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Abstract

This thesis includes chapters that examine the application of time-varying parameter mod-

els to three macroeconomic topics: the Phillips curve, early warning system models, and

uncovered interest rate parity.

Chapter 2 formally tests for time variation in the slope of the Phillips curve using a

variety of measures of inflation expectations and real economic slack. We find that time

variation in the slope of the Phillips curve depends on the measure of inflation expectations

rather than the measure of real economic slack. We find strong evidence supporting the

time-varying slopes of the Phillips curve with different measures of inflation expectations.

Thus, we conclude that the slope of the Phillips curve is time varying.

In Chapter 3, we both narrowly and widely replicates the results of Anundsen et al.

(2016). Further, we find that allowing for time-varying parameters of early warning system

models can considerably improve the in-sample model fit and out-of-sample forecasting

performance based on an expanding window forecasting exercise.

In Chapter 4, we consider a time-varying coefficient model with stochastic volatility

for the uncovered interest parity regression. We show that jointly estimating time-varying

coefficients and stochastic volatility can provide relatively reliable time-varying parame-

ters. Using posterior samples from Bayesian estimation, we determine which United States

macroeconomic variables explain the variation in time-varying coefficients and volatility

based on least squares with shrinkage. Our empirical study shows that the null hypothesis

of uncovered interest parity cannot be unconditionally rejected in the cases of several de-
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veloped economies. Further, we show that local breaches of uncovered interest parity are

mainly associated with variables from the labour market variables and the output variables

in the United States, among other variables.



Chapter 1

Introduction

Many papers highlight the empirical importance of time-varying parameters (TVPs) for

modelling financial and macroeconomic variables, including Canova (1993), Cai et al. (2000),

Cogley and Sargent (2005), Koop and Potter (2007), Koop and Korobilis (2013), and Chan

and Eisenstat (2015). This thesis examines three applications of TVP models in empirical

macroeconomics. Chapter 2 studies whether the slope of the Phillips curve is time varying.

Chapter 3 investigates whether allowing the time-varying coefficients in the early warn-

ing system models can improve these models’ forecasting performance. Chapter 4 uses a

time-varying coefficients model with stochastic volatility (TVC-SV) to study the uncovered

interest rate puzzle.

The original Phillips curve describes the empirical relationship between inflation and

unemployment rate (Phillips, 1958). Since many central banks need to maintain both price

stability and maximum employment, estimating this relationship is important. In the after-

math of the financial crisis of the 2008-2009, inflation remained stable while there was a

surge in the unemployment rate. This is often referred to as the ‘missing disinflation’ puz-

zle. One explanation for the puzzle is that the slope of the Phillips curve becomes flatter

(e.g., Bean, 2006; Gaiotti, 2008; Ihrig et al., 2010; Kuttner and Robinson, 2010), calling

into question of the stability of the Phillips curve. Given these considerations, in Chapter
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2, we consider a range of models with an embedded Phillips curve using a variety of mea-

sures of inflation expectations and real economic slack. We then test for time variation in

the slope of these Phillips curves using the method proposed by Chan (2018). We provide

strong evidence in favour of the time-varying slope of the Phillips curve from unobserved

components models.

In the early warning system literature, Anundsen et al. (2016) used a dataset covering

20 countries and spanning the period 1976 to 2014 to assess the probability of a financial

crisis—specifically, the likelihood that an economy is in a pre-crisis state. They contribute

to the early warning system literature by finding that both household credit to the gross do-

mestic product (GDP) gap and the non-financial enterprise (NFE) credit-to-GDP gap affect

the likelihood of a financial crisis. In addition, global housing market development can af-

fect domestic financial stability. Finally, their measures of exuberance in housing and credit

markets have predictive power of financial stability. Chapter 3 both narrowly and widely

replicates the main results of Anundsen et al. (2016). In the narrow replication, using the

dataset of Anundsen et al. (2016), we replicate their main results using Matlab. In the wide

replication, we replicate their results by using TVP probit models. The wide replication has

three main findings. First, the coefficients of financial crisis indicators are quite stable over

time, but the time variation in the country dummies is considerable. Second, most of the

main findings of Anundsen et al. (2016) are robust to using a TVP approach. The important

role of the household credit-to-GDP gap and global housing market developments is very

robust to using a TVP approach. The effect of exuberance measures on the probability of a

financial crisis also remains robust to using a TVP approach. However, the evidence thatthe

NFE credit-to-GDP gap significantly affects the probability of a financial crisis is mixed

across different specifications. Third, based on the expanding window forecasting exercise,

allowing for TVPs of probit models can considerably improve the in-sample model fit and

out-of-sample forecasting performance based on expanding window forecasting exercise.
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In Chapter 4, we study the uncovered interest parity relation via a new UIP regression

model that extends the model of Fama (1984) by allowing a time-varying coefficient model

and stochastic volatility. First, we show that, if we need to estimate the time-varying coef-

ficients or stochastic volatility in a UIP regression model, we need to jointly estimate these

two parameters. Compared to alternative models, we show that the TVC-SV can give us

sensible weighting schemes on the observations, leading to a reliable inference on the time-

varying coefficients and stochastic volatility. Second, different from many other papers that

report that the UIP is usually violated, we show the UIP hypothesis unconditionally cannot

be rejected for several economies . Our finding does not support the time-varying risk pre-

mia explanation for the UIP puzzle. We follow an atheoretical or agnostic approach to find

which variables can explain the variation in the slope of the UIP regression model. Third,

using least squares with shrinkage, we show that variables associated with the United States

(US) labour market play the most important role in explaining the variation in the slope of

the UIP regression model.



Chapter 2

Is the Slope of the Phillips Curve Time

Varying? Evidence from Unobserved

Components Models

2.1 Introduction

The original Phillips curve describes the empirical relationship between inflation and the

unemployment rate (Phillips, 1958). Other versions that use related measures of real eco-

nomic activity are later considered. Estimating this relationship is important for a number

of reasons. For example, many central banks need to maintain both price stability and

maximum employment. However, these two goals might be not consistent. Therefore, un-

derstanding the trade-off between these two goals is important. In addition, in the aftermath

of the financial crisis of 2008–2009, inflation remained stable while there was a surge in

the unemployment rate. This is often referred to as the ‘missing disinflation’ puzzle. One

explanation for the puzzle is that the slope of the Phillips curve becomes flatter (e.g., Bean,

2006; Gaiotti, 2008; Ihrig et al., 2010; Kuttner and Robinson, 2010), calling into question

of the stability of the Phillips curve.
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Many papers have documented changes in the slope of the Phillips curve. Examples

include Roberts (2006), Atkeson and Ohanian (2001), and Mishkin (2007). To test for

time variation in the slope of the Phillips curve, these papers estimate a constant coefficient

Phillips curve using split samples to check whether the slope changes considerably across

different samples. Rather than model the slope of the Phillips curve as a constant and com-

pare the estimated slope of the Phillips curve in different samples, some studies model the

slope as time varying. Examples include Stella and Stock (2012), Chan et al. (2016), and

Kim et al. (2014).

However, there are two issues for assuming the slope of the Phillips curve as time vary-

ing. First, the conclusion that the slope of the Phillips curve changes is challenged by some

recent studies. For example, Gordon (2013) finds that the slope of the Phillips curve is stable

by estimating a model with a hybrid Phillips curve. Coibion and Gorodnichenko (2015) esti-

mated many models with a standard expectation-augmented Phillips curve using a variety of

measures of inflation expectations and find mixed evidence regarding changes in the slope

of the Phillips curve. Second, the TVP specification might lead to over-parameterisation

compared to the constant coefficient specification as pointed out by Chan et al. (2012),

Nakajima and West (2013), and Belmonte et al. (2014). Therefore, one should be cautious

about modelling the slope of the Phillips curve as time varying without testing whether this

specification is relevant.

Given these considerations, we consider a range of models with an embedded Phillips

curve using a variety of measures of inflation expectations and real economic slack. We

then test for time variation in the slope of these Phillips curves using the method proposed

by Chan (2018). We find strong evidence in favour of the time-varying slope of the Phillips

curve from unobserved components models.

Formal tests of time variation in the slope of the Phillips curve have been recently im-

plemented by Berger et al. (2016) and Karlsson et al. (2018). Karlsson et al. (2018) test for
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time variation within the framework of a TVP Bayesian vector autoregression using new

tools for model selection proposed by Chan and Eisenstat (2018). By comparing a bivariate

vector autoregression with constant coefficients with a time-varying VAR, Karlsson et al.

(2018) find strong evidence in favour of the latter and conclude that the slope of the Phillips

curve is unstable. Instead of jointly testing time variation in all the parameters, our approach

is more specific and tests only if the slope coefficient of the Phillips curve is time-varying.

This chapter is most related to Berger et al. (2016). They estimate a model with a New

Keynesian Phillips curve in which the trend inflation is interpreted as long-run inflation

expectations. They then test for time variation in the slope of the Phillips curves using a

stochastic model specification search, an approach proposed by in Frühwirth-Schnatter and

Wagner (2010). Berger et al. (2016) find that the time-varying slope specification is rejected

by the stochastic model specification search and conclude that the slope of the Phillips curve

is not time varying.

This chapter is different from Berger et al. (2016) in three aspects. First, we consider

a wider range of measures of inflation expectations and economic slack. In particular, we

consider trend inflation as a measure of inflation expectations and also consider survey-

based inflation expectations and a variety of measures of real economic slack. Second, we

directly compute the Bayes factor in favour of the model with a time-varying Phillips curve

via the method proposed by Chan (2018) rather than the stochastic model specification

search reported by Berger et al. (2016). Finally, unlike Berger et al. (2016), we find strong

evidence supporting the time varying slope of the Phillips curve.

The remainder of this chapter is organised as the follows. In Section 2.2, we describe

how we test the time variation in the slope of the Phillips curve. In Section 2.3, we describe

the models with different specifications for the Phillips curve. In Section 2.4, we discuss

the estimation procedures for the models in Section 2.3. Section 2.5 describes the results of

the test for the time variation of the slope of the Phillips curve. In Section 2.6, we conclude
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that the slope of the Phillips curve is time varying.

2.2 Testing for Time Variation

In this section, we outline the methodology to test for time-variation. We first provide an

overview of the Bayes factor and Savage-Dickey density ratio and then introduce a new

method, as proposed by Chan (2018), of calculating the Bayes factor.

2.2.1 Bayes Factor and Savage-Dickey Density Ratio

To demonstrate the method of testing for time variation in the slope of the Phillips curve,

we first consider the following unobserved components model with stochastic volatility:

pt �Etpt+1 = ltxt + ep
t , ep

t ⇠N (0,eht ), (2.1)

lt = lt�1+ el
t , el

t ⇠N (0,w2
l ), (2.2)

where pt is the inflation rate at time t, Etpt+1 is a measure of expected inflation at time

t+ 1 given the information at time t, xt is a measure of real economic slack and lt is the

slope of the Phillips curve. We model the slope, lt , as a random walk process instead of

a stationary AR(1).1 To test whether the slope, lt , is time-varying, we can compare the

model (2.1)–(2.2) to a restricted version in which the slope is constant, that is, w2
l = 0.

Denote the former model as Model 1 and the restricted version as Model 2. One popular

model comparison criterion for comparing these two models is the Bayes factor that favours
1Eisenstat and Strachan (2016) argue that the random walk assumption has two main advantages for

macroeconomic applications. First, the random walk specification can be a parsimonious approximation to a
stationary specification with high persistence. Second, the random walk specification implies greater smooth-
ness than the stationary model with low persistence.
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Model 1 against Model 2, defined as

BF12 =
p(y |Model 1)
p(y |Model 2)

,

where p(y | Model i) is the marginal likelihood for Modeli. The corresponding posterior

odds ratio is defined as

p(Model 1 | y)
p(Model 2 | y) =

p(Model 1)
p(Model 2)

⇥BF12.

Assume that the prior model probabilities are equal, i.e., p(Model 1) = p(Model 2), and

the posterior odds ratio favouring Model 1 reduces to the Bayes factor BF12. For example,

BF12 = 10 means that model Model 1 is 10 times more likely than model Model 2 given the

data.

The Bayes factor is commonly used to compare models. However, the main challenge

here is that it is often difficult to compute the marginal likelihood of models with time-

varying parameters.

Fortunately, one simpler method is available when we need to compute the Bayes factor

for nested models. Specifically, the Bayes factor can be calculated by using the Savage-

Dickey density ratio (Verdinelli and Wasserman, 1995). This approach requires only the

estimation of the unrestricted model. For example, the Bayes factor favouring Model 1

against Model 2 can be obtained using the Savage-Dickey density ratio as

BF12 =
p(w2

l = 0)
p(w2

l = 0 | y)
,

where the numerator is the marginal prior density of w2
l evaluated at 0, and the denominator

is the marginal posterior of w2
l evaluated at 0. Intuitively, if w2

l is more likely to be 0

under the prior density relative to the posterior density, this can be viewed as evidence
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supporting the time-varying slope of the Phillips curve. However, this method cannot be

directly applied in our setting due to two related issues. First, the value 0 is at the boundary

of the parameter space of w2
l . Therefore, the Savage-Dickey density ratio approach is not

applicable. Second, w2
l is often assumed to have an inverse-gamma prior, which has zero

density at zero. To deal with these two difficulties, we follow the method proposed by

Chan (2018). Specifically, we use the so-called non-centred parameterisation discussed in

Frühwirth-Schnatter and Wagner (2010), working with the unsigned standard deviation, wl ,

that supports the whole real line. Then we directly calculate the relevant Bayes factor using

the Savage-Dickey density ratio.

2.2.2 Non-centred Parameterisation

Next, we briefly discuss the non-centred parameterisation. First, we define lt = l0+wl
elt ,

then, the state space model in (1)-(2) can be written as follows:

pt �Etpt+1 = (l0+wl
elt)xt + ep

t , ep
t ⇠N (0,eht ), (2.3)

elt = elt�1+ eelt , eelt ⇠N (0,1), (2.4)

where el0 = 0.

In this model, we assume wl ⇠ N (0,Vwl ), which has two main advantages. First,

by a change of variable (Kroese and Chan, 2014), the implied prior for w2
l is G (12 ,

1
2Vwl

).

This gamma prior has more mass concentrated around small values of w2
l . Therefore, it

provides shrinkage—a priori it favours the more parsimonious constant—coefficient model.

Second, it is a conjugate prior for wl , under the non-centred parameterisation, facilitating

computation. The sign of wl is not identified, but alteration of the sign dose not change the

likelihood value. After the non-centered parameterisation of model (2.1)–(2.2), the Bayes

factor BF12 = p(wl = 0)/p(wl = 0 | y), obtained by using Savage-Dickey density ratio,
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can be directly calculated using the method proposed by Chan (2018).

2.3 Specifications for the Phillips Curve

We consider two classes of models for modelling the Phillips curve: the univariate unob-

served components models with stochastic volatility and the bivariate unobserved compo-

nents models with stochastic volatility.2 For each model, we need a measure of both inflation

expectations and economic slack. For the univariate model, the unobserved component of

real economic activities is the trend of real economic activities, zt , denoted as z⇤t . Then, we

use the deviation from the trend, xt = zt � z⇤t , as a measure of economic slack. We will use

observable measures for the inflation expectations, Etpt+1, such as the average of the past

four quarters inflation or Survey of Professional Forecasters (SPF) inflation expectations.

A rapidly growing literature highlights that trend inflation has important implications

for the specification of the New Keynesian Phillips curve (e.g., Ascari, 2004; Cogley and

Sbordone, 2008; Kozicki and Tinsley). Thus, we also consider bivariate unobserved com-

ponents models to jointly model real economic activities and inflation. In the bivariate case,

the additional unobserved component is the trend inflation, denoted as tt . In the spirit of

Beveridge and Nelson (1981), tt can be interpreted as the long-run inflation expectations.

The estimated trend inflation usually has substantial variance. To reduce the variance in the

estimated trend inflation, Chan et al. (2018) estimate trend inflation by linking Blue Chip 10

years inflation forecasts to trend inflation. With additional information from the Blue Chip

10 years inflation forecasts, the variance of tt decreases substantially. Thus, in addition, we

also consider the models with Phillips curves linking Blue Chip 10 years inflation forecasts,

qt , to trend inflation, tt .

Altogether, we will estimate eight models from these two classes of models, using Blue

Chip 10 years inflation forecasts, qt , different measures of real economic slack, xt , and
2In this paper,‘ univariate’ and ‘bivariate’ refer to the numbers of unobserved components.
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different measures of inflation expectations, Etpt+1. We will provide the details of the

univariate and bivariate unobserved components models in Section 2.3.1 and Section 2.3.2.

2.3.1 Univariate Unobserved ComponentsModel with Stochastic Volatil-

ity

Let pt and zt denote the inflation rate and level of economic activities, respectively. Further,

let z⇤t denote the trend of real activities. Then xt = zt�z⇤t is a measure of the economic slack,

such as the unemployment gap or output gap. Considering the following class of univariate

unobserved components models with stochastic volatility:

pt = Etpt+1+lt(zt � z⇤t )+ ep
t , ep

t ⇠N (0,eht ), (2.5)

lt = lt�1+ el
t , el

t ⇠N (0,w2
l ), (2.6)

zt = z⇤t + et , (2.7)

et = f1et�1+f2et�2+ eet , eet ⇠N (0,w2
e ), (2.8)

where lt is the slope of the Phillips curve, Etpt+1 represents different measures for expecta-

tions of inflation. lt and tt are modelled as random walk, and et follows an AR(2) process.

We consider two different specifications for z⇤t . First, when zt represents unemployment

rate, z⇤t is modelled as a random walk:

z⇤t = z⇤t�1+ ez
⇤
t

t , ez
⇤
t

t ⇠N (0,w2
z⇤). (2.9)

Second, when zt represents output level, the growth of zt , Dz⇤t , is modelled as a random

walk:

Dz⇤t = Dz⇤t�1+ ez
⇤
t

t , ez
⇤
t

t ⇠N (0,w2
z⇤). (2.10)
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2.3.2 Bivariate Unobserved ComponentsModel with Stochastic Volatil-

ity

Next, we augment the univariate unobserved components models to model trend inflation.

Specifically, the class of bivariate unobserved components models with stochastic volatility

can be denoted as

pt � tt = lt(zt � z⇤t )+ ep
t , ep

t ⇠N (0,eht ), (2.11)

lt = lt�1+ el
t , el

t ⇠N (0,w2
l ), (2.12)

tt = tt�1+ et
t , et

t ⇠N (0,egt ), (2.13)

zt = z⇤t + et , (2.14)

et = f1et�1+f2et�2+ eet , eet ⇠N (0,w2
e ), (2.15)

As before, either z⇤t or Dz⇤t is modelled as a random walk:

z⇤t = z⇤t�1+ ez
⇤
t

t , ez
⇤
t

t ⇠N (0,w2
z⇤), (2.16)

Dz⇤t = Dz⇤t�1+ ez
⇤
t

t , ez
⇤
t

t ⇠N (0,w2
z⇤). (2.17)

In addition, we also link the trend inflation, tt , to the Blue Chip inflation forecasts by

adding the following equation:

qt = d0+d1tt + eqt , eqt ⇠N (0,w2
q ), (2.18)

where qt is Blue Chip 10 years forecasts. Following Chan et al. (2018), we allow the possi-

bility that the forecasts are unrelated to the trend inflation by introducing the intercept, d0,

and slope coefficient, d1. When d0 = 0 and d1 = 1, the Blue Chip forecasts are an unbiased
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measure of the trend inflation.

2.3.3 Specific Models

The following is a brief summary of all the models we consider. Details of these eight

models are provided in Section 2.7.

• M1—univariate unobserved components model of the Phillips curve with the unem-

ployment gap, ut �nt , and the backward-looking inflation expectations, pe
t|t�1, mea-

sured as the average of past four quarter inflation, where zt = ut , z⇤t = nt , and then

xt = ut �nt , and Etpt+1 = pe
t|t�1.

• M2—univariate unobserved components model of the Phillips curve with the unem-

ployment gap, ut � nt , and the forward-looking inflation expectations, pe
t+1|t , mea-

sured as SPF one year inflation forecasts, where zt = ut , z⇤t = nt , then xt = ut�nt , and

Etpt+1 = pe
t+1|t .

• M3—univariate unobserved components model of the Phillips curve with the output

gap, yt � y⇤t , and the backward-looking inflation expectations, pe
t|t�1, measured as the

average of past four quarter inflation, where zt = yt , z⇤t = y⇤t , then xt = yt � y⇤t , and

Etpt+1 = pe
t|t�1.

• M4—univariate unobserved components model of the Phillips curve with the output

gap, yt � y⇤t and the forward-looking inflation expectations, pe
t+1|t , measured as SPF

one year inflation forecasts,where zt = yt , z⇤t = y⇤t , then xt = yt-y⇤t , and Etpt+1 = pe
t+1|t .

• M5—bivariate unobserved components model of the Phillips curve with the unem-

ployment gap, ut � nt , and the trend inflation, tt , where zt = ut , z⇤t = nt , and then

xt = ut �nt .
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• M6—bivariate unobserved components model of the Phillips curve with the output

gap, yt � y⇤t , and the trend inflation, tt , where zt = yt , z⇤t = y⇤t , and then xt = yt � y⇤t .

• M7—bivariate unobserved components model of the Phillips curve with the unem-

ployment gap, ut � nt , and the trend inflation, tt , where zt = ut , z⇤t = nt , and then

xt = ut �nt . tt is estimated with the additional information from Blue Chip 10 years

inflation forecasts, qt .

• M8—bivariate unobserved components model of the Phillips curve with the output

gap, yt�y⇤t , and the trend inflation, tt , ,where zt = yt , z⇤t = y⇤t , and then xt = yt�y⇤t . tt

is estimated with the additional information of Blue Chip 10 years inflation forecasts,

qt .

2.4 Estimation

In this section, we discuss the estimation procedures for the class of bivariate unobserved

components models with stochastic volatility, specified in (11)–(17). The class of univari-

ate unobserved components model with stochastic volatility, specified in (5)–(10) can be

estimated similarly. Estimation details for these eight models with different measures for

inflation expectations and real economic slack are provided in Section 2.7.

2.4.1 Prior

We assume wl ⇠ N (0,Vwl ). This assumption, discussed in Section 2.2.2, can provide

shrinkage—a priori it favours the more parsimonious constant-coefficient model. Under

the non-centred parameterisation, this assumption can also facilitate computation. We set

Vwl=0.25
2 so that the implied prior means of w2

l are Ew2
l = 0.252. The priors for other

parameters will be discussed in detail in Section 2.7.



2.4 Estimation 15

2.4.2 Likelihood

In this Section, we derive the densities of p = (p1, . . . ,pT )0 and z= (z1, . . . ,zT )0 that will be

used to construct the posterior sampler. Let

Ll = diag(l1,l2,l3, . . . ,lT )

and

lt = l0+wl
elt .

Then,

Ll = diag(l0+wl
el1,l0+wl

el2,l0+wl
el3, . . . ,l0+wl

elT ).

Stack (11) over t, and, we have

p � t �Ll (z� z⇤) = ep .

Then, the log conditional density of p is

log p(p | t,z,z⇤,e,el ,l0,wh,wl ,wz⇤ ,we,h,g)µ�1
2
(p�t�Ll (z�z⇤))0S�1

p (p�t�Ll (z�z⇤)),

where

Sp = diag(eh1 ,eh2 ,eh3 , . . . ,ehT ).
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Let

Hf =

2

66666666664

1 0 0 0 . . . 0

�f1 1 0 0 . . . 0

�f1 �f2 1 0 . . . 0
...

...
...

... . . . 0

0 . . . . . . �f1 �f2 1

3

77777777775

.

Stack (15) over t. Then, we have

Hfe= ee.

Finally, the log conditional density of z is

log p(z | z⇤,e,wz⇤ ,we,f) µ �T
2
logw2

e �
1

2w2
e
(z� z⇤)0H 0

fHf (z� z⇤).

2.4.3 Posterior Sampler

The bivariate unobserved components model is estimated using Markov Chain Monte Carlo

(MCMC) methods. Specifically, given the priors and the likelihood derived in Section 2.4.2,

posterior draws can be obtained by sequentially sampling from the following seven condi-

tional densities:

1. p(t | p,z,z⇤,el ,l0,wl ,g,h,e,f ,w2
g ,w2

z⇤ ,w2
e );

2. p(z⇤ | p,t,el ,l0,wl ,z,e,f ,wz⇤ ,w2
e );

3. p(h,g | p,z,z⇤,t,el ,l0,wl );

4. p(f | z,z⇤,wz⇤ ,w2
e );

5. p(el | p,z,z⇤,t,h,l0,wl );

6. p(l0,wl | p,z,z⇤,el ,h);
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7. p(w2
e | z,z⇤,f).

The estimation is standard and details are provided in Section 2.7. We also provide in

Section 2.7 the estimation details of all other models.

2.5 Results

In this section, we first estimate six different models embedded with the Phillips curve,

M1–M6, and test the time variation in the slopes. In addition, we estimate two additional

models, M7 and M8, that use additional information from the Blue Chip 10 years inflation

forecasts. We then test the time variation in the slopes of the Phillips curve under these two

models.

Our data consist of quarterly consumer price index (CPI) inflation rates, (civilian season-

ally adjusted) unemployment rates, and real gross domestic product (GDP) from 1948Q1 to

2013Q1, SPF one- year inflation forecasts from 1982Q1 to 2013Q1, and Blue Chip 10 years

inflation forecasts from 1982Q1 to 2013Q1.

To formally test if there is substantial time variation in the slope of the Phillips curve

lt , we compute the Bayes factor favouring the six different unrestricted models, M1–M6,

against their corresponding restricted versions, where lt is constant (wl = 0). The test

results for the time variation of the slopes of different models with the Phillips curve are

shown in Table 2.1.

Table 2.1: Estimated Log Bayes Factors and the Numerical Standard Errors.

M1 M2 M3 M4 M5 M6

Log BF 4.8 (0.08) 4.1 (0.12) 8.4 (2.05) 57.2 (3.57) 0.2 (0.03) 0.7 (0.06)

Overall, for most models, the data prefer the version with time variation. Specifically,

the log Bayes factors associated with M1, M2, M3 and M4 are all larger than 4, indicating
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substantial time variation in the slope, lt . Conversely, the log Bayes factors associated with

M5 and M6 are small but positive, suggesting slight evidence supporting time variation in

lt .

To corroborate these model comparison results, we plot the posterior estimates of lt and

wl in Figures 2.1 and Figure 2.2. First, Figure 2.1 shows the results for the Phillips curve

specified as the univariate unobserved components model with stochastic volatility. Figure

2.2 shows the corresponding results for the bivariate unobserved components model with

stochastic volatility.

Figure 2.1: Estimated Slope lt and Density of wl for the Phillips Curves Specified as
Univariate Unobserved Components Model with Stochastic Volatility.
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Consistent with model comparison results, the right panel of Figure 2.1 shows that esti-

mates of the slopes of the Phillips curve, lt , under M1 and M2 are volatile and time-varying.

They are always negative, consistent with the idea of the Phillips curve that there is a trade-

off between inflation and the unemployment gap. Also, starting from the 1980s, lt becomes

flatter and is closer to zero. Estimates of the slopes of the Phillips curve, lt , under M3 and

M4 are also volatile but they mostly move around 0. This suggests that the real GDP gap has

little effects on inflation. These results are similar to those reported in Berger et al. (2016)

and Chan and Grant (2017). They both find the magnitude of lt is small when the economic

slack is measured as the output gap.

The left panel of Figure 2.1 shows that the posterior densities of wl under M1, M2, M3,

and M4 are all bimodal and have almost no mass around 0. This can be viewed as strong

evidence supporting the time-varying lt . Figure 2.1 indicates that when the Phillips curve is

specified as the univariate unobserved components model with stochastic volatility, where

the unobserved component for inflation is the trend of real economic activities, the slope,

lt , of the Phillips curve has substantial time variation.



2.5 Results 20

Figure 2.2: Estimated Slope lt and Density of wl for the Phillips Curves with Bivariate
Unobserved Components Model with Stochastic Volatility.

The right panel of Figure 2.2 shows that estimates of the time-varying slopes of the

Phillips curve, lt , of M5 and M6 are insignificant and stable around 0. The left panel of

Figure 2.2 shows that the posterior densities of wl under M5 and M6 are bimodal but have

a considerable mass around 0. However, compared to the prior density, the posterior density

at 0 is lower, suggesting wl is less likely to be 0 given the data. This is consistent with the

model comparison result that shows moderate evidence on the time variation of lt .

To summarise our results so far, in the univariate case, the slope of the Phillips curve is
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conclusively time varying. In the bivariate case, evidence of the time variation on the slope

of the Phillips curve is suggestive but not conclusive.

Figure 2.3: Trend Inflation: tt .

The inconclusive evidence in the bivariate case could be due to the substantial variance

in the estimated trend inflation. To investigate this possibility, we follow Chan et al. (2018),

who link trend inflation, tt , to the blue chip inflation forecasts that substantially reduce the

variance in the estimated trend inflation. Following Chan et al. (2018), we add an additional

measurement equation linking trend inflation to the blue chip 10 years inflation forecasts to

M5 and M6 respectively, resulting in M7 and M8. Figure 2.3 shows that with the additional

information from the blue chip 10 years inflation forecasts, M7 and M8 have a substantially

smaller variance in the estimated trend inflation than do M5 and M6.
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Figure 2.4: Estimated slope lt and density of wl of M7 and M8

Next, we test the time variation in the slopes under M7 and M8. The log Bayes factors

associated with M7 and M8 are 3.5 (0.24) and 51.0 (3.46) respectively. These values are

large, indicating substantial time variation in the slope, lt . Consistent with model compar-

ison results of M7 and M8, Figure 2.4 shows that estimates of the slopes of the Phillips

curve, lt , of M7 and M8 are volatile and the posterior densities of wl under M7 and M8

are bimodal and have almost no mass around 0. This shows strong evidence favouring time

variation in the slope.

In summary, in the univariate case, the slope of the Phillips curve is conclusively time
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varying. Moreover, in the bivariate case, the slope of the Phillips curve is also conclusively

time varying with more precise estimates of the trend inflation, tt .

2.6 Conclusion

In this chapter, we estimate eight Phillips curve models and test for time variation in the

slopes of the Phillips curve under these models. First, we find that CPI inflation is much

more sensitive to changes in the unemployment gap than to changes in the output gap. Mod-

els with the unemployment gap have a much larger lt in magnitude than models with the

output gap. Second, we find that time variation of the slope of the Phillips curve mainly

depends on specifications of inflation expectations. When the measures of inflation ex-

pectations are observable, the slope of the Phillips curve is time varying. However, when

the measure of inflation expectations is trend inflation with large variance, the slope of the

Phillips curve is constant. By reducing the variance in the estimated trend inflation through

linking blue chip 10 years inflation forecast to trend inflation, the Phillips curve model

with trend inflation has the time-varying slope. We consider different measures of inflation

expectations: backward-looking inflation expectations, forward-looking inflation expecta-

tions, and trend inflation. The slopes of these Phillips curves with different measures of

inflation expectations are volatile and time varying. Thus, we conclude that the slope of the

Phillips curve is time varying.

2.7 Appendix

2.7.1 Details of the Specific Models

In this section, we outline the eight model, M1-M8, in detail. In general, we have two classes

of models: univariate and bivariate unobserved components models. The former consists of
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M1–M4 that use different measures of economic slack and inflation expectations. The latter

comprises M5–M8. The specifications for each model are discussed below.

M1

M1 is a univariate unobserved components model where pt is inflation. lt is the slope

of the Phillips curve. Etpt+1 is measured as the average of past four quarter inflation,

pe
t|t�1=(pt|t�1+pt|t�2+pt|t�3+pt|t�4)/4. lt is modeled as a random walk. ut represents

the unemployment rate. et follows an AR(2) process. NAIRU, nt , is modeled as a random

walk. The log of stochastic volatility, ht , is modelled as a random walk.

pt �pe
t|t�1 = lt(ut �nt)+ ep

t , ep
t ⇠N (0,eht ), (2.19)

ut = nt + et , (2.20)

et = f1et�1+f2et�2+ eet , eet ⇠N (0,w2
e ), (2.21)

nt = nt�1+ en
t , en

t ⇠N (0,w2
n), (2.22)

lt = lt�1+ el
t , el

t ⇠N (0,w2
l ), (2.23)

ht = ht�1+ eht , eht ⇠N (0,w2
h ). (2.24)

M2

M2 is a univariate unobserved components model where pt is inflation. lt is the slope of

the Phillips curve. Etpt+1 is measured as SPF one-year inflation forecasts, pe
t+1|t . lt is

modelled as a random walk. ut represents the unemployment rate. et follows an AR(2)

process. NAIRU, nt , is modelled as a random walk. The log of stochastic volatility, ht , is
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modelled as a random walk.

pt �pe
t+1|t = lt(ut �nt)+ ep

t , ep
t ⇠N (0,eht ), (2.25)

ut = nt + et , (2.26)

et = f1et�1+f2et�2+ eet , eet ⇠N (0,w2
e ), (2.27)

nt = nt�1+ en
t , en

t ⇠N (0,w2
n), (2.28)

lt = lt�1+ el
t , el

t ⇠N (0,w2
l ), (2.29)

ht = ht�1+ eht , eht ⇠N (0,w2
h ). (2.30)

M3

M3 is a univariate unobserved components model where pt is inflation. lt is the slope

of the Phillips curve. Etpt+1 is measured as the average of past four quarter inflation,

pe
t|t�1=(pt|t�1 + pt|t�2 + pt|t�3 + pt|t�4)/4. lt is modelled as a random walk. The cycli-

cal component, ct , follows an AR(2) process. yt represents real output level. Underlying

output trend growth, Dy⇤t , is modelled as a random walk. The log of stochastic volatility, ht ,

is modelled as a random walk.

pt �pe
t|t�1 = lt(yt � y⇤t )+ ep

t , ep
t ⇠N (0,eht ), (2.31)

yt = y⇤t + ct , (2.32)

ct = f1ct�1+f2ct�2+ ect , ect ⇠N (0,w2
c ), (2.33)

Dy⇤t = Dy⇤t�1+ ey⇤t , ey⇤t ⇠N (0,w2
y⇤), (2.34)

lt = lt�1+ el
t , el

t ⇠N (0,w2
l ), (2.35)

ht = ht�1+ eht , eht ⇠N (0,w2
h ). (2.36)
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M4

M4 is a univariate unobserved components model where pt is inflation. lt is the slope of the

Phillips curve. Etpt+1 is measured as SPF one-year inflation forecasts, pe
t+1|t . lt is modeled

as random walk. yt represents real output level. The cyclical component, ct , follows an

AR(2) process. Underlying output trend growth, Dy⇤t , is modelled as a random walk. The

log of stochastic volatility, ht , is modelled as a random walk.

pt �pe
t|t+1 = lt(yt � y⇤t )+ ep

t , ep
t ⇠N (0,eht ), (2.37)

yt = y⇤t + ct , (2.38)

ct = f1ct�1+f2ct�2+ ect , ect ⇠N (0,w2
c ), (2.39)

Dy⇤t = Dy⇤t�1+ ey⇤t , ey⇤t ⇠N (0,w2
y⇤), (2.40)

lt = lt�1+ el
t , el

t ⇠N (0,w2
l ), (2.41)

ht = ht�1+ eht , eht ⇠N (0,w2
h ). (2.42)

M5

M5 is a bivariate unobserved components model where pt is inflation. lt is the slope of

the Phillips curve. Long-run inflation expectations are measured as trend inflation, tt , and

follow a random walk. lt is modelled as a random walk. ut represents the unemployment

rate. et follows an AR(2) process. NAIRU, nt , is modelled as a random walk. Two variables

of log of stochastic volatility, ht and gt , are modelled as a random walk.
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pt � tt = lt(ut �nt)+ ep
t , ep

t ⇠N (0,eht ), (2.43)

tt = tt�1+ et
t , et

t ⇠N (0,egt ), (2.44)

ut = nt + et ,

et = f1et�1+f2et�2+ eet , eet ⇠N (0,w2
e ), (2.45)

nt = nt�1+ en
t , en

t ⇠N (0,w2
n), (2.46)

lt = lt�1+ el
t , el

t ⇠N (0,w2
l ), (2.47)

ht = ht�1+ eht , eht ⇠N (0,w2
h ), (2.48)

gt = gt�1+ egt , egt ⇠N (0,w2
g ). (2.49)

M6

M6 is a bivariate unobserved components model where pt is inflation. lt is the slope of

the Phillips curve. Long-run inflation expectations are measured as trend inflation, tt , and

follow a random walk. lt is modelled as a random walk. yt represents the real output level.

The cyclical component, ct , follows an AR(2) process. Underlying output trend growth,

Dy⇤t , is modelled as the random walk. Two variables of log of stochastic volatility, ht and gt ,

are modelled as a random walk.
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pt � tt = lt(yt � y⇤t )+ ep
t , ep

t ⇠N (0,eht ), (2.50)

tt = tt�1+ et
t , et

t ⇠N (0,egt ), (2.51)

yt = y⇤t + ct , (2.52)

ct = f1ct�1+f2ct�2+ ect , ect ⇠N (0,w2
c ), (2.53)

Dy⇤t = Dy⇤t�1+ ey⇤t , ey⇤t ⇠N (0,w2
y⇤), (2.54)

lt = lt�1+ el
t , el

t ⇠N (0,w2
l ), (2.55)

ht = ht�1+ eht , eht ⇠N (0,w2
h ), (2.56)

gt = gt�1+ egt , egt ⇠N (0,w2
g ). (2.57)

M7

M7 is a bivariate unobserved components model where pt is inflation. lt is the slope of

the Phillips curve. Long-run inflation expectations are measured as trend inflation, tt , and

follow a random walk. lt is modelled as a random walk. ut represents the unemployment

rate. et follows an AR(2) process. NAIRU, nt , is modelled as a random walk. Two variables

of log of stochastic volatility, ht and gt , are modeled as a random walk. qt is the blue chip

10 years inflation forecasts.
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pt � tt = lt(ut �nt)+ ep
t , ep

t ⇠N (0,eht ), (2.58)

tt = tt�1+ et
t , et

t ⇠N (0,egt ), (2.59)

ut = nt + et ,

et = f1et�1+f2et�2+ eet , eet ⇠N (0,w2
e ), (2.60)

nt = nt�1+ en
t , en

t ⇠N (0,w2
n), (2.61)

lt = lt�1+ el
t , el

t ⇠N (0,w2
l ), (2.62)

ht = ht�1+ eht , eht ⇠N (0,w2
h ), (2.63)

gt = gt�1+ egt , egt ⇠N (0,w2
g ), (2.64)

qt = d0+d1tt + eqt , eqt ⇠N (0,w2
q ). (2.65)

M8

M8 is a bivariate unobserved components model where pt is inflation. lt is the slope of

the Phillips curve. Long-run inflation expectations are measured as trend inflation, tt , and

follow a random walk. lt is modelled as a random walk. yt represents the real output level.

The cyclical component, ct , follows an AR(2) process. Underlying output trend growth,

Dy⇤t , is modeled as a random walk. Two variables of log of stochastic volatility, ht and gt ,

are modelled as a random walk. qt is the blue chip 10 years inflation forecasts.
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pt � tt = lt(yt � y⇤t )+ ep
t , ep

t ⇠N (0,eht ), (2.66)

tt = tt�1+ et
t , et

t ⇠N (0,egt ), (2.67)

yt = y⇤t + ct , (2.68)

ct = f1ct�1+f2ct�2+ ect , ect ⇠N (0,w2
c ), (2.69)

Dy⇤t = Dy⇤t�1+ ey⇤t , ey⇤t ⇠N (0,w2
y⇤), (2.70)

lt = lt�1+ el
t , el

t ⇠N (0,w2
l ), (2.71)

ht = ht�1+ eht , eht ⇠N (0,w2
h ), (2.72)

gt = gt�1+ egt , egt ⇠N (0,w2
g ), (2.73)

qt = d0+d1tt + eqt , eqt ⇠N (0,w2
q ). (2.74)

2.7.2 Estimation Details

In this section, we provide the details of the priors and estimation for M5, M6 and M7 are

outlined in this section. Estimation for M1 and M2 is similar to M5, estimation for M3 and

M4 is similar to M6, and estimation for M8 is similar to M7. Thus, for brevity, we omit

estimation details for these five models.

M5

Prior

The parameters under M5 are t , n , f ,el , l0, wl , w2
e , w2

n , h, and g.

We assume the following priors:
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t0 = 0, t1 ⇠N (t0,Vtegt ), l0 ⇠N (a0,Vl0), e0 = 0,

wl ⇠N (0,Vwl ), wg =V 1/2
wg , wh =V 1/2

wh , w2
e ⇠IG (ne,Swe),

Vwh = 0.2, Vwg = 0.2, Vwl = 0.252, ne = 3,

Vl0 = 0.252, Vt = 10, Vg = 10, nn = 3,

a0 =�0.25, Vb = (Vl0 ,Vwl ),
bb = (a0,0), f ⇠N (f0,Vf ),

f0 = (0.5;0.2), e�1 = 0, w2
n ⇠,IG (nn ,Swn ), Swn = 1⇤ (nn �1),

Swe = 1⇤ (ne�1), Vf = I2.

Likelihood

In this section, we derive the densities of p = (p1, . . . ,pT )0 and u = (u1, . . . ,uT )0, that will

be used to construct the posterior sampler.

Let

Ll = diag(l0+wl
el1,l0+wl

el2,l0+wl
el3, . . . ,l0+wl

elT ).

Then, we have

p � t �Ll (u�n) = ep .

Then, the log conditional density of p is

log p(p | t,u,n ,c,el ,l0,wh,wl ,wn ,wc,h)µ�1
2
(p�t�Ll (u�n))0S�1

p (p�t�Ll (u�n)),

where

Sp = diag(eh1 ,eh2 ,eh3 , . . . ,ehT ).

Let
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Hf =

2

66666666664

1 0 0 0 . . . 0

�f1 1 0 0 . . . 0

�f1 �f2 1 0 . . . 0
...

...
...

... . . . 0

0 . . . . . . �f1 �f2 1

3

77777777775

.

Then, we have

Hfe= ee.

Then, the log conditional density of u is

log p(u | n ,e,wn ,we,f) µ �T
2
logw2

e �
1

2w2
e
(u�n)0H 0

fHf (u�n).

Sampling t

In this section, we derive the joint prior density of t = (t1, . . . ,tT )0, that will be used to

construct the posterior sampler of t .

Let

Sg = (Vteg1 ,eg2 ,eg3 , . . . ,egT ).

and

H =

2

666666666666664

1 0 0 0 . . . 0

�1 1 0 0 . . . 0

0 �1 1 0 . . . 0

0 0 �1 1 . . . 0
...

...
...

... . . . 0

0 . . . . . . 0 �1 1

3

777777777777775

.
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Then, we have

Ht = et .

Then,

t ⇠N (0,H�1SgH 0�1).

Then, the log prior density for t is

log p(t) =�1
2

t 0H 0S�1
g Ht.

Then, we have

log p(t | p,u,n ,e,f ,g,e,wn ,el ,l0,wh,wl ,wg,h,g)

µ �1
2
(t 0S�1

p t �2t 0S�1
p (p �Ll (u�n)))� 1

2
t 0H 0S�1

g Ht.

Then, the conditional distribution of t is

t ⇠N (bt,K�1
t ),

where

bt = K�1
t ((S�1

p )(p �Ll (u�n))), Kt = S�1
p +H 0S�1

g H.

Since Kt is a band matrix, t can be sampled using the precision sampler proposed by Chan

and Jeliazkov (2009).

Sample h and g

we sample h and g, following Kim et al. (1998).
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Sample n

In this section, we construct the posterior sampler of n .

We have

n ⇠N (0,H 0�1w2
nH

�1).

Then, the log prior density of n is

log p(n) =�T
2
logw2

n �
1

2w2
n

n 0H 0Hn .

Then, the posterior distribution of n is

N (bn ,K�1
n ),

where

Kn =
H 0

fHf

w2
e

+
H 0H
w2

n
+L0

lS
�1
p Ll

and

bn = K�1
n (

H 0
fHfu
w2
e

�S�1
p Ll (p � t �Llu)).

Sample f

In this section, we construct the posterior sampler of f .

Let

f =

2

64
f1

f2

3

75
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and

Xf =

2

66666666664

c0 c�1

c1 c0

c3 c2
...

...

cT�1 cT�2

3

77777777775

,

then, we have

e= Xf f + ee.

Then, the conditional distribution of f is

f ⇠N (bf ,K�1
f )1(f 2 R)

where

bf = K�1
f (V�1

f f0+
X 0

fe
w2
e
), K�1

f =V�1
f +

X 0
fXf

w2
e

.

Sample el

In this section, we construct the posterior sampler of el .

We have

Hel = eel .

Then, el is distributed as

N (0,H�1H 0�1).

Then, the log prior density of el is

log p(el ) =�1
2
(el 0H 0Hel ).
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Let

Lu = diag(u1�n1,u2�n2,u3�n3, . . . ,uT �nT ).

Then, we have

�1
2
(w2

l
el 0LuS�1

p Luel )�2(el 0LuwlS�1
p (p � t �l0Lu)).

el is distributed as

N (
bel ,K�1

el
),

where

bel = K�1
el

(LuwlS�1
p (p � t �l0Lu)), Kel = H 0H+w2

l LuS�1
p Lu.

Sample l0 and wl

In this section, we construct the posterior sampler of l0 and wl .

Let Xb = (u�n ,Luel ) and b = (l0,wl )
0,

Then, we have

p � t = Xb b + ep .

Then, b is distributed as

N (bb ,K�1
b ),

where

Kb =V�1
b +X 0

bS
�1
p Xb , bb = K�1

b (V�1
b b0+X 0

bS
�1
p (p � t)).

Sample w2
e

In this section, we show the posterior sampler of w2
c .
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The conditional distribution of w2
e is

IG (ne+
T
2
,Swe +

1
2
(e�Xf f)0(e�Xf f)).

Sample w2
n

In this section, we show the posterior sampler of w2
n .

The conditional distribution of w2
n is

IG (nn +
T
2
,Swn +

1
2

n 0H 0Hn).

M6

Prior

The parameters under M5 are t , y⇤, g , f , el , l0, wl , w2
c , and w2

y⇤ .

We assume the following priors:

t0 = 0, t1 ⇠N (t0,Vtegt ), l0 ⇠N (a0,Vl0), c0 = 0,

wl ⇠N (0,Vwl ), wg =V 1/2
wg , wh =V 1/2

wh , w2
c ⇠IG (nc,Swc),

Vwh = 0.2, Vwg = 0.2, Vwl = 0.252, nc = 3,

Vl0 = 0.252, Vt = 10, Vg = 10, g ⇠N (g0,Vg),

a0 =�0.25, Vb = (Vl0 ,Vwl ),
bb = (a0,0), Vg = 100⇤ I2,

g0 = (750;750), f ⇠N (f0,Vf ), f0 = (1.34;�0.7), c�1 = 0,

w2
y⇤ ⇠U (0,Vwy⇤ ), Swc = 1⇤ (nc�1), Vwy⇤ = 0.001, Vf = I2.

Likelihood

In this section, we derive the densities of p = (p1, . . . ,pT )0 and y = (y1, . . . ,yT )0, that will

be used to construct the posterior sampler.
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Let

Ll = diag(l0+wl
el1,l0+wl

el2,l0+wl
el3, . . . ,l0+wl

elT ).

Then, we have

p � t �Ll (y� y⇤) = ep .

Then, the log conditional density of p is

log p(p | t,y,y⇤,c,el ,l0,wh,wl ,wy⇤ ,wc,h)µ�1
2
(p�t�Ll (y�y⇤))0S�1

p (p�t�Ll (y�y⇤)),

where

Sp = diag(eh1 ,eh2 ,eh3 , . . . ,ehT ).

Let

Hf =

2

66666666664

1 0 0 0 . . . 0

�f1 1 0 0 . . . 0

�f1 �f2 1 0 . . . 0
...

...
...

... . . . 0

0 . . . . . . �f1 �f2 1

3

77777777775

.

Then, we have

y= y⇤+ c,

Hfc= ec.

Then, the log conditional density of y is

log p(y | y⇤,c,wy⇤ ,wc,f ,y⇤0,y⇤�1) µ �T
2
logw2

c �
1

2w2
c
(y� y⇤)0H 0

fHf (y� y⇤)
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Sampling t

In this section, we derive the densities of t = (t1, . . . ,tT )0, that will be used to construct the

posterior sampler of t .

Let

Sg = (Vteg1 ,eg2 ,eg3 , . . . ,egT )

and

H =

2

666666666666664

1 0 0 0 . . . 0

�1 1 0 0 . . . 0

0 �1 1 0 . . . 0

0 0 �1 1 . . . 0
...

...
...

... . . . 0

0 . . . . . . 0 �1 1

3

777777777777775

.

Then, we have

Ht = et .

Then,

t ⇠ N(0,H�1SgH 0�1).

Then, the log prior density for t is

log p(t) =�1
2

t 0H 0S�1
g Ht.

and we have

log p(t | p,y,y⇤,c,f ,g,wc,wy⇤ ,el ,l0,wh,wl ,wg,h,g)

µ �1
2
(t 0S�1

p t �2t 0S�1
p (p �Ll (y� y⇤)))� 1

2
t 0H 0S�1

g Ht.
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Then, the conditional distribution of t is

t ⇠N (bt,K�1
t ),

where

bt = K�1
t ((S�1

p )(p �Ll (y� y⇤))), Kt = S�1
p +H 0S�1

g H.

Sample h and g

we sample h and g, following Kim et al. (1998).

Sample y⇤

In this section, we construct the posterior sampler of y⇤. Let

H2 =

2

66666666664

1 0 0 0 . . . 0

1 �2 0 0 . . . 0

0 1 �2 1 . . . 0
...

...
...

... . . . 0

0 . . . . . . 1 �2 1

3

77777777775

.

then we have

H2y⇤ = eay⇤ + ey
⇤

where

eay⇤ = (y⇤0+Dy⇤0,�y⇤0,0, . . . ,0)
0.

Let

ay⇤ = H�1
2 eay⇤ .
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Then,

y⇤ ⇠ N(ay⇤ ,w2
y⇤(H

0
2H2)

�1).

Then, the log prior density of y⇤ is

log p(y⇤) =�T
2
logw2

y⇤ �
1

2w2
y⇤
(y⇤ �ay⇤)

0H 0
2H2(y⇤ �ay⇤).

The posterior distribution of y⇤ is

N (by⇤,K�1
y⇤ ),

where

Ky⇤ =
H 0

fHf

w2
c

+
H 0
2H2

w2
y⇤

+L0
lS

�1
p Ll

and

by⇤ = K�1
y⇤ (

H 0
fHfy
w2
c

+
H 0
2H2ay⇤

w2
y⇤

�S�1
p Ll (p � t �Ll y)).

Sample f

In this section, we construct the posterior sampler of f .

Let

f =

2

64
f1

f2

3

75
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and

Xf =

2

66666666664

c0 c�1

c1 c0

c3 c2
...

...

cT�1 cT�2

3

77777777775

then, we have

c= Xf f + ec.

Then, the conditional distribution of f is

f ⇠N (bf ,K�1
f )1(f 2 R)

where

bf = K�1
f (V�1

f f0+
X 0

fc
w2
c
), K�1

f =V�1
f +

X 0
fXf

w2
c

Sample ggg

In this section, we construct the posterior sampler of g .

Let

ggg = (y⇤0,y
⇤
�1)

and

ay⇤ =

2

66666664

2y⇤0� y⇤�1

3y⇤0�2y⇤�1

. . .

(T +1)y⇤0�Ty⇤�1

3

77777775

= Xgg
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where

Xggg =

2

66666664

2 �1

3 �2
...

...

T +1 �T

3

77777775

.

Then,

y⇤ = Xgggg +H�1
2 ey

⇤
.

Then, the conditional distribution of g is

N (bg,K�1
ggg )

where

bg = K�1
ggg (V�1

g g0+
X 0

gH 0
2H2y⇤

w2
y⇤

), Kg =V�1
g +

X 0
gH 0

2H2Xg

w2
y⇤

.

Sample el

In this section, we construct the posterior sampler of el .

Let

Hel = eel .

Then, el is distributed as

N(0,H�1H 0�1).

Then, the log prior density of el is

log p(el ) =�1
2
(el 0H 0Hel ).
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Let

Ly = diag(y1� y⇤1,y2� y⇤2,y3� y⇤3, . . . ,yT � y⇤T ).

Then, we have

�1
2
(w2

l
el 0LyS�1

p Lyel )�2(el 0LywlS�1
p (p � t �l0Ly)).

el is distributed as

N (
bel ,K�1

el
),

where

bel = K�1
el

(LywlS�1
p (p � t �l0Ly)), Kel = H 0H+w2

l LyS�1
p Ly.

Sample l0 and wl

In this section, we construct the posterior sampler of l0 and wl .

Let Xb = (y� y⇤,Lyel ) and b = (l0,wl )
0, then, (1) can be written as

p � t = Xb b + ep .

Then, b is distributed as

N (bb ,K�1
b ),

where

Kb =V�1
b +X 0

bS
�1
p Xb , bb = K�1

b (V�1
b b0+X 0

bS
�1
p (p � t)).

Sample w2
c

In this section, we show the posterior sampler of w2
c .
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The conditional distribution of w2
c is

IG (nc+
T
2
,Swc +

1
2
(c�Xf f)0(c�Xf f)).

Sample wy⇤

In this section, we show the posterior sampler of wy⇤ .

The conditional density of wy⇤ is not a standard density, but it can be sampled by using

Griddy-Gibbs .

M7

In equation (65), we link the blue chip 10 years inflation forecasts to trend inflation. Thus,

the differences of estimation details between M7 and M5 are that M7 has a different sampler

for tt and has two more samplers for d = (d0 d1) and w2
q . For brevity, we only display the

estimation details for tt , d = (d0 d1), and w2
q .

Prior

t0 = 0, t1 ⇠N (t0,Vtegt ), l0 ⇠N (a0,Vl0), e0 = 0,

wl ⇠N (0,Vwl ), wg ⇠N (0,Vwg), wh ⇠N (0,Vwh), w2
e ⇠IG (ne,Swe),

Vwh = 0.2, Vwg = 0.2, Vwl = 0.252, ne = 3,

Vl0 = 0.252, Vt = 10, Vg = 10, nn = 3,

a0 =�0.25, Vb = (Vl0 ,Vwl ),
bb = (a0,0), f ⇠N (f0,Vf ),

f0 = (0.5;0.2), w2
q ⇠IG (nq,Swq), nq = 3, Swq = 1⇤ (nq�1),

Vd = I2, e�1 = 0, w2
n ⇠,IG (nn ,Swn ), Swe = 1⇤ (ne�1),

Swn = 1⇤ (nn �1), µd = (0 1), Vf = I2.
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Likelihood

In this section, we derive the densities of p = (p1, . . . ,pT )0, that will be used to construct

the posterior sampler.

Let

Ll = diag(l0+wl
el1,l0+wl

el2,l0+wl
el3, . . . ,l0+wl

elT ).

Then, we have

p � t �Ll (u�n) = ep .

Then, the log conditional density of p is

log p(p | t,u,n ,c,el ,l0,wh,wl ,wn ,wc,wq,d,h)µ�1
2
(p�t�Ll (u�n))0S�1

p (p�t�Ll (u�n)),

where

Sp = diag(eh1 ,eh2 ,eh3 , . . . ,ehT ).

Sampling t

In this section, we construct the posterior sampler of t .

Let

Sg = (Vteg1 ,eg2 ,eg3 , . . . ,egT ).

and

H =

2

666666666666664

1 0 0 0 . . . 0

�1 1 0 0 . . . 0

0 �1 1 0 . . . 0

0 0 �1 1 . . . 0
...

...
...

... . . . 0

0 . . . . . . 0 �1 1

3

777777777777775

.
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Then, we have

Ht = et .

Then,

t ⇠N (0,H�1SgH 0�1).

Then, the log prior density for t is

log p(t) =�1
2

t 0H 0S�1
g Ht.

(72) can be written as

q= d01T +d1t + ez, ez ⇠N (0,w2
q IT ).

Therefore, we have

log(p(q|d0,d1,t,w2
q )) µ � 1

2w2
q IT

(q�d01T �d1t)0(q�d01T �d1t).

Then, we have

log p(t | p,u,n ,e,f ,g,we,wn ,el ,l0,wh,wl ,wg,wq,d,h,g)

µ �1
2
(t 0S�1

p t �2t 0S�1
p (p �Ll (u�n)))� 1

2
t 0H 0S�1

g Ht � 1
2
(t 0

d21
w2
q IT

t �2t 0d1(q�d01T )
w2
q

).

Then, the conditional distribution of t is

t ⇠N (bt,K�1
t ),
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where

bt = K�1
t ((S�1

p )(p �Ll (u�n))+ d1(q�d01T )
w2
q

), Kt = S�1
p +H 0S�1

g H+
d21

w2
q IT

.

Sampling d

In this section, we construct the posterior sampler of d. Let

Xt = (1T t),

d = (d0 d1).

Then (72) can be written as

q= Xtd+ eq.

Then we have

log(p(q|d0,d1,t,w2
q )) µ � 1

2w2
q
(q�Xtd)0(q�Xtd).

we also have

log(p(d)) µ �1
2
(d�µd)0V�1

d (d�µd).

Then, the posterior d is distributed asN ( bd,K�1
d ), where

Kd = (
X 0

tXt
w2
q

+V�1
d ),

bd = K�1
d (

X 0
tq

w2
q
+V�1

d µd).
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Sampling w2
q

In this section, we show the posterior sampler of w2
q .

w2
q ⇠IG (nw2

q
+

T
2
,Swq +

1
2

T

Â
t=1

e2q,t).



Chapter 3

Bubbles and Crises: Replicating the

Results of Anundsen et al. (2016)

3.1 Introduction

There is a growing literature of early warning systems for financial crises (e.g., Alessi and

Detken, 2017; Bussiere and Fratzscher, 2006; Büyükkarabacak and Valev, 2010; Jordà et al.,

2015a,b; Schularick and Taylor, 2012). In particular, Anundsen et al. (2016) use a dataset

covering 20 countries and a period spanning 1976 to 2014 to assess the probability of a

financial crisis—specifically, the likelihood that an economy is in a pre-crisis state. They

contribute to the early warning system literature by finding that both the household credit-

to-GDP gap and the NFE credit-to-GDP gap affect the likelihood of a financial crisis. In

addition, global housing market development can affect domestic financial stability. Fi-

nally, their measures of exuberance in housing and credit markets have predictive power of

financial stability.

This chapter first narrowly replicates the main results of Anundsen et al. (2016) using

their dataset andMatlab. Next, we widely replicate their results by using TVP probit models.

Many papers highlight the empirical importance of TVPs (e.g., Cai et al., 2000; Canova,
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1993; Chan and Eisenstat, 2015; Cogley and Sargent, 2005; Koop and Korobilis, 2013;

Koop and Potter, 2007). However, few papers consider TVP models in the early warning

system literature. Thus, to fill this gap, this chapter estimates a set of TVP probit models

and assesses their performance relative to their constant parameter counterparts.

The narrow replication produces the same results as those of Anundsen et al. (2016). In

particular, we obtain identical out-of-sample forecasting performance of their models. The

wide replication has three main findings. First, the coefficients of financial crisis indicators

are quite stable over time, but the time variation in the country dummies is considerable.

Second, most of the main finding of Anundsen et al. (2016) are robust to using a TVP ap-

proach. The important role of the household credit-to-GDP gap and global housing market

developments is very robust to using a TVP approach. The effect of exuberance measures

on the probability of a financial crisis also remains robust to using a TVP approach. How-

ever, the evidence that the NFE credit-to-GDP gap significantly affects the probability of

a financial crisis is mixed across different specifications. Third, allowing for time-varying

parameters of probit models can considerably improve the in-sample model fit and out-of-

sample forecasting performance based on an expanding window forecasting exercise.

3.2 Results

In this section, we first narrowly replicate the main results of Anundsen et al. (2016) using

maximum likelihood estimation and reproduce an out-of-sample forecasting performance

for their models.1 Second, we widely replicate their results by using a set of TVP probit

models and show the out-of-sample forecasting performance of these models.
1Their main results are summarised in Table II of Anundsen et al. (2016).
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3.2.1 Narrow Replication

To assess the likelihood that the economy is in a pre-crisis state, Anundsen et al. (2016)

estimate a standard logit model using the maximum likelihood method. Their dataset covers

20 countries and the period spanning 1976 to 2014 and includes a dummy variable for the

pre-crisis state and financial crisis indicators such as the credit-to-GDP gap (see Section

3.4).

We follow Anundsen et al. (2016) to use the area under the receiver operating character-

istic (AUROC) curve as the main model evaluation criterion. A model issues a crisis signal

if the estimated probability of crisis exceeds some threshold level, c, otherwise not. The true

positive rate TPR(c) is the proportion of correct crisis warning signals. The false positive

rate FPR(c) is the proportion of false crisis warning signals. The receiver operating char-

acteristic curve (ROC) is the plot of TPR(c) against FPR(c) for all threshold parameters

c 2 [0,1]. Among the two models, given the same FPR(c), if a model has a higher AUROC,

it has a higher TPR(c). Therefore, the model with a higher AUROC is preferred. AUROC

is widely used to compare the predictive performance of alternative early warning system

models (e.g., Berge and Jordà, 2011; Drehmann and Juselius, 2014; Jordà and Taylor, 2011,

2012).

We use the model and dataset of Anundsen et al. (2016) to reproduce their results.

The computations are implemented using Matlab. The main results are identical to those

in Anundsen et al. (2016)— specifically, the coefficients of explanatory variables and the

forecasting performance measured as in-sample and out-of-sample AUROC are identical

to theirs (see Section 3.4 ).2 From the results, this narrow replication exercise shows that

Anundsen et al. (2016)’s results are robust to using Matlab instead of Stata.
2 The standard errors are similar, though not exactly the same as those in Anundsen et al. (2016). The

differences may be attributed to using different software. The different standard errors are reported in Section
3.4.
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3.2.2 Wide Replication

Considering the potential time-varying nature of the underlying structure in the economy,

we widely replicate the results of Anundsen et al. (2016) using a set of TVP probit models.

The specifications of these models are the same as their corresponding constant parameter

logit models, but the parameters are allowed to evolve over time as a random walk. The

details of the TVP-models are provided in Section 3.4.

Section 3.4 also shows the estimated time-varying coefficients of the TVP probit mod-

els. First, there is considerable time variation in the coefficients of country dummy variables.

However, the coefficients of determinants of financial crises are stable.3 This time variation

may capture the dynamics of time-varying unobserved country heterogeneity. The changing

unobserved country heterogeneity may approximate an important omitted variable in pre-

dicting financial crises, such as the changing country-specific institution or debt structure.

Second, the effect of the household credit-to-GDP gap is significant at the 5% significance

level across different specifications for all the sample periods. Anundsen et al. (2016) also

find the significant effect of the household credit-to-GDP gap. Therefore, we conclude that

the important role of household credit- to-GDP gap in affecting the likelihood of a crisis

is robust to using TVP probit model. Third, the evidence that the NFE credit-to- GDP gap

affects the probability of a financial crisis is mixed across different specifications. The effect

of the NFE credit-to-GDP gap is significant at the 10% significance level for TVP Model

1 and TVP Model 2, but not significant for TVP Model 3 and TVP Model 4.4 Fourth,

the effect of the global house price-to-income gap on the probability of a financial crisis is
3Though the coefficients of economic variables are quite stable over time, the TVP model approach has an

advantage over the constant parameter model in providing more precise estimated parameters. For example,
the standard error of the coefficient of the GDP gap is around 5 in TVP Model 4, but in its corresponding
constant parameter model, the standard error of the coefficient of the GDP gap is 13.27. Given the smaller
standard errors, a stronger conclusion can be made using TVP-models.

4In Section 3.4 , we estimate the constant parameter logit model of Anundsen et al. (2016) using balanced
panel data. In this case, the effect of the NFE credit-to-GDP gap is also significant for their Model 1 and
Model 2, but not significant for their Model 3 and Model 4. This shows that when using balanced panel data,
the significance of the coefficient of the NFE credit-to-GDP gap is more varying.
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significant at the 5% significance level for all the sample periods. This is consistent with

Anundsen et al. (2016). Fifth, the effects of the exuberance house price-to-income gap and

the exuberance credit-to-GDP are significant at the 5% significance level for most of the

sample periods. This is also consistent with Anundsen et al. (2016).

The in-sample fit of these models is improved considerably by allowing for TVPs. The

AUROCs of TVP models 1–4, are 0.988, 0.988, 0.989, and 0.994, respectively. They are

much higher than the AUROCs of the corresponding constant parameter logit model. The

better in-sample fit in TVP models may be due to overfitting. Therefore, we do the expand-

ing window forecasting exercise to access the out-of-sample forecasting performance. The

evaluation period is 2000-2014 and the model is re-estimated for every new forecast.

Anundsen et al. (2016) do not use expanding window forecasting exercise to evaluate

the out-of-sample forecasting performance of their models due to their unbalanced panel

dataset. To compare the out-of-sample forecasting performance of their models with those

of TVP probit models under the expanding window exercise, we estimate the models of

Anundsen et al. (2016) using the balanced panel dataset. Post-crisis bias may lead to a poor

in-sample fit of constant parameter logit models. However, we include observations that

during or immediately after crisis only slightly change the in-sample fit of their constant

logit models (see Section 3.4), measured as AUROC and pseudo-R2.

Table 3.1 shows that TVP probit models generally outperform constant parameter logit

models used by Anundsen et al. (2016) for out-of-sample forecasts. TVP Model 2 and TVP

Model 3 outperform their corresponding constant parameter models for all the forecasting

horizons. TVP Model 1 outperforms its corresponding constant parameter logit model at

one-ahead and two-ahead steps. The performance of TVP Model 4 with the TVP is not

significantly different from its corresponding constant parameter logit model. Since most of

the other parameters are relatively stable, allowing time variation in country dummies would

contribute to the better in-sample fit and performance of the expanding window forecasting
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exercise.

Table 3.1: Area under the Receiver Operating Characteristic of Time-Varying Parameter
Probit Models and Constant Logit Models with Alternative Specifications.

Time-Varying Parameter Probit Model

One-step Two-step Three-step Four-step

TVP Model 1 0.904** 0.840** 0.785 0.735

TVP Model 2 0.919** 0.848** 0.797** 0.735**

TVP Model 3 0.923** 0.863** 0.798** 0.741**

TVP Model 4 0.908 0.830 0.765 0.702

Constant Parameter Logit Model

Model 1 0.781 0.751 0.705 0.683

Model 2 0.805 0.743 0.680 0.611

Model 3 0.829 0.774 0.722 0.662

Model 4 0.867 0.800 0.723 0.657
** Means that the AUROC of the model under consideration is statistically different from its corresponding constant parameter model at
the 5% significance level.

Then, we do same forecasting exercise as in Anundsen et al. (2016) using TVP probit

models. The evaluation period covers the period from 2000 to 2014. I use the estimated

coefficients at the end of the training sample to compute out-of-sample forecasts. From Fig-

ure 3.1, we find that constant parameter logit models have higher out-of-sample forecasting

AUROC than do the TVP probit models. Therefore, in this case, the out-of-sample forecast-

ing performance of the constant parameter logit models is better than that of the TVP probit

models. The better performance of the constant parameter logit models may be attributed to

using more information.
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(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 3.1: Out-of-Sample Forecasting Receiver Operating Characteristic Curve of the
Time-Varying Parameter Probit Models.

3.3 Conclusions

This chapter replicates the results of Anundsen et al. (2016) in both a narrow and wide

sense. We establish the narrow replication by reproducing the same results as theirs by us-

ing Matlab. First, the wide replication shows that first, the coefficients of financial crisis

indicators are quite stable over time, but the country dummies have considerable time vari-

ation. Second, through the lens of the TVP probit models, most of the main findings of

Anundsen et al. (2016) are robust to using a TVP approach, but the evidence that the NFE

credit-to-GDP gap significantly affects the probability of a financial crisis is mixed across

different specifications. Third, based on expanding window forecasting exercise, the warn-

ing system models’ in-sample model fit and out-of-sample forecasting performance based

on expanding window forecasting exercise can be considerably improved by allowing for
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TVPs.

3.4 Appendix

3.4.1 Models

Constant Parameter Logit Model

The constant parameter logit model, which is used by Anundsen et al. (2016), is specified

as follows:

logit(pit) = ai+bxi,t + eit , (3.1)

where pit is the probability of a financial crisis at country i and time t, ai represents the

unobserved heterogeneity of country i, and xit is a vector of explanatory variables. b is the

coefficients vector that is specified to be common for all the countries.

Time-Varying Parameter Probit Model

Next, we consider a TVP probit model using an equivalent latent variable representation.

Specifically, let

Zit ⇠N (xit 0bt ,1), (3.2)

where bt is a K⇥ 1 vector. To avoid over-parameterisation and to be consistent with the

model of Anundsen et al. (2016) displayed in equation (1), bt is specified to be common for

all the countries.
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These latent variables are then linked to the observed binary variables Yit as follows:

Yit =

8
>><

>>:

1,Zit > 0

0,Zit 6 0
. (3.3)

With latent variable Zit , we then have

Zit =xit 0bt + eit , eit ⇠N (0,1), (3.4)

where t = 1 . . .T , i= 1 . . .N, bt is aK⇥1 vector, x0it is a 1⇥K vector, x0it =(Dummy1,Dummy2, . . . ,DummyN,x1it ,x2it , . . . ,xPit).

Stack over i, we have

Zt =Xtbt + et , et ⇠N (0, IN), (3.5)

bt =bt�1+ut ut ⇠N (0,Q), (3.6)

b0 ⇠N (a0,B0), (3.7)

where Zt is N⇥1, bt is K⇥1 vector, and Xt is a

0

BBBBBBB@

x01t

x02t
...

x0Nt

1

CCCCCCCA

(3.8)

N⇥K matrix, Q= diag(q1, . . . ,qP).

Then, stack over t, we have

Z =Xb + e, e ⇠N (0, INT ) (3.9)
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where Z is NT ⇥1, b is TK⇥1 vector, and X is a NT ⇥TK matrix,

0

BBBBBBB@

X1 0 . . . 0

0 X2 . . . 0
...

... . . . 0

0 . . . . . . XT

1

CCCCCCCA

. (3.10)

The model is estimated using Bayesian methods. Specifically, we use the precision

sampler technique of Chan and Jeliazkov (2009) to estimate this set of models. The results

are obtained by sampling 200,000 draws and discarding the first 100,000. The estimation

details are shown as the following.

Sampler Zit

(Zit |yit = 1;bt)⇠ TN(0,•)(xit
0bt ,1) (3.11)

and

(Zit |yit = 0;bt)⇠ TN(�•,0)(xit
0bt ,1), (3.12)

Sampler b

Let

H =

8
>>>>>>>>>><

>>>>>>>>>>:

IK 0 0 . . . 0

�IK IK 0 . . . 0

0 �IK IK . . . 0
...

... . . . . . . ...

0 0 . . . �IK IK

9
>>>>>>>>>>=

>>>>>>>>>>;
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Then (7) can be written as

Hb = eab +u, (3.13)

where u⇠N (0, INT ⌦Q), eab = (b 0
0,0, . . . ,0)

0 The prior of b is given by

(b |b0,Q)⇠N (1NT ⌦b0,(H 0(INT ⌦Q�1)H)�1)

Then,

(b |b0,Q,Z,Y )⇠N (bb ,K�1
b ),

where

Kb = H 0(INT ⌦Q�1)H+X 0X ,

bb = K�1
b (H 0(INT ⌦Q�1)H(1NT ⌦b0)+X 0z)

Sampler qp

qp ⇠IG (n +
T
2
,S+

1
2

T

Â
t=1

(bit �bi(t�1)))

where S= 0.092⇥ (12�1), n = 12.

Sampler b0

(b0|b ,Q,Z,Y )⇠N (bb0,K�1
b0

),
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where

Kb0 = B�1
0 +Q�1,

bb0 = K�1
b0

(B�1
0 a0+Q�1b1)

where a0 = 0 and B0 = IK

3.4.2 Data

we use the same dataset of Anundsen et al. (2016) that is available on the Journal of Applied

Econometrics Data Archive. This dataset covers 20 countries and a period spanning1976 to

2014. To avoid post-crisis bias, we follow Anundsen et al. (2016) to omit all observations

during or immediately after a crisis. 5

The dependent variable is a dummy variable for the pre-crisis state, defined as

Yit =

8
>><

>>:

1, Financial crisisi,t+k = 1, k 2 [5,12]

0, Otherwise
.

The independent variables include private credit growth, household credit-to-GDP gap, NFE

credit-to-GDP gap, house price-to-income gap, output gap, global credit/GDP gap, global

house price-to-income gap, exuberance house price-to-income gap, exuberance credit/GDP,

non-core funding gap, and equity ratio.

We also use the dataset of Anundsen et al. (2016) to estimate the TVP probit models. For

the expanding window forecasting exercise in the next section, we need to ensure the panel

dataset balanced. Therefore, we do not remove the observations during or immediately after

a financial crisis and drop observations before 1981. Since the TVPs are estimated using
5Bussiere and Fratzscher (2006) note that macroeconomic variables and relationships may be different

after a crisis, thus, using information from the period staying or immediately following a crisis to predict a
crisis may lead to poor predictions.
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current information, it is not necessary to remove the observations during or six quarters

succeeding a crisis to avoid post-crisis bias.

3.4.3 Details of Results

The Results of Replication of the Table II of Anundsen et al. (2016)

Table 3.2: Estimated Results from the Models in Anundsen et al. (2016).

Model 1 Model 2 Model 3 Model 4
Real credit growth 6.64** 8.66** 9.08** 10.19

(2.881) (3.34) (4.19) (5.65)
Household credit/GDP gap 17.46** 14.36** 15.28** 17.44**

(3.578) (4.29) (5.43) (7.32)
NFE credit/GDP gap 16.70** 23.83** 13.08** 14.57**

(2.883) (3.35) (3.81) (4.69)
Global credit/GDP gap 2.88 15.93** -9.29

(4.33) (6.05) (8.68)
Global house price-to-income gap 18.44** 19.61** 23.11**

(2.94) (3.71) (4.85)
Exuberance house price to income 1.07** 2.12**

(0.31) (0.41)
Exuberance credit/GDP 1.85** 1.51**

(0.30) (0.35)
Non-core funding gap 56.37**

(11.36)
Equity ratio -59.67**

(16.54)
House prices to income gap 12.29** 11.33** 9.53** 4.20**

(1.608) (1.76) (1.94) (1.85)
GDP gap 47.68** 43.16** 54.94** 45.35**

(7.356) (7.77) (9.22) (13.27)
Pseudo-R2 0.290 0.334 0.404 0.446
AUROC 0.865 0.879 0.904 0.919

** Means that the coefficient is statistically different from 0 at the 5% significance level.
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Results of replication of the Figure 6 of Anundsen et al. (2016)

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

**Means that the AUROC of the model under consideration is statistically different to that of the credit-to-GDP gap at the 5% significance
level.

Figure 3.2: Out-of-Sample Forecasting Performance of the Models in Anundsen et al.
(2016).
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The Estimated Time-Varying Coefficients

TVP Model 1 TVP Model 2

TVP Model 3 TVP Model 4

Note: Shaded areas denote 90% credible intervals.

Figure 3.3: The Plots of Coefficients of Country Dummy Variables.
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TVP Model 1 TVP Model 2

TVP Model 3 TVP Model 4

Note: Shaded areas denote 90% credible intervals.

Figure 3.4: The Plots of Coefficients of Determinants of Financial Crises.
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TVP Model 1 TVP Model 2

TVP Model 3 TVP Model 4

Note: Shaded areas denote 95% credible intervals.

Figure 3.5: The Plots of Coefficients of Country Dummy Variables.
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TVP Model 1 TVP Model 2

TVP Model 3 TVP Model 4

Note: Shaded areas denote 95% credible intervals.

Figure 3.6: The Plots of Coefficients of Determinants of Financial Crises.
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Results of constant parameter logit models with dataset not omit observations during

or immediately after a crisis

Table 3.3: Alternative Specification for the Determinants of Financial Crisis

Model 1 Model 2 Model 3 Model 4

Real credit growth 12.665** 12.822** 16.391** 21.669*

[6.338 18.991] [6.289 19.356] [8.923 23.858] [7.968 35.369]

Household credit/GDP gap 8.280 ** 6.442 5.149 8.093

[0.668 15.893] [-1.951 14.834] [-4.385 14.683] [-8.873 25.058]

NFE credit/GDP gap 10.936** 11.973** 4.350 -8.822

[5.334 16.538] [6.124 17.821] [-1.898 10.598] [-20.989 3.346]

Global credit/GDP gap -1.56 1.628 -8.822

[-10.40 7.29] [-8.448 11.705] [-20.989 3.346]

Global house price-to-income gap 14.65** 12.787** 30.960**

[8.51 20.79] [5.771 19.802] [8.051 60.338]

Exuberance house price to income 1.352** 2.505**

[0.785 1.918] [1.660 3.350]

Exuberance credit/GDP 1.405** 1.493**

[0.868 1.918] [0.559 2.426]

Non-core funding gap 34.195**

[8.051 60.338]

Equity ratio -53.682 **

[-103.381 -3.984]

House prices-to-income gap 13.980** 12.216 ** 9.608** 2.093

[10.499 17.462] [8.652 15.781] [6.201 13.015] [-2.676 6.862]

GDP gap 42.427** 44.411** 46.961** 33.164 **

[26.608 58.246] [27.891 60.931] [29.336 64.586] [2.262 64.065]

Pseudo-R2 0.276 0.296 0.362 0.451

AUROC 0.860 0.869 0.906 0.9307

Note: 95% confidence interval is in square brackets.



Chapter 4

United States Shocks and the Uncovered

Interest Rate Parity

4.1 Introduction

The UIP is an important building block of standard open economy models. It states that,

under no arbitrage, the returns from the investment on two economies should be equal,

if the returns are converted into the same currency. UIP implies that, first, risk should

be zero in the exchange rate market. Second, positive (negative) interest rate differentials

should predict bilateral nominal exchange rate depreciation (appreciation). Specifically,

UIP gives (1+ i⇤t+h)Et(St+h)/St = 1+ it+h, where Et(.) is the conditional expectation using

information up to time t, St is the nominal bilateral exchange rate, which is the price of one

US dollar in terms of units of home currency. i⇤t+h is the US interest rate between time t and

t+h, and it+h is the home bond interest rate between time t and t+h. Log-linearising this

equation gives

Et(Dst+h) = a +b (it+h� i⇤t+h)
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where Dst+h = st+h� st , st = logSt , a = 0 implies that zero risk premium, and then b = 1

implies that interest rate differential can perfectly predict changes in the bilateral nominal

exchange rate.

The vast majority of papers empirically study this UIP relation by estimating the follow-

ing benchmark model proposed by Fama (1984),

Dst+h = a +b (it+h� i⇤t+h)+ et+h, (4.1)

where Et(et+h) = 0. Based on equation (4.1), UIP can be tested in a standard linear regres-

sion framework with null hypothesis H0 : a = 0 and b = 1. However, this hypothesis is

widely rejected by empirical evidence from numerous papers, (e.g., for a recent survey, see

Rossi, 2013). This is known as ‘UIP puzzle’. Ismailov and Rossi (2018) document another

puzzling empirical fact: a and b are not only inconsistent with their predicted values but

also time-varying or unstable over time.

Some explanations for the UIP puzzle have been proposed in the literature. These ex-

planations include the presence of a time-varying risk premium (Fama, 1984; Li et al.),

imprecise standard errors(Baillie and Bollerslev, 2000; Rossi, 2007), small samples (Chen

and Tsang, 2013; Chinn and Meredith, 2004; Chinn and Quayyum, 2012), and rare disasters

(Brunnermeier et al., 2008; Farhi and Gabaix, 2015).

Recently, two papers find that the UIP puzzle and unstable coefficients in equation 4.1

can be due to exchange rate uncertainty. Ismailov and Rossi (2018) find that the coefficients

tend to be close to the values predicted by UIP at times of low uncertainty. They also find

that the time variation is partly attributed to that UIP holds when uncertainty is low but does

not when uncertainty is high. Ichiue and Koyama (2011) use a regime-switching model to

examine how exchange rate volatility is related to the failure of UIP. First, they find that

UIP tends to hold in a low volatility environment, and vice versa. Second, they find that the

slope, b , and volatility regimes are partially dependent.
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Given the unstable coefficients in the UIP regression and the relation between uncer-

tainty, the two studies by Ismailov and Rossi (2018) and Ichiue and Koyama (2011) suggest

that that time-varying coefficients and stochastic volatility should be considered for esti-

mating equation 4.1. Conversely, there is a growing literature that highlights the empirical

importance of TVP models in analysing the relations of time series (e.g., Canova, 1993;

Chan and Eisenstat, 2015; Cogley and Sargent, 2005; Koop and Korobilis, 2013; Koop and

Potter, 2007).

Surprisingly, few papers in the UIP literature jointly consider time-varying coefficients

and the stochastic volatility in the UIP literature. To fill this gap, we study the UIP relation

via a new UIP regression model that extends the model of Fama (1984) by allowing a time-

varying coefficient model and stochastic volatility. We also explore which variables can

explain the variation in the time-varying slope of the UIP regression, bt . We follow an athe-

oretical or agnostic approach to find which variables can explain the variation in bt . More

specifically, we link bt to a large data set of U.S. macroeconomic variables (McCracken

and Ng, 2016) and find variables that are related to bt . Joint estimation is infeasible due

to using many variables and the excess Monte Carlo noise brought by sampling bt .1 Thus,

we consider a two-stage estimation approach. Specifically, we first estimate bt and then

use least absolute shrinkage and selection operator (LASSO) to find which macroeconomic

variables are relevant to bt . A similar approach is commonly used in the literature. For

example, Cecchetti et al. (2017) regress the estimates of trend inflation on other variables to

find which variable can determine the trend inflation.

This chapter has three contributions to the UIP literature. First, we show that if we need

to estimate the time-varying coefficients or stochastic volatility in a UIP regression model,

we need to jointly estimate these two parameters. Compared to alternative models, we

find that the TVC-SV can provide sensible weighting schemes on the observations, leading

to a reliable inference on the time-varying coefficients and stochastic volatility. Second,
1The details of our argument can be seen in Section 4.2.3.
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different from many other papers that show the UIP is usually violated, this chapter finds

that the null hypothesis of UIP unconditionally cannot be rejected for several developed

economies. Also, our finding does not support the time-varying risk premium explanation

for the UIP puzzle, since the estimated at are tightly around zero. Conversely, the violation

of UIP is mainly attributed to bt . Third, we find that variables associated with the US labour

market play the most important role in explaining the variation in bt .

The remainder of this chapter is organized as follows. In Section 4.2, we introduce our

TVC-SV for modelling the UIP relation, describe how we test UIP under our UIP regres-

sion model and discuss the variable selection method for find variables that can explain the

variation in bt . In Section 4.3, we discuss our results of the estimated TVPs, the test of UIP,

and variable selection. Section 4.4 is the conclusion.

4.2 Empirical Methodology

In this section, we first introduce our model that features time-varying coefficients and

stochastic volatility. Second, we show how we test the UIP hypothesis. Third, we dis-

cuss the method we use to find which macroeconomic variables explain the time-varying

UIP coefficients.

4.2.1 The Model

Our TVC-SV is specified by

Dst+h = at +bt(it+h� i⇤t+h)+stet , t = 1, ...,T,

ft+1 = µ f (1�f f )+f f ft +s fh f ,t ,

f1 ⇠ N(µ f ,
s2
f

1�f f
), f 2 {a,b , logs},

(4.2)
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where et , ha,t , hb ,t and, hlogs ,t are uncorrelated standard normal variates.2. The model

is a (nonlinear) state space model and we estimate it using the standard Markov chain Monte

Carlo (MCMC) method. Let q collect all hyperparameters, the joint prior distribution is

given by

p(q) = p(µa)p(µb )p(logs)p(fa)p(fb )p(flogs )p(sa)p(sb )p(slogs ).

For f 2 {a,b , logs}, we choose non-informative Gaussian prior for the unconditional

mean, that is. p(µ f )
d.
= N(u f ,v) with (ua ,ub ,ulogs ) = (0,1,Var[Dst+h� (it+h� i⇤t+h)]) and

v = 10,; and a beta prior p(1+f f
2 )

d.
= Beta(a,b) with a = 20 and b = 1.5 commonly used in

the Bayesian time series literature for the autoregression coefficient and; a non-informative

inverse gamma prior s f
d.
= IG(g,d ) with g = 0.5 and d = 0.5. The beta prior imposes per-

sistence on the time evolution of latent processes, whereas the non-informative prior leaves

ample room for allowing the data speak. The Bayesian sampling procedure for generating

the posterior samples of the hyperparamters and latent processes are provided in Section

4.5.

4.2.2 Test for Unconditional Uncovered Interest Parity

Due to variation in the UIP coefficients, equation (4.1) can be thought of as an equilibrium

relationship between the exchange rate and interest rate differential. Theoretically, no ar-

bitrage has to hold in equilibrium. Thus, any local movements in UIP parameters have to

show mean-reverting dynamics to the equilibrium. Further, we can determine which US

macroeconomic variables explain the local movements (see Section 4.2.3). We can also

study if the equilibrium relationship holds by testing if the unconditional mean of at and

bt equal to their theoretical values. For economies in our empirical study, at is tightly esti-
2We also consider the model with heavy-tailed disturbances, namely Dst+h =at+bt(it+h� i⇤t+h)+st

p
wtet

with wt an inverse gamma mixing variable. Our empirical results carry over without any changes, so we stick
to the simpler framework in which the measurement equation has normal disturbance.
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mated to show no time variation and that is close to zero, so our focus is simply to test the

null hypothesis H0 : µb = 1 against H1 : µb 6= 1.

To this end, we propose to use the Bayes factor (BF) based on the Savage-Dickey

density ratio (SDDR) (see e.g. Kass and Raftery, 1995). The BF calculates a data den-

sity ratio conditional on the alternative and null hypothesis respectively, respectively, or

BF10 = p(eYT , eXT |H1)/p(eYT , eXT |H0). It can be shown that

BF10 = SDDR=
p(µb = 1|eYT , eXT )
N(µb = 1;ub ,v)

;

that is, the ratio of the posterior and prior ordinate. The denominator can be readily com-

puted, but the numerator cannot be computed analytically. Since we have a closed-form

conditional posterior distribution of µb , we can use the Rao-Blackwellisation procedure of

Gelfand et al. (1992) to construct a consistent and unbiased estimator of p(µb = 1|eYT , eXT ).

It follows that

bp(µb |eYT , eXT ) =
1
S

S

Â
s=1

p(µb |q
(s)
�µb

,eYT , eXT ) =
1
S

S

Â
s=1

p(µb |b
(s)
1 , ...,b (s)

T ,f (s)
b ,s (s)

b ),

where S is the number of random draws from the posterior sample, superscript (s) indi-

cates the s-th draw and; q (s)
�µb

is q (s) without µ(s)
b . In our case, the conditional posterior

p(µb |b
(s)
1 , ...,b (s)

T ,f (s)
b ,s (s)

b ) is Gaussian with mean ub
(s) and variance vb

(s) (see Section

4.5). Thus, a consistent and unbiased estimator of SDDR is

\SDDR=
1
S

S

Â
s=1

N(µb = 1;ub
(s),vb

(s))

N(µb = 1;ub ,v)
=

1
S

S

Â
s=1

s
v

vb (s) exp

 
�(ub

(s)�1)2

2vb (s)

!
.

\SDDR can then be used to determine statistical significance based on the scale reported by

Kass and Raftery (1995).
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4.2.3 Variable Selection

To answer the question of which U.S. macroeconomic variables can explain the variation in

UIP parameters, one can modify the TVC-SV model in several ways. For example, ft can

be directly linked to a vector of zero mean stationary explanatory variables zt that may in-

clude the lags of ft and modelled by ft = z0tg f +s fh f ,t , and a distributed lag autoregressive

dynamics with parameter vector g f (Dufour and Kiviet, 1998). This design, though appeal-

ing, becomes infeasible when the dimension of zt is large as in our case, in which we use

a high-dimensional U.S. macroeconomic dataset, and one has to opt for variable selection

techniques. There is a large literature in Bayesian variable selection that uses some form

of sparsity prior on the regression coefficients to generate sparse posterior (see e.g., O’Hara

et al., 2009 and Ghosh and Clyde, 2011). Diverging from this literature in which the de-

pendent variable is the data, in our case, ft is latent and thus different across each draw in

the MCMC algorithm. The excess Monte Carlo noise brought by this stochasticity leads the

Gibbs sampler for Bayesian variable selection to converge extremely slowly, if at all.

Alternatively, one can respect the autoregression specification of ft but link it to another

equation that treats ft as the signal extracted from a linear combination of elements in zt .

This is to augment the TVC-SV model by L f zt = ft+h⇤
t with the 1⇥K loading matrix, L f ,

where K is the dimension of zt . This design is related to the literature on inflation dynamics

with surveyed inflation expectation. In this literature, L f = 1 and zt is a survey-based in-

flation expectation that aims to provide additional information to pin down the unobserved

expectation process. In our case, zt is high-dimensional, so immediately L f cannot be iden-

tified. Further, as far as we know, it is unclear how Bayesian variable selection can be

implemented in this setting.

Since these modifications are infeasible, we consider running a second stage estimation

based on the posterior sample generated by the MCMC algorithm for the TVC-SV model.

The posterior sample of UIP parameters at , bt and logst are drawn from p( ft |eYT , eXT )
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where f 2 {a,b , logs}, eYT = (ey1, ...,eyT )0 with eyt = Dst+h and eXT = (ex1, ...,exT )0 with ext =

it+h� i⇤t+h. Though the two-step approach is indirect as compared with the aforementioned

approaches, it can be viewed as an approximation to exact inference. Let Z = (z1, ...,zT )0

and FT = ( f1, ..., fT )0 and suppose we are interested in the posterior distribution of g f , that

is,

p(g f |eYT , eXT ,Z) =
Z

p(g f |FT ,eYT , eXT ,Z)p(FT |eYT , eXT ,Z)dFT . (4.3)

If we assume the following two conditional independence assumptions: 1). g depends on

eYT and eXT only through FT and Z; and 2). FT depends on Z only though eYT and eXT , the

left-hand side of equation (4.3) can be unbiasedly estimated by

1
M

M

Â
i=1

p(g f |F
(i)
T ,Z), F(i)

T ⇠ p(FT |eYT , eXT ).

F(i)
T can be taken from the MCMC outputs of the TVC-SV model. g f can be obtained

directly from the linear regression

F(i)
T = Zg f +x (i), (4.4)

where x (i) is a normal error vector of size T . It is known that under certain conditions, both

the least absolute shrinkage and selection operator (LASSO) and Bayesian variable selection

achieve model selection consistency (see e.g. Zhao and Yu, 2006 and Casella et al., 2009).

Thus, we make use of the easy computational procedure of LASSO for choosing relevant

variables in (4.4). Another advantage of following the two-step procedure is that instead of

running (4.4) with a randomly chosen F(i)
T from its posterior, we can observe the importance

of some variables in explaining the variation in FT changes along its quantile by directly

examining the quantile functions of (FT |eYT , eXT ). To this end, regression coefficients are
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determined by the LASSO criterion function

bg(i)f = argmin
g f

1
2T

(F(i)
T �Zg f )0(F

(i)
T �Zg f )+l

K

Â
i=1

|gi|,

where i 2 {10,25,50,75,90} indicates a certain percentile of interest. The shrinkage pa-

rameter l is chosen such that no more than 30 variables in Z receive non-zero coefficients.

In practice, it is more sensible for variable selection and the determination of the statis-

tical significance of US macroeconomic variables to be based on the filtering distribution

p( ft |eYt , eXt) instead of smoothed or posterior distribution. This is because samples from

p( ft |eYT , eXT ) are functions of all data, including future information. This artificially creates

endogeneity that biases the estimate of regression coefficients. Suppose we aim to sample

from p(bt |eYt , eXt), this can be easily combined with the MCMC algorithm detailed in Section

4.5. It follows that

p(bt |eYt , eXt)=
Z

q

Z

s1,...,st
p(bt |q ,s1, ...,st ,eYt , eXt)p(s1, ...,st |q ,eYt , eXt)p(q |eYt , eXt)dqds1, ...,dst .

To reduce Monte Carlo noise, we approximate p(q |eYt , eXt) via the posterior distribution

p(q |eYT , eXT ). Thus, an estimate of p(bt |eYT , eXT ) is given by

1
NM

N

Â
n=1

M

Â
m=1

N(En,m
t (bt),Varn,mt (bt)), n= 1, ...,N, m= 1, ...,M,

where En,m
t (bt) and Varn,mt (bt) is the filtering mean and variance of bt given by Kalman

filter conditional on the n-th draw of hyperparameter q (n) and m-th draw of the sequence

of volatility {s (m)
s }ts=1 from its filtering distribution, respectively. The filtering distribution

of stochastic volatility comes from the Kalman filter conditional on some auxiliary mixture

components (e.g., Kim et al., 1998; see Section 4.5 for details).3

3Though one can use a particle filter (Doucet and Johansen, 2009) to find the filtering distribution, our
approach can be directly implemented within the MCMC algorithm, generating the desired distribution as
soon as the MCMC terminates.



4.3 Results 78

To ensure interpretability and equal scale, we normalise FT and columns in Z before

applying LASSO. Once the variables are selected, we can re-estimate the regression model

(4.4) using least squares to determine the statistical significance of each selected variable

with respect to the i-th percentile of (Ft |eYt , eXt).

4.3 Results

In this section, we will first argue the importance of jointly modelling time-varying coef-

ficients and stochastic volatility in the inference on the TVPs in our model. In particular,

we will show that modelling time-varying coefficients and stochastic volatility jointly can

provide sensible weighting schemes on the observations and therefore relatively reliable

inference on the TVPs at , bt , and st . Second, we will show the estimated time-varying

coefficients for diverse economies and then show the test results of the UIP hypothesis from

using the TVC-SV model. Finally, we will show which US macroeconomic variables ex-

plain bt .

4.3.1 The Importance of Time-varying Coefficients and Stochastic Volatil-

ity

To show the importance of jointly modeling time-varying coefficients and stochastic volatil-

ity in the inference on the TVPs in the UIP model, we take the Canadian dollars as an ex-

ample and estimate the UIP model under different specifications: a time-varying coefficient

model with constant volatility (TVC), a constant coefficient model with stochastic volatility

(CC-SV), and a TVC-SV.
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Figure 4.1: The Time Variation of Uncovered Interest Parameters for Canada. Note: (i):
Estimate of at , (ii): Estimate bt , (iii): Estimate of st .

Figure 4.1 illustrates the estimates of at , bt , and st against time. First, if we consider

stochastic volatility and assume the coefficients are constant and the estimates from CC-

SV of both at and bt are indistinguishable from zero. CC-SV has the highest volatility,

st , among all specifications as observed in the bottom panel of Figure 4.1. We have also

tried relaxing the autoregressive dynamics assumption in the volatility process by running a

generalised least squares with heteroskedasticity, and the results are similar. Second, if we

consider time-varying coefficients and assume the volatility is constant, the estimated at and

bt from TVC are volatile and TVC gives essentially zero volatility, st . Third, when account

for time-varying coefficients and stochastic volatility jointly, TVC-SV gives essentially zero

at , volatile bt and st .

To summarise our results so far, the estimated TVPs—at , bt , and st– are different under

different models. If we were to make conclusions on the UIP TVPs, we might have reached

very different results using different models. Thus, it is natural to ask why we have different
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estimated parameters under different models and which model provides reliable estimated

TVPs.

The main reason can be that the weighting scheme on data points that is used to conduct

the UIP regression varies with different model specifications. Specifically, in TVPmodels or

models with latent processes, say bt , if one ignores the hyperparameters which are functions

of all data, the estimate of bt at time t is effectively a function of data points around t, each

receiving an observation weight. Since the models we considering are (conditionally) linear

and Gaussian state space models, we can write

E(bt |eYT , eXT ) =
T

Â
j=1

w jt(ex j)ey j,

where w jt(ex j), a function of ex j, is the weight associated with the posterior estimator E(bt |eYT , eXT )

and the j-th dependent variable (Durbin and Koopman, 2012). w jt(ex j) can be different with

different model specifications.

To investigate this possibility, we observe the effect that accounting for the time-varying

coefficients and stochastic volatility has on the observation weights used to estimate bt in

June of 2003 and November of 2008.
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Figure 4.2: Observation Weights for Estimating bt under Different Specifications. Note: For
TVC-SV and CC-SV, models are cast into conditionally linear and Gaussian state space form with stochastic
volatility evaluated at its posterior mean. Observation weights for estimating bt under TVC-SV, CC-SV and
TVC models are computed using output from the Kalman filter and smoother. The observation weights for
rolling window estimations are constant due to equal weighting.

First, Figure 4.2 shows that during the high-volatility period identified by CC-SV model

such as 2003, 2008 and 2016, observations receive near zeros weights, and effectively most

of the weights are assigned to the low-volatility period prior to 2003. This may lead to

bias if, during the low-volatility period, the variation in interest rate differentials is not

informative about the variation in the exchange rate despite the bias introduced by ignoring

parameter uncertainty.

Second, if we switch off stochastic volatility and switch on time-varying coefficients,

we observe in Figure 4.1 that TVC estimates zero variance for the idiosyncratic errors,

overfitting the data with local movements of UIP coefficients. This explains the near full

weight on the observation at t shown in Figure 4.2 for both periods. Thus, changes in the

UIP relationship are fully absorbed by local movements in coefficients or volatility, if one

considers time-varying coefficients or stochastic volatility, respectively.

Third, compared with the previous two cases, nesting together the time-varying coeffi-
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cient and stochastic volatility provides more sensible weighting schemes on observations.

TVC-SV puts exponentially declining weight on observations away from t during normal

times such as June 2003 and puts more weight on observations further away from t during

volatile times such as November 2008. The fact that TVC-SV identifies both non-overfitting

TVPs and non-zero stochastic volatility highlights the importance of both time-varying co-

efficient and stochastic volatility when we estimate the TVP in the UIP regression.

Our results indicate that how much information to discount when estimating the model

should be subject to the economic environment. In particular, during volatile times, the

local estimate of bt should rely on more observations prior to and after t or down-weight the

relative weights around t. However, if the economic condition is stable, the local movement

of bt can safely reply on observations tightly around t. Regarding Ismailov and Rossi, 2018,

the observation weights for the rolling window estimations are constant due to equation

equal weighting as shown in Figure 4.2. This may lead to biased estimated time-varying

UIP parameters shown in Figure 4.1, in which the rolling window estimates of at , bt and st

are smooth and generally close to zero.

4.3.2 Estimated Time-Varying Coefficients and Stochastic Volatility

In this section, we show the time-varying coefficient, bt , and stochastic volatility, st , for 11

economies—Canada, Denmark, the European Union (EU), Japan, Norway, New Zealand,

South Africa, Sweden, Switzerland, and the United Kingdom (UK), –in Figure 4.3 and

Figure 4.4, respectively. 4

Figure 4.3 shows that for all the economies we consider, bt is unstable and has substan-

tial time variation in bt . In addition, bt seems to be a mean-reverting dynamic. From Figure

4.4, for all the economies shown here, stochastic volatility is also volatile and has substantial

time variation. Regarding the relationship between bt and st , for all the economies here, in
4For all the economies we consider here, the estimated at is stable and close to 0. For brevity, we omit the

Figure of at .
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Figure 4.3: The estimated time-varying coefficents, bt . The dashed lines indicates 95%
credible intervals.
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the periods of high stochastic volatility, bt tends to be more stable and has a large variance.

In particular, for Japan during the period 2007-2017, the stochastic volatility is at a high

level while the bt is quite stable and the variance is quite large.

4.3.3 Test of the Uncovered Interest Parity Hypothesis

Due to the time-variation in the UIP coefficients, equation (4.1) can be thought of as an

equilibrium relationship between the exchange rate and interest rate differential. Theoreti-

cally, no arbitrage has to hold in equilibrium. And local movements in the UIP parameters

have to display mean-reverting dynamics to the equilibrium. Thus, we study if the equilib-

rium relationship holds by testing if the unconditional mean of at and bt are equal to their

theoretical values.

For all the economies, the second column of Table 4.1 shows that the values of a are

close to 0, consist with the UIP hypothesis that states a = 0. Conversely, the magnitudes of

bµ , shown in the third column of Table 4.1, vary with different economies and have a large

variance. It is not clear whether bµ is consistent with its theoretical value.

Thus, following on from Section 4.2.2, we test the null H0 : µb = 1 against H1 : µb 6= 1.

The fourth column of Table 4.1 shows that the log of SDDRs for Canada, Denmark, the EU,

Norway, and the UK are larger than -2. This suggests that for those economies, we cannot

reject the null hypothesis, bµ = 1. The log of SDDRs for Japan, New Zealand, Sweden, and

Switzerland are greater than -6 and less than -2. These log of SDDRs show that for these

four economies, we find positive evidence that against the UIP null hypothesis. The log of

SDDRs for South Africa are much less than -6, suggesting that we can strongly reject the

UIP hypothesis for South Africa. The log of SDDRs could vary as the prior of bµ changes

from loose to tight. Therefore,as a sensitivity test, in column 5 and 6, we show the log of

SDDRs in cases of loose prior and tight prior, respectively. This sensitivity test shows that

the log of SDDRs for Canada, Denmark, the EU, Norway, and the UK are still larger than
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Table 4.1: Estimated Uncovered Interest Parity Coefficients and Hypothesis Test Results

a bµ log of SDDR
Vb = 1 Vb = 10 Vb = 0.1

Canada -0.0003 0.681 0.616 2.304 0.065
[-0.004 0.002] [-0.519 2.046]

Denmark 0.125 -1.263 0.003 -0.462 -0.391
[-0.009 0.012] [-0.985 1.373]

EU 0.002 -0.075 -1.676 -1.661 -0.323
[-0.006 0.010] [ -1.482 1.415]

Japan -0.004 0.126 -2.477 -1.077 -1.210
[-0.011 0.005] [ -0.598 0.979]

Norway -0.002 0.256 -0.993 0.325 -0.532
[-0.010 0.005] [-0.635 1.249]

New Zealand 0.008628 -0.251 -5.7155 -8.320 -1.880
[-0.004 0.026] [ -1.087 0.668]

South Africa 0.079 -0.957 -15.575 -18.026 -7.626
[0.060 0.104] [ -1.464 -0.472]

Sweden 0.010 -0.136 -3.000 -2.372 -0.779
[0.0001 0.0205] [ -1.116 0.977]

Switzerland -0.014 -0.197 -4.339 -3.526 -1.456
[-0.023 -0.007] [ -1.089 0.754]

UK -0.010 0.856 1.1681 3.1995 0.221
[-0.019 -0.003] [ -0.172 1.974]

Note: A 95% HPD is in square brackets.
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-2. For these economies, we still cannot reject the UIP hypothesis. The log of SDDRs for

Japan, New Zealand, Sweden, and Switzerland show that as the prior changes from loose to

tight, the positive evidence rejecting the UIP hypothesis becomes weak. The log of SDDR

for South Africa is still less than -6, suggesting for this economy that the UIP hypothesis

can still be very strongly rejected.

4.3.4 Influential Variable

Given the UIP coefficient bt is unstable, it is natural to ask what leads to changes in bt . To

answer this question, we first employ the LASSO method to find the important U.S macroe-

conomic variables from McCracken and Ng, 2016 to explain bt .5 Second, we regress the

U.S variables on bt using ordinary least squares and find the variables that have statistically

significant effects on bt . We do this exercise for each economy that we consider in this

chapter. Our agnostic approach is similar to Cecchetti et al. (2017). They estimate an unob-

served component model with stochastic volatility to obtain the estimates of trend inflation

and regress the estimates of trend inflation on other variables to find which variable can

determine the trend inflation.

Table 4.2 shows 29 statistically significant variables and their effects on bt for each

economy. To give an overview of our results, we classify these variables into 6 categories:

output, money and credit, stock market, labour market, and price.

From Table 4.2, the U.S labour market has significant effects on bt for all the economies

which we consider. US output has significant effects on bt for most of the economies we

consider in this chapter, except Sweden. The US stock market has significant effects on

bt for most of the economies considering in this chapter, except Canada and Switzerland.

US consumption is relatively less important in explaining bt since U.S consumption has

significant effects on bt for the EU, Norway, South Africa, Sweden, and New Zealand but
5We use the median estimated bt as the proxy of bt . The results of other quartiles can be viewed in Section

4.5. Our main results are robust to different quartiles.
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not for other economies. US money and credit and U.S price are not important in explaining

bt . US money and credit only have significant effects on bt for two economies: Denmark

and Norway.

Now, we explain how the US macroeconomic variables affect bt for each economy. For

Canada, Denmark, the EU and Norway, a one standard deviation increase in the number of

all employees from the non-durable goods industry leads to a standard deviation increase

in bt of 0.362, 0.320 and 0.206, respectively. For Japan, a one standard deviation increase

in capacity utilisation rate for manufacturing leads to a one standard deviation increase in

bt of 1.015. For New Zealand and South Africa, a one standard deviation increase in the

capacity utilisation rate for manufacturing leads to a standard deviation decrease in bt of

0.752 and 1.050, respectively. For Sweden, a one standard deviation increase in the number

of all employees from the manufacturing industry leads to a standard deviation increase in

bt of 0.283. For Switzerland, a one standard deviation increase in total business inventories

leads to a standard deviation increase in bt of 0.267. For the UK, a one standard deviation

increase in the number of all employees from the wholesale trade industry leads to a standard

deviation decrease in bt of 0.532.

In summary, first, the output and labour markets have a statistically significant effect on

bt for all the economies we consider in this chapter.6 Second, the variables that have the

largest effect on bt for each economy are from either the output or labour market. Therefore,

we can conclude that the output and labour markets plays the most important role in bt . We

can only find strong evidence rejecting the UIP null hypothesis for South Africa since, as

for these two economies the log of SDDRs are less than -10. Unlike Ismailov and Rossi

(2018) who find that the UIP hypothesis does not hold, we find evidence to support the UIP

hypothesis.
6The variation is associated with output or labor market can be due to that the US output and labour markets

are closely related to the US short-term interest rate in the UIP regression.
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4.4 Conclusion

In this chapter, we use a UIP regression model with time-varying coefficients and stochastic

volatility to explore the UIP relation. First, we highlight the importance of jointly mod-

elling time-varying coefficients and stochastic volatility in estimating the TVPs in our UIP

regression model. Second, we provide more evidence in support of UIP. The time-varying

risk premium explanation is not favoured by our estimated at that is tightly around zero.

Our test shows that the UIP hypothesis unconditionally cannot be rejected for Canada, Den-

mark, the EU, Norway and the UK. Among 94 US macroeconomic series, using LASSO,

we find 29 variables that can explain the variation in bt for the 11 economies considered

in this chapter. Most of the influential variables come from the US labour market and the

output category. Therefore, the US labour market and output factors play an important role

in the bt .

Table 4.2: Determinants for Uncovered Interest Parity Coefficient

Canada Denmark EU Japan Norway New Zealand South Africa Sweden Switzerland UK

Output

Capacity utilization: Manufacturing -0.169 1.015*** -0.752*** -1.050***

IP: Manufacturing (SIC) -0.979*** 0.816***

IP: Nondurable consumer goods 0.102***

IP: Materials -0.114*** -0.221***

IP: Durable materials -0.23***

IP: Nondurable materials -0.101**

IP: Residential utilities -0.281***

IP: Final products (market group) 0.466***

Money and credit

Real M2 money stock 0.157*** 0.156*** 0.271***

M2 money stock -0.124*** -0.130*** -0.173***

Stock market

S&P’s common stock price index: composite 0.090** 0.172*** 0.233***

S&P’s composite common stock: Price-earnings ratio -0.212*** -0.274*** -0.199*** -0.169*** 0.233*** -0.142***

Labour market

All employees: Durable goods 0.301*** 0.325***

All Employees: Financial activities 0.125*** -0.217*** 0.187*** 0.149***

All Employees: Service-providing industries 0.222*** 0.162***

All Employees: Wholesale trade -0.151*** -0.285*** -0.221*** -0.532***

All Employees: Manufacturing 0.283*** 0.249**

All Employees: Mining and logging: Mining -0.156*** -0.206*** 0.095** -0.134***

All Employees: Nondurable goods 0.362*** 0.320*** 0.320*** 0.206***

All Employees: Retail trade -0.166*** -0.124***

Civilian unemployment rate -0.109**

All employees: Total nonfarm 0.261***
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Table 4.2: Determinants for Uncovered Interest Parity Coefficient

Canada Denmark EU Japan Norway New Zealand South Africa Sweden Switzerland UK

All employees: Construction -0.176***

Civilians unemployed for 27 weeks and over 0.148***

Consumption and inventories

Unfilled orders for durable goods 0.137*** -0.157***

New orders for consumer goods -0.131*** -0.107**

Real personal consumption expenditures 0.129***

Total business inventories -0.234*** 0.223*** -0.320*** 0.267***

Price

PPI: Metals and metal products:

Note: The dependent variable is the median estimates of UIP coefficient, bt . The asterisks denote significance

levels: *10%; **5%; ***1%.

4.5 Appendix

4.5.1 Bayesian Estimation Procedure

The MCMC algorithm used for the Bayesian inference iterates over the following three

blocks:

1. Sample stochastic volatility process st from p(st |eyt ,ext ,at ,bt ,µlogs ,flogs ,slogs ) for

t = 1, ...,T ;

2. Sample UIP coefficients from p(at ,bt |eYT , eXT ,µa ,µb ,fa ,fb ,sa ,sb );

3. Sample hyperparameters from p(q |{at}Tt=1,{bt}Tt=1,{logst}Tt=1).

In the first block, the conditional posterior of logst comes from the following standard

stochastic volatility model with measurement equation

zt = stet , zt = Dst+h�at �bt(it+h� i⇤t+h).

The model is equivalent to the linear but non-Gaussian state space model

log(z 2
t ) = 2logst +xt , xt ⇠ logc2

1 ,

logst+1 = µlogs (1�flogs )+flogs logst +slogs hlogs ,t . (4.5)
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According to Kim et al. (1998), the logc2
1 distribution can be closely approximated using

a Gaussian mixture with seven components tabulated by the triple (q j,mj,y j), j = 1, ...,7

where q j is the probability that xt is described by component N(mj,y j). Thus given a

sequence of auxiliary variables st 2 {1, ...,7} indicating which component is chosen, the

measurement equation can be written as

log(z 2
t ) = mj,st +2logst +

py j,stx ⇤
t , x ⇤

t ⇠ N(0,1). (4.6)

Thus, conditional on ST = (s1, ...,sT ), system (4.5) and (4.6) form a linear Gaussian state

space model with time-variant but pre-determined transition matrices. The simulation smoother

of Frühwirth-Schnatter (1994) or De Jong and Shephard (1995) can be used to efficiently

draw logst for t = 1, ...,T as one block. The sampling of ST can be easily done due to the

fact p(st = j| log(z 2
t ), logst) µ q jN(log(z 2

t );mj+2logst ,y j). Importantly, ST is sampled

at the end of each MCMC iteration to ensure it is generated from the correct conditional

posterior (Del Negro and Primiceri, 2015).

Given the volatility process st , the TVS-SV model (4.2) becomes a linear Gaussian state

space model with pre-determined time-variant system matrices. A simulation smoother is

used to generate draws of at and bt for t = 1, ...,T as one block.

For f = (a,b , logs), the unconditional mean, µ f , is drawn from a Gaussian distribution

N(u f ,v f ) with

v f =

 
1�f2

f

s2
f

+
(T �1)(1�f f )2

s2
f

+
1
v

!�1

,

u f = v f

 
u f

v
+

(1�f2
f ) f1

s2
f

+(1�f f )
ÂT
t=2( ft �f f ft�1)

s2
f

!
.

The conditional posterior distribution of innovation variance st is IG(g f ,d f ) with g f =

g +T/2 and d f = d + 1
2(Â

T
t=2( ft�f f ft�1)2+(1�f 2

f )( f1�µ f )2). Let f ⇤t = ft�µ f . Given

the Beta(a,b) prior, the conditional posterior distribution of autoregression coefficient is
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given by

p(f f | f1, ..., fT ,µ f ,s f ) µ Beta(f f ;a,b)
q

1�f2
f exp

 
�
(1�f2

f ) f
2
1

2s2
f

�
T

Â
t=2

( f ⇤t �f f f ⇤t�1)
2

2s2
f

!

µ (1+f f )
a�1(1�f f )

b�1
q

1�f2
f exp

✓
(f f �a)2

2b

◆
,

where a=(ÂT
t=2 f

⇤
t f ⇤t�1)/ÂT�1

t=1 f ⇤t
2 and b=s2

f /ÂT�1
t=1 f ⇤t

2. To sample from this distribution,

we apply the Metropolis-Hastings accept-reject algorithm (Chib and Greenberg, 1995) by

drawing a candidate fnew from N(a,b) truncated between (�1,1) to ensure stationarity, and

the draw is accepted with probability

min

0

@
(1+fnew

f )a�1(1�fnew
f )b�1

p
(1�fnew

f
2)
q
1�fnew

f
2

(1+f f )a�1(1�f f )b�1
p

(1�f2
f )
q

1�f2
f

, 1

1

A .

4.5.2 Observation Weights

Conditional on q and s1, ...,sT , such as an MCMC draw or a posterior estimate, a Kalman

filter and smoother can be used to compute the observation weights of the TVC-SV model

(4.2) with respect to the UIP coefficient bt . For simplicity, we assume at = 0 for all t, which

is in line with our empirical results. Let b ⇤
t = bt �µb . The state space model becomes

ȳt = b ⇤
t +

st

ext
et ,

b ⇤
t+1 = fb b ⇤

t +sb hb ,t ,

b ⇤
1 ⇠ N

 
0,

s2
b

1�f2
b

!
,

where ȳt is equal to eyt/ext � µ . Suppose the system were time-invariant, say s1/ex1 = ... =

sT/exT = se .7 Kalman filter outputs reach their steady state quickly (Durbin and Koopman,

2012, see Chapter 4). Let at and Pt denote the filtering expectation E(bt |eYt�1, eXt�1) and
7One can think of se as the unconditional mean of s1/ex1, because the interest rate differential in the

denominator is stationary between developed economies, and the stochastic volatility is assumed to be mean-
reverting.
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variance Var(bt |eYt�1, eXt�1), respectively. The Kalman filter iterates forward over

at+1 = fbat +
Pt

Pt +s2
e
(ȳt �At), Pt+1 =

Pts2
e

Pt +s2
e
+s2

b .

The steady state is given by the fixed-point solution to the second equation, and it is P̄= (q+
p
q2+4q)/2 where q= s2

b/s2
e is the signal-to-noise ratio. Let bt denote the smoothed ex-

pectation E(bt |eYT , eXT ). The Kalman smoother iterates backward from rT = 0 andVar(rt) =

Nt over

rt�1 =
ȳt �at
Pt +s2

e
+

s2
e

Pt +s2
e
rt , bt = at +Ptrt�1, Nt�1 =

1
Pt +s2

e
+

✓
s2

e
Pt +s2

e

◆2

Nt .

Since s2
e

Pt+s2
e
< 1, the steady state of Nt exists and is N̄ = (P̄+s2

e )/(P̄2+2P̄s2
e ).

Suppose we can write bt = ÂT
j=1w jt ȳ j with weight w jt associated with the j-th observa-

tion corresponding to t-th smoothed estimate. Then we have E(bte j) = w jtE(ȳ je j) = w jt ,

but

E(bte j) =

(
�Cov(e j�E(e j|eYT , eXT ),bt �bt), for j < t;

�Cov(bt �bt ,e j�E(e j|eYT , eXT )), for j > t.

After minor algebraic manipulation, the steady state gives for j < t

Cov(e j�E(e j|eYT , eXT ),bt �bt) = E(e j(bt �bt)) =� P̄
P̄+s2

e

✓
s2

e
P̄+s2

e

◆t� j P̄s2
e

P̄2+2P̄s2
e
.

Similarly, for j > t we have

Cov(bt �bt ,e j�E(e j|eYT , eXT )) =� P̄
P̄+s2

e

✓
s2

e
P̄+s2

e

◆ j�t P̄s2
e

P̄2+2P̄s2
e
.

Thus, as j moves away from t, observation ȳ j receives exponentially declining weight pro-

portional to

w jt µ
✓

s2
e

P̄+s2
e

◆|t� j|
=

0

@ 2s4
e

s2
b +

q
s4

b +4s2
b s2

e +2s4
e

1

A
|t� j|

.
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This result is heuristic in our case because when stochastic volatility is present, the steady

state of the Kalman filter ceases to exist. However, as the first-order approximation of the

weighting function can be computed by replacing se by st/ext . So if st increases or the inter-

est rate differential ext decreases, w jt becomes larger. This means that during volatile times,

the accounting of the UIP coefficient bt relies on more backward and forward information,

and vice versa.

Table 4.3: Determinants for the 10 Percentile of Uncovered Interest Parity Coefficient, bt .

Canada Denmark EU Japan Norway New Zealand South Africa Sweden Swizerland UK

Output

Capacity utilization: Manufacturing -0.269*** -0.990***

IP: Manufacturing (SIC) -0.337** 0.801*** -0.306**

IP: Nondurable consumer goods 0.109*** 0.117***

IP index -0.116**

IP: Durable consumer goods 0.177***

IP: Durable materials -0.309***

IP: Business Equipment -0.106**

IP: Residential utilities -0.096**

IP: Materials

Money and credit

Real M2 money stock 0.136** 0.124***

M2 money stock -0.130***

Stock market

S&Ps Composite common stock: Dividend yield 0.265*** 0.132***

S&Ps composite common stock: Price-earnings ratio -0.232*** -0.269*** 0.210*** -0.170*** 0.230***

Labour market

All employees: Nondurable goods 0.364*** 0.323*** 0.319*** 0.215*** -0.176***

All employees: Wholesale trade -0.292***

All employees: Retail trade -0.174*** -0.139*** -0.138**

All employees: Financial activities 0.177*** 0.237*** 0.134*** 0.143***

All employees: construction -0.252*** 0.227***

All employees: Mining and logging: mining -0.159*** 0.120***

All employees: Durable goods 0.305***

Civilian unemployment rate -0.147*** 0.121***

Consumption and inventories

Real personal consumption expenditures 0.245***

Unfilled orders for durable goods 0.139*** -0.107** 0.141*** -0.147***

New orders for consumer goods -0.109** -0.176*** -0.125***

Retail and food services sales -0.195***

New orders for durable goods -0.102**

Total business inventories -0.228*** -0.256*** 0.205*** -0.335*** 0.239***

Price

PPI: Metals and metal products:

Note: The dependent variable is median estimates of the uncovered interest parity coefficient, bt . The asterisks denote significance

levels: *10%; **5%; ***1%.
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Table 4.4: Determinants of the 25 Percentile of the Uncovered Interest Parity Coefficient,
bt .

Canada Denmark EU Japan Norway New Zealand South Africa Sweden Swizerland UK

Output

IP: Materials -0.249***

Capacity utilization: manufacturing -0.255*** -0.990***

IP: Durable materials -0.230*** -0.206***

IP: Business equipment -0.171***

IP: Manufacturing (SIC) 0.801***

IP index -0.127***

IP: Nondurable materials -0.099**

IP: Nondurable consumer goods 0.109***

Money and credit

M2 money stock -0.119** -0.141*** -0.167***

Real M2 money stock 0.153*** 0.168*** 0.249***

Stock market

S&Ps composite common stock: Price-earnings ratio -0.223*** -0.274*** -0.203*** -0.202*** 0.224***

S&Ps composite common stock: dividend yield 0.245*** 0.113*** 0.132***

Labour market

All employees: Mining and logging: mining -0.156*** -0.108***

All employees: Nondurable goods 0.362*** 0.323*** 0.343*** 0.192*** -0.150***

All employees: Wholesale trade -0.145*** -0.535***

All employees: Financial activities 0.159*** 0.285*** 0.134***

All employees: total nonfarm 0.358***

All employees: Retail trade -0.166*** -0.114**

All employees: Construction -0.243***

All employees: Durable goods 0.305*** 0.298***

Civilians unemployed for 27 weeks and over 0.167***

All employees: Trade, transportation & utilities -0.134***

Civilian labor force

Civilian unemployment rate -0.105**

Consumption and inventories

Total business inventories -0.207*** -0.239*** 0.180*** -0.335*** 0.255***

New orders for consumer goods -0.1553*** -0.103** -0.108**

Unfilled orders for durable goods 0.146*** 0.163*** -0.147***

New orders for durable goods -0.101**

Real personal consumption expenditures 0.121***

Price

PPI: Metals and metal products

Note: The dependent variable is 25 percentile estimates of the uncovered interest parity coefficient, bt . The asterisks denote significance

levels: *10%; **5%; ***1%.
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Table 4.5: Determinants of the 75 Percentile of the Uncovered Interest Parity Coefficient,
bt .

Canada Denmark EU Japan Norway New Zealand South Africa Sweden Swizerland UK

Output

Capacity utilization: Manufacturing 0.841*** -0.341***

IP: Materials -0.118*** -0.147***

IP: Manufacturing (SIC) -0.797***

IP: Durable materials -0.288*** -0.130** -0.229*** -0.163***

IP: Nondurable materials -0.101**

IP: Residential utilities -0.281***

IP: Final products (market group) 0.466***

IP: Nondurable consumer goods 0.144***

Money and credit

Real M2 money stock 0.175*** 0.2503***

M2 money stock -0.134*** -0.111**

Commercial and industrial loans 0.096**

Stock market

S&Ps composite common stock: dividend yield 0.087** 0.156*** 0.233*** 0.113***

S&Ps composite common stock: Price-earnings Ratio -0.217*** -0.252*** -0.210*** -0.169*** 0.233***

Labour market

All employees: Mining and logging: Mining -0.185*** -0.211*** -0.752*** -0.154*** -0.108**

All employees: Nondurable goods 0.358*** 0.293*** 0.290*** 0.230*** -0.150***

All employees: wholesale trade -0.146** -0.212*** -0.285*** -0.266*** -0.572***

All employees: Financial activities 0.111** -0.211*** 0.187*** 0.184*** -0.151***

All employees: Durable goods 0.301*** 0.323***

All employees: Total nonfarm 0.325***

All employees: Retail trade -0.176***

Civilians unemployed for 27 weeks and over 0.167***

Avg weekly overtime hours : Manufacturing

All employees: construction 0.128** 0.158*** -0.243***

All employees: Service-providing industries 0.207***

All employees: Manufacturing 0.283*** 0.308**

Consumption and inventories

New orders for consumer goods -0.107**

Total business inventories -0.1349** -0.247*** 0.261*** -0.315*** 0.255***

Unflled orders for durable goods 0.139***

Real personal consumption expenditures 0.129***

Price

PPI: Metals and metal products

Note: The dependent variable is the75 percentile estimates of the uncovered interest parity coefficient, bt . The asterisks denote significance

levels: *10%; **5%; ***1%.
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Table 4.6: Determinants of the 90 Percentile of the Uncovered Interest Parity Coefficient,
bt .

Canada Denmark EU Japan Norway New Zealand South Africa Sweden Swizerland UK

Output

Capacity utilization: manufacturing -0.865*** -0.752*** -0.346*** -0.136** 0.319**

IP: Manufacturing (SIC) -0.865***

IP: Durable materials -0.230*** -0.130**

IP: Final products (market group) 0.466***

IP: Nondurable materials -0.101** -0.110**

IP: Materials -0.115** -0.147***

IP: Residential utilities -0.281***

IP: Nondurable consumer goods 0.162***

IP: Business equipment

Money and credit

Real M2 money stock 0.232*** 0.250***

M2 money stock -0.150*** -0.151**

Stock market

S&Ps composite common stock: Price-earnings ratio -0.185*** -0.272*** -0.210*** -0.169*** 0.125**

S&Ps composite common stock: Dividend yield 0.204***

Labour market

All employees: Mining and logging: Mining -0.156*** -0.211***

All employees: Nondurable goods 0.362*** 0.227*** 0.303*** 0.230*** 0.319***

All employees: Wholesale trade -0.219*** -0.212*** -0.285*** -0.210*** -0.572***

All employees: manufacturing 0.308**

All employees: Total nonfarm -0.231*** 0.325***

All employees: Financial activities 0.114** -0.217*** 0.187*** 0.214***

All employees: Durable goods 0.301*** 0.364***

All employees: Retail trade -0.166***

All employees: Goods-producing industries

All employees: Construction 0.128** 0.222***

Average duration of unemployment (weeks) 0.111***

Avg weekly overtime hours : Manufacturing

All employees: government 0.107***

Consumption and inventories

Total business inventories -0.206*** 0.244*** -0.323*** 0.250***

New orders for consumer goods -0.116**

Unfilled orders for durable goods 0.150***

Real personal consumption expenditures 0.129***

Price

PPI: Metals and metal products:

Note: The dependent variable is the 90 percentile estimates of the Uncovered Interest Parity Coefficient, bt . The asterisks denote significance

levels: *10%; **5%; ***1%.



Chapter 5

Conclusion

This thesis examines three applications of TVP models in macroeconomics. First, in Chap-

ter 2, we estimate eight Phillips curve models and test for time variation in the slopes of

the Phillips curve under these models. We find that CPI inflation is much more sensitive to

changes in the unemployment gap than in the output gap. Models with the unemployment

gap have a much larger lt in magnitude than do models with the output gap. Second, we find

that time variation of the slope of the Phillips curve mainly depends on specifications of in-

flation expectations. When the measures of inflation expectations are observable, the slope

of the Phillips curve is time varying. However, when the measure of inflation expectations

is trend inflation with large variance, the slope of the Phillips curve is constant. By reducing

the variance in the estimated trend inflation through linking blue chip 10 years inflation fore-

casts to trend inflation, the Phillips curve model with trend inflation has the time-varying

slope. We consider different measures of inflation expectations: backward-looking infla-

tion expectations, forward-looking inflation expectations and trend inflation. The slopes of

these Phillips curves with different measures of inflation expectations are volatile and time

varying. Thus, we conclude that the slope of the Phillips curve is time varying.

Second, chapter 3 replicates the results of Anundsen et al. (2016) in both a narrow

and wide sense. We establish the narrow replication by reproducing the same results as

theirs by using Matlab. First, the wide replication shows that the coefficients of financial

crisis indicators are quite stable over time, but the country dummies have considerable time
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variation. Second, through the lens of time-varying probit models, most of the main findings

of Anundsen et al. (2016) are robust to using a TVP approach. However, the evidence that

the NFE credit-to-GDP gap significantly affects the probability of a financial crisis is mixed

across different specifications. Third, based on expanding window forecasting exercise, the

warning system models’ in-sample model fit and out-of-sample forecasting performance

based on expanding window forecasting exercise can be considerably improved by allowing

for TVPs.

Finally, in Chapter 4, we use a UIP regression model with time-varying coefficients and

stochastic volatility to explore the UIP relation. First, we highlight the importance of jointly

modelling time-varying coefficients and stochastic volatility in estimating the TVPs in our

UIP regression model. Second, we find that the UIP hypothesis cannot be rejected for sev-

eral advanced economies. The time-varying risk premium explanation is not favoured by

our estimated at , which is tightly around zero. Third, using LASSO, among 94 US macroe-

conomic series we find 29 variables that can explain the variation in bt for 11 economies

considered in this paper. Most of the influential variables come from the US labour market

and the output category. Therefore, the US labour market and output factors can play an

important role in the bt .
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