
© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://
creativecommons.org/licenses/by-nc-nd/4.0/        
The definitive publisher version is available online at https://doi.org/10.1016/j.enconman.2020.112872



An Improved Wind Driven Optimization Algorithm for Parameters 1 

Identification of a Triple-Diode Photovoltaic Cell Model 2 

Ibrahim Anwar Ibrahim¹, M. J. Hossain², Benjamin C. Duck³, Mithulananthan 3 

Nadarajah⁴ 4 

¹School of Engineering, Macquarie University, Sydney, NSW 2109, Australia 5 

²School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW 2007, 6 
Australia 7 

³CSIRO Energy, 10 Murray Dwyer Cct, Mayfield West, NSW 2304, Australia 8 

⁴ School of Information Technology and Electrical Engineering, The University of Queensland, 9 
Brisbane, QLD 4072, Australia 10 

¹ibrahim.a.ibrahim@hdr.mq.edu.au ; ¹ibrahim.a.ibrahim@ieee.org ; ²jahangir.hossain@uts.edu.au ; 11 
³benjamin.duck@csiro.au ; ⁴mithulan@itee.uq.edu.au  12 

Abstract 13 

The double-diode photovoltaic (PV) cell model is insufficient to accurately characterize the different 14 

current components of a PV cell. Therefore, the triple-diode model of a PV cell is considered to model 15 

its complicated physical characteristics by clearly defining the different current components of the PV 16 

cell. The identification of its unknown parameters is a complex, multi-modal and multi-variable 17 

optimization problem. An improved wind driven optimization (IWDO) algorithm is proposed in this 18 

paper to identify its nine unknown parameters. The proposed method is a combination of the mutation 19 

strategy of the differential evolution (DE) algorithm and the covariance matrix adaptation evolution 20 

strategy (CMAES) of the wind driven optimization (WDO) algorithm. The mutation strategy aims to 21 

bolster the exploration ability of the IWDO algorithm, while the CMAES based WDO algorithm aims 22 

to improve the searching of the classical WDO algorithm. Therefore, IWDO algorithm is more accurate 23 

and faster than the classical WDO algorithm in finding the global optimum and balancing exploration 24 

and exploitation. The proposed model has been utilized on 15-minute interval data to identify the 25 

unknown parameters of three commercial PV modules, namely: mono-crystalline LG300N1C-A3, 26 

poly-crystalline JAP6-60-250W/3BB and thin-film Avancis PowerMax smart 125W. To show the 27 

effectiveness of the proposed model, its performance is validated by comparing it with that obtained by 28 

the classical WDO, the adaptive wind driven optimization (AWDO), moth-flame optimizer (MFO), 29 

sunflower optimization (SFO) and the improved opposition-based whale optimization (IOWO) 30 

algorithms. The results demonstrate that IWDO outperforms the aforementioned models in accuracy, 31 

convergence speed and feasibility. In addition, IWDO more clearly defined different current 32 

components and generated any current-voltage (I-V) curve under any operating condition. 33 

Keywords: Photovoltaic (PV); triple-diode model; parameter identification; I-V characteristic curve; 34 

IWDO algorithm. 35 
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Nomenclature 36 

Abbreviations 37 

I-V current-voltage 
P-V power-voltage 

RMSE root-mean-square-error 
PSO particle swarm optimization 

MFO moth-flame optimizer 
SFO sunflower optimization 

IOWO improved opposition-based whale optimization 
CPSO chaos particle swarm optimization 

ELPSO enhanced leader particle swarm optimization 
TVACPSO time varying acceleration coefficients particle swarm optimization 

MPSO mutated particle swarm optimization 
GCPSO guaranteed convergence particle swarm optimization 

ABC artificial bee colony 
MABC modified artificial bee colony 

DE differential evolution 

IADE improved adaptive differential evolution 
BBO biogeography-based optimization 

BBO-M biogeography-based optimization algorithm with mutation strategies  
GOTLBO generalised opposition-based teaching learning-based optimization 

WDO wind driven optimization 
BPFPA bee pollinator flower pollination algorithm 

FPA flower pollination algorithm 
CSO cat swarm optimization 

CWOA chaotic whale optimization algorithm 
SATLO self-adaptive teaching learning-based optimization 

AWDO adaptive wind driven optimization 
CMAES covariance matrix adaptation evolution strategy 

BFO bacterial foraging optimization 
IWDO improved wind driven optimization 

KCL Kirchhoff’s current law 

KVL Kirchhoff’s voltage law 
NAvg normal average 

SD standard deviation 
nRMSE normalized root-mean-square error 

MAPE mean absolute percentage error 
R² coefficient of determination 

CSIRO Commonwealth Scientific and Industrial Research Organisation 
NSW New South Wales 

DBSCAN density-based spatial clustering of applications with noise 
s. second 

 38 

Symbols 39 

𝐼 the output current of the PV cell 

𝐼𝑃ℎ the generated photocurrent 

𝐼01
 the first diode reverse saturation current 

𝐼02
 the second diode reverse saturation current 

𝐼03
 the third diode reverse saturation current 

𝑉 the voltage output of the PV cell 



𝑅𝑠 the series resistance 

𝑅𝑠ℎ the shunt resistance 

𝑉𝑡1 the first diode' thermal voltage 

𝑉𝑡2 the second diode' thermal voltage 

𝑉𝑡3 the third diode' thermal voltage 

𝑎1 the ideality factor of the first diode 

𝑎2 the ideality factor of the second diode 

𝑎3 the ideality factor of the third diode 

𝑘𝑏 Boltzmann's constant 

𝑞 the electron's charge 

𝑇𝑐 the cell temperature (K) 

𝑉𝑎 the actual PV module output voltage 

𝐼𝑎 the actual PV module output current 

𝐼𝑒 the estimated PV module output current 

𝜃 
the vector of the nine unknown parameters (i.e., 𝐼𝑃ℎ, 𝐼01

, 𝐼02
, 𝐼03

, 𝑎1, 𝑎2, 𝑎3, 𝑅𝑠 

and 𝑅𝑠ℎ) 

𝑁 the length of the experimental database 

𝐹𝑡
⃗⃗  ⃗ a vector of the total forces on an air parcel 

𝜌 the density of the air parcel 

𝑎  the acceleration vector 

𝐷𝑗 the dimensions of the optimization problem 

𝑗 the number of unknown parameters 

𝑁𝑘 the population size of the air parcels 

𝑘 the population 

𝑈𝑝𝑝𝑒𝑟𝑗 the upper limit for each 𝐷𝑗 

𝐿𝑜𝑤𝑒𝑟𝑗 the lower limit for each 𝐷𝑗 

𝐺𝑚𝑎𝑥 the maximum number of iterations 

𝑢𝑚𝑎𝑥 the maximum allowable limit of the velocity for the air parcels 

𝑦𝑁𝑗
𝑘⃗⃗⃗⃗ ⃗⃗  the position vector 

𝑢𝑁𝑗
𝑘⃗⃗ ⃗⃗⃗⃗   the velocity vector 

𝑢𝑛𝑒𝑤𝑗
𝑘⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗  ⃗ the air parcel's new velocity vector 

𝑦𝑛𝑒𝑤𝑗
𝑘⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗   the air parcel's new position vector 

𝑢𝑐𝑗−1
𝑘  the air parcel's velocity at the current iteration 

𝑦𝑐𝑗−1
𝑘  the air parcel's position at the current iteration 

𝑦𝑜𝑝𝑡𝑗
𝑘  the air parcel's optimal position 

𝑟𝑘 the ranking among all air parcels 

𝐺 the current iteration 

𝑉𝑒𝑐𝑖,𝐺 the mutant vector 

𝑍𝑖,𝐺 the individual in the current air parcel population 

𝑟1
𝑖 

the first mutually exclusive integer which is generated within the range from 1 to 
𝑁𝑘 randomly 

𝑟2
𝑖 

the second mutually exclusive integer which is generated within the range from 1 
to 𝑁𝑘 randomly 

𝑍𝑏𝑒𝑠𝑡,𝐺 the best individual with the best fitness function value in 𝑘 at 𝐺 

𝐹 
the scale factor which is a positive control parameter that aims to scale the 
difference vector 

𝑋𝑖  the parent 

𝑈𝑖  the offspring 



𝜇𝑗 the upper limit of the 𝑖th dimension in the mutation strategy 

𝛿𝑗 the lower limit of the 𝑖th dimension in the mutation strategy 

𝑍𝑖(𝑗) the individual in the current air parcel 

𝑟𝑛𝑑𝑟𝑒𝑎𝑙(0,1) a random number between 0 and 1 

𝑓(𝑈𝑖 , 𝐺) the objective function values based on the mutation phase 

𝑓(𝑋𝑖 , 𝐺) the objective function values based on the ranking of air parcels 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖  the value for each identified parameter 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ the mean value of each identified parameter 

𝑀 the length of the vector of each identified parameter 

𝐼𝑐 the calculated PV output current based on the Newton-Raphson method 

𝑉𝑎𝑟 the variance 
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1. Introduction 41 

Renewable sources can overcome the challenges of conventional fossil fuel-based power sources due 42 

to the latter's increasing cost, their problematic depletion, and negative impacts on the environment and 43 

its societies. Solar energy has gained momentum as one of the finest energy resources. At present, it is 44 

the third most widely used source of electrical energy in most continental regions due to broad 45 

availability, high visibility, safe use, and range of applications for residential, commercial and utility 46 

users alike. A photovoltaic (PV) system is one of the most direct way to provide the electrical energy 47 

from the solar energy based on the inherent properties of semiconductors [1]. 48 

Accurate modeling of PV system is crucial to maximize its energy harvesting. The current-voltage (I-49 

V) and power-voltage (P-V) curves are very useful representations to model the non-linear 50 

characteristic of the PV cell/module based on the variation of meteorological variables. They can be 51 

derived by utilizing the parameters of the diode PV cell model which are considered as a direct indicator 52 

of the PV modules' performance [2]. The unknown parameters of PV cell models are identified from 53 

experimental data in a reverse process. This process is still a challenge for researchers as it strongly 54 

depends on several non-linear relationships which govern the PV cell/module behaviour [3]. In 55 

literature, several models are proposed to characterize the I-V curves of PV cells which are the single-56 

diode [3], the double-diode [4], the modified double-diode [5] and the triple-diode [6] PV cell models. 57 

Selecting the proper model depends on the application and understanding the trade-off between model 58 

simplicity and model accuracy. The increasing installations of large PV scale projects require accurate 59 

characterizing models, especially at low solar radiation conditions for designing control schemes for 60 

integrating PV systems to ensure the stability of power systems. Therefore, the triple-diode PV cell 61 

model is more accurate than other diode PV cell models as it considers the impact of the leakage current, 62 

the carrier recombination and the grain boundaries [7]. 63 

The identification of the unknown parameters is the most used and useful approach to characterize the 64 

non-linear behaviour of PV cells. This approach can be considered as an optimization problem which 65 

is known as a PV parameter identification problem. The unknown parameters are identified in subject 66 

to minimize the root-mean-square-error (RMSE) value between the obtained and actual measured 67 



currents. The availability of the information and the type of the identification method affect the accuracy 68 

of the PV cell model. The availability of the information guides to understand how the identified 69 

parameters can perform the characteristic of the mathematical model. The unknown parameters can be 70 

determined from the datasheets of the manufacturer [8] or the actual recorded I-V characteristic curves 71 

[3]. Generally, two classes of approaches are usually utilized to resolve the PV cell/module parameter 72 

identification problem, namely, deterministic and heuristic approaches [9]. Deterministic approaches 73 

are used widely to identify the unknown parameters. Deterministic approaches are again divided into 74 

iterative or analytical methods. The iterative methods include but are not limited to the Levenberg-75 

Marquardt and the Newton-Raphson methods. The solutions based on these methods are dependent on 76 

the initial parameters and mostly they are trapped into local optima. In addition, iterative methods need 77 

many iterations to scan all the probabilities in the search space which requires long computational time. 78 

In contrast, analytical methods are fast, but they need simplifications and assumptions to determine the 79 

unknown parameters due to the multi-variability and non-linearity of the identification problem [10]. 80 

Due to the shortcomings of iterative and analytical methods, deterministic approaches are not suitable 81 

to identify the PV cell parameters. Heuristic approaches are proposed to find the optimal unknown 82 

parameters based on global optimization population algorithms. Heuristic approaches have several 83 

advantages over deterministic approaches. Primarily, they do not have any restriction on the problem 84 

formulation, the simplicity in the conceptual and computational optimization procedure and their ability 85 

to handle multi-modal optimization problems [11]. Many heuristic approaches have been successfully 86 

utilized for identifying the PV cell parameters in the past decade. For example, the particle swarm 87 

optimization (PSO) [12], moth-flame optimizer (MFO) [7] and sunflower optimization (SFO) 88 

algorithms [13] have been used to identify the triple-diode PV cell model’s parameters. The results 89 

obtained by PSO, MFO and SFO algorithms are inconsistent as different results can be obtained by 90 

repeating the optimization process. Moreover, these algorithms need more iterations to secure the 91 

convergence of the optimization problem. To overcome these challenges, some improved algorithms 92 

are proposed in the literature such as the  improved opposition-based whale optimization (IOWO) 93 

algorithm [6]. Here, the classical heuristic approaches need improvements to reduce the number of 94 

iteration and to guarantee consistent results with an effective convergency. 95 

Several improved heuristic approaches are proposed in the literature [14] such as the chaos particle 96 

swarm optimization (CPSO) [15], enhanced leader particle swarm optimization (ELPSO) [16], time 97 

varying acceleration coefficients particle swarm optimization (TVACPSO) [17], mutated particle 98 

swarm optimization (MPSO) [18], guaranteed convergence particle swarm optimization (GCPSO) [19], 99 

modified artificial bee colony (MABC) [20], improved adaptive differential evolution (IADE) [21], 100 

biogeography-based optimization algorithm with mutation strategies (BBO-M) [22] and generalised 101 

opposition-based teaching learning-based optimization (GOTLBO) [23] algorithms. The 102 

aforementioned algorithms have some demerits. Variants of PSO algorithm such CPSO, ELPSO, 103 



TVACPSO, MPSO and GCPSO are adaptive PSO algorithms which overcome the limitations of the 104 

classical PSO effectively in both convergence and finding global optima. The demerit of such 105 

algorithms is that they require tuning of four or more parameters, which complete the control of these 106 

parameters as well as increase the computational time. MABC algorithm needs relatively a large 107 

population size to reduced computational time. IADE algorithm is proposed to address the challenges 108 

of the classical differential evolution (DE) algorithm. However, several parameters of the IADE 109 

algorithm should be adjusted which increases the computational time. BBO-M algorithm requires 110 

relatively a larger population size to minimize its computational time comparing with the classical 111 

biogeography-based optimization (BBO) algorithm. GOTLBO is carried out based on opposition-based 112 

learning which enhances the explorative capability and convergency. On the other hand, this algorithm 113 

cannot exploit solutions effectively, meaning it may struggle to acquire the optimum solution. 114 

The wind driven optimization (WDO) algorithm is proposed by Bayraktar et al. [24] to solve the 115 

optimization problems which is inspired from the wind movements on the Earth. The WDO algorithm 116 

has several merits among other heuristic algorithms, for example (i) its solutions are built from random 117 

operations to avoid being stuck in local optima; (ii) its robustness in parameter interdependency; and 118 

(iii) the capability of dealing with high multi-modal problems. 119 

Several studies of WDO algorithm have been addressed in the literature in two categories: (i) using the 120 

WDO algorithm to solve the optimization problems; and (ii) improving its performance. Mathew et al. 121 

[4] used the WDO algorithm to identify the parameters of a double-diode PV cell model which yielded 122 

better results than those obtained by the bee pollinator flower pollination algorithm (BPFPA), flower 123 

pollination algorithm (FPA), cat swarm optimization (CSO), chaotic whale optimization algorithm 124 

(CWOA) and self-adaptive teaching learning-based optimization (SATLO) algorithms. In addition, 125 

Bayraktar and Komurcu [25] improved the classical WDO algorithm, which is called the adaptive wind 126 

driven optimization (AWDO) algorithm, by integrating the covariance matrix adaptation evolution 127 

strategy (CMAES) to tune the hyper-parameters of WDO algorithm thereby enhancing convergence 128 

speed. Accordingly, Ibrahim et al. [26] applied the AWDO algorithm to identify the single-diode PV 129 

cell model’s parameters. The results demonstrated the superior performance of the proposed algorithm 130 

over the bacterial foraging optimization (BFO), BBO and PSO algorithms.  131 

One of the main drawbacks of WDO algorithm is that its speed and accuracy when exploring the search 132 

space are relatively low. To address this drawback and other limitations of the aforementioned 133 

algorithms, an improved wind driven optimization (IWDO) algorithm is proposed. This algorithm is 134 

integrating the mutation strategy of the DE algorithm, which has fast and accurate exploration ability, 135 

with the classical WDO algorithm based on CMAES to enhance the searching of the classical WDO to 136 

find the global optimum whilst balancing exploration and exploitation.  137 



In this paper, the IWDO algorithm is proposed and applied to identify the triple-diode PV cell model’s 138 

parameters. To validate the proposed algorithm, IWDO algorithm is applied on three different PV model 139 

technologies, i.e. mono-crystalline, poly-crystalline and thin-film. Subsequently, its accuracy is 140 

compared with that resulted by the WDO, AWDO, MFO [7], SFO [13] and IOWO [6] algorithms. The 141 

merits of the IWDO model are given below: 142 

 The IWDO algorithm improves the ability of finding the global optimum and balancing the 143 

exploration and exploitation by integrating the mutation strategy and CMAE strategy in the classical 144 

WDO algorithm. 145 

 It has better accuracy and convergence speed comparing with the classical WDO and AWDO 146 

algorithms, especially in identifying the triple-diode PV cell model’s parameters. 147 

 It can handle any I-V characteristic curve of mono-crystalline, poly-crystalline and thin-film PV 148 

technologies under any operating condition based on 15-minute intervals. 149 

The rest of this paper is organized as follows. The mathematical model of a triple-diode PV cell model 150 

and the problem formulation are described in Section 1. Section 2 describes the IWDO algorithm. 151 

Section 3 proposes the unknown parameter identification method and its flowchart in detail. In Section 152 

4, the obtained results, validation and comparison study are presented. Section 5 summarizes the main 153 

findings of this paper. 154 

2. Triple-diode Photovoltaic Cell Model Description and Problem Formulation 155 

The triple-diode PV cell model is considered a more precise model than the ideal, single and double -156 

diode PV cell models by meeting the relatively complicated non-linear behaviour of the PV cell. In fact, 157 

the triple-diode PV cell model can be considered as a useful model for characterizing the behaviour of 158 

the small size PV cells which is fitting for some applications where a non-negligible leakage current 159 

through peripheries occurs [27]. Thus, a third diode is included in parallel with the double-diode PV 160 

cell model (visualized in Figure 1). The main merit of this model lies in the accuracy. This model is 161 

considered as more accurate than the ideal, single-diode and double-diode PV cell models as it 162 

considered the grain boundaries influence and the large leakage current 163 

By applying Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law (KVL), the output current of 164 

the triple-diode PV cell model can be represented as [7]: 165 

𝐼 = 𝐼𝑃ℎ − 𝐼01
(𝑒𝑥𝑝 (

𝑉+𝐼𝑅𝑠

𝑉𝑡1
)− 1) − 𝐼02

(𝑒𝑥𝑝 (
𝑉+𝐼𝑅𝑠

𝑉𝑡2
) − 1) − 𝐼03

(𝑒𝑥𝑝 (
𝑉+𝐼𝑅𝑠

𝑉𝑡3
)− 1) −

𝑉+𝑅𝑠𝐼

𝑅𝑠ℎ
              (1) 166 

where 𝑉𝑡1, 𝑉𝑡2 and 𝑉𝑡3 can be formulated as: 167 

𝑉𝑡1 =
𝑎1𝑘𝑏𝑇𝑐

𝑞
                                                                                                                                                     (2) 168 

𝑉𝑡2 =
𝑎2𝑘𝑏𝑇𝑐

𝑞
                                                                                                                                               (3) 169 



𝑉𝑡3 =
𝑎3𝑘𝑏𝑇𝑐

𝑞
                                                                                                                                                       (4) 170 

The behaviour of a PV cell can be characterized based on I-V and P-V curves. The accurate model of 171 

the PV modules aims to ensure the minimum difference between the actual data and the calculated data 172 

under various meteorological conditions. To do so, the PV cell model’s parameters should be identified 173 

optimally. To characterize the performance of the triple-diode PV cell model, nine unknown parameters 174 

should be identified. Theses parameters are 𝐼𝑃ℎ, 𝐼01
, 𝐼02

, 𝐼03
, 𝑎1, 𝑎2, 𝑎3, 𝑅𝑠 and 𝑅𝑠ℎ. These parameters 175 

are sensitive to the variation of meteorological variables. Therefore, actual data must be used to maintain 176 

the real characteristics of PV modules. Here, the IWDO algorithm is proposed to identify the triple-177 

diode PV cell model’s parameters. The objective function of the IWDO algorithm aims to minimize the 178 

value of the RMSE, which can be mathematically represented as follows: 179 

𝑓(𝜃) = √
1

𝑁
∑ 𝑃(𝑉𝑎 ,𝐼𝑎 , 𝜃)2𝑁

𝑖=1                                                                                                                    (5) 180 

𝑃(𝑉𝑎 ,𝐼𝑎 , 𝜃) = 𝐼𝑎 − 𝐼𝑃ℎ + 𝐼01
(𝑒𝑥𝑝 (

𝑉+𝐼𝑒𝑅𝑠

𝑉𝑡1
)− 1) + 𝐼02

(𝑒𝑥𝑝 (
𝑉+𝐼𝑒𝑅𝑠

𝑉𝑡2
)− 1) + 𝐼03

(𝑒𝑥𝑝 (
𝑉+𝐼𝑒𝑅𝑠

𝑉𝑡3
)−181 

1) +
𝑉+𝑅𝑠𝐼𝑒

𝑅𝑠ℎ
                                                                                                                                                               (6) 182 

where 𝑉𝑡1, 𝑉𝑡2 and 𝑉𝑡3 are given in (2), (3) and (4), respectively. 183 

3. Improved Wind Driven Optimization Algorithm 184 

The IWDO algorithm is proposed and implemented to improve the exploration ability and address the 185 

premature convergence of the classical WDO algorithm. The proposed algorithm employs two main 186 

strategies: (i) the CMAES to optimize the hyper-parameters of the classical WDO algorithm, which is 187 

used in the AWDO algorithm [25]; and (ii) the mutation of the DE algorithm [28] to enhance the 188 

searching capability of the classical WDO algorithm in finding the global optimum and balancing the 189 

exploration and exploitation.  190 

The classical WDO is proposed, in 2010, by Bayraktar et al. [24], which is inspired by the horizontal 191 

air movements on the Earth. This phenomenon is called wind. Wind moves from the high-pressure 192 

regions to the low-pressure regions based on temperature difference. The forces which affect the 193 

movements of a parcel of air are mathematically formulated by Newton’s second law of motion as [29]: 194 

𝜌. 𝑎 = ∑𝐹𝑡
⃗⃗  ⃗                                                                                                                                             (7) 195 

The classical WDO algorithm has four hyper-parameters which describe the physical behaviour of the 196 

air parcel movement. These hyper-parameters are: (i) the friction coefficient (𝛼) which stands for the 197 

acceleration of the air parcel according to the gravity; (ii) the universal gas constant (𝑔); (iii) the absolute 198 

temperature (T); and (iv) a constant (𝑐) which equals negative value of 2 multiplied by R and T. The 199 

values of these hyper-parameters affect the accuracy of the results. Thus, these hyper-parameters must 200 



be selected optimally. To do so, the CMAES is applied to optimize these hyper-parameters [25]. To 201 

improve the exploration and exploitation and to achieve a better balance between them in the classical 202 

WDO algorithm, the mutation is integrated. The mutation is used to improve the searching strategy to 203 

find the global optimum in the classical WDO algorithm. 204 

The population of air parcels in the IWDO algorithm is randomly generated and distributed in random 205 

positions with random velocities in the searching space. The location and velocity for each air parcel 206 

are updated at each iteration using the mathematical model of the air parcels. In addition, the hyper-207 

parameters are also updated using the CMAES, simultaneously. Accordingly, the IWDO generates a 208 

mutant vector with respect to each individual by integrating the mutation operation. The searching 209 

process in the IWDO algorithm is carried out based on six phases; initialization, pressure evaluation, 210 

CMAES, ranking of air parcel, mutation operation, best induvial comparison and selection and 211 

termination criterion. The pseudo-code of the IWDO algorithm is shown in Table 1. 212 

Accordingly, the stages of the searching process in the IWDO algorithm are summarized as follows: 213 

1) Initialization phase: Several parameters are initialized. These parameters are 𝐷𝑗, 𝑁𝑘 which is the 214 

multiplication of 𝐷𝑗 by 10, 𝑈𝑝𝑝𝑒𝑟𝑗, 𝐿𝑜𝑤𝑒𝑟𝑗, 𝐺𝑚𝑎𝑥 and 𝑢𝑚𝑎𝑥. In this phase, the objective function is 215 

also defined which will be used to evaluate the pressure of the air parcels based on the limits for 216 

each 𝐷𝑗. According to all of the previously mentioned parameters, the 𝑦𝑁𝑗
𝑘⃗⃗⃗⃗ ⃗⃗  and 𝑢𝑁𝑗

𝑘⃗⃗ ⃗⃗⃗⃗   for each air parcel 217 

are generated randomly.    218 

2) Pressure evaluation phase: At each iteration, the defined objective function is utilized to evaluate the 219 

pressure value for each air parcel separately. Based on the pressure evaluation, the population limits 220 

are scaled within the range of [-1, 1] as [4]: 221 

𝑥𝑗
𝑘 = (𝑈𝑝𝑝𝑒𝑟𝑗 − 𝐿𝑜𝑤𝑒𝑟𝑗) × ((

𝑦𝑗
𝑘+1

2
)+ 𝐿𝑜𝑤𝑒𝑟𝑗)                                                                                  (8) 222 

3) CMAES phase: In this phase, the CMAES is utilized to find the optimal values of the hyper-223 

parameters at each iteration. The CMAES optimizes the hyper-parameters according to distribution 224 

of the air parcels population which is sampled by a standard deviation of one third of each 225 

parameter’s range in the search space. The population of air parcels is reformed by reshaped 226 

Gaussian distributions based on the modified distributions at each iteration. The new distribution is 227 

defined a covariance matrix. Accordingly, the covariance matrix is updated, and the optimal shape 228 

of the distribution is determined. Based on that, the step size is also updated. This process is repeated 229 

at each iteration until the desired value of the objective function is achieved. More details about 230 

CMAES algorithm can be found in [30, 31]. 231 

4) Ranking of air parcel phase: The air parcels are sorted based on the best value of the objective 232 

function descendinglyin descending order. After the descending order of the air parcels indices, the 233 



velocity and position for each air parcel are updated towards the air parcel that has the best value of 234 

the objective function as [24]: 235 

     𝑢𝑛𝑒𝑤𝑗
𝑘⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗  ⃗ = (1 − 𝛼)𝑢𝑐𝑗−1

𝑘 − 𝑔𝑦𝑐𝑗−1
𝑘 + (|

1

𝑟𝑘
|× (𝑦𝑜𝑝𝑡𝑗

𝑘 − 𝑦𝑐𝑗−1
𝑘 )𝑅𝑇)+ (

𝑐𝑢0⃗⃗⃗⃗  ⃗

𝑟𝑘
)                                         (9) 236 

     𝑦𝑛𝑒𝑤𝑗
𝑘⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗  = 𝑦𝑐𝑗−1

𝑘 + (𝑢𝑛𝑒𝑤𝑗
𝑘⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗  ⃗ × ∆𝑡)                                                                                                         (10) 237 

where 𝑢0⃗⃗⃗⃗ = 𝜃 × 𝑢⃗ . 238 

5) Mutation operation phase: The IWDO algorithm employs the mutation operation to enhance its 239 

exploration capability by generating  𝑉𝑒𝑐𝑖,𝐺 with respect to each 𝑍𝑖,𝐺. For each 𝑍𝑖,𝐺 at 𝐺, the 𝑉𝑒𝑐𝑖,𝐺 240 

is generated by the DE/best/1 strategy as [28]: 241 

     ∑ 𝑉𝑒𝑐𝑖,𝐺(𝑗) = 𝑍𝑏𝑒𝑠𝑡,𝐺(𝑗) + 𝐹.(𝑍𝑟1
𝑖,𝐺(𝑗) − 𝑍𝑟2

𝑖,𝐺(𝑗))
𝑁𝑘
𝑖=1                                                                            (11)  242 

The term 𝜆 is applied to control the exploitation and the exploration of the IWDO. The value of 𝜆 243 

decreases from 1 to 0 as the iteration number is increased. Accordingly, the individuals start the 244 

explore process in the initial iteration, while performing exploitation as the number of iterations 245 

increases [27]. Meanwhile, 𝜆 is updated as follows: 246 

     𝜆 = 1 −
𝐺

𝐺𝑚𝑎𝑥
                                                                                                                                 (12) 247 

The mutation is applied in the IWDO algorithm due to its superior performance at exploring the 248 

search space [32]. Accordingly, the new position for 𝑗th individual in the next iteration lies between 249 

𝑋𝑖  and 𝑈𝑖 . The position is selected based on the boundary constraints of the solutions. In case the 250 

constraints of the solutions are braked, the repairing rule is utilized by [27], 251 

𝑍𝑖,𝐺(𝑗) = {
𝛿𝑗 + 𝑟𝑛𝑑𝑟𝑒𝑎𝑙(0,1) × (𝜇𝑗 − 𝛿𝑗),    𝑖𝑓 𝑍𝑖(𝑗) < 𝛿𝑗

𝜇𝑗 − 𝑟𝑛𝑑𝑟𝑒𝑎𝑙(0,1) × (𝜇𝑗 − 𝛿𝑗),    𝑖𝑓 𝑍𝑖(𝑗) < 𝜇𝑗

                                                          (13) 252 

6) Best individual comparison and selection phase: In this phase, the values of the objective functions 253 

which are obtained by the ranking of air parcel phase and mutation phase are evaluated and 254 

compared. Accordingly, the selection phase is applied as [28]: 255 

     𝑍𝑏𝑒𝑠𝑡,𝐺(𝑗) = {
𝑈𝐺(𝑗),     𝑖𝑓 𝑓(𝑈𝐺(𝑗) < 𝑓(𝑍𝐺(𝑗)))

 𝑍𝐺(𝑗),     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                            
                                                                       (14) 256 

7) Termination criterion: The IWDO algorithm will repeat the steps 2-6 until satisfying the termination 257 

criterion. The termination criterion for finding the global opimaoptima will be satisfied by reaching 258 

the maximum iterations number.  259 

4. Proposed method 260 

The proposed method to identify the nine unknown parameters in a triple-diode PV cell model is 261 

summarized in Figure 2. 262 



The proposed method can be categorized into six stages to identify the unknown parameters for each 263 

PV module. These stages are categorized as follows:  264 

Stage 1: Import the actual data, set the parameters of the optimization problem and define the objective 265 

function: 266 

The actual recorded data for each PV module are imported in this stage, which includes solar radiation, 267 

ambient temperature and the I-V pairs. The 𝐺𝑚𝑎𝑥 and the 𝑁𝑘 are set. Then, the maximum and minimum 268 

boundaries for each parameter (𝐼𝑃ℎ, 𝐼01
, 𝐼02

, 𝐼03
, 𝑎1, 𝑎2, 𝑎3, 𝑅𝑠 and 𝑅𝑠ℎ) are set. Next, the objective 269 

function is defined and utilized to evaluate the identified parameters to obtain the global optimal values. 270 

Here, the objective function is defined in the form of RMSE as in Eq. (5) and Eq. (6). 271 

Stage 2: Define the search space for each photovoltaic technology: 272 

In this stage, the search space is set to identify the unknown parameters for each PV module according 273 

to 𝑁. Therefore, the proposed method is run for each PV module separately for 𝑁 iterations. 274 

Stage 3: Apply the proposed algorithm to identify the unknown parameters: 275 

The proposed IWDO algorithm, which is illustrated in Table 1, is implemented for identifying the 276 

unknown parameters for each PV module. The proposed algorithm aims to identify the unknown 277 

parameters from each I-V curve in each PV module based on the defined objective function. The 278 

identified parameters are reused to obtain the I-V curves using the Newton-Raphson method and then 279 

compared with the actual one. The result of this comparison aims to minimize the value of the RMSE. 280 

Accordingly, the identified parameters that have a minimum value for the objective function are stored 281 

and considered as the optimal values. This stage is repeated until reaching the maximum value of 𝑁 for 282 

each PV module.  283 

Stage 4: Generalize the identified parameters for each photovoltaic technology: 284 

For each PV module, N number of each parameter is defined. Therefore, a matrix 9× 𝑁 of the identified 285 

parameters is obtained. This matrix should be generalized to find one value for each of the nine 286 

identified parameters. In this paper, the normal average (NAvg) model is used. This model is the 287 

arithmetic mean. The NAvg value for each parameter is calculated by dividing the summation of all the 288 

identified values for each parameter over the number of these values which equals to 𝑁. The 289 

mathematical formula of the NAvg can be represented as [26]: 290 

𝑁𝐴𝑣𝑔 =
1

𝑁
∑ 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖

𝑁
𝑖=1                                                                                                                   (15) 291 

In addition, the standard deviation (SD) is obtained to quantify the amount of variation for each of the 292 

generalized value. The SD is given by, 293 



𝑆𝐷 = √
1

𝑀−1
∑ (𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖 − 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)2𝑀

𝑖=1                                                                                  (16) 294 

Stage 5: Compare the identified parameters by the proposed algorithm with other existing algorithms: 295 

The accuracy of identified parameters using the IWDO algorithm are validated by comparing them with 296 

those obtained by other existing algorithms. This comparison is carried out based on some performance 297 

metrics. In this paper, the normalized root-mean-square error (nRMSE), mean absolute percentage error 298 

(MAPE), and coefficient of determination (R²) are utilized. The nRMSE, MAPE and R² can be 299 

mathematically formulated as: 300 

𝑛𝑅𝑀𝑆𝐸 =
√1

𝑁
∑ (𝐼𝑐𝑖

−𝐼𝑎𝑖
)
2

𝑁
𝑖=1

𝑚𝑒𝑎𝑛(𝐼𝑎)
                                                                                                                         (17) 301 

𝑀𝐴𝑃𝐸 =
100

𝑁
∑ |

𝐼𝑐𝑖
−𝐼𝑎𝑖

𝐼𝑎
|𝑁

𝑖=1                                                                                                                          (18) 302 

𝑅2 = 1−
𝑉𝑎𝑟(𝐼𝑐−𝐼𝑎)

𝑉𝑎𝑟(𝐼𝑎)
                                                                                                                              (19) 303 

Moreover, the convergence speed is used in the comparison to show the required convergence time for 304 

each algorithm to obtain the global optimal parameters. 305 

Stage 6: Display the optimal parameters, their generalized values and the performance metrices: 306 

The optimal identified nine parameters are displayed in this stage as well as the generalized value for 307 

each parameter with its standard deviation and the values of the nRMSE, MAPE, and R² for each PV 308 

module using the proposed algorithm and the other existing algorithms. 309 

5. Simulation Results and Discussion 310 

To verify the efficacy of the developed model which is named as the IWDO algorithm in identifying 311 

the nine unknown parameters in a triple-diode PV cell model, three PV technologies are used, namely, 312 

mono-crystalline, poly-crystalline and thin-film technologies. In this paper, the used PV modules are: a 313 

mono-crystalline LG300N1C-A3 (M1) PV module, poly-crystalline JAP6-60-250W/3BB (M2) PV 314 

module, and thin-film Avancis PowerMax smart 125W (M3) PV module. The proposed algorithm is 315 

applied in the aforementioned PV modules to identify their unknown parameters based on actual 316 

recorded data. The performance of the proposed model is compared with those obtained by several 317 

recent algorithms under different environmental conditions to prove its effectiveness. 318 

5.1. Data 319 

In this paper, actual recorded data based on 15 minutes intervals for 3 years are used. The dataset was 320 

recorded by the Commonwealth Scientific and Industrial Research Organisation (CSIRO), New South 321 

Wales (NSW), Australia (Latitude: -32.883889, Longitude: 151.728889) at a 30º tilt angle and a 0 º 322 



azimuth angle. The size of the dataset for M1, M2 and M3 is 44749, 67416 and 56379 I-V characteristic 323 

curves, respectively. Accordingly, each I-V characteristic curve for M1 and M2 contains 28 I-V pairs, 324 

while M3 contains 29 I-V pairs.  325 

The dataset may contain several spikes and non-stationary samples because of the uncertainty. These 326 

samples are known as outliers’ points which may affect negatively on the accuracy of the obtained 327 

results. Therefore, an outlier measure is used to detect, remove and replace any point that that majorly 328 

deviates from the trend in each dataset. Here, the expected outliers in the dataset are shown in Figure 3 329 

which is represented as a percentage of outliers in each pattern for each PV module. 330 

In Figure 3, the datasets for M1, M2 and M3 are categorized to 6 patterns. From Figure 3.a, the outlier 331 

points in each pattern in the dataset of M1 from 1 to 6 are 5.33%, 3.01%, 1.99%, 0.98%, 4.22% and 332 

2.71%, respectively. While, the outlier points in each pattern in the dataset of M2 from 1 to 6 are 1.09%, 333 

5.01%, 2.99%, 6.12%, 3.11% and 1.92%, respectively. Finally, the outlier points in each pattern in the 334 

dataset of M3 from 1 to 6 are 3.99%, 0.98%, 1.98%, 6.11%, 5.22% and 2.81%, respectively. It is noticed 335 

that the outliers are only a few points in each dataset for M1, M2 and M3, however they negatively 336 

impact its performance. In this paper, the density-based spatial clustering of applications with noise 337 

(DBSCAN) algorithm is applied in the dataset to remove and replace them [26]. 338 

5.2. Simulation setup 339 

The experimental setup is carried out according to Figure 2. As there are three PV modules, the proposed 340 

method is run 3 times separately for 44749, 67416 and 56379 iterations for M1, M2 and M3 PV 341 

modules, respectively. The experimental setup starts by importing the pre-processed data for each PV 342 

module. Several parameters are set in this stage. Here, the dimensions of the optimization problem are 343 

assigned to be 9, which represents the number of the unknown parameters in a triple-diode PV cell 344 

model. Accordingly, the population size is set to be 90. Next, the maximum number of iterations is set 345 

to 500. The aim of the objective function is to minimize the value of the RMSE between the calculated 346 

and actual I-V pairs. The calculated I-V pairs are estimated using the Newton-Raphson method based 347 

on the identified parameters. Each dimension represents one of the unknown parameters which has a 348 

certain research space. Based on the literature, the bounds for each parameter are set as follow: (i) in 349 

the range of [1,8] A for 𝐼𝑃ℎ; (ii) in the range of [1E-12,1E-5] A for 𝐼01
, 𝐼02

 and 𝐼03
; (iii) in the range of 350 

[1,5] for 𝑎1, 𝑎2 and 𝑎3; (iv) in the range of [0.1,2] Ω for 𝑅𝑠; and (v) in the range of [100,5000] Ω for 351 

𝑅𝑠ℎ. 352 

Here, the IWDO algorithm is used to identify the unknown parameters based on the actual I-V 353 

characteristic curve as explained in Table 1. The parameters that have a minimum value of RMSE are 354 

selected as desired identified parameters for the triple-diode PV cell model. To test the effectiveness of 355 

the IWDO, the generated I-V characteristic curves based on the identified parameters of the M1, M2 356 

and M3 PV modules are illustrated in Figure 4 in reference to the actual I-V characteristic curves. 357 



From Figure 4, the average values of the nRMSE in Figure 4.a, Figure 4.b and Figure 4.c are 0.0374%, 358 

0.3869% and 0.9812%, respectively. Finally, the average values of the nRMSE, MAPE, R² and the 359 

convergence speed in M3 are 0.0407%, 01223%, 99.1521% and 9.2210 s., respectively. Thus, it can be 360 

noticed that the generated I-V characteristic curves in Figure 4 are significantly closer to the 361 

experimental I-V characteristic curves with a negligible error, which shows the effectiveness of the 362 

proposed model. 363 

5.3. Comparison and validation 364 

In this paper, all the identifying algorithms were carried out in MATLAB 2019b environment which 365 

was run using a Windows 10 operating system in a standard PC with a 3.4 GHz Intel(R) Core (TM) i7-366 

6700 CPU and 16 GB of RAM. The IWDO algorithm as well as WDO, AWDO, MFO [7], SFO [13] 367 

and IOWO [6] algorithms are used to identify the unknown parameters in the triple-diode PV cell model. 368 

As is mentioned above, each dataset contains a certain number of I-V characteristic curves, then as set 369 

of parameters are identified for each of these I-V characteristic curves. To generalize these parameters, 370 

the NAvg model is used. Accordingly, the generalized obtained parameters for M1, M2 and M3 are 371 

reported in Table 2. 372 

The difference of the rate of convergencey speed of the average fitness function values of the SFO, 373 

MFO, IOWO, WDO, AWDO and IWDO models under various weather conditions for M1, M2 and M3 374 

PV modules are illustrated in Figure 5. 375 

Based on Figure 5, the IWDO model converges faster than the aforementioned algorithms for M1, M2 376 

and M3 PV modules. Here, the convergence speed of the proposed model is faster by 10.0951 s., 377 

13.9842 s., 5.6283 s., 10.4977 s. and 10.8684 s. in M1, while it is faster by 13.0007 s., 12.1013 s., 378 

6.9905 s., 10.9702 s. and 11.2456 s. in M2 and it is faster by 14.1111 s., 17.1111 s., 10.1111 s., 13.2837 379 

s. and 13.6470 s. in M3 than that resulted using SFO, MFO, IOWO, WDO and AWDO models, 380 

respectively. Therefore, the proposed model has better convergence toward the global optimum in terms 381 

of accuracy and convergence time than the other models. 382 

In order to verify the superiority of the proposed model, its performance is compared with that obtained 383 

by other algorithms based on nRMSE, MAPE and R² as well as the convergence speed. The minimum, 384 

maximum and average values of the nRMSE, MAPE, R² and the convergence speed of the proposed 385 

model as well as the other models are listed in Table 3. 386 

From Table 3, it is clear that the proposed model outperforms the other benchmark models with respect 387 

to accuracy and convergence speed. Here, the average fitness function of the proposed algorithm is less 388 

by about 98.23%, 99.07%, 69.37%, 98.81% and 98.22% in M1, 90.81%, 82.05%, 58.04%, 88.74% and 389 

81.37% in M2, and 96.02%, 97.95%, 80.76%, 96.43% and 88.65% in M3 than that obtained by SFO, 390 

MFO, IOWO, WDO and AWDO algorithms, respectively. In addition, the value of the average SD for 391 

the M1, M2 and M3 PV modules based on the proposed model are less than that resulted by the 392 



aforementioned models which verifies the effectiveness of the proposed model. The average nRMSE 393 

value of the proposed model for all the PV models is less than that obtained by the benchmark models. 394 

In addition, the proposed model has better results than the other models in terms of MAPE and R². 395 

Those express the high accuracy of the obtained results by the proposed model. Finally, the proposed 396 

model is faster than the other models in terms of the average convergence speed. 397 

6. Conclusion 398 

This paper proposed and validated an improved wind driven optimization (IWDO) algorithm to identify 399 

the nine unknown parameters in a triple-diode PV cell model. The triple-diode PV cell model expressed 400 

the non-linearity between the meteorological variables and the current components including the effect 401 

of the grain boundaries, the carrier recombination and the leakage current is investigated. The triple-402 

diode PV cell model has been demonstrated using the I-V curves. The IWDO algorithm utilizes the 403 

mutation strategy of DE algorithm and covariance matrix adaptation evolution strategy (CMAES) to 404 

enhance the exploration and the searching ability of the classical WDO algorithm. Three of commercial 405 

PV modules (LG300N1C-A3, JAP6-60-250W/3BB and Avancis PowerMax smart) are utilized to show 406 

the effectiveness of the proposed model. 407 

The accuracy of the proposed model is validated internally by comparing the actual I-V curves with the 408 

generated I-V curves based on the identified parameters for each PV technology. In addition, an external 409 

validation is also carried out between the proposed model and the WDO, AWDO, MFO, SFO and 410 

IOWO algorithms. This comparison is conducted in terms of statistical error terms and the convergence 411 

speed. The average values of the SD, nRMSE, MAPE and R² of the proposed model are better than 412 

those obtained by the aforementioned models. Moreover, the proposed model is faster than the 413 

benchmark models in terms of the convergence speed. Accordingly, the average values of the nRMSE, 414 

MAPE, R² and the convergence speed of the proposed model in M1 are 0.0374%, 0.6332% and 415 

99.1261% and 12.2270 s., respectively. While, the average values of the nRMSE, MAPE, R² and the 416 

convergence speed in M2 are 0.3869%, 0.9812%, 99.02112% and 10.2208 s., respectively. Finally, the 417 

average values of the nRMSE, MAPE, R² and the convergence speed in M3 are 0.0407%, 01223%, 418 

99.1521% and 9.2210 s., respectively. Therefore, the IWDO algorithm outperforms the WDO, AWDO, 419 

MFO, SFO and IOWO algorithms in terms of nRMSE, MAPE, R² and the convergence speed. 420 

To sum up, the ability of the proposed algorithm is improved in finding the global optimum of the 421 

identified parameters with better accuracy and convergence speed comparing with the aforementioned 422 

algorithms under any operating condition based on 15-minute intervals. Therefore, the IWDO algorithm 423 

is recommended to identify the triple-diode PV cell model’s parameters. 424 
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Figure 1. The electrical equivalent circuit for a triple-diode PV cell model 522 
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 546 

Figure 2. The flowchart of the proposed unknown parameters identification method in a triple-diode 547 

PV cell model 548 
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 556 

Figure 3. Outlier measures in the datasets of the M1, M2 and M3 PV modules: (a) LG300N1C-A3 557 

(M1), (b) JAP6-60-250W/3BB (M2) and (c) Avancis PowerMax smart 125W (M3) 558 



 559 

Figure 4. Experimental and computed I-V characteristic curves of the M1, M2 and M3 PV modules 560 

using the IWDO model under various weather conditions: (a) I-V characteristic curves of LG300N1C-561 

A3 (M1), (b) I-V characteristic curves of JAP6-60-250W/3BB (M2) and (c) I-V characteristic curves 562 

of Avancis PowerMax smart 125W (M3) 563 



 564 

Figure 5. Development of the average fitness function values of SFO, MFO, IOWO, WDO, AWDO 565 

and IWDO models to identify the nine unknown parameters: (a) M1, (b) M2 and (c) M3 566 



Table 1. Pseudo code of the Improved wind driven optimization (IWDO) algorithm 567 

1: Begin 

2: Generate the initial population, 𝑥𝑗
𝑑𝜖[−1,1], where 𝑗 = 1,2, … , 𝑁𝑘 and 𝑑 = 1, 2,… ,𝐷𝑗 

3: Randomize the initial values of 𝛼, 𝑔, 𝑐 and 𝑅𝑇 

4: Evaluate the fitness function for each air parcel in 𝑥𝑗
𝑑 

5: Obtain the minimum value of the fitness function, 𝑃0 = 𝑓𝑚𝑖𝑛 
6: Set 𝑍∗ = 𝑃0 
7: while  The termination criterion in not satisfied do 
8:       Rank the values of the fitness function for each air parcel descendingly 
9:       for all 𝑖 do 
10:           Update 𝑝 = 𝑟𝑛𝑑𝑟𝑒𝑎𝑙(0,1) and 𝜆 = 1− (𝐺 𝐺𝑚𝑎𝑥⁄ ) 
11:           Calculate 𝑗𝑟𝑎𝑛𝑑, 𝑗𝑟𝑎𝑛𝑑 = 𝑟𝑛𝑑𝑖𝑛𝑡(1,𝑛) 
12:           for all 𝑗 do 
13:                 if 𝑝 < 𝜆 then 
14:                       Update the velocity by Eq. (9) 
15:                       Check velocity limits 
16:                       Update air parcel positions by Eq. (10) 
17:                       Call CMAES 
18:                       Return the new values of 𝛼, 𝑔, 𝑐 and 𝑅𝑇 

19:                       Evaluate the new solution 
20:                       Update 𝑃(𝑖, 𝑗) 
21:                       if 𝑃(𝑖, 𝑗) < 𝑃0 then 
22:                           𝑔𝑙𝑜𝑏𝑎𝑙𝑃 = 𝑃(𝑖, 𝑗) 
23:                       end if 
24:                       Find the global optimum (𝑥𝑔𝑙𝑜𝑏𝑎𝑙) 

25:                       Set 𝑋𝑖
∗ = 𝑥𝑔𝑙𝑜𝑏𝑎𝑙 

26:                else 
27:                      Select uniform randomly 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑖  
28:                      if 𝜆 ≤ 0.5 then 

29:                           𝑈𝑖
∗(𝑗) = 𝑍𝑖

∗(𝑗) + 𝐹 × (𝑍𝑟1
(𝑗) − 𝑍𝑟2(𝑗)) 

30:                      else 
31:                            Re-select 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑖  
32:                            𝑈𝑖

∗(𝑗) = 𝑍𝑖
∗(𝑗) + 𝐹 

33:                      end if 
34:              end if 
35:         end for 
36:         if 𝑈𝑖

∗ is better than 𝑋𝑖
∗ then 

37:              Update best individual, 𝑋𝑖
∗ = 𝑈𝑖

∗ 
38:         end if 
39:         Return the values of the best individual and 𝑓𝑚𝑖𝑛 
40:     end for 
41:     𝐺 = 𝐺 + 1 
42: end while  
43: End 
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Table 2. Comparison of the identified unknown parameters for the selected PV modules by various evolutionary models under different operating conditions 572 

Parameter Model 
𝑋1  .. 𝑋𝑛  NAvg 

M1 M2 M3 .. M1 M2 M3 M1 M2 M3 

𝐼𝑃ℎ (A) 

SFO [14] 4.4451 4.3981 2.1545 .. 4.7128 4.5091 1.9832 4.5331 4.4556 2.2210 

MFO [7] 4.7312 4.6712 2.9931 .. 4.4456 4.4891 3.2114 4.5551 4.4495 3.2019 

IOWO [6] 4.2591 4.7124 1.4678 .. 4.4412 4.1446 1.7634 4.2301 4.2551 1.8440 

WDO 4.5984 4.6712 4.6289 .. 4.6821 4.5291 4.5671 4.5405 4.5352 4.6237 

AWDO 4.4986 4.7661 1.9251 .. 4.6124 4.4561 1.9783 4.5250 4.6700 1.8434 

IWDO* 4.0912 4.1981 1.9832 .. 4.5913 4.5612 1.7655 4.1696 4.2776 1.7114 

𝐼01
 (A) 

SFO [14] 4.6009E-6 4.8221E-6 5.1082E-6 .. 4.6612E-6 4.6771E-6 4.9881E-6 4.6112E-6 4.7850E-6 5.0019E-6 

MFO [7] 4.0988E-6 3.0991E-6 5.9908E-6 .. 4.3009E-6 3.2100E-6 6.2012E-6 4.3351E-6 3.1125E-6 6.3325E-6 

IOWO [6] 4.6606E-6 4.7987E-6 5.0100E-6 .. 4.5765E-6 4.9801E-6 5.5618E-6 4.6629E-6 4.8851E-6 5.3329E-6 

WDO 5.0092E-6 4.9982E-6 4.9808E-6 .. 5.2109E-6 5.1123E-6 5.0125E-6 5.0268E-6 5.0386E-6 5.1191E-6 

AWDO 2.2272E-6 2.1198E-6 9.0992E-6 .. 2.4873E-6 2.0189E-6 9.2067E-6 2.3644E-6 2.1358E-6 9.1968E-6 

IWDO* 4.7721E-6 4.8791E-6 5.2981E-6 .. 4.6886E-6 5.0912E-6 5.5092E-6 4.7413E-6 4.9011E-6 5.4920E-6 

𝐼02
 (A) 

SFO [14] 4.5918E-6 4.6916E-6 5.6295E-6 .. 4.7778E-6 4.7009E-6 5.7882E-6 4.6012E-6 4.7215E-6 5.6631E-6 

MFO [7] 4.0937E-6 3.1973E-6 6.2990E-6 .. 4.2915E-6 3.3908E-6 6.6008E-6 4.1102E-6 3.2982E-6 6.5651E-6 

IOWO [6] 4.4511E-6 4.7718E-6 5.0094E-6 .. 4.6218E-6 4.9891E-6 5.2202E-6 4.5510E-6 4.8099E-6 5.0112E-6 

WDO 4.8920E-6 4.9912E-6 4.9981E-6 .. 5.0016E-6 5.1910E-6 5.2007E-6 5.0274E-6 5.0392E-6 5.1172E-6 

AWDO 2.5018E-6 2.0900E-6 9.1094E-6 .. 2.4661E-6 2.1971E-6 9.0898E-6 2.3452E-6 2.0986E-6 9.1837E-6 

IWDO* 4.5601E-6 4.8709E-6 5.3992E-6 .. 4.7210E-6 4.9981E-6 5.5055E-6 4.7554E-6 4.8913E-6 5.4956E-6 

𝐼03
 (A) 

SFO [14] 4.6124E-6 4.3127E-6 5.7220E-6 .. 4.4418E-6 4.5127E-6 5.5509E-6 4.5245E-6 4.4211E-6 5.5501E-6 

MFO [7] 4.1273E-6 3.9981E-6 5.9998E-6 .. 3.9812E-6 4.0091E-6 6.1198E-6 4.1121E-6 3.9981E-6 6.2211E-6 

IOWO [6] 4.6512E-6 4.5561E-6 5.2095E-6 .. 4.6123E-6 4.7128E-6 5.0091E-6 4.4451E-6 4.6651E-6 5.1121E-6 

WDO 5.0092E-6 5.1224E-6 5.2612E-6 .. 5.1092E-6 4.8991E-6 5.0992E-6 5.0280E-6 5.0384E-6 5.1148E-6 

AWDO 2.4123E-6 2.0213E-6 9.2091E-6 .. 2.5092E-6 2.2289E-6 9.3912E-6 2.3875E-6 2.1204E-6 9.2110E-6 

IWDO* 4.7123E-6 4.6651E-6 5.5239E-6 .. 4.6699E-6 4.9712E-6 5.3441E-6 4.7347E-6 4.8733E-6 5.4900E-6 

𝑎1 

SFO [14] 3.2115 3.3212 4.0981 .. 2.9981 3.2114 4.4123 3.0112 3.1121 4.1001 

MFO [7] 3.6214 4.1234 4.5981 .. 3.8123 3.7891 4.1982 3.5561 3.8810 4.2991 

IOWO [6] 2.9771 2.8991 4.1082 .. 2.8776 3.2351 4.3981 2.8991 2.9921 4.1121 

WDO 3.2124 3.1259 2.9899 .. 2.9981 2.9981 3.1258 3.0244 3.0255 3.0288 

AWDO 3.4891 3.6812 4.4561 .. 3.9812 3.9781 4.4179 3.7153 3.8471 4.3170 

IWDO* 2.9981 2.9821 3.8569 .. 2.8871 2.7761 4.2309 2.9067 2.9224 4.0773 

𝑎2 

SFO [14] 3.3451 3.1230 4.2346 .. 3.3321 3.1081 4.3226 3.2210 3.0049 4.2119 

MFO [7] 3.5712 4.0117 4.1892 .. 3.5312 4.1812 4.4981 3.4889 3.9901 4.2215 

IOWO [6] 2.8712 3.0192 3.9981 .. 2.7981 2.8991 4.4271 2.7998 2.9011 4.1992 



WDO 3.1530 3.1451 3.2145 .. 2.9812 3.1231 2.9812 3.0229 3.0252 3.0299 

AWDO 3.5761 3.8991 4.2598 .. 3.6081 3.7891 4.5312 3.6943 3.8418 4.3155 

IWDO* 2.8981 3.0812 4.0912 .. 2.7612 2.7812 4.1762 2.9042 2.9196 4.0784 

𝑎3 

SFO [14] 3.2291 2.9812 4.0912 .. 3.2122 2.7781 4.2123 3.1991 2.8991 4.1009 

MFO [7] 3.2114 3.8912 3.8913 .. 3.1889 3.7116 4.0921 3.2113 3.7811 3.9881 

IOWO [6] 2.4998 3.1224 3.7881 .. 2.7771 2.9881 4.0121 2.6891 3.0112 3.8991 

WDO 3.1298 3.0112 3.0192 .. 2.8991 2.8891 2.9889 3.0225 3.0238 3.0273 

AWDO 3.5778 3.7881 4.2151 .. 3.6781 3.9881 4.4412 3.7164 3.8407 4.3157 

IWDO* 2.9981 2.9912 3.9889 .. 2.7719 2.7881 4.1992 2.8971 2.8971 4.0802 

𝑅𝑠  (Ω) 

SFO [14] 1.9212 1.8892 1.9821 .. 1.9872 2.0912 1.7182 1.8112 1.9221 1.7881 

MFO [7] 1.4512 1.6092 1.2988 .. 1.5612 1.4256 1.4112 1.4112 1.5125 1.3811 

IOWO [6] 1.2998 1.2981 1.5091 .. 1.4123 1.3387 1.6123 1.1221 1.3888 1.4551 

WDO 1.0789 1.1227 1.1098 .. 1.0889 1.0089 1.0521 1.0277 1.0274 1.0673 

AWDO 1.8891 2.0781 2.0012 .. 2.0991 1.9881 1.8912 1.8584 1.9310 1.9511 

IWDO* 1.0078 1.5762 1.7882 .. 1.0221 1.3981 1.6781 1.0006 1.4922 1.6969 

𝑅𝑠ℎ  (Ω) 

SFO [14] 2822.1982 2886.9802 459.8712 .. 2890.2126 2889.9811 460.1982 2813.2231 2889.2163 455.1150 

MFO [7] 2440.0091 2666.8212 2779.9821 .. 2451.9821 2667.9802 2781.2981 2445.6223 2665.5512 2788.1562 

IOWO [6] 2251.0218 2360.9821 1118.7211 .. 2259.0901 2359.8720 1122.0921 2258.2231 2355.1556 1120.2113 

WDO 2560.0780 2566.2098 2658.9889 .. 2555.0921 2567.8750 2622.9882 2556.2604 2560.5961 2612.0580 

AWDO 2844.0867 2977.0670 340.0877 .. 2809.8088 2975.8912 345.9762 2831.0188 2973.2236 344.6717 

IWDO* 2258.7001 1189.0097 1199.0091 .. 2266.0668 1199.7609 1188.9811 2260.1132 2251.6297 1191.7816 

*IWDO is the proposed model. 573 
n represents the last sample in the database which equals 44749, 67416 and 56379 for M1, M2 and M3, respectively. 574 
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Table 3. Performance comparison for several evolutionary parameters’ identification models 582 

*IWDO is the proposed model. 583 

Performance index 

M1 M2 M3 

SFO [13] MFO [7] 
IOWO 

[6] 
WDO AWDO IWDO* SFO [13] MFO [7] 

IOWO 

[6] 
WDO AWDO IWDO* SFO [13] MFO [7] 

IOWO 

[6] 
WDO AWDO IWDO* 

Standard deviation 
7.2331E

-8 

2.4110E

-7 

2.1221E

-8 

2.8190E

-7 

6.5600E

-8 

1.7511E

-8 

1.8995E

-7 

3.2210E

-7 

1.2155E

-7 

3.3370E

-7 

1.5970E

-7 

1.0080E

-7 

3.2215E

-8 

5.5449E

-8 

1.2159E

-8 

6.4321E

-8 

1.4245E

-8 

0.3290E-

8 

Min. nRMSE (%) 0.9885 1.0001 0.6221 1.0748 0.4612 0.5348 0.7552 1.2201 0.4551 1.1318 0.7344 0.2049 0.0811 0.5221 0.0991 0.1738 0.0851 0.0029 

Max. nRMSE (%) 4.3351 5.6612 1.1221 6.5600 6.6645 1.5655 7.5512 8.2251 2.5112 7.1484 8.9419 2.2675 5.1121 5.2114 1.2219 4.8009 5.1485 0.9647 

Avg. nRMSE (%) 2.1125 4.0155 0.1221 3.1549 2.1016 0.0374 4.2112 2.1559 0.9221 3.4347 2.0772 0.3869 1.0221 1.9821 0.2115 1.1405 0.3586 0.0407 

Min. MAPE (%) 1.2212 1.4221 0.9223 1.5663 1.1123 0.0112 1.1120 2.9221 0.7221 1.2210 0.9921 0.2112 1.0220 1.5221 0.1221 1.1223 0.9221 0.0912 

Max. MAPE (%) 3.2112 2.3651 1.3152 2.2213 1.5213 1.0221 3.2215 5.2215 2.1251 3.2115 1.2215 0.9221 3.5962 4.6215 1.5593 4.2513 3.2225 1.0002 

Avg. MAPE (%) 2.1221 1.9251 1.1123 1.8922 1.3221 0.6332 2.1221 3.2541 1.1223 2.0292 1.0226 0.9812 1.8213 3.2111 1.1251 2.6221 1.8951 0.1223 

Min. R² (%) 95.5515 91.2251 94.5512 93.2112 95.2121 96.2315 94.9521 93.0015 96.6612 94.3321 95.1252 97.1251 93.0215 93.0085 94.9952 92.0021 93.3221 95.3662 

Max. R² (%) 97.2151 96.0215 98.3623 96.1225 98.0221 99.9915 97.2152 97.6155 98.3251 98.8512 97.8512 99.2151 98.1125 97.9882 99.2151 98.0215 98.9225 99.5622 

Avg. R² (%) 97.0215 95.8512 96.5120 95.3212 96.3251 99.1261 96.9851 97.0021 97.2512 97.8991 97.1212 99.0112 97.9251 97.2151 98.9812 97.0515 98.1251 99.1521 

Min. convergence 

speed (s.) 
20.2212 23.5512 15.6332 20.6406 21.0156 10.3361 15.6651 20.1125 12.3301 13.9688 14.1406 9.2210 16.3321 19.3325 12.3365 17.7344 15.9688 7.0229 

Max. convergence 

speed (s.) 
37.2551 41.2263 31.2215 38.2656 40.0937 28.1101 36.3325 42.1152 27.5112 41.7500 37.9219 22.2293 40.3351 55.3215 25.3321 66.3125 42.8281 15.3381 

Avg. convergence 

speed (s.) 
22.3221 26.2112 17.8553 22.7247 23.0954 12.2270 23.2215 22.3221 17.2113 21.1910 21.4664 10.2208 23.3321 26.3321 19.3321 22.5047 22.8628 9.2210 
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