Designing Feedback for Collocated Teams using Multimodal Learning Analytics

Vanessa Echeverria Barzola
B.Sc., M.Sc.

Thesis submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy

University of Technology Sydney
Connected Intelligence Centre
2020

Supervisors:

Prof. Simon Buckingham Shum, University of Technology Sydney

Dr. Roberto Martinez-Maldonado, Monash University
Certificate of Original Authorship

I, Vanessa Echeverria Barzola, declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Connected Intelligence Centre at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Signature: _________________________
Date: ________________________

Production Note:
Signature removed prior to publication.

Date: 18/03/20
Acknowledgements

This work could not have been completed without the help support and guidance of many people. I have learnt many invaluable lessons during my doctorate and would like to acknowledge those who have assisted me in my doctoral journey.

First and foremost, I would like to extend my deepest gratitude to my supervisors, Prof. Simon Buckingham Shum and Dr. Roberto Martinez-Maldonado. I am grateful to Simon Buckingham Shum for allowing me to join a fantastic research centre and for guiding me to become a responsible researcher. Your willingness to share your knowledge and innovative insights has helped me shaped my research.

My heartfelt thanks go to Roberto for his continued support, guidance and supervision. During this time Roberto was more than just my supervisor, he was my mentor and friend. I enjoyed every conversation we had, research-related or life-related. Roberto pushed me towards new challenges, he is the person and friend who made all this possible. Roberto was always positive, no matter the challenge. His guidance went beyond my research and has impacted many aspects of my life. Thank you for the countless times you cheered me up and for your unconditional support and kindness through this journey. Thanks for teaching me how to be an organised researcher and that every little step count!

I would also like to acknowledge the contribution of the people who voluntarily dedicated their time and expertise. My sincere thanks go to Prof. Cristina Conati for offering valuable advice on the analysis of the eye-tracking data. Thanks to the excellent staff from the Faculty of Health, without their collaboration and support this research would not be possible. In particular to Dr Tamara Power, Dr. Carmen Axisa, and Dr. Carolyn Hayes for always being engaged in this research, for being encouraging, for opening the doors to their classrooms and being very supportive through every stage of this research. Thanks also to Prof. Doug Elliot, Prof. Tracy Levett-Jones, Dr. Natalie Govind, Ms. Jan Forber, and Mrs. Felicity Smith for their valuable time and insight which helped shape the work presented in this thesis. Thanks to the invaluable support of simulation technicians Michael Cabauatan, Paul Benson, Connie Land and TJ Agudera. Thanks also to the students that were willing to participate in the studies reported in this work.

A special thank you goes out to my internal reviewers, Dr. Simon Knight and Prof. Judy Kay, for providing me with constructive feedback on my final presentation and the first thesis draft.

I want to express my gratitude to my colleagues from the Connected Intelligence Centre. Thanks to Dr. Kirsty Kitto for her constructive advice and for fostering my critical thinking during our
fortnightly discussions. I’d like to recognise the assistance that I received from Georgia, Gabrielle, Emma and Ratha for helping me solve administrative issues. Thanks also to Jack and Radhika for being friendly and kind to me. Special thanks to my great friends Sophie Abel and Carlos Prieto with which I shared the ups and downs of this PhD adventure. Thanks to the PhD crew, Shibani, Evelyn Palominos and Gloria Fernandez for being part of the PhD life and for sharing fun times with me.

My gratitude is also extended to the funding bodies and scholarships that provided financial support for my doctorate and the presentation of my PhD work at research conferences. Thanks to the Asian-Pacific Society for Computers in Education, the Connected Intelligence Centre, UTS, and the Escuela Superior Politécnica del Litoral for their scholarships.

I would not have been able to undertake this endeavour without the colleagues who supported me from the beginning of my research career. I’m deeply indebted to Prof. Katherine Chiluiza for mentoring me during the initial stages of my research career and teaching me to strive for the best. Also, I’m grateful to Prof. Xavier Ochoa for inspiring me with his innovative ideas and for introducing me to the Learning Analytics community.

I welcome this opportunity to thank my friends and family. To my new friends in Sydney, thanks for making this place feel like home. To my dear friends in Guayaquil, thanks for being there, not physically but emotionally, sharing your joyfulness in our video calls. Thanks to my family, Fabricio, his wife and kids, Bryan, Mariuxi, and all relatives, for showing me that everything is possible when you are surrounded by love.

Special thanks go to my parents; you are the pillar of who I am, and I owe you everything. Thanks to my dad for teaching me that dedication and hard work is the key to making things happen. Thanks to my mom, this is the result of all your selfless support and prayers. Thanks for your unconditional love, support and for keeping me always motivated.

To my beloved husband, Ivan, thank you for standing with me through all the emotions I’ve been through during this time. You are one in a million. To my dear kids, Ivan and Annie, thanks for brightening my days with your smiles, kisses and unconditional love. Finally, I thank God for the wisdom and strength he bestowed upon me to finish this work.
The following peer-reviewed publications produced during the PhD candidature contribute to this thesis.

Journal Papers

- Roberto Martinez-Maldonado, Doug Elliott, Carmen Axisa, Tamara Power, **Vanessa Echeverria** and Simon Buckingham Shum (2020). Designing translucent learning analytics with teachers: an elicitation process. Interactive Learning Environments.

Conference Proceedings

Workshop Papers

Workshops

Sources and Original Work

Original material of my own from the above publications has been included in this thesis. Such prior publications when used in the thesis are explicitly cited where appropriate and are not used in entirety. Publications of external authors are credited throughout the thesis with citations in text and references at the end of the thesis. Figures from external sources where authors granted permission for usage are cited in their captions.

Ethics

The studies presented in this thesis were conducted under ethics approved by the University of Technology Sydney’s Human Research Ethics Committee, and are based on projects ETH17-1411: Learning Analytics for understanding small-group collaborative processes; ETH17-1415: Measuring Adoption and Acceptance of Learning Analytics Tools and ETH17-1502: Learning Analytics in clinical simulation. A revised version of the ethics project ETH17-1502 has the protocol number ETH18-2278. The most recent participant information sheets and consent forms can be requested by email.

1 Email addresses: Vanessa.I.EcheverriaBarzola@student.uts.edu.au, Roberto.MartinezMaldonado@monash.edu, Simon.BuckinghamShum@uts.edu.au.
Table of Contents

Certificate of Original Authorship.. ii

Acknowledgements ... iii

Preface and Notes .. v

List of Figures ... xiii

List of Tables... xvii

Abstract... xix

Chapter 1: Introduction.. 1
 1.1 Context and Motivation.. 1
 1.2 Research Questions .. 6
 1.3 Research Goals.. 6
 1.4 Research Contributions ... 7
 1.5 Thesis Structure .. 8

Chapter 2: Background and Related Work .. 11
 2.1 Introduction ... 11
 2.2 Background and Foundations of Group Work ... 13
 2.2.1 What is group work? .. 13
 2.2.2 What is Collaborative Learning? .. 14
 2.2.3 What makes a group effective? .. 15
 2.2.4 Challenges in collocated group work ... 16
 2.3 Feedback for Collocated Group Work .. 17
 2.3.1 What is feedback? ... 17
 2.3.2 Providing feedback to collocated groups .. 18
 2.3.3 Challenges in the provision of feedback to collocated groups 20
 2.4 State-of-the-art in Analytics for Group Work .. 20
 2.4.1 How collocated group work is framed? ... 20
 2.4.2 How collocated group work is commonly analysed? 22
 2.4.3 Multimodal Learning Analytics for supporting collocated group work .. 23
 2.4.4 Giving meaning to multimodal data .. 29
 2.4.5 Challenges and gaps .. 30
 2.5 Guiding the Interpretation of Learning Dashboards ... 31
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.1 Learning dashboards</td>
<td>31</td>
</tr>
<tr>
<td>2.5.2 Learning dashboards to support group work</td>
<td>32</td>
</tr>
<tr>
<td>2.5.3 Providing guidance through visual elements</td>
<td>34</td>
</tr>
<tr>
<td>2.5.4 Data storytelling as a technique to facilitate guidance</td>
<td>35</td>
</tr>
<tr>
<td>2.5.5 Challenges and gaps</td>
<td>38</td>
</tr>
<tr>
<td>2.6 Summary</td>
<td>39</td>
</tr>
<tr>
<td>Chapter 3: Learning Contexts and Research Methodology</td>
<td>41</td>
</tr>
<tr>
<td>3.1 Learning Contexts and Primary Data Collection</td>
<td>41</td>
</tr>
<tr>
<td>3.1.1 Context 1: Nursing teamwork simulation</td>
<td>41</td>
</tr>
<tr>
<td>3.1.2 Context 2: Database design activity</td>
<td>54</td>
</tr>
<tr>
<td>3.2 Methodology</td>
<td>62</td>
</tr>
<tr>
<td>3.2.1 Cycle 1</td>
<td>64</td>
</tr>
<tr>
<td>3.2.2 Cycle 2</td>
<td>64</td>
</tr>
<tr>
<td>3.2.3 Cycle 3</td>
<td>65</td>
</tr>
<tr>
<td>3.2.4 Cycle 4</td>
<td>66</td>
</tr>
<tr>
<td>3.3 Summary</td>
<td>68</td>
</tr>
<tr>
<td>Chapter 4: Mapping from Multimodal Data to Group Constructs and Analytics Requirements</td>
<td>70</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>70</td>
</tr>
<tr>
<td>4.2 Motivation</td>
<td>71</td>
</tr>
<tr>
<td>4.2.1 Human-Centred Design for Learning Analytics</td>
<td>71</td>
</tr>
<tr>
<td>4.2.2 Aligning multimodal data with learning constructs</td>
<td>73</td>
</tr>
<tr>
<td>4.3 HCD-MMLA: Bringing HCD to Define Requirements for MMLA Interfaces</td>
<td>76</td>
</tr>
<tr>
<td>4.3.1 Stage 1: Co-design sessions with stakeholders</td>
<td>77</td>
</tr>
<tr>
<td>4.3.2 Stage 2: Inductive mapping</td>
<td>77</td>
</tr>
<tr>
<td>4.3.3 Stage 3: Theory-driven mapping</td>
<td>79</td>
</tr>
<tr>
<td>4.3.4 The HCD-MMLA mapping template</td>
<td>80</td>
</tr>
<tr>
<td>4.4 Illustrative Scenario</td>
<td>81</td>
</tr>
<tr>
<td>4.4.1 Stage 1: Co-design sessions with teachers and students</td>
<td>82</td>
</tr>
<tr>
<td>4.4.2 Stage 2: Inductive mapping</td>
<td>85</td>
</tr>
<tr>
<td>4.4.3 Stage 3: Theory-driven mapping</td>
<td>87</td>
</tr>
<tr>
<td>4.5 Results and Findings</td>
<td>87</td>
</tr>
<tr>
<td>4.5.1 Eliciting teachers and students’ design requirements for supporting simulation classrooms</td>
<td>87</td>
</tr>
<tr>
<td>4.5.2 Defining the learning constructs and Analytics Requirements</td>
<td>93</td>
</tr>
<tr>
<td>4.6 Summary</td>
<td>104</td>
</tr>
</tbody>
</table>
8.6 Concluding Remarks ... 210

Bibliography .. 212

Appendices ... 227
List of Figures

Figure 1.1: Overview of the context, goals, contributions and validation of this thesis. 5

Figure 2.1: Partial diagram that represents the research context and key research questions this thesis addresses. 12

Figure 2.2: Graphical representation of adapted version of the ACAD framework (Goodyear & Carvalho, 2014) to analyse collaboration in terms of social, epistemic, physical and affective dimensions. 21

Figure 2.3: Second Messenger, a mirroring visualisation tool displaying group members’ speech during a meeting session (DiMicco, Hollenbach, Pandolfo, & Bender, 2007) 33

Figure 2.4: MTFeedback, an alerting visualisation tool to enhance teacher’s awareness. The tool identifies groups with conceptual errors (red square) and groups with no errors (green square) and alerts the teacher (Martinez-Maldonado, Clayphan, Yacef, & Kay, 2015). 34

Figure 2.5: Top: A typical exploratory chart without data storytelling elements. Bottom: An explanatory chart of the same data with data storytelling elements, including: A) a Prescriptive Title; B) a Thicker line to highlight particular data series; C) only critical Data points; D) Decluttering by de-emphasising less relevant data; E) Add key contextual data with Labelled line; F) a Shading area. 37

Figure 3.1: Patient’s bed arrangement to simulate a ward hospital scenario in a classroom. 45

Figure 3.2: Floor plan and distribution of anchors (blue squares) to track badges (pink circles). Five badges were used for Data Collection 1. 47

Figure 3.3: Multimodal data collection in a controlled simulation scenario (Data collection 1). 48

Figure 3.4: Multimodal data collection from a nursing simulation in a classroom scenario (Data collection 2). 48

Figure 3.5: The camera system located at the ceiling of the room composed of three fixed cameras. 49

Figure 3.6: The team observation tool. A) List of all the sessions managed by the tool; B) a screen showing the data sources added to a session. 51

Figure 3.7: The team observational tool. C) a screen illustrating the objects added to a session and its association with a tag or a physiological wristband; and D) the screen where one or multiple observers can log actions performed by students. 53

Figure 3.8: The DBCollab tool. Left: three students interacting at the multi-display, multi-touch environment that facilitates the collaborative design of database diagrams. Right: a set of visualisations automatically presented to groups just after completing their task. 56

Figure 3.9: The DBCollab design tool. Left: the tablet interfaces used in stage I. Right: the tabletop interface mainly used in stage III. 57

Figure 3.10: Interactive surfaces and sensors used for the implementation of the DBCollab tool. 58

Figure 3.11: The DBCollab feedback tool. Information generated automatically from student’s interactions, grouped into epistemic and social aspects. 59

Figure 3.12: A second set of visualisations generated by DBCollab feedback tool. (H) a visualisation showing the participation of each student per minute. (I) a trending line
chart with green dots (entities/attributes), orange dots (relationships) and partial scores of the solution per minute.

Figure 3.13: Outline of the thesis research design following Reeve’s (2000) iterative cycle process.

Figure 3.14: Summary of the contexts and data that will be used in further chapters.

Figure 4.1: Research question, goal, contribution and validation methods addressed in Chapter 4.

Figure 4.2: Human-Centred Design iterative process proposed by Norman (2013).

Figure 4.3: Diagram representing the HCD-MMLA method to formalise MMLA requirements.

Figure 4.4: Inductive-theory-driven content analysis to define the learning activity and learning analytics requirements considering a set of pre-defined headings. The inductive stage maps the quotes from co-design sessions to headings, and then cluster similar emerging themes (grey-coloured boxes); while the theory-driven stage validates themes from educational theory and other relevant literature (blue-coloured codes).

Figure 4.5: Template for mapping user’s requirements with multimodal data, analytics and visual representations.

Figure 4.6: Study design for co-design sessions with teachers and students. Co-design sessions with teachers was conducted with two subject coordinators and co-design sessions with students involved five focus groups.

Figure 4.7: Final output of problems, wishes and tools after merging responses from teacher A and B.

Figure 4.8: Left: Learner journey’s output from one co-design session, pointing at locations where information can be provided. Right: Tool ideation and sketching output from one co-design session with students.

Figure 4.9: Inductive and theory-driven mapping example.

Figure 4.10: Defining teamwork construct (HoC) and analytics requirements. Grey boxes are themes that emerged during the inductive stage (Stage 2) and blue boxes are themes that were drawn by relevant literature (Stage 3).

Figure 4.11: Defining patient-centred care construct (HoC) and analytics requirements. Grey boxes are themes that emerged during the inductive stage (Stage 2) and blue boxes are themes that were drawn by relevant literature (Stage 3).

Figure 5.1: Research question, goal, contribution and validation methods addressed in Chapter 5.

Figure 5.2: Multimodal Matrix representation.

Figure 5.3: From multimodal logs to constructs in healthcare scenarios.

Figure 5.4: Translating data points (x,y) into zones of interest around the patient.

Figure 5.5: Translating accelerometer data (left) from a physiological sensor data into a high-level of physical activity (right).

Figure 5.6: EDA peaks from the EDA signal of a student acting as a Registered Nurse (RN).

Figure 5.7: Top: The upper table illustrates the requirements for designing a visualisation to represent patient-centred care and teamwork higher order constructs in relation to the verbal communication with the patient and teamwork communication. Bottom: Social proxies as visual representations. The orange node represents the patient and blue nodes the nurses. Edges represent verbal communication among these.

Figure 5.8: Top: The upper table illustrates the requirements for designing a visualisation to represent patient-centred care higher order construct in relation to embodied
strategies. \textit{Bottom:} Physical proxies as visual representations. The orange node represents nurses’ proximity with patient and light blue nodes other meaningful zones.

Figure 5.9: Three different ways in which nurses performed chest compressions: by the bed (team A), on top of the bed (team B), and on top of the manikin (team C).

Figure 5.10: \textit{Top:} The upper table illustrates the requirements for designing a visualisation representing patient-centred care and teamwork higher order construct in relation to physical activity and stress. \textit{Bottom:} Physical intensity and arousal proxies. Physical intensity is reflected by different shades of blue segments in the timeline (darker = more intense). Arousal peaks are represented as orange and grey dots.

Figure 5.11: \textit{Top:} The table illustrates the requirements for designing a visualization representing teamwork time management higher order construct. \textit{Bottom:} The team timeline as an epistemic proxy, depicting each nursing student’s actions for a team during the simulation.

Figure 6.1: Research question, goal, contribution and validation methods addressed in Chapter 6.

Figure 6.2: Participation (#1) and Performance (#2) visualisations of a group working in a database design activity using the DBCollab tool (Echeverria, Martinez-Maldonado, Chiluiza, & Buckingham Shum, 2017).

Figure 6.3: Prototypes design of participation (#3) and performance (#4) visualisations with DS elements.

Figure 6.4: Ranking from each DS element for both, participation and performance visualisations.

Figure 6.5: \textit{Left:} Conventional data-driven visual analytic approach. \textit{Right:} Learning design driven data storytelling approach to support sensemaking.

Figure 6.6: Original exploratory visualizations generated by the DBCollab tool and fed back to a student team working collaboratively in a database design activity. \textit{Top:} participation of each team member. \textit{Bottom:} evolution of the team’s performance.

Figure 6.7: Explanatory visualisations after applying data storytelling principles and elements (A-F). \textit{Top:} Participation levels of three students. \textit{Bottom:} Evolution of the team’s performance.

Figure 6.8: Validation process from an authentic student collaborative activity (A) a series of visualisations (OVs) were shown to those students in a dashboard as formative feedback (B). These visualisations (VDSs) were enhanced based on data storytelling elements (C). Both types of visualisations were shown then to teachers to analyse their reactions (D).

Figure 6.9: Example heatmaps of gaze behaviour of exploratory (top) and an explanatory (bottom) visualisations from four different teachers.

Figure 6.10: Results of clustering the eye tracking data points of the three inspections episodes recorded for one OV about team’s participation (k=15). Circles correspond to the centroids of each cluster. Each is associated with the percentage of data points of the cluster (at the top of the centroid) and the id number of the cluster (at the bottom of the centroid).

Figure 6.11: Results of clustering the eye tracking data points of the three inspections episodes recorded for one VDS about team’s participation (k=15). Circles correspond to the centroids of each cluster. Each is associated with the number of data points of the cluster (at the top of the centroid) and the id number of the cluster (at the bottom of the centroid).
Figure 6.12: Example trajectories followed during the first 10 seconds of inspection of the OV on students' participation (top) and students' performance (bottom) by T2 and T3, respectively. 158

Figure 6.13: Other two examples trajectories followed during the first 10 seconds of inspection of an OV (top) and a VDS (bottom) by two teachers (T5 and T6, respectively) 159

Figure 6.14: Ranking of data storytelling elements to support storytelling in visualisations. 162

Figure 7.1: Research question, goal, contribution and validation methods of Chapter 7. 166

Figure 7.2: The EvisLA approach to integrating multimodal data/analytics with learning design-inspired storytelling visual elements, to generate layered visualisations. 168

Figure 7.3: Timeline of actions that served as the common reference (background) of the EvisLA prototype: a team of two nursing students working before and after the patient's loss of consciousness. 170

Figure 7.4: Layers Response time and mistakes for a team of two nurses showing DS elements to encode the different learning intentions of the simulation. 171

Figure 7.5: Layers mistakes and arousal for a team of two nurses showing DS elements to encode the different learning intentions of the simulation. 176

Figure 7.6: Layer that exposes the rule-based algorithm used to add enhancements (e.g. A- a prescriptive title and B- an annotation) to layer time responsiveness of the prototype. 179

Figure 7.7: Perceived usefulness of each multimodal layer. 182

Figure 8.1: Summary of the thesis research questions, goals and contributions (Chapters 4-7). 193
List of Tables

Table 2.1: Overview of studies analysing collocated groups using multimodal data in learning contexts

Table 2.2: Overview of studies on generating visual multimodal interfaces for collocated groups in learning contexts

Table 3.1: Tasks to be demonstrated by each Registered Nurse (RN)

Table 3.2: Learning objectives and expected tasks for this simulation scenario

Table 3.3: Overview of the methods followed to address the research questions and goals of this thesis.

Table 3.4: Summary of data collection contexts that will be used in further chapters

Table 5.1: Study design overview: participants demographics, methods, proxies and analysis

Table 6.1: Data storytelling (DS) principles with their corresponding DS elements.

Table 6.2: Data storytelling (DS) design elements considered for this study.

Table 6.3: Cases illustrating how to map intentions, rules and data storytelling elements.

Table 6.4: Min, max, average time spent and std. dev. for each inspection episode (n=24)

Table 6.5: Areas of interest (AOI) related with each visualization purpose.

Table 6.6: Percentage of occurrence of each AOI by visualization type from the six teachers.

Table 7.1: Data storytelling (DS) design elements considered for this study.

Table 7.2: Translating rules 1-4 into visual elements for the response time layer

Table 7.3: Translating rule 5 into visual elements for the response time layer

Table 7.4: Translating rules 6-12 into visual elements for the mistakes layer

Table 7.5: Translating rule 13 into visual elements for the arousal layer

Table 7.6: Demographics of the eight experts in nursing simulations
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA</td>
<td>Learning Analytics</td>
</tr>
<tr>
<td>MMLA</td>
<td>Multimodal Learning Analytics</td>
</tr>
<tr>
<td>HCI</td>
<td>Human Computer Interaction</td>
</tr>
<tr>
<td>HCD</td>
<td>Human-Centred Design</td>
</tr>
<tr>
<td>CSCL</td>
<td>Computer-Supported Collaborative Learning</td>
</tr>
<tr>
<td>CSCW</td>
<td>Computer-Supported Collaborative Work</td>
</tr>
<tr>
<td>DS</td>
<td>Data Storytelling</td>
</tr>
<tr>
<td>InfoVis</td>
<td>Information Visualisation</td>
</tr>
<tr>
<td>QE</td>
<td>Quantitative Ethnography</td>
</tr>
<tr>
<td>TUI</td>
<td>Tangible User Interfaces</td>
</tr>
<tr>
<td>DBR</td>
<td>Design Based Research</td>
</tr>
<tr>
<td>IPA</td>
<td>Interaction Process Analysis</td>
</tr>
<tr>
<td>ACAD</td>
<td>Activity-centred Analysis and Design</td>
</tr>
<tr>
<td>CPS</td>
<td>Collaborative problem solving</td>
</tr>
<tr>
<td>EDA</td>
<td>Electrodermal Activity</td>
</tr>
<tr>
<td>HCD-MMLA</td>
<td>Human-Centred Design Multimodal Learning Analytics</td>
</tr>
<tr>
<td>HoC</td>
<td>Higher order constructs</td>
</tr>
<tr>
<td>OV</td>
<td>Original visualisations</td>
</tr>
<tr>
<td>VDS</td>
<td>Visualisations with data storytelling elements</td>
</tr>
<tr>
<td>EvisLA</td>
<td>Explanatory Visual Learning Analytics</td>
</tr>
</tbody>
</table>
Abstract

The ability to communicate, be an effective team or group member and collaborate face-to-face are critical skills for employability in the 21st century workplace. Previous research suggests that learning to collaborate effectively requires practice, awareness of group dynamics and reflection upon past activities. However, although having a teacher closely supervising and providing detailed feedback to each group would be ideal, it may be unrealistic in practice. A promising way to approach this challenge could be to capture behavioural traces from group interactions in order to generate comprehensible and actionable feedback to support team reflection. In this sense, Multimodal Learning Analytics (MMLA) is a promising field, offering the potential to track learners’ activity across digital and collocated contexts, using emerging sensing and pervasive computing technologies. Most of the research in MMLA has been conducted in lab conditions, to help researchers validate learning theories or generate more comprehensive learner models. However, one of the most underexplored aspects of MMLA has been the generation of feedback to support teaching and learning, and moreover, in authentic locations and activities.

This thesis reports progress in tackling this challenge by designing and validating computer-based feedback, by means of visual representations and narrative, to support effective, guided reflection using multimodal learning analytics evidence. To achieve this, three contributions are presented. The first contribution is a human-centred design method to translate the informal outputs of co-design sessions with teachers and students, into more meaningful group work constructs with clear MMLA design requirements. The second contribution is a modelling approach to add meaning to low-level multimodal group data based on the characteristics of the context (domain expertise, theory, and the learning design). Finally, the third contribution is an approach for augmenting visual representations with data storytelling elements to facilitate the interpretation of group dynamics insights by educators and students. This thesis is developed in the context of two distinct, collocated group work settings, in the domains of collaborative database design and healthcare simulation. Using a Design-Based Research process, a set of explanatory interfaces (i.e. interfaces that communicate insights) was designed and validated with teachers and students. The thesis provides timely and necessary groundwork for researchers and practitioners to design visual representations capable of communicating actionable insights, using multimodal data in complex and authentic collaboration scenarios.