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 
Abstract— The growing penetration of distributed energy 

sources (DES) such as photovoltaic (PV) solar power, battery 
energy systems (BESs) and electric vehicles (EVs) into low 
voltage distribution networks is creating serious challenges for 
distribution network operators (DNOs). Uncertain nature of 
these DES and EV charging is a key factor to cause unbalance 
which degrade network performance in terms of energy loss, 
voltage unbalance and voltage profile of the distribution network, 
etc. Some methods were proposed to mitigate such negative 
impact of these uncertain DES and EV charging from both 
centralized and decentralized approaches by controlling charging 
or discharging power of EVs. However, these methods involve all 
active EVs to participate in coordination and this causes 
significant inconvenience to EV owners along with requirements 
of complex communication infrastructure and huge data 
processing overhead. This paper proposes an Internet of Things 
(IoT)-based centralized control strategy to coordinate EV and 
DES distribution by using the differential evolution (DE) 
optimization algorithm. The obtained results show that the 
proposed control strategy can improve network performance 
(voltage imbalance, neutral current, energy loss, and node 
voltage) significantly. In addition, the control strategy is less 
demanding on communication infrastructure and convenient for 
EV owners as well as having a lighter data processing overhead. 
 

Index Terms— electric vehicle, IoT, distributed generation, 
network reliability, smart grid.  

I. INTRODUCTION 

HE growing penetration of distributed energy sources 
(DES) such as photovoltaic (PV) solar power, battery 

energy systems (BESs), and electric vehicles (EVs) in the 
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residential distribution networks raises challenges  for  
distribution network operators (DNOs). The increasing 
penetration of these DES and EVs into the low voltage (LV) 
distribution grid causes a higher degree of imbalance which 
violates voltage constraints, reduces network hosting capacity, 
increases energy losses and requires more power generation 
[1]. Network imbalance also increases the neutral current, 
which in turn increases the cost of the neutral conductor [2]. 
The centralized and decentralized control approaches were 
proposed to control the EV charging or discharging power at 
the service point of connection (SPOC) [3]–[15].  

In the centralized control approach, a central controller 
communicates with all EVs to control their charging or 
discharging rate to achieve the desired objectives. The 
approach presented in [3]–[6], considered the minimization of 
EV charging cost or maximum energy delivered to EVs by 
optimizing EV charging or discharging power for an 
unbalanced distribution grid. The approach demonstrated in 
[7], optimized state of charge (SoC) level of each EVs to 
improve the voltage at each SPOC. A method of variable 
charging or discharging power for each EV to reduce the 
voltage unbalance factor (VUF) at each SPOC was discussed 
in [8]. The central controller manages the EV charging or 
discharging rate or disconnects EVs to obtain desired 
objective subject to network constraints. Though the network 
performance and constraints are well maintained, more 
complex intricate communication infrastructures and higher 
overhead of data processing  causes concerns when the 
number of EV participants becomes large [9], [10].         
     To avoid the requirements of a complex communication 
infrastructure and high data processing overhead, several 
decentralized control approaches were also proposed [9], [10]. 
These approaches use distributed EV controllers (one 
controller per EV) to control the EV charging and discharging 
rate at the respective SPOCs to achieve the desired objective.  
In order to improve the voltage quality, each EVs’ charging or 
discharging power was optimized by measuring the voltage at 
respective EV SPOC [11], [12].  The energy loss of the 
distribution network was optimized by controlling the EV’s 
charging or discharging power at each EV’s SPOC [13], [14]. 
Each EV controller decides the charging or discharging rate, 
which reduces communication overhead and computational 
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complexity compared with the centralized control approach 
[9], [10]. But this approach becomes inefficient to maintain 
the network operating constraints when the number of EVs 
becomes high [9].  
  The contribution of EVs is uncertain because they serve 
both the power system and the transportation sector. 
Scheduled EV charging also can be affected. Furthermore, the 
EV contribution uncertainty either by failures of components 
such as charging facilities, or by human errors such as 
punctuality, rounding of time and errors in forecast of energy 
consumption may change the optimal condition at a scheduled 
time, e.g., EV SPOCs are not connected among phases 
according to the schedule so that there are more surplus or 
shortage of energy in the distribution network. The study [15] 
shows that EV uncertainties impact on generation scheduling. 
Most of proposed methods focus on reducing energy loss or 
energy cost and improving the voltage in an unbalanced 
distribution network. To the best of the authors' knowledge, 
how to mitigate network imbalance due to EV uncertainty and 
uncoordinated power dispatch per phase remains as a research 
gap.  
     This paper aims to bridge the aforementioned research gap, 
i.e. to propose an internet of things (IoT) enabled improved 
centralized control strategy to mitigate network imbalance 
considering four objectives including the neutral current, 
voltage unbalance, node voltage, and energy loss with a 
special consideration of EV uncertainty based on real-time 
network performance. The proposed control strategy does not 
require information from all active EVs (e.g., charging or 
discharging power, SoC rate) and this reduces the volume of 
data processed and simplifies the communication 
infrastructure. The key contributions of this paper are:   
 Proposed an IoT enabled centralized control strategy to 

coordinate DESs and EVs, which reduces number of 
active EV participants which leads to less data storage 
capacity, a simple communication infrastructure.  

 Proposed an idea of estimating the EV contribution 
uncertainty and its impact on the network performance.  

 Presented a simulation tool based on the proposed 
control strategy, which will be triggered when the 
network performance is below the standard value. With 
this tool, minimization of the impact of EV and DES 
uncertainty can be achieved by jointly coordinating 
phases and DESs.   

 Introduced sensitive nodes in a low voltage residential 
network in terms of reserve power integration.  

 Established a reserve management strategy by allowing 
active participation of EV owners and BES owners to 
mitigate network imbalance (the voltage imbalance and 
neutral current) and to improve voltage.  

 Provided a comprehensive comparison between the 
proposed control strategy and two competing control 
techniques, which are EV charging or discharging 
method [8], and Dynamic static compensator method 
[29].     

II. PROBLEM FORMULATION  

  In this section, an optimization problem with multi-
objectives is mathematically formulated. DNOs optimize each 

objective (the energy loss, voltage, voltage unbalance, and the 
neutral current) based on real-time network performance. The 
EV charging and discharging constraint, PV and BES power 
delivery constraint, and the network constraints are formulated 
to limit the searching space to solve the optimization problem. 
The EV charging cost and network performance (energy loss) 
are not dependent on each other [16]. For this reason, the 
network performance is considered as an objective function 
assuming a suitable tariff time for EV charging.  

A. Constraints  

Each single-phase load and each EV is connected at its 
respective SPOC among any one of the phases of a 
node/measuring point [16]. The uncoordinated integration of 
DESs and EVs induce voltage imbalance [1]. The voltage 
sensitivity of a node can be expressed as: 
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where t T  , n NNode   

where t is the time slot (usually each hour, T is the set of 
twenty-four hours a day), n is the node and NNode is the set of 
all nodes in a network. Vb

(n) (t) is the initial voltage (with 
residential loads and generation) at each node at a time slot. 
V(n)(t) is the node voltage after connecting the DESs and EVs 
in either charging or discharging mode. , ,    is the set of 

charging EVs, discharging EVs, and DESs among three  
phases. ∂V/∂P(n)  is a three-dimensional matrix of V(n)(t) with 
respect to EV and DES SPOCs among phases at each node. 
Pch, Pdch, and PDES represents the active charging power 
consumption of the EVs, EV discharging dispatch, and the 
power delivered by DESs among phases in a timeslot t. EV 
owners are either charging or discharging their EVs. The 
power consumption/dispatch constraint of each EV depends 
on the efficiency of the EV converter as shown in (2)–(3).    

                 , ,
ch ch

P t P t                                        (2) 

   , ,
dch dch

P t P t                                         (3) 

where cNEV  , d
NEV   and t T   

where η is the EV converter efficiency, and ζ and ξ are the 
charging and discharging rates of each EV at the respective 
time slot. The SoC level limits EVs to charge/discharge fully 
to increase battery life. Equations (4) – (5) show the EV 
charging and discharging constraints. The suffix NEVc and 
NEVd presents EV charging and discharging power.  
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The power delivered by PVs at respective SPOCs among 
phases depends on irradiance, panel efficiency, converter 
efficiency, and the ramp rate of PV power. In this paper, the 
converter output of respective PVs and BESs is considered as 
delivered power at each node. The delivered power of each PV 
and BES is limited within a boundary as shown in (6)-(7). The 
suffix PV and BES presents PV and Battery power. ψ is the set 
of all battery energy storage in a network.  

                   _ min _ max
, , ,

PV PV PV
P t P t P t               (6)                         

     _ min _ max
, , ,

BES BES BES
P t P t P t              (7)                         

where NPV   , NBES  , and t T   

To increase the battery lifetime of BESs and EVs, 
manufacturers recommend the minimum depth of discharge 
(DOD). BES and EV owners set their minimum and maximum 
level of SoC (8) which is also a constraint for dispatched 
power.    

            , , ,

min max
SOC t SOC t SOC t

                           (8) 

where NEV
d
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where the SOC value of each battery of EV and BES is 
constrained with a minimum and maximum value. The γ, ν 
represents the set of discharging EVs and the set of dispatched 
BESs. The total active delivered power of DESs is the total 
power of PVs and BESs. The total delivered DES power per 
node should remain the same and the total power variation 
between phases should be within the allowable limit (DD), as 
given in (9). The network will not take support from the 
external grid during optimization but takes support during 
reserve managing if adequate generation is not available.  

The balance between network demand and generation is 
maintained at each time slot as given in (10). The total energy 
loss is the summation of loss of all branches at that time slot as 
given in (11).  
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where br Nbranch  , t T   

In this paper, EVs charging/discharging constraints (2)–(5), 
PV and BES constraints (6)–(7), battery SoC constraint (8), 
and power flow constraints are maintained to solve the 
optimization problem. The node voltage obtained in (1) should 
not be reduced and the grid energy loss obtained in (11) 
should not be increased more than the initial network 
performance (prior to the start of optimization) due to the 
proposed optimization. 

B. Proposed multi-objective optimization problem   

 This study investigates the scenario when EVs (charging or 
discharging) and DESs integration makes the distribution 
network unbalance even though the scheduled amount of DES 
power is maintained. It is noted that optimizing EV SPOCs 
among phases cannot guarantee that the network power 
quality will improve. Therefore, it is necessary to coordinate 
both EVs and DESs to obtain the optimum result to improve 
the neutral current, voltage unbalance, node voltage, and 
energy loss. 

For this reason, a multi-objective optimization problem is 
formulated in (12). The neutral current at the supporting 
feeder is the lump sum of three phase currents as shown in the 
first part of the objective function (12). The numerical value of 
Ω1 increases with increasing unbalanced power flows. Though 
the neutral current represents the imbalance problem at the 
feeder, control of voltage unbalance at every node is another 
objective Ω2 to mitigate the network imbalance. The VUF is 
defined as the ratio between negative sequence voltage 
components /Vneg/ and positive sequence voltage components 
/Vpos/ as shown in the second part of (12). The voltage Ω3 is 
measured at each node and calculated using (1). The objective 
of this study is to improve the node voltage to be nearer to the 
slack bus voltage (1.05 p.u) by minimizing the node voltage 
deviation compared to the slack bus voltage Vs as shown in the 
third part of (12). The fourth part of multi-objective function 
(12) is to minimise the energy loss Ω4 of the network. Energy 
loss is calculated using (11) at a time slot. The sum of 
weighting factors must be equal to 1.  
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In this study, the fuzziffication method as addressed in [19] 
is employed to convert each objective into the same scale [0, 
1] as given in (13). Therefore, it is necessary to convert the 

values of the individual objectives , , ,
1 2 3 4

    to a fuzzy 

variable.  
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l l
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l l

  

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and , , 1,2,3,4.j k l  

The multi-objective is converted from (12) to (14) by using 
fuzzy membership (μk) condition as given in (13).   

1 1 2 2 3 3 4 4
min( )

proposed
MOF                   (14) 

 Since the proposed multi-objective function (14) has no 
nonlinear term, the optimization problem using stochastic 
based search methods can be solved efficiently. To achieve a 
global optimal solution for the optimization problem (14), the 
differential evolution (DE) optimization algorithm is 
employed in this article.  

III.  PROPOSED IOT DECISION SUPPORT TOOL 

The proposed IoT tool monitors the power quality indices 
(the neutral current, VUF, and voltage) at different 
measurement points or nodes. If the network performance is 
below the standard value, the IoT tool decides to optimize the 
distribution network by managing demand, generation, and 
resources of the distribution network. If the distribution 
network still does not achieve the standard power quality 
indices due to a shortage of production, the IoT tool manages 
the optimum generation resources or controls EV charging 
power among phases. The proposed control approach and 
communication strategy used in the IoT tool is described here.  

A. Proposed Control Approach  

   Previous research work [11], [17] recommends that EV 
users install a special controller which can measure voltage or 
voltage unbalance at respective SPOCs. These EV controllers 
manage the charging or discharging power (SoC rate) of an 
EV to achieve the desired objective. Centralized and 
decentralized control strategies have been employed to control 
the SoC of an EV to improve network performance. But the 
SoC control strategy inconvenient for the EV users [18], [19]. 
On the other hand, the complexity of the communication 
infrastructure increases with an increase in EV penetration 
because communication with each EV is required. To ensure 
the comfort level of the EV user, the proposed control 
approach in this paper allows less number of EVs as 
participants.  

The proposed control approach jointly coordinates EV and 
DES SPOCs among phases of a distribution network to 

improve network performance. The proposed IoT tool 
performs the optimization task and reserve managing control 
task, which is described in the flow chart, as shown in Fig. 1.  

The proposed IoT tool collects network information e.g. 
node information (Dn, t), line configuration (Dl, t), and real-time 
phase configuration (DФ, n, t) at each time slot (t). The IoT tool 
gathers measurement information e.g. the total power 
consumption (Pload, Ф, n, t) including EV charging, delivered PV 
power (PPV,Ф,n,t) and dispatched BES power (PBES,Ф,n) at each 
phase of the corresponding node at each time slot t.  

The proposed tool monitors the power quality indices e.g., 
VUF, the neutral current, and the node voltage. Each network 
has an allowable threshold for the neutral current and a 
preventive relay is employed there if the neutral current 
exceeds the allowable threshold. In Australia, the voltage 
unbalance factor (VUF) should be less than 2% and the bus 
voltage is maintained within 0.95 p.u. to 1.05 p.u. [20], [21]. If 
the value of the power quality indices are below the control 
criteria (TC, NU, NV are the threshold values of neutral 
current, VUF, and node voltage respectively), the decision 
support tool performs the optimization control approach.  

The proposed control method consists double stages. In the 
first layer, phases are re-sequenced at each node of the 
distribution network to minimize the optimization problem 
(14) using the DE optimization algorithm subject to the 
constraint (2)–(10). The iteration number (it), crossover (CR) 
and mutation probability (F) of the DE optimization algorithm 
are initialized prior to optimization. The value of the 
weighting or importance factor (ω) is also defined in the 
objective function (14). In the proposed control approach, the 
network constraints (e.g., the total power consumption, EV 
charging or discharging rate, and total power generation) are 
maintained to obtain the minimum value of objective (14).  

The optimum power dispatch is managed by considering 
constraint DD. The DD is the allowable maximum power 
variation between phases. The lower percent value of DD  
means that a smaller number of DESs are required to re-phase 
among phases. In this way, the proposed tool coordinates the 
phases and DESs in a distribution network.  

When demand is higher than generation, the network 
requires support from EV and BES owners. The optimal 
location and sizing of the generation is necessary to improve 
network performance [22]–[24]. An arbitrary size of BES 
generation is connected to every node and the power quality 
indices (neutral current and energy loss) are recorded to find 
the sensitive node to integrate dispatchable generation sources. 
As the aim of this study is to reduce network imbalance and 
improve voltage, the sensitive node is selected based on the 
normalized sensitive fitness value (the magnitude of the 
neutral current and the energy loss) of the network, Nodes are 
ranked based on the minimum value of sensitive fitness. The 
IoT tool undertakes the reserve control task to calculate the 
required optimum generation.  
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Fig. 1. Proposed control method 

The number of participating nodes depends on the demand-
generation gap and generation availability. If there is not 
adequate generation, the IoT tool can ask EV or BES owners, 
controls EV charging, or the external grid for the required 
generation. In this way, the proposed IoT tool improves 
network performance by managing reserve generation.   

Fig. 1 summarizes the hierarchical control approach of the 
proposed IoT tool. A centralized controller collects 
information, e.g., total demand and generation, EV and DES 
uncertainty error, the location of the node, participating PV 
and BES SPOCs, BES SoCs, and DE optimization control 
parameters (CR, F, iteration number, importance factor, etc.). 
Therefore, the IoT tool calculates network performance (VUF, 
voltage, energy loss, and the neutral current) and checks the 
control criteria. Based on the control criteria, the IoT tool 
performs the task (optimization or the reserve control ) using 
the DE optimization algorithm. In the DE optimization 
algorithm, each individual are maintain constraints (2-10) and 
follows the crossover, mutation, and selection process to 
obtain the optimum values for fitness (14) as shown in Fig.1.   

B. Proposed Implementation Infrastructure  

     Each PV, BES, and EV user make registers and DNOs 
store each PV, BES, and EV identification information (ID) 
[25]. DNOs record several pieces of information e.g., the 
SPOC information (location), SoC, and the contact 
information for each EV ID [25]. It is assumed that EVs and 
DESs are connected according to the recommendation of 
DNO to maintain the power quality indices. 

The proposed control approach requires a controller in each 
node or measurement point with a measuring meter, and a 
switch box to re-sequence phases. In the switch box, the re-
phasing switches have three states to connect each phase. This 

study only considers positive and negative phase sequences to 
avoid the reverse operation of three-phase inductive loads 
such as motor loads. If the existing phasing sequence is {A, B, 
C, N} for three phases of the network, the positive phase 
sequence would be {B, C, A, N} and the negative sequence 
would be {C, A, B, N}. In this paper, the {A, B, C, N}, {B, C, 
A, N}, and {C, A, B, N} is represented correspondingly by 0, 
1, and 2. DESs (PV and BES) which are participating in the 
control task require a controller with a switch box in each 
dispatch point at the respective SPOC {A, N} or {B, N} or 
{C, N}. For example, PV35 is connected at phase A and 
proposed control approach recommends that it re-phases to 
phase B. The switch connected to PV 35 is able to select either 
phase A or phase B or phase C. The design of such switches 
consists of a ZigBee wireless receiver to obtain control 
information, a snubber circuit, TRIAC, and over-voltage 
protection. These switches can enable or disable power flow 
based on the control command received by the ZigBee 
receivers [26].  

The measurement devices consisting of various types of 
sensors which are installed at every node, feeder, and 
connection point at the substation. The measurement 
information is sent to the central controller using the ZigBee 
transceiver through the message queuing and elementary 
transport (MQQT) communication protocol. The IoT tool 
executes ULF, calculates the network performance, and 
checks the control criteria. If network performance is below 
the control criteria, the IoT tool implements the DE 
optimization algorithm to obtain the optimize phase sequence 
per node and DES SPOCs among phases. The implementation 
of the phase re-sequence per node and DESs re-phasing is 
done in two layers. The implementation architecture of the 
proposed control approach is shown in Fig. 2. 
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In the first layer, the ZigBee receiver at the switch box 
receives control information from the central controller and 
controls the switch-breaker status. In this way, the proposed 
control algorithm is implemented by controlling the switch-
breaker status to re-sequence phases of a distribution network. 
In the second layer, the control information (re-phasing) for 
the respective DESs is sent to be implemented by maintaining 
the constraint. In this way, the proposed IoT tool performs the 
optimization task. 

 
Fig. 2. Proposed implementation architecture. 
 

If the control criteria are violated due to a shortage of 
generation, the IoT tool decides to perform the reserve control 
task. The optimum node and optimum generation size are 
determined according to the proposed strategy. The IoT tool 
asks for generation support to EV and BES owners of a 
particular location (sensitive node) or controls EV charging to 
manage the demand-generation.  

IV. TEST SYSTEM 

Three types of single-phase EVs were considered and the 
power consumption depends on the type of EV charger at each 
time slot. EVs are connected at each SPOC in a distribution 
network. DNOs and EV owners come to an agreement 
regarding SoC values during EV registration based on several 
criteria e.g., the location of the EV, EV penetration, and 
seasonal demand in a distribution system. A single-phase 
photovoltaic solar plant with or without battery energy storage 
(BES), and a single-phase energy storage system (battery 
storage) are connected to the LV distribution grid to deliver 
power at the respective SPOCs. The intermittent nature of 
solar energy (e.g., irradiance, cloud movement, and soling 
effect) makes PV power as a non-dispatchable source and PV 
power varies with time.  

It is assumed that the amount of delivered PV power 
variability is less than 30% at a time slot. BESs and EVs (in 
discharging mode) are considered as controlled dispatchable 
power as well as considered as reserve generation. The 
Newton-Raphson load flow method is employed to execute 
the ULF of the distribution network. The analysed LV 
distribution network under the Newmarket zone substation 
area, Brisbane, Australia is modelled in this paper as shown in 
Fig. 3 (distribution network I) and the distribution network II 
was modelled in [27].  

The distribution network is usually a three phase-four wire 
system. The distribution network is connected to the MV 
network through the transformer. In this study, the power 
quality enhancer equipment such as voltage regulators, 
dynamic voltage restorer (DVR), distribution static 
compensator (D-STATCOM) and shunt capacitors is not 
considered in the investigation of the efficacy of the proposed 
method.    

 
Fig. 3. Network model of a distribution grid in Brisbane, Australia 

V. RESULTS AND DISCUSSIONS  

The proposed method considers demand and generation 
data of one year to investigate the performance. DNOs 
forecast the residential demand, EV charging power demand, 
and EV discharging power dispatch per phase per node after 
analyzing the historical data. The phase power consumption or 
dispatch per phase of the network is predicted based on 
historical data. EVs consume or dispatch much more power 
than residential loads. Therefore, the impact of EV charging or 
discharging forecasting error at a time (t) affects the 
distribution network severely. The effect of EV uncertainty is 
investigated in this study by assuming that EVs are not 
connected at the respective SPOC by following the scheduled 
time, but the total demand and generation follows the 
schedule. It is assumed that EV charging loads are increasing 
at a phase which makes phase imbalance. The degree of EV 
uncertainty (ε) gradually increases from 0% to 100% by 
sharing EV SPOCs to one of the phases (say, phase A) from 
the rest of two-phases (e.g., phase B and phase C). The power 
demand for different phases due to EV uncertainty is shown in 
(15).  

2A AP P     

B BP P                                       (15) 

C CP P                                       

[ %
3

tP
of , 

, ,
t

A B C

P P


  ]        

When there is no EV uncertainty, phases are equally 
balanced. The network is entirely unbalanced when the value 
of ε is 100%.  
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Fig. 4. The hourly load curve of a day  

In this paper, EV uncertainty ε = 35% is considered and 
calculated the demand of each phase per node by keeping the 
schedule demand-generation at 15:00 h of a day. The hourly 
demand of a day is shown in Fig. 4. The efficacy of the 
proposed method is investigated by applying to the test 
distribution networks described in section IV assuming two 
scenarios – 

 i) Case I: with EV charging uncertainty ε = 35%, and 
without generation uncertainty. Where, the IoT tool performs 
optimization, and  

ii)  Case II: with EV charging uncertainty ε = 35%, with 
generation uncertainty 23%. Where, the IoT tool performs 
reserve control task.   

In this paper, the voltage, voltage imbalance sensitivity, and 
the energy loss sensitivity are calculated after executing the 
ULF using the DIgSILENT PowerFactory software package. 
The ratio of negative sequence voltage to positive sequence 
voltage magnitude is increased, which results in the VUF 
value increasing up to 14.57% due to EV uncertainty despite 
the scheduled generation, as shown in Fig. 6 of the test 
distribution network I considering case I. The unequal EV 
charging demand at different phases produces a large amount 
of the neutral current 189.96 A at the supporting feeder. The 
minimum voltage at each node is reduced to below 0.95 p.u. 
as shown in Fig. 5. The energy loss at 15:00 h is 101.37 kW. 
Therefore, the voltage and VUF value at each node are below 
the standard value, which violates the control criteria at that 
time slot though there have not generation uncertainty (case I). 

 In this paper, the main goal is to mitigate network 
imbalance (voltage unbalance and the neutral current). It is not 
guaranteed that the reduction in network imbalance improves 
the bus voltage to the standard value [28]. For this reason,   
higher importance to the network imbalance                    
(ω1=0.36, ω2=0.36), voltage (ω3=0.18), and energy loss 
(ω4=0.1) is considered. The proposed multi-objective is 
optimized using the DE optimization algorithm. The 
optimization problem (14) in this paper is solved using the 
DIgSILENT PowerFactory language capability of the 
DIgSILENT PowerFactory package.  

After executing the proposed multi-objective optimization 
(14) with individual importance factors, the optimum phase 
sequence per node and DESs distribution is obtained. Table I 
shows the phase sequence at each node. It is also observed that 
the phase sequence is not changed at every node, which 
reduces implementation time. The allowable DES power 
variation per phase is set to 10%, which is also a constraint. 

The proposed solution recommends that an additional 7.28% 
of power is required in phase A and 0.15% of power in phase 
B than the existing power dispatch. The surplus amount of 
power in phase C is equal to the required power in phase A 
and B. So, it is observed that the power variation is within the 
search space and the participation of 10% of DES owners per 
phase can improve network performance.   

 
Fig. 5. Voltage at different node (case I) of distribution network I. 

 
Fig. 6. Voltage unbalance factor at different node (case I) of distribution 
network I. 

TABLE I 
PROPOSED PHASE SEQUENCE (CASE I) 

Node 
name 

Proposed 
phase sequence 

Node 
name 

Proposed 
phase sequence 

M10 1 M08 2 
M12 0 M09 0 
M04 2 M03 2 
M11 0 M06 1 
M01 2 M05 1 
M02 0 M07 2 
    

The recommended EV and DES SPOCs movement per 
phase is implemented using the proposed control approach. 
The ULF is executed with an optimized configuration, and it is 
observed that the voltage and VUF at each node are improved 
as shown in Fig. 5 and Fig. 6. In Fig. 6, it is observed that the 
VUF is reduced to below 2% at each node of the distribution 
network. The voltage imbalance (VUF) is reduced from 
14.57% to 1.09% at node M10. The proposed method 
improves the minimum voltage at each node and is above 0.95 
p.u. as shown in Fig. 5. The node voltage is improved up to 
18.35% whereas the neutral current is reduced from 189.96 A 
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to 17.42 A. The energy loss is reduced from 101.37 kW to 
64.49 kW after implementing the proposed control algorithm.   

On the other hand, the uncertain PV solar energy and SoC 
limitation of BESs can produce generation uncertainty. Both 
EV, PV, and BES can induce forecasting error in scheduled 
generation. DNOs manage reserve generation or shed load to 
meet demand to maintain the power quality indices of a 
distribution network.    

In this paper, the reserve control approach is tested in the 
distribution network when there is a generation shortage due 
to PV and EV uncertainty (case II). It is assumed that the EV 
charging uncertainty is 35% whereas DESs uncertainty is 23% 
for both distribution network. The proposed IoT tool manages 
the reserve generation by following the proposed control 
approach. A BES with an arbitrary size (in this study, 7 kW) is 
integrated to a node. The energy loss and the neutral current is 
recorded after integrating to every node (one by one). Fig. 7 
shows the normalized value of the sensitive fitness (the neutral 
current with weighting factor 0.6 and the energy loss with 
weighting factor 0.4) per node. Nodes are ranked based on the 
value of minimum fitness to select the sensitive node for 
dispatch generation integration.  
  The optimum size of BES and EV dispatch at the 
respective sensitive node is calculated using the DE 
optimization algorithm. The IoT tool asks EV owners to 
support the grid by offering a suitable tariff through text 
messages and the reserve storage (BESs) is made online to 
meet the gap of demand-generation. If the adequate generation 
is not managed, the IoT tool controls active EVs charging of 
the sensitive location.  

 
Fig. 7. Normalized sensitive fitness at different node of distribution network I. 

 
Fig. 8. Voltage unbalance factor at different node (case II) of distribution 
network I.  

In this paper, it is assumed that EVs at the top four nodes 
(#M12, #M04, #M11, and #M09) is participated to meet the 
reserve generation. EV charging or discharging power is 

controlled of these sensitive nodes to improve the network 
performance. EV charging power of these EVs are optimized 
to improve the network performance. The improved network 
performance is shown in Fig. 8 and Fig. 9.  

 
Fig. 9. Voltage at different node (case II) of distribution network I. 

TABLE II 
PROPOSED PHASE SEQUENCE (CASE II) 

NODE 

NAME 

PROPOSED 
PHASE 

SEQUENCE 

NODE 

NAME 
PROPOSED 

PHASE 
SEQUENCE 

M10 0 M08 1 
M12 2 M09 2 
M04 0 M03 0 
M11 2 M06 1 
M01 0 M05 2 
M02 1 M07 0 

    

It is observed that the voltage unbalance is below 2% at 
each node and the minimum voltage at each node is above 
0.95. The new generation is integrated into the sensitive node, 
which also re-sequence phases at each node of the network, as 
shown in Table II. From Table I and Table II, it is observed 
that the proposed phase sequence is not the same and alters the 
additional DES SPOCs among phases.  

The proposed centralized control method is implemented in 
a distribution network II considering case II. The IoT tool 
performs optimization task. The improved performance is 
shown in Fig. 10 and Fig. 11. It is observed that voltage at 
each node is above 0.95 p.u after optimization.  

From Fig.11, it is observed that the optimization approach 
reduces the voltage imbalance significantly (from 6.77% to 
1.68% at node #M626) but the value of VUF is not less than 
2% at all nodes. For this reason, the IoT tool performs reserve 
control task. EV charging method is controlled at sensitive 
nodes as shown in Fig. 11. From Fig. 11, it is observed that the 
voltage imbalance reduces from 3.46% to 0.26% at the node 
#M624 after optimization as well as below 2% at all nodes. 
The proposed control method regulates voltage within 0.95 p.u 
to 1.05 p.u and voltage unbalance below 2% at all nodes of 
distribution network II.  
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Fig. 10. Voltage at different node of distribution network II.  

 
Fig. 11. Voltage unbalance factor at different node of distribution network II.  

From the above discussion, it is observed that the IoT tool 
can decide which task (optimization or reserve control) to 
undertake. The first layer of the proposed control method 
jointly re-sequences phases and DESs which can mitigate 
network imbalance due to EV charging uncertainty if there 
have no generation shortage. But EV charging or discharging 
power coordination is required if there have generation 
uncertainty. Therefore, the proposed control method by using 
double layer strategy can completely mitigate the impact of 
EV and DES uncertainty.  
  The performance of the proposed control method is 
compared with recent methodologies for mitigating voltage 

imbalance. This study compares the performance with recent 
methods:  
1) EV charging or discharging method [8], and  
 
2) D-STATCOM method [29].  
 
1) EV charging method  

For minimizing voltage unbalance factor (VUF), different 
EV charging methods are discussed in [8]. It is observed that 
variable EV charging or discharging method can minimize the 
VUF value and perform better than the constant EV charging 
or discharging method [8]. The variable EV charging or 
discharging method is applied to distribution network I 
assuming both cases (case I and case II) for solving the 
optimization problem (14). For case I, the variable EV 
charging or discharging method improves the network 
performance to the standard value ( node voltage above 0.95 
p.u, VUF less than 2%, and the neutral current reduces to 
10.24 A). Though the performance is improved, it is observed 
that individual EV charging power is reduced up to 32% for 
case I. The variable charging or discharging method reduces 
EV charging power as [8] and all connected EVs act as 
participants in the optimization. On the contrary, the proposed 
centralized approach in this study does not reduce EV 
charging power as well as include EVs as a participant at any 
node in case I. The proposed control method is compared with 
the variable charging and discharging method considering 
both cases and summarized in Table III.  

Table III shows that the proposed control method requires 
less number of EV participants to improve the network 
performance. In variable EV charging or discharging method, 
each EV participates to maintain the network performance [8] 
which compromises with the satisfaction level of EV owners. 
The proposed method reduces the number EV participants. In 
this way, the proposed control method increases the level of 
comfort of EV owners.     

TABLE III 
PROPOSED METHOD VS VARIABLE EV CHARGING METHOD 

(NUMBER OF PARTICIPATED EVS)  

DISTRIBUTI

ON 

NETWORK 

 
   
       

CASE  

 
VARIABLE EV 

CHARGING METHOD  

 
PROPOSED 

METHOD 

 
NETWORK I 

 
CASE I 

 
ALL CONNECTED EVS 

 
NONE OF EVS 

   
CASE II ALL CONNECTED EVS 38.91%  EVS 

    
 

NETWORK II 
CASE I ALL CONNECTED EVS NONE OF EVS 

   
CASE II ALL CONNECTED EVS 53.46%  EVS  

    

The developed control method does not require various 
pieces of information from EV users, or grid performance at 
respective SPOCs of the whole network at each time slot. In 
this way, the centralized control method reduces the data 
storage capacity, and communication complexity by 
maintaining network constraints.     

 
2) D-STATCOM method  
 The D-STATCOM is used to regulate voltage by 
controlling active power (P) and reactive power (Q). For 
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mitigating voltage unbalance and regulate voltage, the amount 
of required power (S) is quantified in [29].  
In this section, it is assumed that PV owners installed 
STATCOM devices to maintain power quality of the 
distribution grid and delivering power at rated converter 
capacity with a unity power factor. EV charging or 
discharging power would be remained the same. The 
performance of D-STATCOM is investigated to improve 
voltage unbalance, voltage, and energy loss with a tuned value 
of P and Q. The tuned P and Q value is determined by using 
the DE optimization algorithm subject to constraint (16) 
considering case II. The D-STATCOM performance is 
compared with the proposed control method as shown in Fig. 
12 and Fig.13.  

 2 2S P Q                                       (16) 

It is observed that voltage is improved at all nodes above 
0.95 p.u. as shown in Fig. 12 by controlling P and Q of a PV 
converter. The tuned value of P and Q is dispatched subject to 
converter capacity (S). It is observed that the value of VUF is 
higher than 2% at three measurement point out of twelve 
measurement point. It is also investigated that the VUF value 
can be minimized in these three nodes by increasing converter 
capacity (S) as like [29]. Increasing capacity also induce 
additional cost to PV owners. Moreover, suitable policies and 
price based incentives are required for PV owners to maintain 
power quality for dispatching reactive power. Therefore, the 
proposed control method is a cost-efficient solution to 
maintain power quality of the distribution network.  

 
Fig. 12. Comparison of voltage at different node of distribution network I. 

 
Fig. 13. Comparison of voltage unbalance at different node of distribution 
network I. 

To demonstrate the robustness of the proposed control 
method, a new meta-heuristic algorithm named the whale 
optimization algorithm (WOA) is applied to distribution 
network I. The DE and WOA optimization algorithm have 
been successfully convergent for all timeslot (24 hour), 
representing the robustness of the proposed control method.  
The convergence characteristic plot of both optimization 
algorithms for the proposed method is shown in Fig. 14. 

         

 
Fig. 14. Convergence characteristics of WOA and DE for the proposed control 
method. 
 

Fig. 14 demonstrates the mean value of fitness function 
with 400 generations. It is observed that the fitness value is 
not improved after 120 generations for DE optimization, 
supporting higher efficiency. WAO requires higher number of 
generation to solve the optimization problem. Therefore, the 
DE optimization algorithm shows better exploration ability 
over WOA. In this analysis, the computing time for solving 
the optimization problem by using the DE optimization 
algorithm is 320s which is implemented on a computer with 
Intel Core i7 processor @ 2.80 GHz. Therefore, the proposed 
control method using DE optimization algorithm showed 
efficacy of the IoT tool.  

VI. CONCLUSION 

This paper proposed an IoT enabled centralized control 
strategy, which consists of two stages. The first stage is to 
jointly coordinate phases and DESs dispatch among phases 
per node. If necessary, the second stage is trigged to 
coordinate EV charging or discharging at sensitive nodes 
(having higher voltage unbalance and poor voltage profiles). 
The performance is evaluated on an Australian unbalanced 
distribution grid. The proposed control method improved 
voltage up to 18.35%, while voltage imbalance reduced below 
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2% at all nodes and the neutral current reduced from 189.96 A 
to 17.42 A. The proposed strategy shows superior 
performance over D-STATCOM and EV charging method. 
The obtained results showed that an optimal coordination of 
phases and DESs can involve much less number of EV 
participants to satisfy the expected network performance 
whereas keep the rest of EVs unaffected in a distribution 
network. This in term leads to a less complex communication 
infrastructure and lower data processing overhead and more 
convenience to EV owners. Based on the findings from this 
research, it can be recommended to optimize coordination 
phases and DESs prior to optimize controlling of EV charging 
or discharging power for mitigating voltage unbalance, neutral 
current, and regulating voltage in a distribution network.        

ACKNOWLEDGEMENT  

         The authors would like to thank ENERGEX for 
providing the LV network model for research. This research is 
supported by an Australian Government Research Training 
Program. 

REFERENCES 
[1] A. Rodriguez-Calvo, R. Cossent, and P. Frías, “Integration of PV and 

EVs in unbalanced residential LV networks and implications for the 
smart grid and advanced metering infrastructure deployment,” Int. J. 
Elec. Power Energy Sys., vol. 91, no. Sup. C, pp. 121-134, Oct. 2017. 

[2] D. Sreenivasarao, P. Agarwal, and B. Das, “Neutral current 
compensation in three-phase, four-wire systems: a review,” Electric 
Power Systems Res., vol. 86, pp. 170-180, May. 2012. 

[3] N. B. Arias, J. F. Franco, M. Lavorato, and R. Romero, “Metaheuristic 
optimization algorithms for the optimal coordination of plug-in electric 
vehicle charging in distribution systems with distributed generation,” 
Elec. Power Sys. Rese., vol. 142, pp. 351-361, Jan. 2017. 

[4] F. Milano and O. Hersent, “Optimal load management with inclusion of 
electric vehicles and distributed energy resources,” IEEE Trans. Smart 
Grid, vol. 5, no. 2, pp. 662-672, 2014. 

[5] P. Richardson, D. Flynn, and A. Keane, “Optimal charging of electric 
vehicles in low-voltage distribution systems,” IEEE Trans. Power Sys., 
vol. 27, no. 1, pp. 268-279, 2012. 

[6] L. Jian, Y. Zheng, and Z. Shao, “High efficient valley-filling strategy for 
centralized coordinated charging of large-scale electric vehicles,” Appl. 
Energy, vol. 186, pp. 46-55, Jan. 2017. 

[7] J. F. Franco, M. J. Rider, and R. Romero, “A mixed-integer linear 
programming model for the electric vehicle charging coordination 
problem in unbalanced electrical distribution systems,” IEEE Trans. 
Smart Grid, vol. 6, no. 5, pp. 2200-2210, 2015. 

[8] H. F. Farahani, “Improving voltage unbalance of low-voltage 
distribution networks using plug-in electric vehicles,” J. Cleaner Prod., 
vol. 148, no. Sup. C, pp. 336-346, Apr. 2017. 

[9] P. Richardson and et al., “Local versus centralized charging strategies for 
electric vehicles in low voltage distribution systems,” IEEE Trans. Smart 
Grid, vol. 3, no. 2, pp. 1020-1028, 2012. 

[10] J. d. Hoog et al., “Electric vehicle charging and grid constraints: 
Comparing distributed and centralized approaches,” 2013 IEEE Power 
Energy Society General Meeting, pp. 1-5. 21-25 July 2013, Vancouver, 
Canada.  

[11] J. E. Cardona, J. C. López, and M. J. Rider, “Decentralized electric 
vehicles charging coordination using only local voltage magnitude 
measurements,” Elec. Power Sys. Res., vol. 161, pp. 139-151, Aug. 
2018. 

[12] J. A. Peças Lopes, S. A. Polenz, C. L. Moreira, and R. Cherkaoui, 
“Identification of control and management strategies for LV unbalanced 
microgrids with plugged-in electric vehicles,” Elec. Power Syst. Res., 
vol. 80, no. 8, pp. 898-906, Aug. 2010. 

[13] M. Esmaili and A. Goldoust, “Multi-objective optimal charging of plug-
in electric vehicles in unbalanced distribution networks,” Int. J. Elec. 
Power Energy Sys., vol. 73, pp. 644-652, Dec. 2015. 

[14] S. Weckx, R. D’Hulst, B. Claessens, and J. Driesensam, “Multiagent 
charging of electric vehicles respecting distribution transformer loading 
and voltage limits,” IEEE Trans. Smart Grid, vol. 5, no. 6, pp. 2857-
2867, 2014. 

[15] N. Z. Xu and C. Y. Chung, “Uncertainties of EV charging and effects on 
well-being analysis of generating systems,” IEEE Trans. Power Sys., 
vol. 30, no. 5, pp. 2547-2557, 2015. 

[16] M. Esmaili and A. Goldoust, “Multi-objective optimal charging of plug-
in electric vehicles in unbalanced distribution networks,” Int. J. Elec. 
Power Energy Sys., vol. 73, pp. 644-652, Dec. 2015. 

[17] C. Wen, J. Chen, J. Teng, and P. Ting, “Decentralized plug-in electric 
vehicle charging selection algorithm in power systems,” IEEE Trans. 
Smart Grid, vol. 3, no. 4, pp. 1779-1789, 2012. 

[18] J. Quirós-Tortós, L. F. Ochoa, S. W. Alnaser, and T. Butler, “Control of 
EV charging points for thermal and voltage management of LV 
networks,” IEEE Trans. Power Sys., vol. 31, no. 4, pp. 3028-3039, 2016. 

[19] S. Shao, M. Pipattanasomporn, and S. Rahman, “Grid integration of 
electric vehicles and demand response with customer choice,” IEEE 
Trans. Smart Grid, vol. 3, no. 1, pp. 543-550, 2012. 

[20] Australian National Electricity Rules Version 117, Year 2018. Available 
online: https://www.aemc.gov.au. [Accessed date: 11 January 2019].  

[21] IEEE Recommended Practice for Monitoring Electric Power Quality, 
vol. IEEE Standard 1159-1995. Available online: 
https://doi.org/10.1109/ieeestd.1995.79050. [ Access date : 14 Jan 2019].  

[22] M. R. Islam, H. Lu, et al., “Optimal dispatch of electrical vehicle and 
PV power to improve the power quality of an unbalanced distribution 
grid,” in Proc. 2019 Int. Conf. High Perfo. Big Data and Int. Sys. 
(HPBD&IS), pp. 258-263, 9-11 May 2019, Shenzhen, China.  

[23] S. S. Tanwar and D. K. Khatod, “Techno-economic and environmental 
approach for optimal placement and sizing of renewable DGs in 
distribution system,” Energy, vol. 127, pp. 52-67, May. 2017. 

[24] M. A. Tolba, V. N. Tulsky, and A. A. Z. Diab, “Optimal sitting and sizing 
of renewable distributed generations in distribution networks using a 
hybrid psogsa optimization algorithm,” in Proc. IEEE Ind. Comm. 
Power Systems Europe, pp. 1-7, 6-9 June 2017, Milan, Italy. 

[25] L. Jian, X. Zhu, Z. Shao, et al., “A scenario of vehicle-to-grid 
implementation and its double-layer optimal charging strategy for 
minimizing load variance within regional smart grids,” Energy Conv. 
Manag., vol. 78, pp. 508-517, Feb. 2014. 

[26] “Communication networks and systems for power utility automation – 
part 5: Communication requirements for functions and device models,” 
IEC Standard 61850-5:2013, 2013. 

[27] F. H. M. Rafi, M. J. Hossain, and J. Lu, “Improved neutral current 
compensation with a four-leg PV smart VSI in a LV residential 
network,” IEEE Trans. Power Del., vol. 32, no. 5, pp. 2291-2302, 2017.  

[28] S. H. Soltani, M. Rashidinejad, and A. Abdollahi, “Dynamic phase 
balancing in the smart distribution networks,” Int. J. Elec. Power Energy 
Sys., vol. 93, pp. 374-383, Dec. 2017. 

[29] M. M. Far, E. Pashajavid, and A. Ghosh, "Power capacity management 
of dynamic voltage restorers used for voltage sag and unbalance 
compensation," in Proc. 2017 Australasian Universities Power 
Engineering Conference (AUPEC), pp. 1-6, Melbourne, Australia, 19-22 
November, 2017.   

 
 
 

Md. Rabiul Islam (S’ 18) received an M.Sc. 
degree in Renewable Energy from the University of 
Oldenburg, Germany, in 2015 and B.Sc. in Electrical 
and Electronic Engineering from RUET, Bangladesh, 
in 2007. He is currently working toward a Ph.D. 
degree with the Centre for Artificial Intelligence, FEIT 
at the University of Technology Sydney (UTS), 
Sydney, Australia.    

He was appointed as a lecturer at Dept. of Electrical 
and Electronic  Engineering, Pabna University of Science and Technology 
(PUST) in 2011 and promoted to Assistant professor in 2014. He was a 
research associate at Overspeed GmbH & Co. KG, Oldenburg, Germany in 
2014. He received the prestigious German government scholarship (DAAD) 
in 2013 and UTS president’s award in 2017. His research interests include 
heuristic optimization techniques, renewable energy, and electric vehicle 
integration, prediction of solar energy, smart and flexible electricity Grid. He 
is currently serving as a secretary, IES/PELS/IAS chapter, IEEE NSW section 
and a member of the institution of Engineers Bangladesh (IEB), Bangladesh.   



 
 

12

 
     Dr Haiyan (Helen) Lu (M’99-SM’15) is an 
associate professor in School of Computer Science in 
the Faculty of Engineering and Information 
Technology, and a core member of the Decision 
Systems and e-Service Intelligence Research 
Laboratory in the Centre for Artificial Intelligence at 
the University of Technology Sydney (UTS). 

She received her Bachelor and Master Degrees in 
Harbin Institute of Technology, China in 1985 and 1988, respectively, and 
PhD degree from UTS in 2002. Her main research interests are heuristic 
optimization techniques, forecasting and prediction of time series, ontology-
based knowledge representation, recommendation systems and causal 
relationship, inference and reasoning in data streams. She have published 
three book chapters, 68 refereed journal papers and 82 refereed international 
and national conference papers. 
 

Md. Rabiul Islam (M’14–SM’16) received the B.Sc. 
and M.Sc. degree from Rajshahi University of 
Engineering and Technology (RUET), Rajshahi, 
Bangladesh, in 2003 and 2009, respectively; and the 
Ph.D. degree from University of Technology Sydney 
(UTS), Sydney, Australia, in 2014, all in electrical 
engineering. 

He was appointed a lecturer at RUET in 2005 and 
promoted to full professor in 2017. In early 2018, he joined at the School of 
Electrical, Computer, and Telecommunications Engineering (SECTE), 
University of Wollongong (UOW), Wollongong, Australia. He is also a 
member of Australian Power Quality and Reliability Center of UOW. His 
research interests are in the fields of power electronic converters, renewable 
energy technologies, power quality, electrical machines, electric vehicles, and 
smart grid. He has authored or co-authored 150 papers (including 40 IEEE 
Transactions papers) in international journals and conference proceedings. He  
has  served  as  a  Guest  Editor  for  IEEE  Transactions  on Energy 
Conversion and IEEE Transactions on Applied superconductivity. Currently 
he is editing a special issue for IET Electric Power Applications.  

 
 

M.  Jahangir Hossain (M’10-SM’13) received the 
B.Sc. and M.Sc. Eng. degrees from Rajshahi University 
of Engineering and Technology (RUET), Bangladesh, in 
2001 and 2005, respectively, and the Ph.D. degree from 
the University of New South Wales, Australia, all in 
electrical and electronic engineering.  

He is currently an Associate Professor with the 
School of Electrical and Data Engineering, UTS, 

Australia. Before joining there, he served as Associate Professor, Macquarie 
University, a Senior Lecture and a Lecturer in the Griffith School of 
Engineering, Griffith University, for five years and as a Research Fellow in 
the School of Information Technology and Electrical Engineering, University 
of Queensland, Brisbane, Australia. His research interests include renewable 
energy integration and stabilization, voltage stability, micro grids and smart 
grids, robust control, electric vehicles, flexible ac transmission systems 
devices, and energy storage systems.  
 

Li  Li (M’04–SM’11) received the B.S. degree from 
the Huazhong University of Science and Technology 
in 1996, the M.S. degree from Tsinghua University in 
1999, and the Ph.D. degree from the University of 
California, Los Angeles in 2005, all in electrical 
engineering. From 2005 to 2007, he was a Research 
Associate with the University of New South Wales at 
the Australian Defense Force Academy 
(UNSWADFA). From 2007 to 2011, he was a 

Researcher with the National ICT Australia, Victoria Research Laboratory, 
Department of Electrical and Electronic Engineering, University of 
Melbourne. He joined the University of Technology Sydney in 2011, where he 
is currently an Associate Professor. He held several visiting positions with the 
Beijing Institute of Technology, Tsinghua University, and UNSWADFA. His 
research interests are control theory and power system control. 
 
 


	Blank Page

