred by generalizing the z-coordinate, y-coordinate,
and time, respectively. Having distances of all points from
the roots, we cluster the trajectories using the k’-means algo-
rithm. The algorithm clusters trajectories with a similar loss
from the root in the same group. This process is particularly
important as trajectory datasets usually include trajectories
as short as one query to trajectories with hundreds of
queries.

A major drawback of the k’-means algorithm is cluster-
ing the trajectories without any constraint on the minimum
number of trajectories that needs to be in each cluster. There-
fore, the algorithm might result in some of the clusters con-
taining less than k trajectories that violates the k-anonymity
of trajectories. If the data is not extremely sensitive such
as the data used in the military, it is usually acceptable to
have a few trajectories below the k-anonymity criterion.
As it will be demonstrated in Section 5, the number of
trajectories not achieving k-anonymity is close to or below
20% of the trajectories based on the value of k chosen for
the privacy. To amend the naive k’-means algorithm for
sensitive applications, we propose to use a variation of k'-
means algorithm, which we call it iterative &’-means. The
idea relies on running the k’-means algorithm iteratively to
ensure that all clusters will achieve k-anonymity. Therefore,
after each iteration of the k’-means algorithm, the clusters
including at least k trajectories are disbanded, and the
trajectories are put back into the pool for the next iteration
of the k’-means algorithm. This process continues until all
clusters have at least £ members. Algorithm 4 represents the
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Figure 4: Performance evaluation of MLA with different values of k.

Algorithm 4: Pseudocode of iterative k’-means al-
gorithm.

1 while true do

2 run k’-means algorithm on dataset
#data trajectories

(#clusters = | )

3 remove trajectories that belong to clusters with at
least £ members from the dataset
if #len(dataset) < 2 * k then
cluster the remaining trajectories together
break;
end
end

® 9 o U1 B

pseudocode of the iterative k’-means.

5 EXPERIMENTS

In our experiments, we use the data collected by Geolife
project [35]-[37], T-Drive dataset [38], [39], and Gowalla
dataset [40]. For Geolife and T-Drive datasets, which include
the GPS trajectories of mobile users, and taxi drivers in
Beijing (China), we have considered a 1lkm x 1lkm
central part of the Beijing map with the resolution of
0.01km x 0.01km. For the Gowalla dataset, we have chosen
the users over the map of New York City with the same
resolution as the Geolife and T-Drive. The detailed statistics

Table 1: Statistics of datasets used in our experiments.

Dataset Geolife | T-Drive | Gowalla
Total number of 47581 | 27916 | 138957
samples
Number of trajectories 13561 301 7115
Average number of 35 | 9274 | 1953
samples per trajectory

on the datasets are given in Table 1. Various location
privacy requirements (k) of the users are investigated for
values 2, 5, 10, and 15. The experiments were performed
on a PC with a 3.40 GHz Core-i7 Intel processor, 64-bit
Windows 7 operating system, and an 8.00 GB of RAM. The
Python programming language was used to implement the
algorithms.

We compare our work to prior methods as follows:

e Many of prior approaches for the anonymization of
spatiotemporal trajectory datasets use a greedy or
so-called heuristic approach to anonymize datasets.
In Section 4.3.1, we explained and adopted this
approach based on our system model. We use the
heuristic approach in Section 5.1 as a baseline for
comparison.

o The full comparison of the MLA framework with the
recent work in [6] is provided in Section 5.3. The
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results are verified on both of the T-Drive and Geolife
datasets to ensure reliability.

e As MLA and the proposed algorithm in [6] seek to
fulfill different objectives, we have further evaluated
the two frameworks based on random clustering.
Doing so shifts the focus to the alignment of trajec-
tories in each cluster. The results are verified on both
of the T-Drive and Geolife datasets (Section 5.3).

e We also compare our alignment approach with the
widely used static algorithm in [3] (Section 5.3).

5.1 Performance Evaluation

Fig. 4 presents the performance evaluation of MLA pred-
icated on three clustering approaches developed in this
paper. The algorithms have been investigated from three
aspects: information loss, increase in trajectory length, and
execution time. In all graphs, z-axis indicates k-anonymity
requirement for the dataset. The total information loss and
average information loss per cluster of algorithms are con-
sidered in Figs. 4a and 4b, respectively. Information loss,
shown in the y-axis, indicates the total loss incurred while
applying generalization and suppression on z-coordinate,
y-coordinate, and the time of the query. The maximum
possible incurred information loss for the whole dataset
by suppressing all trajectories is 474572 bits. This value is
the upper bound on all anonymization algorithms. Note
that this constant changes for different datasets. The main
existing trend in Figs. 4a and 4b is that by increasing the
value of k, the total incurred loss increases. This outcome
meets our expectation as increasing the value of k indicates
having larger cluster sets, which results in the alignment of
a higher number of trajectories in each cluster, and thereby,
a higher total loss by the alignment. Among our proposed
algorithms, k’-means algorithm provides the best perfor-
mance as it corresponds to minimum lost bits incurred by
the generalization and suppression.

The amount of information that k’-means algorithm
preserves is higher than that of the heuristic approach, in
which the most suitable trajectories are chosen to mini-
mize the information. This trend can be seen for both of
the total information loss of the dataset and the average
information loss of dataset per cluster for different k values.
Such a trade-off exists, because some clusters contain a
small number of trajectories not satisfying the k-anonymity
requirement. The loss of privacy by k’-means algorithm is
further analyzed in Fig. 5 which will be explained later in
this section. The iterative k'-means algorithm is constructed
on top of the k'-means algorithm to ensure that all the
trajectories satisfy the required privacy requirement. This
is particularly important for sensitive applications, in which
there are strict requirements for privacy preservation. The
cost of having higher privacy for the iterative k’-means
algorithm is a larger loss of information.

Figs. 4c and 4d present the average increase in the
length of trajectories for the whole dataset and per cluster.
Due to the alignment process, shorter trajectories may need
to be aligned with longer trajectories, which result in an
increase in the length of trajectories in the anonymized
released dataset. The best performance among the algo-
rithms is yielded by the k’-means algorithm with the lowest

10

increase in the lengths of trajectories. Compared to other
two approaches, the heuristic strategy performs better than
the iterative k’-means with a smaller &, but as the k value
increases, the average increase in trajectory length converges
due to large cluster size. Figs. 4e and 4f compare the total
and average per cluster execution time of the different
algorithms. Note that since the heuristic algorithm requires
a significantly higher amount of time to run, it is shown on
top of the graphs as a flat line with the corresponding values
shown below it. The execution time of the k’-means and
iterative k’-means algorithms are significantly lower than
that of the heuristic algorithm and as expected the iterative
k'-means consumes slightly more execution time as it has
additional steps to ensure the k-anonymity of all trajectories.

5.2 Detailed Analysis of £’-means Algorithm

Overall, the detailed k’-means algorithm’s results in satis-
factory performance in terms of information loss, execution
time, and the average increase in the length of trajectories.
Moreover, the complexity of k’-means algorithm is of an or-
der of the number of data entries for large datasets, whereas
the order of the heuristic algorithm is proportional to the
square of this number. Therefore, the k’-means algorithm
has several significant advantages compared to the heuristic
approach. Hence, if it is acceptable for the datasets to have
a few trajectories below the k-anonymity requirement, then,
it is more beneficial to use the k’-means algorithm instead
of the heuristic or the iterative k’-means algorithm. This is
usually true for datasets not entailing classified information.
Therefore, we further analyze the performance of this algo-
rithm in the remaining of this section and compare it to the
state-of-art algorithms recently proposed. Also, note that in
the rest of this paper when MLA is mentioned, the k’-means
algorithms is adopted for clustering by default.

Fig. 5 provides two graphs showing the details of the
performance yielded by the k’-means algorithm. The first
graph indicates the average value of k achieved while
applying the k’-means algorithm, and the second graph
shows the percentage of trajectories that did not achieve
the k-anonymity in the anonymization process with dif-
ferent values of k. In Fig. 5(a), it is evident that despite
some of the trajectories losing their k-anonymity during the
anonymization, the average value of anonymity achieved is
above the minimum requirement. The value of the average
gets even better as the value of k increases. Fig. 5(b) shows
the percentage of the trajectories not achieving the mini-
mum required k-anonymity. This value is below 20% on
average, which means that over 80% of the trajectories are
guaranteed to at least have k-anonymity. The reason causing
the uneven curves in the figure is because the number of
clusters is divisible by k, which results in an additional
cluster distorting the curves.

5.3 Comparison

We compare MLA with the static algorithm proposed in
[3], and recently published anonymization approach in [6].
The idea behind the static alignment algorithm in [3] is that
two trajectories are matched element by element without
any shifts or spaces. In more details, the static algorithm
attempts to match two sequences based on the same index.
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Figure 5: Detailed performance evaluation of the k’-means algorithm.

Therefore, each element of the first sequence tr; is aligned
with an element having the same index in the other input
trajectory tre. Based on our evaluation, the total incurred
information loss is reduced by 7.2% by using the proposed
progressive SA algorithm. It must be noted that the dataset
includes trajectories as large as hundreds of queries and
as small as a single query from the location-based service
provider. Therefore, matching these length-variant trajecto-
ries would impose a substantial information loss even for
the best possible match of the sequences.

Fig. 6 indicates the comparison result between our pro-
posed anonymization technique and the recent generaliza-
tion method proposed in [6]. The authors in [6] attempted to
minimize the incurred loss of the anonymization by sorting
out the spatiotemporal locations in the time domain and
applying a heuristic approach for generalization. They also
used a heuristic approach for clustering trajectories. Note
that any anonymization approach aims to maximize utility
while preserving the privacy of users. Utility in generaliza-
tion techniques refers to the area released for locations in the
dataset. Therefore, to have a fair comparison, we compare
our work with the approach proposed in [6] based on the
average released area for locations. The metric is thoroughly
explained in Section 3. It can be seen from the figure that
our proposed algorithm can significantly increase the spatial
utility of the generalization approach. In other words, the
anonymized dataset has on average smaller released area
per location while preserving the privacy of users. To fur-
ther compare alignment approaches, in Fig. 6, we applied
random clustering to group the trajectories, and then, used
the alignment approach in our proposed work and the
previous work to generate anonymized trajectories. As can
be seen in the figure, our alignment approach outperforms
the previous work by a higher spatial utility of anonymized
dataset.

5.4 Discussion

As can be seen in Fig. 6, the MLA framework has signifi-
cantly improved the spatial utility of data while achieving
k-anonymity for the entries of datasets. A major reason for

such an improvement is that MLA considers all three dimen-
sions of time, z-coordinate, and y-coordinate together. Such
consideration helps to minimize the overall cost and not just
the utility in time or spatial domain. For instance, the Geolife
datasets consists of sampling time interval of 177 seconds
with the average distance interval of 623 meters, whereas
the T-Drive dataset has the average sampling interval of
1->5 seconds and 5—10 meters of sampling distance interval.
Therefore, the two datasets enatail a highly different sparsity
characteristic in time and spatial domain. However, as can
be seen in Figs. 6 and 7, the MLA algorithm considers all
three dimensions, and can significantly improve the utility
in the process of anonymization.

In essence, the performance improvement in our pro-
posed model is predicated on both the clustering and align-
ment of trajectories. In terms of the alignment, progressive
SA has resulted in significant improvement of the alignment
process. Such an impact can be seen in Fig. 6, where we
apply random clustering, and therefore, the focus is on
the alignment. As the figure suggests, utilizing a multiple
SA technique such as progressive SA used in MLA pro-
vides major improvements to the utility of the anonymized
datasets.

For clustering, as finding the optimal anonymization of
the datasets is proven to be NP-hard, most of the literature
has focused on following heuristic approaches to cluster the
trajectories. We adopted such a heuristic approach for the
system model of our paper and presented the results in Fig.
4. Note that in the heuristic approach used in the figure,
we are applying progressive SA alignment; therefore, the
results show the improved version of the previously existing
algorithms. As it was revealed in Fig. 4, the k’-means algo-
rithm can outperform such heuristic approaches in addition
to having a much lower implementation complexity and
processing time.

6 APPLICATIONS

In this section, we introduce several applications that we
believe our work has the most impact on.
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Figure 6: Comparison of MLA with the previous work proposed in [6].
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Figure 7: Comparison of MLA with the previous work proposed in [6], applying random clustering.

6.1 Location-Based Data

As the framework for anonymization presented in this pa-
per considers location trajectories, one of the main applica-
tions of the framework is the privacy of location-based data.
The use of location-based applications is more prevalent
than any time before. Governments attempt to analyze the
infrastructure using the location data and researchers use
these data to investigate human behavior. Research has ver-
ified that even simple analytics on these published trajectory
data would yield serious risk of users’ privacy and even be
capable of identifying users of location-based applications.
[41]. Therefore, applying anonymization techniques such as
the one we have developed in this paper is necessary to
preserve the privacy of the users.

6.2 Medical Records

The recent advances in medical information technology
have enabled the collection of a detailed description of
patients and their medical status [42]. Such data is usu-
ally stored in electronic medical record systems [43]-[45].
Similar to spatiotemporal trajectories, many of the medical
records need to be published by agencies and organizations.
Unfortunately, research has shown that solely relying on de-
identification is insufficient to protect users’ privacy, as the
medical records from multiple databases can be linked to-
gether to identify individual patients [3]. Therefore, there is
an urgent need for viable algorithms to anonymize the med-
ical data. The problem of anonymization in spatiotemporal
trajectories is very similar to anonymization in longitudinal
electronic medical records. This can be easily justified by
the similar way, in which these data are stored. Assume a

patient who has referred to medics several times in his or
her lifetime. Each time the records of the patient are stored in
a longitudinal dataset, in which the age and the diagnosed
disease record are registered. These longitudinal records can
be seen as a trajectory for the patient, and our proposed
algorithms in this paper can be applied to anonymize a
dataset of such longitudinal electronic medical records.

6.3 Web Analytics

Another important application of the framework developed
in this paper is web analytics. Web analytics refers to an-
alyzing online traces of users. Web analytics has become
a competitive advantage for many companies due to the
amount of detailed information that can be extracted from
the data. Therefore, protecting the trajectories that the users
explored on the Internet has become a major challenge
for researchers. The similarity between spatiotemporal tra-
jectories and web analytics can be well explained by the
following example. For instance, Geoscience Australia is
constantly recording and publishing the site logs users make
on their website. The site log filename is composed of a
four-digit station identifier, followed by a two-digit month
and a two-digit year, e.g., ALIC0414 is the site log for the
Alice Springs GNSS site that was updated in April 2014 [2].
Such a trajectory of logins to the website is analogous to
a spatiotemporal trajectory with three attributes. Therefore,
the framework developed in this paper can be used to
anonymize the online traces of users before publishing web
browsing data.
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CONCLUSION

In this paper, we have proposed a framework to preserve
the privacy of users while publishing the spatiotemporal
trajectories. The proposed approach is based on an effi-
cient alignment technique termed as progressive sequence
alignment in addition to a machine learning clustering
approach that aims at minimizing the incurred loss in
the anonymization process. We also devised a variation
of k’-means algorithm for guaranteeing the k-anonymity
in overly sensitive datasets. The experimental results on
real-life GPS datasets indicate the superior spatial utility
performance of our proposed framework compared with the
previous works.
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