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ABSTRACT Fractional calculus has increased in popularity in recent years, as the number of its applications
in different fields has increased. Compared to the traditional operations in calculus (integration and differen-
tiation) which are uniquely defined, the fractional-order operators have numerous definitions. Furthermore,
a consensus on the most suitable definition for a given task is yet to be reached. Fractional operators are
defined as continuous operators and their implementation requires a discretization step. In this article, we
propose a discrete fractional Laplacian as a matrix operator. The proposed operator is real (non-complex)
which makes it computationally efficient. The construction of the proposed fractional Laplacian utilizes
the DCT transform avoiding the complexity associated with the discretization step which is typical in the
constructions based on signal processing. We demonstrate the utility of the proposed operator on a number
of data modeling and image processing tasks.

INDEX TERMS Fractional-Laplacian, discrete operator, image-processing, trend-filtering, fractional
calculus.

I. INTRODUCTION
Two main operations and building blocks in many engineer-
ing disciplines in general [1], [2], image processing and com-
puter vision tasks in particular [3], are first and second order
derivatives, otherwise known as the Gradient and Laplacian.
The ubiquity of these operators come from the way we model
our systems and problems. Mathematical models relying on
the language of calculus are at the center. Some of these
modeling paradigms include variational methods, partial dif-
ferential equations (PDE), statistical and linear/non-linear
optimization models.

Over the years, many attempts have been dedicated
towards the generalization of those operators to different
settings. Among the generalizations is the graph Laplacian [4]
which found numerous applications in signal and image pro-
cessing [5].

Of relevance to this work, is the generalization of integer
order differential and integral operators to fractional orders.
Fractional Calculus (FC) is a 300 years old concept dating
back to the days of l’Hôpital and Leibniz [6]. FC has received
increased interests over the last 30 years mainly due to their
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long memory property [2]. For a more recent historical sur-
vey, the reader is referred to [7].

Fractional-order derivatives have found numerous appli-
cations in electronic circuits and control systems [1], [8],
signal processing [9], image processing, computer vision
and pattern recognition [10], [11], biological systems and
economics [12].

A. FRACTIONAL DERIVATIVES
The integer differential and integral operators are defined
uniquely, and they are local. In other words, they consider the
values of very close neighboring points to the point of interest.
On the other hand, fractional-order differential operators are
non-local; larger neighborhoods are considered in the com-
putation resulting in long-term memory effect. This is one of
the main reasons behind their appeal. There is a multitude
of definitions of the fractional order derivatives [13], [14].
We are going to adopt the notationDν to denote the derivative
of a fractional order ν. The following is a list of the most
common definitions:
• Forward Grunwald-Letnikov (GL)

Dν f (z)=e−jθν lim
|h|→0

∑
∞

k=0(−1)
k
(
ν

k

)
f (z−kh)

|h|ν
(1)
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where
(
ν
k

)
is the binomial coefficient and h = |h|ejθ is a

complex number with θ ∈ (−π, π].
• Riemann-Liouville (RL) fractional derivatives

Dν f (t) =
1

0(n− ν)
dn

dtn

∫ t

a

f (τ )
(t − τ )ν−n+1

dτ (2)

where n − 1 < ν < n and 0(.) is Euler’s Gamma
function.

• Fourier domain fractional derivatives

Dν f (t) = F−1
[
(jω)νF{f }(ω)

]
, Re ν > 0 (3)

where ω is the Fourier variable, F and F−1 are the
Fourier and the inverse Fourier transform respectively.

Most of the fractional derivative formulations start from a
continuous formula which requires discretization to facilitate
implementation.

B. FRACTIONAL LAPLACIAN (FL)
The idea of extending the standard Laplacian operator to
fractional order is an old idea (c.f [15] and references therein).
The standard Laplacian is a local operator. Local opera-
tors utilize the immediate neighborhood only in the cal-
culation where outliers can have big impact on the result.
Many attempts have been made to create non-local opera-
tors that can alleviate the shortcomings of local operators in
image processing applications [16]. Utilizing fractional-order
Laplacian is such an attempt.

In a similar vein to the fractional derivatives, a multitude
of fractional Laplacian (FL) definitions have been proposed
over the past few decades but, a consensus on the most appro-
priate definition for an application is yet to be reached [17].

Of special interest to our work are two variants: the spectral
fractional Laplacian [17] which is defined as follows:

−(−1)α/2f (x) :=
∑
i∈N

fiλ
α/2
i φi(x) (4)

where 1 is the continuous Laplacian operator applied on the
function f (x). φi and λi are the eigenfunctions and eigenval-
ues of the continuous Laplacian 1 respectively.
Secondly, the Fourier-transform based definition (pseudo-

differential) [17]

F
{
(−1)α/2f

}
(ω) = |ω|αF{f }(ω) (5)

It is important to note that both definitions are continuous, and
a discretization step is required to make them applicable to
digital data. For a comprehensive list of the different formu-
lations, the reader is referred to [12], [15], [17] and references
therein.

C. RELATED WORKS
1) FRACTIONAL DERIVATIVE OPERATORS IN IMAGE
PROCESSING
Fractional-order derivatives have found numerous applica-
tions in image processing. These applications can be cate-
gorized into three main categories based on the framework

under which the derivative is used. The first category is linear
filtering. In this category, a fractional-order derivative of an
image is calculated through a linear filtering process. In some
applications, the gradient image is the goal such as in edge
detection [18]–[31] which is the earliest image processing
application of fractional calculus. Another application is to
use the gradient image to enhance the input image through,
for example an un-sharp masking scheme [26], [32]–[37].
The third application in this category is contrast enhance-
ment [29], [38]–[40].

The second category is referred to as PDE-based models.
Modeling of image restoration problems using integer deriva-
tives dates back to the late 80s and early 90s but utilizing
fractional-order derivatives was first presented in 2007 [41]
for the image denoising application and was later refined,
improved and adopted for a number of applications. Among
these applications; image denoising [42]–[49], contrast
enhancement [50], [51], image deblurring [52] and image
super-resolution [53], [54].

The third category is related to the second and we will refer
to it as variational models for image restoration problems.
Similar to PDE(s), variational models with integer derivatives
in the context of image processing date back to the 80s,
but the introduction of fractional-order variational models is
recent. Applications in this category include image denois-
ing [55]–[66], in-painting [58], [67], fusion [56], [64], non-
rigid registration [68], super-resolution [56] and optical flow
estimation [69].

For the sake of completeness, we cover a fourth cat-
egory that is based on a global optimization technique
namely: fractional-order Darwinian particle swarm optimiza-
tion (FODPSO). The reason for distinguishing this category
is that the fractional-order derivative is not applied to the
image but to a parameter of the model at hand such as the
optimal threshold. The main application in this category is
image segmentation [70]–[72].

2) FRACTIONAL LAPLACIAN OPERATORS IN IMAGE
PROCESSING
The fractional Laplacian has not seen the same amount of
adoption as is the case with the fractional derivative in sig-
nal and image processing. In [73], the authors introduced a
scale-space model. In [74], the authors proposed a quadratic
optimization model for blind image deconvolution involving
the fractional Laplacian. In [75], the authors proposed a PDE
model for vector field estimation flow-sensitive MRI imag-
ing. In [76], the authors have demonstrated image denoising
by solving a fractional diffusion equation (PDE). In [77], the
authors proposed a variational model for image denoising
based on the fractional Laplacian and later was extended to
tomographic reconstruction involving the fractional Lapla-
cian as a regularizer [78].

D. CONTRIBUTIONS
The contributions in this work can be summarized in the
following:
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I) Motivated by the construction of the spectral Lapla-
cian (4), we propose a discrete fractional Laplacian in
the form of a matrix operator using the DCT trans-
form. The discrete construction avoids the need for
discretization which is typically required by the other
fractional Laplacian construction techniques. The dis-
cretization step in the case of the pseudo-differential
formulation in (5) usually involves solving a filter
design problem [79]–[81].

II) Motivated by the reliance of the trend filter on the
Laplacian operator, we develop a computationally effi-
cient implementation of traditional trend filtering in the
DCT transform domain.

III) Utilizing the proposed discrete fractional Laplacian, we
extend both the traditional and the `1 trend filters to
fractional order and demonstrate their effectiveness at
the image denoising task for higher levels of noise.

IV) Wefinally demonstrate the applications of the proposed
fractional Laplacian on a number of image processing
tasks. However, it is important to stress that we are not
claiming state-of-the-art performance in any of these
applications. Our aim is to demonstrate the potential of
the proposed operator.

The remainder of this article is organized as follows.
Section II introduces the fractional Laplacian in the 1D and
2D cases. In section III, we provide two groups of applica-
tions for the proposed operator. In the first group namely: fast
trend filters, we first introduce the trend filtering followed by
a DCT-based implementation of the `2 trend filter. We then
generalize the trend filtering by proposing a fractional `1 and
a fractional `2 trend filters. In the second group, we present
a number of image processing applications demonstrating
the effectiveness of the proposed fractional Laplacian. Lastly,
a discussion and conclusions are presented in section IV.

II. A DISCRETE FRACTIONAL LAPLACIAN OPERATOR
A. DEFINITION FOR 1D CASE
The Laplacian operator of single variable continuous function
f (x) is defined as follows:

1f (x) =
∂2f (x)
∂x2

(6)

To implement the Laplacian operator, an approximate dis-
cretization is used as follows:

L{f (x)} =
f (x − h)− 2f (x)+ f (x + h)

h2
(7)

where L is the discrete Laplacian operator and h is a small
constant. This discretization amounts to uniformly sampling
the function f (x) with distance h. This operation can be
implemented as a convolution as follows:

L{f (x)} = l ∗ f (8)

where l = [1,−2, 1] is an FIR filter. The Laplacian in (8)
can be formulated as a matrix operator in few different ways
based on the boundary condition assumed. In this work we

choose a specific formulation with desirable properties as we
are going to see later. Specifically, we formulate the Laplacian
operator L ∈ RN×N as follows:

L =


1 −1
−1 2 −1

−1 2 −1
· · ·

−1 2 −1
1 −1

 (9)

where, the rows between [1,N−2] 1 are shifts of the FIR filter
discussed earlier. The signals we are dealing with are finite,
and as we have seen in (7), the Laplacian filter is centered
around x. In other words, to perform the convolution in (8),
f (x) needs to exist before and after x which, is not true at
the boundaries. As a solution, we extend the signal on both
sides [82].

Thus, the first and last rows in (9) are different from the
middle rows. This signal extension near the boundary can
be performed in several ways [83]. In (9), we assume a
symmetric signal extension as we are going to see next.

The operator in (9) has the same first and last rows, this
means equal boundary condition on both sides. For a signal
u ∈ RN×1, the boundary condition in (9) assumes the signal
u has zero slope at the boundary (u̇(0) = 0, u̇(N − 1) = 0)
and is symmetrically extended around the midpoint (u(−1) =
u(0), u(N ) = u(N − 1)). For more details about the boundary
conditions, the reader is referred to [83].

It is important to note that this particular operator in (9) is
diagonalizable by the DCT type-II matrix [83] denoted byM

L = MTEM (10)

where E is a diagonal matrix of which the diagonal elements
denoted {e(k)} are the eigenvalues of L. This spectral decom-
position is real which results in efficient computation.

Motivated by the spectral Laplacian in (4) and the diag-
onalization property of the discrete Laplacian in (10), we
define the fractional Laplacian Lα 2 as follows

Lα = MTEαM (11)

where Eα is diagonal matrix with the diagonal elements
raised to the power α.

To consolidate, we started from the discrete Laplacian filter
l = [1,−2, 1] which we used to formulate the matrix L in (9).
Then we performed the eigen-decomposition in (10) and we
raised the diagonal eigenvalues matrix E to the power α to
finally get the fractional Laplacian matrix Lα in (11).
Recall that when α = 1 in (11) we recover the standard

Laplacian in (9) but, for α in the open set α ∈ (0, 1) we
get different fractional Laplacian filters. The fractional Lapla-
cians we get are still diagonalizable by the DCT matrix as
in (11) and share the same structure as the standard Laplacian

1Numbering starts from 0
2We are using the subscript notation for α to avoid the confusion with the

exponent as L is a matrix operator
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in (9) with the difference that smaller values of α result in
less sparse operator Lα . In other words, smaller α results in
Laplacians with more nonzero coefficients hence the memory
effect.

As a result of the increase in the number of coefficients,
two things become clear: firstly, the dimensions of the frac-
tional Laplacian need to be larger for smaller α to reduce the
numerical inaccuracy due to truncation. Secondly, the number
of rows in Lα that are involved in the boundary condition
increases. One way to recover a good filter lα from the matrix
Lα is to choose the middle row.
It is important to note that the eigenvalues of Lα ∈ RN×N

can be obtained by the relation e(k) =
[
2− 2 cos

(
k πN
)]

[84].
Thus, the eigenvalues of the fractional-order Laplacian Lα are
defined as follows:

e(k;α) =
[
2−2 cos

(
k
π

N

)]α
k = 0, 1, . . . ,N − 1. (12)

and the coefficients of the eigenvectors matrix are the same
as DCT-II matrix which are as follows:

M (i, k) =

√
2
N

cos
[(
k +

1
2

)
iπ
N

]
, k, i = 0, 1, . . . ,N − 1

(13)

To get the FIR filter lα from the operator Lα , we choose the
N−1
2 th row of Lα based on our earlier discussion about avoid-

ing the boundary condition. It can be readily demonstrated
that the coefficients of the lα have the following form:

lα(k) =
N−1∑
i=0

e (i;α)M ((N − 1)/2, i)M (k, i) (14)

B. EXTENSION TO THE 2D CASE
Generalization to the 2D case is straight-forward as the
2D-DCT is usually performed as 1D-DCT calculated once
on the rows and once on the columns [83]. The benefits
of this formulation of the fractional Laplacian in the DCT
domain over the traditional Fourier transform formulation
are twofold. First, we can construct the fractional Laplacian
filter lα easily allowing for flexibility in applications. Second,
it is computationally more efficient as filtering in the DCT
domain avoids the need for the image extension as required
by the DFT [85].

C. COMPUTATIONAL COMPLEXITY ANALYSIS
From the earlier development, we notice that the proposed
fractional Laplacian has two equivalent forms. The first
being a matrix operator Lα ∈ RN×N which is constructed
using (11). To calculate the fractional Laplacian of a signal
using Lα , a matrix-vector multiplication is performed, which
has O(N 2) computational complexity.
The second form is a linear FIR filter lα ∈ RN which can

be constructed directly using (14). Calculating the fractional
Laplacian of a signal of length M using lα is a convolution
operation with a computational complexity of O(NM ).

D. DISCUSSION
We have delayed the discussion about the other formulations
of the matrix operator L for a reason that will become clear
soon. The alternative to the proposed Laplacian is to formu-
late it as a circulant matrix, assuming that the signal has a
periodic extension as follows [83]:

L =


2 −1 −1
−1 2 −1

−1 2 −1
· · ·

−1 2 −1
−1 −1 2

 (15)

The L matrix in this formulation is diagonalizable by the dis-
crete Fourier matrix (DFT) [83] which could be generalized
the same way we did in (11). However, the proposed Lapla-
cian is computationally more efficient. This computational
efficiency comes from two aspects. Firstly, the DFT matrix
is complex while, the DCT is real. Secondly, the boundary
condition in (15) assumes that the signal is periodic, in other
words, the signal needs to be padded with a copy of itself
on both sides creating discontinuities along the boundaries.
On the other hand, the Laplacian in (9) assumes that the signal
is padded with a mirror-image of itself along the boundary.
This is a natural boundary condition and it is what MATLAB
uses in the imfilter command with the symmetric
option.

In [86], the authors have proposed to compute the frac-
tional derivatives of images implicitly by utilizing a dis-
cretization of the following result [87]:

Dν cos(ωt) = ων cos
(
ωt +

νπ

2

)
(16)

where ν is the fractional exponent and ω is the continuous
frequency variable. In other words, in contrast to what we do
in this work, the authors do not provide a direct method for
constructing the fractional differential operator (Dν) in [86];
rather a method to compute its effect on a function. Being
able to construct the operators affords more flexibility and
applicability in linear algebraic settings.

In [88], the authors propose to approximate the func-
tion (16) in the DCT domain by treating it as a FIR filter
design problem. This technique produces coefficients of a
FIR filter which approximates the ideal fractional derivative
operator. The main difference between this technique and
ours is that our technique does not use an approximation and
it generalizes the Laplacian operator rather than the first order
derivative.

III. APPLICATIONS
The Laplacian operator is very ubiquitous in applications and
generalizations of which can be examined on such applica-
tions. We have split the discussion about applications into
two groups. The first group deals with a specific trend esti-
mation technique which relies on the standard Laplacian.
We introduce it briefly, propose a new implementation, and
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generalize it. In the second group, we consider five image
processing applications.

A. FAST TREND FILTERS IN THE DCT DOMAIN
1) DEFINITION
Estimating the trend of a signal or time-series is a common
problem in many disciplines [89]. More specifically, given a
signal b ∈ RN×1, it is assumed that the signal is composed of
two components: a slowly varying component u known as the
trend and a rapidly varying white Gaussian noise component
denoted ε as follows:

b = u+ ε (17)

Trend estimation is the process of producing an estimate û
for the underlying trend u. The literature on trend estimation
is very rich with various parametric and non-parametric tech-
niques [90]. In this article however, we are interested in a
specific trend estimation technique which we will refer to as
trend filter.

Concretely, we use capital letters to represent matrices
and small letters to represent column vectors. For example,
the nth column vector of the matrix M is denoted Mn, while
the nth element of a vector u is denoted un. The `p−norm
of u is ||u||p. The trend filter [89], [91] is formally defined as
follows:

min
u
||u− b||22 + λ||Lu||

p
p (18)

A special case of the model (18) is the generalized Wiener
filter [92], [93] when p = 2, which is otherwise known
as the Hodrick-Prescott trend filter in the statistics commu-
nity [91]. By utilizing the fact that the Laplacian matrix L is
diagonalized by the DCT matrix (10), the cost function can
equivalently be defined in the DCT domain:

min
u
||u− b||22 + λ||Lu||

2
2 = ||ū− b̄||

2
2 + λ||M

TEū||22 (19)

where ū = Mu and b̄ = Mb. By minimizing the cost function,
we have

ū(k) =
b̄(k)

1+ λe(k)2
(20)

This result shows that the trend filter can be very efficiently
implemented in the DCT domain as an element-wise division
since the eigenvalues e(k) can be pre-calculated.
This result also allows us to interpret the trend filter as a

low-pass filter in the DCT domain. To this end, let G = MT ,
the trend filter can thus be represented as follows:

u = Gū (21)

=

N∑
k=1

ū(k)G(k) (22)

=

N∑
k=1

b̄(k)
1+ λe(k)2

G(k) (23)

On the other hand, the observed vector b can be
represented as

b = Gb̄ (24)

=

N∑
k=1

b̄(k)G(k) (25)

Comparing (23) with (25), we can clearly see an interpreta-
tion of the trend filter as a shrinkage operation in the DCT
domain. The level of shrinkage is controlled by the regular-
ization parameter λ. Since each column vector G(k) can be
regarded as a frequency component with k = 0 corresponding
to the DC and k = N − 1 corresponding to the highest
frequency, the shrinkage is also frequency dependent. It can
be shown that the eigenvalues have the property e(0) = 0
and e(i) < e(k) for i < k . As a result, a higher frequency
component will be shrunk more. Similar to a linear low-pass
filter which attenuates the high frequency components in the
Fourier transform domain, the trend filter is a low-pass filter
which attenuates the high frequency components in the DCT
domain.

2) FRACTIONAL `2 TREND FILTER
As an application of the proposed operator in (11), we can
generalize the trend filter (19) by replacing the L operator
with Lα operator leading to a new model. We call it the frac-
tional trend filter which is the minimization of the following
cost function:

||u− b||22 + λ||Lαu||
2
2 (26)

The solution to this cost function, can be performed in DCT
domain as follows:

ū(k) =
1

1+ λe(k)2α
.b̄(k) (27)

Compared with (20), we havemore control over themagni-
tude response by changing α. To demonstrate the impact of α
on the shape of the filter, we plot the filter function (27) at
various values of α in Fig. 1. To facilitate the comparison, we
normalize the x-axis because, at each α we generate a new
Laplacian Lα that has its diagonal elements e(k) ∈ [0, 4α].
It is important to note that a similar model was proposed
in [74] with the difference that the solution was done in the
Fourier domain.

From Fig. 1 we notice that lower values of α allow more
high frequencies to pass than the higher values of α.

3) FRACTIONAL `1 TREND FILTERING
We extend the `1 trend filtering [89] to fractional `1 trend
filtering of the form:

min
u
||u− b||22 + λ|Lαu|1 (28)

To solve this problem, we adopt the ADMMalgorithm [94]
as follows:

1min
u,z
||u− b||22 + λ|z|1 +

ρ

2
||z− Lαu+ v||22 (29)
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FIGURE 1. The shrinkage effect of the fractional `2 trend filter (first term
in (27)) using various values of α.

Algorithm 1ADMM for Fractional `1 Trend Filter Using
Matrix Form
Result: uk+1

1 u0 = b, z0, v0 = 0;
2 while ||uk+1 − uk ||22/u

k+1 > ε do
3 uk+1 =

(
I + ρLTα Lα

)−1 (b+ ρLTα (zk − uk))
4 zk+1 = Sλ/ρ

(
Lαuk+1 + vk

)
where

Sκ (a) = (a− κ)+ − (−a− κ)+
5 vk+1 = vk + Lαuk+1 − zk+1

6 end

Algorithm 2ADMM for Fractional `1 Trend Filter Using
Convolutions
Result: uk+1

1 u0 = b, z0, v0 = 0;
2 while ||uk+1 − uk ||22/u

k+1 > ε do
3 uk+1 = b− ρ

(
lTα ∗ (z

k
− uk )− lTα ∗ lα ∗ u

k
)

4 zk+1 = Sλ/ρ
(
lα ∗ uk+1 + vk

)
5 vk+1 = vk + lα ∗ uk+1 − zk+1

6 end

In algorithm 2, lα is one of the middle rows of Lα . It is
a FIR filter. In 1D, lα and its transpose lTα are convolved
with signals. In 2D, we generate two kernels using lα for the
x and y directions as shown Fig. 2. lTα is identical to lα as
they are symmetric around the center. For images, we use an

FIGURE 2. 5× 5 2D masks for filtering images in (30) (H1,H2).

Algorithm 3 ADMM for Fractional `1 Trend Filter
Using FFT

Result: uk+1

1 u0 = b, z0, v0 = 0;
2 while ||uk+1 − uk ||22/u

k+1 > ε do

3 uk+1 = F−1
{
F{b}+ρF{lα}�F{zk−vk }

1+ρF{lα}2
}

4 zk+1 = Sλ/ρ
(
Lαuk+1 + vk

)
5 vk+1 = vk + Lαuk+1 − zk+1

6 end

FIGURE 3. Frequency response of fractional Laplacian lα .

Algorithm 4 Empirical Procedure for Determining the
Length N of the Fractional-Order Laplacian Filter lα
Input: α
Output: lα,N

1 threshold = 10−3;
2 N = 3;
3 lα = use (14) ;
4 while

∑
ι(|lα |>threshold) = N do

5 N ← N + 1
6 Calculate lα using (14)
7 end

an-isotropic extension of the 1D model as follows

min
u
||u− b||22 + λ (|H1 ∗ u|1 + |H2 ∗ u|1) (30)

4) DISCUSSION
We note that the fractional Laplacian in (14), being purely
discrete, is a FIR filter of order N . To determine the order of
the filter, we need to exploit the structure of the Laplacian.
The Laplacian filter is even symmetric and has a positive and
relatively highmiddle coefficient surrounded on both sides by
negative coefficients which decay towards zero approaching
both ends. Smaller values of α correspond to filters with
sharper roll-off in the frequency domain and as a result the
filters are generally longer in the discrete domain.

To determine the length of the filter lα , we propose
an empirical procedure that iteratively increases the length
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FIGURE 4. Impulse response of fractional Laplacian lα .

FIGURE 5. Fractional `2 trend filtering of synthesized data. Dashed black
is the synthetic data. Solid red is the original trend. Solid blue is the filter
result with λ chosen to minimize the mean squared error between the
filter output and the original trend.

of the filter until the first and last coefficients become
lower than a user specified threshold as can be seen
in algorithm 4.

FIGURE 6. Fractional `1 trend filtering of synthesized data. Dashed black
is the synthetic data. Solid red is the original trend. Solid blue is the filter
result with λ chosen to minimize the mean squared error between the
filter output and the original trend.

Frequency and impulse response of fractional Laplacian of
various α’s is presented in Fig. 3

5) NUMERICAL EXAMPLES
We demonstrate the use of the fractional trend filter in 1D
and 2D settings. In the 1D case, we generate a synthetic
time-series data with a piece-wise linear trend and additive
white Gaussian noise. In Fig. 5 and Fig. 6 synthesized data,
synthesized trend and filters’ results are reported for three
values of α ∈ {1, 0.6, 0.2}. From Fig. 5 and Fig. 6 we
notice that different fractional orders of trend filtering result
in trend estimates that belong to different function families.
In the case of α = 1 and `1 fractional trend filter, which
corresponds to the original `1 trend filter, the trend esti-
mates are close to piece-wise linear but that is not the case
for α = 0.6 or 0.2.

In the 2D case, we test fractional trend filter on the image
denoising task.We conducted an experiment on six gray-scale
images (cameraman, house, lena, peppers, pirate and blonde
woman) shown in Fig. 7. We start with a ground truth image ũ
thenwe add noise to it with three noise levels σ ∈ {15, 25, 50}
forming an image b and we experiment with various values
of α ∈ {0.1 . . . 1} with the goal of recovering an image û as
close as possible to ground truth image ũ. Each experiment
was run for 10 times (noise instances) and we are reporting
the average performance across the 10 runs. Performance is
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FIGURE 7. Grayscale images (256× 256) used in the denoising
experiments. (a) cameraman, (b) house, (c) lena, (d) peppers, (e) pirate
and (f) blonde woman.

measured in the form of mean squared error:

MSE =
1
mn

m∑
i=1

n∑
j=1

[
ũ (i, j)− û (i, j)

]2
. (31)

In the case of fractional `1 trend filtering, the results can
be found in Table (1). We notice a pattern in the results that
for higher noise levels, better reconstruction is achievable
with smaller α. It is important to note here that the best
regularization parameter λ was chosen using an exhaustive
search.

In the case of fractional `2 trend filtering, experimental
results can be found in Table (2). Similar procedure to `1
case was conducted. The results here again show that there
is a benefit in using a fractional Laplacian for higher levels of
noise.

In some cases, such as the ‘‘Cameraman’’ image and the
‘‘House’’ image, it turns out that the setting α = 1 (corre-
sponding to the Laplacian operator) leads to the best results.
We believe such results should not be regarded as a weakness
of the fractional Laplacian operator. Instead, we believe that
this is an advantage of the fractional Laplacian operator which

FIGURE 8. Blocks signal (dashed black) filtered using fractional Laplacian
lα (solid red) with different values of α. From top to bottom are filtered
signals with α ∈ {0.1,0.4,0.7,1}.

includes the Laplacian operator as a special case. Compared
with the Laplacian operator, the fractional Laplacian operator
permits the user to ‘‘tune’’ the parameter α to achieve the
desired result. As such, in other cases we have achieved better
results by tuning α.

To get an idea about the difference in performance between
the presented fractional trend filters and the state-of-the-art
in image denoising, we have compared with BM3D [95]
provided with the underlying noise standard deviation (not
an estimate) in Table (3).

B. IMAGE PROCESSING APPLICATIONS
1) 1D FILTERING
To get a better idea about the effect of using the proposed
fractional Laplacian, we conduct a comparison on a test
signal from the Wavelet Toolbox in MATLAB named blocks.
The choice of this signal was made because; it is a piece-
wise constant signal with sharp edges, allowing for clearer
demonstration of the impact of the filters on edges. Results of
linear filtering in Fig. 8 demonstrate the long memory effect.
The fractional Laplacian with smaller values of α have longer
memory effect than the standard Laplacian.

2) IMAGE SHARPENING
One use case for fractional Laplacian is to increase the image
sharpness as follows:

J = I + γ (Hα ∗ I ) (32)

where γ is an amplification factor and Hα is the 2D isotropic
fractional Laplacian kernel in Fig. 9 formed by adding two
kernels similar to the ones in Fig. 2.

VOLUME 8, 2020 89699



W. Waheed et al.: Discrete Laplacian Operator and Its Applications

TABLE 1. Mean square error (MSE) of denoised image images for six
images using fractional `1 trend filtering.

FIGURE 9. 5× 5 2D isotropic fractional Laplacian (Hα).

Fig. 10 is a comparison of image sharpening performance
between the standard Laplacian (α = 1), the fractional
Laplacian (α = 0.5) and the guided filter [96]. The results
in Fig. 10 clearly demonstrate that a sharper image was
achieved using a fractional Laplacian with α = 0.5 than

TABLE 2. Mean square error (MSE) of denoised image images for six
images using fractional `2 trend filtering.

TABLE 3. Mean square error (MSE) of denoised image images for six
images using BM3D.

the standard Laplacian (α = 1), this results is expected
as the fractional-order Laplacian captures more informa-
tion than the standard Laplacian as can be seen in the
impulse responses of Laplacian filters in Fig. 3. Sharpening
using the guided filter is presented as a comparison with a
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FIGURE 10. Image sharpening application. (a) is the original input image.
(b) is sharpened image using the guided filter. (c) is sharpened image
with α = 1. (d) is sharpened image with α = 0.5. Sharpened images are
produced according to (32) with γ = 2. In the case of the guided filter, we
boost the residual of filtering (J = I + γ (I − GF(I)).

FIGURE 11. Block diagram of the Marr-Hildreth edge detector (top) and
the extended version with our fractional Laplacian (bottom).

state-of-the-art edge-aware filter. Recall that the fractional
Laplacian is a linear operator while the guided filter is
nonlinear.

3) EDGE DETECTION
The literature on edge detection is rich and it is beyond the
scope of this study to list and compare with all techniques
in the literature however, we are examining the potential use
of the proposed fractional Laplacian in this task. We begin
with the traditional Marr-Hildreth edge detector [97]. A gray-
scale image is first smoothed with a Gaussian filter to reduce
the impact of noise and make the detection more robust.
This is followed by Laplacian filtering step to find the edges.
Filtering an image with the Laplacian kernel results in zero-
crossings where edges are potentially located. Next, slopes
at the zero-crossings are computed and finally a threshold T
is applied to keep significant edges only. The algorithm is
summarized in Fig. 11.

FIGURE 12. Fractional Marr-Hildreth edge detection. (a) is the original
image. (b) is edge map produced using MATLAB’s edge command (based
on first order derivatives) using default values. (c) is edge map produced
using the standard Marr-Hildreth. (d) is edge map produced using
Fractional Marr-Hildreth with α = 0.2. Gaussian smoothing with σ = 1
was used in this experiment.

FIGURE 13. Noise Robustness of the fractional Marr-Hildreth edge
detector. (a) is the original image. (b) is a noisy image formed by adding
noise with σ = 0.3 to the original image. (c) is edge map produced using
the standard Marr-Hildreth. (d) is edge map produced using Fractional
Marr-Hildreth with α = 0.1. Gaussian smoothing with σ = 1 was used in
this experiment.

We generalize Marr-Hildreth edge detector by replacing
the Laplacian by its fractional-order generalization.

Fig. 12 illustrates the results that can be achieved using
various values of α. We notice in Fig. 12 that more robust
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FIGURE 14. α Shock filter of the top input image. Columns correspond to
values of α ∈ {0.6,1} from left to right. Rows correspond to values of
N ∈ {1,25,100} from left to right. The parameter λ was set to 0.1 for all
results.

FIGURE 15. TV-L2 calculated for 600 iterations of the model in (36). Each
curve corresponds to one value of α ∈ {0.1,0.5,0.9}.

edge detection in terms of edge lines can be achieved with
values of α other than 1.

Edge detectors based on the second order derivative are
known to be sensitive to noise [98] which begs the ques-
tion: does the fractional Laplacian suffer from sensitivity to
noise as well? To this end, we used a synthetic image with
various forms of edges that commonly exist in natural images,
then we added Gaussian noise to it and finally processed it
with the fractional Marr-Hildreth edge detector in Fig. 13.

FIGURE 16. α Shock filter with stopping criterion 5. Left column are input
image. Middle column is the output images of shock filter with α = 1
(Standard shock filter). Right column is the output of shock filtering with
α = 0.1. The parameter h was set to 0.05 in this experiment.

From Fig. 13 we see that; the fractional Laplacian is less
sensitive to noise as expected because it has more coefficients
(memory property) than the standard Laplacian.

4) SHOCK FILTERING
Shock filtering was initially proposed by Osher and
Rudin [99] for image enhancement but, the technique
received a lot of interest from researchers. Shock filters are
formulated as PDEs that are evolved over time to come up
with the filtered image which is characterized to be piece-
wise constant. The basic formulation of a shock filter is as
follows:

∂u
∂t
= − sign(1u)|∇u| (33)

A more robust version utilizes a smoothing operator such
as a Gaussian kernel, and is formulated as follows:

∂u
∂t
= − sign(1(Gσ ∗ u))|∇(Gσ ∗ u)| (34)

Gσ represents a two-dimensional Gaussian filter with σ being
a smoothness parameter and is set to 1 in all experiments in
this work.

We extend the proceeding model to fractional order

∂u
∂t
= − sign(Lα(Gσ ∗ u))|∇(Gσ ∗ u)| (35)

which can be solved using the explicit scheme
[3, Appendix A]

un+1 = un − λ sign(Lα(Gσ ∗ un))|∇(Gσ ∗ un)| (36)
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FIGURE 17. Scan-lines captured from the RGB (left to right) channels of the images shown in Fig. 16. Using the fractional Laplacian results in more more
abstract lines.

This extra parameter α gives more control over the filtering
effect. In Fig. 14, we compare the fractional (α = 0.6) and
the standard Laplacian (α = 1). The fractional Laplacian
produces better object segmentation effect with sharper edges
than the case with the standard Laplacian.

a: STOPPING CRITERION
For values of 0 < α < 1, time stepping (36) for a
large amount of time results in images that are not pleasant.

To give a sense of what is happening, and because the shock
filter results in piece-wise constant images, we compute a
normalized anisotropic TV-L2 cost at every iteration.
The TV-L2 is:

TV-L2 : {|un − u0| + |∇xun|1 + |∇yun|1}/N (37)

where N is the number of pixels in the image u. Fig. 15
demonstrates the measure TV-L2 for different runs of the
shock filter at different values of α.
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FIGURE 18. α scale-space filtered image on the top. Rows correspond to values of α ∈ {0.2,0.4,0.7,1} from top to bottom. Columns correspond to
values of N ∈ {1,3,10,30} from left to right. On the bottom right corner of each image is a plot of the α scale-space function in (42) with the
corresponding values of α and N .
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It is clear from Fig. 15 that the shock filter might not
converge. To avoid the shock filtered result from diverging,
we use TV-L2 as a stopping criterion as in Algorithm 5.

Algorithm 5 Fractional Shock Filter With Stopping
Criterion
Input: α, Iinput
Output: un+1

1 threshold = 10−3;
2 u0 = Iinput ;
3 while TV-L2 (37) > threshold do
4 un+1 using (36)
5 n← n+ 1
6 end

In Fig. 16, the impact of using different values of α in
the proposed shock filter is presented for different images
where, the number of iterations is determined by the stopping
criterion.

One thing to notice in Fig. 16 is that the fractional shock
filtering results in more abstract images and sharper edges.
To further validate this observation, we plot in Fig. 17 a
scan line from the three channels (RGB) for the four images
in Fig. 16. In each subplot of Fig. 16, we have scan-lines of
two cases to facilitate visual comparison.

5) α SCALE-SPACE
The fractional Laplacian could be used as replacement for
the standard Laplacian in the heat equation, this is known as
α scale-space model [100]:

∂u
∂t
= −Lαu (38)

This leads to different diffusion effects and rates. The
implementation of this diffusion can be carried out efficiently
in the DCT domain. First, we write the explicit scheme [3]:

2ut+1 = ut − Lαut (39)

ut+1 = ut −MTEαMut (40)

Mut+1︸ ︷︷ ︸
Ut+1

= Mut︸︷︷︸
Ut

−MMT︸ ︷︷ ︸
I

EαMut︸︷︷︸
Ut

(41)

Consequently, the filtered signal at iteration n becomes:

Un = (I − Eα)NU0 (42)

A demonstration of the effect of α scale-space is presented
in Fig. 18. It is important to stress that this is an iterative linear
filtering process. The filters are characterized as having low-
pass response. The authors of [73] have explored combin-
ing multiple fractions of the Laplacian implemented in the
Fourier transform domain.

IV. SUMMARY AND CONCLUSION
In this article, we have presented a new technique for con-
structing a fractional Laplacian using the DCT transform.

The proposed operator is a matrix operator which avoids the
need for discretization, a necessary step for implementation,
typically done in DSP-based constructions. We have also
studied the trend filter and provided a new DCT-based imple-
mentation for it, which we used later in generalizing trend
filters to the fractional-order. The proposed fractional Lapla-
cian allowed us to make the generalization of another version
of the trend filter namely the `1 trend filter to fractional-order.
To test the efficiency of the new operator, we have incor-

porated it in five applications that traditionally relied on
the Laplacian operator. Firstly, we used the proposed frac-
tional trend filters for image denoising and showed that
for higher noise levels, the fractional-order Laplacians tend
to produce better results than the standard Laplacian. Sec-
ondly, we used the proposed operator in image sharpening
and stronger sharpening effect was achieved compared to
the standard Laplacian. Thirdly, Marr-Hildreth scheme for
edge detection was generalized and more robust edge detec-
tion was demonstrated. Fourthly, we showed that the use of
fractional-order Laplacian in shock filtering resulted in better
segmented images. Finally, we incorporated the proposed
fractional Laplacian in the α scale-space scheme and showed
that the fractional Laplacian resulted in faster diffusion.

Finally, we reiterate; the aim of this paper is to present an
alternative way to define the fractional Laplacian operator,
which, to our best knowledge, has not been published before.
We demonstrate its potential applications in solving a wide
range of problems from data modeling to image processing.
We observe from the simulations, the performance is some-
times sub-optimal. This is a result of applying the fractional
Laplacian operator in a direct and non-sophisticated fashion.
Further improvement can be achieved by using the fractional
Laplacian operator as a building block in some successful
algorithms.
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