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15 Abstract

16 Reliable and adequate removal of small and uncharged trace organic chemicals (TOrCs), 

17 particularly N-nitrosodimethylamine (NDMA) that is carcinogenic and known to occur in treated 

18 effluent, is essential for implementing direct potable water use. This study provides new insights 

19 to explain the low rejection of NDMA and other N-nitrosamines by reverse osmosis (RO) 

20 membranes by examining the role of the molecular size and polarity in their molecular structure. 

21 The results show that molecular weight is not a suitable molecular property for evaluating the 

22 rejection of small uncharged chemicals. In this study, NDMA and two other uncharged 

23 chemicals have similar MW (i.e., 72–74 g/mol), but their rejection by the ESPA2 RO membrane 

24 varied considerably from 30 to 88%. Instead, minimum projection area was identified to be a 

25 suitable molecular property, indicating that size exclusion plays a primary role in their rejection. 

26 It was also identified that chemicals with more nitrogen atoms in their chemical structure 

27 consistently showed lower rejection than their counterparts in molecular size. The results suggest 

28 that chemicals bearing more nitrogen atoms (e.g., NDMA) are more attracted onto amide or 

29 amine functional group of polyamide RO membrane possibly through hydrogen bonding 

30 interactions.

31 Keywords: N-nitrosodimethylamine; N-nitrosamine; potable reuse; polarity; reverse osmosis. 
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33 INTRODUCTION

34 N-nitrosamines are a group of trace organic chemical (TOrC) of significant concern in potable 

35 reuse. Notable chemicals in this group include N-nitrosodimethylamine (NDMA), N-

36 nitrosomethylethylamine (NMEA), N-nitrosopyrrolidine (NPYR), and N-nitrosomorpholine 

37 (NMOR). They are probable carcinogenic and are known to occur in secondary treated effluent 

38 after chloramination.1-3 Several water authorities around the world have issued standards or 

39 guidelines to regulate their maximum concentration in water for potable reuse. For example, the 

40 maximum concentration of NDMA in potable reuse water is set at 10 ng/L by the Australian 

41 Water Recycling Guideline.4 Unlike most high molecular weight or charged TOrCs, the rejection 

42 of small and uncharged chemicals, particularly N-nitrosamines, by reverse osmosis (RO) 

43 membranes varies widely and is often quite low.5-8 In particular, since NDMA has a low 

44 molecular weight (74 g/mol) and is uncharged in environmental water, NDMA rejection of less 

45 than 50% has been reported for many RO membranes.9 NDMA concentrations in RO permeate 

46 higher than the guideline value of 10 ng/L have often been routinely reported in full scale potable 

47 water reuse schemes.7, 10 As a result, residual NDMA is further removed by advanced oxidation 

48 process (AOP).11 In the multi-barrier approach, AOP is expected to act as a redundant treatment 

49 barrier to degrade contaminants that have inadvertently passed through RO treatment. Thus, 

50 reliable and adequate NDMA removal by RO is essential to ensure public health protection in 

51 potable water reuse.

52 A recent study by Fujioka12 has demonstrated that high rejection of NDMA (e.g. >92%) can be 

53 achieved by heat-treating RO membranes. However, economic feasibility of this approach has 

54 not been ascertained especially, as NDMA rejection is coupled with a reduction in water 
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55 permeability. The trade-off relationship is likely associated with reduction in free-volume hole-

56 size, which could limit the transport of both solute (i.e., NDMA) and water molecules.13, 14 

57 Nevertheless, the role of free-volume hole-size has not been fully understood from the viewpoint 

58 of RO membrane properties due to analytical limitations at sub-nanometre scale.15 In addition to 

59 size exclusion, intermolecular interactions between uncharged chemicals and the functional 

60 groups of the polyamide skin layer can play a role in determining their transport through RO 

61 membrane matrix.16-19 N-nitrosamines, which bear high electronegativity atoms (i.e., nitrogen 

62 and oxygen atoms), are polar chemicals with have high partial negative charges. There has been 

63 some evidence from the literature that dipolar interaction (e.g. hydrogen bonding) between small 

64 and uncharged organic molecules and the membrane polyamide skin layer may their partitioning 

65 to and transport through the skin layer.18, 20

66 New understanding of the interplay between size exclusion and intermolecular interaction in 

67 governing the rejection of small and uncharged organic solutes has the potential to facilitate the 

68 development of high NDMA rejection membranes. For example, the strong correlation between 

69 minimum projection area and rejection confirms that the clearance between NDMA and the 

70 membrane free-volume hole is an important parameter. As a result, membrane development may 

71 focus on narrowing down the free-volume hole-diameter without considerably compromising 

72 membrane permeability. Likewise, surface coating or modifying the membrane material 

73 composition may also be explored to regulate intermolecular interaction, thus, enhancing the 

74 rejection of NDMA as well as other small and uncharged organics of significant concern.

75 This study aimed to elucidate the influence of size exclusion and dipolar interactions on the 

76 rejection of TOrCs including NDMA by polyamide-based RO membranes. Four N-nitrosamines, 

77 including NDMA and NMEA, were used to demonstrate the importance of size exclusion. To 
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78 identify the importance of dipolar interactions, four other chemicals similar to NDMA or NMEA 

79 in structure but have less or no nitrogen atoms were used with two RO membranes that have 

80 different nitrogen content on their surface. 

81 MATERIALS AND METHODS

82 Chemicals

83 All chemicals used for separation experiments were analytical grade. The four N-nitrosamines in 

84 this study — namely NDMA, NMEA, NPYR, and NMOR (Table 1) — were from Ultra 

85 Scientific (Kingstown, RI, USA). In addition, chemicals with similar backbone structure to the 

86 two smallest N-nitrosamines (i.e. NDMA and NMEA) in terms of molecular weight but are 

87 different in the number of nitrogen atoms in the molecule were also selected. For comparison 

88 with NDMA, the selected chemicals were dimethylformamide (DMF) and isobutyraldehyde 

89 (IBAL), which have one and two nitrogen atoms less than that of the corresponding N-

90 nitrosamine reference, respectively (Table 1). Likewise, for comparison with NMEA, the 

91 selected chemicals were N-Ethyl-N-methylformamide (NEMF) and 2-methylbutanal (MBTL), 

92 which have one and two nitrogen atoms less than that of the corresponding N-nitrosamine 

93 reference, respectively. All of the eight solutes are hydrophilic and neutral (uncharged) at the 

94 experimental pH (pH 6 to 7) of this study (Table S1).
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95 Table 1 – Structure and properties of the selected chemicals.

Group Number of nitrogen atom 2 1 0
A Name NDMA DMF IBAL

Structure
N

N
O NO O

Molecular weight [g/mol] 74.1 73.1 72.1
Minimum projection areaa, b [Å2] 19.4 20.2 22.9

B Name NMEA NEMF MBTL
Structure

N
N

O NO O

Molecular weight [g/mol] 88.1 87.1 86.1
Minimum projection areaa, b [Å2] 22.1 24.0 25.4

C Name NPYR N.A. N.A.
Structure

N
O N

Molecular weight [g/mol] 100.1
Minimum projection areaa, b [Å2] 24.1

D Name NMOR N.A. N.A.
Structure

N
O N

O

Molecular weight [g/mol] 116.1
Minimum projection areaa, b [Å2] 26.9

96 a Marvin software (ChemAxon, Budapest, Hungary). 
97 b Minimum projection area is the area of the compound projection with the minimum plane of its 
98 circular disk, based on the van der Waals radius.
99 N.A.: Not available (not used).

100 Membrane treatment system and protocols

101 A pilot-scale cross-flow RO system with one 4-inch low pressure RO membrane element was 

102 used (Fig. S1 and Text S1a). The RO membrane elements selected in this study were ESPA2-

103 LD-4040 and LFC3-LD-4040 (Hydranautics/Nitto, CA, USA), both of which have been widely 

104 used for water recycling applications. Both RO membrane elements have a large membrane 

105 surface area (7.43 m2 as opposed to < 0.01 m2 in a typical lab scale study), which eliminates any 

106 local variation in separation performance. Conductivity rejection by the ESPA2-LD-4040 RO 

107 membrane element is 98.5%, slightly lower than that of the LFC3-LD-4040 RO element (98.9%) 
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108 (Table S2). The skin layer of polyamide ESPA2 RO membrane is formed via the cross-linking 

109 of m-phenylenediamine and trimesoyl chloride monomers; thus, polyamide materials are present 

110 in the top skin layer.21 LFC3 RO membrane is prepared by coating a layer of polyvinyl alcohol 

111 (PVA, (C2H4O)x) onto a ready-made ESPA2 RO membrane sheet; thus, a major difference 

112 between LFC3 and ESPA2 RO membranes is the presence of the PVA active skin layer. These 

113 two RO membranes were evaluated to examine the influence of nitrogen content in the 

114 membrane polymeric matrix on the rejection of nitrogen bearing chemicals.

115 The RO system was operated in a recirculation mode at a constant permeate flux of 20 L/m2h, 

116 constant feed temperature of 20 °C, and the system recovery of 20%. Prior to each separation 

117 experiment, the system was operated using a 50 L deionised water for at least one hour to 

118 stabilise the filtration performance (Text S1b). Thereafter, stock solution of each chemical was 

119 added to obtain 700 ng/L of each N-nitrosamine or 14–20 mg/L for the other chemicals in the 

120 feed solution.

121 Analysis

122 Concentrations of four N-nitrosamines were determined by high-performance liquid 

123 chromatography-photochemical reaction-chemiluminescence.22 Concentrations of DMF and 

124 NEMF were determined through solid-phase extraction followed by gas chromatography (GC) 

125 and mass spectrometry (MS). Concentrations of IBAL and MBTL were determined through 

126 derivatisation followed by liquid phase extraction and GC-MS (Text S1c). Chemical 

127 composition of the face side as well as the side facing the supporting layer (herein called reverse 

128 side) of the skin layer was evaluated using an X-ray photoelectron spectroscopy (XPS) 

129 (ESCA3200, Shimadzu, Tokyo, Japan) (Text S1d). 
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130 RESULTS AND DISCUSSION

131 Elemental composition of RO skin layer

132 Three organic elements detected here include: oxygen (O), nitrogen (N), and carbon (C) (Fig. 

133 S2). The face side of ESPA2 RO membrane had the elemental composition of O (15%), N (12%), 

134 and C (72%). The reverse side of ESPA2 membrane showed similar elemental composition at O 

135 (15%), N (11%), and C (74%), which will be same for the reverse side of LFC3 membrane. 

136 Almost identical elemental composition between the face side and reverse side indicate that the 

137 intermolecular interaction occurs at similar levels during the transport of chemicals through the 

138 skin layer. In contrast, the face side of LFC3 RO membrane had a low N content of only 6%.

139 Rejection of TOrCs

140 The rejection of four N-nitrosamines by the ESPA2 RO membrane increased according to the 

141 increase in their molecular weight (Fig. 1a). However, when other chemicals with similar 

142 molecular structure but difference in the number of nitrogen atoms are also considered, the 

143 correlation between rejection and molecular weight was no longer valid. The three chemicals in 

144 group A (namely NDMA, DMF, and IBAL) have similar molecular weight (72–74 g/mol) and 

145 structure (Table 1) but markedly different rejection (30, 52, and 88%, respectively) (Fig. 1a). 

146 Likewise, the three chemicals in group B (namely NMEA, NEMF, and MBTL) also have similar 

147 molecular weight (86–88 g/mol) and structure (Table 1), yet their rejection also varied over a 

148 wide range. Similarly, the rejection of the selected chemicals by LFC3 RO membrane was not 

149 correlated with their molecular weight (Fig. 1b).
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151 Fig. 1 – Rejection of the selected chemicals with and without nitrogen (N) atoms in deionised 
152 water by (a) ESPA2 and (b) LFC3 RO membranes as a function of molecular weight (Permeate 
153 flux = 20 L/m2h, feed temperature = 20 °C, and transmembrane pressure = 0.41 and 0.50 MPa 
154 for the ESPA2 and LFC3 RO membranes, respectively; error bars represent one standard 
155 deviation of two replicate samples).

156 Further analysis indicated that the minimum projection area (MPA) of the selected chemicals 

157 instead of molecular weight was better correlated with their rejections for both RO membranes 

158 (Fig. 2). MPA represents the minimum projection cross-sectional area of a chemical (Fig. S3). 
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159 Another physical parameter (Van der Waals volume) showed a relatively high correlation (Fig. 

160 S4), because of the basis similar to minimum projected area, which is based on the van der 

161 Waals radius. In contrast, the molecular length of the selected chemicals did not correlate with 

162 their rejections (Fig. S5). Results associated with MPA indicate that the 2-dimensional molecular 

163 property can be a more relevant parameter that governs the rejection of small and uncharged 

164 chemicals. In fact, a strong correlation between MPA and TOrCs has also been reported with 

165 nanofiltration (NF) and cellulose triacetate RO membranes elsewhere.23, 24 The transport of 

166 TOrCs through RO membrane occurs via three major steps: (a) approach to the face side of the 

167 membrane surface and penetration into the membrane structure; (b) diffuse through the skin 

168 layer; and (c) exit from the membrane structure and departing from the reverse side to the 

169 supporting layer.25 After sorption (or partitioning) of uncharged chemicals into the membrane 

170 polymeric matrix, their diffusion can be influenced by the clearance between the chemical and 

171 free-volume hole-size of the membrane active skin layer.
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173 Fig. 2 – Rejection of the selected chemicals with and without nitrogen (N) atoms in deionised 
174 water by (a) ESPA2 and (b) LFC3 RO membranes as a function of MPA (Permeate flux = 20 
175 L/m2h and feed temperature = 20 °C; error bars represent one standard deviation of two replicate 
176 samples).  

177 Assuming that the chemical can rotate at any directions, the minimum clearance is attained with 

178 two dimensional area (e.g. MPA), which can determine whether the chemical passes through the 

179 free-volume hole. MPA of NDMA (MPA = 19 Å2) and other selected chemicals (20–27 Å2) was 
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180 comparable to the mean cross-sectional area of free-volume holes of ESPA2 RO membrane (24 

181 Å2), which was determined by approximating free-volume holes as uniform sphere-like voids 

182 using positron annihilation technique.21 The clearance between solute dimensions and membrane 

183 free-volume holes can govern the transport of chemicals not only during the entry to the 

184 membrane matrix but also during their diffusion through the skin layer, because free-volume 

185 holes are composed small network and large aggregate holes that are more likely to provide 

186 hinder solute transport depending on the level of clearance.26, 27 This clearance may explain the 

187 overall trend of high rejections by LFC3 RO membrane; free-volume hole-size in the membrane 

188 matrix could have been reduced by the coating process compared to that of the ESPA2 RO 

189 membrane.

190 It is noted that the rejection of chemicals with one or no nitrogen atoms in structure by ESPA2 

191 RO membrane was generally higher than their corresponding N-nitrosamines (N = 2) (Fig. 2a). 

192 Hydrogen bonding between these nitrogen bearing chemicals and functional groups of 

193 polyamide membrane can be the cause of this observed variation. In the polyamide skin layer, 

194 hydrogen atom on the amide (CO-NH-) or free amine (NH2-) functional groups can act as a 

195 hydrogen bond donor, because N in the amide or amine functional group strips electron density 

196 from the proton, which causes its partial positive charge (δ+) (Fig. S6). Although keto group 

197 (=O) in all of the chemicals is a hydrogen bond acceptor with partial negative charge (δ‒), 

198 nitrogen atoms in nitrogen bearing chemicals (e.g., NDMA) are also hydrogen bond acceptors, 

199 which increases the number of hydrogen bonding pairs. In contrast, both IBAL and MBTL do 

200 not have any nitrogen atom in their molecular structure; thus, the number of hydrogen bonding 

201 pair is less than NDMA and NMEA. The increased number of hydrogen bonds may enhance the 

202 diffusion of nitrogen bearing chemicals, enhancing their permeation to the permeate. 
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203 A similar trend but with discernible difference in individual rejection values between N-

204 nitrosamines and other chemicals with less nitrogen atoms was also observed for the LFC3 RO 

205 membrane (Fig. 2b). The LFC3 RO membrane has a lower nitrogen content on the face side due 

206 to the PVA coating layer (Table S1) comparing to the ESPA2. However, hydroxyl groups (-OH) 

207 of the PVA layer can also act as a hydrogen bond donor and form hydrogen bonding with N-

208 bearing chemicals. Indeed, the hydrogen bond donating potential of the hydroxyl group is higher 

209 than that of the amide group of the original polyamide layer (Fig. S6). Thus, hydrogen bonding 

210 between the selected chemicals and PVA layer can be stronger than that between the chemicals 

211 and polyamide chains. This implies that two nitrogen bearing chemicals that have two hydrogen 

212 acceptor sites (i.e., N-nitrosamines) can have more hydrogen bonding with the PVA layer (i.e. 

213 LFC3 membrane), causing the discrepancy in their rejection trend with one or no nitrogen 

214 bearing chemicals (one hydrogen acceptor site) (Fig. 2b). These results in this study suggest 

215 hydrogen bonding as a potential cause of the low rejection of nitrogen bearing chemicals 

216 including N-nitrosamines. It is noted that the tests in this study were conducted using deionised 

217 water, whereas in water recycling the rejection of these chemicals may vary due to the presence 

218 of dissolved ions and hydrogen bond disruptors such as urea. To confirm the importance of 

219 hydrogen bonding, further investigation with many other chemicals with different partial positive 

220 or negative charges and different water matrix is necessary. 

221 Implications for future RO membranes

222 This study showed MPA is a more appropriate parameter than molecular weight for describing 

223 the rejection of small and uncharged chemicals. In addition, this study identified for the first time 

224 that the permeation of nitrogen atom-containing chemicals through polyamide RO membrane 

225 can be enhanced by the number of hydrogen bond pairs. Based on the importance in size 
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226 exclusion mechanisms identified in this study, the restriction of free-volume hole-size can 

227 primarily reduce the number of NDMA molecules entering the free-volume holes, enhancing 

228 NDMA rejection. However, free-volume hole-size restriction can also inhibit the entry of water 

229 molecules, consequently reducing water permeability. The effect of hydrogen bonding identified 

230 in this study suggests that the reduction of electron donor in RO membrane matrix has the 

231 potential to reduce the permeation of NDMA molecules. Hydrogen bond donor can be removed 

232 or reduced by changing membrane polymer materials, however, the change in polymer materials 

233 can also change the membrane structure including free-volume hole-size. Provision of surface 

234 coating layer without hydrogen bonding donor also has the potential of enhanced NDMA 

235 rejection.

236 SUPPORTING INFORMATION

237 Additional text, tables and figures. 
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