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ABSTRACT

Common and Unique Feature Learning for

Data Fusion

In today’s era of big data, information about a phenomenon of interest is available

from multiple acquisitions. Data captured from each of these acquisition frameworks

are commonly known as modality, where each modality provides information in a

complementary manner. Despite the evident benefits and plethora of works on data

fusion, two challenging issues persist, 1) feature representation: how to exploit the

data diversity that multiple modalities offer, and 2) feature fusion: how to combine

the heterogeneous information for better decision making.

To address these challenges, this thesis presents a significantly improved model

of two widely utilised fusion techniques, a) early fusion: combining features from

multiple modalities for joint prediction, and b) late fusion: combining modality-

specific predictions at the decision level. I illustrate how both these techniques have

their own specific limitations, with late fusion unable to harness the inter-modality

benefits, and the reliance of early fusion on a single model causing failure when infor-

mation from any modality is futile. To overcome these drawbacks, I developed novel

multimodal systems that performs feature extraction and feature fusion in a con-

solidated frameworks. Technically, I designed feature extraction schemes to capture

both unique information from individual modalities and common information from

multimode representations. I then combine these two kinds of information for super-

vised prediction, by designing efficient fusion schemes that enable this frameworks

to perform information discovery and feature fusion simultaneously.

In this thesis, I also demonstrated the benefits of fusing both the common and

unique information in supervised learning and validate the significance of the devel-

oped techniques on multimodal, multiview, and multisource datasets. The designed

methods leverage the multimodal benefits by creating additional diversity, and ob-



tain a more unified view of the underlying phenomenon for better decision making.
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Chapter 1

Introduction

The performance of any classification system is inherently affected by the feature

representation utilised to build them. As different feature representations unveil

a range of explanatory factors concealed in the data, considerable research effort

has been dedicated to identify and obtain these factors. For this reason, feature

engineering has remained an important research direction in the field of data mining

and machine learning, and its dominance is evident in prominent conferences such

as ICDM, WWW, and SIGKDD, etc. Furthermore, learning representations from

data remain a critical task, information obtained from a single source is insufficient

to represent the complexities of the underlying phenomenon [6, 5]. Signals from

various acquisition frameworks, called modalities, promise a better understanding

of the phenomenon of interest.

Despite being complementary, the availability of information from multiple modal-

ities comes with two challenging issues, 1) why do we need their fusion, and 2) how

to perform the fusion? The advantages of performing fusion are recursively proved

in several domains for example, in speaker identification novel methods such as the

works of Ren et. al. [97], have advanced the field by developing a multimodal sys-

tem to encapsulate time dependencies from both the visual and auditory modalities.

However, how to efficiently perform this fusion is an active research topic, and its

challenges and opportunities are amplified with the proliferation of devices generat-

ing data, and with the advancement in artificial intelligence (AI) techniques utilising

them.
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In this thesis, I present research on common and unique feature learning for data

fusion. In particular, I first demonstrate that the two kinds of information that is

common information that is available from joint analysis of modalities and unique

information, which is available from independently analysing a single modality, are

both essential, but individually insufficient, for supervised classification.

I then designed novel algorithms to obtain both the common and the unique

information and illustrate how these two kinds of information are complementary

while performing fusion.

1.1 Outline

The first component of this research is presented in Chapter 3, where I demon-

strate how utilising both common and unique information can address the current

bottleneck of obtaining lightweight deep neural networks. Despite achieving great

success in image recognition, state of the art deep neural networks require high-end

hardware, and this restricts their general-purpose utilisation. While multiple solu-

tions have been proposed in the literature [39, 16], they all compress an already

trained deep neural network, rather than develop a lightweight network. At first I

designed a HybridNet that extracts the unique information from each view∗ and

common information by combining all the views of an image. I then demonstrate

how these two kinds of information are visually different but are complementary to

each other. Finally, these two kinds of information are combined, in the proposed

attention-based fusion scheme in Attn-HybridNet. Multiple performance metrics

are then empirically evaluated, to discuss how our proposed framework is indepen-

dent of high-end hardware and to validate the superiority of utilising both common

and unique information over either common or unique information.

∗Mode of an image, for example, a RGB image has three views: height, width, and color

channels.
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In Chapter 4, we propose a deep neural network that utilises both common and

unique information to perform multimodal sentiment analysis. Multimodal senti-

ment analysis combines information available from visual, textual, and acoustic rep-

resentations for sentiment prediction [129]. Recenty developed multimodal fusion

schemes utilise an outer product on the individual modalities, to obtain their multi-

modal representation as a tensor. These schemes either obtain common information

from the multimodal representation, by training a feed-forward neural network on

the tensor, or they obtain unique information by modeling low-rank representation

for each mode of the tensor independently. In this research, for multimodal data we

show that both the common information and the unique information are essential,

as they render inter-modal and intra-modal relationships of the data. This insight

derived proposal of a) a novel deep architecture as a common network to extract the

common information from the multi-mode representations, and b) unique networks

to obtain the modality-specific information that enhances the generalisation perfor-

mance of this multimodal system. Finally, both common and unique information is

integrated via a fusion layer, in a novel multimodal data fusion architecture, called

asDeepCU (Deep network with both common and unique latent information). The

proposed DeepCU consolidates the two networks for joint utilisation and discovery

of all-important information, and is shown to be beneficial over current state of the

art approaches for multimodal sentiment analysis.

In Chapter 5, I address the problem of dataset bias and its adverse effects on

machine learning algorithms. Effects of various known dataset biases, such as data

imbalance, and presence of sensitive attribute can be handled by following standard

mitigation protocols [82]. However, many types of subtle bias (especially in the case

of unstructured datasets, such as images) exist in datasets, for example selection

bias, capture bias, and the label bias [112]. Such biases remain undetected in the

datasets and their effects on the predictor are catastrophic. The goal of this research
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is to reduce the bias learned by the machine learning algorithms, by formulating it

as a data augmentation problem [88]. Any unknown (or undetected) bias present

in the dataset is reflected as the common distribution by the predictor’s learning

mechanism† [2]. We augment the datasets with synthetic data instances, by devising

policies to increase the starved unique distribution of within-class examples. The

devised data provisioning mechanism promises that synthetic examples selected for

data augmentation reduces the bias and the variance in learning mechanisms of

supervised predictors.

1.2 Contributions of this Thesis

The main contributions of this thesis are as follows.

1. The development of a lightweight deep network called HybridNet which si-

multaneously extracts the unique information from the amalgamated view and

the common information from the minutiae view of the images. I first propose a

deep network based on tensor factorisation, called the Tensor Factorisation

Networks, to extract the common information and design the custom-built

Left One Mode Out Orthogonal Iteration (LoMOI ) method to obtain weights

of its convolution-tensor filters. The unique information is obtained utilis-

ing the PCANet, that uses the principal components to obtain weights of its

convolution matrix filters. I then demonstrate that these two kinds of informa-

tion are essential, but individually insufficient for classification. The proposed

HybridNet integrates the information discovery and feature extraction from

both views of the data in its consolidated architecture, which is independent

of high-performance hardware for image classification.

†As the latent representation of a dataset reflects its underlying distribution.
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2. The problem of feature redundancy in the HybridNet is addressed by design-

ing an attention-based fusion scheme called the Attn-HybridNet. The Hy-

bridNet utilises generalised spatial pooling operation to aggregate the feature

maps from its convolution layers which incur redundancy in the feature repre-

sentations and are unable to accommodate the spatial structure of the natural

images. To eradicate this, the proposed Attn-HybridNet performs feature

selection and aggregation with an attention fusion, and enhances the discrim-

inability of the hybrid features. The main advantages of Attn-HybridNet

are that it decouples the feature extraction, and feature aggregation processes

and requires significantly less computational resources for training.

3. A proposal of a novel deep neural network for multimodal data fusion called

DeepCU. Initially it will be shown that how the common and the unique

information in multimodal datasets are complementary, as they render inter-

modal and intra-modal relationships of the data. I then propose two novel

deep networks to extract information from a) the multi-mode representations

(the common network) and b) information from individual modalities (unique

networks). Finally, I integrate these two aspects of information via a fusion

layer in the novel multimodal data fusion deep network, DeepCU.

4. The problem of dataset bias in deep neural networks is alleviated by propos-

ing a data provisioning mechanism named as Data Augmentation Pursuit

(DAP). The provisioning mechanism in DAP is composed of two sequen-

tial stages, Stage-1: labelled synthetic image generation with GANs [95], and

Stage-2: iterative image filtering to sieve unbiased synthetic examples. The re-

tained synthetic data instances obtained after Stage-2 of the DAP are utilized

to augment the training datasets. Deep neural networks trained on augmented

datasets obtained using DAP achieve significantly better classification per-
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formance and exhibit a reduction in the bias and the variance in its learning

mechanism.

1.3 Thesis Organisation

The remainder of this thesis is organised as follows. In Chapter 2, a review the

of the existing fusion techniques, background on tensor decomposition and synthetic

data generation using generative adversarial networks (GANs) is provided. Chap-

ter 3 presents the contribution of extracting common and unique information from

images and their attention based fusion. In Chapter 4, a brief literature review is

provided, and details of our deep common and unique latent information fusion for

multimodal sentiment analysis. In Chapter 5, the consequences of dataset bias are

discussed and the necessity of developing the proposed data provisioning mecha-

nism is framed. Chapter 6 presents the conclusions of this research and provides

directions for future work.
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Chapter 2

Background

In this chapter, we briefly introduce widely utilized multimodal fusion schemes and

provide literature review on tensors and generative adversarial networks (GAN).

The tensor decomposition framework is utilized in the Chapter. 3 and Chapter. 4,

whereas the GANs are utilized in Chapter. 5.

2.1 Multimodal Data Fusion

Multimodal approaches are key elements in various disciplines [114, 103, 108]

as the world around us is composed of multiple modalities such as we utilize our

visual and auditory sensors during communication. In general, the term modality

is used to indicate the data (signals) associated with an event, or phenomenon

of interest. Therefore, a research problem is characterised as multimodal when it

includes learning from multiple modalities [5]. Such as we can predict the sentiment

of a speaker by utilizing the visual i.e., facial expressions, vocal intonations, and the

transcript of the spoken utterances.

Similarly, when the research problem involves utilisation of different types of

information from the same modality, it is referred to as multiview [70]li2018survey.

Such as we can utilize both the temporal and contextual information from the tran-

script of the spoken utterances to perform sentiment prediction. Furthermore, when

the research involves data from multiple sources such as web images and local ∗

images than it is characterized as multisource learning [30].

∗Images from personal devices or anything else than web.



8

Learning from heterogeneous data is vital as complementary information is avail-

able within different aspects, and in principle, capable of more robust inferences

[67, 5]. The literature on multimodal fusion either belong to early or late fusion,

typically depending on the task as there is no consensus on which fusion is the best

as the level of fusion depends on the task at hand. However, a non-trivial task in all

aspects of fusion is feature extraction. Since a good representation† is responsible

for the success of data fusion [6]. Hence, a general conjecture can be made that

feature extraction, and feature fusion goes hand in hand.

I will introduce the literature on feature extraction on the different data fusion

tasks in the respective chapter. However, in this chapter, I will briefly summarise

the two widely utilized data fusion techniques. Since tensors play a central role for

feature extraction in this thesis, I also provide details of tensors decomposition and

its applications in the subsequent sections.

2.1.1 Early Fusion

Early fusion can be seen as one of the earliest and widely utilized techniques

to perform multimodal fusion. Techniques employing early fusion schemes create a

joint representation of the input features (or models) from multiple modalities and

train a single model for prediction. These schemes rely on a single model to learn

the correlation between low-level features i.e., inter-modality interactions. Since the

assumption is a single model is well suited for all the modalities. It requires the

features from all the modalities to be highly engineered and aligned for efficient

learning. The general scheme for early fusion is illustrated in Fig. 2.1

Early fusion schemes are seen as true multimodal learning schemes as the features

from multiple modalities are combined from the beginning. Early fusion enjoys the

†A representation that is useful as input to the classifier
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Figure 2.1 : Workflow of Early Fusion Scheme.

advantages of a single learning scheme. However, combining multiple heterogeneous

representations is usually tricky, and is as a disadvantage of this scheme.

2.1.2 Late Fusion

Late fusion schemes utilize unimodal decision values and combine them with a

fusion mechanism such as averaging, voting [84], or a learned model [96] for the

final prediction. It allows the flexibility to utilize different models for each modality,

thus allowing late fusion to learn semantic concepts from unimodal features. The

individual models in late fusion rely on supervised learning to classify the semantic

concepts from individual modalities. The general scheme for late fusion is illustrated

in Fig. 2.2

Since predictions are made separately on individual modalities and hence it is

easier to deal with scenarios when features from some modality is missing. However,

late fusion is not as effective as early fusion at modeling inter-modality correlations

as the fusion is performed at the decision level.
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Figure 2.2 : Workflow of Late Fusion Scheme.

2.2 Tensor

Tensors are higher-order generalizations of matrices and are denoted by boldface

Euler letters such as X,Y,Z etc. The number of modes also called order of tensor

is equal to the number of dimensions of tensor X. Formally a tensor X is usually

of order 3 or greater where the first-order tensor x is the vector, and a second-

order tensor X is a matrix. Many kinds of data frequently encountered in machine

learning/data mining naturally occur in the form of tensors, for example, an RGB

image is a third-order tensor with height, width, and depth as its modes. While

tensors were originally introduced in psychometrics by Hitchcock in 1927 [45] but

their utilization is expanded to multiple domains, like data science, machine learning,

and statistics [20]. Fueled by low computational complexity and effectiveness in

discovering dependencies in multi-dimensional data tensors and their applications

have tremendously increased in deep learning. We now introduce a few important

concepts with tensors in the next subsection.



11

Figure 2.3 : A third order tensor, X.

2.2.1 Tensor Preliminaries

Tensor Operations

We begin our introduction with tensors with elementary operations related to

general purpose utilization of tensors and then gradually move to the introduction

of existing tensor factorization techniques. However for ease of understanding, a

third order tensor X is shown in Fig. 2.3

Tensor Indexing. Individual elements in a third-order tensor X ∈ R
I×J×K are

denotes as xijk. It is analogous to matrix and vector indexing scheme where the

individual elements are denoted as X ij and xi, respectively. One can also extract

subarrays from a tensor by fixing a subset of indices of the tensor. For a third-order

tensor, we have the concept of fibers and slices defined in the next paragraphs.

Tensor Fibers. Fibers are higher-order analog to rows and columns of a matrix

and are created by indexing tensor on a single mode. For a third-order tensor X

we can extract column, row, and tube fibers are denoted as x:jk, xi:k, and xij:

respectively, where the colon indicates all elements of a mode. Fig. 2.4 illustrate

fibers of a third order tensor X.
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Mode -1 (column) fibers Mode -2 (row) fibers Mode -3 (tube) fibers

Figure 2.4 : Fibers of third order tensor X.

Horizontal slices Lateral slices Frontal slices

Figure 2.5 : Slices of third order tensor X.

Tensor Slices. For an N-order tensor, a tensor slice represents (N-1)-order section

of the tensor. For example, for a third-order tensor, X a slice will represent a two-

dimensional section. For a third-order tensor X we have the horizontal, lateral, and

frontal slices denoted as X i::, X :j:, and X ::k respectively.

Matriciziation. Also known as tensor unfolding, is the operation to rearrange the

elements of an n-mode tensor X ∈ R
i1×i2...×iN as matrix X(n) ∈ R

in×j on the chosen

mode n, where j =
(
i1 ... × in−1 × in+1... × iN

)
. Fig. 2.5 illustrate slices of a third

order tensor X.

n-mode Product. The product of an n-mode tensor X ∈ R
i1...×im−1×im×im+1...×in

and a matrix A ∈ R
j×in is denoted as X×n A. The resultant of this product is also

a tensor Y ∈ R
i1×i2×in−1×j×in+1...×in which can also be expressed through matricized
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tensor as Y(n) = AX(n).

Tensor Inner Product. The inner product between two tensors of same-order

is the sum of the products of their entries. For example inner product between two

third-order tensors X and Y is defined as
〈
X,Y

〉
=

I∑
i=1

J∑
j=1

K∑
k=1

xijkyijk.

Tensor Norm. The tensor norm is analog to matrix and vector norm and is

defined as the square root of the sum of the squares of all its elements. For a

third-order tensor X its norm is defined as ‖ X ‖ =

√
I∑

i=1

J∑
j=1

K∑
k=1

xijkyijk ; it can also

be defined as ‖ X ‖ =

√〈
X,X

〉
.

With the preliminaries defined as above, we now move to our next subsection on

tensor decomposition and their applications.

2.2.2 Tensor Decomposition Algorithms

Tensor decomposition is a form of generalized matrix factorization for approxi-

mating multimode tensors. While a plethora of tensor decomposition algorithms are

available in the literature however all of them can be categorized in these two de-

composition families: 1) canonical polyadic decomposition popularly known as the

CP decomposition [45, 56] and 2) Tucker decomposition also known as HOSV D

[113, 27]. The CP decomposition expresses a tensor as the sum of a finite number of

rank-one tensors [62] and is usually advised for estimation of latent factor, whereas

the Tucker decomposition is a form of higher-order PCA [76] and is mostly applied

for compression and dimensionality reduction. We only provide details of Tucker

decomposition in this chapter as our contributions in this thesis are aligned with

tensor compression and hence reviewing CP decomposition is futile. However, an

interested reader can refer to the seminal work of Kolda and Barder [62].
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Algorithm 1 Higher Order Orthogonal Iteration, HOOI

1: Input: n-mode tensor X ∈ R
i1,i2,...,in ; factorization ranks for each mode of the tensor [r1, r2, ..., rn], where

rk ≤ ik∀ k ∈ 1, 2, ..., n; factorization error-tolerance ε, and maximum allowable iterations = N

2: for i = 1, 2, ..., n do

3: initialize U(i) ∈ R
ii×ri using HOSV D

4: G ← X×1 (U(1))T ...×m (U(m))T ...×n (U(n))T � obtain core-tensor

5: X̂ ← G×1 U(1)...×m U(m)...×n U(n) � reconstructed tensor

6: loss ← ‖X− X̂‖ � decomposition loss

7: count ← 0

8: while
[(
loss ≥ ε

)
Or

(
N ≤ count

)]
do � loop until convergence

9: for i = 1, 2, ..., n do

10: Y ← X×1 (U(1))T ...×(i−1) (U
(i−1))T ×(i+1) (U

(i+1))T ...×n (U(n))T � obtain the variance in mode-i

11: Yi ← unfold tensor Y on mode-i

12: U(i) ← ri left singular vectors of Yi

13: G ← X×1 (U(1))T ...×m (U(m))T ...×n (U(n))T

14: X̂ ← G×1 U(1)...×m U(m)...×n U(n)

15: loss ← ‖X− X̂‖
16: count ← count+ 1

17: Output: Factor matrices for each mode of the tensor i.e.,
[
U(1)...U(m)...U(n)

]

Tucker Decomposition

The Tucker decomposition first introduced by Tucker in [113] and is a form of

higher-order PCA. It factorizes an order-n tensor X ∈ R
i1×i2...×in to obtain two sub

components: 1) G ∈ R
r1×r2...×rn which is a lower dimensional tensor called the core-

tensor and, 2) U(j) ∈ R
rn×in , ∀j = 1, ..., n which are matrix factors associated with

each mode of the tensor. The entries in the core-tensor G signifies the interaction

level between tensor element, whereas the factor matricesU(n) are usually orthogonal

and are analogue to principal components associated with the respective mode-n.

Due to the work in [26] the Tucker factorization scheme is now called as the higer-

order SVD (HOSV D) as the authors has shown that HOSV D as a generalization

of matrix SV D in their work.

In order to obtain the factor matricesU(i) from tensorX we first unfold the tensor
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on each mode and obtain the leading left singular vectors i.e. U(i) ← SV D(X i),

leading left singular vectors of X i. After obtaining matrix factors from each mode

we can obtain the core tensor by performing multiplication of the tensor and matrix

factors i.e., G = X×1 (U
(1))T ...×m (U(m))T ...×n (U

(n))T . The original tensor X can

be reconstructed by taking the n-mode product of the core-tensor and the factor

matrices as in Eq. 2.1.

G×1 U
(1) ×2 U

(2)...×N U(n) ≈ X̂ (2.1)

The HOSVD is computationally expensive in terms of obtaining singular vectors,

and therefore its variant called the truncated HOSVD is more popular which obtain

rn < in singular vectors from mode-n of the tensor. However, the truncated HOSVD

is not optimal in terms of obtaining the best low rank approximation of the original

tensor and Higher Order Orthogonal Iteration (HOOI ) is proposed in [27]. The

HOOI utilizes HOSVD as an initial solution and then iterates for computing the

dominant subspace of the orthonormal basis. The pseudocode for obtaining matrix

factors from an order-n tensor X is presented in Alg. 1.

The advantages of utilizing Tucker based factorization methods have already

been studied in several domains. In computer vision, [117] modeled the face recog-

nition problem as multi-mode tensors and popularized them as Tensor-faces. In

data mining, [102] formulated handwritten digits recognition through tensor factor-

ization, whereas in signal processing, the works in [24, 20] considered the problem of

brain signal analysis with tucker decomposition. Recent works in [63, 129, 47] etc.

have proven the benefits of utilizing tensors and tucker decomposition in application

of deep learning systems.



16

Real Images

G
Generator

Sample
True Images

D
Discriminator

Sample
Fake Images

Loss

Random 
Vector

Image 
Dataset

Figure 2.6 : Workflow of Generative Adversarial Networks.

2.3 Generative Adversarial Networks

Generative Adversarial Networks (GANs) first introduced in [35] are typically

composed of two deep neural networks as shown in Fig. 2.6. The first network is

called the discriminator (D), while the second network is called the generator (G).

Formally, the learning algorithm of GANs is a two-player zero-sum game where the

loss (or gain) by the first player on the utility function is balanced by gain (or loss)

of the utility by the second player [120]. The GANs have become one of the most

popular methods for generating synthetic images consisting of face, object, hand-

written digits, etc. They are also extensively utilized in image to image translation

[136], facial attribute manipulation [19, 79], text generation [125] and etc.

The generator network aims to generate photo-realistic images from randomly

sampled noise prior z. In other words, if px is the distribution over true data then

G(z) learns the distribution pg ∼ px. On the other hand, D aims at learning the

discrimination between the distributions px and pg, where D(input) represents the

probability (px|input) and G(z) represents the output from G having noise (z) as

its input. The optimization scheme for training the D and the G is performed via a
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joint objective function V (G,D) (minimax two-player game objective) as in Eq. 2.2.

min
G

max
D

V (G,D) = Ex∼pdata(x)

[
logD(x)

]
+ Ez∼pdata(z)

[
log(1−D(G(z)))

]
(2.2)

The deep convolution GAN a.k.a DCGAN is believed to be the first GAN

architecture which applied convolution to the generator and discriminator networks

and generated high-quality images. The architecture of GANs has progressively

evolved to solve a multitude of challenges faced while training GAN. Few notable

works include Wasserstein-GAN [4, 37] and BEGAN [7] were proposed to solve the

model collapse problems in GAN. While LSGAN [80] was proposed to address the

non-convergence issue while training GANs. A progressive strategy for generating

high-resolution images with GAN is described in [54].

Moreover, few interesting applications of GANs include CoGAN (Coupled GAN)

[72] which couple a pair of generative adversarial networks to learn a joint distri-

bution over multiple modalities; this is achieved by sharing weights among higher

convolution layers. Similarly, InfoGAN [15] is an information-theoretic extension

allowing learning meaningful representations of objects with the GAN framework.

While, in CycleGAN [135] allows style and domain transfer by learning cross-domain

relationships. Furthermore works, like ImprovedGAN [100] extended the GAN

framework for semi-supervised classification. Besides, currently, the generator is

not capable of adding real-world flavors to the synthetic examples unless domain-

specific operations as in [61, 105] are not applied to the synthetic images.

Despite the recent advancements in GAN, synthetic images generated by them

on datasets with high variabilities like CIFAR [65] or ImageNet [29] are of low

quality [37, 123]. Improving the quality of the images generated by the GANs is

currently an active research topic. A simple yet intuitive evaluation of synthetic

images generated with GANs is described in [104].
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Chapter 3

Attn-HybridNet: Enhancing Discriminability of

Hybrid Features with Attention Fusion

3.1 Introduction

Feature engineering is an essential task in the development of machine learning

systems and has been well-studied with substantial efforts from communities includ-

ing computer vision, data mining, and signal processing [134]. However, today, in

the era of deep-learning, the features are extracted by processing the data through

multiple stacked layers in deep neural networks. These deep neural networks se-

quentially perform sophisticated operations to obtain superior data representation

by discovering critical information concealed in the data [6]. However, the training

time required to obtain efficient representation from the data is exponentially large.

Since the data-dependent optimization process of these networks is conditioned via

stochastic optimization techniques which necessitates multiple flops of the data.

Moreover, these deep networks have an exhaustive hyper-parameter search space

during training and usually suffer from various training difficulties [33]. Besides,

the deep networks are complex models and require high computational resources for

their training and deployment. This limits their usability on micro-devices such as

cellphones [87, 39]. The current research trend focuses on alleviating the memory

and space requirements associated with the deep networks [63].

To produce lightweight convolution neural networks (CNNs) architecture, most

of the existing solutions 1) approximate the convolution and fully connected layers by

factorization[133, 69], or 2) compress the network layers with quantization/hashing
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[39, 16] or, 3) replace the fully connected layer with a tensorized layer and optimize

the weights of this layer by retraining [63]. However, these techniques require an

already trained CNN network and hence can only work as post-optimization correc-

tive procedures. Whereas, our objective is to build lightweight deep networks which

are computationally inexpensive to train. In other words, in this research we seek

the possibility of building deep networks which are independent of high-performance

hardware and exhaustive hyperparameter search space required for their training.

3.2 Our Contributions

We summarize our contributions in this chapter as follows:

1. We propose Tensor Factorized Network (TFNet) which extracts features

from the minutiae view of the data and is able to capture the spatial informa-

tion present in the data that is beneficial for image classification.

2. We propose Left one Mode Out Orthogonal Iteration (LoMOI ) algorithm for

obtaining weights of convolution filters from the minutiae view of the data in

TFNet.

3. We propose Hybrid Network (HybridNet) which integrates the feature

extraction and information discovery procedure from two views of the data.

The HybridNet reduces the information loss from the data by combing the

merits of the PCANet and TFNet and obtains superior features than either

of the two schemes.

4. We propose Attn-HybridNet for alleviating feature redundancy among the

hybrid features by performing feature selection and aggregation with an attention-

based fusion scheme. The Attn-HybridNet enhances the discriminability

of the feature representations, which further boosts the classification perfor-

mance.
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5. We evaluate multiple case studies with the features obtained by HybridNet

and Attn-HybridNet on CIFAR-10 dataset to demonstrate the effectiveness

of our proposed fusion technique.

The rest of this chapter is organized as follows. We review the related literature

consisting of PCANet and and background tensor preliminaries in Sec. 3.3. The

details of our proposed TFNet, HybridNet, and Attn-HybridNet are presented

in Sec. 3.4, Sec. 3.5, and Sec. 3.6 respectively. Sec. 3.7 describes the experimental

setup and datasets utilized in this chapter followed by Sec. 3.8 for reporting the

performances. We conclude this chapter with summaries in Sec. 3.9.

3.3 Literature Review

The success of utilizing CNNs for multiple computer vision tasks such as visual

categorization, semantic segmentation, etc. has lead to drastic development in the

field. However, to supersede the human performance on image classification tasks,

these CNNs have grown tremendously deeper, for example, ResNet [42] achieving

a top-5 error rate of 3.57% consisting of 152-layers, 60M parameters, and requiring

2.25 × 1010 flops at the time of inference. This restricts the applicability of these

models on devices with limited computational resources such as mobile devices and

reducing the size of the CNNs has become a non-trivial task for their practical

applications.

Three main research directions are conducted in this regard 1) compression of

CNNs with quantization, 2) approximating convolution layer with factorization,

and 3) replacing fully connected layers with custom-built layers. The works in

[39, 16, 14] accelerates and reduce the size of CNNs by compressing layers of the

CNN models with quantization or hashing. These quantized CNN models achieve

similar recognition accuracy with significantly less requirement for computational
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resources during inference. Similarly, the works in [133, 69] obtain approximations

of fully connected and convolution layers by utilizing factorization for compressing

the CNN models. However, both the quantization and factorization based methods

compresse a pre-trained CNN model instead of building a smaller or faster CNN

model at the first place. Therefore, these techniques inherit the limitations of the

pre-trained CNN models; for example, these compressed models might not adapt to

images with different size and might require retraining for accommodating them.

However, the research works in [63, 87] take a slightly different approach than

the above research directions and; propose new lightweight layers to replace fully

connected layers which can efficiently reduce the size of any CNN model. The work

in [63] propose a neural tensor layer while the work in [87] proposes a BoF (Bag-of-

features) model as a neural pooling layer. These methods augment the CNNs and

produce their lightweight versions which are trainable in an end-to-end fashion by

backpropagation. However, a major limitation of these works is that they are only

capable of replacing a fully connected layer and to replace a convolution layer. They

work similarly to the approximation and quantization approaches.

A possible solution for obtaining lightweight CNNs architecture with lower com-

putational requirements on smaller size images are proposed in PCANet [13] and

TFNN [17]. The PCANet is a deep unsupervised parsimonious feature extractor

whereas TFNN is a supervised CNN architecture utilizing neural tensor factor-

ization for extracting information from multiway data. Both networks achieve very

high classification performance on handwritten digits dataset but fail to obtain com-

petitive performance on object recognition dataset. This is because the PCANet

(and its later variant FANet [49]) incurs information loss associated with the spatial

structure of the data as it obtains weights of its convolution filters from the amal-

gamated view of the data. Contrarily, the TFNN extracts information by isolating

each view of the multi-view data and fails to efficiently consolidate them for their
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utmost utilization incurring the loss of common information present in the data.

However, the information from both the amalgamated view and the minutiae

view∗ are essential for classification, and their integration can enhance the classifi-

cation performance [73, 118]. In this research, we first propose HybridNet, which

integrates the two kinds of information in its deep parsimonious feature extraction

architecture. A major difference between HybridNet and PCANet is that the

former simultaneously obtains information from both views of the data whereas the

latter is restricted to obtain information from the amalgamated view of the data.

The HybridNet is also notably different from TFNN as the former is an unsuper-

vised deep network while the latter is a supervised deep neural network. Moreover,

the HybridNet extracts information from minutiae view of the data, whereas the

TFNN extracts information by isolating each mode of multi-view data.

Later, to enhance the discriminability of the features obtained with HybridNet,

we propose Attn-HybridNet which performs attention-based fusion on hybrid fea-

tures. TheAttn-HybridNet reduces the feature redundancy by performing feature

selection and obtains superior feature representations for supervised classification.

We present the related background on PCANet and tensor preliminaries in the

next subsection. The differences and similarities between the PCANet, TFNet,

HybridNet, and Attn-HybridNet are summarized in Table 3.1.

3.3.1 Background

We briefly summarize PCANet’s 2-layer architecture in this section.

∗Throughout this thesis, we refer to the vectorized presentation of the data as the amalgamated

view where all modes of the data (also called dimension for higher order-matrices i.e., tensors) are

collapsed to obtain a vector. Whereas,the untransformed view of the data, i.e., when viewed with

its multiple modes(e.g., tensors), is referred to as the minutiae view of the data.
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Methods Amalgamated View Minutiae View Attention Fusion

PCANet [13] � × ×

TFNet [119] × � ×

HybridNet [119] � � ×

Attn-HybridNet � � �

Table 3.1 : Comparison of different feature extraction models

The First Layer

The procedure begins by extracting overlapping patches of size k1 × k2 around

each pixel in the image; where patches from image Ii are denoted as xi,1,xi,2, ..,xi,m̃ñ ∈
R

k1k2 , where m̃ = m−	k1
2

† and ñ = n−	k2

2

. Next, the obtained patches are zero-

centered by subtracting the mean of the image patches and vectorized to obtain

X i ∈ R
k1k2×m̃ñ as the patch matrix. After repeating the same procedure for all

the training images we obtain X ∈ R
k1k2×Nm̃ñ as the final patch-matrix from which

the pca filters are obtained. The PCA minimizes the reconstruction error with

orthonormal filters known as the principal eigenvectors of XXT calculated as in

Eq. 3.1

min
V ∈Rk1k2×L1

‖X − V V TX‖F , s.t. V TV = IL1 (3.1)

where IL1 is an identity matrix of size L1×L1 and L1 is the total number of obtained

filters. These convolution filters can now be expressed as:

W 1
lPCANet

= matk1,k2(ql(XXT )) ∈ R
k1×k2 (3.2)

where matk1,k2(v) is a function that maps v ∈ R
k1k2 to a matrix W ∈ R

k1×k2 , and

ql(XXT ) denotes the l-th principal eigenvector of XXT . Next, each training image

†The operator 	z
 gives the smallest integer greater than or equal to z.
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Ii is convolved with the L1 filters as in Eq. 3.3.

I liPCANet
= Ii ∗W 1

lPCANet
(3.3)

where ∗ denotes the 2D convolution and i, l are the image and filter indices respec-

tively. Importantly, the boundary of image Ii is padded before convolution to obtain

I liPCANet
with the same dimensions as in Ii. From Eq. 3.3 a total of N × L1 images

are obtained and attributed as the output from the first layer.

The Second Layer

The methodology of the second layer is similar to the the first layer. We collect

overlapping patches of size k1 × k2 around each pixel from all input images in this

layer i.e., from I liPCANet
. Next, we vectorize and zero-centre these images patches to

obtain the final patch matrix denoted as Y ∈ R
k1k2×L1Nm̃ñ. This patch matrix is

then utilized to obtain the convolution pca filters in layer 2 as in Eq. 3.4.

W 2
lPCANet

= matk1,k2(ql(Y Y T )) ∈ R
k1×k2 (3.4)

where l = [1, L2] denotes the number of pca filters obtained in this layer. Next, the

input images in this layer I liPCANet
are convolved with the learned filters W 2

lPCANet
to

obtain the output from this layer in Eq. 3.5. These images are then passed to the

feature aggregation phase as in the next subsection.

Ol
iPCANet

= I liPCANet
∗W 2

lPCANet
(3.5)

The Output Layer

The output layer combines the output from all the convolution layers of PCANet

to obtain the feature vectors. The process initiates by first binarizing each of the

real-valued outputs from Eq. 3.5 by utilizing a Heaviside function H(Ol
iPCANet

) on

them, which converts the positive entries to 1 otherwise 0. Then, these L2 outputs
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are assembled into L1 batches, where all images in a batch belong to the same con-

volution filter in the first layer. Then, these images are combined to form a single

image by applying weighted sum as in Eq. 3.6 whose pixel value is in the range

[0, 2L2 − 1]:

I l
iPCANet

=

L2∑
l=1

2l−1H(O2
lPCANet

) (3.6)

Next, these binarized images are partitioned into B blocks and a histogram with 2L2

bins is obtained. Finally, the histograms from all the B blocks are concatenated to

form a feature vector from the amalgamated view of the images in Eq. 3.7.

fiPCANet
= [Bhist(I1

iPCANet
), ..., Bhist(IL1

iPCANet
)]T ∈ R

(2L2 )L1B (3.7)

This block-wise encoding process encapsulates the L1 images from Eq. 3.6 into a sin-

gle feature vector which can be utilized for any machine learning task like clustering

or classification.

3.3.2 Tensor Factorization using LoMOI

Tensors are simply multi-mode arrays or higher-order‡ matrices of dimension > 2.

In this chapter, the vectors are denoted as x are called first-order tensors, whereas

the matrices are denoted asX are called second-order tensors. Analogously, matrices

of order-3 or higher are called tensors and are denoted as X. Besides, multilinear

algebraic operations such as n-mode product and Matricization are presented in

Sec. 2.2.1.

To obtain weights of convolution-tensor filters we devise a custom-designed tucker-

based tensor factorization scheme called as Left one Mode Out Orthogonal Iteration

(LoMOI ) presented in Alg. 2. The LoMOI obtains factors from each mode of the

tensor but the sample mode. Obtaining matrix factors from the sample mode is futile

‡Also known as modes (dimensions) of a tensor and are analogous to rows and columns of a

matrix.
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Algorithm 2 Left One Mode Out Orthogonal Iteration, LoMOI

1: Input: n-mode tensor X ∈ R
i1,i2,...,in ; factorization ranks for each mode of the tensor [r1...rm−1, rm+1...rn],

where rk ≤ ik∀ k ∈ 1, 2, ..., n and k 
= m; factorization error-tolerance ε, and Maximum allowable iterations

= Maxiter, m = mode to discard while factorizing

2: for i = 1, 2, ..., n and i 
= m do

3: Xi ← unfold tensor X on mode-i

4: U(i) ← ri left singular vectors of Xi � extract leading ri matrix factors

5: G ← X×1 (U(1))T ...×m−1 (U(m−1))T ×m+1 (U(m+1))T ...×n (U(n))T � Core tensor

6: X̂ ← G×1 U(1)...×m−1 U(m−1) ×m+1 U(m+1) ×n U(n) � reconstructed tensor obtained by multilinear

product of the core-tensor with the factor-matrices.

7: loss ← ‖X− X̂‖ � decomposition loss

8: count ← 0

9: while [(loss ≥ ε) Or (Maxiter ≤ count)] do � loop until convergence

10: for i = 1, 2, ..., n and i 
= m do

11: Y ← X×1 (U(1))T ...×(i−1) (U
(i−1))T ×(i+1) (U

(i+1))T ...×n (U(n))T � obtain the variance in mode-i

12: Yi ← unfold tensor Y on mode-i

13: U(i) ← ri left singular vectors of Yi

14: G ← X×1 (U(1))T ...×(m−1) (U
(m−1))T ×(m+1) (U

(m+1))T ...×n (U(n))T

15: X̂ ← G×1 U(1)...×(m−1) U
(m−1) ×(m+1) U

(m+1)...×n U(n)

16: loss ← ‖X− X̂‖
17: count ← count+ 1

18: Output: X̂ the reconstructed tensor and [U(1)...U(m−1),U(m+1)...U(n)] the factor matrices

if we want to obtain dominant subspaces from the RowV iew and the ColumnV iew

of an image. Hence, obtaining is not only futile but will also increase the computa-

tional complexity to the proposed TFNet.

3.4 The Tensor Factorization Network

The development of Tensor Factorization Network (TFNet) is motivated to

reduce the loss of spatial information occurring in the PCANet while vectorizing

image patches. However, this transformation of the data is inherent while extracting

the principal components which destroys the geometric structure of the object en-

capsulated in the data which is proven beneficial in many image classification tasks

[117, 118, 17]. Furthermore, the vectorization of the data results in high dimen-
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sional vectors and generally requires more computational resources. Motivated by

the above shortcomings with the PCANet, we propose the TFNet. The TFNet

preserves the spatial structure of the data while obtaining weights of its convolution-

tensor filters. The unsupervised feature extraction procedure from minutiae view of

the data in TFNet is detailed in the next subsection.

3.4.1 The First Layer

Similar to the first layer in PCANet, we begin by collecting all overlapping

patches of size k1 × k2 around each pixel from the image Ii. However, contrary to

PCANet the spatial structure of these patches are preserved and instead of matrix,

we obtain a 3-mode tensor Xi ∈ R
k1×k2×m̃ñ. The mode-1 and mode-2 of this tensor

represents the row-space, and the column-space spanned by the pixels in the image.

The mode-3 of this tensor represents the total number of image patches obtained

from the input image. Iterating this process for all the training images, we obtain

X ∈ R
k1×k2×Nm̃ñ as our final patch-tensor. The matrix factors utilized to generate

our convolution-tensorial filters for to the first two modes of X are obtained by

utilizing our custom-designed LoMOI (presented in Alg. 2) in Eq. 3.8.

[X̂,U(1),U(2)] ← LoMOI(X, r1, r2) (3.8)

where X̂ ∈ R
r1×r2×Nm̃ñ, U(1) ∈ R

k1×r1 , and U(2) ∈ R
k2×r2 . We discard obtaining the

matrix factors from mode-3 of tensor X (which is X3) as this is equivalent to the

transpose of the patches matrix X in layer 1 of the PCANet which is not factorized

in the PCANet while obtaining weights for its convolution filters. Moreover, the

matrix factors for this mode spans the sample space of the data which is trivial. A

total of L1 = r1× r2 convolution-tensor filters are obtained from the factor matrices

U(1) and U(2) as in Eq. 3.9.

W 1
lTFNet

= U
(1)
(:,i) ⊗U

(2)
(:,j) ∈ R

k1×k2 (3.9)
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where ‘⊗’ is the outer -product between two vectors, i = [1, r1], j = [1, r2], l = [1, L1],

and U
(m)
(:,i) represents ‘ith’ column of the ‘mth’ factor matrix. Importantly, our

convolution-tensorial filters do not require any explicit reshaping as the outer -

product between two vectors naturally results in a matrix. Therefore, we can

straightforwardly convolve the input images with our obtained convolution-tensorial

filters as described in Eq. 3.10 where i = [1, N ] and l = [1, L1] are the image and

filter indices respectively

I liTFNet
= Ii ∗W 1

lTFNet
(3.10)

However, whenever the data is an RGB-image, each extracted patch from the

image is a 3-order tensor X ∈ R
k1×k2×3 (i.e., RowPixels×ColPixels×Color). Af-

ter collecting patches from all the training images, we obtain a 4-mode tensor as

X ∈ R
k1×k2×3×Nm̃ñ which is decomposed by utilizing LoMOI ([X̂,U(1),U(2),U(3)] ←

LoMOI(X, r1, r2, r3)) for obtaining the convolution-tensorial filters in Eq. 3.11.

W 1
lTFNet

= U
(1)
(:,i) ⊗ U

(2)
(:,j) ⊗ U

(3)
(:,k)

(3.11)

where i ∈ [1, r1], j ∈ [1, r2], and k ∈ [1, r3].

3.4.2 The Second Layer

Similar to the first layer, we extract overlapping patches from the input images

and zero-center them to build a 3-mode patch-tensor denoted as Y ∈ R
k1×k2×NL1m̃ñ

which is decomposed as [Ŷ,V(1),V(2)] ← LoMOI(Y, r1, r2) to obtain the convolution-

tensor filters for layer 2 in Eq. 3.12.

W 2
lTFNet

= V
(1)
(:,i) ⊗V

(2)
(:,j) ∈ R

k1×k2 (3.12)

where, Ŷ ∈ R
r1×r2×NL1m̃ñ, V(1) ∈ R

k1×r1 , and V(2) ∈ R
k2×r2 , i = [1, r1], j = [1, r2],

and l = [1, L2]. We, now convolve each of the L1 input images from the first layer

with the convolution-tensorial filters obtained as below in Eq. 3.13.

Ol
iTFNet

= I liTFNet
∗W 2

lTFNet
, l = 1, 2, ..., L2 (3.13)
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The number of output images obtained here is equal to L1×L2 which is identical

to the number of images obtained at layer 2 of PCANet. Finally, we utilize the

output layer of PCANet (Sec. 3.3.1) to obtain the feature vectors from the minutiae

view of the image in Eq. 3.14.

I l
iTFNet

=

L2∑
l=1

2l−1H(O2
lTFNet

)

fiTFNet
= [Bhist(I1

iTFNet
), ..., Bhist(IL1

iTFNet
)]T ∈ R

(2L2 )L1B

(3.14)

Despite having close resemblance between the feature extraction mechanism of

the PCANet and the TFNet. These two networks capture visibly distinguishable

features from the two view of the images as shown in Fig. 3.1. These plots are

obtained by convolving image of a cat with the convolution filters obtained in the

first layer of the networks. Undoubtedly, each of the L1 outputs within the PCANet

is visibly distinct. The outputs within the TFNet show visual similarity, i.e., the

images in a triplet sequence show similarity consecutively. These plots demonstrate

that the TFNet emphasizes mining the common information from the minutiae

view of the data, whereas the PCANet emphasizes mining the unique information

from the amalgamated view of the data. Both these kinds of information are proven

beneficial for classification in [73, 118] and motivate the development of HybridNet

described in the next section.

3.5 The Hybrid Network

The PCANet and the TFNet extract contrasting information from the amal-

gamated view and the minutiae view of the data, respectively. However, we hypoth-

esize that the information from both of these views are essential as they conceal

complementary information and that their integration can enhance the performance

of classification systems. Motivated by the above, we propose the HybridNet,

which simultaneously extracts information from both views of the data and is de-
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(a) Convolution output from the PCANet where each output is visually distinct from the

rest, depicting extraction of unique information with the amalgamated view of the data.

(b) Convolution output from the TFNet where the visual resemblance is observed in a se-

quence of three; depicting extraction of common information with minutiae view of the data.

Figure 3.1 : Comparison of convolution outputs from Layer1 in PCANet and TFNet

on CIFAR-10 dataset. These plots demonstrate the contrast between the two types

of information obtained with the two views of the data.

tailed in the next subsection. However for ease of understanding we illustrate the

complete procedure of feature extraction with Attn-HybridNet in Fig. 3.2.
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Figure 3.2 : Workflow of the Attn-HybridNet model.

3.5.1 The First Layer

Similar to the previous networks, we begin the feature extraction process by

collecting all overlapping patches of size k1 × k2 around each pixel from the image

Ii. Importantly, the first layer of HybridNet consists of image-patches expressed

both as tensors X ∈ R
k1×k2×3×Nm̃ñ and matrices X ∈ R

k1k2×Nm̃ñ which are utilized

for obtaining weights of convolution filters in layer 1 of HybridNet.

This enables this layer (and the subsequent layers) of HybridNet to learn su-

perior filters as they perceive more information from both views of the data. The

weights for the pca-filters are obtained as the principal-eigenvectors as W 1
lPCA

=

matk1,k2(ql(XXT )), and the weights for convolution-tensor filters are obtained by

utilizing LoMOI as W 1
lTF

= U
(1)
(:,i) ⊗U

(2)
(:,j) ⊗U

(3)
(:,k). Furthermore, the output from this

layer is obtained by convolving input images with a) the PCA-filters and b) the

convolution-tensorial filters in Eq. 3.15 and Eq. 3.16 respectively. This injects more

diversity to the output from the first layer in HybridNet or equivalently to the
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input of the succeeding layer of the HybridNet.

I liPCA
= Ii ∗W 1

lPCA
(3.15)

I liTF
= Ii ∗W 1

lTF
(3.16)

Since we obtain of L1 pca filters and L1 convolution-tensor filters, a total of 2× L1

outputs is obtained in this layer.

3.5.2 The Second Layer

Similar to the first layer, we begin the process by collecting all overlapping

patches of size k1 × k2 around each pixel from the images. However, contrary to

the above layer, the weights of the pca-filters W 2
lPCA

and convolution-tensor filters

W 2
lTF

are learned from the data obtained by convolving input images with the pca

filters and the convolution-tensor filters i.e. both IiPCA
and IiTF

. Hence both the

patch-matrix Y ∈ R
k1k2×2L1Nm̃ñ and the patch-tensor Y ∈ R

k1×k2×2L1Nm̃ñ contain

image patches obtained from [IiPCA
, IiTF

]. This enables the hybrid filters to assimi-

late more variability present in the data while obtaining weights of their convolution

filters. This phenomena is evident in Fig. 3.3.

The plot in Fig. 3.3(a) compares the eigenvalues obtained in layer 2 (we ex-

clude eigenvalues from layer 1 as they completely overlap as their expected behav-

ior). The leading eigenvalues obtained in layer 2 of the HybridNet by principal

components have much higher magnitude than the corresponding eigenvalues ob-

tained by principal components in PCANet. This demonstrates that the pca filter

in the HybridNet captures more variability from the amalgamated view of data

than the PCANet.

Similarly, Fig 3.3(b) compares the core-tensor strength in different layers of the

HybridNet and the TFNet. We plot the norm of the core-tensor for both the net-

works as the values in the core-tensor are analogous to eigenvalues for higher-order
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(a) Comparison of eigenvalues between networks

(b) Comparison of core-tensor strength between networks

Figure 3.3 : Comparison of factorization strength in Layer 2 of the PCANet,

TFNet and HybridNet on CIFAR-10 dataset

matrices, and its norm signifies the compression strength of the factorization [75].

Again, the norm of the core-tensor in layer 2 of HybridNet is much lower than that

of the TFNet, suggesting relatively higher factorization strength in HybridNet.

Besides, as expected, the norm of the core-tensor in layer 1 for both the networks

coincides and signifies equal factorization strength at this layer. Consequently, this

leads to attainment of better-disentangled feature representations with the Hybrid-

Net and hence enhances its generalization performance over the PCANet and the
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TFNet by integrating information from the two views of the data.

In the second layer, the weights of pca filters are obtained by principal compo-

nents as W 2
lPCA

= matk1,k2(ql(Y Y T )) and the weights for convolution-tensor filters

are obtained as W 2
lTF

= V
(1)
(:,i) ⊗V

(2)
(:,j), where the matrix factors are obtained using

LoMOI [Ŷ,V(1),V(2)] ← LoMOI(Y, r1, r2). Analogous to the previous networks,

the output images from this layer of HybridNet are obtained by a) convolving

the L1 images corresponding to the output from the PCA-filters in the first layer

with the L2 pca filters obtained in the second layer (Eq. 3.17), and b) convolving

the L1 images corresponding to the output from the convolution-tensorial filters in

the first layer with the L2 convolution-tensorial filters obtained in the second layer

(Eq. 3.18). This generates a total of 2× L1 × L2 output images in this layer.

Ol
iPCA

= I liPCA
∗W 2

lPCA
(3.17)

Ol
iTF

= I liTF
∗W 2

lTF
(3.18)

The output images obtained from the pca-filters (Ol
iPCA

) in layer 2 are then pro-

cessed with the output layer of the PCANet (Sec. 3.3.1) to obtain fiPCA
as the

information from an amalgamated view of the image. Similarly, the output images

obtained from the convolution-tensor filters (Ol
iTF

) are processed to obtain fiTF
as

the information from minutiae view of the image. Finally, these two kinds informa-

tion are concatenated to obtain the hybrid features as in Eq. 3.19.

fihybrid
= [fiPCA

fiTF
] ∈ R

(2L2 )2L1B (3.19)

The hybrid features obtained above couple the advantages of both the common

and unique information obtained with the two views of the data. However, it still

suffers from the feature redundancy induced by the spatial pooling operation in
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the output layer. To alleviate this drawback, we propose Attn-HybridNet, which

enhances the discriminability of hybrid features and is described in the next section.

3.6 Proposed attention-based fusion Attn-HybridNet

The proposed HybridNet eradicates the loss of information by integrating the

learning scheme of PCANet and TFNet thus obtaining superior features than ei-

ther of the networks. However, the feature encoding scheme in the output layer is el-

ementary and induces redundancy in the feature representations [52, 23]. Moreover,

the generalized spatial pooling operation in the output layer is unable to accommo-

date the spatial structure of the natural images, i.e., it is more effective for aligned

images dataset like face and handwritten digits than for object recognition dataset.

Simply, the design of the output layer is ineffectual to obtain utmost feature repre-

sentation on object recognition datasets resulting in performance degradation with

the HybridNet. Moreover, efficient techniques to alleviate this drawback with the

output layer are not addressed in the literature, which necessitate the development

of our proposed attention-based fusion scheme i.e. the Attn-HybridNet.

Our proposed attention-based fusion scheme is presented in Alg. 3, where fhybrid ∈
R

N×(2L2 )L1B×2 are the hybrid feature vectors obtained with the HybridNet, w ∈ R
d

is the feature level context vector of dimension d << (2L2)L1B, αT ∈ R
2 is the

normalized importance weight vector for combining the two kinds of information

with attention fusion, and Fattn ∈ R
(2L2 )L1B are the attention features. The fully

connected layers i.e. W ∈ R
d×(2L2 )L1B and fc are utilized to obtain hidden represen-

tations of features while performing attention fusion.

A few numerical optimization based techniques proposed in [52, 51] exist for

alleviating the feature redundancy from architectures utilizing generalized spatial

pooling layers. However, these techniques require grid search between the dictionary

size (number of convolution filters in our case) and the pooling blocks in the output
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Algorithm 3 Attn-HybridNet

1: Input: fhybrid = [fPCA; fTF] ∈ R
N×(2L2 )L1B×2 the hybrid feature vectors from the training images; Y =

[0, 1, ..., C] ground truth of training images, dimensionality of feature level attention context vector w ∈ R
d

where d << R
(2L2 )L1B .

2: randomly initialize W , fc, and w

3: loss ← 1000 � arbitrary number to start training

4: do

5: [fbatch,Y batch] ← sample batch ([fhybrid,Y ])

6: PF ← tanh(W.fbatch) � get the hidden representation of the hybrid features

7: α = softmax
(
wT .PF

)
� measure and normalize the importance

8: Fattn = fbatch.α
T � perform attention fusion

9: Ŷ ← fc(Fattn) � fully connected layer

10: loss ← LogLoss(Y batch, Ŷ batch) � compute loss for optimizing parameters

11: back-propagate loss for optimizing W , fc, and w.

12: while [(loss ≥ ε)] � loop until convergence

13: Output: parameters to perform attention fusion W , fc, and w ∈ R
d

layer while performing optimization. Besides, the transition to prune filters from a

single-layer networks to multi-layer network is not smooth in these techniques. A

major difference between our proposed Attn-HybridNet and the existing proposal

in [52, 51] is that we reduce the feature redundancy by performing feature selection

with attention-based fusion scheme, whereas the existing techniques prune the filters

to eliminate the feature redundancy. Therefore, our proposed Attn-HybridNet

is superior to these existing techniques as it decouples the two sub-processes, i.e.,

information discovery with convolution layers and feature aggregation in the pooling

layer while alleviating the redundancy exhibiting in the feature representations.

The discriminative features obtained by Attn-HybridNet i.e. Fattn are utilized

with softmax-layer for classification, where the parameters in the proposed fusion

scheme (i.e., W , fc and w) are optimized via gradient-descent on the classification

loss. This simple yet effective scheme substantially enhances the classification per-

formance by obtaining highly discriminative features. Comprehensive experiments

are conducted in this regard to demonstrate the superiority of Attn-HybridNet
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detailed in Sec. 3.7.

3.6.1 Computational Complexity

To obtain the computational complexity of Attn-HybridNet, assume we as-

sume attention-based fusion scheme with two-layer HybridNet with a patch size

of k1 = k2 = k.

In each layer of the HybridNet, we have to compute the time complexities

arising from learning convolution weights from the two views of the data. The

formation of the zero-centered patch-matrix X and zero-centered patch-tensor X

has identical complexities as k2(1 + m̃ñ). The complexity of eigen-decomposition

for patch-matrix and tensor factorization with LoMOI for patch-tensor are also

identical and equal to O((k2)3), where k is a whole number < 7 in our experiments.

Further, the complexity for convolving images with the convolution filters at stage i

requires Lik
2mn flops. The conversion of L2 binary bits to a decimal number in the

output layer costs 2L2m̃ñ, where m̃ = m−	k
2

, ñ = n−	k

2

 and the naive histogram

operation for this conversion results in complexity equal to O(mnBL2log2).

The complexity of performing matrix multiplication in Attn-HybridNet is

O
(
2L1B

(
d(1 + 2L2) + 2L2

))
which can be efficiently handled with modern deep

learning packages like Tensorflow [1] for stochastic updates. To optimize the param-

eters in the attention-based fusion scheme (W , fc, and w), we back-propagate the

loss through the attention network until convergence of the error on the training

features.

3.7 Experiments and Results

3.7.1 Experimental Setup

In our experiments, we utilized two-layer architecture for each network while

obtaining weights of their convolution filters. The number of convolution filters in
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the first and the second layer are optimized via cross-validation on each dataset. The

dimensionality of the feature vectors extracted from PCANet and TFNet becomes

BL12
L2 , assuming L1 and L2 as the number of convolution filers in layer 1 and layer

2 respectively. The dimensionality of feature vector with HybridNet becomes

2BL12
L2 . We utilized Linear-SVM [31] as the classifier with features obtained with

the PCANet, TFNet, and the HybridNet.

The attention-based fusion scheme is performed by following the procedure as

described in Alg. 3 where, we searched the optimal attention dimension for the con-

text level feature vector w ∈ R
d in [10, 50, 100, 150, 200, 400]. The obtained attention

features i.e. Fattn ∈ RBL12L2 are utilized with softmax-layer for classification. The

parameters of attention-based fusion scheme (W , fc, and w) are optimized via back-

propagation on the classification loss implemented in TensorFlow [1]. We observed

that the attention-network’s optimization took less than 15 epochs for convergence

on all the datasets.

Furthermore, in our experiments, we do not utilize any data-augmentation tech-

niques like rotations, random cropping, etc. to increase the size of the training

data.

3.7.2 Datasets

We utilize the following datasets and hyper-parameters in our experiments:

1 MNIST variations [68], which consists of 28× 28 gray scale handwritten digits

with controlled factors of variations such as background noise, rotations, etc.

Each variation contains 10K training and 50K testing images. We cite the

results for state of the art techniques like 2-stage ScatNet [10] (ScatNet-2)

and 2-stage Contractive auto-encoders [99] (CAE-2) as published in [13] while

comparing the performance of our proposed Attn-HybridNet as baselines.
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The parameters of HybridNet (and other networks) are set as L1 = 9, L2

= 8, k 1 = k 2 = 7, with block size B = 7 × 7 and size of overlapping regions

between the blocks equal to half of the block size while performing feature

pooling with all the networks.

2 CUReT texture dataset [116], consists images with dimensions 200×200 for 61

texture categories, where each category has images of the same material with

different pose, illumination conditions, specularity, shadowing, and surface

normals. Following the standard procedure in [116, 13] a subset of 92 cropped

images were taken from each category and randomly partitioned into train and

test sets with a split ratio of 50%. The classification results are averaged over

10 different trails. We set, L1 = 9, L2 = 8, k 1 = k 2 = 5, with the block size

B = 50 × 50 and the size of overlapping regions between the blocks is equal

to half of the block size. Again, we cite the results of the baselines techniques

as published in [13].

3 CIFAR-10 [65] dataset consists of RGB images of dimensions 32×32 for object

recognition consisting of 50K and 10K images for training and testing respec-

tively. These images are distributed among 10 classes and vary significantly in

object position, object scale, colors, and textures but also within each class.

We varied the number of filters in layer 1 i.e., L1 as 9 and 27 and kept the num-

ber of filters in layer 2 i.e. L2 = 8. The patch-size k 1 and k 2 are kept equal and

varied as 5, 7, and 9 with block size B = 8× 8. Following [13] we also applied

spatial pyramid pooling (SPP) [36] to the output layer of HybridNet (and

similarly to the out layer of other networks). We additionally applied PCA to

reduce the dimension of each pooled feature to 100.§. These features are uti-

lized with Linear-SVM for classification and Attn-HybridNet for obtaining

§Results does not vary significantly on increasing the projection dimensions.
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attention features Fattn.

Classification accuracies from comparable methods such as Tiled CNN [85],

CUDA-Convnet [64], VGG style CNN on CIFAR-10 (VGG-CIFAR10 reported by

[18]), and K-means (tri) [22] are taken from their respective publications. However,

for a qualitative case study, we have utilized publicly available source codes of these

baselines and executed them by varying the size of training dataset. Importantly,

we do not compare our method with complex architectures such as ResNet [42] and

DenseNet [48] as these have sophisticated convolution operations but are the current

state of the art on this dataset.

3.8 Results and Discussions

The main contributions in this chapter are 1) the integration of information

available from both the amalgamated view (i.e., the unique information) and the

minutiae view (i.e., the common information), and 2) the attention based fusion of

information obtained from the two views of the data for supervised classification.

We evaluate the significance of these contributions under the following research

questions:

Q1: Is the integration of both the minutiae view and the amalgamated view ben-

eficial? Or, does their integration deteriorate the generalization performance of

HybridNet?

To validate this, we evaluate the classification performance of HybridNet, the

PCANet, and TFNet on CIFAR-10 and MNIST variations datasets by varying the

amount of training dataset while extracting feature. We then obtained classification

accuracies of these features on the test dataset, and plot the mean and variance with

5 fold cross-validation in Fig. 4.3.
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(a) CIFAR-10 (b) MNIST Rotation

(c) MNIST bg-img-rot

Figure 3.4 : Performance Comparison by varying size of the training data

These plots suggest that the classification accuracy obtained with the features

from HybridNet (and also from the PCANet and the TFNet) linearly increases

with respect to the size of training data. Moreover, these plots also suggest that the

information obtained from the amalgamated view in PCANet is superior than the

information obtained from the minutiae view TFNet on object-recognition dataset.

However, these two kinds of information achieve competitive classification perfor-

mance on variations of handwritten digits dataset which contains nearly aligned

images.

Most importantly, these plots unambiguously demonstrate that integrating both
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Parameters PCANet TFNet HybridNet Attn-HybridNet

L1 L2 k1 k2 Error (%) Error (%) Error (%) Error (%)

8 8 5 5 34.80 32.57 31.39 28.08

8 8 7 7 39.92 37.19 35.24 30.94

8 8 9 9 43.91 39.65 38.04 35.33

27 8 5 5 26.43 29.25 23.84 18.41

27 8 7 7 30.08 32.57 28.53 25.67

27 8 9 9 33.94 34.79 31.36 27.70

Table 3.2 : Classification Error (%) obtained by varying hyper-parameters on

CIFAR-10 dataset without augmentation

these information obtain superior feature representations, consequently improving

the classification performance of the proposed HybridNet.

Q2: How does the hyper-parameters affect the performance of the HybridNet.

Moreover, what is the effect of these features representation on the proposed atten-

tion based fusion scheme?

To address this question, we present a detailed study on how the hyper-parameters

affect the performance of HybridNet and Attn-HybridNet. In this regard, we

compare the classification performance of the PCANet, TFNet, HybridNet, and

Attn-HybridNet on CIFAR-10 dataset in Table. 3.2. The lowest error is high-

lighted in slightly larger font, while the minimum error achieved in each row is

highlighted in bold font. Moreover, we also illustrate the performance of Attn-

HybridNet by varying the dimension of context level feature vector w utilized in

our attention-fusion scheme in Fig. 3.5.
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A clear trend is visible in Table. 3.2 among the performances of all the networks,

where the classification error decreases with an increase in the number of filters in

the first layer of the networks. This trend also demonstrates the effect of the factor-

ization rank while obtaining the principal-components and the matrix factors with

LoMOI ; signifying that increasing the number filters in the first layer allows all the

networks to increase the data variability that aids in obtaining better feature corre-

spondences in the output stage. In addition, this also increases the dimensionality of

the features extracted by the networks suggesting that comparatively higher dimen-

sional features have lower intraclass variability among the feature representations of

objects from the same category.

Another trend can be observed in the performance table where the classification

error increases with the patch size. Since the dimension of images in CIFAR-10 is

32 × 32, this may be due to the presence of less background with smaller image-

patches as increasing the patch size gradually mount to non-stationary data [13].

More importantly, our proposed Attn-HybridNet substantially reduces the

classification error by 22.78%, when compared to classification performance with

HybridNet on CIFAR-10 dataset. The plot in Fig. 3.5 shows the effect on classi-

fication accuracy by varying dimensions of feature level context vector w in Attn-

HybridNet.

Q3: What is the performance of Attn-HybridNet (and HybridNet) compared

to other popular baseline techniques?

We compare the performance of popular (neural and non-neural) methods which

are comparable in architecture and learning scheme to the proposedAttn-HybridNet

and HybridNet on CIFAR-10, MNIST variations, and CUReT datasets in Ta-

ble. 3.3 and Table. 3.4 respectively. Furthermore, to perform qualitative analysis

we plot the classification performance of different schemes on CIFAR-10 dataset
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Figure 3.5 : Accuracy of Attn-HybridNet on CIFAR-10 dataset by varying the

dimension of attention context vector w in Alg. 3.

in Fig. 3.6 and visualize the feature embeddings from HybridNet and Attn-

HybridNet with t-SNE plot [78] in Fig. 3.7.

On MNIST handwritten digits variations dataset, the Attn-HybridNet (and

also the HybridNet) outperforms the state of the art results on five out of seven

variations. In particular, for bg-rand and bg-img variations, we decreased the error

(compared to [119]) by 31.68% and 13.80% respectively.

On CUReT texture classification dataset, the Attn-HybridNet achieves the

lowest classification error among all the networks, albeit it achieves slightly higher

classification error compared to state of the art. The difference in classification error

achieved by state of the art [10] and Attn-HybridNet is marginal and is only 0.5%.

On CIFAR-10 object recognition dataset, we present multiple qualitative case

studies and quantitative performance measurements between our proposed Attn-

HybridNet and other baseline schemes.

Qualitative Discussion We discuss the insights of performance achieved by var-

ious schemes and our proposal by plotting the classification performance achieved
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Methods baisc rot bg-rand bg-img bg-img-rot rect-image convex

CAE-2 [99] 2.48 9.66 10.90 15.50 45.23 21.54 -

TIRBM [106] - 4.20 - - 35.50 - -

PGBM [107] - - 6.08 12.25 36.76 8.02 -

ScatNet-2 [10] 1.27 7.48 12.30 18.40 50.48 15.94 6.50

PCANet 1.07 6.88 6.99 11.16 35.46 13.59 4.15

TFNet 1.07 7.15 6.96 11.44 37.02 16.87 4.98

HybridNet 1.01 6.32 5.46 10.08 33.87 12.91 3.55

Attn-HybridNet 0.94 4.31 3.73 8.68 31.33 10.65 2.81

Table 3.3 : Classification Error (%) obtained on MNIST variations datasets

by varying the size of training data in Fig. 3.6. Although our proposed Attn-

HybridNet consistently achieved the highest classification performance, few inter-

esting trends are still noticeable.

The first trend is regarding the lower classification performance achieved by

both CUDA-Convnet [64] and VGG-CIFAR10 [53] with less amount of training

dataset, particularly until 40%. It is intuitive and justifiable since less amount of

the training data is not sufficient to efficiently learn the parameters of these deep

networks. However, on increasing the amount of training data (above 50%), the

performance of these networks increases substantially i.e., increases with a larger

margin compared to the performance of SVM based schemes in HybridNet and

K-means (tri) [22].

A second trend can be noticed with the classification performances of Hybrid-

Net and K-means (tri). Both, these networks achieve higher classification accuracy

compared to the deep networks with less amount of training data; particularly the

HybridNet has 11.56% higher classification rate compared to the second high-
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Methods Error (%)

Textons [40] 1.50

BIF [25] 1.40

Histogram [9] 1.00

ScatNet [10] 0.20

PCANet 0.84

TFNet 0.96

HybridNet 0.81

Attn-HybridNet 0.72

Table 3.4 : Classification Error (%) obtained on CUReT datasets

est classification accuracy achieved by K-means (tri) with only 10% of the training

dataset. However, the accuracy of these networks does not scale or increase sub-

stantially with an increase in the training data, as noticed with the deep-network

based schemes.

Lastly, the Attn-HybridNet achieves the highest classification performance

among all the techniques with any subset of the training dataset. One possible

reason can be the requirement of fewer parameters with proposed attention-fusion

while performing feature selection with attention-based fusion for alleviating the

feature redundancy.

Moreover, the t-SNE plot in Fig. 3.7 compares the discriminability of features

obtained with the HybridNet and Attn-HybridNet. The plot on the features

obtained fromAttn-HybridNet Fig. 3.7(b) visually achieves better clustering than

the plot on features obtained from HybridNet Fig. 3.7(a) and justifies the perfor-

mance improvement with our proposal.
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Figure 3.6 : (Best viewed in color) Accuracy of various methods on CIFAR-10

dataset by varying size of the training data

Quantitative Performance Our proposedAttn-HybridNet achieves much lower

error compared to Titled CNN [85], K-means (tri), and the PCANet; particularly

16.70% lower than K-means (tri) which has 2× higher feature dimensionality than

our proposed HybrdidNet and utilizes L2 regularized-SVM instead of Linear-

SVM for classification.

The performance of our proposed Attn-HybridNet is still better than VGG-

CIFAR-10 [18] and comparable to CUDA-Convnet [64]¶, both of which have more

depth than the proposed Attn-HybridNet. In particular, we have reduced the

error by 1.63% than VGG-CIFAR-10 with 99.63% less trainable parameters. At the

same time, we have performed very competitive to CUDA-Convnet achieving 0.41%

higher error rate but with 88% less number of tunable parameters.

Nevertheless, the effort required to estimate the tuneable parameters (like con-

volution kernel size, number of convolution filters, etc.) with Attn-HybridNet is

very convenient, and also the amount of training time and parameter size of our

¶we cite the accuracy as published and not from the qualitative analysis
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(a) HybridNet

(b) Attn-HybridNet

Figure 3.7 : (Best viewed in color) t-SNE visualization of features from HybridNet

(top) and Attn-HybridNet (bottom) on CIFAR-10 dataset.

proposed technique compared to the baseline deep-networks is negligible. Hence,

the classification accuracy obtained with Attn-HybridNet is justifiable and en-

couraging.
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Methods #Depth #Params Error

Tiled CNN [85] - - 26.90

K-means (tri.) [22] (1600 dim.) 1 5 22.10

CUDA-Convnet [64] 4 1.06M 18.00

VGG-CIFAR-10 [53] 5 3.45M 20.04

PCANet 3 7 26.43

TFNet 3 7 29.25

HybridNet 3 7 23.84

Attn-HybridNet (proposed) 3 12.7k 18.41

Table 3.5 : Classification Error (%) obtained on CIFAR-10 dataset without data

augmentation

3.9 Summary

The main focus of this chapter is to investigate the plausibility of building

lightweight convolution neural networks that are independent of high performance

architecture. We introduced HybridNet, which integrates the information discov-

ery and feature extraction procedure from the amalgamated view and the minutiae

view of the data. The development of HybridNet is motivated by the fact that

information obtained from the two views of the data are individually insufficient but

necessary for classification. To extract features from the minutiae view of the data,

we proposed the TFNet that obtains weights of its convolution-tensor filters by

utilizing our custom-built LoMOI factorization algorithm. We then demonstrated

how the information obtained with the two views of data are complementary to each

other. Then, we provided details to simultaneously extract the common information

from the amalgamated view and unique information with the minutiae view of the

data in our proposed HybridNet.
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We then proposed Attn-HybridNet for alleviating the feature redundancy by

performing attentive feature selection. Our proposed Attn-HybridNet enhances

the discriminability of features, which further enhances their classification perfor-

mance. The significance of our proposed Attn-HybridNet and HybridNet is

demonstrated by classification performance on multiple real-world datasets.
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Chapter 4

DeepCU: Integrating both Common and Unique

Latent Information for Multimodal Sentiment

Analysis

4.1 Introduction

Recent developments in Deep Learning techniques has led tremendous success in

Sentiment Analysis and emotion recognition [126, 5, 83]. Despite the recent efforts

in text processing for sentiment analysis in [77, 34, 122, 121], a core research chal-

lenge for this domain is the efficient utilization of multimodal representations such

as voice and visual gestures for sentiment prediction [67, 132]. There is a growing

trend of sharing opinion videos on social media platforms (Facebook, YouTube, etc.)

which comprise of language (spoken words), visual-gestures, and acoustic (voice)

as multimodal representations. Combining the unimodal representation for senti-

ment analysis becomes crucial as the combined information from multiple modali-

ties promises better generalization capabilities over traditional text-based schemes

[5, 92]. Figure 4.1 illustrates a typical multimodal sentiment analysis systems, where

the utterance “That’s – that’s true” is ambiguous and can be perceived as positive

or neutral sentiment. However, combining speaker’s visual gesture which is ‘smile’

and loud-pitch of the acoustic in the video helps us in identifying the sentiment of

the speaker.

Some recent promising attempts in combining multimodal representations are

presented in [32, 129, 47, 74]. In all these fusion schemes, an outer product is taken

among unimodalities to obtain the joint representation in the form of a tensor. In
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Visual

Language

Acoustic

Visual

Language

Acoustic

Sentiment
Prediction

Multimodal
Data Fusion

That's -- that's true [Laughter]  … 

?

Figure 4.1 : A typical Multimodal Sentiment Analysis System

[32, 47] the authors only utilized the combined information offered by the tensor

for multimodal data fusion. Whereas in [129, 74] the authors supplemented the

information from the unimodality with the combined information from the tensor

for multimodal data fusion. The above techniques either train a deep feed-forward

neural network on the tensor or obtain its low-rank representation for multimodal

fusion.

Although the fusion of interacting modalities i.e. acoustic, visual, and language

often improves the generalization performance, there are various scenarios with real-

world datasets which must be handled properly while performing fusion, otherwise

the joint representation might become futile. A common scenario in this regard is

the occurrence of missing values in the unimodal representations [67] which leads

to futile joint representations. For visual features missing values can occur due to

several reasons for example poor lighting in the opinionated video, the speaker is

wearing accessories (hat, glasses etc.) or covers his face while laughing. Similarly, for

the auditory signal factors like voice-echo, ambient noise can cause missing values in

the feature set. Figure 4.2, illustrates a motivating example presenting limitations

with the current state of the art fusion techniques i.e. TFN [129] shown as A.,

LMF [74] shown as B.; and superiority of our proposed DeepCU shown as C. in

Figure 4.2 when faced with missing values.

In Figure 4.2, to obtain the joint representation from acoustic and language
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Figure 4.2 : Comparison of missing values (interrogation mark ‘?’) scenarios by

State of the art A. Low-rank Multimodal Fusion (LMF), B. Tensor Fusion

Networks (TFN), and C. our Proposed DeepCU.

modalities the TFN and the LMF utilizes an outer product on the augmented fea-

tures. This results in both the bi-modal and the unimodal features in joint repre-

sentation (as tensor). However, the joint representation in all cases is much sparse

(contains more missing values) than the acoustic modality and the learning mech-

anisms of both the TFN and LMF fail to efficiently extract information in this

scenario. Our proposed DeepCU can handle the missing value scenario due to the

following:

1. The convolution kernels split the joint representation into overlapping seg-

ments while performing feature extraction which reduces the impact of missing

values.

2. Factorization Machines (FMs) obtaining modality-specific unique information

are robust with sparse feature vectors which subsides the impact onDeepCU’s
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performance and information discovery when the joint representation is futile.

3. Learning unshared latent representation for common and unique networks en-

sures that latent-embeddings of the superior representations remain unaffected

by influences of inferior representations (i.e. gradient from futile representa-

tion). This restriction enforces latent-embeddings to attain complementary

information and provides more expressiveness while performing fusion in the

higher layers.

Motivated by the above points, we propose a novel deep common and unique feature

extraction technique for multimodal data fusion, which we call as DeepCU. Our

proposed DeepCU has two components 1) unique sub-network which obtains infor-

mation specific to individual modalities and; 2) common sub-network which obtains

combined information from joint (multi-mode) representations by using proposed

deep-convolution tensor networks. Information from the common and the unique

sub-networks is integrated by a fusion layer to obtain an integrated output.

4.2 Our Contributions

The main contribution of this chapter are as follows:

I. We design a consolidated deep network for joint utilization and discovery of

both the common (multi-mode) and unique (mode-specific) properties of the

multimodal data for sentiment analysis.

II. Our proposed DeepCU is conceptually more expressive than existing state

of the art (TFN and LMF) as it captures non-linear multi-mode interactions

exhibiting in the tensorial representation within our common network sub-

network. Moreover, our unique sub-network obtains both linear and factor-

ized non-linear (quadratic) feature relations which mitigates the missing value

scenarios and enhances the generalization capability of DeepCU.
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III. We perform comprehensive experiments on multimodal CMU-MOSI and POM

datasets and demonstrate the effectiveness of utilizing both common and

unique latent information with comparisons to other techniques.

4.3 Related Work

We focus our review on recent neural based frameworks for multimodal data fu-

sion proposed in the literature. In [71] a bilinear-CNN is proposed to obtain bi-modal

interactions among features obtained from two heterogeneous CNNs. However, the

bilinear layer required parameter estimation of a quadratic number of neurons, and

hence prone to over-fitting. This limitation is alleviated in [32] which introduces an

alternate formulation of the bilinear layer and obtains its compact representation

by utilizing sophisticated neural based factorization schemes.

However, the above fusion schemes only express the bi-modal (or tri-modal)

interactions from unimodal representations either as: a) inter-modal (outer product)

or b) intra-model (simple concatenation) based representations. But utilization of

both the intra-modal and inter-modal representations are proven helpful in many

machine learning tasks [73, 118, 119]. In this regard, Tensor Fusion Layer (TFL)

is proposed in [129] which leverages the expressiveness of both the inter-model and

the intra-model fusion schemes.

The TFL applies bilinear product by augmenting the unimodal representations

with an additional feature of constant values equal to 1. The outer product on

the augmented unimodal representations now yields two sets of information: 1) the

bi-modal (or tri-modal) interactions in the form of 2D-tensor (3D-tensor) and 2)

the raw unimodal representations of the modalities. Mathematically the TFL for

bi-modal interactions can be expressed as in Equation (4.1), where x1 ∈ R
n and
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x2 ∈ R
m are feature vectors from two different modalities

TFL(x1,x2) = X =

⎡
⎢⎣x1

1

⎤
⎥⎦⊗

⎡
⎢⎣x2

1

⎤
⎥⎦ =

⎡
⎢⎣x1 ⊗ x2 x1

x2 1

⎤
⎥⎦ (4.1)

‘⊗’ represents the outer product and X ∈ R
(n+1)×(m+1).

4.3.1 Tensor Fusion Networks (TFN)

The TFN proposed in [129] learns a weight tensor W ∈ R
(n+1)×(m+1)×k and a

set of feed-forward layers to obtain the combined information from X. The TFN

outperformed all the previous fusion schemes for multimodal sentiment analysis

on CMU-MOSI dataset as it leverages the expressiveness offered by both the bi-

modal and unimodal information exhibiting in the joint representations obtained via

TFL. However, the dimensionality of the weight tensor W increases exponentially

by increasing the number of unimodal representations for fusion and hence the TFN

is not scalable [74].

4.3.2 Low-rank Multimodal Fusion (LMF)

The LMF proposed in [74] alleviates the scalability issues with TFN by approx-

imating lower dimensional modality specific factors (commonly refereed as Rank-k

tensors in CP decomposition [73]). The LMF, the weight tensor W is equivalently

expressed as W ≡ (
W 1 ⊗W 2

)
, where W 1 ∈ R

(n+1)×k, W 2 ∈ R
(m+1)×k. Extract-

ing of information from X is now reformulated as:
(
x̂1 ×W 1

)
 (
x̂2 ×W 2

)
, where

x̂i =

[
xi, 1

]T
; and ‘
’ is the element-wise product operator; and ‘×i’ is the mode-i

product between tensor and matrix. Hence, explicitly learning higher dimension

weight tensor W with TFN is not required. The LMF is a current state of the art

on CMU-MOSI dataset without any contextual information.
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4.3.3 Hybrid - DeepShallow

HybridDS [124] network is the most recent work on multimodal data fusion for

sentiment analysis. HybridDS first trains deep networks on visual and acoustic fea-

tures independently and concatenates the final layers of these networks to obtain the

combined representation. Further, to extract information from the language modal-

ity, it trains a SVM classifier (as shallow network) on the language features. Finally,

Random Forest is trained on the predicted value from SVM and the combined rep-

resentation from the deep network for multimodal sentiment prediction. However,

the HybridDS is not proposed on CMU-MOSI dataset but for this work, it is justifi-

able to be included as a baseline. Similar to TFN and LMF, the HybridDS network

also falls prey to the missing values (as discussed in Section 4.1) while performing

multimodal fusion.

Approaches like [131, 92, 130] incorporates contextual information from multi-

modal representations utilize an attention mechanism to incorporate the information

available from all utterances of the same speaker which enables them to model the

complex dynamics of inter-modality relationships efficiently. Although these tech-

niques are superior than the above schemes, they require additional information like

the identity of the speaker, the sequence of the utterance-sentiments while mod-

elling their fusion schemes. This additional information might not be available in

the general scenarios.

4.4 Proposed Methodology

Contrary to the existing fusion schemes we aim to utilize both the common and

the unique information for multimodal data fusion. To this end, we first propose

two sub-networks, i.e., 1) unique network for obtaining modality-specific features

(described in Section 4.4.1) and; 2) common network which consists of proposed

deep-convolution tensor networks (described in Section 4.4.2). The latent space for
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Fusion Schemes
Deep &

Shallow

Inter

Modality

Modality

Specific
Convolution

Unshared

Embeddings

DeepFM [38] � × × × ×

TFN [129] × � � × ×

LMF [74] × � � × ×

HybridDS [124] × × � × ×

DeepCU (proposed) � � � � �

Table 4.1 : Comparison of multimodal data fusion models

the unique information and the common information is unshared (i.e. influenced

only by gradient of their respective sub-network) and allows DeepCU to obtain

complementary information with both the sub-networks. Later, these two kinds of

information are integrated via a fusion layer (described in Section 4.4.3 which allows

joint optimization and information discovery in common and unique network’s) to ŷ

as the final prediction fromDeepCU. The differences and similarities between exist-

ing multimodal data fusion techniques and the proposed DeepCU are summarized

in Section 4.4.

The raw feature vectors from a single utterance for acoustic and visual modalities

are denoted as za ∈ R
1×ka and zv ∈ R

1×kv respectively, where ka and kv represent

the dimensionality of the feature vectors. For language modality the raw features

are word-embeddings denoted as zl ∈ R
1×sl×dl , where sl is the sequence length of

the embeddings and kl is the dimensionality of each sequence vector. The latent

space (or embeddings) obtained from these features for the common and unique

sub-networks are unshared and influenced only by their respective networks. This

restriction allows both networks to learn complementary feature representations

at lower layers which enhances their expressiveness in the fusion layer. Besides,

optimizing unshared latent space is empirically shown beneficial in [43].
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4.4.1 Unique Network

The modality-specific information is obtained by utilizing Factorization Machines

(FMs). There are two main motivations behind utilizing FMs instead of any other

shallow learning technique (Logistic Regression, SVM or, a single fully-connected

layer etc.) for extracting the unique information from individual modalities as:

1. FMs has linear time complexity and it models both first and second-order

factorized interactions from feature vector which enhances its expressive ca-

pabilities over other shallow techniques.

2. Real-world datasets often consist of missing values and FMs are capable of

dealing with sparsity as they model feature interactions with factorized repre-

sentations.

Prior to utilizing FMs, the feature vectors from unimodalities are processed

via sub-embeddings vectors denoted as fFMa , fFMv and fFMl
to extract latent fea-

tures from the za (acoustic), zv (visual), and zl (language) respectively. The sub-

embeddings network for acoustic and visual modalities is a single feed-forward linear

layer. For language modality the sub-embeddings network comprises of LSTM [46]

followed by a single feed-forward layer. FMs are then trained independently on fFMv ,

fFMa , fFMl
to obtain yV , yA, and yL as predicted sentiment from their respective

modalities. We briefly discuss the details of FMs before presenting the procedure of

unique information extraction.

Factorization Machine

FMs were originally proposed for recommendation systems [98]. They are widely

utilized for information extraction especially when dealing with extremely sparse

feature sets. Given a sparse real valued feature x ∈ R
n, FMs estimates the target
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i.e. ŷFM(x) ∈ R by modelling all interactions between each pair of features via

factorized interaction parameters as below:

ŷFM(x) = w0 +
n∑

i=1

wixi +
n∑

i=1

n∑
j=i+1

vT
i vj . xixj (4.2)

where w0 is the global bias, w ∈ R
n models the interaction of the i -th feature to the

target. The vT
i vj term denotes the factorized interaction, where vi ∈ R

k denotes

the latent vector of size k for feature i, and ŷFM(x) is the predicted value.

Extracting Acoustic-Specific Unique Information

The latent embeddings denoted as fFMa
∈ R

1×ka are obtained from the acoustic

features za as below:

fFMa
= σ

(
za ×WFMa + b0FMa

)
(4.3)

where WFMa and b0FMa
are the sub-embedding network hyper-parameters and σ is

the activation function. The unique acoustic information is obtained by utilizing

FM in Equation (4.2) on the latent embedding obtained as yA = ŷFM(fFMa
).

Extracting Visual-Specific Unique Information

The latent embeddings, fFMv
from zv are obtained analogous to the acous-

tic sub-embedding network. The unique visual information is then obtained as

yV = ŷFM(fFMv
).

fFMv
= σ

((
zv ×WFMv

)
+ b0FMv

)
(4.4)

Extracting Language-Specific Unique Information

The latent embeddings denoted as fFMl
∈ R

1×ka are obtained from the language

features zl as below:

fFMl
= σ

(
LSTM

(
zl

)×WFMl
+ b0FMl

)
(4.5)

where WFMl
and b0FMl

are the sub-embeddings networks hyper-parameters. The

unique language specific information is then obtained as yL = ŷFM(fFMl
).
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4.4.2 Common Network

To obtain the common information from multi-mode representations, we pro-

pose a deep convolution-tensor network. In this regard, we first obtain joint rep-

resentation as tensors from modalities by performing outer product on their latent

embeddings. These tensors are naturally multi-dimensional where each element of

the tensor represents the interaction strength between the elements of the fusion-

modalities. Therefore we applied convolution-kernels on these tensors as they are

non-linear feature extractors and generalize better than feed-forward layers [57]. Uti-

lizing convolutions on the joint representations alleviates the need of factorization

in DeepCU and also makes it highly scalable.

Analogous to the unique network the unimodal representations are processed

via sub-embeddings networks to obtain latent embeddings. Then the outer prod-

uct is utilized to capture joint representations as tensors from these embeddings.

Convolution kernels of appropriate dimensions are then applied to the tensors for

feature extraction. To reduce the impact of missing values in our common network

we obtain multiple sets of combined representation as below:

• TAV bi-modal representation from acoustic & visual.

• TAL bi-modal representation from acoustic & language.

• TV L bi-modal representation from visual & language.

• TAV L tri-modal representation from acoustic, visual, & language.

The motivation to obtain multiple sets of tensor representation is that if as-

suming any one of the modalities (for example acoustic) has missing values. Then,

the tensorial representations obtained with the latent embeddings of this modal-

ity (i.e. TAV , TAL and TAV L) are affected but not the other tensor representations
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(i.e. TV L). Moreover this information loss is further subsided by the information

obtained by the corresponding unique network. Again, the latent embeddings for

each tensor pair in the common network are unshared which enables DeepCU to

obtain complementary information within each tensorial representation.

Extracting Combined Information from the Bi-Modal Interactions of

Acoustic and Visual Modalities

The latent embeddings for the acoustic (fAV ∈ R
1×ka) and visual features (fV A ∈ R

1×kv)

are obtained as below:

fAV = σ
(
za ×Wav + bav

)
fV A = σ

(
zv ×Wva + bva

)
TAV = fAV ⊗ fV A

(4.6)

where [Wav, bav] and [Wva, bva] represent the sub-embeddings networks hyper-parameters.

TAV ∈ R
kv×kl represents the bi-modal representation obtained by taking outer prod-

uct of the latent embeddings. Convolution filters are then applied to capture the

non-linear interactions in TAV as:

GAV = σ
(
Conv

(
TAV

))
(4.7)

where GAV represents the output from convolution layer which is then processed

through fully-connected layer as:

hAV = σ
(
ĝAV ×WAV + bAV

)
(4.8)

Finally, the hidden representation hAV is processed through feed-forward layer to

obtain the final predicted value yAV as:

yAV =
(
hAV ×wAV

)
+ b0AV

(4.9)
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Extracting Combined Information from the Bi-Modal Interactions of

Visual and Language Modalities

The latent embeddings for the visual (fV L ∈ R
1×kv) and language features (fLV ∈

R
1×kl) are obtained as shown below:

fV L = σ
(
zv ×Wvl + bvl

)
fLV = σ

(
LSTM

(
zl

)×Wlv + blv

) (4.10)

TV L ∈ R
kv×klc is then obtained by taking the outer product of the latent embeddings

representing their bi-modal interactions. Analogous to Equations (4.7) to (4.9)

the bi-modal interactions are processed to obtain yV L as the predicted output in

Equation (4.11).

GV L = σ
(
Conv

(
TV L

))
hV L = σ

(
ĝV L ×WV L + bV L

)
yV L =

(
hV L ×wV L

)
+ b0V L

(4.11)

Extracting Combined Information from the Bi-Modal Interactions of

Acoustic and Language Modalities

Analogous to the above yAL is obtained as the predicted output from bi-modal

acoustics and visual interactions in Equation (4.12).

fAL = σ
(
za ×Wal + bal

)
fLA = σ

(
LSTM

(
zl

)×Wla + bla

)
GAL = σ

(
Conv

(
TAL

))
hAL = σ

(
ĝAL ×WAL + bAL

)
yAL =

(
hAL ×wAL

)
+ b0AL

(4.12)
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Extracting Combined Information from the Tri-Modal Interactions of

Acoustic, Visual and Language Modalities

The tri-modal interactions are obtained by taking outer product between latent

embeddings of acoustic, visual and language; i.e. TAV L =
(
fAV L ⊗ fV LA ⊗ fLAV

)
∈ R

ka×kv×kl . Convolution filters and fully connected layers are then applied on TAV L

to obtain the predicted values yAV L as below.

GAV L = σ
(
Conv

(
TAV L

))
hAV L = σ

(
ĝAV L ×WAV L + bAV L

)
yAV L =

(
hAV L ×wAV L

)
+ b0avl

(4.13)

4.4.3 Fusion Layer

The scalar outputs from the common and the unique sub-networks are inte-

grated by applying ŷ = hTZ, where the vector Z is obtained by concatenating

the predicted scalar outputs from the unique and common sub-networks as Z =[
yA, yV , yL, yAL, yV L, yAV , yAV L

]
, and h =

[
ĥA, ĥV , ĥL, ĥAL, ĥV L, ĥAV , ĥAV L

]
is a

vector of appropriate dimension consisting of fusion weights. For simplicity, all

the weights in h can be set to one i.e. h = J1,7 and are not optimized while training.

We refer this model as static fusion denoted as DeepCUSF . Otherwise, the weights

in h can be randomly initialized (simply a fully connected layer with number of

neurons equal to seven) and optimized via the loss on the target function and the

model is referred as dynamic fusion denoted as DeepCUDF .

Our proposed DeepCU can be applied to a variety of tasks such as for classifica-

tion, ranking etc. However, for this work, we estimate the parameters of DeepCU

via minimizing the mean square error (MSE) loss in Equation (4.14).

L =
1

n

∑
∀x∈χ

(ŷ(x)− y(x))2 (4.14)
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where χ denotes the set of multimodal training data instances, y(x) denotes the

target of instance x, and ŷ(x) denotes the prediction obtained from DeepCU.

4.4.4 Complexity Analysis

Theoretically, the paramount computational cost in DeepCU is feature extrac-

tion from the multimodal tensor which is O(N × K × S2 × M2) as described in

[41]) where N and K are the number of input and output feature maps respectively

and; S represents the spatial size of the filter and M represents the spatial size of

the output feature map. If we fix the dimensionality of the latent space for each

modality as 32 (as in LMF), then the number of parameters in DeepCU are 1.06e6

whereas the number of parameters in LMF and TFN is equal to 1.1e6 and 12.5e6

respectively.

4.5 Experimental Settings

4.5.1 Dataset

We perform experiments on the CMU-MOSI [132] and POM [86] datasets con-

sisting of YouTube videos for movie reviews. The CMU-MOSI dataset consists of

movie reviews videos from 93 distinct speakers. Each video consists of multiple opin-

ion segments with a total of 2199 segments in the whole dataset, annotated with

the sentiment in the range [−3, 3]. The POM dataset consists of 903 movie review

videos where each video is annotated 16 sentiments of the speaker. To evaluate the

generalization capability of models, the training, validation, and testing splits of the

dataset are speaker independent.
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Features

We accessed the language, visual, and acoustic features provided by the authors

[132] at their official publicly available repository∗. The modality specific features

are provided after word alignment using P2FA [128] aligning them at the word

granularity.

Language

Pre-trained 300-dimensional Glove word embeddings [89] were utilized to encode

each sequence of transcribed word into a sequence of word vectors.

Visual

The library Facet† is used to extract visual features for each frame (sampled at

30Hz). Extracted features consists of 20 facial action units, 68 facial landmarks,

head pose estimates, gaze tracking and HOG features [137].

Acoustic

COVAREP acoustic framework [28] is utilized to extract features including 12

MFCCs, pitch, glottal source, peak, slope, voiced/unvoiced segmentation, and max-

ima dispersion quotient.

4.5.2 Baselines

We extensively evaluate the performance of both neural based and non-neural

based fusion schemes for multimodal sentiment analysis. We trained our DeepCU

as well as other benchmarks for regression objective but C-MKL is trained for binary

classification due to the objective function utilized in [91]. To calculate the binary

∗https://github.com/A2Zadeh/CMU-MultimodalSDK, SDK Version 1.0.1

†https://imotions.com/
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and multi-class accuracies we followed the protocol in [74] and maps the predicted

output (and the target values) to integer values.

Early Fusion, Non-Neural Approaches

SVM (Support Vector Machines), this baseline is trained on the concatenated

multimodal features for regression task.

RF (Random Forest), this baseline is also trained on the concatenated multi-

modal features for regression tasks.

Joint Representation, Neural Approaches

DNNJR [90, 83] is a deep neural network trained by concatenating features from

sub-embeddings networks for regression.

SVM-MD [132] is the SVM classifier trained with joint representation obtained

from the hidden layers of DNNJR.

RF-MD similar to SVM -MD, is trained random forest on joint representations

obtained from the hidden layers of DNNJR.

C-MKL [91] is a deep Convolution-MKL network which trains multiple kernel

learning [115] on features obtained from DNNJR.

ELM [93] is an extreme learning machine trained on multimodal dictionary of

joint representation obtained from DNNJR.

DeepFM [38] is a wide and deep classifier leveraging the power of both FMs and

deep networks for multimodal data fusion.

The latent space for learning FMs and deep networks were obtained using sub-
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embeddings networks as in our DeepCU.

State of the art deep networks for Multimodal data fusion

HybridDS (Hybrid-DeepShallow) [124] is a hybrid architecture integrating deep

and shallow networks with Random Forest for multimodal data fusion (described in

Section 4.3.3). The information from acoustic and visual modalities are extracted

using deep networks while language representations are modelled using SVM.

TFN (Tensor Fusion Networks) [129] is multimodal deep tensor network trained

on the joint representation obtained via tensor product of multi-mode representa-

tions in Equation (4.1). The official code is provided at author’s GitHub repository‡.

LMF (Low-rank Multimodal Fusion) [74] is current state of the art multimodal

deep fusion classifier (with no contextual information) trained on low-rank factorized

modes of the joint representation. The official code is provided at author’s GitHub

repository§.

4.5.3 Parameter Settings in DeepCU

We train our model by minimizing the MSE loss with RMS optimizer with

learning rate equal to 6× 10−3 and batch-size of 64. To avoid over-fitting we ap-

plied dropout [109] in our model and tune the dropout probability from [0.1, 0.9]

with a step size of 0.05. The optimal dimensions of latent spaced within each sub-

embeddings network was searched in [5,10,15,20,25,30], while the number of convo-

lution filters was searched in [1, 2, 3, 4, 5]. We also varied the size of convolution

filter between 3 and 5. Moreover, to reduce covariance shift and improve perfor-

mance we applied batch normalization [50] to all hidden layers of DeepCU. For

‡https://github.com/Justin1904/TensorFusionNetworks

§https://github.com/Justin1904/Low-rank-Multimodal-Fusion
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acoustic and visual modalities the sub-embeddings network is a single feed-forward

layer, while for language we used LSTM [46] (basic uni-directional LSTM cell) with

128 units.

4.5.4 Evaluation Metrics

We evaluate the performance of the baselines andDeepCU for regression, binary

and multi-class classification problems. For regression, we report Mean Absolute

Error (MAE) and Pearson’s Correlation (Correlation). For binary classification, we

report accuracy and F1 score, where as for multi-class classification we only report

accuracy. For all metrics higher value is better except for MAE. Similar to [129, 74]

we employed early stopping strategy, where we terminated training DeepCU and

all baselines if the MAE on validation-set did not improved in 5 consecutive epochs.

4.5.5 Results and Explainability Analysis

The key contribution of this work is utilization of both unique and common

information for multimodal data fusion. We performed experiments to study the

significance of our proposed fusion scheme under the following research questions:

Q1: Does the integration of common and unique latent information actually ben-

eficial or their integration deteriorates the performance of DeepCU over individual

sub-networks?

To evaluate this, we studied whether fusing the common and unique information

is actually beneficial or their integration deteriorates the performance of DeepCU

over individual sub-networks. To achieve so, we evaluate the performance of common

network on all the hyper-parameter settings as explained in Section 4.5.3. While

the unique network were evaluated by varying the size of latent dimensions and

dropout probabilities and optimizers. We also applied both the dynamic and static

fusion schemes to the common and unique networks. We present the MAE of the



70

Figure 4.3 : Performance comparison of DeepCU vs common (Com) and unique

(Unq) networks on the CMU-MOSI dataset.

optimized networks with box-plot in Figure 4.3.

It is clearly visible that integrating both the common and the unique informa-

tion improves the performance of proposed DeepCU. The common network ex-

ploits the information from both bi-modal and tri-modal interactions by applying

deep-convolution operations which drastically reduces its MAE compared to unique

networks. Besides, the plot suggests that for all the networks the dynamic fusion

performs slightly better than static fusion. However the network with dynamic

fusion layer required more epochs for convergence.

Besides, the integration of common and unique information further achieves

reduction in MAE and is visible in the box plots for both the fusion schemes in

DeepCU. Moreover, DeepCU with dynamic fusion scheme achieves the lowest

MAE and confirms that integration of common and unique information is actually

beneficial for multimodal data fusion.

Q2: Are convolutions able to efficiently capture the information from non-linear

interactions exhibiting in the multi-mode representation? Moreover, how does the
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Figure 4.4 : Performance of DeepCU, TFN, and LMF by varying hyperparameters

on the CMU-MOSI dataset. The legend DeepCU-x-y represents, x = number of

convolution filters and y = filter size.

hyper-parameters affect the performance of DeepCU?

We now present a detailed study on how hyper-parameters affects the perfor-

mance of DeepCU. In this regard, we plot the mean MAE obtained by varying

hyper-parameters in Figure 4.4(b). The x-axis in plot represents the dimensionality

of latent-embeddings and the curves represents combinations on a) the number of

convolution filters, b) filter-size, and c) fusion scheme. We also plot the performances

of TFN and LMF obtained on the same latent dimensions.

A clear trend can be seen in all the curves reflecting performance of DeepCU,

where the MAE tends to decrease with increase in the latent dimensions. This

is because the lower dimensions tensor is equal to the size of convolution kernel

and hence the performance of DeepCU is not significantly better than TFN and

LMF. However, the marginal improvement can be attributed to the unshared latent

space and the unique information. Besides, the performance gradually improves

with the increase in the latent dimensions which supports the learning requirement

of convolution kernels.
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MOSI

Dataset

Regression Binary 7-class

MAE (lower is better) Correlation Accuracy F1 Accuracy

RF 1.4095 ± 1.09×10−4 0.2041 ± 3.29×10−4 53.98 ± 6.57×10−1 52.75 ± 1.48 18.27 ± 1.41

SVM 1.4259 ± 1.43×10−5 0.1288 ± 3.36 ×10−4 47.74 ± 5.78 36.59 ± 4.37 13.98 ± 4.12×10−1

DNN JR [90] 1.1801 ± 2.31×10−4 0.4973 ± 2.41×10−4 68.59 ± 2.27×10−1 68.67 ± 2.27×10−1 25.48 ± 3.75

RF-MD 1.1993 ± 1.63×10−4 0.4636 ± 2.41×10−4 66.11 ± 5.81×10−1 66.16 ± 6.02×10−1 26.03 ± 3.60×10−1

SVM-MD [132] 1.2749 ± 2.97×10−4 0.4950 ± 1.71×10−4 67.60 ± 2.59×10−1 67.68 ± 2.64×10−1 17.49 ± 1.00×10−1

C-MKL [91] — — 66.85 ± 4.65×10−1 68.30 ± 6.43×10−1 —

ELM [93] 1.1786 ± 2.28 ×10−4 0.4935 ± 1.22 ×10−4 69.70 ± 1.08 71.61 ± 1.66 24.42 ± 1.68

DeepFM [38] 1.1038 ± 1.81 ×10−5 0.5227 ± 1.73 ×10−4 69.14 ± 7.64 ×10−1 69.10 ± 7.3 ×10−1 28.90 ± 4.54 ×10−1

HybridDS [124] 1.4919 ± 2.56 ×10−2 0.1350 ± 9.29 ×10−3 50.92 ± 1.41 48.85 ± 2.32 16.44 ± 2.04×10−1

TFN (SOTA 1) [129] 1.1111 ± 3.03 ×10−4 0.5341 ± 1.02 ×10−4 69.59 ± 7.06× 10−1 68.48 ± 7.93× 10−1 31.98 ± 1.13

LMF (SOTA 2) [74] 1.0960 ± 2.11 ×10−4 0.5555 ± 3.28 ×10−5 70.25 ± 2.05× 10−1 70.31 ± 1.98× 10−1 30.76 ± 3.39× 10−1

DeepCUSF (static fusion) 1.0595 ± 7.08 ×10−5 0.5536 ± 7.66 ×10−5 71.49 ± 2.00× 10−1 71.42 ± 1.98× 10−1 33.54 ± 6.39× 10−1

DeepCUDF (dynamic fusion) 1.0442 ± 1.71 ×10−5 0.5609 ± 1.05 ×10−5 73.54 ± 1.10× 10−1 73.52 ± 1.14× 10−1 34.04 ± 3.61× 10−1

Table 4.2 : Performance comparison of DeepCU vs other fusion techniques on CMU-

MOSI dataset. The mean and variance for each baseline and DeepCU are obtained

by executing them for five times. This superiority of DeepCU is specifically visible

in the case of 7-class classification.

Another trend can be noticed in the performance curves of DeepCU where

convolutions of filter-size 3 performs slightly better that filter-size 5. This may be

due to the increase in overlapping regions between segments which might be better

for applying convolution on multi-mode representations.

Q3: Does DeepCU provide a better mulit-modal fusion technique compared to

state of the art such as TFN and LMF?

We compare the performance of multiple SOTA (and other baselines) andDeepCU

on the CMU-MOSI and POM datasets for this requirement and the results are re-

ported in Sections 4.5.5 and 4.5.5.

On CMU-MOSI dataset we improve the state of the art by 4.68% for regression

and 2.25% for correlation and on multi-class the accuracy improvement is 9.63%.

On POM dataset we improve the correlation by 23.10% and for regression the
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POM Dataset MAE Correlation Multi-Class Accuracy

TFN (SOTA 1) 1.0481 ± 0.0030 0.0866 ± 0.023 28.62 ± 0.127

LMF (SOTA 2) 0.8739 ± 0.0051 0.2311 ± 0.024 33.61 ± 0.314

DeepCUDF 0.8568 ± 0.0045 0.2845 ± 0.009 34.77 ± 0.493

Table 4.3 : Performance comparison on the POM dataset.

improvement is 2% compared to state of the art.

The above results confirms our hypothesis on the advantages of DeepCU: a)

utilizing both the common and unique latent information obtained using unshared-

embeddings; b) the use of convolutions to capture utmost expressiveness offered

by multi-mode representation; and c) the use of factorized representations in unique

networks to reduce the impact of missing values present in the individual modalities.

As expected the dynamic fusion schemes performs better than the static fusion

scheme in DeepCU. Conceptually, this is because the weights in the static fusion

layer were not optimal and optimizing these weights via back-propagation allows

the proposed DeepCUDF network to obtain better mixing weights for integrating

common and unique information.

4.5.6 Case Study with Missing Values from the Acoustic Modality in

the CMU-MOSI Dataset

As a qualitative analysis on the performance of the fusion schemes, we perform

an investigative study of TFN, LMF, and DeepCU when facing missing values in

the feature sets. In this regard, we selected two examples with highest percentage of

missing values from the actual dataset in the acoustic modality and reported their

predicted sentiment obtained from each of the fusion schemes in Table 4.4.
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Missing Values in the

Acoustic Modality

Ground-truth of

the Sentiment
TFN LMF DeepCU

63.51 % 0.0 0.5118 -0.3387 -0.0154

21.62 % -1.0 -1.3475 -1.4417 -1.1209

Table 4.4 : Affect of missing values on DeepCUDF , TFN, and LMF. These feature

vectors are taken from the actual CMU-MOSI dataset.

In the first example, the absolute error with the prediction from TFN is 0.5118,

from LMF is 0.3387; and from DeepCU is 0.0154. The predicted sentiment value

fromDeepCU achieves the lowest error when the corresponding feature set contains

a large fraction of missing values. In the second example, the absolute error with the

prediction from TFN is 0.3475, from LMF is 0.4417; and from DeepCU is 0.1209.

Again the predicted sentiment value from DeepCU achieves the lowest error when

the corresponding feature set contains moderate fraction of missing values.

These examples confirms the effectiveness of utilizing both common and unique

information for multimodal data fusion. Moreover, they also exhibit the importance

of handling missing values with real-world datasets, as their proper consideration

might boost the performance of multimodal systems.
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4.6 Summary

In this chapter, we have introduced DeepCU which utilizes both common and

unique latent information for sentiment analysis on multimodal data. TheDeepCU

consolidates two sub-networks a) deep convolution-tensor networks for obtaining

common information from multi-model data; and b) unique subnetwork to obtain

information offered by the individual modalities. Both the sub-networks are inte-

grated via a fusion layer, and the parameters are optimized by back-propagation on

the target loss function. The DeepCU outperformed state of the art approaches

as it leverages the expressiveness of all-types of information by enforcing the two

sub-networks to learn complimentary information in the embeddings layer. Com-

prehensive experiments demonstrate the effectiveness of our proposed DeepCU for

multimodal data fusion.
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Chapter 5

Towards Effective Data Augmentations via

Unbiased GAN Utilization

5.1 Introduction

In today’s era of big data, artificially intelligent products and services are in-

creasingly deployed in our daily lives. The manifestation of these machine learning

(ML) models range from medical diagnosis to personalized-user scores such as bank

loan approvals, and image recognition [127, 44, 12]. The complexity of decision rules

for state of the art deep neural networks has increased exponentially, which in turn

has resulted in high overall decision accuracy on many benchmark datasets. How-

ever, at the same time, the predictions of these highly accurate models often have

reflected systematic biases for identifiable minority subgroups [59, 82]. As inher-

ent problems within the datasets such as dataset-bias (which is usually overlooked)

affect the decisions of the ML models leading to false predictions for the minor-

ity subgroups [8]. The consequences of such false predictions can be catastrophic,

for example, the Uber self-driving car’s accident∗ and the racial biases in Google

searches†. Hence, relying on accuracy as the sole criteria for social deployment of

these models is undesirable [58].

Although the benchmark datasets for training these models are built with an

intent to capture the real-world representations, at the same time, strong built-

in biases are rhetorically evidenced in these datasets [111, 112]. While corrective

∗https://www.bbc.com/news/technology-44243118

†http://www.bbc.com/news/technology-21322183
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Figure 5.1 : Images from PPB dataset [11].

measures for well-known dataset biases such as the capture-bias‡ and label-bias§ (also

known as category bias) are studied in the literature [94, 21]. Unfortunately, multiple

unknown biases still remain hidden in the dataset and cause poor generalization

performance of machine learning models.

In this regard, a promising empirical evaluation for the above scenario is pre-

sented in [11], where the authors created a test-bed named PPB for gender recogni-

tion. The PPB dataset was created with demographic parity based on Fitzpatrick

skin types and example images shown in Fig. 5.1. The authors demonstrated that

despite low error rates achieved by the commercial classifiers on benchmark gender

recognition dataset as claimed by their manufactures. The misclassification rate of

these classifier’s on PPB test-set is biased towards darker skin individuals. Moreover,

the bias in these classifiers is remarkably significant for darker skin females.

An over-simplified solution to alleviate this phenomenon is to remove the culprit

data instances. However, the identification of such data instances is a challenge, and

more importantly, the performance of models trained on unbiased dataset might

‡Related to the device utilized while capturing the data instances; it is also related to collectors

view or preferences for the real world.

§Arises when the visual categories are poorly defined, like similar images may be annotated

with different names by annotators.
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deteriorate [81]. This will lead to a rollback of the previous biased model, which

contradicts the objective of removing biases from the datasets.

Another solution can be auditing the model with a validation set to discover

possible fractures in the model and then retraining them [21]. However, retraining

a model might not be cost-effective or bring any benefit for the model creators.

Moreover, the validation set utilized by the auditor is also prone to dataset biases

and might have been created from a completely different distribution. Hence this

setting is also not optimal.

Motivated by the issues mentioned above, in this chapter, we address the issue

of bias management in the datasets by developing a data provisioning mechanism

which we call as Data Augmentation Pursuit (DAP). Contrary to previous

works, where sophisticated machine learning models are devised to mitigate the

dataset-biases while learning ML models [55, 81], we are interested in how we can

use the available data to augment these datasets with synthetic instances, resulting

in lesser bias learned by the ML models.

To achieve this objective, we utilize generative adversarial networks (GANs)

[35] to generate synthetic examples for augmenting the existing datasets. However,

we argue that blindly augmenting the datasets with synthetic examples generated

by GANs does not guarantee a reduction in bias learned by the machine learning

models [123]. Rather the bias in the augmented dataset might increase. Therefore, a

principled approach is required to augment these datasets. In this regard, we devise

Data Augmentations Pursuit (DAP). The DAP objectives are to ensure that

the retained synthetic examples do not increase the biases while augmenting the

datasets and employ a customized iterative filtering scheme for the same. The ML

models thus trained on the augmented datasets obtains better performance than the

original model and exhibits a decrease in the biases learned from the dataset.
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5.2 Our Contributions

Our contributions in this are summarized as below:

1. We propose Data Augmentation Pursuit (DAP) for augmenting dataset

with synthetic examples. The DAP regulates the fraction of sample inputs to

GAN and controls the synthetic examples selection for dataset augmentaion.

ML models trained with the obtained augmented using DAP exhibits least

model and achieves significantly better classification performance.

2. We propose a filtering strategy for sieving synthetic examples generated by

GAN. Our filtering strategy ensures the reduction in semantic gap between

real and synthetically generated data instances.

3. We perform extensive experimentation on CIFAR-10 dataset by utilizing var-

ious GAN’s frameworks for data augmentation and empirically demonstrate

that proper attention is required while augmenting datasets.

The rest of the chapter is organized in the following sections: Literature review

is presented in Section 5.3, followed by Section 5.3.2 on preliminaries of GANs.

Our proposed DAP is described in Section 5.4 and finally experiments, results, and

conclusions are discussed in Section 5.5, Section 5.6, and Section 5.7 respectively.

5.3 Realted Work

Data augmentation has played a crucial role in object and image recognition

tasks. To improve recognition accuracy using CNN, several high performing models

have applied extensive data augmentation to their training datasets [65, 110]. Con-

ventionally, for generating synthetic examples, trivial image transformation tech-

niques like random rotation, cropping, contrast normalization, etc. were utilized.
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However, not all synthetic examples help in improving the classifier’s learning algo-

rithm and selecting good examples is critically important [88]. Moreover, for large

datasets, the number of possible data augmentations are exhaustive, and the number

of parameters in CNN is exponential. Hence selecting good synthetic examples is

almost intractable. Therefore, we require a clever procedure to obtain synthetic data

instances which increase the value of the datasets and the classifiers inexpensively.

We focus our literature review on the work which augments the training data by

adding “virtual samples” following a systematic procedure and not blindly applying

basic image transformations.

Paulin et. al.[88] proposed a novel approach for creating augmented data sets by

greedily selecting set of image transformations. Their proposed technique, i.e. “Im-

age Transformation Pursuit” (ITP) iteratively and greedily selects a set of optimal

transformations which maximizes the classifier’s performance. While performing

prediction with the trained classifier, the optimal transformations obtained by ITP

are first applied to each test instances, and then these transformed instances are

classified. Similarly, in [81], the authors proposed sophisticated data augmentations

which exist in the real-world scenarios but might not exists in the training dataset.

Performance of classifiers trained with their proposed augmentations generalizes

better on cross-datasets.

Similarly, Sato et. al. in [101] proposed an online data augmentation procedure

called APAC (Augmented PAttern Classification), which applies random deforma-

tions to the data samples in an online fashion. Here the classifier is only trained

with multiple deformed samples of the training data instances. The expected loss

from multiple deformed instances of the same true data is utilized for training the

classifier. Similar to ITP, the testing data instance undergoes the same deformation

process while performing predictions. However, both ITP and APAC requires heavy

computational resources. Hence, their proposed technique is not applicable when
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deeper networks with an exponential number of parameters require augmentations.

Conversely, Khosla et. al. [55]s proposed a discriminative framework that explic-

itly defines bias associated with each dataset and, attempts to approximate weights

for the generalization. Their model applies the max-margin principle to perform

better on cross datasets by taking into account the label of the originating datasets

for the data instances. Their model can be considered as a sophisticated domain

adaptation technique which simultaneously trains a classifier on multiple datasets.

5.3.1 GAN utilization in dataset augmentation and their limitations

A natural applicability for synthetic image generated using GANs is dataset

augmentation, and some recent techniques have indeed utilized the GANs for dataset

augmentation for training deep convolution neural networks. In [105], the authors

proposed refinement of synthetic images by processing them with a refiner trained

on unlabeled real data called SimGAN. The refiner adds realism to the synthetic

images such that the synthetic images look similar to the real image but preserves

the annotated information of the generator. Classifiers trained with these refined

images improves the state of the art in gaze estimation. Similarly, in [61], the authors

proposed refinement of synthetic images by conditioning on the image quality and

achieved improvement in presentation attacks in biometric applications. However,

each of the above-devised mechanism has to apply domain-specific knowledge to

increase the quality of generated images before their utilization, and hence, their

applicability is limited.

Another recent work in [3], namely Data Augmentation GAN (DAGAN ), is

proposed to learn a set of data augmentation for a target domain. The DAGAN

learns to obtain a data instance from a source domain and augments the target

domain by generating a within-class sample in it. Although the generated image by

DAGAN is accepted as a different sample of the target domain, the image generation
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process still faces the dataset bias issue, as explained in the next subsection.

5.3.2 Dataset Bias and GANs

The generative adversarial networks (GANs) first introduced in [35] are usually

composed of two deep neural networks. The first network is called the discriminator

(D), while the second network is called the generator (G). The generator network

aims to generate realistic images starting from random prior (z) resembling true

images of the dataset. In other words, if px is the distribution over true data then

G(z) learns the distribution pg ∼ px. On the other hand, D aims at learning the

discrimination between the distributions px and pg, where D(input) represents the

probability (px|input) and G(z) represents the output from G having noise (z) as its

input. Both the networks compete against each other in minimax two-player game

objective and optimize their parameters with alternative update rules as defined in

Equation (5.1) and Equation (5.2) respectively, where m denotes the batch size.

Δθd

1

m

m∑
i=1

[logD(xi) + log(1−D(G(zi)))] (5.1)

Δθg

1

m

m∑
i=1

[log(1−D(G(zi)))] (5.2)

The gradient-based update of the generators G’s parameters i.e., (θg) in Equa-

tion (5.2) are dependent on the outcome of the discriminator D and its parameters

i.e. (θd) are updated prior updating parameters of G. Due to this update strat-

egy, the bias leaned by the discriminator network eventually gets inherited by the

learning mechanism of the generator network.

In other words, the discriminator, which is a deep neural network, can easily

fall prey to inevitable dataset biases [94, 21]. Consequently, these biases do not

just affect the discriminator’s decision but also affect the learning mechanism of

the generator network. The same phenomenon leads to mode collapse [4] while
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Figure 5.2 : Procedure of Generating Sieved Synthetic Data

training GANs and are currently an active topic of research. Therefore, the resul-

tant augmented dataset will eventually contain these biases inherently affecting any

classifiers’ learning mechanism.

Moreover, despite the recent advancements in GAN, synthetic images generated

by them on datasets with high variabilities like CIFAR or ImageNet are of low quality

[37, 123]. Improving the quality of the images generated by GANs is currently

an active research topic, but this work does not focus on improving the learning

framework of GANs. Instead, this work focuses on how one selects a subset of

images to train GANs such that, the generated synthetic images can be utilized to

augment the training dataset.

5.4 Data Augmentation Pursuit

In a nutshell, our work is similar to ITP, as both targets selection of synthetic

examples for augmenting the datasets. But our work differs in two ways: 1) we focus

on harnessing the gains from available synthetic images generated by GANs, whereas

ITP first selects the transformations to augment the dataset and then generates

synthetic examples accordingly. 2) In ITP, both training and testing data were

augmented, while we only augment the training dataset and do not alter the testing

dataset.

As explained in Sec. 5.3.2, blindly augmenting datasets with synthetic examples



84

can increase the bias in the augmented datasets. Therefore, we design a two-stage

filtering technique to control the training data instances utilized to train GANs

and sieve unbiased synthetic examples generated by the generator. Our filtering

technique is based on the ensemble classifier learning, which outperforms a single

classifier by creating diversity in the ensemble [66]. As a result, this leads to a

reduction in bias on the final prediction from an ensemble classifier [8]. Hence,

synthetic images selected using DAP does not adversely affect the learning system

of classifier’s when trained on them.

Moreover, due to filtering of synthetic images with an ensemble classifier; syn-

thetic instances which closely resembles true data distribution receives consensus on

the prediction from classifiers’ in the ensemble. As a result, the semantic gap be-

tween true data and synthetic data is reduced and, augmenting datasets with these

filtered images results in reducing the variance learned by the alternating models

which reduce the effects dataset biases in the learning mechanism of ML models.

Our two-stage filtering technique is shown in Fig. 5.2.

5.4.1 Stage-1.

Randomly sample α% of data instances from the true dataset (denoted as D) to

train conditional GAN. A conditional GAN is simply a GAN framework conditioned

with certain priors. This conditioning helps in generating synthetic examples by

selecting the priors in the generator. Once the GAN is trained, we generate an

adequate number of synthetic examples denoted as I by conditioning the generator

with data labels as priors. The utilization of conditional GAN generates synthetic

examples with known ground truth. Simultaneously, we utilize (100 − α)% of the

remaining true dataset to train our ensemble classifiers (naive Bayes, SVM, and

KNN).

The motivation behind splitting the dataset D in ‘α%’ and ‘(100 − α)%’ while
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Algorithm 4 Data Augmentation Pursuit

1: Input: Training Data D, Train labels TL ∈ Z
M
2 , splitting percentage α

2: GANΘ ← Train GAN on α% of D

3: I ← generate synthetic examples by trained GAN conditioned on TL

4: Eθ ← Train SVM, naive Bayes, and KNN classifiers on the remaining (100− α)% of D

5: PredL ← θ(I), predict the labels for synthetic examples using ensemble classifiers

6: Index ← select the indices from PredL where ensemble classifiers has consensus (majority vote) on the prediction

and the synthetic example is correctly classified

7: [DAug , DLab] ← I[Index], TL[Index] retain synthetic examples filtered from above

8: Output: Augmented Data
[
DAug

]
and Augmented Label

[
DLab

]

training GAN and ensemble classifier is to ensure that the biases learned by the

two sub-processes are dissimilar. Later in Stage-2 when filtering synthetic images

generated by GANs utilizing ensemble classifier, the biases of the two sub-processes

will work against each other, resulting in the elimination of synthetic examples which

are misclassified by the ensemble classifier.

5.4.2 Stage-2.

Utilize the pre-trained ensemble classifier from Stage-1 to classify the synthetic

images generated by the GANs. The synthetic images which are correctly classified

and achieving a consensus from the ensemble classifier are retained. Since the bias

learned by the ensemble classifier and the GAN are complementary due to the

random split of training data between them. The complementary biases act against

each other while filtering synthetic images generated by GAN with ensemble classier.

Hence, this strategy cancels the bias learned by the two mechanisms guaranteeing

that augmenting dataset with these retained synthetic images will reduce the dataset

bias and eventually, the model bias. The whole procedure of augmenting datasets

with Data Augmentation Pursuit is described in Alg. 4.
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5.5 Experiments

Datasets and GAN Frameworks We utilized publicly available implementa-

tion of DCGAN¶ [95] and IWGAN‖ [37] architectures on CIFAR-10 dataset [65].

The dataset consists of natural RGB images of size 32 × 32 distributed among 10

categories. Since we require labelled synthetic data generation the implementation

for DCGAN was modified by conditioning both the discriminator and the generator

on input labels.

However, the current state of GANs are not able to generate images which can

span the whole manifold of the training data, i.e., can be utilized for training ML

models [104, 123]. We downscale our experiments to binary categories as this reduces

the search space required by the generator drastically and recognizable synthetic

images are generated. Furthermore, the bootstrap sampling parameter ‘α’ Alg. 4 is

initialized with a value equal to 10% of the true data and is incremented with 10%

on each iteration in Alg. 4.

5.5.1 Experimental Setup and Performance Metric

In our experiments, we compare the performance of the CNN∗∗ classifier on four

datasets 1) original CIFAR-10 dataset ‘Org’; 2) dataset augmented blindly with

synthetic examples generated using DCGAN[95] ‘DCGAN’; 3) dataset augmented

blindly with synthetic examples generated using IWGAN [37]; and 4) dataset aug-

mented by applying two stage filtering strategy of DAP.

For evaluating the performance of the classifier trained on the above datasets, we

utilized three performance metrics: a) classification accuracy, b) bias and c) variance.

We performed 3-fold cross-validation on multiple binary categories and reported the

¶https://github.com/kvfrans/generative-adversial

‖https://github.com/igul222/improved wgan training

∗∗https://github.com/soumith/DeepLearningFrameworks
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Algorithm 5 Calculation of Bias Variance and Accuracy
1: Input: Training Data Dtrain, Training Label Ltrain, Testing Data Dtest, Testing Label Ltest, Augmented

Data DAug , Augmented Label LAug , Cross-folds = k, α ∈ [0, 10, 20, ..., 90, 100]

2: (D1, L1), (D2, L2), ..., (Dk, Lk) ← CV (Dtrain, Ltrain) � Create K cross folds of the training data and training

labels

3: (DA1 , LA1 ), (DA2 , LA2 ), ..., (DAk
, LAk

) ← CV (Dtrain, Ltrain) � Create K cross folds of the augmented data

and augmented label

4: [PredLabel, Accuracy] ← [ ], [ ]

5: for iter = 1 to k do

6: if isequal(α, 0) then

7: [train, label] ← Diter, Liter � Use true training data and labels

8: else

9: train ← [Diter, DAiter
] � add synthetic examples to training data

10: label ← [Liter, LAiter
] � add synthetic labels to training labels

11: ModelΘ ← CNN(train, label) � Train model parameters on the training data

12: [PredLabel, Accuracy] ← CNN(test,ΘCNN ) � predict labels and accuracy of testing examples using CNN

and append them to the List

13: Accuracy ← mean(Accuracy) � calculate mean of k-fold accuracies

14: Bias ← bias2(Ltest, P redLabel) � calculate bias using Eq. 5.3

15: V ariance ← variance(PredLabel) � calculate bias using Eq. 5.4

16: Output: Bias, Variance, Accuracy

mean accuracy, whereas the bias and variance inherited learning mechanism of any

classifier can be obtained by bias-variance decomposition technique for zero-one loss

functions [60] and are mathematically calculated as below:

bias2x ≡ 1

2

∑
y∈Y

[
P(YF = y|x)− P(YH = y|x)]2 (5.3)

variancex ≡ 1

2

(
1−

∑
y∈Y

[P(YH = y|x)2
)

(5.4)

where, YF represents the ground truth of data instance x represented as a probability

distribution (one hot vector), and YH represents the probability distribution for the

predictions made by the classifier for the data instance x.
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5.5.2 Feature Extraction for ensemble classifier

We utilized K-means triangle features [22] for training ensemble classifier in

stage-1 Fig. 5.2 of DAP. The process begins with extracting random sub-patches

from the input data neglecting its labels, denoted as X ∈ R
M×N , where M is the

total number of sub-patches and each sub-patch xi ∈ R
N and i ∈ [1,M ]. The

vectors in X are then normalized by subtracting the mean and dividing them by

the standard deviation of its elements, followed by a whitening procedure. After

pre-processing, the K-means clustering technique is applied to learn ‘k’ centroids

c(k). Finally for each xi ∈ X, K-means triangle features are extracted [22]. Briefly,

K-means triangle features are a form of non-linear mapping where each feature fk

is encoded with the following rule.

fk(x) = max
{
0, μ(z)− zk

}
(5.5)

where zk = ‖x − c(k)‖2 and μ(z) is the mean of the elements of z. This mapping

assigns ‘0’ for any feature fk where the distance from c(k) > μ(z).

5.6 Results and Discussions

In this section, we study the performance of CNN and SVM classifiers with vari-

ous degrees of dataset augmentation. We divide the discussion into two subsections,

wherein the first subsection, we study the performance of the CNN classifier trained

on the four datasets described in Section 5.5.1. Our hypothesis of measuring the

model bias consists of three performance metrics, namely the bias, variance, and the

accuracy of the classifier. In the second subsection, we study the effect on the clas-

sifier’s performance by regularizing the level of data augmentation, i.e., by varying

the hyper-parameter α in proposed DAP.
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5.6.1 How does data-augmentation affect the performance of classifier?

In order to evaluate the above research question, we study the performance of

the CNN and SVM classifiers when trained on following datasets

1. original dataset, i.e., data without any augmentation.

2. dataset augmented blindly with synthetic examples generated using DCGAN

or IWGAN.

3. dataset augmented with synthetic examples obtained with our proposedDAP.

We evaluate the bias, the variance, and the accuracy of the CNN classifier on 20

randomly selected pairs from the CIFAR-10 dataset. The results are presented as

four columns in Tabel. 5.1, where the first three columns reflect the performance of

the CNN classifier on the original dataset (column 1), the dataset augmented blindly

with synthetic examples from DCGAN (column 2); and the dataset augmented

blindly with synthetic examples from IWGAN (column 3). The last column (i.e.,

DAP column) reflects the classifier performance evaluated on the augmented dataset

obtained using DAP. The values under the DAP column are chosen according to

the optimal value of the α parameter, i.e., the value where the maximum reduction

in the bias of the classifier is attained.

Similarly, we evaluate the bias, the variance, and the accuracy of SVM classifier

on 20 randomly selected pairs from the CIFAR-10 dataset, and the results are shown

in Table. 5.2. Again, the values under the DAP column are chosen according to the

optimal value of , α, i.e., the value where the maximum reduction in the bias of the

classifier is attained.

Besides, to test the significance of our developed approach, we use paired t-test to

test the null hypothesis that the difference between the two distributions in the pair

comes from the same normal distribution. Where each pair consists of the values
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Table 5.1 : Performance comparisons using CNN classifier on baselines datasets and

augmented dataset obtained using DAP. The p-values obtained using t-tests on

pairs ‘Baseline vs DAP’ are tabulated in the last column. Note that we follow the

scientific notation ∗∗ where we use 1Ex to present 1× 10x. Please note that, for the

bias and the variance lower value is better whereas for accuracy higher is better.

Categories Accuracy Bias Variance

Org DCGAN IWGAN DAP Org DCGAN IWGAN DAP Org DCGAN IWGAN DAP

Frog - Truck .962 .965 .961 .976 .028 .026 .029 .016 .010 .009 .010 .006

Frog - Ship .965 .973 .963 .976 .027 .020 .026 .017 .008 .006 .010 .005

Cat - Truck .942 .946 .933 .953 .047 .042 .051 .036 .011 .012 .016 .010

Bird - Truck .954 .960 .946 .963 .034 .030 .041 .027 .012 .010 .013 .009

Dog - Ship .954 .962 .956 .964 .034 .030 .034 .027 .012 .008 .009 .009

Mobile - Cat .953 .958 .952 .960 .038 .032 .035 .031 .009 .010 .013 .007

Dog - Truck .958 .962 .945 .965 .031 .030 .041 .026 .011 .008 .014 .007

Frog - Horse .951 .954 .951 .961 .034 .034 .036 .028 .015 .012 .014 .011

Mobile - Dog .967 .971 .968 .973 .025 .023 .024 .021 .008 .006 .008 .006

Horse - Truck .953 .952 .942 .959 .034 .036 .044 .030 .013 .012 .014 .009

Deer - Dog .852 .870 .859 .871 .110 .099 .106 .096 .038 .031 .035 .032

Plane - Truck .921 .925 .913 .928 .060 .056 .065 .053 .019 .019 .021 .017

Deer - Frog .896 .905 .902 .908 .075 .069 .069 .066 .029 .027 .030 .025

Dog - Frog .906 .913 .921 .919 .067 .065 .057 .060 .026 .022 .022 .021

Mobile - Bird .964 .966 .957 .968 .026 .025 .029 .023 .011 .010 .014 .009

Mobile - Horse .977 .982 .972 .980 .015 .013 .021 .013 .008 .006 .007 .006

Plane - Ship .899 .908 .903 .910 .074 .069 .072 .066 .027 .023 .025 .024

Mobile - Frog .971 .969 .960 .973 .022 .022 .029 .019 .008 .009 .011 .007

Mobile - Deer .975 .974 .967 .979 .018 .018 .023 .016 .007 .007 .010 .005

Dog - Horse .858 .875 .866 .874 .105 .095 .102 .095 .037 .030 .033 .030

p-values 1E−8 3E−5 1E−8 - 3E−8 2E−6 1E−7 - 6E−8 6E−5 7E−9 -

obtained through the baselines (i.e., the values under the column Org, DCGAN,

IWGAN ) against values obtained through DAP as shown in Table. 5.1. The last

row of Table. 5.1 and Table. 5.2 reflects the p− value of the t-statistics obtained at

5% level of significance. These low p − values reject the null hypothesis, and the

improvements achieved using proposed DAP are statistically significant.
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Table 5.2 : Performance comparison using SVM classifier on baselines datasets and

augmented dataset obtained using DAP. The p-values obtained using t-tests on

pairs ‘Baseline vs DAP’ are tabulated in the last column. Note that we follow the

scientific notation ∗∗ where we use 1Ex to present 1× 10x. Please note that, for the

bias and the variance lower value is better whereas for accuracy higher is better.

Categories Accuracy Bias Variance

Org DCGAN IWGAN DAP Org DCGAN IWGAN DAP Org DCGAN IWGAN DAP

Plane - Cat .934 .936 .909 .945 .047 .042 .059 .037 .018 .021 .030 .016

Mobile - Frog .975 .979 .966 .980 .018 .016 .021 .014 .006 .004 .011 .004

Frog - Ship .979 .977 .962 .983 .015 .015 .024 .012 .005 .006 .012 .004

Mobile - Bird .969 .972 .954 .973 .020 .019 .027 .017 .010 .009 .017 .008

Horse - Truck .960 .960 .941 .969 .026 .027 .039 .022 .012 .012 .018 .007

Plane - Mobile .941 .943 .933 .950 .041 .039 .042 .035 .017 .017 .023 .015

Mobile- Deer .978 .980 .961 .982 .014 .012 .024 .012 .007 .007 .0144 .005

Mobile - Horse .973 .974 .960 .979 .016 .017 .025 .014 .009 .008 .013 .006

Plane - Truck .929 .931 .910 .936 .050 .046 .058 .043 .020 .021 .031 .018

Bird - Ship .952 .949 .937 .955 .032 .034 .040 .028 .015 .016 .022 .013

Mobile - Ship .941 .941 .934 .945 .040 .037 .044 .035 .017 .020 .021 .017

Plane - Horse .951 .948 .934 .957 .033 .036 .041 .030 .014 .015 .024 .010

Ship - Truck .937 .941 .926 .945 .043 .042 .051 .039 .018 .016 .022 .013

Cat - Truck .953 .954 .941 .958 .032 .030 .037 .028 .014 .015 .020 .011

Dog - Truck .963 .969 .952 .967 .025 .021 .030 .023 .011 .009 .017 .008

Plane - Bird .895 .892 .879 .904 .070 .072 .079 .064 .034 .035 .040 .029

Plane - Frog .969 .968 .944 .972 .022 .023 .035 .020 .008 .008 .020 .006

Bird - Deer .856 .853 .847 .864 .099 .097 .102 .091 .044 .048 .050 .042

Frog - Horse .958 .959 .950 .961 .028 .028 .033 .026 .013 .012 .015 .009

p-values 1E−7 9E−6 9E−12 - 1E−5 1E−4 1E−10 - 5E−8 2E−7 1E−12 -

∗∗https://en.wikipedia.org/wiki/Scientific notation
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It is clearly visible from the evaluations that the improvement in classification

performance is achieved via the reduction in bias within the models trained on aug-

mented datasets obtained using our proposed augmentation service. Moreover, this

validates our claims that one must not blindly augment the datasets with synthetic

examples generated by GANs to achieve higher recognition performance. Instead,

proper attention must be given to the dataset bias, which is the root cause of algo-

rithmic bias in ML models responsible for their catastrophic failures.

5.6.2 How does the percentage of input data affect the quality of data-

augmentation?

In order to evaluate, how does our bootstrap parameter α controls the bias in

training dataset, we plot the performance of classifiers by varying α (data split

percentage in Stage-1 of DAP) between 10% to 90% of the training data.

The accuracy, bias, and variance of the CNN classifier with various amount of

data-split during Stage-1 of DAP is shown in Fig. 5.3, Fig. 5.4, Fig. 5.5 respectively.

Note that, the y-axis in the plots are scaled for visualization.
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Figure 5.3 : Accuracy-plot of top 6 pairs from Table 5.1. x -axis in subplots represents

the values of α used in experiments, where x = 0, 1 corresponds to Org, DCGAN.

The y-axis represents the mean accuracy obtained after 3-fold crossvalidation.
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Figure 5.4 : Bias-plot of top 6 pairs from Table 5.1. The x -axis represents the

values of α used in our experiments and y-axis represents the bias of the classifier.
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Figure 5.5 : Variance-plot of top 6 pairs from Table 5.1. The x -axis represents the

values of α used in our experiments and y-axis represents the bias of the classifier.

Similarly, the accuracy, bias, and variance of the SVM classifier with various

amount of data-split is shown in Fig. 5.6, Fig. 5.7, and Fig.5.8 respectively. Note

that, the y-axis in the plots are scaled for visualization.
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Figure 5.6 : Accuracy-plot of top 6 pairs from Table 5.1. x -axis in subplots represents

the values of α used in experiments, where x = 0, 1 corresponds to Org, DCGAN.

The y-axis represents the mean accuracy obtained after 3-fold crossvalidation.
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Figure 5.7 : Bias-plot of top 6 pairs from Table 5.2. The x -axis represents the

values of α used in our experiments and y-axis represents the bias of the classifier.
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Figure 5.8 : Variance-plot of top 6 pairs from Table 5.2. The x -axis represents the

values of α used in our experiments and y-axis represents the bias of the classifier.
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While the performance of the classifiers in these plots fluctuates, their perfor-

mances are mostly better than the baseline, i.e., a) no data-augmentation (x−axis =

0) and b) augmenting dataset blindly (x − axis = 1). The reason for performance

drop at certain α (for example, Plane-Mobile accuracy plot in Fig. 5.6) can be due

to the mode-collapsing in GAN [4].

Also, the highest peak in accuracy for CNN classifier in Fig. 5.3 can be followed

with corresponding reductions in bias Fig. 5.4 and the variance Fig. 5.5. Analogously,

the same correspondence can be drawn with the accuracy, bias, and variance plots

of SVM classifier in Fig .5.6, Fig. 5.7, and Fig .5.8 respectively.

5.7 Summary

In this chapter, we presented a formal analysis of bias and variance associated

with the learning system of GANs and their effects on the bias of the learning systems

of classifiers. The proposed data augmentation strategy DAP is empirically shown

to alleviate the effects of dataset bias induced in the ML model. ML models trained

on augmented datasets obtained with DAP shows a reduction in their bias and

achieves significantly better classification performance on multiple binary categories

of CIFAR -10. Besides, the results measuring the bias and variance on classifier’s

learning system advocate the need for effective bias management while augmenting

datasets with synthetic images generated using GANs.
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Chapter 6

Conclusion and Future Work

In this chapter, a summary of the thesis is presented and future research directions

are highlighted that could be extended from the research contained in this thesis.

6.1 Conclusions of the Thesis

The performance of any machine learning system is heavily dependent on the

feature representation utilised for the task at hand. In the era of big data, artifi-

cially intelligent systems strive to utilise information from multiple cues, to obtain

a complete knowledge of the phenomenon of interest. However, to utilise available

information, one needs to address these two challenging questions, 1) why we need

to combine information from multiple cues, and 2) how to perform their fusion. This

thesis addressed these questions, by designing feature extraction techniques to ob-

tain common and unique information from multiview, multimodal, and multisource

data and proposed new fusion techniques for their utmost utilisation. Below is a

summary of the contributions of this research.

• Chapter 3 described the development of a lightweight deep network for image

classification. The proposed Attn-HybridNet extracts both the unique in-

formation from the amalgamated view and the common information from the

minutiae view of the data. The two kinds of information are then combined

by using attention fusion to obtain final feature representation of an image.

The proposed Attn-HybridNet achieves competitive performance with sig-

nificantly less computational resources compared to other similar deep neural
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networks.

• In Chapter 4 I introduced a deep neural network called DeepCU, which

utilises both common and unique latent information for sentiment analysis

with multimodal data. The DeepCU consolidates two sub-networks, a) deep

convolution-tensor network for obtaining common information from multi-

modal data, and b) a unique sub-network to obtain information offered by the

individual modalities. Both sub-networks are integrated via a fusion layer, and

their parameters are optimised by back-propagation on the target loss function.

The DeepCU outperformed state of the art approaches as it leveraged the

expressiveness of all-types of information by enforcing the two sub-networks

to learn complimentary information in the embedding layer.

• In Chapter 5, I addressed the problem of dataset bias, by designing a data

provisioning mechanism called DAP. The DAP comprised of two-stage mech-

anism to control and filter the training data instances 1) utilized to train

GANs and 2) sieve unbiased synthetic examples generated by the GAN. The

DAP’s sieving technique induces diversity in the augmented datasets, thus

reduces the variance associated with the unique distribution of the majority

subclasses. Hence, synthetic images selected using DAP do not adversely

affect the learning system of classifier’s and significantly improve their classi-

fication performance.
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6.2 Recommendations for Future Work

This thesis has presented novel algorithms to improve supervised classification

with the utilisation of both common and unique information extracted from the data

(both heterogeneous and homogeneous). These developments suggest promising

research directions that can be extended from this work.

• Non-linear filter design in Attn-HybridNet.

The weights for convolution layers in the parsimonious deep neural network

studied in this research are extracted using principal components and LoMOI,

both of which are linear. However, multiple non-linearities in the data, such

as image occlusion, alignment, etc. demand the design of a sophisticated filter

for accommodating these non-linearities.

• Develop better fusion technique for DeepCU.

In this research I have extracted the unimodal, bimodal, and trimodal infor-

mation from multimodal data and have combined them with either static or

dynamic fusion schemes in the fusion layer. Both of these fusion schemes are

elementary as they do not consider the quality of the data source or the latent

information while combining them. Providing disparate importance such as

an attention weighting mechanism to the unimodal, bimodal, and trimodal

latent might prove beneficial and improve the quality of sentiment prediction.

• Data Augmentation Pursuit in multiclass settings.

I have presented a data provisioning mechanism in binary-class settings for

dataset augmentation. Extending this two-stage filtering procedure for the

multiclass setting is non-trivial and substancially challenging, as the GANs

are still not powerful to generate diverse synthetic images with (unknown)

distribution equal to the training datasets. A future research direction for this
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work can be the design of an incremental model that updates the target classes

for augmenting training datasets with synthetic examples.
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[5] T. Baltrušaitis, C. Ahuja, and L.-P. Morency, “Multimodal machine learn-

ing: A survey and taxonomy,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2018.

[6] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: a review

and new perspectives,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[7] D. Berthelot, T. Schumm, and L. Metz, “Began: Boundary equilibrium gen-

erative adversarial networks,” arXiv preprint arXiv:1703.10717, 2017.



105

[8] D. Brain and G. I. Webb, “The need for low bias algorithms in classification

learning from large data sets,” in PKDD, vol. 2. Springer, 2002, pp. 62–73.

[9] R. E. Broadhurst, “Statistical estimation of histogram variation for texture

classification,” in Proc. Intl. Workshop on Texture Analysis and Synthesis,

2005, pp. 25–30.

[10] J. Bruna and S. Mallat, “Invariant scattering convolution networks,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp.

1872–1886, 2013.

[11] J. Buolamwini and T. Gebru, “Gender shades: Intersectional accuracy dis-

parities in commercial gender classification,” in Conference on Fairness, Ac-

countability and Transparency, 2018.

[12] D. Cao, L. Nie, X. He, X. Wei, S. Zhu, and T.-S. Chua, “Embedding fac-

torization models for jointly recommending items and user generated lists,”

in Proceedings of the 40th International ACM SIGIR Conference on Research

and Development in Information Retrieval. ACM, 2017, pp. 585–594.

[13] T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma, “Pcanet: a simple

deep learning baseline for image classification?” IEEE Transactions on Image

Processing, vol. 24, no. 12, pp. 5017–5032, 2015.

[14] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen, “Compressing

neural networks with the hashing trick,” in International Conference on Ma-

chine Learning, 2015, pp. 2285–2294.

[15] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel,

“Infogan: Interpretable representation learning by information maximizing

generative adversarial nets,” in Advances in Neural Information Processing

Systems, 2016, pp. 2172–2180.



106

[16] J. Cheng, J. Wu, C. Leng, Y. Wang, and Q. Hu, “Quantized cnn: a unified

approach to accelerate and compress convolutional networks,” IEEE transac-

tions on neural networks and learning systems, no. 99, pp. 1–14, 2017.

[17] J.-T. Chien and Y.-T. Bao, “Tensor-factorized neural networks,” IEEE trans-

actions on neural networks and learning systems, vol. 29, no. 5, pp. 1998–2011,

2017.

[18] S. Chintala. (accessed September 3, 2019). [Online]. Available:

https://github.com/soumith/DeepLearningFrameworks

[19] J. Choe, S. Park, K. Kim, J. Hyun Park, D. Kim, and H. Shim, “Face gen-

eration for low-shot learning using generative adversarial networks,” in Pro-

ceedings of the IEEE International Conference on Computer Vision, 2017, pp.

1940–1948.

[20] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, and

H. A. Phan, “Tensor decompositions for signal processing applications: From

two-way to multiway component analysis,” IEEE Signal Processing Magazine,

vol. 32, no. 2, pp. 145–163, 2015.

[21] D. A. Cieslak and N. V. Chawla, “Detecting fractures in classifier perfor-

mance,” in Seventh IEEE International Conference on Data Mining (ICDM

2007). IEEE, 2007, pp. 123–132.

[22] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in un-

supervised feature learning,” in Proceedings of the fourteenth international

conference on artificial intelligence and statistics, 2011, pp. 215–223.

[23] A. Coates and A. Y. Ng, “The importance of encoding versus training with

sparse coding and vector quantization,” in Proceedings of the 28th interna-

tional conference on machine learning (ICML-11), 2011, pp. 921–928.



107

[24] F. Cong, Q.-H. Lin, L.-D. Kuang, X.-F. Gong, P. Astikainen, and T. Ris-

taniemi, “Tensor decomposition of eeg signals: a brief review,” Journal of

Neuroscience Methods, vol. 248, pp. 59–69, 2015.

[25] M. Crosier and L. D. Griffin, “Using basic image features for texture classifica-

tion,” International Journal of Computer Vision, vol. 88, no. 3, pp. 447–460,

2010.

[26] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear singular

value decomposition,” SIAM journal on Matrix Analysis and Applications,

vol. 21, no. 4, pp. 1253–1278, 2000.

[27] ——, “On the best rank-1 and rank-(r 1, r 2,..., rn) approximation of higher-

order tensors,” SIAM Journal on Matrix Analysis and Applications, vol. 21,

no. 4, pp. 1324–1342, 2000.

[28] G. Degottex, J. Kane, T. Drugman, T. Raitio, and S. Scherer, “Covarep—a

collaborative voice analysis repository for speech technologies,” in Acoustics,

Speech and Signal Processing (ICASSP), 2014 IEEE International Conference

on. IEEE, 2014, pp. 960–964.

[29] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A

Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[30] N.-E. El Faouzi, H. Leung, and A. Kurian, “Data fusion in intelligent trans-

portation systems: Progress and challenges–a survey,” Information Fusion,

vol. 12, no. 1, pp. 4–10, 2011.

[31] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “Liblinear:

a library for large linear classification,” Journal of Machine Learning Research,

vol. 9, no. Aug, pp. 1871–1874, 2008.



108

[32] A. Fukui, D. H. Park, D. Yang, A. Rohrbach, T. Darrell, and M. Rohrbach,

“Multimodal compact bilinear pooling for visual question answering and visual

grounding,” in Proceedings of the 2016 Conference on Empirical Methods in

Natural Language Processing, 2016, pp. 457–468.

[33] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-

forward neural networks,” in Proceedings of the thirteenth international con-

ference on artificial intelligence and statistics, 2010, pp. 249–256.

[34] L. Gong, B. Haines, and H. Wang, “Clustered model adaption for personal-

ized sentiment analysis,” in Proceedings of the 26th International Conference

on World Wide Web. International World Wide Web Conferences Steering

Committee, 2017, pp. 937–946.

[35] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in

neural information processing systems, 2014, pp. 2672–2680.

[36] K. Grauman and T. Darrell, “The pyramid match kernel: discriminative clas-

sification with sets of image features,” in Computer Vision, 2005. ICCV 2005.

Tenth IEEE International Conference on, vol. 2. IEEE, 2005, pp. 1458–1465.

[37] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, “Im-

proved training of wasserstein gans,” in NIPS, 2017.

[38] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He, “Deepfm: a factorization-machine

based neural network for ctr prediction,” in Proceedings of the 26th Interna-

tional Joint Conference on Artificial Intelligence. AAAI Press, 2017.

[39] S. Han, H. Mao, and W. J. Dally, “Deep compression: compressing deep neu-

ral networks with pruning, trained quantization and huffman coding,” ICLR,

2016.



109

[40] E. Hayman, B. Caputo, M. Fritz, and J.-O. Eklundh, “On the significance of

real-world conditions for material classification,” in European Conference on

Computer Vision. Springer, 2004, pp. 253–266.

[41] K. He and J. Sun, “Convolutional neural networks at constrained time cost,”

in Proceedings of the IEEE conference on computer vision and pattern recog-

nition, 2015, pp. 5353–5360.

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2016, pp. 770–778.

[43] X. He and T.-S. Chua, “Neural factorization machines for sparse predictive

analytics,” in Proceedings of the 40th International ACM SIGIR conference

on Research and Development in Information Retrieval. ACM, 2017, pp.

355–364.

[44] X. He, M. Gao, M.-Y. Kan, Y. Liu, and K. Sugiyama, “Predicting the popu-

larity of web 2.0 items based on user comments,” in Proceedings of the 37th

international ACM SIGIR conference on Research & development in informa-

tion retrieval. ACM, 2014, pp. 233–242.

[45] F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum of prod-

ucts,” Journal of Mathematics and Physics, vol. 6, no. 1-4, pp. 164–189, 1927.

[46] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural com-

putation, vol. 9, no. 8, pp. 1735–1780, 1997.

[47] G. Hu, Y. Hua, Y. Yuan, Z. Zhang, Z. Lu, S. S. Mukherjee, T. M. Hospedales,

N. M. Robertson, and Y. Yang, “Attribute-enhanced face recognition with

neural tensor fusion networks.” in ICCV, 2017, pp. 3764–3773.



110

[48] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely con-

nected convolutional networks,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2017, pp. 4700–4708.

[49] J. Huang and C. Yuan, “Fanet: factor analysis neural network,” in Inter-

national Conference on Neural Information Processing. Springer, 2015, pp.

172–181.

[50] S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep network

training by reducing internal covariate shift,” in Proceedings of the 32nd In-

ternational Conference on International Conference on Machine Learning-

Volume 37. JMLR. org, 2015.

[51] Y. Jia, C. Huang, and T. Darrell, “Beyond spatial pyramids: Receptive field

learning for pooled image features,” in 2012 IEEE Conference on Computer

Vision and Pattern Recognition. IEEE, 2012, pp. 3370–3377.

[52] Y. Jia, O. Vinyals, and T. Darrell, “On compact codes for spatially pooled

features,” in International Conference on Machine Learning, 2013, pp. 549–

557.

[53] I. Karmanov. (accessed May 20, 2019) Vgg style cnn on cifar10. [Online].

Available: https://github.com/soumith/DeepLearningFrameworks

[54] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans

for improved quality, stability, and variation,” ICLR, 2018.

[55] A. Khosla, T. Zhou, T. Malisiewicz, A. A. Efros, and A. Torralba, “Undoing

the damage of dataset bias,” in European Conference on Computer Vision.

Springer, 2012, pp. 158–171.

[56] H. A. Kiers, “Towards a standardized notation and terminology in multiway



111

analysis,” Journal of Chemometrics: A Journal of the Chemometrics Society,

vol. 14, no. 3, pp. 105–122, 2000.

[57] D. Kim, C. Park, J. Oh, S. Lee, and H. Yu, “Convolutional matrix factoriza-

tion for document context-aware recommendation,” in Proceedings of the 10th

ACM Conference on Recommender Systems. ACM, 2016, pp. 233–240.

[58] M. P. Kim, A. Ghorbani, and J. Zou, “Multiaccuracy: Black-box post-

processing for fairness in classification,” 2019.

[59] J. Kleinberg, S. Mullainathan, and M. Raghavan, “Inherent trade-offs in the

fair determination of risk scores,” ITCS, 2017.

[60] R. Kohavi, D. H. Wolpert et al., “Bias plus variance decomposition for zero-one

loss functions,” in Machine Learning, Proceedings of the Thirteenth Interna-

tional Conference (ICML, 1996, pp. 275–283.

[61] N. Kohli, D. Yadav, M. Vatsa, R. Singh, and A. Noore, “Synthetic iris pre-

sentation attack using idcgan,” in IJCB, 2017.

[62] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”

SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[63] J. Kossaifi, A. Khanna, Z. Lipton, T. Furlanello, and A. Anandkumar, “Tensor

contraction layers for parsimonious deep nets,” in Computer Vision and Pat-

tern Recognition Workshops (CVPRW), 2017 IEEE Conference on. IEEE,

2017, pp. 1940–1946.

[64] A. Krizhevsky. (2012 (accessed May 20, 2019)) Cuda convnet. [Online].

Available: https://code.google.com/archive/p/cuda-convnet/

[65] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny

images,” Department of Computer Science, University of Toronto, 2009.



112

[66] L. I. Kuncheva and C. J. Whitaker, “Measures of diversity in classifier ensem-

bles and their relationship with the ensemble accuracy,” Machine learning,

vol. 51, no. 2, pp. 181–207, 2003.

[67] D. Lahat, T. Adali, and C. Jutten, “Multimodal data fusion: an overview of

methods, challenges, and prospects,” Proceedings of the IEEE, 2015.

[68] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio, “An empir-

ical evaluation of deep architectures on problems with many factors of varia-

tion,” in Proceedings of the 24th international conference on Machine learning.

ACM, 2007, pp. 473–480.

[69] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempit-

sky, “Speeding-up convolutional neural networks using fine-tuned cp-

decomposition,” in ICLR, 2015.

[70] Y. Li, M. Yang, and Z. M. Zhang, “A survey of multi-view representation

learning,” IEEE Transactions on Knowledge and Data Engineering, 2018.

[71] T.-Y. Lin, A. RoyChowdhury, and S. Maji, “Bilinear cnn models for fine-

grained visual recognition,” in Proceedings of the IEEE International Confer-

ence on Computer Vision, 2015, pp. 1449–1457.

[72] M.-Y. Liu and O. Tuzel, “Coupled generative adversarial networks,” in Ad-

vances in neural information processing systems, 2016, pp. 469–477.

[73] W. Liu, J. Chan, J. Bailey, C. Leckie, and K. Ramamohanarao, “Mining

labelled tensors by discovering both their common and discriminative sub-

spaces,” in Proceedings of the 2013 SIAM International Conference on Data

Mining, 2013.

[74] Z. Liu, Y. Shen, V. B. Lakshminarasimhan, P. P. Liang, A. Zadeh, and L.-P.



113

Morency, “Efficient low-rank multimodal fusion with modality-specific fac-

tors,” ACL, 2018.

[75] H. Lu, K. N. Plataniotis, and A. Venetsanopoulos, “Multilinear subspace learn-

ing: Dimensionality reduction of multidimensional data,” 2013.

[76] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Mpca: multilinear

principal component analysis of tensor objects,” IEEE Transactions on Neural

Networks, vol. 19, no. 1, pp. 18–39, 2008.

[77] W. Luiz, F. Viegas, R. Alencar, F. Mourão, T. Salles, D. Carvalho, M. A.
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