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Leveraging Deep Learning Based Object Detection for Localising
Autonomous Personal Mobility Devices in Sparse Maps
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Abstract— This paper presents a low cost, resource efficient
localisation approach for autonomous driving in GPS denied
environments. One of the most challenging aspects of traditional
landmark based localisation in the context of autonomous
driving, is the necessity to accurately and frequently detect
landmarks. We leverage the state of the art deep learning
framework, YOLO (You Only Look Once), to carry out this
important perceptual task using data obtained from monocular
cameras. Extracted bearing only information from the YOLO
framework, and vehicle odometry, is fused using an Extended
Kalman Filter (EKF) to generate an estimate of the location
of the autonomous vehicle, together with it’s associated uncer-
tainty. This approach enables us to achieve real-time sub metre
localisation accuracy, using only a sparse map of an outdoor
urban environment. The broader motivation of this research
is to improve the safety and reliability of Personal Mobility
Devices (PMDs) through autonomous technology. Thus, all the
ideas presented here are demonstrated using an instrumented
mobility scooter platform.

I. INTRODUCTION

The demand and market for Personal Mobility Devices
(PMDs) is predicted to sky rocket within the next decade
[1], [2]. Burgeoning trends in urbanisation, improvements in
battery and motor technology, demand for more environmen-
tally friendly transport, along with a rising ageing population,
have been cited as reasons for this. Although exact definitions
vary according to the legislative and regulatory frameworks
of different nations [3], [4] “Personal Mobility Devices”
broadly refer to a class of compact electric vehicles that
facilitate individual, human transportation [5]. Examples
include (but not limited to) powered wheelchairs, mobility
scooters, segways, and hover boards.

These devices generally travel at very low speeds (under
15 Kmph), come in small form factors, and travel in spaces
typically reserved for pedestrians, such as pavements and
footpaths. This encroachment into pedestrian spaces has
raised legitimate safety concerns and calls for stricter regu-
lation in many nations [6], [4], [7]. However it must also be
noted that a majority of PMDs help raise the living standards
of many individuals with mobility restrictions. Furthermore,
PMDs cannot be ignored as a potentially integral part of
a more environmentally friendly, intelligent, future urban
transportation system, specially in the context of first/last
mile transportation [8], [9]. Considering these facts, the
recent boom in self-driving vehicle technology has immense
promise to balance the potential benefits of PMD usage, with
their safety concerns.
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An autonomous vehicle in general is a collection of many
complex overlapping subsystems, of which the localisation
module is fundamental. The localisation sub-system is re-
sponsible for locating a vehicle within a global coordinate
frame. This is an elemental task in autonomous driving, since
an accurate and reliable location estimate informs many other
subsystems ranging from global route planning, to obstacle
avoidance.

Over the last two decades, Global Positioning Systems
(GPS) have traditionally aided human drivers in basic navi-
gation tasks in urban driving scenarios. However, they do
not currently posses the accuracy (∼10m), precision, or
reliability required for autonomous driving [10]. Thus, the
current generation of autonomous vehicles focus on the
use of additional sensors to aid in the localisation task. A
collection of 2D/3D LIDARs and vision sensors, along with
detailed high definition 3D maps [11] are commonly used
to achieve the reliability and robustness required for a high
speed vehicle operating in cities [10], [12]. Building and
maintaining such high definition maps places high demands
on resources such as data collection, storage, computational
power and data transmission [13]. Thus, approaches that are
capable of localising in sparse or low resolution maps are
gaining popularity.

In [14], authors propose using the low resolution crowd
sourced, Open Street Map (OSM), together with GPS and
wheel odometry, to determine way points for global navi-
gation. Local navigation in-between way points is achieved
using a LIDAR based local perception system. However,
this approach dubbed the MapLite system [15] is heavily
reliant on GPS and thus primarily targeted to operate in
rural environments. The synthetic LIDAR approach outlined
in [16] and [17] uses a tilted 2D LIDAR input, with a 3D
rolling window to form a 2D local map of the environment.
Localisation of an autonomous golf-cart [18] and a mobility
scooter [19] using this technique has been demonstrated.
However, the approaches outlined above rely on the use of
multiple expensive LIDARs, which is difficult to justify in
the context of low-cost devices such as PMDs.

In general, cameras and vision based systems can offer
more compact and low cost localisation solutions [10]. Pop-
ular Visual Odometry (VO) methods range from appearance
based techniques such as optical flow to feature based
methods [20]. Feature based systems employ feature detec-
tors and descriptors such as FAST, SIFT, SURF, ORB and
BRIEF [20], [21]. However most of these approaches tend
to fail under extreme appearance, illumination, occlusion and
weather changes, common in autonomous driving scenarios



[22], [23], [24], [25]. Thus, vision based approaches are cur-
rently dominated by techniques based in Deep Convolutional
Neural Networks (CNNs), due to their ability to learn generic
feature extractors that are robust to appearance and viewpoint
changes [21].

One approach to CNN based localisation involves training
neural networks to carry out complete end-to-end pose
regression of a camera, based on an image [END TO END
REFERENCE ICRA] [26], [27], [28]. Another approach
involves semantic segmentation where a CNN is used to label
each pixel with semantic information. For instance [29] pro-
poses using semantic information to reject dynamic objects
such as pedestrians, cars and bikes while only using static
objects such as trees and posts, to aid popular vision based
navigation frameworks. Alternatively, [30] uses a semantic
segmentation process to extract geometric information from
landmarks such as poles, street signs and traffic lights to
match them against a 3D map of such features, using an
optimisation process to obtain the corresponding camera
pose. However, the CNN based techniques of end to end
pose regression and semantic segmentation discussed above,
have very high computational and training requirements that
are difficult to be met in real time, specially in the context
of an autonomous PMD.

Unlike pose regression or complete semantic la-
belling/segmentation of each pixel in an image, the general
task of CNN based object detection is demonstrably less
computationally demanding, and also easier to train. This
involves detecting and placing bounding boxes over objects
of interest. State of the art object detection methods include
R-CNN [31] and YOLO [32]. Recent improvements to
YOLO, specifically YOLOv2 [33] and YOLOv3 [34] have
consistently outperformed the competition both in terms of
accuracy and speed.

In this paper, we propose a resource efficient, real time,
vision based localisation system that operates on a given
sparse map. The sparse map only consists of common, per-
sistent and easily discernible landmarks such as streetlamps,
trees, parking meters, traffic lights and road signs that are
typically found in the operating environments of PMDs. The
overall system relies on low cost vision sensors and recent
developments in deep learning based object detection, to
form a robust perceptual front end. Information from this
perception system is then used to carry out landmark based
bearing only localisation using an Extended Kalman Filter
(EKF). To validate the merits of the proposed localisation
approach in unstructured real world environments, an off-
the-shelf mobility scooter was retrofitted with a low cost
computation and sensor package.

The remainder of this paper is structured as follows.
Section II outlines the core framework and methodology
behind our localisation system. Section III provides a brief
overview of the hardware platform used to validate the
proposed concepts. Section IV presents details and results
of the conducted experiments. Finally, section V concludes
the paper with with a brief discussion on the experimental
results and some thoughts on future work.

II. LOCALISATION FRAMEWORK
The proposed localisation framework consists of a deep

learning based perceptual front end, and an Extended Kalman
Filter (EKF) based back-end for 2D pose estimation in a
given map (See figure 1). The map consists only of the 2D
locations of the landmarks, relative to a global coordinate
frame.

Fig. 1: Localisation framework

A. Perceptual front-end

As reviewed in section II, the YOLO object detection
framework provides state of the art real time object de-
tection with realtively high accuracy. Thus, YOLO version
2, which operates at a frame rate of 15-17 FPS on our
hardware platform (described in section III), forms the basis
of the perceptual front-end of the proposed system. Although
YOLO v2 is less accurate than YOLO v3, the level of trade
off between speed and accuracy suited our application and
operating parameters better.

The underlying neural network architecture of YOLO v2 is
known as Darknet-19, and consists of 19 convolutional layers
and 5 maxpooling layers. This network is pre-trained on the
standard ImageNet 1000 class classification dataset, and acts
as the base feature extractor of YOLO v2. This base network
can be further trained to detect any custom object class,
through the process of transfer learning. This is achieved
by removing the last convolutional layer and adding 3 more
convolutional layers with 1024 filers each, followed by a final
convolutional layer with the number of outputs matching the
number of custom object detection classes required.

For the purpose of training YOLO v2 to detect landmarks
required for localisation, we curated our own image dataset,
collected by driving the hardware platform in the streets of
Sydney. Commonly found features seen in pedestrian envi-
ronments, such as street lamps, road signs, traffic lights, park-
ing meters and trees, were identified as potential candidates
for localisation landmarks. YOLO v2 was then trained using
this dataset along with additional images obtained through
the Imagenet database and web scraping. Once trained, and
an RGB image is provided to YOLO v2; it detects the
required landmarks in real time. Detections are visualised
as bounding boxes around the landmarks of interest.



(a) Wentworth Park (b) Mary-Ann St

Fig. 2: Landmark detections from experiments

Figure 2 depicts examples of detected landmarks, observed
during the experiments outlined in section IV. To obtain
bearing information to these detected landmarks, the coor-
dinates of the centroid of the bounding boxes; (uc, vc) are
used to calculate the horizontal bearing θit of a detected
landmark i at time t. Thus, a set of b bearing observations
Θt = [θ1t , θ
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t ] is obtained at time t.

The perceptual front end also includes odometry informa-
tion, Ut = [vt, ωt] consisting of linear velocity vt and Z-Axis
angular velocity ωt.

The hardware platform outlined in section III provides the
RGB images required for YOLO via two Realsense D435
cameras. Odometry information is obtained from two rotary
wheel encoders and the yaw gyro of an IMU unit.

B. EKF back-end

The back-end of the localisation system consists of an
Extended Kalman Filter. Here, the information obtained from
the perceptual front end, consisting of odometry data; Ut =
[vt, ωt], is fused with the landmark bearing observations
Θt = [θ1t , θ
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t ].

The prediction step (Lines 2 to 6 of Algorithm 1) of
the EKF uses the Odometry Motion Model g described by
equation (1):

X̂t = g(Xt−1, Ut)x̂tŷt
φ̂t

 =

xt−1 + ∆T ∗ vt ∗ cosφt−1

yt−1 + ∆T ∗ vt ∗ sinφt−1

φt−1 + ∆T ∗ ωt

 (1)

Where, X = [x, y, φ] describes the 2D pose of the robot,
X̂t the predicted pose at time t, and ∆T the time between
t and t− 1.

The predicted pose covariance P̂t is calculated based on
odometry noise Q, and the relevant Jacobians (See line 6 of
Algorithm 1).

When a landmark is detected by the perceptual front-
end, the predicted pose is corrected by the update step
of the EKF (Lines 7 to 16 of Algorithm 1). First, each
observation is associated with the relevant landmark (see
section II-C for more details). Let the map of l landmarks
be M = [m1,m2...mj ..ml], where mj,x and mj,y represents
the x and y coordinate of the jth landmark respectively.
Then, the observation model h is given by equation (2):

Algorithm 1 EKF
1: Inputs: Xt−1, Pt−1,Θt, Ut,M
2: Calculate predicted pose using motion model

X̂t = g(Xt−1, Ut)

3: Set control noise covariance Q
4: Calculate Jacobian ∇G, of g(Xt−1, Ut) w.r.t to Xt−1

5: Calculate Jacobian ∇U , of g(Xt−1, Ut) w.r.t to Ut−1

6: Calculate predicted pose covariance:

P̂t = ∇G ∗ Pt−1 ∗ ∇GT +∇U ∗Q ∗ ∇UT

7: if Bearing measurements Θt are available then
8: Carry out data association (see section II-C)
9: Calculate corresponding predicted observations

Θ̂t = h(X̂t,M)

10: Calculate Innovation

v = Θ̂t −Θt

11: Calculate Jacobian ∇H , of Θ̂t = h(X̂t,M) w.r.t X̂t

12: Set bearing measurement noise R
13: Calculate innovation co-variance:

S = R +∇H ∗ P̂t ∗ ∇HT

14: Calcuate Kalman gain K:

K = P̂t ∗ ∇HT ∗ S−1

15: Correct pose estimate:

Xt = X̂t + K ∗ v

16: Correct pose covariance:

Pt = P̂t −K ∗ S ∗KT

17: else
18: Xt = X̂t

19: Pt = P̂t

20: end if
21: Return Xt, Pt

Θ̂t = h(X̂t,M) (2)

where the ith component of Θ̂t is:

θ̂it = atan2(mj,y − yr,mj,x − xr) − φ̂t

(xr, yr) is the location of the camera with respect to the
global frame. This is calculated by equation (3), where a
and b are the x and y offset of the camera relative to the
platform’s local frame.

xr = x̂t + a ∗ cos(φ̂t) − b ∗ sin(φ̂t)

yr = ŷt + a ∗ sin(φ̂t) + b ∗ cos(φ̂t)
(3)

Finally the predicted pose estimate is corrected based on
the computed Kalman gain K and innovation v (See lines
10 to 16 of Algorithm 1). Thus, the EKF returns the final
pose estimate Xt and associated covariance Pt, successfully
localising the system relative to the given map.

C. Data association

Once a landmark is detected, the observed bearing is as-
sociated with the correct landmark using an innovation gate,



based on the Mahalanobis distance d of each observation,
calculated by equation (4):

d2 = vT ∗ S−1 ∗ v (4)

d2 is calculated using the innovation v between each
observation θit and the predicted observations to each land-
mark. S is the corresponding innovation co-variance. d2 is
distributed as a chi-squared random variable with 1 degree
of freedom. Observations can be associated with landmarks
when d2 is below a bound that is defined using a desired
level of confidence. If multiple associations are made to
one observation, the association with the lowest d2 value
is considered as the final association. All observations that
do not pass the innovation gate and do not meet the above
criteria, are ignored.

III. HARDWARE SYSTEM OVERVIEW

The Pride Pathrider 10, one of the most popular and
reliable mobility scooters on the market, was selected as
the base vehicle for our experimental hardware platform. As
depicted in figure 3, the mobility scooter was retrofitted with
a low cost computation and sensor package. Final physical
specifications of the scooter post modification is outlined in
Table I.

Fig. 3: Hardware overview of retrofitted mobility scooter

TABLE I: Pathrider 10 Specifications

Dimensions (L x W x H) 1.9 x 0.56 x 1.65 m

Weight 105 Kg

Maximum speed 8.85 km/h

Turning Clearance Circle 1.575 m (Turning radius)

A. Vision sensors

Two Intel®D435 cameras mounted at 45°angles to the
heading of the mobility scooter are used as the primary vision
sensors for localisation. A single D435 camera posses a hor-
izontal field of view of 69.4°. This mounting configuration
allows for a larger field of view to be dedicated towards the

left and right sides of the scooter, which are generally richer
in landmark features as opposed to facing forward. This also
ensures that bearing measurements to detected landmarks are
larger than when facing forward, reducing the measurement’s
percentage error. Furthermore, this configuration eases the
landmark data association problem, as it reduces the chance
of similar landmarks (Eg: streetlamps) overlapping due to
parallax.

Depth measurements from the Realsense camera were
found to be somewhat unreliable and requires further pro-
cessing and calibration. Hence, as discussed in section II,
localisation is carried out based only on bearing information
obtained by the RGB sensor of the Realsense. Thus the
algorithm presented here could be implemented using any
monocular RGB camera. The Realsense camera was selected
with the view of using it for other navigation tasks such as
obstacle avoidance further down the line.

B. Computing

The primary computational unit of the scooter is an
NVIDIA®Jetson AGX Xavier embedded system, with a
512-core Volta GPU and 16GB of RAM. The scooter is
also equipped with an Intel®UP2 board that interfaces with
the on board sensors. All systems interface, operate and
communicate using ROS (Robot Operating System) Melodic.

C. Odometry

The scooter is equipped with two rotary encoders to
measure wheel rotation. An MPU-9250 IMU is also attached
to the camera mounting plate to provide heading information.

D. RTK-GPS

The Piksi Multi Real Time Kinematic (RTK) GPS unit is
a multi-band, multi-constellation RTK GNSS receiver that
provides centimetre-level accuracy. However this level of
accuracy is only available when a large portion of the sky
is visible. It is therefore unsuitable as a sensor for locali-
sation. The scooter is currently equipped with this module
to evaluate the performance of our localisation algorithm,
when the vehicle is travelling through regions where RTK
information is available. The RTK GPS was also used to
physically survey landmark locations for map building.

IV. EXPERIMENTAL RESULTS

A. Algorithm validation

Initial experiments were carried out along pedestrian foot-
paths in an approximately ∼2000 square metre area of
Wentworth Park, Sydney, Australia (Figure 4). This location
was chosen due to the lack of obstructions in the skyline,
enabling us to obtain a high quality, centimetre accurate
RTK GPS fix. These continuous fixed RTK GPS readings
were used as ground truth to evaluate our algorithms, and
also obtain the locations of important visual landmarks such
as lamp posts, trees and street signs, to generate a sparse
geometric map of the park environment.

Figure 5 shows the error of the reported location estimates,
together with their corresponding 2σ covariance bounds. It is



Fig. 4: Localisation result at Wentworth Park

Fig. 5: Estimation error at Wentworth Park (blue), with 2σ
covariance bounds (red)

clear that the errors appear to be within the 95% confidence
bounds defined by the 2σ gate, indicating that the EKF is
well tuned. The maximum error values reported in either X
or Y location estimates, during multiple runs ranged from
0.40 − 0.60m.

B. Demonstration

To demonstrate the capabilities of the proposed framework
in a a more real world urban environment, experiments
were subsequently carried out along a typical suburban
environment near the university campus, along Mary Ann St
to Bulwara Rd, Sydney (Figure 6). The platform was driven
along the pavement amidst pedestrians and uneven terrain,
covering a distance of roughly 130m. Continuous fixed
RTK ground truth information while in motion however,
was not available due to surrounding trees and buildings
occluding the skyline. Thus to provide an evaluation of
the localisation error involved, ten separate locations were
surveyed beforehand using the RTK receiver. These locations
were selected based on a combination of available fixed RTK
readings and low variance float RTK readings measured over
a period of time. The error was then calculated by comparing
the localisation output of the EKF against these surveyed
locations when the platform was driven over them.

Fig. 6: Localisation result at Mary-Ann St tIno Bulwara Rd

Fig. 7: Estimation error (blue) at Mary-Ann St to Bulwara
Rd, with 2σ covariance bounds (red)

Figure 7 shows the localisation error at the ten surveyed lo-
cations along with their corresponding 2σ covariance bounds.
The maximum error values reported in either X or Y location
estimates, during multiple runs ranged from 0.50 − 0.94m.

V. DISCUSSION AND CONCLUSION

It was observed during the experiments that the quality
of the bearing information, is highly susceptible to the size
and shape of the landmark being detected. This is the rea-
soning behind selecting vertical shaped objects as candidate
landmarks. However, bearing noise from landmarks such as
trees are still highly variable due to their shape and size.
This poses challenges in terms of data association and overall
functioning of the EKF.

In order to guarantee that only high quality bearing infor-
mation and data associations feed into the EKF algorithm,
a strict innovation gate of 0.46 (corresponding to 50%
confidence in the 1-DOF Chi-Squared distribution) was set
heuristically based on practical results. Although this was
found to discard approximately 60-70% of observations, the
information gathered from accepted observations was clearly
adequate to produce a good quality location estimate.

Thus one key area of future work will focus on creating
a more holistic and unique noise profile for each landmark



based on their size and shape, during the mapping process.
One mapping avenue currently being explored is to remove
the reliance on RTK-GPS and consider SLAM based frame-
works. In terms of perception, we plan on also exploiting
information from features such as pathways, pavement edges
and curbs. Exploiting the depth information available from
the Realsense cameras as well as the semantic labels pro-
vided by Yolo, are also avenues for further investigation.

The current iteration of our localisation framework has
delivered promising results during initial experiments. Sub
metre accuracies were reported using only a minimal map
representation and a low cost computation and sensor pack-
age. We plan to build on these results with the goal of
providing a low resource intensive localisation framework,
suitable for the safe and efficient operation of autonomous
PMDs.
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