

A Large-Scale Software-Defined

Internet of Things Platform for

Provisioning IoT Services on Demand

A thesis submitted in fulfillment of the requirements for

the degree of Doctor of Philosophy

in the Faculty of Engineering and Information Technology

at the University of Technology Sydney

by

Thi Minh Chau Nguyen

Supervised by

Professor Doan B. Hoang

2020

i

Certificate of Original Authorship

I, Thi Minh Chau Nguyen, declare that this thesis is submitted in fulfillment of the

requirements for the award of the degree of Doctor of Philosophy in the Faculty of

Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In

addition, I certify that all information sources and literature used are indicated in this

thesis.

This document has not been submitted for qualifications at any other academic

institution.

This research is supported by the Australian Government Research Training Program.

Signature: Thi Minh Chau Nguyen

Date: 15/04/2020

Production Note:
Signature removed
prior to publication.

ii

Dedication

To my parents, aunty, and siblings

To my primary supervisor

Thank for your great support

iii

Acknowledgment

During my doctoral candidature, I have received a myriad of lessons, support, and

encouragement. First of all, I would like to express my sincere gratitude to my primary

supervisor, Professor Doan B. Hoang, for his precious lessons and patient guidance. He

has taught me significantly valuable lessons that cannot be found from books or any

document. I have learned not only research and academic skills but also problem-solving

skills from him. Starting from zero research background, I have gradually become an

independent researcher. His understanding, enthusiasm, advice, and supervision have

pushed me farther than I thought I could go. Without his critical comments, insightful

feedback, encouragement, and motivation, none of my work would have been possible

and successful, and I would still be in the marsh of the academic career.

I wish to acknowledge the support of my co-supervisor, Dr. Zenon Chaczko. I am

thankful for SEDE staff always helping me with admin procedures.

I would extend my thanks to the Mekong 1000 project and CTU-UTS (Can Tho

University – University of Technology Sydney) scholarship that has offered me an

opportunity to pursue the Ph.D. course.

I will never forget the encouragement and assistance from my colleagues and friends,

including Tham Nguyen, Sara Farahmandian, Ngoc Le, Vinh Ha, Dat Dang, Thai

Nguyen, Cheng te Wang, Nhut Huynh, Firas AI Dughman, Jan Szymanski, Ashish

Nanda, and Deepak Puthal.

Finally, I wish to show my appreciation to my parents, aunty, and siblings, who are

always by my side to encourage me and keep me going.

Without all of you, this research would not have been possible.

Sydney, 2020.

iv

The Author’s Publications

International Conference Publications and Proceedings:

1. Nguyen, T.M.C., D.B. Hoang, and Z. Chaczko. “Can SDN Technology Be

Transported to Software-Defined WSN/IoT?” in 2016 IEEE International

Conference on Internet of Things (iThings) and IEEE Green Computing and

Communications (GreenCom) and IEEE Cyber, Physical and Social Computing

(CPSCom) and IEEE Smart Data (SmartData). 2016.

2. Nguyen, T.M.C., D.B. Hoang, and T.D. Dang. “Toward a programmable software-

defined IoT architecture for sensor service provision on demand.” in 2017 27th

International Telecommunication Networks and Applications Conference (ITNAC).

2017.

3. Nguyen, T.M.C., D.B. Hoang, and T.D. Dang. “A software-defined model for IoT

clusters: Enabling applications on demand.” in 2018 International Conference on

Information Networking (ICOIN). 2018.

4. Nguyen, T.M.C., and D.B. Hoang. “S-MANAGE Protocol for Software-Defined

IoT.” in 2018 28th International Telecommunication Networks and Applications

Conference (ITNAC). 2018.

5. Nguyen, T.M.C., and D.B. Hoang. “Software-Defined Virtual Sensors for

Provisioning Services on Demand.” in 2020 International Conference on

Information Technology and Internet of Things (ITIOT) (accepted for publication).

Journal papers:

6. Nguyen, C. and D. Hoang, “S-MANAGE Protocol for Provisioning IoT

Applications on Demand.” Journal of Telecommunications and the Digital

Economy, 2019. 7(3): p. 37-57.

7. Nguyen, C. and D. Hoang, “Large-scale Software-Defined Internet of Things

Platform for Provisioning IoT Services on Demand,” submitted to International

Journal of Smart Sensor Technologies and Applications (IJSSTA). (Under 2nd round

review) (2020)

v

Table of Contents

Certificate of Original Authorship... i

Dedication .. ii

Acknowledgment ... iii

The Author’s Publications .. iv

List of Figures .. ix

List of Tables ... xii

List of Abbreviations and Acronyms .. xii

Abstract ... xv

Chapter 1 Introduction .. 1

1.1 Introduction ... 1

1.2 Brief Background .. 5

1.3 Research Questions ... 7

1.4 Research Aim and Objectives ... 10

1.5 Research Contributions and Significance ... 10

1.6 Research Methodology.. 12

1.7 Thesis Structure ... 13

Chapter 2 Background and Related Work .. 17

2.1 Introduction ... 17

2.2 IoT System .. 18

2.2.1 IoT Evolution Stages ... 18

2.2.2 Things, Services, and Resources in IoT .. 22

2.2.3 IoT System – Key Components ... 25

2.2.4 IoT Architecture .. 28

2.2.5 Requirements for an IoT System ... 32

2.3 IoT Deployment Models and Scenarios .. 34

2.3.1 IoT Deployment Models .. 34

2.3.2 Real IoT Scenarios .. 35

2.3.3 IoT Application Development - Challenges .. 36

vi

2.4 Software-Defined Networking (SDN) Technique 38

2.4.1 SDN Architecture .. 39

2.4.2 SDN Paradigm’s Implications to WSN/IoT .. 44

2.4.3 Challenges of Application of SDN to WSN/IoT ... 46

2.5 Network Function Virtualization (NFV) Technique 48

2.6 Solutions to a Programmable IoT Device ... 50

2.7 SDN-NFV-based Solutions to a Programmable IoT System 52

2.8 SDN-NFV-Based Solutions to a Large-Scale IoT System 54

2.9 Open-Sources for Developing LSSD-IoT Platform 55

2.10 Summary ... 56

Chapter 3Large-Scale Software-Defined Internet of Things (LSSD-IoT)

Model .. 57

3.1 Introduction ... 57

3.2 Why Large-Scale and Programmable Services on Demand? 58

3.3 LSSD-IoT Model .. 60

3.3.1 Software-Defined Cluster Layer .. 64

3.3.2 Software-Defined Device Layer .. 65

3.4 LSSD-IoT Features ... 67

3.5 Practical Realization of the Proposed LSSD-IoT Model 69

3.6 Thesis Roadmap .. 70

3.7 Summary ... 71

Chapter 4 Software-Defined Virtual Sensor (SDVS) ... 72

4.1 Introduction ... 72

4.2 Proposed SDVS ... 74

4.3 SDVS – Representation Types .. 77

4.4 SDVS Features .. 79

4.5 SDVS Architecture and Software Implementation 81

4.5.1 SDVS Architecture .. 81

4.5.2 Software Implementation .. 83

4.6 Use Case Scenario and Practical Implementation 91

4.7 Performance Evaluation .. 92

4.7.1 SDVS – Feasibility and Programmability ... 92

vii

4.7.2 SDVS – Efficiency .. 95

4.8 Summary ... 97

Chapter 5 S-MANAGE Protocol .. 98

5.1 Introduction ... 98

5.2 S-MANAGE in Relation to SD-IoT Model .. 99

5.3 S-MANAGE Protocol ... 102

5.3.1 S-MANAGE Header ... 104

5.3.2 S-MANAGE Message types .. 105

5.3.3 Forwarding Table Specifications ... 108

5.3.4 Configuring Table Specifications .. 110

5.4 Software Implementation .. 111

5.5 Implementation and Performance Evaluation ... 115

5.5.1 Implementation Set up ... 115

5.5.2 Performance Evaluation .. 116

5.6 Summary ... 120

Chapter 6 Software-Defined Internet of Things (SD-IoT) Model 121

6.1 Introduction ... 121

6.2 SD-IoT Model ... 123

6.2.1 Software-Defined Virtual Sensor (SDVS) .. 124

6.2.2 S-MANAGE Protocol ... 124

6.3 SD-IoTD Controller .. 125

6.3.1 SD-IoTD Controller – Functional Components .. 125

6.3.2 SD-IoTD Controller – Operational Mechanism .. 126

6.4 SD-IoTD Controller - Software Implementation 129

6.5 SD-IoT Model – Software Implementation .. 131

6.5.1 Use Case Scenario ... 131

6.5.2 Implementation Scenario ... 132

6.5.3 Implementation Set up ... 133

6.6 Performance Evaluation .. 134

6.7 Summary ... 142

Chapter 7 Software-Defined Cluster Layer and LSSD-IoT Platform 143

 Introduction ... 143

viii

 SD Cluster Layer ... 144

7.2.1 SD-IoTC Controller ... 145

7.2.2 SD-IoT Clusters and Communication with the SD-IoTC Controller 148

LSSD-IoT Platform – Procedure of the Provision of IoT Services on

Demand ... 149

 LSSD-IoT Platform – Use cases ... 151

 LSSD-IoT Platform Implementation... 157

7.5.1 Implemented Platform ... 157

7.5.3 Implementation Scenario ... 160

7.5.3 Implementation Set up ... 161

7.5.4 SD-IoTC Controller – Software Implementation 163

 Performance Evaluation .. 170

7.6.1 Implementation Platform Capability ... 170

7.6.2 Platform Performance .. 180

 Summary ... 185

Chapter 8 Conclusion and Future Work ... 187

8.1 Research Remarks ... 187

8.2 Future Work .. 191

Appendices .. 193

Bibliography .. 202

ix

List of Figures

Figure 1.1 Research phases ... 12
Figure 1.2 Research Methodology .. 13
Figure 1.3 Thesis Organization ... 14
Figure 2.1 IoT Evolution .. 19
Figure 2.2 Relationship between IoT applications, services, and resources [36] 25
Figure 2.3 IoT building blocks and technologies ... 25
Figure 2.4 IoT service types ... 27
Figure 2.5 IoT architecture ... 29
Figure 2.6 IoT reference model [32] ... 31
Figure 2.7 Mapping of IoT requirements for enabling technologies ... 33
Figure 2.8 Real IoT Scenarios ... 35
Figure 2.9 SDN architecture .. 39
Figure 2.10 Three main components of an SDN switch and OpenFlow switch 41
Figure 2.11 NFV architecture ... 49
Figure 2.12 Mapping SDN components for NFV architecture ... 50
Figure 3.1 LSSD-IoT architecture .. 63
Figure 3.2 SD Cluster layer architecture ... 64
Figure 3.3 SD Device layer architecture ... 65
Figure 4.1 SDVS in relation to LSSD-IoT model ... 73
Figure 4.2 SDVS' s representation types .. 79
Figure 4.3 Sensor node architecture ... 82
Figure 4.4 SDVS architecture ... 83
Figure 4.5 SDVS in software ... 84
Figure 4.6 Class diagram of the SDVS ... 85
Figure 4.7 SDVS’s java class ... 86
Figure 4.8 Basic parameters defining an SDVS and its represented entity ... 87
Figure 4.9 Abstract methods defining fundamental functions of an SDVS and its represented entity

 .. 90
Figure 4.10 Implementation prototype ... 92
Figure 4.11 SDVS’s programmable features ... 93
Figure 4.12 Sensor tag’s log file .. 94
Figure 4.13 Configuration status of SDVS21 ... 95
Figure 4.14 SDVS’s average response time for one request per multiple requests 96
Figure 5.1 S-MANAGE protocol in relation to the LSSD-IoT model .. 99
Figure 5.2 SD-IoT model ... 100

x

Figure 5.3 Sequence diagram for Forwarding Statistics achievement .. 104
Figure 5.4 S-MANAGE header ... 104
Figure 5.5 S-MANAGE message types ... 106
Figure 5.6 Forwarding table structure ... 108
Figure 5.7 Configuring table structure ... 110
Figure 5.8 Class diagram of the configuring table .. 112
Figure 5.9 Details of a configuring entry .. 113
Figure 5.10 Class diagram of the forwarding table ... 114
Figure 5.11 Class diagram of S-MANAGE packets .. 115
Figure 5.12 Implementation prototype ... 116
Figure 5.13 Forwarding table status before configuration ... 117
Figure 5.14 Forwarding table status after configuration .. 118
Figure 5.15 Configuring table status before configuration ... 118
Figure 5.16 Configuring table status after configuration ... 119
Figure 5.17 Sensor service status before configuration ... 119
Figure 5.18 Sensor service status after configuration ... 119
Figure 6.1 SD-IoT model in relation to the LSSD-IoT model ... 122
Figure 6.2 SD-IoT model ... 123
Figure 6.3 SD-IoTD controller structure.. 125
Figure 6.4 Class diagram of SD-IoTD controller .. 130
Figure 6.5 Use case scenario .. 132
Figure 6.6 Implementation prototype ... 133
Figure 6.7 Status of the SDVS before its configuration .. 135
Figure 6.8 Status of the SDVS after its configuration ... 136
Figure 6.9 Dynamic response from the controller’s resource orchestrator to an IoT request 137
Figure 6.10 Handling multiple application requests and solving conflicts among them 139
Figure 6.11 Status of ongoing application requests and corresponding results 140
Figure 6.12 SD-IoTD Controller – Processing time for one per multiple simultaneous requests

ranging between 10-90 .. 141
Figure 6.13 Number of exchanged control and data messages between SD-IoTD controller and

SDVSs .. 142
Figure 7.1 SD cluster layer in relation to LSSD-IoT model .. 144
Figure 7.2 SD-IoTC controller architecture .. 145
Figure 7.3 Overall procedure of provisioning IoT services on demand via LSSD-IoT platform 150
Figure 7.4 Workflow of the SD-IoTC Controller .. 151
Figure 7.5 Workflow of the SD-IoTD Controller .. 151
Figure 7.6 Monitoring air pollution use case ... 153
Figure 7.7 IoT service provision scenario number 1 ... 153
Figure 7.8 Smart traffic control use case.. 154

xi

Figure 7.9 IoT service provision scenario number 2 ... 155
Figure 7.10 IoT service provision scenario number 3 ... 156
Figure 7.11 Detailed implementation of LSSD-IoT architecture ... 159
Figure 7.12 LSSD-IoT Model - Implementation scenario ... 161
Figure 7.13 Detailed implementation of the LSSD-IoT platform ... 162
Figure 7.14 Class diagram of the SD-IoTC controller .. 164
Figure 7.15 RequestAnalyser class.. 165
Figure 7.16 SdiotModule class ... 167
Figure 7.17 Class diagram for REST-API ... 168
Figure 7.18 Table 1 - Connections to SD-IoT clusters ... 169
Figure 7.19 Table 2 – Available IoT services ... 169
Figure 7.20 Table 3 – SD-IoTC clusters’ capability .. 170
Figure 7.21 Level of programmability and orchestration of the LSSD-IoT platform 172
Figure 7.22 Control and management panel at the SD cluster and device level 173
Figure 7.23 Overview of the control and management at the cluster level 174
Figure 7.24 Overview of the control and management at the device level .. 174
Figure 7.25 Available SD-IoT resources ... 175
Figure 7.26 IoT Requests Status ... 176
Figure 7.27 IoT Application Announcements .. 176
Figure 7.28 SD-IoTC Controller – Resource Orchestration ... 177
Figure 7.29 SD-IoTD Controller – Resources Orchestration ... 178
Figure 7.30 SD-IoTD Controller – Device Configuration ... 180
Figure 7.31 Timing diagram .. 181
Figure 7.32 View of resource orchestration at the cluster level ... 182
Figure 7.33 Orchestration time with and without optimization ... 183
Figure 7.34 SD-IoTC Controller – Response Time ... 184
Figure 7.35 Orchestration and Response Time for optimization case with various input requests 185

xii

List of Tables

Table 2.1 Requirements for an IoT system .. 32
Table 2.2 Differences between proposals to network architecture [45] ... 37
Table 7.1 Summary of IoT application requests and corresponding IoT services provided by IoT

clusters (Ri represents a request from an IoT use case) .. 157

List of Abbreviations and Acronyms

AODV Ad hoc On-Demand Distance Vector

API Application Programming Interface

CASAGRAS
Coordination and Support Action for Global RFID-Related

Activities and Standardization

CERP-IoT Cluster of European Research Projects-IoT

CoT Chain of Things

DEEC Distributed Energy-Efficient Clustering

EM Element Management

EPC Electronic Product Code

FPGA Field-Programmable Gate Array

ICN Information-Centric Networking

IEEE Institute of Electrical and Electronics Engineers

IERC IoT European Research Cluster

IETF Internet Engineering Task Force

IoT Internet of Things

IP Internet Protocol

IPSO Internet Protocol for Smart Objects

IPv4 Internet Protocol version 4

xiii

IPv6 Internet Protocol version 6

ITS Intelligent Transport Systems

ITU International Telegraph Union

ITU-T ITU Telecommunication Standardization Sector

ITU-TY. ITU-T for machine learning

LEACH Low-energy adaptive clustering hierarchy

LLDP Link Layer Discovery Protocol

M2M Machine to machine

MAC Media Access Control

MANO Management and Orchestration

MIT Massachusetts Institute of Technology

NBI Northbound Interface

NFC Near-Field Communication

NFV Network Function Virtualization

NFVI NFV Infrastructure

NOS Network Operating System

OS Operating System

OvS OpenvSwitch

REST/

RESTful
Representational State Transfer

RFID Radio Frequency Identification

SBI Southbound Interface

SD Software-Defined

SD-IoT Software-Defined Internet of Things

SD-IoTC Software-Defined Internet of Things Cluster

SD-IoTD Software-Defined Internet of Things Device

SDN Software-Defined Networking

SDN-NFV
Software-Defined Networking and Network Function

Virtualization

SDVS Software-Defined Virtual Sensor

SDWSN Software-Defined Wireless Sensor Network

xiv

SDWSN-RL SDWSN-Reinforcement Learning

SIoT Social Internet of Things

SOA Service-Oriented Architecture

SOC System on Chip

TCP Transmission Control Protocol

TWh terawatt-hours

UDP User Datagram Protocol

uIP/uIPv6 Micro Internet Protocol/Micro Internet Protocol version 6

UWB Ultra-Wide Band

VNF Virtual Network Function

VNF Virtual Network Function

VNFM Virtual Network Function Manager

WSN Wireless Sensor Network

WSN/IoT Wireless Sensor Network or Internet of Things

xv

Abstract

Internet of Things (IoT) has developed into an interconnected platform infrastructure

for providing essential services ranging from personal health care, smart homes and cities

to the manufacturing industry. Relying on such an infrastructure, a multitude of emerging

IoT services will no doubt be developed for not only local regions but also multiple

separated regions spreading over a wide geographical area. However, existing IoT

systems are mostly rigid and cannot be easily adapted or programmed to accommodate

new services. The challenge is also in orchestrating a large number of sensors/IoT

devices, many with limited capability, into intelligent, useful, and on-demand services.

Many efforts have been made to address the issue, but very little has been attempted to

consider an overall solution to a programmable IoT ecosystem that includes IoT service

provision components, IoT devices, and transporting infrastructure. Moreover, there is no

framework/platform that allows an end-to-end control, management, and orchestration of

IoT resources in accordance with IoT demands.

We apply the benefits of the two promising technologies including software-defined

networking and network function virtualization in provisioning IoT services on demand

over a wide region, and overcome challenges in applying the technologies to constrained

IoT devices/systems. We propose a large-scale software-defined IoT (LSSD-IoT) model

and develop the LSSD-IoT platform. The model provides two levels of management and

orchestration at the cluster and device level. At the cluster level, we develop a software-

defined Internet of Things Cluster (SD-IoTC) controller that is capable of controlling and

managing both IoT clusters and network infrastructure that accommodates the IoT

systems. At the device level, each IoT cluster under the control and management of the

SD-IoTC controller needs to be programmable and manageable for provisioning IoT

services on demand. For that purpose, we propose a software-defined Internet of Things

(SD-IoT) model (local platform) with three novel components, including the IoT device-

constrained controller, the S-MANAGE protocol, and the software-defined virtual sensor.

The novelty of this research lies in the novel approach to programmable and re-usable

devices in the provision of IoT services on demand over a wide area. It enables i) IoT

service providers to control end-to-end quality of services of IoT services provision over

xvi

a large-scale IoT environment; ii) owners of IoT systems to be able to gain benefits from

sharing their IoT resources; iii) IoT application developers to develop innovative and

comprehensive IoT applications on demand with more options regarding QoS, security,

mobility, or billing.

1

Chapter 1 Introduction

1.1 Introduction

The “Internet” has changed our world and brought with it many technical, economic,

and social benefits by connecting people. It is expected that the “Internet of Things” will

create enormous value by interconnecting people and everyday things. In fact, IoT has

already enabled many emerging applications and services critical to our life in various

domains, from personal healthcare to smart cities, critical infrastructures, and supply

chain logistics. It is projected that there will be a double growth in the combined market

of the IoT from $235 billion spent in 2017 to $520 billion in 2021 [1]. However, this

enormous potentiality is limited by existing IoT systems/platforms, which are mainly

closed ecosystems that are vertically developed and deployed in their own IoT

infrastructure and have incompatible standards, formats, semantics, and proprietary

protocol and interfaces [2]. As a consequence, a number of major issues have been

identified with the current generation of IoT systems/platforms:

The astronomical number of devices and their connectivity-service infrastructure. As

projected, there would be about 41.6 billion IoT devices in 2025 [3]. The challenge here

is how to manage the complexity of the interconnecting infrastructure of these devices

and effectively serve both local communities and global communities distributed over a

very large geographical area.

The massive number of IoT services and their provisioning framework. IoT devices

are capable of interacting with their environment, performing their designated functions

as well as collaborating with other IoT devices. Many services have already emerged to

take advantage of these capabilities. The challenge is to automate the provisioning of

these services whenever they are needed.

2

The vast amount of resources and their resource sharing. Collectively, through

interconnectivity, IoT systems/platforms present a massive amount of resources and

services to be shared among them. The challenge is in the developing of algorithms and

supporting infrastructure for efficient use of the resources through sharing and reusing.

Most current IoT systems are not designed for sharing their resources among multiple

applications. To support a specific application, a dedicated IoT infrastructure is designed

with application-specific requirements for communication and computing capability,

deploying many IoT devices or sensor nodes, and gateways. A number of application-

specific IoT architectures were studied in [4]. It was found that to adapt an existing IoT

application to a new one would demand a very complex effort in re-designing or re-

configuring the underlying infrastructure as well as the network architecture. It becomes

impractical to manually reconfigure individual devices that are equipped with fixed

control logic. It also results in inefficient utilization of resources since it is difficult to

dynamically optimize data acquisition, transmission, and processing. In addition, the

deployment is more complex, and the maintenance cost is much higher due to a vast

number of devices being deployed without sharing resources among applications.

Furthermore, it takes much time to design and deploy an IoT infrastructure for developing

a new IoT application.

The explosive development of IoT systems exposes a serious concern over the

efficiency of the utilization of IoT resources and facilities for supporting the development

of IoT applications. The increase in the number of IoT devices and collected data volume

results in high demand for data centers that support IoT systems in processing the

collected data in provisioning better IoT applications. A huge amount of money is being

spent on the deployment of data centers, while only about 10% of the generated data are

used by IoT applications. Besides being costly, data centers cause environmental impacts.

In 2017, they consumed about 200 terawatt-hours (TWh), which is higher than the energy

consumption of some nations [5]. To enable efficient utilization of IoT resources, the

resources have to be shared among services, and the services have to be shared among

themselves to serve their own cluster locally as well as other interconnected clusters

regionally, nationally, and even globally. However, a large-scale IoT network cannot be

3

efficiently controlled and managed to provide resources on demand over multi-domain

networks (e.g., Software-Defined Networking (SDN), cloud, edge, and IoT domains.)

Many approaches have been proposed to address the challenge of the provision of IoT

services based on the integration of various IoT systems over a large-scale IoT

infrastructure. The problem is examined on different aspects such as interoperability of

IoT platforms, programmability of IoT devices and IoT networks, emerging web of

things, platform as a service, or sensing as a service. Other efforts have been put into the

adoption of the cloud and IoT for sharing IoT services in developing new IoT services

and applications [6]. As defined by NIST [7], the cloud computing model has five

remarkable characteristics, including measured service, rapid expansion or elasticity,

resource pooling, broad network access, and on-demand self-service. These features can

benefit the provision of IoT services on demand by reusing IoT resources connected to

the cloud-based IoT infrastructure. On-demand IoT services bring benefits to things

owners, computing, or network providers, the technical perspective, users as well as the

entire IoT community [8].

A key enabler in the provision of IoT services on demand is the capability of

deployment, management, and reconfiguration of an end-to-end process of achievement

of IoT services in accordance with IoT requests. The process requires not only the

programmability at IoT devices level but also the routing of data and IoT services at the

transport network level for delivery and management of services to IoT applications or to

the end-users which may be located in a Cloud or a remote location. Another requirement

is the need for management of big data across the network as well as data gathered at the

collection points, management of a huge number of IoT devices over a large-scale IoT

infrastructure, and scalability management of local IoT systems. This becomes

challenging, owing to the lack of a commonly agreed mechanism for the implementation

of real collaborative IoT applications [9]. An additional challenge is the absence of

efficient schemes for provisioning IoT sensing information on demand in a decentralized

manner with consideration of dynamic changes of the physical world [10].

Software-Defined Networking and Network Function Virtualization (SDN-NFV)

technologies have emerged as promising candidates for the programmability of the core

network with central control and management of networking devices. The SDN paradigm

4

enables the SDN controller to have a global view of a network and to be able to program

networking devices centrally. However, it is impractical to directly interact with millions

of sensor nodes or IoT devices over the wide area ranging from wired to wireless domain.

Therefore, the hierarchical architecture of network management can be seen as a potential

solution to reduce the communication messages between the control plane and the data

plane. A local IoT system can be centrally managed and controlled by a software

controller. With the overall proposed software-defined architecture, the SDN controller

can centrally manage and control many SDN domains (multiple IoT clusters), and the

Software-Defined IoT local controller can manage its own individual IoT cluster when

necessary resources are required by end-to-end IoT applications. This architecture thus

allows resource management and orchestration of not only a local IoT system but also a

large-scale network, including SDN and IoT environments.

This research addresses these challenges by proposing a large-scale software-defined

Internet of Thing (LSSD-IoT) model for provisioning IoT services on demand. The model

will include a hierarchical architecture with three layers: the top layer is the application

layer which houses end-users’ applications and interacts with the cluster layer to request

end-to-end services, the cluster layer is for providing services that are distributed over

multiple clusters covering a wide geographical area, and the device layer is for housing

programmable platforms that serve local clusters. To the best of our knowledge, there is

a lack of a mechanism for auto-orchestration of IoT services on demand over a large-scale

IoT system using SDN and NFV techniques.

In order to realize such an IoT model, we address a number of challenging issues. We

develop a new protocol for adapting and enhancing a Software-Defined Networking

paradigm to IoT networks due to the different nature of network devices and IoT devices.

We enrich the capability of IoT devices with function and interface virtualization for

orchestrating and programming services. We develop algorithms and mechanisms for

service orchestration and resource sharing.

The contribution of this research is the proposed large-scale software-defined IoT

framework, the architecture for connectivity, the mechanisms for provisioning services

on demand, and protocols and algorithms for orchestrating and sharing resources and

services among IT clusters for deploying IoT applications on demand. The architecture

5

allows the local SD-IoT systems to be easily integrated into a large-scale IoT

infrastructure but still preserve the simplicity and economy of sensors or IoT devices.

More importantly, the benefits of software-defined centralized control, virtualization,

programmability, and autonomous management and configuration are gained through the

merging of the wired SDN network domain and the wireless IoT domains.

The significance of this research is its new vision for an efficient resource

orchestration by globally connecting local IoT domains over a wired domain managed by

SDN technology. The proposed architecture can be applicable for local management of

wireless sensor networking (WSN) models such as smart home, smart agriculture, and

other domains with the desire for global interoperation for large-scale resource

management. In addition, it can enable i) developers to develop innovative IoT

applications by leveraging IoT services from multiple IoT platforms; ii) IoT infrastructure

owners to gain more interest by sharing their resources; iii) provision of more QoS options

for end-users.

This chapter is organized as follows. Section 1.2 provides a brief explanation of

terminologies in this thesis title. Section 1.3 indicates the research problems addressed by

this dissertation. Section 1.4 states the research aim and objectives. Section 1.5

summarizes the key contributions of this research. Section 1.6 describes the research

model and methodology. Section 1.7 presents the structure of this thesis.

1.2 Brief Background

An IoT application mainly demands IoT services from sensors or IoT devices that

collect data about the surrounding environment or allow people to control the

environment. These devices can be a single body sensor, pieces of smart equipment within

a house, a group of sensor nodes over an area like a building, a factory, a garden, a town,

or a big city. Due to differences in characteristics of each device as well as the scope of

an IoT system that manages the devices, sharing the resources between multiple IoT

applications becomes challenging and possibly impractical. To allow numerous IoT

devices that are distributed over a large area to share their resources among multiple IoT

applications, we need a model that enables the interoperation of separated IoT systems in

the provision of IoT services on demand. Moreover, each IoT system needs to be scalable

6

by itself, so it can easily participate in a large-scale IoT system to share its resources with

other applications. The primary focus of this research is to provide a software-based

platform that enables an efficient provision of IoT services on demand by orchestrating

geographically-distributed IoT systems. This section provides a brief background of the

provision of IoT services on demand, software-defined Internet of Things (SD-IoT)

platform, and a large-scale SD-IoT platform.

 Provision of IoT services on demand

IoT services are various in different contexts. IoT services can be defined as follows:

“An IoT-service is a transaction between two parties, the service provider and the service

consumer. It causes a prescribed function enabling the interaction with the physical world

by measuring the state of entities or by initiating actions that will cause a change to the

entities” [11]. The IoT services are classified based on the relationship with the entity or

the service life cycle. The first approach classifies the services into four types, including

low-level service, resource service, entity-service, and integrated service. The second one

groups services into 3 categories such as deployable, deployed, and operational.

Differently, the services can be i) sensors/IoT devices-associated capabilities such as

sensing, processing, storing, actuating, communicating, or connecting; ii) specific

requirements for the capabilities. For instance, big data collected from a vast number of

IoT devices are defined as big IoT services [12]. In addition, the services can be classified

in accordance with the characteristics of service layers [13]. According to the approach,

IoT services represent characteristics of each layer in an IoT architecture, for example,

sensing data, processed or analyzed data, data related to decision-making, or how services

are executed. The prime purpose of IoT applications is to collect meaningful information

from the environment in order to take appropriate actions on IoT devices via which we

control and manage the surrounding environment. In the proposed platform, IoT services

are considered as sensor/IoT devices-associated services such as sensing readings,

actuating functions, communicating/computing/networking capabilities, or identification.

The services are expected to be provisioned “on demand,” which requires an automatic

response as much as possible to any IoT request.

7

 Software-Defined Internet of Things (SD-IoT) platform

Software-defined Internet of Things (SD-IoT) platform allows the control,

management, provision of IoT services on demand mainly based on the software installed

on physical resources as well as resources that are virtualized from the underlying

infrastructure such as computing, storage, and networking. The mechanism enables the

programmability of networking devices as well as IoT devices using a software entity

called the controller. The software controller musters available networking devices and

any entities connected to these devices.

 Large-scale SD-IoT platform

Each SD-IoT system includes IoT devices and a smart management system to control

and manage the IoT devices as well as provide IoT services to IoT applications. Each IoT

system can be i) directly connected to the cloud, or ii) connected to the cloud via an

edge/fog computing system in order to offload computing tasks. A large-scale SD-IoT

system is composed of multiple geographically distributed SD-IoT systems connected to

the cloud via a core SDN domain. The local SD-IoT systems can be orchestrated to

provide IoT services for various IoT demands.

To provision the IoT services to an IoT request over a large-scale IoT domain, the

large-scale SD-IoT platform needs to have i) knowledge of requirements of the IoT

demand, ii) capability to configure IoT devices to achieve the required services, and iii)

ability to program networking infrastructure to deliver results from end IoT devices to

IoT users. The provision of IoT services on demand is a capability of instant orchestration

of available IoT resources in response to IoT requests. As defined by 5GPP, orchestration

presents the automated arrangement, coordination, and management of a complex system,

middleware, and services [14].

1.3 Research Questions

IoT can be defined as the “interconnection of sensing and actuating devices providing

the ability to share information across platforms through a unified framework, developing

a common operating picture for enabling innovative applications.” [15] “How can IoT

services on a large scale be customized to the dynamic needs of every user, while

8

maintaining overall system efficiency and low cost.” [16] However, service-oriented

architectures (SOA) still have issues with handling a huge number of IoT devices within

an IoT system that exposes unscalable capability [4]. We identified two significant

challenges. Firstly, each IoT device and each IoT system need to be programmable,

scalable, and manageable for being orchestrated by a large-scale IoT ecosystem.

Secondly, it is necessary to control, manage, and orchestrate geo-distributed IoT systems

over a wide core network to provision IoT services on demand.

Regarding the first challenge, an IoT system needs to enable the programmability of

not only IoT devices but also the network of the IoT devices. In addition, it is essential to

be managed by a central entity that allows the IoT system to be scalable to a large-scale

IoT system.

As for the second challenge, it becomes necessary to i) manage and control IoT

systems as well as the core network connected to the IoT systems, ii) provision the

managed IoT sources to IoT applications, and iii) orchestrate the resources in response to

IoT requests.

To sum up, the research question addressed in this dissertation can be stated as

follows.

“Can the SDN-NFV paradigm be leveraged for orchestration of geo-distributed

resources on resource-constrained IoT devices in provisioning IoT services on

demand, and can the proposed model be realized in a practical implementation?”

To address the issue, we investigate the following research questions.

 Can SDN-NFV technologies be ported to the IoT domain but still keep

their advantages in the programmability and central management of IoT

resources?

IoT devices as well as IoT systems are limited in communication, computation,

power, and storage, whereas SDN-NFV techniques are only applied for powerful devices

such as switches, routers or data centers that can handle a massive volume of control

messages as well as computation tasks set up by the controller. It is challenging to fully

apply the SDN-NFV technologies for constrained IoT devices/networks.

9

 How can we leverage SDN-NFV techniques in controlling, managing, and

sharing IoT resources among multiple IoT applications over limited IoT

resources?

It is impossible to fully apply SDN-NFV principles to a constrained IoT system. This

thesis aims to respond to this question by investigating virtualization technology for

enriching the capability of IoT devices and the Software-Defined Networking protocols

for configuring and programming devices.

 How can we automate the resources sharing and orchestration in the

provisioning of IoT services on demand over a large-scale IoT ecosystem?

Currently, IoT systems are application-specific. To enable them to share and

orchestrate their resources in the provision of IoT services on demand for a number of

IoT applications, they need to be scalable and programmable. In addition, we need a large-

scale model that enables the local IoT systems to join in or leave the model easily. We

address this question by investigating local and large-scale IoT systems, algorithms, and

mechanisms for orchestrating, sharing, and managing services on demand.

 How can the proposed models, protocol, and virtual sensors be validated

and evaluated in a real deployment?

The proposed model needs to be validated and evaluated in practice. There is currently

no standard simulator, emulator, or SDN-NFV-based tools that enable the implementation

of SDN-NFV-based approaches to wireless sensor networks or Internet of Things

(WSN/IoT) systems. Moreover, there are a few works attempting to implement their

proposed solutions, but they fail to provide a complete implementation. To validate the

proposed framework, we need to design and develop a software architecture of all

components in the proposed model and set up an environment that enables the deployment

of not only the SDN domain but also the proposed SD-IoT model. Then, we implement

all software components for validation and running test cases regarding demands from

IoT applications to evaluate the model’s performance.

10

1.4 Research Aim and Objectives

This research aims to provide a solution to applying the SDN-NFV paradigm for

timely and economically provisioning and sharing IoT services on demand by efficiently

re-using geographically distributed IoT resources. In particular, the proposed architecture

facilitates an efficient and autonomous orchestration of WSN/IoT infrastructure to meet

the requirements of IoT applications.

To reach the aims, we define the following objectives and investigate feasible

solutions for their achievement.

 Exploring issues and solutions associated with provisioning IoT services on

demand over geographically-distributed IoT systems.

 Designing a programmable IoT system that can be seamlessly integrated into a

large-scale IoT infrastructure to provide IoT services to multiple IoT

applications.

 Proposing a programmable entity that represents an IoT device to enable the IoT

device to be programmable and shared between multiple IoT applications.

 Proposing a control and management protocol that enables representations of

IoT devices to be controlled and managed by a central controller.

 Proposing a programmable IoT framework that allows the control, management,

and orchestration of geo-distributed IoT systems to provide IoT services on

demand to multiple IoT applications.

 Evaluating the feasibility and efficiency of the proposed large-scale IoT

framework.

1.5 Research Contributions and Significance

This study focuses on the management and programmability of a large-scale IoT

ecosystem in the provision of IoT services on demand. Expected outcomes in relation to

the above objectives are as follows:

11

1. A proposed large-scale software-defined IoT framework for orchestrating

geographically distributed IoT systems in the provision of IoT services on demand

[17]. It enables local IoT systems to join a large-scale IoT system to share their

IoT resources for the provision of IoT services to various IoT applications. The

novelty of this approach is that it is a paradigm for managing, controlling, and

programming not only IoT systems connected to the large-scale infrastructure but

also the core network where the geo-distributed systems connect to.

2. A proposed software-defined virtual sensor (SDVS) that is a representation of an

IoT device [18]. The SDVS provides advanced capabilities for the constrained IoT

devices. It also makes it possible to control both IoT devices and networking of

the IoT devices. It enables the programmability of both the functional and

forwarding behavior of IoT devices in the provision of their capabilities to IoT

applications. With the support of the SDVS, IoT devices can be enhanced with

more capabilities and shared between multiple IoT applications.

3. A novel control and management protocol between an IoT device and a local

management controller [19, 20]. The protocol allows the controller to program the

managed IoT device to provide its IoT services as well as deliver its services to

expected destinations.

4. The proposed architecture of a programmable software-defined IoT system can

be scalable to be a part of a large-scale IoT infrastructure [21-23]. The system can

orchestrate its own IoT resources to provision IoT services on demand. In

addition, it can be scalable to be controlled, managed, and orchestrated by a global

controller to provide IoT services to multiple IoT applications over a large-scale

IoT domain.

5. The proposed framework is implemented for practical realization [17]. A software

platform has been developed for validating and evaluating all proposed

components of the LSSD-IoT model. The novelty is that the platform provides a

software-defined environment for integrating IoT and SDN domains as well as

developing SDN-IoT-specific features.

The contributions are of very real significance to not only IoT-associated stakeholders

such as service providers, users, developers, but also to a society in general.

12

For the IoT aspect, the proposed LSSD-IoT model provides the service providers with

a management and orchestration mechanism in the provision of IoT services on demand

by re-utilizing IoT systems over a wide area. Furthermore, the developers can take

advantage of the integrated infrastructure to develop more advanced IoT applications

without concern over the deployment cost as well as difficulties in the programmability

of IoT systems. Users can obtain more benefits from new IoT applications as well as more

demand for IoT services can be achieved.

For the non-IoT aspect, efficient re-utilization of IoT resources enables a reduction in

deployment cost as well as minimizing energy consumption for the maintenance of IoT

data centers or IoT infrastructure. This would mitigate the impact on the environment.

1.6 Research Methodology

This research adopts the research process and methodology proposed by [24]. This

research is divided into four phases, as presented in Figure 1.1.

Figure 1.1 Research phases

The research process consists of eleven steps. The first phase is to identify the research

problem and review current solutions to the issue. After that, we can obtain a knowledge

of the current state of the art about the problem, solutions to the issue, and gaps in the

proposals. In the second phase, we develop the research hypothesis and prepare a research

plan, including stating the research questions, aim, objectives, and then proposing a new

approach to the research problem. The proposed solution needs to be validated and

evaluated. In the third phase, we determine the validation approach, conduct it, collect

13

results from the implementation, and evaluate them to know if we need to refine the

proposed model or not. Finally, we write up a report to describe our work and future

directions.

Details of each phase are presented in Figure 1.2.

Figure 1.2 Research Methodology

1.7 Thesis Structure

This research has produced one published journal paper, four published conference

papers, one conference accepted for publication, and one paper being submitted to IEEE

Transactions on Industrial Informatics journal and being under review. The organization

of this thesis is composed of eight chapters, as presented in Figure 1.3.

I. Research Problem
Formulation

•Identify the research
problem

•Review extensive
literature

II. Hypothesis
Formulation

•Develop the hypothesis

•Prepare the research
plan

III. Validation and
Evaluation

•Determine the research
method

•Conduct the implementation

•Collect results

• Test the hypothesis

IV. Report
Preparation

•Prepare the report
or present the
results

14

Figure 1.3 Thesis Organization

Chapter 1: Introduction

This chapter introduces an overview of this study. It first provides a brief explanation

of the large-scale software-defined Internet of Things (LSSD-IoT) model in relation to

the provision of IoT services on demand. It then states the research problem, research

aim, objectives, research contributions, research methodology, and provides the thesis

structure.

Chapter 2: Background and Related Work

This chapter provides a background of the Internet of Things (IoT) and the provision

of IoT services on demand in terms of IoT revolutions stages, enabling technologies and

resources for IoT application development, IoT building blocks, IoT architecture and

deployment models, and requirements for an IoT system in provisioning of IoT services.

This chapter also gives a brief background concerning open-source platforms needed for

the practical implementation of the proposed LSSD-IoT platform. In addition, it describes

the SDN and NFV techniques used by this research, and challenges of applying the

technologies to the IoT domain. It reviews solutions to IoT resource control and

management in providing IoT applications on demand, and related work that has applied

SDN-NFV in orchestrating WSN/IoT resources. In addition, it presents related works

Chapter 1 Introduction

Chapter 2 Background
and Related Work

Chapter 3

Large-Scale Software-
Defined Internet of

Things (LSSD-IoT) Model

Chapter 4

Software-Defined
Virtual Sensor (SDVS)

Chapter 5

S-MANAGE Protocol

Chapter 6

Software-Defined
Internet of Things (SD-

IoT) Model

Chapter 7

Software-Defined
Cluster Layer and LSSD-

IoT Platform

Chapter 8 Conclusion
and Future Work

15

concerning i) application of virtual sensors, SDN-NFV in programmability of IoT device;

ii) SDN-NFV-based proposals for a large-scale IoT architecture; and iii) SDN-NFV-

based proposals for a local software-defined IoT architecture.

Chapter 3: Large-Scale Software-Defined Internet of Things (LSSD-IoT) Model

This chapter provides an overall picture of the proposed LSSD-IoT model for

provisioning IoT services on demand. In addition, we sketch out contributions of this

research in relation to the proposed architecture.

Chapter 4: Software-Defined Virtual Sensor (SDVS)

This chapter presents the proposed software-defined virtual sensor (SDVS). The

proposed functional components and software architecture of the SDVS are described.

This chapter also provides the implementation results of the proposed SDVS.

Chapter 5: S-MANAGE Protocol

This chapter presents the design and specifications of the proposed S-MANAGE

protocol in the control and management of SDVSs for the provision of IoT services on

demand. Details of the design and operation of the S-MANAGE are described. In

addition, we also present implementation results concerning achieving IoT services on

demand via the S-MANAGE.

Chapter 6: Software-defined Internet of Things (SD-IoT) Model

This chapter introduces an overall local SD-IoT architecture in provisioning IoT

services on demand. It provides descriptions of the functional components of the proposed

architecture. It also presents and discusses the implementation results of the proposed SD-

IoT model.

Chapter 7: Software-Defined Cluster Layer and LSSD-IoT Platform

This chapter presents a developed large-scale SD-IoT framework in the provision of

IoT applications on demand. It presents the proposed architecture of the SD cluster layer.

This chapter also demonstrates the practical implementation of the LSSD-IoT platform

and discusses implementation results.

16

Chapter 8: Conclusion and Future Work

Chapter 8 summarizes this research’s contributions and significance and outlines

future research work.

17

Chapter 2 Background and Related

Work

2.1 Introduction

This chapter provides a background of the Internet of Things (IoT) and the provision of IoT

services on demand. It firstly explores an IoT system in terms of IoT revolution stages together

with associated technologies, resources for the IoT application development, key components,

architecture, and the requirements for an IoT system. The proposed LSSD-IoT model in this

thesis needs to be realized in a practical implementation. Therefore, we review IoT deployment

models and real scenarios. In addition, we provide an overview of open-source platforms utilized

in this implementation, such as the Floodlight SDN controller, OpenFlow protocol, Mininet, and

SDN-WISE framework.

In this research, we apply two techniques, including the Software-Defined Networking (SDN)

and Network Function Virtualization (NFV) paradigm in enabling the provision of IoT services

on demand. Thus, we provide the background about the two technologies as well as the challenges

of integrating SDN and NFV principles into the programmability and management of IoT

resources. Moreover, it is necessary to review attempts to overcome the challenges.

The rest of this chapter is organized as follows. Section 2.2 gives an overview of an IoT

system in terms of evolution stages, the relationship of things, services and resources, IoT key

components, IoT architecture, and requirements for an IoT system. Section 2.3 presents IoT

deployment models and real scenarios. Section 2.4 provides a background of the SDN technique

and its benefits to the programmability and management of IoT systems, challenges to the

integration of SDN-NFV to IoT. Section 2.5 describes the NFV technique and its relation to SDN

and IoT. Section 6 describes traditional and SDN-NFV-based solutions to a programmable IoT

18

device. Section 2.7 reviews works related to SDN-NFV-based approaches to the IoT system’s

programmability and management. Section 2.8 provides literature on works based on SDN-NFV

to develop a large-scale IoT system. Section 2.9 briefly introduces open sources for developing

an SDN-NFV-based system. Section 2.10 summaries this chapter.

2.2 IoT System

One of the indispensable elements in the development of an IoT application is the underlying

IoT systems. Each IoT system accommodates numerous IoT devices with various sensing,

computing, communicating, and actuating capabilities. It is challenging to control and manage

not only the IoT system but also each IoT device in response to IoT applications on demand. First

of all, it is necessary to gain an understanding of an IoT system in order to orchestrate it in the

provision of IoT services on demand. This section provides a background of an IoT system in

terms of evolution in IoT, key components and common features, the definition of things, IoT

services, IoT resources and the relationship between them, IoT reference architecture, and

requirements for an IoT model in the provision of IoT services on demand.

2.2.1 IoT Evolution Stages

This section provides a brief introduction to the history of the IoT as well as technologies

enabling the development of IoT. Definitions and requirements for IoT applications are

accordingly changed.

Historically, the “Internet of Things” concept was first coined in 1999 by Kevin Ashton, co-

founder and executive director of the Auto-ID Center at the Massachusetts Institute of

Technology (MIT). The term was used as a title of his presentation at Procter & Gamble (P&G)

to introduce the Radio-Frequency Identification (RFID) technology [25]. From 2000, IoT has

attracted much attention around the world with remarkable events, for example, LG announcing

a plan for launching an intelligent bridge in 2000, RFID being massively deployed in Savi

programs of the American army in 2003, well-known publications such as Scientific American,

the Guardian, and Boston Globe citing a number of articles regarding IoT in 2005, and in 2008

19

the IPSO Alliance being launched by a group of organizations to promote the integration of the

Internet Protocol (IP) into intelligent objects and via that to enable the development of IoT. [26].

From 2010, IoT has become popular and remarked with real products and events such as smoke

detectors and self-learning thermostats introduced by Nest Labs in 2010 [27], Gartner adding IoT

into its famous Hype-cycle for Emerging Technologies list for the first time in 2011 [28], IoT

starting to be massively developed thanks to the launch of IPv6 in 2011 [26], and IoT being truly

known by the public by the launch of Amazon Alexa in 2014.

The focus of the Internet of Things (IoT) has varied according to advances in enabling

technologies. There are three main stages of the IoT evolution [29] , as depicted in Figure 2.1.

Each stage is characterized by the reference architecture and enabling technologies. In the first

stage, RFID and sensors are fundamental elements of IoT. The focus was shifted to

internetworking things and web of things in the second generation. Moving to the third

generation, the concentration has been put on social, cloud computing and future Internet. IoT is

currently moving very rapidly with research regarding Social IoT, Semantic in IoT, information-

centric networking (ICN) paradigm in IoT, integration of IoT into the cloud, and RFID-based

solutions in IoT [29].

Figure 2.1 IoT Evolution

The development of IoT has involved different technologies. Thus the definitions of IoT have

been varied. The following definitions summarized by IEEE in 2015 [30] demonstrate various

focuses of the IoT and different requirements for an IoT system with time.

20

As defined by CASAGRAS in 2009, IoT is “A global network infrastructure, linking physical

and virtual objects through the exploitation of data capture and communication capabilities. This

infrastructure includes existing and evolving Internet and network developments. It will offer

specific object-identification, sensor connection capability as the basis for the development of

independent cooperative services and applications. These will be characterized by a high degree

of autonomous data capture, event transfer, network connectivity, and interoperability.”

According to CERP-IoT in 2010, “Internet of Things (IoT) is an integrated part of Future

Internet and could be defined as a dynamic global network infrastructure with self-configuring

capabilities based on standard and interoperable communication protocols where physical and

virtual “things” have identities, physical attributes, and virtual personalities and use intelligent

interfaces, and are seamlessly integrated into the information network. In the IoT, ‘things’ are

expected to become active participants in business, information and social processes where they

are enabled to interact and communicate among themselves and with the environment by

exchanging data and information ‘sensed’ about the environment, while reacting autonomously

to the ‘real/physical world’ events and influencing it by running processes that trigger actions

and create services with or without direct human intervention. Interfaces in the form of services

facilitate interactions with these ‘smart things’ over the Internet, query and change their state and

any information associated with them, taking into account security and privacy issues.”

As defined by IERC in 2014, IoT is defined as "A dynamic global network infrastructure with

self-configuring capabilities based on standard and interoperable communication protocols where

physical and virtual ‘things’ have identities, physical attributes, and virtual personalities and use

intelligent interfaces, and are seamlessly integrated into the information network.". IoT is

developed with several technologies that comprise wireless sensor networks, cloud computing,

big data analysis, embedded systems, security protocols, security architectures, communication

protocols, web services, mobile Internet, and semantic search engines [31].

According to a definition of IEEE in 2015, “IoT will be characterized as a set of interworking

networks of things that can be made smart if they can be identified, named, and addressed (smart

objects)” [30]. According to the authors, the definition is various in accordance with the scope of

21

an IoT scenario. Regarding a small IoT environment, “An IoT is a network that connects uniquely

identifiable “Things” to the Internet. The “Things” have sensing/actuation and potential

programmability capabilities. Through the exploitation of unique identification and sensing from

anywhere, anytime, by anything”. The definition has been more complicated when the scope of

the IoT environment becomes larger. “Internet of Things envisions a self-configuring, adaptive,

complex network that interconnects ‘things’ to the Internet through the use of standard

communication protocols. The interconnected things have physical or virtual representation in

the digital world, sensing/actuating capability, a programmability feature, and are uniquely

identifiable. The representation contains information including the thing’s identity, status,

location, or any other business, social, or privately relevant information. The things offer services,

with or without human intervention, through the exploitation of unique identification, data

capture and communication, and actuation capability. The service is exploited through the use of

intelligent interfaces and is made available anywhere, anytime, and for anything taking security

into consideration”.

With regard to the involvement of emerging technologies in IoT, IoT today is defined as “a

conceptual framework that leverages on the availability of heterogeneous devices and

interconnection solutions, as well as augmented physical objects providing a shared information

base on a global scale, to support the design of applications involving at the same virtual level

both people and presentations of objects.” [29]

As can be seen, the definitions of the IoT are various according to involved technologies as

well as user demands. However, they point out some common features of an IoT system [29],

IEEE [30].

Interconnection of Things: Refers to interconnecting “things.” Each “thing” is a physical

object that is associated with an application or a user.

The connection of Things to the Internet: “Things” in an IoT system are connected to the

Internet.

Uniquely identifiable Things: “Things” in an IoT system are uniquely identifiable.

22

Ubiquity: In the IoT context, ubiquity is an important feature which indicates that a network

is available “anytime” and “anywhere.” The “anytime” and “anywhere” is about when it is needed

and where it is needed, respectively.

Sensing/Actuation capability: Indicate an involvement of sensors/actuators in an IoT system.

Sensors/actuators are attached to the “thing” to achieve sensing/actuation features that make the

“thing” smarter.

Embedded intelligence: Is the “smart” or “intelligent” feature of an IoT object that can be

seen as an extension to the human mind and body.

Interoperable Communication Capability: The IoT system can communicate with other

entities thanks to interoperable communication protocols.

Self-configuration: Programmability: “things” in the IoT can be programmable, which means

that the “things” can execute a variety of users’ commands without requiring reconfiguration on

their hardware.

Interfaces are necessary connections between things or between humans and things.

Heterogeneity in technologies involved in the deployment of IoT infrastructure demands an

interconnection platform that enables the coexistence of these technologies.

Services might be elementary or complicated and are developed from information (sensing,

actuating, multimedia, or identification) extracted from each IoT object.

2.2.2 Things, Services, and Resources in IoT

The focus of this research is on the provision of IoT services on demand. However, terms

associated with devices/things/objects, IoT services, and IoT resources are still not clearly

defined. This section provides the definitions.

In 2010, IETF defined “In the vision of IoT, ‘things’ can vary from computers, sensors,

actuators, refrigerators, TVs, vehicles, mobile phones, clothes, food, medicines, books, to people,

etc. They can be grouped into three categories, including people, machines (for example, sensor,

actuator, etc.) and information (for example, clothes, food, medicine, books, etc.). These ‘things’

23

need to be identified at least by one unique way of identification for the capability of addressing

and communicating with each other and verifying their identities. If a ‘thing’ is identified, we

call it as an ‘object’” [30].

In addition, the “things” are defined as IoT devices that have unique identities and are capable

of performing remote sensing, monitoring, and actuating [31]. Meanwhile, as specification of

ITU-TY.2060 [32], “things” is referred to as an object of the physical world (physical things) or

the information world (virtual things); and the IoT device is referred as a piece of equipment

which has the mandatory capabilities of communications and the optional capabilities of sensing,

actuation, data capture, storage, and processing. Things can be both physical things and virtual

things. Physical things can be sensed, actuated, and connected, whereas the virtual things can be

stored, processed, and transmitted via the networks. Virtual things can present the physical things

via mapping relationships, while there are also some independent virtual things.

The above definitions provide the basic information about “things” (virtual and physical),

“IoT devices,” and “object,” but there is still an unclear relationship between “things” and “IoT

devices,” “things” and “object,” and questions related to IoT services, IoT resources. The concern

is addressed in [33], which provides a clearer definition as follows.

“Things” in the Internet of Things represent physical objects such as animate objects like

humans and animals, and others like cars, machines, consumer goods, rooms, buildings, rivers,

or glaciers. The “things” can be seen as the “entities of interest.” The “physical object” with

attributes describing it and the state is relevant from the application/user perspective and can be

considered as an entity of interest. Hence, “things” and “entities of interest” can be used

interchangeably.

“Devices” are attached or embedded to the “things” or to the environment where the “things”

are monitored. The “devices” are communication elements that enable the “things” to connect to

the Internet. Examples of “devices” include RFID readers, sensors/actuators, mobile phones, and

embedded computers.

“IoT resources” are usually hosted or provided by the “devices.” [29] The resources can be:

i) computing and communicating elements, ii) information regarding “thing” as sensing data or

24

identifier, and iii) actuating capabilities.

“IoT services” is an interface through which the outside world can have access to the “IoT

resources,” for example, RESTful services. When using REST, “service” refers to application

integration and accessing perspective, while “resources” are more about low deployment and

low-level components. However, in studies regarding the IoT domain, IoT services are various

and classified according to two aspects: i) Relationship with the entity of interest and ii) based

on the life cycle [34]. Regarding the first classification approach, there are 4 types of IoT services,

including low-level service, resource service, entity service, and integrated service. Meanwhile,

the second method introduces 3 types of IoT services such as deployable, deployed, and

operational.

As defined by [33] in 2010, a thing is monitored by a device attached to the environment

where the “thing” exists or by a device embedded in the “thing.” The “devices” host one or

multiple “resources,” which can be accessed via “services.” However, due to the involvement of

more advanced technologies with time, the relationship has been expanded to include not only

physical IoT devices but also virtual ones, as depicted in Figure 2.2. Users can be human or

digital users. An IoT application is possibly considered as an IoT service. IoT services interact

with IoT gateway, other IoT services, IoT devices, and use IoT data storage. IoT service is an

interface between IoT users and other entities. According to the definition of ITU [35], “IoT

service provision” involves the activities of using services by IoT customers and providing

services by service providers.

25

Figure 2.2 Relationship between IoT applications, services, and resources [36]

2.2.3 IoT System – Key Components

To control and manage an IoT system, we need to know what constitutes an IoT system and

common features of the system.

The IoT environment is characterized by 6 key components [37], as shown in Figure 2.3.

Figure 2.3 IoT building blocks and technologies

26

 Identification

The technique makes it possible for identifying the name and address of smart objects in an

IoT environment. Three identification methods are such as object identifiers, communication

identifiers, and application identifiers.

 Sensing

The sensing component gathers required data from associated objects within the network. The

collected data is sent to the database or the cloud, which processes the data as the demand from

the associated services. The sensing device can be smart sensors, actuators, or wearable sensing

devices, or called “Things.” An IoT device might be composed of several interfaces for

communication with other devices, both wireless or wired [31]. The IoT device may consist of

1) I/O interfaces for sensors, 2) interfaces for Internet connectivity, 3) memory and storage

interfaces, and 4) audio/video interfaces. The device is capable of collecting a variety of data

types from attached or on-board sensors, for instance, light intensity, humidity, or temperature.

The sensed data is able to be communicated with cloud-based servers or other devices. The IoT

device may be linked to actuators, which enable them to communicate with other physical

entities, including non-IoT devices and systems.

 Communication

The communication technique is responsible for connecting heterogeneous objects together

to deliver specific smart services. Communication protocols used in the IoT environment are

composed of WiFi, Bluetooth, Z-Wave, IEEE 803.15.4, RFID, NFC, and UWB.

 Computation

The processing units, such as FPGAs, SoCs, microprocessors, microcontrollers, and software

applications, represent the “brain” as well as the computational ability of the IoT. A variety of

hardware platforms have been developed to run the IoT applications such as T-Mote Sky,

WiSense, BeagleBone, Gadgeteer, Raspberry Pi, Intel Galileo, FriendlyARM, UDOO, and

Arduino. In addition, to provide IoT functionalities, various software platforms have been

utilized. Among the platforms, operating systems are an essential element because they are

27

always active during the running time of a device. Many real-time operation systems (RTOS) are

developed for IoT scenarios. For instance, Contiki RTOS is widely used in IoT scenarios. Other

examples can be TinyOS, LiteOS, and Riot OS, which can offer a lightweight OS suitable for the

IoT environment.

The Cloud platform is another important computing part of the IoT system. The platform

facilitates real-time big data processing that extracts knowledge from the collected big data. The

extracted information is eventually beneficial for end-users or IoT applications.

 Services

Services can be classified into four categories [38, 39], as in Figure 2.4.

Figure 2.4 IoT service types

Identity-related services are the most important service among the four service types since it

is the fundamental service that is utilized by other service types. Every real-world object, that has

been brought to the virtual world for developing IoT applications, needs to be identified.

Information Aggregation Services are responsible for collecting and summarizing raw sensing

values that are necessarily processed and reported to the IoT applications. Acting on top of the

Information Aggregation Service, Collaborative-Aware Services utilize the achieved values for

making a decision and reacting accordingly. Ubiquitous Services are mainly for providing

Collaborative-Aware Services anytime to anyone who has demanded the services.

Identity-
Related
Services

Information
Aggregation

Services

Collaborative-
Aware Services

Ubiquitous
Services

28

Ultimately, all IoT applications aim to obtain ubiquitous services. However, it is not easy to

achieve this goal because many challenges and difficulties are necessary to be addressed. The

majority of existing IoT applications provide the first three service types, including identity-

related, information aggregation, as well as collaborative-aware services. For instance, smart

grids as well as smart healthcare applications are classified into the information aggregation

group. Industrial automation, intelligent transport systems (ITS), smart buildings, and smart

home applications fall into the collaborative-aware group.

 Semantics

Semantics in the IoT is mainly about the capability to extract knowledge intelligently by

utilizing different machines. Knowledge extraction consists of discovering and using resources

and modeling information. Also, it includes recognizing and analyzing data for making the right

decision on which services are provided for IoT demands. Thus, semantics represents the brain

of the IoT by sending demands to the right resource. This requirement is supported by Semantic

Web technologies, including the Web Ontology Language (OWL) and the Resource Description

Framework (RDF).

2.2.4 IoT Architecture

One of the challenges of IoT resources management is how to ensure the automatic

management of resources, different types of IoT architecture, quality of services, and various

network infrastructure requirements [40]. Different IoT architectures result in various approaches

to resource management. A number of IoT architectures have been proposed according to specific

domains such as WSN, RFID, service-oriented architecture, cloud computing, big data,

connected living, logistics, smart city, industry, supply chain management, and security [4].

Many attempts have been made to design a common IoT architecture that can meet

requirements from industry and researchers. The basic IoT architecture is proposed with three

layers [41-43]. Other studies have added more abstraction to the basic structure to include

advanced functions of the IoT system. The new model consists of five layers that are named as a

middleware-based and SOA-based model [41, 42, 44].

29

Figure 2.5 IoT architecture

The 3-layer model is comprised of the Application, Network, and Perception Layers (as

presented in Figure 2.5a). The Perception layer is at the bottom of the IoT model. This layer is

composed of heterogeneous things, IoT devices, sensors, or actuators that sense the environment,

things, or humans. The devices collect data such as humidity, temperature, movement,

moisturizer, etc., then digitize and transfer them to the upper layer. The Network layer determines

the forwarding paths for data obtained from the perception layer and transfers them to an IoT

gateway. The Application layer is at the top of the IoT model. It integrates the collected data into

meaningful information that is provided for IoT applications.

The common five layers of the proposed architectures consist of Business, Application,

Service management, Object Abstraction, and Objects Layers, as shown in Figure 2.5b [37]. The

Object layer is similar to the perception layer, as described above. The Object Abstraction layer

delivers data generated by the Objects layer to the upper layer via a variety of technologies like

ZigBee, infrared, Bluetooth Low Energy, Wifi, UTMS, GSM, 3G, RFID. This layer also handles

other functions such as data management processes and cloud computing [42]. The Service

Management or Middleware layer is responsible for pairing services and the user requiring the

service. It makes it possible for IoT application developers to interact with the heterogeneity of

30

objects without concern about their hardware configuration. The Application layer provides

services required by users. Requested services such as temperature, light, humidity are utilized

by various applications such as smart healthcare, building, home and industrial automation. The

Business layer manages the overall services and activities of an IoT system. It is responsible for

building a business model, flowcharts, graphs, etc. in accordance with the data transferred from

the Application layer. This layer also designs, analyzes, implements, evaluates, monitors, and

develops components associated with an IoT system [41, 43].

The 3-layer model is the simplest one, but the application and the network layer must handle

complicated tasks for data processing, forwarding, and management of collected data and

required services. Therefore, the five-layer model divides the functionalities and allocates them

to five layers.

It is necessary to have an IoT reference model to provide an overall understanding of the

primary functions and capabilities of an IoT architecture. The reference model is developed from

the 5-layer architecture [32]. This model includes four horizontal layers and associated layers for

security and management capabilities (as depicted in Figure 2.6). It provides a common view of

capabilities and essential functions of the IoT architecture. Moreover, it enables less complexity

in the implementation and encourages interoperability among various IoT applications and

communication technologies.

1) The application layer is comprised of a wide range of IoT applications, for example, smart

grid, smart transportation, smart building, or e-health.

2) The service and application support layer provides generic and specific support

capabilities. In particular, the generic support capabilities can be applied for several applications,

while the specific support capabilities can only meet demands from a single application.

3) The network layer is composed of transport and networking capabilities. The networking

capabilities connect things to the network and maintain the connection. They are responsible for

resource allocation, mobility management, routing, or access control. The transport capabilities

transport management instructions and IoT application data.

31

4) The device layer includes a set of gateway capabilities and device capabilities. The device

capabilities make it possible for things to directly interact with a network or indirectly through a

gateway. The device capabilities consist of ubiquitous sensor networking functions. The gateway

capabilities are composed of protocol translation, security, and privacy protection functions to

enable resource-constrained IoT devices with heterogeneous wireless technologies, such as

ZigBee, Bluetooth, and Wifi, to be connected securely through a network.

5) Security and management capabilities also consist of generic and specific capabilities. The

generic management capabilities include device management functions such as remote

activation, status monitoring and control, software update, network topology management, and

traffic and congestion control. The generic security capabilities include access control, privacy

protection, confidentiality, integrity protection.

Figure 2.6 IoT reference model [32]

32

2.2.5 Requirements for an IoT System

Requirements for an IoT system can be classified into two groups, namely functional and

non-functional [35]. The functional category is associated with security, data management,

devices, communication, service, and application, whereas the other one is relating to operation

and implementation. In addition, there are other important IoT requirements, for example,

distributivity, interoperability, scalability, scarce resources, and security. They are summarized

in Table 2.1.

Distributivity: The IoT would possibly evolve in a highly distributed environment. In fact,

data may be collected from a variety of sources and processed by a number of machines in a

distributed way.

Interoperability: Many vendor-specific devices would necessarily collaborate to achieve

common purposes. Moreover, systems and protocols need to be designed in a way that enables

devices from various vendors to exchange data as well as to work in an interoperable approach.

Table 2.1 Requirements for an IoT system

Non - functional Functional Other

1. Interoperability

2. Operation

1. Application

2. Services

3. Communications

4. Devices

5. Data management

6. Security

management

1. Sharable infrastructure

2. Trustable and reliable

3. Service-aware, data-aware, and user-centric

4. Scalable naming and identification

5. Location-independent heterogeneous

communication

6. Auto-configurable and remotely controllable

7. Open application programming interfaces

33

Scalability: The IoT environment is expected to be comprised of a large number of devices.

Thus, applications and systems running on top of the devices have to handle an unprecedented

volume of generated data.

Resources scarcity: Computation and energy resources would become highly scarce.

Security: Users’ being insecure as well as controlled by unknown external entities seriously

prevent the development and deployment of IoT.

To meet the additional IoT requirements, some prospective technologies can be utilized, such

as SDN-NFV, security/privacy protection, network softwarization, ICN, mobile edge computing,

naming, identification schemes, and ID-based communication. Figure 2.7 [32] illustrates

mapping the IoT requirements for enabling technologies. Among these technologies, SDN-NFV

can be seen as the potential solution to make IoT infrastructure sharable, remotely configured by

dynamically reconfiguring the network, and devices.

Figure 2.7 Mapping of IoT requirements for enabling technologies

34

2.3 IoT Deployment Models and Scenarios

IoT deployment models and scenarios are dependent on requirements from IoT applications.

This section provides a fundamental model for developing and deploying an application. In

addition, we present real IoT deployment scenarios.

2.3.1 IoT Deployment Models

Even IoT applications vary in goals and scope; there are five reference models for the

deployment of an IoT application [31].

IoT level-1 system includes one node/device that is responsible for sensing and/or actuating,

storing data, performing analysis, and hosting the IoT applications.

IoT level-2 system is composed of a single node that has responsibility for sensing and/or

actuating and local analysis, while data is stored in the cloud, and the IoT application is based on

the cloud. The system is suitable for IoT applications requiring big data but none of the intensive

computations for analysis.

IoT level-3 system comprises a single node for sensing and/or actuating. The cloud stores

and analyses data. The IoT application is based on the cloud. The system is appropriate for IoT

applications involved in big data and intensive computation for analysis.

IoT level-4 system consists of multiple nodes that are capable of locally analyzing data, while

the data is stored in the cloud, and the IoT application is based on the cloud. The model is

appropriate for applications that demand multiple nodes, big data, and intensive computation for

data analysis.

IoT level-5 system includes multiple nodes and one coordinator node. The end nodes are

responsible for sensing and/or actuating. The coordination node performs collecting data from

these end nodes and sending the data to the cloud. The cloud stores and analyses the data, and the

application is based on the cloud. The model is suitable for applications based on wireless sensor

networks, where the involved data is huge, and the data analysis is computationally intensive.

35

Common components in the models are sensing/actuating element, computing function, data

storage, and the IoT application. Differences between them are: i) the number of

sensing/actuating elements, ii) position of computing function, iii) with/without intermediate

nodes for offloading computing and communicating tasks between the sensing element and the

IoT application. The ultimate goal of the IoT system is to be able to be scalable and flexible to

manage a number of IoT devices, to distribute computing and communicating functions and to

share their resources on demand.

2.3.2 Real IoT Scenarios

In accordance with real IoT systems, [36] has proposed five IoT scenarios, as shown in Figure

2.8. These scenarios are derived from IoT applications in smart home and smart city domains.

Figure 2.8 Real IoT Scenarios

36

 Smart home scenarios (four cases)

In the scenario (a), the IoT model includes an IoT device and a service deployed on the cloud

or called the cloud service. The device is from a specific brand and has an IP address that enables

it to directly communicates with the cloud service.

In the scenario (b), the IoT model consists of an IoT device, an IoT gateway, and a cloud

service. In this case, the device does not have an IP address, so it communicates with the cloud

service via the IoT gateway.

The scenario (c) has similar components, as in the scenario (b). However, in the case (c), IoT

devices can communicate with each other via short-range wireless communication protocols such

as ZigBee or BLE.

The scenario (d) is the combination of the scenario (a) and (b), where IoT devices with limited

communication can also participate in an IoT ecosystem or the cloud.

 Smart city scenario: one case

In the scenario (e), each smart home environment becomes a part of a large-scale IoT system

where each of them is connected to a WAN. Each smart home system has an IoT gateway that

communicates its own resources to other IoT systems via the WAN.

Through the scenarios, especially in the case (e), we can see that there is a need for a

mechanism that can provide a distributed as well as central management of not only local IoT

systems but also a global IoT ecosystem. In addition, to achieve the aim, each local IoT system

needs to be scalable to join the global IoT system on demand.

2.3.3 IoT Application Development - Challenges

Challenges to the development of IoT applications vary according to different layers of the

IoT architecture.

37

Network layer: Challenges to network infrastructure for IoT applications are various

since requirements of IoT application domains vary from each other. For instance, reliability and

energy efficiency are important to environment-monitoring applications, while QoS is more

important to smart grid applications. Multiple optimization technologies have been developed to

improve the network performance of IoT networks, such as TCP/IP-based routing, MAC-based

technique, MAC-based scheduling technique, and node placement one. To meet specific network

requirements of IoT applications, various optimization techniques have been integrated into [45]

the network architecture, as depicted in Table 2.2. Obviously, the routing technique significantly

affects network performance. It is a common technique in the proposed integration approaches.

For example, energy and reliability features can be handled by including the metrics in computing

energy-efficient and reliable routing paths. Moreover, QoS-related data can be transferred to IoT

nodes by including QoS parameters in routing information [45].

Table 2.2 Differences between proposals to network architecture [45]

Applications Challenges Integration

E-health Reliable data transfer Network layer and TCP/IP layer

are integrated

Environmental

monitoring

Network lifetime and

reliable communication

Network layer and physical layer

are integrated

Industrial automation QoS aware data transfer Network layer and MAC layer are

integrated

Smart grid Reliability Network layer and MAC layer are

integrated

38

Sensing layer: According to the research findings from papers published from 2011 to

2017 about deployment and orchestration of IoT over a large-scale infrastructure, most of the

approaches fail to consider deployment and orchestration at IoT devices; for instance, there is a

lack of consideration of IoT device communication and networking protocols [46]. This becomes

impractical since to actually control and manage a whole end-user-to-IoT-device system, there is

a need to master low-level IoT devices [47].

Interoperability of IoT platforms: In accordance with a comprehensive review of up-

to-date IoT management, there are remaining challenges such as real-time management,

interoperability, scalability, security, energy-saving, and performance evaluation [48]. The

research in [49] also showed a state-of-the art of interoperability of IoT systems that current IoT

platforms cannot allow more than one IoT platform to be added to an existing IoT ecosystem.

2.4 Software-Defined Networking (SDN) Technique

The Internet has grown into a huge and global interconnecting infrastructure, yet this

conventional network is still using complicated and cumbersome network management systems

that deal individually and manually with numerous network elements; complex and intertwined

distribution of network control and transport protocols; and rigid support for applications and

services. In particular, a network device cannot be updated, replaced, or reconfigured easily

without affecting other network devices because its distributed control plane and data plane are

both embedded in the device itself. New protocols or network architectures cannot be introduced

for innovative and emerging applications.

New networking technology is needed, and SDN is not only that technology but also a new

networking paradigm because the ideas and principles behind SDN are applicable to the control

and management of a system. SDN is attractive to not only academia but also the networking

industry with its four key benefits [50] as follows.

1) The separation of the control plane and the data plane, allowing them to evolve

independently and leaving networking devices simply to forward data efficiently.

39

2) The centralization of network control at a controller external from the network device (the

SDN controller or a Network Operating System (NOS)).

3) The network programmability via software applications running at the control or

application planes.

4) The use of flow-based forwarding rules instead of destination-based decisions.

2.4.1 SDN Architecture

As depicted in Figure 2.9 [51], an SDN architecture is comprised of three main planes,

including the application, control, and data plane that accommodate networking applications,

controllers, and networking devices, respectively [50, 52].

Figure 2.9 SDN architecture

40

a) Data plane

The data plane comprises both virtual and physical SDN devices, usually known as SDN

switches. These devices perform data plane functions and support data plane protocol [53]. In

this research, the focus is on the OpenFlow-enabled switches, thus the SDN switch and OpenFlow

switch are used interchangeably.

Two primary functions of OpenFlow switches are to support the controller and to forward

data [53]. Particularly, SDN switches are responsible for handling and forwarding traffic [54-56]

based on the rule information provided by the controller; and gathering network state, temporally

storing and transmitting them to the controller [56]. The network status could be network usage,

traffic statistic, and network topology.

To handle an incoming packet, the OpenFlow switch has to understand protocol headers in

order to extract the required bits, which are necessary for comparing with the corresponding

header field in flow table entries [50]. If there is a match, the incoming packet is processed in

accordance with the action in the flow entry, and simultaneously, the counter is updated with the

statistic of the packet. If no match is found, the packet could be encapsulated and sent to the

controller.

SDN devices consist of functional elements such as packet-processing function, an

abstraction layer, and an application programming interface (API) to communicate with the

controller [54]. The packet-processing function may be the packet-processing software or a

packet-processing logic deployed in the hardware that is implemented in virtual switches or

physical ones, respectively. The packet-processing function performs actions on incoming

packets in accordance with the results of matching the packets against flow entries in flow tables

[54]. The abstraction layer abstracts the SDN device as a set of flow tables. In other words, the

topology and underlying physical network are not presented to users, while the abstraction is

shown as a single router to the user [57]. To allow SDN devices to upward interact with the

control plane, the API defines communication approaches, message types, and a secure

communication channel between the two entities. Figure 2.10 presents three main elements of a

basic SDN switch, as well as an OpenFlow-based SDN switch or OpenFlow switch.

41

Figure 2.10 Three main components of an SDN switch and OpenFlow switch

b) Control plane

In comparison to the legacy control plane, the SDN control plane is different in three primary

ways [58]. Firstly, it can program different data plane elements with a standard programming

interface, for example, OpenFlow protocol. Secondly, it exists on a separate hardware device

rather than on the forwarding devices, unlike traditional switches where the control plane and

data plane are instantiated in the same physical box. This separation is possible because the

controller can program the data plane elements remotely over the Internet. The third one is that

the controller can program multiple data plane elements from a single control plane instance.

Two main roles of the control plane are 1) managing the infrastructure layer and

implementing policy decisions to the data plane via the southbound interface; and 2) providing a

global view of the underlying network to the application layer through the northbound interface

[50, 52, 59]. The controller utilizes two main parts: a program and the set of rules which are

installed on the SDN devices [60]. The program element makes it easier for SDN programmers

to only write a specification of intended requests to the network instead of writing the detailed

forwarding rules for the underlying network. A compiler is necessary to translate the descriptions

into code segments or forwarding rules for the SDN devices and controllers [60].

Basic SDN Switch
API: Communication approaches,
message types, packet-processing

function

An abstraction layer:
abstracts the SDN devices

Secure communication channel

OpenFlow Switch

OpenFlow protocol

Flow Tables

TCP/IP Secure communication
channel

42

The SDN control plane is managed by one or multiple central SDN controllers [60]. The

controller is considered as a pillar of the SDN architecture owing to its logically centralized

control ability and prime responsibility for computation and storage. The performance and

scalability of the controller are dependent on the control platform architecture. It is observed that

the control platform requires key elements such as i) the applications; ii) the NOS; iii) network

abstraction; and iv) communication interfaces or APIs.

The NOS [53] are also called the base network services of the SDN controller. They are all

deployed by a set of modules internal to the controller [54]. These functions make it possible for

developers to define network policies and manage networks without concern for the details of the

network device characteristics, which may be heterogeneous and dynamic [53]. They are

discussed as follows. Network device manager [50, 54] discovers the state of all SDN devices in

the infrastructure layer so it can notify whenever a device joins or leaves the network.

Network device topology management [50, 54] discovers and updates the network changes

and then sends the up-to-date network topology to the network applications.

Routing function [50, 54] facilitates the controller to create a route for delivering traffic

from a source to a destination.

Flow management [54] : Every controller needs to implement the OpenFlow protocol to

perform functions relating to OpenFlow messages, flow table, flow entry, matching, statistics,

message queues.

The packet processing unit is responsible for creating appropriate packets for every protocol

that the controller can handle. In particular, packets are processed based on their header and

payloads. Each packet is composed of source MAC addresses, destination MAC addresses,

message types, its parent, and payload. Packets are usually processed for various protocols such

as Ethernet, IPv4, LLDP, and UDP.

Security mechanism [50] ensures security enforcement and isolation between applications

and services.

The controller platform is mainly represented by the various interfaces. Firstly, a northbound

interface directly supports various networking applications that make requests to the underlying

network. Another important interface is the southbound interface by which the controller

43

manages underlying network devices. A controller must implement at least two interfaces [59].

The other interfaces are eastbound and westbound interfaces, which are necessary for

communication among controllers and enhance the reliability of the control plane [52].

Northbound interface (NBI): Enables the communication between the application plane and

the control plane. It allows end-host applications to autonomously and dynamically send requests

to the underlying network. The NBI makes it possible for application developers to control and

program the network [52]. It provides the application plane with the abstraction of low-level

instructions that support the SBI to configure SDN devices [50]. The NBI is defined as a software

system, not a hardware one. Requirements for different network applications are different, so

NBIs are various. Currently, there is a wide range of NBIs such as RESTful APIs, Ad Hoc APIs,

file systems, and other specific APIs like SDMN API, NVP NBAPI. However, none of them is

considered as a standardized NBI [50, 52, 59].

Southbound interface (SBI): Is a bridge between the control plane and the data plane [50,

59, 60]. In other words, it enables the logical link between the SDN forwarding devices and the

SDN controller [53]. Noticeably, some SDN controller types may support a single kind of SBI

[53]. The SBI offers the interaction method between the control and data elements, as well as a

set of instructions for forwarding devices. Some proposals to SDN southbound interface are such

as SoftRouter [50, 57], ForCES [50, 55] and OpenFlow [50, 57, 59]. However, they are different

in terms of architecture, design, protocol interface, and forwarding model. By comparing their

differences and similarities, the authors stated that OpenFlow-based SDN provides higher

flexibility and control in terms of development, administration, and network management [59].

Eventually, OpenFlow becomes the most popular standardized protocol [50, 55, 57, 60]. Being

the most attractive, OpenFlow-based SDN principles are applied to a number of software-defined

wireless sensor network (SDWSN) architectures [61-67].

East-west interface: Enable communication among distributed controllers [50, 52].

Currently, large-scale enterprise networks and data center networks are usually divided into many

sub-networks, so a number of controllers are necessary for managing these sub-domains.

Therefore, these controllers have to interact with each other to exchange their information related

to inter-domain networks and obtain a global view of an entire network. The east-west interfaces

44

are essential to meet some requirements including advanced data distribution mechanisms;

transactional databases; advanced algorithms for fault tolerance and strong consistency;

techniques for distributed concurrency; import or export information among controllers;

algorithms for information synchronization; notifications of controller capabilities; and backward

capability [50].

c) Application plane

The application plane houses network services and applications. Via a high-level

programming language in the control plane, the applications can access the global network view

and use the underlying services to execute a function [56]. In particular, requirements for an SDN

application are defined and translated into commands to program SDN switches [50]. Network

services are used to execute network applications and provide them with APIs to communicate

with other planes [68]. The applications and services can be deployed within a plane or over

multiple planes [68].

The integration of SDN principles and WSN/IoT has been conducted with a wide range of

purposes ranging from the idea of how to extend SDN to WSN/IoT to implementation for

different research awareness. From the industrial perspective, design of WSN/IoT necessarily

satisfies various requirements, including minimal deployment cost and compact size of sensor

nodes, energy consumption, quality of service, scalability, multiple sources and multiple sinks,

service differentiation, predictable behavior, application-specific protocols, data aggregation, and

fault-tolerance [69].

2.4.2 SDN Paradigm’s Implications to WSN/IoT

SDN is not just a new networking technology; it is a new paradigm that opens up explorations

and solutions in the provisioning and management of resources from infrastructure to applications

and services. Logically centralized control allows controllers to gain a complete information base

of an underlying network for optional and real-time provisioning of network services. The

programmability of the control plane allows autonomous configuration and management of

45

network devices. The virtualization of resources allows physical resources to be virtualized and

support simultaneously multiple services and users.

WSN/IoT does not really operate the same way as switched networks, but they exhibit many

similar characteristics. Networked sensors are network devices, and they have to be configured

and managed by their controllers. Wireless sensors networks are often organized into clusters and

managed by cluster controllers. In a comprehensive application, a wireless sensor network may

employ a large number of sensor nodes. Clearly, the above SDN paradigm would bring benefits

to WSN/IoT if applied appropriately. Efforts have been made to realize these benefits as follows.

Simple sensor node/IoT device and energy-saving [63, 70]: The device simply forwards data

based on the decision of the control logic. The energy consumption of a sensor node is thus

reduced.

Routing protocol: Routing technique can be highly improved in the OpenFlow-based

SDWSN structure. Yuan, et al. [71] have designed a new routing protocol integrating OpenFlow

protocol and a wireless sensor link-state routing protocol, namely Ad hoc On-demand Distance

Vector (AODV). The OpenFlow Agent sends less than half control packets per minute and can

independently operate when the controller fails. However, the new protocol still accounts for a

higher ratio in memory usage and bandwidth consumption. With similar concern, Han and Ren

[72] have proposed a new routing protocol in a clustered SDN-based WSN structure. Compared

to LEACH, LEACHM, and DEEC, the routing protocol has better performance in terms of the

death node number, the network lifetime, and especially has a greater advantage in data

transmission. Nevertheless, regarding the load balancing, the new one witnesses the highest rate

and thus necessitates a scheme to deal with the issues such as limited battery of center, master

and normal nodes, node zoning.

Network management [73], [63]: Network characteristics can be remotely and centrally

configured instead of manually and individually reconfigured. Smart network management has

been proposed in [63] to address WSN/IoT problems such as power consumption, device

mobility, localization and topology discovery, and network management. Nonetheless, the

proposal has not been evaluated for its efficiency; the authors suggest future research for

46

estimating the method’s performance regarding reliability and security. Furthermore, the work

focuses on the controller architecture without a discussion of the SBI.

Network programmability and innovation: Network policies can be programmed by the

software running on the control plane [50, 51] by defining flow entries. This enables a higher

degree of innovation in designing network protocols.

Network function virtualization [51]: A sensor node/IoT device can be virtualized to perform

the desired network function through a hypervisor in the controller. This opens up a new

dimension of services and services provisioning.

Efficient network utilization and services development: With the global view of the

underlying network, the controller is able to create virtual networks based on its network

abstraction and virtualizes sensor nodes to handle specific-purpose applications. This allows the

deployment of multiple WSN/IoT applications over a single physical WSN [64, 74]. Moreover,

the controller can flexibly allocate appropriate network resources to an application. This allows

the development of infrastructure as a service [16] and platform as a service.

Energy efficiency: This can be achieved with some proposed SDWSN architecture, which

enables efficient transmission of packets over WSN/IoT [70], [75]. For example, in [75], an

energy-efficient SDWSN-RL prototype based on Sensor OpenFlow [64] has been proposed for

environmental monitoring applications.

Cloud integration: The cloud can play an integral part in IoT applications by releasing sensor

nodes or IoT devices from the burden of data storage and data processing. With the extension,

SDWSN can be developed as sensing as a service.

2.4.3 Challenges of Application of SDN to WSN/IoT

SDN is originally designed for wide area networks with powerful switching and routing

devices, so it is difficult to completely apply SDN principles to WSN/IoT because of the

constraints of sensor nodes or IoT devices and the wireless medium. Essentially sensors/IoT

devices are not switched network devices, and hence, they are limited in their capability.

47

Furthermore, they do not always use the IP for communications. Developing an OpenFlow-based

SD-IoT model may encounter many technical challenges, as discussed below.

a) Designing an OpenFlow-based SD-IoT SBI

Many difficulties are encountered in emulating an OpenFlow-style of SBI because of the

difference in the functionality of a switched network device and a sensor/IoT device.

Data Plane – Flow Creation: Typical WSNs employ different addressing as attribute-based

naming instead of using IP-like addressing, while packets are processed based on flow entries

using IP addresses [64]. This prevents the SD-IoT SBI from creating flow entries, so two methods

are suggested: 1) modifying the matching field of flow tables or 2) using uIP/uIPv6 or Blip [64].

Secure channel establishment: A TCP/IP connection between the control plane and the data

plane is established based on the IP addresses from two participants in the communication [64].

In-network processing module: It is needed to wirelessly and remotely update sensor

firmware and software according to future demands [64]. Control traffic overhead: The secure

channel can be only hosted with in-band management or out-of-band management in wired

networks, whereas only in-band management is supported in wireless networks, leading to the

overhead of both data and control traffic [61, 64].

Traffic generation: Traffic is necessarily generated to be adaptable to flow entry definitions

of OpenFlow specifications, so a traf-gen module is needed for each sensor node [64].

Power efficiency: It is essential to support duty cycles [76] to periodically turn off the radio,

and in-network data aggregation to remove redundant data [64, 76]. This is addressed by an in-

net proc module [64] or an additional aggregation player in the protocol architecture of sensor

nodes, or new actions in flow tables [76].

Backward and peer compatibility: SD-IoT design is expected to be compatible with

traditional networks without SD-IoT SBI or OpenFlow support [64].

b) Designing an SDN-based IoT device

Without changing the basic functionality of a sensor, the challenge is to empower it with

adequate capability for software-defined control: a capacity for flow table storage, and capability

for handling flow requests from low-tier nodes or the controller. The following aspects should be

48

taken into consideration in designing an SD-IoT device.

New hardware architecture for sensor nodes may be needed to allow flow-table

implementation from the controller. Additionally, memory capacity is sufficient to store the

implemented flow tables.

Processing speed: SD-IoT devices have to handle a large number of requests from

applications and other nodes. Current switches are unlikely to address flow demands from

applications because the SDN devices only forward data and frequently request instructions from

the controller to handle arriving packets. This leads to the poor performance of the controller

regarding processing power and switch-controller link congestions [60].

Standardized protocol stack: to support network virtualization requires access to

heterogeneous sensor nodes or IoT devices to create a variety of virtual networks for the

WSN/IoT for serving various IoT applications. Moreover, sensor nodes with different higher

protocol layers are difficult to migrate between different networks and communicate with sensor

nodes/IoT devices in these networks. Well-defined functional layers are needed to allow sensor

nodes/IoT devices to interact properly with the control software.

2.5 Network Function Virtualization (NFV) Technique

This section describes features of the NFV technique and application of the technique in

proposing a programmable representation of an IoT device.

 NFV Architecture

NFV technology allows a pool of physical devices to be virtualized and chained into virtual

networking functions that are provisioned as networking services. The main goal is to separate

the network functions from physical networking devices. The network function being virtualized

is termed a virtual network function (VNF). The VNF is a software instance that can be created

without a demand for new physical equipment. Especially, the VNF can be initiated, moved, or

terminated on demand [77]. The VNFs are managed and orchestrated by the VNF manager and

orchestrator, respectively. As shown in Figure 2.11, NFV architecture is composed of NFV

49

infrastructure, VNFs, and NFV management and orchestration (MANO) elements [78]. The NFV

infrastructure (NFVI) provides virtualized resources for building VNFs that is managed and

orchestrated by the NFV MANO. Particularly, the NFVS consists of virtual and physical

infrastructure. In this layer, the computing, networking, and storing hardware is virtualized into

corresponding virtual functions. The NFVI is managed by a virtualized infrastructure manager

(VIM) that is responsible for providing virtual machines for developing VNFs. A VNF manager

(VNFM) is responsible for initiating, managing, removing, monitoring the operation of all the

VNFs. Each VNF can be managed by element management (EM). The VNF can be orchestrated

by not only VFNM but also the NFV orchestrator. The NFV MANO can interact with both NFVI

and VNFs to orchestrate VNFs.

Figure 2.11 NFV architecture

 Relation to SDN

SDN technology allows central control of networking devices by separating their control

logic from physical networking equipment. SDN is comprised of three main components: SDN

50

applications, SDN controllers, and SDN devices. SDN applications and SDN controllers can be

implemented as VNFs, while SDN devices are a part of the NFVI, as depicted in Figure 2.12

[78].

Figure 2.12 Mapping SDN components for NFV architecture

Inspired by the two technologies, we aim to integrate physical IoT resources that could be

virtualized and provide a pool of IoT services shared between multiple IoT applications. The

physical and virtual resources are controlled and managed by software components.

2.6 Solutions to a Programmable IoT Device

This section provides related work of approaches for proposing virtual IoT devices and SDN-

NFV-based approaches.

51

 Traditional Approaches

Regarding devices in the data layer, they have many physical limitations: power supply,

computation capability, communication protocol, and memory/storage capacity. It is challenging

to integrate the SDN and NFV techniques to such physical devices, and various efforts have been

made to overcome these limitations. Various types of virtual sensors have been proposed to

represent physical devices or their intelligent counterparts. Some provide solutions to IoT issues,

including identification, security and privacy, heterogeneity, and scalability [79]. Several types

of virtual sensor nodes or virtual objects are developed for WSN/IoT applications. Some emulate

a physical sensor to obtain data [80], some implement a software sensor [81]. A software sensor

could be an abstraction for providing aggregated data computed from different sensors or

supplying predicted or extrapolated data. A virtual sensor may share complex tasks with physical

sensor/IoT devices by enhancing and supplementing itself with additional software functions

[82]. A virtual sensor may also be a middleware or a software layer on top of a physical device,

for example, SenseWrap [83]. A skeleton for a virtual object model can be found in [84]. [85]

proposed another version of virtual sensors, Sensor Web, a middleware bridging the sensor

resources and applications. [79] discussed a number of proposals for virtual objects for IoT

systems. A virtual sensor can serve in various roles. It serves as an IoT gateway to communicate

with other components in a network domain, the Internet or a cloud system, using multiple

interfaces, possessing protocol conversion capability, and performing management functions.

Nevertheless, there remain many challenging issues [79] that need to be considered for future

development of the IoT world regarding virtual sensors and their applications: i) the lack of

common association between virtual and real objects; ii) the balanced tradeoff between the

number of replicas of the same information and their reusability; iii) the interoperability concern

which is the consequence of virtual objects of different IoT systems having different APIs; iv)

the scalability issue relating to the management of virtual object life cycle; v) the future creation

of virtual objects that may autonomously and adaptively interact with the surrounding

environment in order to support dynamic deployment of IoT applications.

52

 SDN-NFV-based Approaches

Recently, a number of pieces of research have attempted to leverage SDN and NFV paradigm

to introduce new approaches to not only existing but also upcoming IoT issues such as

architecture, security, management, programmability and management of IoT infrastructure [86];

or provision of advanced services regarding network virtualization, data distribution, quality of

services/experience. However, only a few works consider the benefits of a SDN-NFV-based

mechanism in programmability, control, and management of IoT devices in order to provide a

complete SDN-NFV-based solution to IoT service provision. [87] has proposed a software-

defined device provisioning framework for improving the scalability of IoT platforms, but it fails

to consider how to deal with limitations of physical devices in the provision of IoT devices to

respond to IoT applications on demand. [88] has proposed an SDN-NFV-based paradigm, that

uses virtual images to replace physical devices, for effectively providing collected data to users.

2.7 SDN-NFV-based Solutions to a Programmable IoT System

Efforts to solve WSN/IoT problems with SDN-based solutions have been discussed in [21].

Examples include smart network management of simple sensor devices, energy efficiency in

transmission of packets over WSNs, improvement of routing protocols in WSNs, network

programmability, and efficient services development.

On IoT network management issues: Several SDN-based approaches have been discussed in

[89] in terms of networking perspectives ranging from edge, access, core, to data center

networking. They try to bring SDN advantages in networking programmability into configuring

networking devices according to the application requirements. [90] contributed to the

development of an SDN-based IoT platform by proposing a four-layer architecture, but the

architecture allows little programmability of the underlying wireless networks and sensing

devices to meet application on-demand requirements. [91] suggested an approach for

orchestrating heterogeneous WSN resources to handle various application requirements.

On SDN-NFV-based IoT architecture: Efforts in applying both SDN and NFV techniques to

deal with several IoT issues were discussed in [92]. An SDN-NFV architecture was used to take

53

advantage of virtualization [93]. An SDN-NFV-enabled Edge node for IoT services was proposed

in [94] for orchestrating integrated Cloud/Fog and network resources. In [95], an SDN-based IoT

framework with NFV functionality was proposed, but the focus was mainly on the importance of

distributed OS in the control plane with little concern for IoT device management and

programmability.

On challenges of integrating SDN into WSN/IoT: Challenges in integrating SDN techniques

into the WSN/IoT environment were discussed in [64, 76]. The main concerns were on

components of the application, the controller, and the data layers. Most proposals focused on

specific issues of the architecture and inadequately addressed requirements for integration. [96]

discussed issues on SDN-oriented architectural requirements for WSNs. [61] discussed issues of

multiple controllers, controller placement, and controller core functions. [63] discussed controller

core functions and placement. As for the southbound interface, several efforts [64], [76], [65]

have been made to modify, extend or adapt the OpenFlow southbound protocol for messages

exchange between the control plane and the data plane of sensor/IoT networks. The Sensor

OpenFlow [64] extends OpenFlow to deal with the limitations of networked sensors and their

specific operating environment. However, Sensor OpenFlow is not practical, and no

implementation was found for the proposal. SDN-WISE [65] proposal provided details to the

SDN-WISE southbound interface and its implementation performance. [65] also proposed a

protocol stack for a generic sensor node and a sink node to communicate with the controller. SD-

WISE [97] and Soft-WSN [98] provided a comprehensive description of the design of a software-

defined wireless sensor network (SDWSN) architecture. However, the main focus of SD-WISE

is on the programmability of a node’s forwarding behavior rather than the autonomous

configuration management of the node and its functions. On the other hand, Soft-WSN did pay

attention to the network and device management aspects for supporting application-aware service

provisioning. However, the work presents little consideration for a design of an OpenFlow-based

southbound interface for the control and data plane communication.

54

2.8 SDN-NFV-Based Solutions to a Large-Scale IoT System

SDN has been applied not only in managing wired networking infrastructure but also in

addressing WSN/IoT issues in terms of network management and programmability, efficient

network utilization, services development, and cloud integration [21]. Together with the SDN

technique, NFV has been introduced to address networking-related issues such as network

function virtualization. Many efforts have taken advantage of SDN and NFV principles to

develop IoT infrastructure for the provision of IoT services over a geographical area. However,

they address different aspects of the whole picture that needs to include not only local IoT

systems, large-scale management system but also IoT devices.

On edge/fog-computing-based IoT architecture: [8] has proposed a fog of things (FoT)

paradigm that joins the fog and cloud computing toward the on-demand Internet of Things. It

provides a layer-based FoT architecture with expected features of each layer, but it lacks a

performance demonstration. Its contribution is also limited to the scope of the fog network. [99]

has proposed a virtualized SDN-based end-to-end architecture for fog networking to manage the

complexity of the joint network. Nevertheless, it fails to consider network issues facing IoT

systems as well as to provide a performance evaluation of the proposed architecture. [100]

proposed a model of integration of IoT, transport SDN, and edge/cloud computing for dynamic

distribution of IoT analytics and congestion detection. Being evaluated and validated with jointed

experimentation, the work is well-performed in dynamically provisioning IoT analytics between

the edge and cloud network and in controlling of bandwidth congestion. However, it lacks

consideration of the control and management of data flow circulating within each IoT system,

which also contributes to the improvement of data collection in distributed IoT systems.

On network management: [101] developed and deployed an SDN-NFV-based network

infrastructure for IoT. It builds and implements applications to slice end-to-end multiple network

segments in accordance with the requirements of deploying IoT services from different providers.

This work mainly concentrates on core network management without concern for integrated IoT

systems or IoT devices. Also focusing on SDN-NFV-enabled network in IoT infrastructure, [102]

proposed a two-layer architecture to control network resources in terms of fault tolerance and

55

load balancing in order to meet requirements of IoT applications, but it limits its contribution to

the idea only. [103] proposed a network operating system framework for managing both wired

networks and IoT in a unified manner by using the SDN technique. The work has demonstrated

the efficiency in the management of networks of switches and networks of sensors via evaluation

performance. However, it fails to consider sharing IoT services by leveraging the central

management and programmability of the unified network as well as programming functions of

IoT devices.

On IoT gateway: [104] proposed a distributed gateway as a virtual network function that is

chained in the SDN-based IoT system in large-scale disaster management by leveraging the SDN

and NFV technologies. The proposed gateway allows a dynamic integration of distributed IoT

devices into a large-scale IoT domain. This work has been evaluated via implementation results.

However, it fails to consider the efficiency of the hierarchical management of a large-scale system

instead of using a central approach that causes inefficient utilization of the network.

On large-scale system with SDN, NFV and IoT: [105] has proposed a software-defined city

infrastructure for integrating owners and administrative domains within a city. It is a two-layer

architecture including control and data plane i) for orchestrating, coordinating, and managing the

data plane according to specific policies and ii) for programming functionalities of heterogeneous

involved devices, respectively. However, the work focuses on the integration of heterogeneity of

devices at the data plane and limits their contribution to the idea only.

2.9 Open-Sources for Developing LSSD-IoT Platform

Floodlight controller: Floodlight is one of the well-known open SDN controllers such as

ONOS, NOX, Ryu, OpenDayLight, Floodlight, and Beacon. Floodlight has been selected for

developing the LSSD-IoT platform due to the following reasons. Firstly, it is a centralized

controller, supports the OpenStack cloud orchestration platform, and is designed to be high-

performance, which would be helpful for developing a large-scale system. It can handle a mixed

OpenFlow and non-OpenFlow network. Secondly, it can provide a module loading system that

makes it simple to set up, test, extend and enhance. Thirdly, it is an enterprise-class controller

56

that is currently developed by Big Switch Network and is well-documented, so the community

can achieve great support from the developers of the organization.

OpenFlow protocol: It can be seen as the first SDN communication standard that has been

deployed and developed in commercial SDN switches such as HP switches. It allows networking

devices to be remotely programmed and managed by a software controller. Through the protocol,

the controller can easily update networking devices and configure them dynamically according

to networking demands.

OpenFlow Switch: It is an open vSwitch that installs OpenFlow protocol as its Southbound

Interface. It enables massive network automation through programmatic extension, while still

supporting standard management interfaces and protocols such as 802.1ag, LACP, CLI, RSPAN,

IPFIX, sFlow, and NetFlow. Moreover, it is designed to support distribution across multiple

physical servers, similar to VMware’s vNetwork distributed vswitch or Cisco. In particular, we

can deploy it in Mininet for creating a virtual SDN network.

Mininet: It can create a realistic virtual network, running real kernel, switch, and application

code on a single machine. It provides an experiment with OpenFlow and SDN systems. It can be

integrated with any open SDN controller to build an SDN environment that provides features like

a real SDN system.

2.10 Summary

In this chapter, we provided an overview of IoT evolutions and the IoT architectures, building

blocks in an IoT system, real IoT scenarios, and IoT reference models for developments of IoT

applications. Moreover, a background about SDN and NFV was provided in terms of paradigm,

benefits, and challenges of the application of SDN-NFV in IoT. A review of current approaches

leveraging SDN-NFV in programmable IoT devices, local IoT systems, and large-scale IoT

systems was provided. We also gave a brief introduction to open-sources utilized for developing

and deploying the LSSD-IoT platform.

57

Chapter 3 Large-Scale Software-

Defined Internet of Things (LSSD-IoT)

Model

3.1 Introduction

Internet of Things (IoT) has developed into an interconnected platform infrastructure for

providing essential services ranging from personal health care, smart homes, and smart cities to

the manufacturing industry (Industry 4.0), and Industrial Internet. Relying on such an

infrastructure, a multitude of emerging IoT services will no doubt be developed for not only local

regions but also multiple separated regions spreading over a wide geographical area. To realize

these on-demand services timely and economically, programmable and reusable mechanisms are

crucial for provisioning and reusing existing resources and infrastructure. Existing IoT services

are mostly applications specific, and their supporting infrastructures are rigid and cannot be easily

adapted to accommodate new services. This thesis addresses those issues by proposing a large-

scale Software-Defined Internet of Things (LSSD-IoT) model for provisioning IoT services on

demand with the help of Software-Defined Networking (SDN) and Network Function

Virtualization (NFV) paradigms.

The remainder of this chapter is organized into four sections. Section 3.2 justifies the

proposed LSSD-IoT model. Section 3.3 describes the LSSD-IoT model. Section 3.4 discusses the

features of the LSSD-IoT model. Section 3.5 describes the practical realization of the proposed

model. Section 3.6 provides a roadmap of this dissertation. Section 3.7 summarizes this chapter.

58

3.2 Why Large-Scale and Programmable Services on Demand?

The “Internet” has changed our world and brought with it many technical, economic, and

social benefits by connecting people. It is expected that the “Internet of Things” will create

enormous value by interconnecting people and everyday things. In fact, IoT has already enabled

many emerging applications and services critical to our life in various domains, from personal

healthcare to smart cities, critical infrastructures, and supply chain logistics.

However, this enormous potentiality is limited by most existing IoT systems/platforms, which

are mainly closed ecosystems since they are vertically developed and deployed in their own IoT

infrastructure, and have incompatible standards, formats, semantics, and proprietary protocol and

interfaces [2]. As a consequence, we have identified a number of major issues of the current

generation IoT systems/platforms:

The astronomical numbers of devices and their connectivity-service infrastructure. As

projected, with billions of IoT devices interacting with one another by virtue of their connectivity,

the challenge here is how to manage the complexity of the interconnecting infrastructure of these

devices and harness their capabilities to effectively serve both local communities and global

communities geographically distributed over a large geographical area.

The massive number of IoT services and their provisioning framework. IoT devices are

capable of interacting with their environment, performing their designated functions as well as

collaborating with other IoT devices. Many services have already emerged to take advantage of

these capabilities. The challenge is to automate the provisioning of these services whenever they

are needed on demand.

The vast amount of resources and their resource sharing. Collectively, through

interconnectivity, IoT systems/platforms present a massive amount of available resources and

services to be shared among them. The challenge is in the developing of algorithms and

supporting infrastructure for efficient use of the resources through sharing and reusing resources.

59

In order to address these challenging issues, we investigate technologies, network

architectures, device capabilities, protocols, and programmable mechanisms for orchestrating

services on demand.

On connectivity and networking architecture: Software-Defined Networking enables

network programmability and fine-grained flow-based automated management that are not

available with traditional distributed networks. Through the logically centralized knowledge of

the whole network, an SDN controller can configure network devices automatically to deal with

network dynamics. Many networks are currently being deployed for these purposes [106].

Unfortunately, SDN-like programmability in IoT is still not being commonly used or is still being

developed. We aim to adapt SDN for efficient deployment in the IoT domain and investigate a

large-scale architecture spanning both the SDN domain and IoT domain.

On device capability: The highly resource-constrained nature of the IoT devices in terms of

energy, computing power, storage, and wireless connectivity prevents a direct application of the

wired SDN techniques to the IoT world. Many sensor/IoT devices with simple functionality do

not possess a programmable interface that is required for resource and service sharing. Research

efforts have been attempted to address this issue; systematically enriching devices with resource

sharing capability remain open challenges [107]. We investigate the virtualization technology to

enhance and supplement the programmability of physical devices.

On communication and management protocol: Sensors/IoT devices are not network

routing devices, and heavy protocols for program network flows in network devices are not

applicable to IoT devices. Efforts have been made to address this management issue with limited

success. We investigate the development of a new simple protocol for adapting and enhancing

the SDN paradigm to IoT networks to compensate for the different nature of network devices and

IoT devices.

On programmable mechanisms for orchestrating services on demand: We enrich the

capability of IoT devices with virtual functions and interface virtualization for orchestrating and

programming services. We investigate algorithms and mechanisms for service orchestration.

60

On resources and services reusing and sharing: IoT services are emerging on a daily basis

in many domains; for cost-effective services, both resources and services have to be shared

among services and applications. We investigate a programmable platform for sharing the

underlying IoT resources and provisioning them on demand. This sharing and reusing of

resources and services have not been extensively explored.

The thesis addresses these significant issues by proposing a Large-Scale Software-Defined

IoT model and associated techniques for provisioning end-to-end services on demand. It provides

a distributed architecture for scheduling, allocating resources for the provision of IoT services. It

allows the integration of independent IoT systems (software-defined Internet of Things) to SDN-

based systems.

In this chapter, we discuss the significance of the proposed LSSD-IoT model for further

adaptation of IoT and future Internet infrastructure. An overview of the proposed LSSD-IoT

architecture and its essential components are presented. A roadmap of this research is outlined.

3.3 LSSD-IoT Model

Many IoT-cloud architectures have been introduced to support specific IoT applications that

focus on visualization, monitoring, deployment, analytics, data management, heterogeneity

management, system management, device management, application development, and research

[2], identification, plug and play, search and discovery, quality management, and mobility [3].

As such, they mainly provide application-specific solutions that consequently limit the

interoperability of interconnected things.

According to [4], an IoT system can be labeled Internet-oriented, things-oriented (sensors or

smart things), or semantic-oriented (knowledge) depending on its intended interconnection,

device, or semantic ontology. Generally, the system consists of four key elements: sensor

networks with wireless sensors and actuators, machine-to-machine communications, supervisory

control, and data acquisition. Features of an IoT system are derived from their constituting

elements and are viewed from the application and the infrastructure perspectives [4]. Regarding

the infrastructure perspective, there are issues concerning heterogeneous devices, resource-

61

constrained, spontaneous interaction, ultra-large-scale networks, a large number of events,

dynamic and unstructured networks, context-aware, location-aware, and distributed intelligence.

Regarding the IoT application perspective, major concerns include diverse applications, real-time

requirements, everything-as-a-service (XaaS), increased security attack-surface, and privacy

leakage.

Common services required by IoT applications include functional and non-functional ones,

as discussed in [4]. It is a considerable challenge for an IoT system to accommodate numerous

and various types of services. For example, the design of SOA for service provision has

difficulties in handling a massive number of service-based objects since they cause significant

overhead regarding data transfer, data process, and management [2].

Networking always presents a big challenge. In regard to scalability, an IoT system needs to

scale up in response to the rapid growth of the future increased number of connected devices.

Future IoT systems need to support network architectures and network protocols that can be

extensible and scalable [5]. It is also necessary to provide open interfaces for future innovation.

However, most of current IoT systems are vendor-specific, that expose closed environments. This

limits the interoperability and advances in technology [5].

An emerging solution is an application of Software-Defined Networking (SDN) in

programming wireless sensor networks or Internet of Things (WSNs/IoT) systems. However, the

integration of SDN into the IoT systems exposes a serious challenge owing to the limitation of

resources of sensor nodes or IoT devices and the incompatibility of SDN techniques in managing

SDN devices and networked sensor/IoT devices.

This chapter describes our proposed Software-Defined Internet of Things model that

integrates Software-Defined Networking (SDN) and Network Function Virtualization (NFV)

techniques to enable programming IoT devices and network functions of WSN/IoT systems. The

system entails a novel model of a Software-Defined Virtual Sensor (SDVS), a streamlined

software IoT device (SD-IoTD) controller, and a new and efficient protocol (S-MANAGE)

between them for both management and communication. The proposed model allows the

programmability of heterogeneous sensor resources for provisioning IoT services on-demand and

62

their efficient management. A prototype is implemented with reconfigurable software-defined

virtual sensors representing their underlying physical/software sensors, utilizing S-MANAGE.

The implementation results demonstrate the feasibility and efficiency of the proposed model.

In the context of this thesis, an underlying device refers to i) physical objects such as an IoT

device or a sensor node with attached sensors; ii) virtual objects such as virtual sensor nodes, IoT

devices, or virtual sensors; ii) a group of physical/virtual objects.

The model involves two levels of management and orchestration (MO). The top MO level

(Software-Defined-IoT Cluster) orchestrates on-demand services over multiple clusters over a

wide area. The bottom MO level (Software-Defined-IoT Device) orchestrates on-demand

services over sensors/IoT devices within a cluster. The architecture entails the design of an IoT-

specific SDN controller and a novel Software-Defined Internet of Things (SD-IoT) model. The

proposed SD-IoT (SD-IoT) model is composed of elements such as a Software-Defined Virtual

Sensor (SDVS), a streamline Software-Defined IoT Device (SD-IoTD) controller, and a new and

efficient protocol (S-MANAGE) between them for both management and communication. The

proposed LSSD-IoT model allows control, management, and orchestration of not only

heterogeneous sensor/IoT resources but also network, data, and applications for provisioning IoT

services on demand.

The high-level architecture of the LSSD-IoT model with three principal layers, comprising

the application layer, the software-defined cluster layer, and the software-defined device layer,

are shown in Figure 3.1.

Application layer: This layer consists of end-user applications that utilize LSSD-IoT

communications and services. Through the cluster controller, the applications can affect the

behavior of the underlying clusters by orchestrating, allocating, and coordinating them to provide

the ultimate requested services.

Software-defined (SD) cluster layer: This layer consists of IoT clusters and a cluster

controller. Each cluster is responsible for its own local region. Each orchestrates, provisions, and

manages services assigned by the controller. Each cluster can be considered as a virtual

component that represents the capability of its underlying resources. The controller utilizes the

63

collective capability of all clusters under its control to provision services requested by the

application.

Software-defined (SD) device layer: This layer is composed of IoT devices that are located

in widely separated geographical areas. They are organized into groups to form clusters. Each

cluster is a platform with its own controller to orchestrate, provision, and manage local services

allocated to the cluster based on the capability provided by IoT devices in the cluster.

In summary, an application requests a service from the SD cluster layer, the SD cluster layer

orchestrates and distributes sub-services to different clusters depending on their specific

capability and location to provision the service requested by the application. Sub-requests are

then passed on to the SD device layer. Each platform in this layer is then responsible for

orchestrating, managing IoT devices with its cluster to provision the requested sub-service.

Figure 3.1 LSSD-IoT architecture

64

3.3.1 Software-Defined Cluster Layer

This layer inherits much of the SDN architecture. It has three layers (Figure 3.2): the

application layer, the cluster control layer, and the SD-IoT cluster layer. The application layer is

the same as the application layer of the overall LSSD-IoT, housing end-user applications. The

cluster control layer contains an SD-IoTC controller to perform both SDN functionality and IoT-

specific service provisioning and coordinating functions. Instead of just SDN devices, they are

replaced by SD-IoT clusters. Each cluster consists of an Open vSwitch and a host that represents

an SD-IoT platform below. The OpenFlow and orchestration protocol are used for the

communication between the SD-IoTC controller and SD-IoT clusters.

Figure 3.2 SD Cluster layer architecture

SD-IoTC controller: The SD-IoTC controller is a software element that is extended from a

well-known Floodlight SDN controller with additional components for managing IoT clusters. It

communicates with connected SD-IoT clusters. In addition, the SD-IoTC controller houses a set

of components that allow it to i) process IoT requests coming to the LSSD-IoT system, ii) control,

manage, and orchestrate IoT clusters/devices, and iii) store temporary IoT services that can be

shared between multiple IoT applications. Details of the proposed controller are described in

Chapter 7.

65

Communication interfaces:The communication between the application layer and SD-IoTC

control layer is via a Northbound Interface (NBI), e.g., REST-based API. The SD-IoTC control

layer communicates with the cluster layer through a Southbound Interface (SBI).

SD-IoT clusters: An SD-IoT cluster is composed of an SDN switch and a host representing

an SD-IoT platform. SDN switches are networking devices that connect SD-IoT platforms to the

LSSD-IoT system. They report on the connected IoT platforms. They allow the SD-IoTC

controller to configure data flows between IoT clusters to deliver IoT requests to a proper SD-

IoT platform or transmit returned results to data collection points. Hosts connected to SDN

switches are representations of IoT clusters that are composed of required sensors/IoT devices.

The hosts can be considered as SD-IoTC clusters that represent the underlying SD-IoT platform.

3.3.2 Software-Defined Device Layer

This layer contains many clusters (SD-IoT clusters). Each cluster is a platform. All platforms

have the same three-layer architecture: the application layer, the device control layer, and the IoT

device layer (as shown in Figure 3.3).

Figure 3.3 SD Device layer architecture

66

Application layer: This layer allows developers to deploy their IoT applications by utilizing

an abstraction of the underlying IoT infrastructure. The abstraction is provided by the SD-IoTD

controller in the orchestration layer. The SD cluster layer acts as the application layer to the

platform.

Device control layer: This layer accommodates the SD-IoTD controller. It is a bridge between

the application and the IoT device layer. It offers the application layer a global view of resources

in the IoT device layer. It provides the underlying resources with an interface to update their

status, attributes, and sensor services. With the knowledge of both requirements of the application

layer and capabilities of the IoT resources within the IoT device layer, it can orchestrate sensor

services for IoT applications on demand.

IoT Device layer: This layer hosts SD-IoT resources. It contains IoT devices belonging to the

clusters. These devices include both virtual and physical devices (sensors, actuators, cyber-

physical systems). We use IoT devices to include networked sensors in this thesis. In particular,

virtual devices and IoT devices are software components that can represent plug-in physical

devices, emulate physical devices, and logical sensing functions. The description of a virtual

sensor or Software-Defined Virtual Sensor (SDVS) is in Chapter 4. Communication between the

SD-IoTD controller and the SDVS is through a southbound protocol, S-MANAGE (Chapter 5),

which has been designed specifically for communication between the controller and IoT devices.

Different from the SDN data layer comprising robust switches, the IoT device layer is

composed of resource-limited IoT devices. Therefore, the device layer is designed with two sub-

layers, called representation and underlying layers. The underlying resources consist of physical

or virtual sensors/IoT devices, or a group of physical/virtual sensors/IoT devices. The

representation layer is an interface between the SD-IoTD controller and the underlying resources.

This layer enables enhancements of IoT devices' features, e.g., rigid configuration, limited

computation/communication, and networking capability. Moreover, this makes it possible for the

SD-IoTD controller to control and program not only forwarding but also functional behavior of

the underlying resources for providing IoT services on demand.

67

3.4 LSSD-IoT Features

This section discusses features of the proposed LSSD-IoT architectures in regard to

provisioning IoT services on demand.

 Hierarchical Management

In the proposed LSSD-IoT model, IoT resources are under two levels of control and

management. The SD-IoTC controller controls and manages SD-IoTC clusters and transporting

devices. The SD-IoTD controller controls and manages IoT resources.

IoT resources or IoT infrastructure generally refers to single or multiple physical sensors/IoT

devices, or a network of these devices. The SD-IoTC cluster is a representation of an SD-IoT

cluster. The SD-IoT cluster consists of software-defined virtual sensors (SDVSs) that represent

sensors/actuators or IoT devices. The SD-IoT resources imply SD-IoT platforms and their

represented SD-IoTC clusters. The SD-IoTD controller directly controls and manages SD-IoT

resources and through which indirectly controls and manages IoT resources. All SD-IoTD

controllers are under the control and management of the SD-IoTC controller.

Therefore, the LSSD-IoT system can centrally control and manage IoT resources without

direct interaction with them. Through the SD cluster and device layers, the LSSD-IoT system

musters the available IoT resources so it can achieve the availability of all integrated IoT systems

and orchestrate them to provide appropriate and quick responses to application requests.

 Provision of IoT Services on Demand

The provision of IoT services on demand is the ability to instantly respond to IoT demands at

any time. Thus, the IoT resource needs to be automatically orchestrated to provision IoT services

at any time. According to 5GPPP [14], orchestration describes the automated arrangement,

coordination, and management of the complex system, middleware, and services.

There are various IoT service types as discussed in Chapter 2. The IoT services may represent

functional elements of an IoT device. The IoT service can be sensing values, actuating status, or

an advanced computing/communication capability of an IoT device. One IoT device may provide

68

various types of IoT services since it may include different sensors/actuators or functions. These

IoT services can generally imply data-centric IoT services or function-centric IoT services. The

ubiquitous service is the ultimate goal of all IoT systems, and also the LSSD-IoT model.

The LSSD-IoT enables a flexible and scalable provision of IoT services on demand. An IoT

service can be established by chaining services of individual IoT clusters in various

configurations such as parallel, sequential, or a complex mixture of parallel and sequential

configurations. In accordance with IoT application requirements, the LSSD-IoT system

orchestrates its underlying IoT resources to achieve the required services.

 Programmability

The LSSD-IoT enables the programmability of both transporting devices and IoT devices. At

the cluster level, the SD-IoTC controller can program the data flows over the core network to

deliver IoT requests to IoT clusters and to transport results to desired destinations and configure

SD-IoT resources to achieve required services. At the device level, the SD-IoTD controller

orchestrates and programs IoT clusters according to the requirements of the SD-IoTC controller.

The SD-IoTD controller configures SDVSs and via these programs IoT devices to achieve

required services and deliver results to required destinations. The SD-IoTD controller by itself

can obtain the availability of the resources and their current service-provisioning tasks, so it can

provide appropriate responses to application requests such as meeting the demand fully or

suggesting an alternative that satisfies the request partially, or being unable to provide the services

because of insufficient resources.

 Virtualization with SDN and NFV

With SDN: By leveraging the SDN paradigm, the SD-IoTC controller is able to i) obtain

a global view of available SDN switches as well as IoT clusters connected to the switches; ii)

program data flow between the networking devices in order to forward IoT requests as well as

IoT results to desired destinations. Moreover, the principles have inspired the development of a

protocol for managing and controlling virtual representations of IoT devices.

69

With NFV: Using NFV technology, networking functions can be virtualized and hosted

by physical servers that are located within Network Function Virtualized Infrastructure (NFVI).

With the support of the SDN technique, traffic flows between Virtualized Network Functions

(VNF) can be controlled and managed. The SDVS are proposed in accordance with the NFV

principles. The SDVS is a virtualized function representing IoT services from an IoT device.

3.5 Practical Realization of the Proposed LSSD-IoT Model

The proposed LSSD-IoT model enables central control and management of IoT devices

spread over the large-scale area. The question is whether it is possible to practically control and

manage each IoT device in such a large-scale system in the provision of IoT services on demand.

In practice, each IoT system is designed to be controlled and managed by each system’s own

controller, so it is impossible to manage multiple controllers because of their non-interoperability.

In addition, with limited capabilities, an IoT device may not be able to handle multiple tasks or

be shared among many IoT applications. The IoT devices are mainly application-specific, so it is

challenging to reconfigure them without changes in hardware. Therefore, it is crucial to

demonstrate the feasibility and efficiency of our proposed model in practice.

Well-known open-sources including Floodlight SDN controller, OpenFlow switches,

network simulator Mininet, real sensor tags have been used to demonstrate the practical

implementation of the proposed LSSD-IoT platform. The controller of the LSSD-IoT platform is

extended and developed from the Floodlight SDN controller to handle IoT devices and their

service orchestration. The transport network, representing a large-scale transporting system,

includes OpenFlow switches that are deployed in the Mininet setup. The management system of

IoT devices is a software entity that can be implemented and modified easily with little changes

in the physical infrastructure. The software entity can represent and communicate with physical

IoT devices via the device-specific protocol.

70

3.6 Thesis Roadmap

It is worth noting that this chapter provides the overall architecture of our novel LSSD-IoT

model for the provision of IoT services on demand. In order to enable IoT resources to be

efficiently utilized by sharing their resources among IoT applications, each IoT system needs to

be programmable and scalable to be orchestrated to accommodate new IoT applications, and there

needs to be a management model to control and manage these integrated systems. The SDN and

NFV paradigms are leveraged by this study.

Even though the SDN and NFV paradigms can meet the demand, there are significant

challenges in applying SDN and NFV techniques to the constrained IoT environment. To

overcome the difficulties, we propose an SD-IoT model. In the model, we firstly address an issue

of constrained IoT devices that cannot be adapted with SDN or NFV technologies. We propose

a Software-Defined Virtual Sensor (SDVS) as an enrichment of limited underlying devices. The

SDVS enables the programmability, control, and management of the underlying devices in

accordance with IoT demands. To control and manage the SDVS, we propose a manage-and-

control protocol, termed S-MANAGE. In order to control and manage not only underlying

devices but also a whole IoT system in the provision of IoT services on demand, we do need a

controller with the capability of controlling and managing their own IoT system as well as sharing

their resources with other IoT applications.

A roadmap of the rest of this thesis is organized as follows.

Chapters 4, 5, and 6 describe the design and operation of the proposed SD-IoT model together

with novel components, including the SD-IoTD controller, S-MANAGE protocol, and SDVS.

Chapter 7 describes the design of the proposed SD cluster layer and demonstrates the practical

implementation of the whole LSSD-IoT platform with all implemented elements, including the

SD-IoTC controller, SD-IoTD controller, S-MANAGE protocol, and SDVSs. In addition to the

demonstration of the feasibility of the proposed LSSD-IoT platform, we also evaluate the

performance of the platform in the provision of IoT services on demand.

Chapter 8 concludes this dissertation by summarizing this study and suggesting future work.

71

3.7 Summary

This chapter presented the overall picture of our proposed LSSD-IoT model for the provision

of IoT services on demand and outlined the roadmap of this dissertation. Firstly, we discussed

the need for as well as challenges to effectively utilizing geo-distributed IoT systems to provide

services for multiple IoT applications. We then provided a high-level description of the proposed

LSSD-IoT model. We discussed features of the model in relation to the provision of IoT services

on demand as well as a practical realization of the proposed model. Finally, the roadmap of this

thesis was provided.

72

Chapter 4 Software-Defined Virtual

Sensor (SDVS)

4.1 Introduction

IoT devices are indispensable elements in IoT systems/services. They provide necessary data

or actuating functions for IoT applications (we use underlying devices to include virtual/physical

sensors/sensor nodes/networked nodes and IoT devices in this chapter as well as the whole

thesis). Deployment of various IoT applications presents many challenges due to their large scale,

resource limitation, and heterogeneous environment that accommodates numerous IoT devices

with heterogeneous capabilities of sensing, actuating, computing, and communicating [108]. In

many existing IoT applications, overlaid deployment of IoT devices causes difficulties in the

interaction and sharing of information between the devices and the applications since the IoT

devices are too rigid to permit reconfiguration for changes after their implementation. The key

challenge is the programmability of various IoT devices in response to diverse IoT application

demands.

Among solutions to the programmability of wireless sensor networks and the Internet of

Things (WSN/IoT) systems, an emerging Software-Defined Networking (SDN) technique has

been proposed. However, applying the SDN paradigm to sensor/IoT networks faces serious

challenges due to the limitations on the capability of these devices and their interconnecting

protocols [109]. The complementary Network Functions Virtualization (NFV) can partially

73

address these challenges. NFV technology is utilized to virtualize networking functions as well

as enhance the functionality of IoT devices. This technology can be applied readily to the

WSN/IoT environment for creating a virtual representation of IoT devices that can serve multiple

IoT applications simultaneously. This virtual representation offers a solution to enrich the

features of limited IoT devices.

By applying both SDN and NFV principles, diverse underlying sensor nodes or IoT devices

can be programmed in accordance with the IoT application requests. However, the techniques

are only applicable to powerful equipment that has high capability in power, computation,

storage, and communication. In order to overcome the challenge, this chapter proposes a

Software-Defined Virtual Sensor (SDVS) that provides an enrichment solution for constrained

sensor nodes/IoT devices and enables the programmability of the devices in accordance with IoT

applications on demand. This work has been accepted for publication [18]. Figure 4.1 shows the

connection between the proposed SDVS and the overall solution of this thesis.

Figure 4.1 SDVS in relation to LSSD-IoT model

74

The rest of this chapter is organized as follows. Section 4.2 provides a detailed description of

the proposed SDVS. Section 4.3 describes the representation types of SDVS. Section 4.4

discusses the features of the SDVS. Section 4.5 presents SDVS architecture and software

implementation. Section 4.6 describes the use case scenario and practical implementation of the

SDVS. Section 4.7 demonstrates performance evaluation. Section 4.8 concludes this chapter.

4.2 Proposed SDVS

Clearly, an “intelligent entity” has the ability to sense and interact with its environment in a

meaningful way in order to achieve the entity’s end goal. A sensor, in its simplest form, is just a

physical element or device that transforms some features of the environment into a quantifiable

measure for decision making by higher functional levels.

In the Internet of Things, a “thing” is basically defined as an object that can perform a function

(or a sensing service), has the ability to connect to a network for collaboration and an identity

(addresses or names) so that the device can be called upon to perform its intended service.

A “smart object” is somewhat a glorified term for an intelligent IoT thing, but the term is

rather vague without further qualifications as the word “smart” implies a continuum of degrees

of intelligence.

In the Industrial Internet of Things (IIoT), the term cyber-physical system (CPS) is defined

to mean a system that possesses the capability for sensing and interaction with its environment,

the capability for doing computations, and the capability for communicating with other cyber-

physical systems.

In its simplest form, a simple sensor is limited in its functionality (simple wires or circuit for

sensing the temperature), does not have the capability to perform data preprocessing, or make its

output available for further deployment and hence is very limited in its application.

Attempts have been made to create more useful/intelligent sensors. One may surround the

basic sensing function with computing and communicating capabilities by embedding in the

hardware components such as operating systems and wire/wireless intelligent interfaces.

75

Other attempts rely on a bare minimum hardware platform and implement all additional

intelligent features in software. In other words, with a layer of software over the basic hardware

sensor, the composite device acquires intelligence and is able to perform desired functions and to

provide services as envisaged.

In many situations, a sensor is purely a software entity (algorithm, object, middleware layer)

that either emulates a physical sensor or a software object that provides higher-level services to

the user, relying on logical information available within a system.

On computing, additional functionality may include various preprocessing functions that

preprocess data (noise removal or compressing) before making it available. On communication,

additional functionality may include transmitting and receiving components that can interface

with different communication wired or wireless protocols depending on the application. On

storage, raw data collected by a sensor may need to be stored locally and temporarily for local

preprocessing before transporting to a data collector, depending on the availability of the

connectivity at the time.

With the advance of digital transformation, Industry 4.0 specifically, every element of a

manufacturing factory has its digital twin as an essential component of the overall smart

manufacturing industry. A digital twin of a component is a purpose-built software entity that

mirrors the essential features of the component. A digital twin can range from a cyber-physical

system (smart sensor, smart conveyor belt, a production line) to a production process or a

complete factory. These are emulated software components that an intelligent controller,

orchestrator, or an enterprise can use to simulate, test out the operation, and the intended product

before committing them to an actual production and manufacturing process.

Many emerging services can now be implemented as cloud services, where a cloud can

provide necessary virtual resources on demand (based on a pool of physical resources) and

provision services as requested. In this infrastructure of virtualized resources, all computing,

storage, and networking resources are implemented in software. Cloud can thus provide services

with five defined features: on-demand self-service, rapid elasticity, broadband network access,

measured service, and resource pooling.

76

Clearly, a cloud-based IoT service can be provisioned once elements of the service can be

virtualized and orchestrated.

To shield an IoT device from the above-mentioned dependencies, to overcome the limitations

of physical sensors/devices, to allow autonomous device configuration and management, and to

allow services programmability, in accordance with the SDN and NFV principles, we propose a

virtual sensor as a software representation of an IoT device with the following definition and

properties.

 SDVS Definition

A software-defined virtual sensor (SDVS) is defined as a representation and an interface of

an underlying device/entity. The underlying IoT resources may include a physical/virtual

sensor/IoT device, a set of physical/virtual sensors/IoT devices, a service of a physical/virtual

sensor/IoT device, or a subset of services of a physical/virtual sensor/IoT device, as discussed in

the Representation section below. It enables a constrained underlying entity to be integrated as

an intelligent sensor service in an IoT application that can be provisioned on demand. The IoT

services refer to i) sensing data, e.g., light, temperature, humidity, or moisture, and ii) functioning

services including communicating, computing, networking, averaging, aggregating, actuating,

configuring, or authenticating services.

 SDVS Capability

SDVS is a software entity that functions as a virtual sensor that addresses the above-

mentioned limitations of physical sensors/actuators and possesses capabilities for adapting itself

in interacting with the surrounding environment and its controller for providing desired services.

Importantly, an SDVS is flexible in communicating with its attached end devices

(sensors/actuators) regardless of their specific communication protocols.

Specifically, an SDVS can be considered as an enriched version of a physical sensor or a

group of physical sensors by virtue of the additional software layer on top and flexible sets of

plug-in sensor interfaces.

77

An SDVS can provide value-added functions over those available from its underlying sensors

through its software implementation. An SDVS may be also able to provide some local

processing and management such as data pre-processing and local configuration. An SDVS may

also include some storage to deal with other local issues rather than sending them to remote

handlers. An SDVS can emulate a sensor, actuator, or provide a digital twin of a device for

designing and testing preproduction of service in an Industrial IoT application. By software-

defined, we mean that an SDVS can be flexibly designed, programmed, configured, and managed

autonomously according to its intended application.

Essentially, an SDVS is defined by its representation type and an interface to its underlying

IoT resources.

4.3 SDVS – Representation Types

In accordance with the definition of an SDVS, representations of an SDVS are classified into

two main groups: i) sensing and ii) functioning services, as presented in Figure 4.2. Regarding

the first category, an SDVS may represent a single sensing service that is accumulated from one

or multiple physical/virtual sensors/IoT devices. In the second category, an SDVS represents a

functional counterpart or an advanced functional element of a physical/virtual sensor/IoT device.

Representing a Physical Sensor/IoT Device: A constrained physical sensor/IoT device may

need the additional support of a virtual sensor to become a programmable entity in an IoT system.

Particularly, sensing and functioning services of the physical sensor can be programmed to

provide IoT services to multiple applications.

Representing a Sensing Service of Multiple Physical/Virtual Sensors/IoT Devices: These

provide the same sensing service type. A virtual sensor/IoT device can collect a kind of sensing

reading from multiple physical/virtual sensors. The reading can be used for two purposes;

aggregating the reading values to produce new average value and deriving a data type that cannot

be produced by a single sensing type. For the first purpose, the temperature of small towns is

collected for further production of an average temperature of a city. For the second purpose, a

78

proximity sensor value is produced by interpolating light reading and variance in the light

intensity [80].

Representing a Subset of Services of One/Multiple Physical Sensors/IoT Devices: An IoT

application may require several sensing service types, and this has to be managed by a virtual

sensor through its representation of the underlying sensors. For example, an SDVS may have to

abstract different data types from a physical sensor/IoT device and provide aggregated data to the

application [81]. Another example in [80], a virtual sensor collects multiple sensor types, such as

Temperature sensor and Humidity sensor to compute a safety level value for a Safe habitat

monitor or a heat index. The virtual sensor is needed to substitute the sensors that cannot be

physically deployed. Furthermore, the virtual sensor is used for informing workers about a safety

violation level by computing different sensor types such as temperature, vibrations, and barrels

relative proximity [110].

Representing a Subset of Services of One/Multiple Virtual Sensors/IoT Devices: For example,

a heat index is derived from moisture and temperature readings. Thus, to evaluate the heat index

of a campus, including many buildings, the SDVS necessarily provides average heat indexes

collected from multiple virtual sensors/IoT devices that represent heat indexes of buildings within

the campus.

Representing a Functional Counterpart of a Constrained Physical Sensor/IoT Device: The

SDVS can enhance limited functionalities of a physical sensor, for instance, i) addressing and

naming; ii) search and discovery, iii) mobility management, and iv) accounting and

authentication. Examples of these cases are discussed in [4].

Representing an Advanced Functioning Service of a Physical Sensor/IoT Device: The SDVS

enables an advanced function to be deployed on a physical sensor/IoT device. The additional

element enhances the physical sensor’s capabilities according to application demands. For

instance, an application-specific sensor is used for another application that has a different

communication protocol. Thus, the SDVS allows the physical sensor/IoT device to communicate

with the application via the required communication protocol.

79

Figure 4.2 SDVS' s representation types

4.4 SDVS Features

To embrace the SDN and the NFV principles and to fulfil the defined representations

discussed above, the SDVS is designed with the following features.

Fundamental properties: It has all the characteristics of a represented sensor/IoT device.

When representing a service, it provides collected results regarding the service. When

representing a physical sensor/IoT device, it has all the characteristics and functions of the

sensor/IoT device. When representing a group of physical sensors, it has not only the information

of the represented sensors but also additional functions that enable it to handle communication

with the physical sensors and high-level tasks. It is also the same as the case of an SDVS

representing a group of virtual sensors/IoT devices.

Initiation: It is initiated by a controller when i) an IoT device or a sensor node joins an IoT

cluster, or ii) there is a call for a new IoT service.

SDVS Representations

Sensing Services

Of Multiple
Physical/Virtual

Sensors/IoT devices

A Subset of Services
of One/Multiple

Physical Sensors/IoT
devices

A Subset of Services
of One/Multiple

Virtual Sensors/IoT
devices

Functioning Services

Functional
Counterpart

An Advanced
Functioning Service

80

Location: An SDVS can be placed at the controller or at the physical device according to the

resource orchestration approach of the controller.

Activation period: An SDVS is activated according to application demands, so it would be in

idle or deleted when it is not involved in any IoT service provision, or its represented sensor no

longer exists, respectively.

Identification: Each SDVS is identified by a name, ID, and IP address. A name and ID enable

it to locally communicate with each other. An IP address allows it to globally communicate with

the controller or applications on the cloud/the Internet.

Configuration management: An SDVS is managed and configured by the controller via a

management protocol. The configuration is deployed by the controller and represented by

instructions in forwarding and configuring tables. The SDVS follows the instructions to know

how to process an incoming packet as well as program underlying sensors, respectively.

Association between the SDVS and physical/virtual sensors/IoT devices: Regardless of many

representation types, there are four main kinds of association between an SDVS and underlying

devices: i) one-to-one, ii) one-to-many, iii) many-to-one, and iv) many-to-many [111]. As for

one-to-one association, an SDVS represents a physical/virtual sensor or a service belonging to

the device. Regarding one-to-many association, there are three cases such as i) the SDVS may

represent a set of physical/virtual sensors; ii) the SDVS collects information of a homogeneous

service from a variety of physical/virtual sensors; or iii) the SDVS represents a subset of services

of a physical sensor/IoT device. In this case, one physical/virtual sensor has many services, and

each of them is represented by one SDVS, so it results in the many-to-one association. The many-

to-many association is a combined method of other associations.

Stored data: An SDVS needs to store information about itself and its represented sensors.

The information of the represented sensor includes identification, computing and communicating

characteristics, current, past, and future status related to handling tasks and duty cycle modes.

The statuses are stores in the list of attributes of the virtual sensor. In addition, it has its own

identification, configuration information, including forwarding and configuring tables and

statuses.

81

Communication interfaces: There are four communication types that can be with i) its

underlying sensors, ii) other SDVSs, iii) the controller, and iv) other cloud services/applications.

It needs protocols to communicate with the controller or other SDVSs, IoT applications, and its

represented sensors, respectively.

Security: An SDVS is managed by a controller that is responsible for managing its life-cycle.

The SDVS can be created, modified, transferred, deactivated, activated, or deleted by the

controller. However, the controller can delegate the control to an application/user, another

controller, or other SDVSs with limited permission.

Mobility: An SDVS can be moved between IoT systems or within an SDN domain, or to the

cloud.

Service advertisement: An SDVS informs and updates its available services to the controller

on behalf of its represented sensors/IoT devices.

Service provision: An SDVS stores temporary sensor services collected from its represented

sensors and reuses them to quickly respond to application requests.

Programmability: An SDVS can be programmed to operate according to its configuration set

up by the controller. It is responsible for communicating with represented sensors via their

specific protocol.

IoT Interface: An SDVS is an interface between underlying IoT resources and the controller,

applications/users, or the cloud.

4.5 SDVS Architecture and Software Implementation

4.5.1 SDVS Architecture

Typically, a physical sensor node is composed of four units: computing, communication,

sensing, and a power subsystem [112], as shown in Figure 4.3. The computing subsystem

controls the elements of the sensor node and computes required tasks [112]. It includes a

processor and a storage unit. The processor unit may operate in various energy-saving modes as

82

Sleep or Off-Duty, Active or On-Duty, sensing unit on duty, and transceiver on-duty mode. The

storage unit comprises a flash memory, containing the program code for a node, and a RAM,

storing sensing data and necessary data for computing tasks. The communicating subsystem

allows a node to communicate with other nodes or with the base station by using a short-range

radio. The power subsystem includes a battery. The sensing subsystem translates physical

phenomena into electrical signals.

Figure 4.3 Sensor node architecture

However, depending on their applications, underlying devices may have different

functionalities and deploy various technologies. In terms of communication, they may use

different wireless mechanisms that entail different routing protocols, addressing schemes, data

encodings, and data formats. In terms of IoT platforms, they may rely on different development

environments, programming languages, processors, memories, and communication networks

[113]. IoT devices can be of various types, but they typically include common elements such as

i) identification, ii) sensing and actuating, iii) computation, iv) communication interfaces, and v)

management. They may consist of several communication interfaces such as i) audio/video, ii)

memory and storage, iii) Internet connections, and iv) I/O interfaces for sensors.

To represent such basic devices as well as fulfill the proposed features, the SDVS architecture

requires three main elements, as depicted in Figure 4.4.

83

Figure 4.4 SDVS architecture

Represented entity: It includes attributes and functions of the represented underlying entity,

for example, battery level, driver communication protocol, attached sensors, processing

capability, memory.

Software-defined functions (SDF): They are communicating or computing functions that

can be programmable via a management protocol.

Data storage: It stores metadata of the represented entities, sensing data, and instructions for

configuration of represented entries or for forwarding results to desired destinations. Particularly,

it temporarily stores actual data collected from its represented entities.

4.5.2 Software Implementation

To perform the proposed functions, the SDVS is composed of four main software components

(as illustrated in Figure 4.5), including i) identification and address for communicating with both

controller and represented entities, ii) sensing/actuating services of represented devices, iii)

storage data element storing information about sensing/actuating services, and iv) advanced

functions that can be flexibly installed such as communicating and computing functions.

84

Figure 4.5 SDVS in software

To communicate with SD-IoTD controller via S-MANAGE protocol, the SDVS is

implemented with an algorithm (Algorithm 4.1) that assists the SDVS to process an incoming

packet. Each packet header is extracted from an incoming packet and is stored as a set of header

fields. If the flag (first bit of Type) value is 0, the action is to point to the Forwarding Table to

get further instruction for forwarding the packet. If the flag value is 1, the action is to point to the

Controlling Table to get rules related to the configuration of underlying sensors. A set of

incoming packets to the SDVS is processed to get the header fields (line1-2). Analyzing the flag

value in the header field is used to select the right table to get further actions on the packet (line

4-10).

85

Algorithm 4.1: SDVS’s handling packet

Input: A set P of packets.

Output: returned a set of action

1: for each p in P do

2: h = pheader // h is a set of packet header fields

3: if hflag = 0 then

4: haction = Select (Forwarding_Table) //get the right action specified in this table

5: execute (haction)

6: else

7: haction = Select (Controlling_Table); //get the right action specified in this table

8: execute (haction)

9: end if

10: end for

The functional components of the SDVS are defined by software classes. They are written

and implemented in Java. All the classes enabling the operation of the SDVS and relationships

between the classes are illustrated in Figure 4.6.

Figure 4.6 Class diagram of the SDVS

86

The above classes defined attributes and functions of the SDVS. An SDVS needs to have

fundamental attributes of sensor nodes or IoT devices, and advanced functions as specified in its

architecture. To represent an underlying sensor node/IoT device, the SDVS needs to have the

represented entity’s information concerning battery (Battery.java and Dischargeable.java,

SdvsBattery.java), driver or communication protocol (DriverUnderlyingNode.java), fundamental

parameters and functions (UnderlyingNode.java).

The SDVS is designed to be able to communicate with a controller via S-MANAGE protocol

and with an underlying represented entity via its device-specific protocol. SDVS needs to be

identified by ID number, address, port number, its location. Moreover, it has information about

the underlying node, including identification, driver, attached sensors, or capabilities. It also

knows its neighbor sensor nodes. All parameters constituting the SDVS are presented in the

SDVS java class, as shown in Figure 4.7.

Figure 4.7 SDVS’s java class

The fundamental parameters of an SDVS, as well as the underlying node, are defined in the

AbstractCoreSdiotNode.java class (Figure 4.8). The class also contains abstract methods that

represent the fundamental functions of an SDVS and its represented entity (Figure 4.9).

87

Figure 4.8 Basic parameters defining an SDVS and its represented entity

88

89

90

Figure 4.9 Abstract methods defining fundamental functions of an SDVS and its represented

entity

91

4.6 Use Case Scenario and Practical Implementation

 Use case scenario

For the practical realization of the proposed SDVS, we develop a use case scenario in which

SDVSs represent physical IoT devices to provide IoT services on demand. In the scenario, there

are a number of IoT devices along a street. Sensing readings from the devices may be used for

providing traffic load along the street, weather conditions of an area, or to adjust a traffic light

according to traffic load over the street. IoT devices are under the control and management of a

controller. Each IoT device is attached with sensors, for example, light, humidity, proximity, and

temperature. Sensing readings and actuators from the device can be achieved and executed on

demand, respectively.

 Implementation set up

To demonstrate the above scenario, we implement a Software-Defined Internet of Things

(SD-IoT) system that is detailed in Chapter 6. The system represents a cluster of IoT devices. It

is composed of three main components (as shown in Figure 4.10): i) a software-defined Internet

of Things Device (SD-IoTD) controller, ii) a number of SDVSs and their represented sensor tags,

and iii) an S-MANAGE protocol that is a communication protocol between the controller and

SDVSs. The SDVSs are representations of physical IoT devices. The SD-IoTD controller

controls and manages the SDVSs using the S-MANAGE protocol. Details of the design and

implementation of the S-MANAGE and SD-IoTD model can be found in Chapter 5 and Chapter

6, respectively. All components of the model are written in Java by using NetBeans 8.2.

The implementation prototype is displayed in Figure 4.10. Six real sensor tags have been

used to collect real sensing data. Each sensor tag is a TI CC2650STK that communicate with the

SDVS via a Low-Bluetooth protocol. Each of them is attached to ten different types of sensors,

including light, digital microphone, magnetic sensor, humidity, pressure, accelerometer,

gyroscope, magnetometer, object temperature, ambient temperature [114]. We deploy an SD-IoT

system on a Raspberry Pi 3 running Raspbian GNU/Linux 9.11 (Stretch). The raspberry is

responsible for controlling and managing the sensor tags in the provision of IoT data on demand.

92

In this implementation, we make use of only five sensor types containing Ambient_Temperature,

Light, Pressure, Humidity, and Infrared_Temperature.

Figure 4.10 Implementation prototype

4.7 Performance Evaluation

This section presents results regarding an SDVS’s programmability and efficiency in

provisioning IoT services on demand.

4.7.1 SDVS – Feasibility and Programmability

A software driver is installed on the SDVS that represents sensors attached to the sensor tag.

Thus, the SDVS can automatically communicate with the sensor tags and achieve sensing values

from them when the sensor tags connect to the SD-IoT system via the BLE protocol. As presented

in Figure 4.11b, the SDVS represents one or multiple sensor nodes (sensor tags) to provide real

sensing data for the provision of IoT services on demand. In this implementation, the SDVS

represents five sensor types, such as Light, Ambient_Temperature, Pressure, Humidity, and

Infrared_Temperature. An example of data collected by the sensor tag is shown in Figure 4.12.

The log file records a sensor tag’s collected data in terms of collecting time, and five sensing data

93

types such as infrared temperature (ir_temp), ambient temperature (amb_temp), light, pressure,

and humidity. The SDVS can perform more actions, such as processing the raw data or

transferring them to the upper level.

a) IoT requests handled by the SDVS

b) Status of represented sensors

Figure 4.11 SDVS’s programmable features

94

Figure 4.12 Sensor tag’s log file

Handling multiple IoT requests at a time: As presented in Figure 4.11a, the SDVS23

currently handles two IoT requests that have Req_ID “1” and “2”. Each request handled by the

SDVS is identified by a request ID (Req_ID). The total number of Req_ID represents the total

requests that are served by the SDVS.

Configuring represented sensors in accordance with IoT demands: As displayed in Figure

4.11b, the SDVS23 currently represents five sensor types. It can configure the represented

sensors to achieve required services such as sensing and actuating. For example, the sensor

service SID01, SID02, SID03, and SID05 are configured to be OFF (Status is “0”), while SID04

is ON (Status is “1”).

Configuring and updating the status of represented sensors according to required parameters

associated with IoT requests: As presented in Figure 4.11a, the SDVS allows the IoT requests

to specify metrics related to required services. Take the Req_ID “1” for example, the request

requires service SID05 in location LOC01, for 5 minutes. Achieved results need to be sent to the

desired destination (as Dst “121”) every 10s. The SDVS also records the time (StartTime) when

it starts handling (Executed is “Y”) the request, the remaining time for handling the request

(TTL). Moreover, it counts the number of requests interested in a specific service (Counter value).

95

Updating the SD-IoTD controller: The SDVS can update the controller about changes in its

environment and status of its represented sensors, so the controller can resolve conflicts among

IoT requests. With such recorded information, the controller can muster availability of underlying

resources, and hence orchestrate them for incoming requests.

Collecting real data from represented sensors: For example, a service SID04 is required by

an application. SDVS21 is orchestrated to obtain the SID04. As shown in Figure 4.13, SDVS21

is configured to achieve the required service with specific requirements.

a) Configuration on SDVS21

b) SDVS21’s service status

Figure 4.13 Configuration status of SDVS21

4.7.2 SDVS – Efficiency

The following result demonstrates the efficient utilization of the proposed SDVS in

provisioning IoT services on demand.

Various IoT requests have been sent to the SD-IoTD system. These requests may come to the

system at the same time or separately. We try to send a number of requests simultaneously to the

SD-IoTD system, for example, 10, 30, 50, 70, 90 requests. Each request may demand one, two,

three, four, or five services.

96

Figure 4.14 shows the efficiency of the SDVS in response to an increasing number of sensor

service requests. Even there is a significant rise in the volume of simultaneous incoming requests,

the response time of the SDVS experiences a light growth that is much less than the increase in

the number of input requests. For example, to respond to 10 concurrent requests, regardless of

the number of required services per request, an SDVS needs about 379.3ms on average. When

the number of concurrent arriving requests increases by nine times, the response time of the

SDVS only rises about 1.8 times. In addition, when the number of services required per request

grows five times, the corresponding response time of the SDVS to each request rises about 1.5

times. For instance, when the number of input requests is 10, to response to each request for

1,2,3,4, and 5 services, the SDVS needs about 23, 34, 39, 44 and 48ms, respectively. This pattern

happen similarly to the case when the number of input request is 30, 50, 70, and 90.

Figure 4.14 SDVS’s average response time for one request per multiple requests

97

4.8 Summary

In this chapter, we introduce a software-defined virtual sensor (SDVS) with new concepts to

reshape the SDN and NFV technologies and support the provision of IoT services on demand.

SDVS is designed to enable IoT devices to be programmable on demand in response to IoT

application requests. A detailed design is provided. The implementation results demonstrate the

feasibility and efficiency of the proposed SDVS in the provision of IoT applications on demand.

In Chapter 7, we will investigate the integration of the SDVS into a large-scale software-defined

IoT infrastructure.

98

Chapter 5 S-MANAGE Protocol

5.1 Introduction

In Chapter 4, we proposed the software-defined virtual sensor (SDVS) as a representation of

sensors/IoT devices in the provision of IoT services on demand. The SDVS allows constrained

IoT devices to be programmed according to the SDN and NFV principles. To control and manage

the SDVS in accordance with the SDN principles, it requires an efficient but light-weight protocol

that suits the limitations and features of sensor/IoT devices. However, the SDN Southbound

Interface (SBI) protocol was designed to handle SDN networking devices, and it is not suitable

for resource-constrained IoT devices, whose mission is different from that of SDN routers and

switches. Furthermore, a separate protocol such as OF-CONFIG is often required to configure

the networking devices, and this introduces complexity to already constrained IoT devices.

This chapter proposes an S-MANAGE protocol that preserves the SDN-NFV paradigm but

provides a solution for controlling and managing IoT resources in the provision of IoT services

on demand. The S-MANAGE is designed both to configure SDVSs and to control the behavior

of the underlying networked IoT resources. This chapter investigates the design and practical

implementation of the S-MANAGE protocol. This work has been published in [19]. The function

of the S-MANAGE protocol in the overall large-scale software-defined Internet of Things

(LSSD-IoT) model is depicted in Figure 5.1.

99

Figure 5.1 S-MANAGE protocol in relation to the LSSD-IoT model

The remainder of this chapter is organized as follows. Section 5.2 describes the functions of

the proposed S-MANAGE protocol. Section 5.3 gives detailed specifications of the S-MANAGE

protocol. Section 5.4 presents the software implementation of the protocol. Section 5.5

demonstrates the implementation prototype and performance evaluation. Section 5.6 concludes

this chapter.

5.2 S-MANAGE in Relation to SD-IoT Model

Before investigating details of the proposed S-MANAGE protocol, we introduce a context

where the S-MANAGE protocol fits in. The S-MANAGE is designed to enable the

programmability of not only the functionality but also the networking behavior of IoT devices.

To realize the proposed features of the S-MANAGE protocol, we describe it in the context of a

software-defined Internet of Things (SD-IoT) model. The model is proposed in Chapter 6.

With the proposed SD-IoT model, we achieve three main aims: i) controlling and managing

IoT infrastructures according to IoT application demands; ii) allowing heterogeneous IoT devices

to participate in an SD-IoT system, and iii) extending the scope of the SD-IoT, allowing it to be

deployed and share resources in wider SDN domains for global or end-to-end IoT applications.

100

The proposed SD-IoT model is also structured in three layers, including the application layer,

the device control layer, and the IoT device layer, as depicted in Figure 5.2.

Figure 5.2 SD-IoT model

The application layer is where developers can deploy their IoT applications without the

knowledge of the underlying IoT infrastructure.

The control layer accommodates a software-defined Internet of Things Device (SD-IoTD)

controller. It is a bridge between the application layer and the data layer. It provides the

application layer with a global view of the underlying resources as well as an efficient interface

to express their interests on the underlying IoT resources. Meanwhile, it provides the underlying

resources with an interface to update their status, attributes, as well as sensor services. With the

knowledge of both the requirements and capabilities of the IoT resources, it can provide sensor

services for IoT applications on demand.

The data layer hosts IoT devices or IoT infrastructure. Different from the SDN data layer, the

SD-IoT data layer is designed with two sub-layers, called virtual and physical data layers. The

virtual data layer is proposed as an interface between the SD-IoTD controller and the physical

devices. The virtual data layer enables the controller to manage and control the underlying

resource in the physical data layer.

101

 SD-IoTD controller

The SD-IoTD controller is responsible for i) processing application requests, ii) orchestrating

resources, iii) updating knowledge of the underlying resources, and iv) controlling and managing

the underlying resources according to IoT application demands.

To handle these responsibilities, the controller houses several core modules: application

handler, resources manager and orchestrator, configuration manager, and a database for storing

information concerning the underlying resources.

Particularly, the SD-IoTD controller makes it possible for the application layer to specify

their demands via an NBI. The controller interprets these requirements into the SD-IoT resource-

specific language in order to orchestrate the resources to meet the IoT application requirements.

To configure the underlying resources, the controller makes use of an SBI defining resource-

specific messages to configure these devices.

 Software-Defined Virtual Sensor (SDVS)

The SDVS is defined as representative of physical/software sensor nodes or IoT devices

located in the physical layer. It is configured with core features and attributes of a physical sensor

node, and software-defined function (SDF). The core modules enable the SDVS to behave as the

represented physical IoT device, so it can interact with the represented devices via its

communication-specific protocol. Furthermore, the SDF allows the controller to enhance the

SDVS with processing, computing, or forwarding functions. Specifically, the forwarding and

configuring function is implemented to the SDVS as SDF. The SDVS is supposed to be connected

to its underlying IoT device and is able to act like the represented IoT device. In addition, it is

installed with S-MANAGE protocol features, so it can communicate with the controller.

 S-MANAGE protocol

The S-MANAGE protocol is an SBI between the SD-IoTD controller and the virtual data

layer. Via the SBI, the controller can manage and configure the SDVSs and via which their

represented devices are configured.

102

It defines the message structure, and message types exchanged between the controller and the

virtual layer. These messages are for configuration management and control of behaviors of

SDVSs.

5.3 S-MANAGE Protocol

In traditional IP networks, a router is used to relay packets (or datagrams) according to its

lookup table determined by a routing protocol. Packets are treated as independent elements not

related to other packets that may belong to the same source-destination connection. Traffic flow

is normally associated with packets belonging to an end-to-end TCP connection. In order to

completely specify a flow at a router, a large number of identifiers are needed, including transport

layer ID, network layer IP address, VLAN ID, MAC layer ID, and router port IP address. As a

consequence, a flow in the OpenFlow protocol requires some 12 matching parameters to identify.

Clearly, this is not needed in sensor/IoT networks where the end devices are not routing devices

in the traditional network. Many devices do not use TCP/IP protocol, direct deployment of

OpenFlow in WSN/IoT networks is not appropriate. Furthermore, the OpenFlow SDN network

still requires OF-CONFIG or other protocols for device configuration. What we need is a protocol

that is both light-weight specifically designed for resource-constrained devices in WSN/IoT

networks that can handle both configuration of the IoT devices and simple types of sensed data

but in the same spirit as “flow” in OpenFlow. S-MANAGE protocol is proposed to do just that.

The S-MANAGE protocol is proposed as a southbound interface between the SD-IoTD controller

and the virtual data layer. Via the southbound interface (SBI), the controller can both manage and

configure SDVS in this layer.

The S-MANAGE protocol is for managing and programming the SDVS within the virtual

data layer and indirectly via this SDVS to configure their represented physical devices. S-

MANAGE makes it possible for the controller to program sensors or IoT devices not only for

their forwarding behaviors but also other functions.

The protocol is proposed according to the spirit of two protocols, OpenFlow [115] and OF-

CONFIG [116]. The OpenFlow focuses on flow rules as setting, modification, deletion, or adding

103

rules for controlling the forwarding behavior of OpenFlow switches. Meanwhile, the OF-

CONFIG enables configuring an OpenFlow Switch itself as the setting of the port number, IP

address, or interfaces. It should be noted that the proposed S-MANAGE is a new design for both

controlling the behavior and programming the configuration of the underlying resource-

constrained IoT devices. It simplifies the matching concept from OpenFlow, but it is not an

adaptation of OpenFlow with additional features of OF-CONFIG. The adaptation of OpenFlow

has not been successful with many previous research attempts, as discussed in Chapter 2.

The protocol enables the management and configuration of representations of sensors/IoT

devices to be based on two proposed instruction tables, called forwarding and configuring table.

The forwarding table instructs an SDVS on how to handle an arriving packet, while the

configuring table guides an SDVS to configure its represented underlying nodes. It should be

noted that an SDN switch is considered as a set of flow tables, each with many rows of flow rules,

and traffic flow rules are determined by the SDN controller and installed at the SDN switches so

that they can match passing traffic flows and forward them according to the rules. As IoT devices

are not routing devices, the situation is much simpler, the forwarding table in the SDVS is just

an instruction from the SD-IoTD controller to tell the SDVS what to do with the received packet.

Much simpler header and only simple header matching operations are required.

The protocol allows the controller to i) install instruction tables on an SDVS for configuration

purposes, ii) get information concerning the SDVS’s features, functions, and the status of its

underlying sensors, and iii) collect statistics associated with the SDVS’s operation as the number

of processed packets or sensor services required by IoT applications.

In addition, via the protocol, an SDVS is able to i) update the controller with their status and

attributes, and ii) ask for instructions on processing an incoming packet or configuring its

underlying sensors or IoT devices.

The operation of the S-MANAGE protocol can be clarified via the sequence diagram (Figure

5.3). For example, the SD-IoT controller requests forwarding statistics from an SDVS. Both SD-

IoT controller and SDVS maintain their connection by exchanging Hello messages. The SD-IoT

controller sends a Forwarding Statistics Request message to the SDVS, and the SDVS replies to

104

the request by sending a Forwarding Statistics Response message back the controller. With the

established connection, the SDVS can update the SD-IoT controller on its forwarding statistics.

Figure 5.3 Sequence diagram for Forwarding Statistics achievement

The S-MANAGE defines communication methods between the controller and an SDVS. It

specifies exchanged message types between the two entities, the message format, the structure of

instruction tables, and how an SDVS is programmed and operates based on these tables’

instructions. Details of the protocol design are described in the following sections.

5.3.1 S-MANAGE Header

The structure of the S-MANAGE packet comprises a header and a payload. All S-MANAGE

messages begin with an S-MANAGE header, as depicted in Figure 5.4. The header size is 10

bytes. It includes the following parts.

Figure 5.4 S-MANAGE header

 Source Address (Src.Addr) is an address of a source sending a packet.

 Destination Address (Dst.Addr) is a destination address of a packet.

105

 Next hop address (Nxt.Hop) is an address of a hop in the list providing the path of a packet

from the source to the destination.

 Type indicates a packet type. The action on an incoming packet depends on the packet type.

 Packet length (Pkt.Lgth) indicates the length of a packet, including its header and payload.

 TTL is “time to live” of a packet. It is reduced by one at each hop.

 Message-ID (Msg.ID) is an identifier of the packet type.

5.3.2 S-MANAGE Message types

The payload carries the content of a packet. Different types of packets carry different kinds

of information which represent different purposes of a sender. Therefore, we define the following

S-MANAGE message types to achieve the expected purposes.

The S-MANAGE message types are grouped into three categories, i) controller to SDVS, ii)

asynchronous (SDVS to the controller), and iii) symmetric (controller/SDVS to

SDVS/controller), as presented in Figure 5.5. However, due to the constrained resources of the

sensor nodes or IoT devices, the number of messages exchanged is minimized, and the messages

are optimized.

106

Figure 5.5 S-MANAGE message types

Controller-to-SDVS message type: This message type is initiated by the SD-IoTD

controller and may or may not require a response. The messages for the installation of forwarding

and configuring instructions on an SDVS need no responses from the SDVS. This category

includes messages as SetForwardingInstruction, SetConfiguringInstruction,

ModifyConfiguration packets. However, if the controller demands an SDVS’s attributes or status,

it needs the SDVS’s responses.

SetForwardingInstruction/SetConfiguringInstruction: Enables the controller to install a

forwarding/configuring instruction on an SDVS’s forwarding/configuring table, and to respond

to an SDVS’ requests for a forwarding/configuring instruction respectively.

ModifyConfiguration: Modifies a configuration instruction.

RequestFwdStats/RequestConfigStats: Gets statistics of a forwarding or configuring

instruction respectively.

107

ResponseFwdStats/ResponseConfigStats: Is sent from an SDVS to the controller whenever

the SDVS receives a RequestFwdStats/RequestConfigStats message respectively. These

messages include information about the statistics of an instruction table or an instruction in the

table.

RequestFeatures/ResponseFeatures: Gets an SDVS’s information about its sensor service

list, the services’ status, or driver of the underlying node.

Asynchronous message type (SDVS-to-Controller): This message type is sent from an

SDVS to a controller without any request from the controller. It enables the SDVS to ask for

instruction on handling incoming packets and to update the controller on changes of its

underlying sensor nodes regarding their active/idle status or completion of a required task.

Report packet: Reports the status and behavior of an SDVS. Particularly, the controller will

be updated by changes as follows.

a. Update the controller on its features (ReportFeatures).

b. Inform the controller about the removal of a configuration instruction from a

configuring table (ReportConfigurationRemove).

c. Notify the controller about a sensor node’s battery level (ReportLowBatt).

d. Notify the controller that a sensor is at its maximum level of handling requests, so it

is unavailable in the considering list of the controller (ReportFullTask).

e. Inform the controller about the completion of a required service by an SDVS

(ReportCompletion).

Response message type: Sends required services back to a required destination.

Request message type: Requests an instruction for its operation. Particularly, if an SDVS

cannot find an instruction for handling an incoming packet, it sends a Request packet to the

controller using its global knowledge of underlying network elements to respond to the request.

Symmetric message type (Controller/SDVS-to-SDVS/Controller): This message type is

initiated by the controller or an SDVS and sent periodically without solicitation from the other.

108

Hello message: This message is for an SDVS to notify its existence and for the controller

to inform the SDVS that it has not received an update for the current period.

5.3.3 Forwarding Table Specifications

The forwarding table contains instruction entries as rows of the table. This table is composed

of three main components, matching window, action window, and statistic window, as presented

in Figure 5.6. The matching window is matched against the header fields of an incoming packet.

If a match is found, a corresponding action in the action window is executed, then associated

statistics are updated for the matching packet. Otherwise, the packet is forwarded to the

controller. The controller figures out how to process the packet.

Figure 5.6 Forwarding table structure

Matching window: It provides information for extracting needed values from an arriving

packet header. The extracted values are matched against the specified values in this window to

find a match for the incoming packet. The window is comprised of four parameters:

a) ID: Indicates an ID of a matching window of an instruction. It is used when an incoming

packet needs to be matched with many matching fields since each forwarding entry

allows matching of a field in a packet header. It enables multiple header fields of an

109

incoming packet to be considered, while it does not require more memory for storing

multiple matching windows for an instruction entry.

b) Matching Field: Indicates which part of a packet header is compared to the specified

value in the matching window, which means that not all packet header fields are

necessarily matched against a forwarding entry.

c) Operator: Indicates a comparison method between the matching header field and the

matching window Value. Operator values can be equal (=), different from (!=), higher

than (>), higher than or equal to (>=), less than (<), less than or equal to (<=).

d) Value: This is compared to the extracted header field.

Action window: The window indicates a corresponding action for an instruction entry. The

action window is composed of three parts: Action Type, value 1, and value 2. The value 1 and

value 2 parts do not have a specific name, since they may represent values of different matching

fields according to the action-type value.

a) Action Type: Indicates a type of action. Possible action types are as

FORWARD_UNICAST, FORWARD_MULTICAST, FORWARD_BROADCAST,

DROP, MODIFY, or CONTINUE.

b) Value 1: Different action types result in the different meaning of Value 1. For example,

the “MODIFY” action type requires a new value and the modified value. As for the

“CONTINUE” action, the forwarding instruction ID needs to be specified, so the

incoming packet needs to be matched against the instruction entry with the same ID.

For the FORWARD_UNICAST, FOWARD_MULTICAST, and

FOWARD_BROADCAST action type, it demands the unicast, multicast, and broadcast

address, respectively.

c) Value 2: A replacement for the old value.

Statistic window: With a focus on the efficient programming of underlying sensors/ IoT

devices, statistics would enable the update of sensor and network status. When a match is found,

110

statistics related to the matched instruction is updated. The statistics record Time To Live (TTL)

and Counter.

a) TTL: Is a time to live of a forwarding instruction entry. It is decreased when the

instruction table is updated. Its value depends on the required amount of time of an

application request. It is gradually reduced to zero and is deleted when reaching zero.

b) Counter: Counts the number of packets matched against a forwarding entry.

5.3.4 Configuring Table Specifications

The configuring table provides an SDVS with instructions about configuration for its

underlying IoT devices. Its structure is composed of two main windows: configuring and

statistics, as shown in Figure 5.7.

Figure 5.7 Configuring table structure

Configuring window: The configuring window includes three components: the required

services, required condition, and required action.

a) Required service: Indicates the required sensor service.

b) Required conditions: Indicates the conditions related to the required service.

a. Frequency: Specifies how often the required sensor service is achieved.

b. Period: This is an executing period of instruction.

111

c. Destination Address: Specifies the destination of results returned by an SDVS. If there

is no specified value, the destination is the controller.

c) Required action: Indicates an action type that is applied to the required service under the

specified conditions.

Statistic window: The window shows the number of configuring instructions and their

operating time associated with an IoT application request. It includes information associated with

an instruction, namely request ID, TTL, Counter, Operation time, and Executed status.

a) Request ID: Indicates which application request is associated with the configuring

instruction. When the last configuring instruction of a ReqID is executed, the SDVS sends an

acknowledgment to the controller about its completion of the required task.

b) TTL: Is the existing time of a configuring entry and is defined by application

requirements. When it reaches zero, the related instruction is removed.

c) Counter: Shows the current number of requests for a sensor service and is used for

updating a state of an SDVS. The state indicates a busy level of the SDVS. The higher the state

number, the busier is the SDVS. The state is computed according to the total number of tasks that

an SDVS performs and is updated in accordance with the counter statistics.

d) Operation time: Shows timing data related to the execution of an IoT application request.

It provides information about the starting time and running time of an executed request. The

information is essential for the orchestration function of the controller.

e) Executed: Specifies if an instruction has been executed or not. The executed status marked

with “Y” means executed and with “N” means not executed.

5.4 Software Implementation

This section describes the software implementation of the config table and the forwarding

table.

112

 Configuring table in software

Classes needed for establishing the configuring table are displayed in Figure 5.8. The classes

are for forming a configuring entry in the configuring table.

Figure 5.8 Class diagram of the configuring table

The configRuleEntry class is shown in Figure 5.9. The class provides methods for assessing

or configuring a configuring entry in the configuring table.

113

Figure 5.9 Details of a configuring entry

 Forwarding table in software

Figure 5.10 presents classes that are used for forming a forwarding entry in the forwarding

table.

114

Figure 5.10 Class diagram of the forwarding table

 S-MANAGE packets

S-MANAGE packet (Figure 5.11) is developed from a base packet that is a network packet.

115

Figure 5.11 Class diagram of S-MANAGE packets

5.5 Implementation and Performance Evaluation

5.5.1 Implementation Set up

To demonstrate the performance of the proposed S-MANAGE protocol, we develop an SD-

IoT environment where the S-MANAGE is utilized as a control and management protocol. The

controller configures SDVSs using the S-MANAGE.

The implementation is developed from our preliminary implementation [23] and the Java-

based open-source platform [117] into a comprehensive design and implementation. The SD-IoT

116

model is a software platform written in Java by utilizing Netbeans 8.2. It is connected to data

storage that is built using MySQL. The three main elements comprise the SD-IoTD controller,

the S-MANAGE protocol, and the SDVS. The implementation prototype is depicted in Figure

5.12.

Figure 5.12 Implementation prototype

Three software modules, including control, southbound interface, and virtual representation,

are responsible for the SD-IoTD controller, the S-MANAGE, and the SDVS, respectively. The

control module includes classes responsible for analyzing application requests, orchestrating

SDVS resources, generating instructions relating to the requests, networking, and communicating

with the SDVS. The Southbound interface module is composed of classes for S-MANAGE

messages, forwarding tables, and configuring tables. The virtual representation module contains

Java classes for defining the core of an SDVS and its software-defined function.

We also establish a database in MySQL to store and update information regarding the SDVS

in the network, such as its sensor services, status, location, and attributes. The database provides

data for an operation of resource orchestrator in the controller.

5.5.2 Performance Evaluation

Users send requests to the controller via a GUI interface. The request is a set of parameters,

including Act_Type, SIDs, Freq, Per, Dst., LOCID, ReqID. The request parameters indicate the

required services (SIDs), required timing for the services (Freq., Per.), the location of the required

117

services (LOCID), a destination for the returned results (Dst.), identification of the request

(ReqID), and the action for the required services (Act_Type). With the request, the controller

orchestrates its resources to select appropriate SDVSs to handle the demand.

The following figures illustrate a forwarding table, a configuring table, and a sensor service

list of an SDVS in the network of five SDVSs in two cases: i) before it is configured by the

controller, and ii) after it is configured according to a request for its sensor services. The SDVS

is SDVS02, with the address 202.

Figure 5.13, Figure 5.15, and Figure 5.17 demonstrate the results of the first case. They

present the status of the SDVS02 before it is programmed by the controller, such as its forwarding

instructions (Figure 5.13) and configuring instructions (Figure 5.15), and sensor services status

(Figure 5.17).

Figure 5.14, Figure 5.16, and Figure 5.18 reveal the results of the second case. When there

is a request for sensor services, the SDVS02 is orchestrated by the controller to handle the request.

The controller deploys associated instructions to the SDVS’s forwarding table (Figure 5.14),

configuring table (Figure 5.16). Thus, its sensor services are configured, and their status is

changed accordingly (Figure 5.18).

Figure 5.13 Forwarding table status before configuration

118

Figure 5.14 Forwarding table status after configuration

Figure 5.15 Configuring table status before configuration

119

Figure 5.16 Configuring table status after configuration

Figure 5.17 Sensor service status before configuration

Figure 5.18 Sensor service status after configuration

120

5.6 Summary

In this chapter, we proposed a design and implementation of the S-MANAGE protocol to

address the challenges of configuring and programming IoT devices in the SD-IoT model for

provisioning IoT services on demand. The S-MANAGE was designed based on OpenFlow and

OF-CONFIG to IoT devices in both forwarding behaviors and their functionalities. Details of the

design are provided. We also proposed an SDVS as an interface enabling the controller to control

and manage physical IoT devices via the S-MANAGE protocol. The software implementation of

the proposed S-MANAGE was developed and deployed. The implementation performance was

presented to demonstrate the feasibility of the proposed protocol. The proposal enables further

research and development on interoperability and orchestration of heterogeneous sensors/IoT

devices for the provision of diverse IoT services on demand.

121

Chapter 6 Software-Defined

Internet of Things (SD-IoT) Model

6.1 Introduction

Among solutions to the programmability of Wireless Sensor Networking/Internet of Things

(WSN/IoT) systems, many proposals have taken advantage of the Software-Defined Networking

(SDN) paradigm [89]. The SDN provides solutions to programmability, agility, flexibility, and end-

to-end connectivity challenges, which are associated with the management of real-time traffic flows

and dynamic traffic patterns [118]. The SDN approach addresses many existing problems

concerning network management and provisioning of resources required by network services. It

can change the functionality of physical networks as well as devices in real-time to meet the

requirements of IoT applications [119].

However, challenges remain when applying the SDN paradigm to the constrained WSN/IoT

[64]. As a fundamental element of the underlying resources that provide necessary data for IoT

applications, an IoT system must of necessity not only control and manage the underlying

resources but also orchestrate them to satisfy application demands. However, architectural

solutions for provisioning various IoT applications are still immature. A majority of the proposed

approaches are vertically integrated, so it is difficult for the infrastructure to handle various IoT

application demands that require horizontal capabilities from other subsystems. While many

122

attempts have been made to address issues concerning IoT platform architectures and the

provision of IoT services on demand, there are remaining challenges, such as scalable and

dynamic resource discovery and composition, context-awareness, integration of intelligence,

interoperability, reliability, security, privacy, and system-wide scalability [120].

In this chapter, we propose a software-defined Internet of Things (SD-IoT) model. The model

enables the programmability of underlying devices with an IoT cluster by leveraging the proposed

SDVSs and S-MANAGE protocol, that have been discussed in Chapters 4 and 5, respectively.

The provision of IoT services by leveraging the S-MANAGE, SDVS, and the SD-IoT model has

been published in [20, 22, 23]. The model is accommodated in the SD device layer of an overall

LSSD-IoT model (Figure 6.1).

Figure 6.1 SD-IoT model in relation to the LSSD-IoT model

The remainder of this chapter is organized as follows. Section 6.2 describes the overall SD-
IoT architecture. Section 6.3 presents the structure and functionalities of the SD-IoTD controller.
Section 6.4 describes the software implementation of the SD-IoTD controller. Section 6.5
demonstrates an implementation scenario. Section 6.6 presents the performance evaluation of the
SD-IoT model. Section 6.7 concludes this chapter.

123

6.2 SD-IoT Model

With consideration for the architecture and the application aspects discussed in the earlier

section, we propose a Software-defined Internet of Things (SD-IoT) model that embraces the

SDN and NFV principles. To reap the benefits of SDN, the SD-IoT model is also structured in

three layers: the application, the device control, and the IoT device layers, as shown in Figure

6.2.

Figure 6.2 SD-IoT model

Application layer: This is where developers can deploy their IoT applications over abstraction

of the underlying IoT infrastructure.

Device control layer: Accommodates the SD-IoTD controller and its data storage. It is a

bridge between the application and the data layer. It provides the application layer with a global

view of its resources as well as an efficient interface to express their interests on the IoT resources.

Meanwhile, it provides the underlying resources with an interface to update their status,

attributes, and sensor services. With the knowledge of both the requirements and capabilities of

the IoT resources, it can provide sensor services for IoT applications on demand.

124

IoT device layer: This layer hosts SD-IoT resources. Different from the SDN data layer, this

layer is designed with two sublayers, called representation and underlying layers. The

representation layer is an interface between the SD-IoTD controller and the underlying resources.

This layer enables the controller to manage and control the underlying resources according to

application demands. The underlying resources consist of physical or virtual sensors or a group

of physical/virtual sensors.

With the proposed SD-IoT model, we address three main aims: i) enabling autonomous

configuration and management of heterogeneous IoT devices in an SD-IoT system, ii)

programming services on demand, and iii) enabling large scale IoT applications through

modulation of SD-IoT subsystems.

6.2.1 Software-Defined Virtual Sensor (SDVS)

The SDVS is introduced as an interface between the SD-IoTD model and physical

sensors/IoT devices. The SDVS is a software entity that functions as a virtual sensor that

addresses the limitations of physical sensors/actuators/IoT devices and possesses capabilities for

adapting itself in interacting with the surrounding environment and its controller for providing

desired services. It provides the SD-IoTD controller with the capability of its represented devices.

In addition, it programs its represented devices in accordance with demands from the SD-IoTD

controller. This work has been accepted for publication [18]. It is described in Chapter 4.

6.2.2 S-MANAGE Protocol

The prime purpose of the protocol between the SD-IoT controller and SDVS is for controlling

and managing functioning and forwarding behaviour of IoT devices in provisioning IoT services

on demand. Current SDN-based solutions mainly put effort on particular challenges of the

integration of the SDN principles to WSN/IoT environment and fail to fully address requirements

for the integration. Regarding the southbound interface, as discussed in section 2.7, several efforts

have attempted to modify, extend or adapt the OpenFlow protocol. However, their contributions

have been limited to theoretical proposals, or partial consideration for the forwarding aspect of

125

the sensor nodes rather than looking at autonomous configuration management of the node and

its functions. Therefore, the S-MANAGE protocol is proposed as a control and management

protocol between the SD-IoTD controller and virtual sensors within the representation layer. It

enables the SD-IoTD controller to manage and program the SDVSs within the representation

layer to achieve the required services and deliver them to the right destinations. The proposed S-

MANAGE protocol is described in Chapter 5.

6.3 SD-IoTD Controller

6.3.1 SD-IoTD Controller – Functional Components

The SD-IoTD controller is a bridge between an IoT cluster and the LSSD-IoT system. As for

an IoT cluster, it is a manager that musters IoT devices capabilities within the cluster and can

configure the managed resources in response to IoT demands. Regarding the LSSD-IoT system

point of view, the SD-IoTD controller represents its own IoT cluster. It is responsible for

reporting on its capability in provisioning IoT services on demand and orchestrating its resources

to provide requested services. The basic set of components of the SD-IoTD controller (Figure

6.3) may consist of a service handler (SH), an underlying handler (UH), a resource orchestrator

(RO), a configuration manager (CM), a resource manager (ReM), a topology manager (TM), a

sensor service life cycle monitor (SSLCM), a routing manager (RM), and a data storage (DS).

The proposed functions and mechanisms of the SD-IoTD controller has been published in [22],

[23].

Figure 6.3 SD-IoTD controller structure

126

Service Handler provides an abstraction of the SD-IoT resources for IoT applications. It

interprets application requests in their high-level language and translates them to the controller’s

language. For instance, it provides application requirements for Resource Orchestrator.

Resource Manager manages SDVSs and through that manages their corresponding

underlying resources. It is responsible for updating the resource orchestrator on the statuses of

the SDVSs and their underlying resources.

The database provides updated information for the operation of the controller’s core modules,

for instance, the Resource Manager. The DB can be accessed by all other core components.

Underlying Handler is called S-MANAGE protocol. It provides a communication interface

between the controller and the SDVS. It enables the controller to configure SDVS resources by

using S-MANAGE messages as well as to obtain update status of the underlying resources.

Resource Orchestrator orchestrates appropriate SDVSs to provision services required by the

application.

Topology Manager manages directly the network of the SDVSs in the representation layer

and indirectly the real network of underlying resources in the underlying layer. The network

status is updated by the resource manager.

Routing Manager computes a forwarding path between a source and destination in

accordance with the network topology.

Configuration Manager generates forwarding and configuring instructions in accordance

with the results from the routing manager, and the resource orchestrator.

Sensor Service Life-cycle observes the life-cycle of each request-response transaction, each

SDVS, and the association between the SDVS and its underlying resources.

6.3.2 SD-IoTD Controller – Operational Mechanism

The important functions of the SD-IoTD controller are to analyse input requests and to muster

its capabilities, so it is able to orchestrate and provision its services on demand. To achieve and

perform the functionalities, the SD-IoTD has installed the following mechanisms.

127

 Resource Orchestration Approach

The core module of the controller is the resource orchestrator. The efficiency of the network

operation is dependent on how intelligent it orchestrates SD-IoT resources. Its main functions are

described below.

It orchestrates the most capable SDVSs that can handle the application request. Firstly, on

receiving the application requirements from the service handler, it searches for those SDVSs that

are capable of handling the request. To balance and minimize the workload of the SD-IoT

resources, among the potential candidates, only the most appropriate ones are selected. In

addition, the resource orchestrator may also reuse the sensor services temporarily cached in the

database to quickly respond to application requests with similar requirements.

We design an algorithm (Algorithm 6.1) for associating an appropriate SDVS, which both

satisfies application requests and current state of the underlying resources. On receiving a service

request, the resource database is checked for available and capable SDVSs, and a list of potential

SDVSs is produced. The “state” of an SDVS indicates its busy level. The higher the state number,

the busier is the SDVS. A “state” of each SDVS in the list is checked, the one with the lowest

value (the least busy) is selected for the service provision. The state of an SDVS is computed

according to the total number of tasks it performs and is updated in accordance with the counter

statistics from the configuring table.

Algorithm 6.1: Resource Orchestration

Inputs: required parameters as action_type, services, locations, an updated list of
application requests and associated SDVSs
Outputs: the list of SDVSs and associated required services for a request
Switch action_type do

case "GET":
 get a list of services with GET action in the required locations from the updated

application request list
 if the list is empty then
 get pairs of the best SDVS and the required service

128

 else
 get a list of possible SDVSs can provide the required services
 get pairs of the best SDVS and the required service
 end if
case "SET_ON":
 get pairs of SDVSs and the required services
case "SET_OFF":

 get pairs of SDVSs and the required services

 Configuration Approach

The controller needs to ensure that there are no configuration conflicts on an SDVS. Thus, in

cases where an SDVS encounters a configurational conflict, a priority scheme is used. The

configuration instruction with higher priority is executed first to its completion before the one

with lower priority.

Moreover, the overhead in configuration messages needs to be taken into account to achieve

light SDVS objects. Thus, to reduce exchanged information between the controller and the SD-

IoT resources, the resource orchestrator reuses current instructions on instruction tables because

applications with similar interests require similar instructions. Thus, the configuration manager

modifies associated instructions that can be reused for the new configuration. Furthermore, one

forwarding instruction can be applied for a flow of packets, so memory usage is minimized.

 Algorithm for Association of service-resource

We propose an algorithm (Algorithm 6.2) for associating appropriate SDVS, which both

satisfies application request and current state of the underlying resources. A service request is

checked if its desired service exists in the tab_location_sdvs or not, and a list T1 including

corresponding sdvs_id and sid (sensor service ID) is created (line 1-2). In line 3-6, if the list T1

is not empty, for each row (called record) in list T1, the sdvs_id and sid of each record are checked

in tab_sdvs_status to obtain its “state” value concerning its current tasks. Then, the sdvs_id and

129

sid with the least state value are picked to serve the request. The returned results are the sdvs-id

associated with the required sid. If the list T1 is empty, the program exits (line 7-10).

Algorithm 6.2: Association Service-Resource

Input: a set of requests RQ with parameters to require sensor services

Output: a set of associated SDVS_IDs and SIDs

1: for each request r in RQ do

2: if (r.sid & r.location_id) exist in database then

3: T1=getListSDVS(r); //Update T1 with SDVS_IDs by location_id and sid

4: else

5: Exit ();

6: end if

7: for each r.sdvs_id of each r.sid in T1 do

8: PickBestSDVSbySID(r); //Return proper SDVS_IDs for SIDs

9: end for

10: end for

6.4 SD-IoTD Controller - Software Implementation

This section describes the SD-IoTD controller’s software implementation in terms of

functional components and data storage. The overall class diagram of the SD-IoTD controller is

shown in Figure 6.4.

ControllerAnalyseAppRequest class is responsible for analyzing the input request and

interpreting it into requirements that are used by the ControllerResourceAllocation class and

ResoureManager class for orchestrating resources. ControllerConnectDatabase class provides a

connection between the database and all functional components of the SD-IoTD controller. Via

the connection, data stored in the database can be retrieved and updated. ControllerGuiSdiot

creates the GUI that allows the SD-IoTD controller to present their capabilities and receive IoT

demands from its application domain. ThreadExecInputRequestFrFloodlight handles IoT

130

requests from the SD-IoTC controller. ControllerDijkstraSdiot class computes forwarding paths

between SDVSs. The basic functionalities of the SD-IoTD controller is implemented in classes,

including, ControllerInterfaceSdiot, ControllerFactorySdiot, and AbstractControllerSdiot.

Detailed implementation of the classes is illustrated in Appendix 1.

Figure 6.4 Class diagram of SD-IoTD controller

Data Storage: The database is created with MySQL, including three tables (as shown in

Appendix 2). The tab_location_sdvs table stores SDVS’s information as location_id (location

ID of the SDVS, e.g., LOC01, or LOC02), sdvs_id (identification of the SDVS, e.g., SDVS01),

and service_id (identification of the sensor service, e.g., SID01). The tab_sdvs_status table

includes information as location_id, sdvs_id, service_id and its state which presents the current

131

task of the SDVS and its related sensor service. The tab_services table stores service_id,

service_name, and service_description which is presented as user-familiar language, e.g.,

temperature, humidity, or light. This table provides information for translating user requests.

6.5 SD-IoT Model – Software Implementation

6.5.1 Use Case Scenario

For the sake of demonstration of a practical realization of the proposed protocol, we deploy

the SD-IoT model that controls and manages two clusters of sensor nodes. The two resources are

in two different locations. They can be orchestrated to provide sensor services for one or multiple

IoT applications on demand. For the case study, the two clusters represent two buildings within

a campus. Each building has four floors. Many types of sensors may be used on different floors,

such as movement, temperature, proximity, touch, and light sensors, as presented in Figure 6.5.

A GUI interface is designed to enable users to indicate their sensor service types of interest

and also to make specific demands for the required services. For example, they can indicate

sensor services of interest, how long, and how often they want to obtain the services. Moreover,

they can choose the destination for the required services. An IoT application request is comprised

of a set of these requirements.

132

Figure 6.5 Use case scenario

6.5.2 Implementation Scenario

Our aim is to provision IoT services on demand by using the S-MANAGE protocol in the

context of the SD-IoT model. Any request for IoT services is dynamically processed by the SD-

IoT model. The system can orchestrate its underlying resources to handle multiple simultaneous

sensor service demands, as shown in Figure 6.6. According to its knowledge of the capability of

the underlying resources, the system can i) obtain the availability of the resources and their

current service-provisioning tasks; ii) provide appropriate responses to an application request,

such as meet the request fully, or suggest an alternative that satisfies the request partially, or be

unable to provide the services because of insufficient resources; iii) handle simultaneous

application requests and deal with conflicts among these requests; and iv) collect results

corresponding to each application request.

133

We also establish a database in MySQL to store and update information regarding the SDVS

in the network, such as its sensor services, status, location, and attributes. The database provides

data for an operation of resource orchestrator in the controller.

Figure 6.6 Implementation prototype

6.5.3 Implementation Set up

The SD-IoT model is a software platform written in Java and built using Netbeans 8.2 and

open-source platform supporting Java dependency classes [117]. It is connected to a database

built in MySQL. The three main elements are the SD-IoTD controller, the S-MANAGE protocol,

and the SDVS.

Three software modules, including control, southbound interface, and virtual representation,

are responsible for the SD-IoTD controller, the S-MANAGE, and the SDVS, respectively. The

control module includes classes responsible for analyzing application requests, orchestrating

SDVS resources, generating instructions relating to the requests, networking, and communicating

with the SDVS. The Southbound interface module is composed of classes for S-MANAGE

messages, the forwarding table, the configuring table. The virtual representation module contains

classes for defining the core of an SDVS and its software-defined function.

134

We build a network where the controller communicates with its SDVSs. We establish a

database by using MySQL to store and update information regarding the SDVSs in the network,

such as their sensor services, status, location, and attributes. The statistics from the forwarding

and configuring tables are used to update the attributes, the status of the SDVSs, and their

underlying IoT devices. The database provides essential information for the operation of the

controller’s core modules.

6.6 Performance Evaluation

Implementation results demonstrate the expected features of the proposed S-MANAGE

protocol in provisioning IoT services on demand. S-MANAGE makes it possible for the

controller to instruct IoT devices to achieve required services as well as forward results to

required destinations. In addition, the protocol enables the controller to collect statistical

information from the underlying IoT resources. Therefore, the controller can achieve the

following results.

i) Programming its IoT resources via S-MANAGE according to an application request

(Figure 6.7 and Figure 6.8).

ii) Responding dynamically to an application request about the service provisioning

capability of the system according to its residual resources (as shown in Figure 6.9).

iii) Handling simultaneous application requests and conflicts over these requests (as

demonstrated in Figure 6.10).

iv) Obtaining and displaying the status of multiple on-going application requests (as

presented in Figure 6.11).

135

Figure 6.7 Status of the SDVS before its configuration

The programmable function of S-MANAGE is demonstrated in Figure 6.7 and Figure 6.8.

The two figures illustrate the status of an SDVS (SDVS03) before and after, respectively, it is

programmed by the controller. In each figure, the status of the SDVS is presented, its forwarding

instructions in (a), configuring instructions in (b), and sensor services status in (c). Differences

between Figure 6.7 and Figure 6.8 are i) both the forwarding and configuring tables of the

SDVS03 are installed with one new instruction entry, and ii) changes in the status of the required

service belonging to the SDVS. Via the installed configuring instruction, the SDVS can achieve

the required services. According to the forwarding instruction, the SDVS knows how to forward

a) Forwarding table

b) Configuring table

c) Sensor services status

136

results to the required destination. The result for the request is to change the status of the sensor

service SID05 from 1 (ON) (as shown in Figure 6.7c) to 0 (OFF) (as shown in Figure 6.8c).

Figure 6.8 Status of the SDVS after its configuration

Moreover, thanks to the S-MANAGE protocol, the controller can muster the available IoT

resources and orchestrate them to satisfy all the services whenever demanded. The S-MANAGE

messages allow the controller to collect essential information about the updated status of the

underlying IoT resources. If a request can be partially provisioned, the controller will also inform

the application. Depending on the reply from the application, the controller performs its tasks

based on the status table containing the status of all SDVSs. The controller can program

appropriate SDVSs to handle an incoming request according to its status (availability and

a) Forwarding table

b) Configuring table

c) Sensor services status

137

capability). As shown in Figure 6.9, the controller provides appropriate responses to the

application request in the case i) it can fully achieve all the required services (see Figure 6.9a);

ii) it partially achieves the required services and provides waiting time for obtaining the

remaining required services (see Figure 6.9b), or is unable to provide the services because of

insufficient resources (see Figure 6.9c).

Figure 6.9 Dynamic response from the controller’s resource orchestrator to an IoT request

In addition, the system can handle multiple simultaneous application requests and resolve

conflicts among these requests. As presented in Figure 6.10, in the control panel of the controller,

the Resource Manager tab shows SDVSs’ locations and their state. The Application-Results tab

presents the current application requests and the status of the SD-IoT model’s IoT application

138

provision. Figure 6.10 illustrates three different states of the SDVS’s functionality and

corresponding tasks. In state 1, SDVS01 and SDVS02 are providing services SID01 and SID05

for the two application requests 1 and 2, respectively. Meanwhile, in state 2, SDVS02 receives

another application request number 3 for the service SID05. The request cannot be processed

immediately owing to the conflict between two requests 2 and 3 for the same service. Request

number 2 requires data from the sensor service, but request number 3 requires deactivating the

sensor service. Therefore, SDVS02 delays request number 3 until it completes request number 1.

In state 3, when request number 1 is done, SDVS02 achieves the required service for request

number 3.

139

Figure 6.10 Handling multiple application requests and solving conflicts among them

State 1: application requests and current-task status of involved SDVSs.
Current status of each SDVS

Current application requests and related executed status

State 2: when there is an incoming request to turn off the required service SID05, all SDVSs in
LOC01 have to be reconfigured. However, the SDVS01 is currently providing SID05 for another
application: SDVS01 cannot start processing the incoming request for SID05.
Current status of each SDVS

Current application requests and related executed status

State 3: After releasing the task for request number 1, the SDVS02 processes the request number 3.
Current status of each SDVS

Current application requests and related executed status

140

Figure 6.11 shows the status of all application requests and associated results. The

Application-Results tab presents information about all application requests (represented by the

Req_ID) and their execution status (see IsExecuted column: Y means Executed, and N means

Not-Executed). Moreover, the tab also displays required parameters regarding service type,

location, related action, and associated results (see the Results column).

Figure 6.11 Status of ongoing application requests and corresponding results

The efficiency of the SD-IoT model is demonstrated by two performance metrics: the

controller’s processing time, and the message overhead (as shown in Figure 6.12, Figure 6.13).

The controller processing time represents the total time from when the controller receives an

application request to when it sends out all configurations to required SDVSs. The average

processing time of an application request depends on three parameters: i) the number of

simultaneous application requests, ii) the similarities between demands from incoming requests

and from previously processed requests, and iii) the availability of current SD-IoT resources. For

example, the larger the number of simultaneous input requests, the higher the processing time is

required for each request. Moreover, if the required resources are all available, the controller can

process the requests immediately. Otherwise, the controller may ask the application if it is willing

to wait until the required resources become available. This action also causes longer processing

times. However, the processing time can be improved by reusing previously deployed

configurations to satisfy new services.

Figure 6.12 presents the processing time of the model in response to one or multiple

simultaneous application requests. The number of input requests is increased by 20 from 10 to

90. The requests are for one, two, three, four, or five services. The more services which are

141

required by a request or number of concurrent requests, the longer the processing time is needed.

However, while the number of requests increases 9 times (10 to 90), the total processing increases

about 3 times for all types of requests.

Figure 6.12 SD-IoTD Controller – Processing time for one per multiple simultaneous requests

ranging between 10-90

We also examine messages overhead exchanged between the controller and its SDVSs. It is

the total control and data messages needed for processing an application request. The number of

control messages is reduced when the controller reuses the configuration of previous requests to

provide services for a new request. Figure 6.13 shows data and control messages for responding

to requests. With a 5-times increase in the number of required services, the number of data

messages increases about 35 times. Meanwhile, to achieve the results, the number of control

messages increases about 2.5 times from two to five. This is because these requests are configured

in the same manner. Moreover, the applications request for the same one, two, three, or four

sensor services. A forwarding configuration can be applied for a flow of packets with similar

142

conditions. The number of data packets rises significantly since the achieved results must be sent

in different periods to different destinations.

Figure 6.13 Number of exchanged control and data messages between SD-IoTD controller and

SDVSs

6.7 Summary

In this chapter, we have introduced a software-defined IoT model with the proposed

components, including SDVS (discussed in Chapter 4), S-MANAGE protocol (described in

Chapter 5), and the SD-IoTD controller. We developed a new SD-IoTD controller that utilizes

the S-MANAGE protocol to efficiently and flexibly orchestrate the SDVS resources in response

to IoT demands. Detailed functional components, operational mechanisms and software design

of the SD-IoTD controller have been provided. We presented the feasibility of the proposed

model through the design and implementation of an SD-IoT platform prototype and evaluated

the performance of the platform.

143

Chapter 7 Software-Defined

Cluster Layer and LSSD-IoT

Platform

 Introduction

As discussed in Chapter 3, the proposed large-scale software-defined Internet of Things

(LSSD-IoT) model provides a solution to the central control, management, and orchestration of

geo-distributed IoT clusters. For the purpose of the control and management of such an LSSD-

IoT model, we propose a software-defined (SD) cluster that handles the orchestration,

coordination, and provision of IoT services. This chapter describes the proposed SD cluster and

its operation in the LSSD-IoT platform (as depicted in Figure 7.1). In addition, this chapter

demonstrates the implemented LSSD-IoT platform with all proposed components, including the

SD-IoTC controller, SD-IoT model comprising SD-IoTD controller, S-MANAGE protocol, and

SDVS. This work has been submitted to IEEE Transactions on Industrial Informatics journal and

is under review.

The rest of this chapter is organized as follows. Section 7.2 presents the architecture and

components of the SD cluster layer. Section 7.3 describes the operation of the LSSD-IoT platform

in the provision of IoT services on demand. Section 7.4 discusses possible use cases of the LSSD-

IoT platform. Section 7.5 presents the LSSD-IoT platform implementation. Section 7.6

demonstrates performance evaluation. Section 7.7 summarizes this chapter.

144

Figure 7.1 SD cluster layer in relation to LSSD-IoT model

 SD Cluster Layer

This layer inherits much of the SDN architecture. It has 3 layers: the application layer, the

Cluster control layer, and the SD-IoT cluster layer. The application layer is the same as the

application layer of the overall LSSD-IoT, housing end-user applications. The Cluster control

layer contains an SD-IoTC controller to perform both SDN functionality and IoT-specific service

provisioning and coordinating functions. Instead of just SDN devices, they are replaced by SD-

IoT clusters. Each cluster consists of an Open vSwitch and a host that represents an SD-IoT

platform below. The host is termed as the SD-IoTC cluster. The OpenFlow and orchestration

protocol are used for the communication between the SD-IoTC controller and SD-IoT clusters.

The architecture of this layer is highlighted within the LSSD-IoT model in Figure 7.1.

145

7.2.1 SD-IoTC Controller

This section describes the functional components of the SD-IoTC controller and provides

mechanisms utilized by the SD-IoTC controller for the provision of IoT services on demand.

Architecture: In order to provision IoT services on demand, the SD-IoTC controller needs

to not only understand IoT requests but also have a knowledge of all IoT devices under the control

and management of the LSSD-IoT platform. To accomplish the functionality, the SD-IoTC

controller is extended from a well-known Floodlight SDN controller. It communicates with its

connected SD-IoT clusters. The SD-IoTC controller houses a set of components, as depicted in

Figure 7.2. These functions allow the SD-IoTC controller to i) process IoT requests coming to

the LSSD-IoT system, ii) control, manage, and orchestrate IoT clusters/devices, and iii) store

temporary IoT services that can be shared between multiple IoT applications. Details of each

component are as follows.

Figure 7.2 SD-IoTC controller architecture

SD-IoT Service via Web-GUI is an interface for users to specify IoT demands for the LSSD-

IoT system. It also displays available IoT services and the status of IoT service provision.

REST-based SDIoT API is a Northbound Interface that provides abstractions of IoT resources

to the application layer or users.

146

Request Analyser analyses input requests and provides specific requirements for the

Resource Orchestrator.

Software-defined IoT Resource Manager is responsible for managing SD-IoT resources. It

leverages SDN devices to update SD-IoT resources. The statistics are collected from other

module applications (Basic Floodlight’s Modules). It always updates connected SD-IoT clusters

and their capabilities for service provision purposes.

Resource Orchestrator orchestrates SD-IoT clusters to provide required IoT services. In

accordance with IoT requirements and available SD-IoT resources, it selects the most appropriate

SD-IoT system to handle the IoT request. In addition, when an SD-IoT cluster cannot handle its

assigned tasks, the Resource Orchestrator makes the best effort to re-schedule residual SD-IoT

resources to satisfy the request.

Configuration Manager programs the core network and the SD-IoTD controller according to

the instructions from the Resource Orchestrator. The Configuration Manager leverages the SDN

resources to forward IoT requests to appropriate SD-IoTD systems. In accordance with the

available SD-IoT clusters, it computes the flows for delivering IoT service requests as well as

IoT service results to the intended destinations.

Data storage stores information concerning SD-IoT platforms connected to the LSSD-IoT

system. The information includes locations of SD-IoT clusters, their capability such as provided

services, and temporary data collected by the SD-IoT systems. The data is utilized by the

Resource Orchestrator.

Service Provision Monitor watches the status of IoT service provision to release SDVSs

involved in an IoT service provision and to update the status of SD-IoT resources. Moreover, it

always checks the response from the SD-IoT cluster to see if they can handle IoT requests, and

thus to announce the Resource Orchestrator to reschedule the task.

Orchestration mechanism: The SD-IoTC controller orchestrates services based on the

availability of SD-IoT resources and a pool of already provisioned and available IoT services

(Algorithm 7.1). This means that if an IoT request needs an IoT service that is currently

147

provisioned for another request, the controller reuses, if it can be accommodated, for the incoming

request without further configuration on the underlying SD-IoT resources. In addition, if the SD-

IoTC controller receives a response from an SD-IoTD controller that it cannot achieve the

required services, the SD-IoTC controller re-orchestrates other SD-IoT clusters to handle the

related requests. If several SD-IoT clusters are able to provide services to an IoT request, the

controller allocates the task to the SD-IoT with the least number of tasks. The operation is

illustrated via the pseudo-code below.

Algorithm 7.1: Resource Orchestration Mechanism
Input: a set of sdiot requests SRQ, incoming IoT request RQ, and updated SD-IoT resources RS
Output: a set of SD-IoT clusters (sdiot_name) and associated requests (sdiot_request)
Switch required_action (reqAct) in RQ do

case "GET":
 for each required service (sid) in RQ do
 L1 = getSdiotReqWithGET(SRQ,sid,reqAct); //get a list of sdiot requests have the same

requirements for sid and reqAct
 if the size of L1 is 0then
 L2 = getListSdiotByAreaIdAndSid(list sdiot clusters, sid,areaId);//get a list of SD-

IoT cluster can provide the sid in the required area AreaId
 PickBestSdiot (L2,sid)//get the SD-IoTD cluster with least task from L2
 else if size of L1 is 1 then

 L3 = getSdiotWithGET(L1);//get the name of SD-IoT cluster in L1
 else
 L4 = getListSdiotWithGET(L1)//get a list of SD-IoT cluster involved in the reqAct
 Best_Sdiot = PickBestSdiotWithLeastTask(L2);// pick the sdiot cluster with least
task from the database
 for each sdiot_name in L4 do
 if the sdiot_name is Best_Sdiot do
 return (sdiot_name, sid)
 end if
 end for
 end if

get a list of (sdiot_name, sdiot requests)
end for
 end if
case "SET_ON":
 for each required service (sid) in RQ do
 L2 = getListSdiotByAreaIdAndSid(list sdiot clusters, sid,areaId);//get a list of SD-IoT

148

cluster can provide the sid in the required area
 Pick best sdiot from L2
 end for
get a list of (sdiot_name, sdiot requests)
case "SET_OFF":
 for each required service (sid) in RQ do
 L2 = getListSdiotByAreaIdAndSid(list sdiot clusters, sid,areaId);//get a list of SD-

IoT cluster can provide the sid in the required area
 Pick best sdiot from L2

 end for
get a list of (sdiot_name, sdiot requests)

7.2.2 SD-IoT Clusters and Communication with the SD-IoTC Controller

An SD-IoT cluster is composed of an SDN switch and a host representing an SD-IoT

platform. SDN switches are networking devices that connect SD-IoT platforms to the LSSD-IoT

system. They report on the connected IoT platforms. They allow the SD-IoTC controller to

configure data flows between IoT clusters to deliver IoT requests to a proper SD-IoT platform or

transmit returned results to data collection points. Hosts connected to SDN switches are

representations of IoT clusters that are composed of required sensors/IoT devices. The hosts can

be considered as SD-IoTC clusters that represent the underlying SD-IoT platform.

To orchestrate SD-IoT platforms, the SD-IoTC controller leverages both OpenFlow and an

orchestration protocol. Via OpenFlow messages, the SD-IoTC controller updates network status

and remotely configures forwarding functions of SDN switches for distributing IoT requests as

well as forwarding results to the desired destinations. However, to update SD-IoT platforms

connected to the LSSD-IoT system, the SD-IoTC controller leverages an orchestration protocol

that is developed from a REST API. Via the protocol, the SD-IoTD controller of each SD-IoT

platform provides its updated network statistics and available IoT services for the SD-IoTC

controller.

149

 LSSD-IoT Platform – Procedure of the Provision of IoT

Services on Demand

The process of an SD-IoT service provision via the LSSD-IoT system includes four stages

(as depicted in Figure 7.3). When receiving an IoT request, the SDN controller analyses the

request and accordingly orchestrates needed IoT clusters to achieve the required services. The

SD-IoTC controller also instructs the SD-IoTD controller on how to forward the results to IoT

service collection points. In accordance with the configuration of the SD-IoTC controller, each

engaged IoT cluster orchestrates its IoT devices to obtain the required services and then delivers

achieved results to the expected destination.

a) Provision stage: The SD-IoTC controller exposes its SD-IoT services via a REST-based

northbound interface. It always listens to IoT interest and provides required SD-IoT

services. The SD-IoTC controller exposes its SD-IoT services via the REST-based

northbound API.

b) Orchestration stage: The SD-IoTC controller analyzes the request and accordingly

orchestrates available SD-IoT resources to achieve the required IoT services. It

decomposes that request into one or multiple sub-requests that would be allocated to

associated SD-IoT platforms.

c) Programmability stage: SD-IoTD controller of each involved SD-IoTD system

processes assigned tasks. It orchestrates its available resources to respond to the SD-IoTC

controller if it can fully achieve the required services or not. If it can fully achieve the

required services, it allocates the necessary tasks to SDVSs. Selected SDVSs program

their represented underlying IoT devices to achieve the required services, then send results

to the SD-IoTD controller. All achieved results are then sent to the desired data collection

points. Otherwise, it responds to the SD-IoTC controller that it cannot fully achieve the

required services. The SD-IoTC controller re-orchestrates residual SD-IoTD platforms to

handle the request.

150

d) Completion stage: programmed IoT devices return results to the SD-IoTD controller,

which then forwards them to required destinations. Whenever the SD-IoTC controller

receives the announcement from applications that completely receive the required

services, it relieves tasks of involved SD-IoT platforms.

Figure 7.3 Overall procedure of provisioning IoT services on demand via LSSD-IoT platform

The procedure happens at the SD cluster and device layers. Details of the workflow at each

layer are described below.

At SD cluster layer: The SD-IoTC controller analyses IoT demands and orchestrates the

requests in accordance with the capability of the LSSD-IoT system. The operation of the SD-

IoTC controller is illustrated in Figure 7.4.

151

Figure 7.4 Workflow of the SD-IoTC Controller

At the SD device layer: Upon the requests from the SD-IoTC controller, the SD-IoTD

orchestrates its available resources to achieve the required services. The operation of the SD-

IoTD controller is depicted as in Figure 7.5.

Figure 7.5 Workflow of the SD-IoTD Controller

 LSSD-IoT Platform – Use cases

According to a survey in 2019 [121], IoT applications are classified into six categories,

including smart city, healthcare, commercial, environmental, general aspects, and industrial.

Among the groups, smart city accounts for the highest portion with 29%, followed by healthcare

152

and commercial, with 20% and 14%, respectively. Environmental applications have 12%. Among

these applications, three groups of IoT applications that highly demand large-scale IoT

infrastructure are smart logistics/cities, healthcare, and environmental monitoring [6]. We take

some real IoT use cases as examples to illustrate the operation of the proposed LSSD-IoT model

to provision of IoT services on demand; from that, we develop an implementation scenario.

 Use case number 1: Monitoring Air Pollution

Air pollution has become one of the controversial concerns around the world. Therefore,

there is a demand for estimating air pollution levels over a wide area where people experience

diseases related to the polluted environment in a city A. To achieve the estimated values, there

need to be measurements associated with Carbon dioxide (CO2) which is emitted from electricity

generation, factories, and vehicles; Carbon Monoxide (CO) that is emitted from vehicle exhausts

and is formed when carbon fuels are not burned completely; and Nitrogen dioxide (NO2) that is

emitted from motor vehicle exhausts [122]. To collect these values, we need the involvement of

sensing systems from i) factories or big building that provide measurements about CO2, street

monitors that provide values about CO, and NO2 (Figure 7.6). However, the sensing systems are

distributed over a large scale, so the collected values are transferred to a central point in the cloud.

Requirements from the use case number 1: IoT services, for example; CO2, NO2, and CO

value from different IoT systems within the city A are collected within a required period. The

ultimate goal of the IoT application is to get the average value of the three readings. Therefore,

these required services are collected and aggregated at the cluster head of each IoT cluster, which

sends computed values to the SDN controller for further processing. The SDN controller

orchestrates distributed IoT systems to deliver their services to the required destination. To

achieve it, the SDN controller configures not only SDN switches that connected to IoT systems

but also IoT devices within these IoT systems.

IoT service provision scenario number 1 (Figure 7.7): measurements about CO2, NO2,

and CO are represented by services s1, s2, and s3, respectively. The service s1 is provided by the

IoT cluster 1 and 2. The services s2 and s3 are provided by the IoT cluster 3, 4, and 5. The cluster

153

head of each cluster collects the required services and sends them to desired data collection

points.

Figure 7.6 Monitoring air pollution use case

Figure 7.7 IoT service provision scenario number 1

 Use case number 2: Smart Traffic Control

Take a smart control of traffic flow in Los Angeles, for example [123], it demands real-time

readings as well as actuating from sensors of the traffic control platform. Real-data from road-

surface sensors and closed-circuit television cameras are collected and sent to a central traffic

154

management platform in the cloud to update the status of traffic flow. By analyzing the data, the

platform notifies users about traffic congestion and signal malfunctions. In addition, a network

of smart controllers is developed to make instant adjustment of traffic light conditions second-

by-second.

Requirements from the use case number 2: the application needs not only real-time data

from IoT systems but also instant actions on engaged IoT systems. Therefore, to provide IoT

services for the use case number 2, three SD-IoT clusters are needed for collecting data from the

traffic systems, and one system for taking actions based on collecting data (Figure 7.8). All

sensing data are aggregated at their SD-IoTD controller. The SD-IoTD controller configures

SDVSs to collect road-surface and closed-circuit television cameras readings. The collected data

are sent to the SD-IoTD controller of each cluster, then the SD-IoTD controller aggregates the

data and sends the average values to the SDN controller according to routing paths specified by

the SDN controller. The SDN controller analyses the achieved results in order to make instant

adjustments on engaged traffic lights. The required configuration is sent to the required SD-IoTD

controller that accordingly configures their underlying IoT devices to control the traffic light.

IoT service provision scenario number 2 (Figure 7.9): the road-surface and closed-circuit

television are represented by the service s4 and s5, while the traffic light is presented by the

service s6. These services are collected from IoT clusters 3, 4, and 5. The service s4 and s5 are

aggregated at the cluster head and then sent to the central controller, while the service s6 are

configured by the cluster head under the control of the central controller.

Figure 7.8 Smart traffic control use case

155

Figure 7.9 IoT service provision scenario number 2

 Use case number 3: Train Load Management

Another real use case is about the combination of IoT data from several IoT systems to build

a smart train system in London [123]. The development aims to project the load of train passenger

cars going out of and in to the city, some train operators have aggregated data from CCTV

cameras, movement sensors, and ticket sales deployed along with the platform. According to

analyzed data, they can estimate how much load for each car, then advise the passengers to spread

along the train for balancing the load. Thanks for that, train delays can be prevented.

Requirement of the use case number 3: the train management system at each station needs

information about a load of the incoming trains so it can advise passengers to spread out along

with the platform. Thus, the central SDN controller of the whole train systems needs to collect

the load of all involved trains coming to the station. Then, it sends the collected values to the

management system at the station that make associated announcements to passengers there to do

the right actions.

156

Provision scenario number 3 (Figure 7.10): the television camera, ticket sale, and

movement are represented by services s5, s7, and s8, respectively. S5 is collected from the IoT

cluster 1 to 5 and sent to the cluster head. S7 is gathered by the IoT cluster 5 and sent to the

central SDN controller which forwards it to the cluster heads of IoT cluster 1 to 4. S8 is

aggregated by the IoT cluster 1 to 4. The cluster heads of the IoT cluster 1 to 4 make appropriate

announcements according to aggregated information.

Figure 7.10 IoT service provision scenario number 3

Details to IoT services needed by each use case are presented in Table 7.1.

157

Table 7.1 Summary of IoT application requests and corresponding IoT services provided by

IoT clusters (Ri represents a request from an IoT use case)

IoT service Building 1

(factory/train

station)

Building 2

(train station)

Street monitoring systems (or train system)

IoT services IoT cluster 1 IoT cluster 2 IoT cluster 3 IoT cluster 4 IoT cluster 5

S1 (CO2) R1 R1
S2 (NO2) R1 R1 R1
S3 (CO) R1 R1 R1
S4 (road-surface) R2 R2
S5 (television camera) R3 R3 R2, R3 R2, R3 R2, R3
S6 (traffic light actuator) R2 R2 R2
S7 (movement) R3
S8 (ticket sale-central

management)
R3 R3 R3 R3

 LSSD-IoT Platform Implementation

7.5.1 Implemented Platform

In previous sections, we present the proposed LSSD-IoT model, describe the architecture,

and the design of components and their specific functionalities. In this section, we present the

implemented platform that integrates both cluster and device layers to form the large-scale IoT

on-demand service platform.

SD-IoTC Controller: We have designed and implemented SD-IoTC and its components to

interpret application requests, orchestrate, provision, coordinate services over clusters of IoTs

under its control.

158

An application interface: The interface enables communication between users/application

developers and the proposed LSSD-IoT platform. It presents available IoT services to users as

well as allows users to specify their requests for the IoT services.

SD-IoTC clusters: Entities that represent individual IoT clusters. This includes an

information base that holds the knowledge of its local IoT environment, resources, usage and

communication protocol for communication with SD-IoTC controllers. It is also part of the SD-

IoTD controller to understand the specific sub-services required by its local SD-IoT platform.

SD-IoTD Controller: In Chapter 6, we have designed and implemented SD-IoTD and its

components to interpret application requests, orchestrate, provision, coordinate services over

devices in an IoT cluster. An SD-IoTD system represents one IoT cluster that comprises a number

of sensors/IoT devices within a small area, e.g., a street area, a building, or a campus.

Coordination protocol for orchestrating sub-requests between the SD-IoTC controller and an

SD-IoTC cluster.

At the cluster level, there is a user interface for users entering requests and four tables

providing information regarding i) available SD-IoT resources, ii) requirements of IoT requests,

iii) acknowledgment from IoT applications, and iv) results of resource orchestration and

execution status.

At the device level, there is also a user interface for receiving users demands or requests from

the SD-IoTC controller; and four tables presenting i) available SDVSs, ii) results of resource

orchestration, iii) the number of messages exchanged between each SDVS and the SD-IoTD

controller, and iv) SDVS’s forwarding table, configuring table and sensor services.

S-MANAGE protocol for the communication and management between the SD-IoTD

controller and its underlying sensors. This work has been presented in Chapter 5.

SDVS (Software-defined virtual sensor): This component has been designed to represent the

underlying regional sensors and enrich their capabilities for programming, configuring, and

provisioning services on demand within the local cluster. Via SDVSs, each SD-IoTD system

musters the capability of its represented IoT cluster. The SD-IoTD has knowledge of all IoT

159

connected devices’ attributes in terms of available IoT services, networks, and limitations. The

SDVS possesses software drivers and plug-in interfaces for various types of underlying physical

sensors/IoT devices. This has been presented in Chapter 4.

Floodlight SDN controller (open source): Floodlight is a Java-based controller that allows

developers to easily develop applications or integrate new functional components from/to the

fundamental architecture. We have implemented the SD-IoTC controller as a new application

module within the Floodlight.

OpenFlow protocol (open source): This is a well-known open communication protocol that

allows the SDN controller to program SDN switches as well as change the network configuration.

Taking advantage of that, the SD-IoTC controller can configure data flows to distribute IoT

requests to appropriate SD-IoTC clusters and to forward results to desired data collection points.

OpenFlow switch (open source): This is an Open vSwitch (OVS) that implements OpenFlow

protocol as a southbound interface. It contains a switch’s basic information such as IP address,

port names, and port numbers. Moreover, it has a data plane element that performs packets

forwarding. Through the switches, the SD-IoTC controller can update its network of connected

SD-IoTC platforms through the switches and can compute routing paths based on the knowledge

of the underlying platforms.

The structure of all the components is shown in Figure 7.11.

Figure 7.11 Detailed implementation of LSSD-IoT architecture

160

7.5.3 Implementation Scenario

To demonstrate the application of the proposed LSSD-IoT model, we develop a use case

scenario that requires IoT services on demand (as shown in Figure 7.12). In the scenario, there

are five local locations distributed geographically over a wide area, A. An application needs to

be developed to provide the weather condition of these locations, which are located in three areas

A1, A2, A3. Ideally, each location should be served by a local IoT system which is more

responsive to deal with specific local issues concerning resources, response time, and mobility.

LSSD-IoT system is designed to address such an on-demand service by orchestrating and

distributing resources and sub-services appropriately to locations as needed. The LSSD-IoT

system, in this case, may be divided into 5 local IoT subsystems as follows: IoT systems 1 and 2

are in A1. IoT systems 2 and 4 are in A2. IoT system 5 is in A3. The LSSD-IoT system

orchestrates these IoT subsystems to satisfy the demands from the current application, and if new

applications are to be provisioned (which may be other services other than weather condition, for

example, pollution condition), the LSSD-IoT will schedule available shared resources from all

IoT subsystems to satisfy the new applications demand according to the location and capability

of the subsystems.

161

Figure 7.12 LSSD-IoT Model - Implementation scenario

7.5.3 Implementation Set up

For demonstration, we implement a prototype, as presented in Figure 7.13. All components

of the proposed architecture are built in software. In order to establish the LSSD-IoT prototype,

we implement i) an SD-IoTC controller, which is extended from the Floodlight SDN controller

162

to handle the SDN network of IoT clusters; ii) a network of OpenFlow switches where IoT

clusters are connected, and iii) seven hosts that house local IoT clusters or data collection storage.

Five SD-IoTD systems run on five hosts, and two IoT storage applications run on the remaining

hosts. Each SD-IoTD platform contains a network of five SDVSs, each of which represents five

sensor types.

Figure 7.13 Detailed implementation of the LSSD-IoT platform

Details of implementation set up are as follows:

 All the main components are built on one PC running Ubuntu 16.04 LTS with detailed

configuration: Memory:16GB; Processor: IntelR CoreTM i7-7600U CPU @ 2.8GHz x 4; OS

type:64-bit; Disk:235GB.

163

 A Web-GUI is developed by leveraging the bootstrap container based on the Spring

framework *(http://projects.spring.io/spring-framework/). Users can request for IoT services

by accessing the GUI via a link < controller IP address>:8080/ui/pages/sdiot.html.

 The SD-IoTC controller is extended from the Floodlight SDN controller, a well-known open

platform for controlling and managing SDN devices. The SD-IoTC controller is developed

and run in Eclipse Java EE IDE, version: Photon Release (4.8.0).

 A network of SDN devices is built in the Mininet simulator. In our implementation, we use

Open vSwitch 2.5.5 and OpenFlow 1.3 (0x04).

 SD-IoTD systems are a Java-based platform developed in NetBeans 8.2. These systems are

deployed in Mininet hosts connected to SDN devices. It is connected to its own database built

by MySQL. We have implemented three main software components of the proposed SD-

IoTD model: the SD-IoTD controller, the S-MANAGE protocol, and the SDVS.

 The control module includes classes responsible for the controller’s functionality.

 The southbound interface module is composed of classes for the construction of S-

MANAGE messages, forwarding tables, and configuring tables of SDVSs.

 The virtual representation module contains classes for initiating instances of an SDVS

and its software-defined functions.

 The databases for SD-IoTC controller and SD-IoTD controllers are built by using MySQL,

version 5.7.27-0ubuntu0-16.04.1.

7.5.4 SD-IoTC Controller – Software Implementation

This section describes the software component of the SD-IoTC controller.

 Software Implementation

The SD-IoTC controller is extended from the Floodlight controller. This section presents

software elements that perform the above-discussed features of the SD-IoTC controller.

The SD-IoTC controller is implemented as an application module in the Floodlight platform.

The main classes of the SD-IoTC controller are shown in Figure 7.14. The SdiotModule class

contains main classes that perform the function of the SD-IoTC controller. Details of the

http://projects.spring.io/spring-framework/

164

RequestAnalyser and SdiotModule classes are illustrated in Figure 7.15 and Figure 7.16,

respectively.

Figure 7.14 Class diagram of the SD-IoTC controller

165

Figure 7.15 RequestAnalyser class

166

167

Figure 7.16 SdiotModule class

To expose the module to other modules inside the Floodlight controller, we implement the

REST-API interface, as shown in Figure 7.17.

168

Figure 7.17 Class diagram for REST-API

 Data Storage

The SD-IoTC controller leverages collected information from the SDN controller core

modules to achieve information about connected SD-IoT platforms. It builds its own data storage

that is composed of three information tables. Table 1 stores information about all clusters’

connection, such as IP addresses and MAC addresses that are used for flow configuration. The

169

table also keeps records about the “state” of each SD-IoT cluster. The “state” represents the

number of tasks currently handled by the associated SD-IoT cluster. Table 2 and Table 3 store

information regarding the capabilities of each SD-IoTC cluster. Details of the table 1,2,3 are

shown in Figure 7.18, Figure 7.19, Figure 7.20, respectively.

Figure 7.18 Table 1 - Connections to SD-IoT clusters

Figure 7.19 Table 2 – Available IoT services

170

Figure 7.20 Table 3 – SD-IoTC clusters’ capability

 Performance Evaluation

In this section, we evaluate the proposed model and the implemented platform on two

aspects: the implemented capability of the platform for provisioning large-scale IoT services on

demand and the performance of the platform in terms of orchestration, coordination,

configuration programming, and service provisioning.

7.6.1 Implementation Platform Capability

We will evaluate components and capabilities that contribute to the provisioning of large scale

IoT services on demand. Three aspects are demonstrated: 1) Orchestration tasks and allocating

of resources, 2) Configuration of resources to perform the allocated tasks, 3) Management of

tasks, and the overall service. The capability is expressed by the following features:

At the cluster level, the SD-IoTC controller can:

 Update the capability of SD-IoT resources (Figure 7.25).

171

 Handle various requests demanding one or multiple IoT services (Figure 7.26).

 Handle one or multiple IoT requests at any time according to available SD-IoT resources

(Figure 7.26).

 Orchestrate SD-IoT resources to process one or multiple IoT requests at any time (Figure

7.28).

 Re-orchestrate an IoT request if any allocated SD-IoT resource cannot handle an assigned

request (Figure 7.28a).

 Program flows to transmit results to desired data collection points (Figure 7.27).

 Monitor the execution status of IoT service provision (Figure 7.27).

At the device level, the SD-IoTD controller can:

 Automatically update its available resources to the SD-IoTC controller (Figure 7.25).

 Update the capability of SDVSs as well as update the database about the status of the

SDVSs (Figure 7.29a).

 Handle one/multiple requests at any time (Figure 7.29c).

 Process various types of requests for one or multiple services at any time (Figure 7.29c).

 Respond to the SD-IoTC controller if it cannot handle an assigned task (Figure 7.29b).

 Orchestrate SDVSs to achieve required IoT services and send obtained results to desired

destinations (Figure 7.30).

 Interfaces for control and management

The programmability and orchestration of the LSSD-IoT model are demonstrated via the

capability of orchestrating and configuring the underlying resources for provisioning IoT services

on demand. The overall view of orchestration and programmability of the LSSD-IoT model

happening at two levels is shown in Figure 7.21. The detailed results of programmability and

orchestration at the two levels are collected and viewed as the template in Figure 7.22.

172

Figure 7.21 Level of programmability and orchestration of the LSSD-IoT platform

At the cluster level, there is one user interface for entering requests and four tables providing

information about i) available SD-IoT resources, ii) requirements of IoT requests, iii)

acknowledgment from IoT applications, and iv) results of resource orchestration and execution

status.

At the device level, there is also one user interface for getting user demands or receiving

requests from the SD-IoTC controller; and four tables presenting i) available SDVSs, ii) results

of resource orchestration, iii) the number of messaged exchanged between each SDVS and the

SD-IoTD controller, and iv) SDVS’s forwarding table, configuring table and sensor services.

IoT Services Provision on Demand
Cluster level:
Control and

Management
Panel

Device level:
Control and

Management
Panel

Cluster level: Programmability and Orchestration

IoT Service
Requirements

Available SD-
IoTD resources

Device level: Programmability and
Orchestration

SD-IoTD Service
Requirements

Available IoT Resources

173

Figure 7.22 Control and management panel at the SD cluster and device level

We can access the SD-IoTC controller and put IoT requests via a web browser. Overall view

of the orchestration and programmability results at the cluster and device levels are shown in

Figure 7.23 and Figure 7.24, respectively.

174

Figure 7.23 Overview of the control and management at the cluster level

Figure 7.24 Overview of the control and management at the device level

175

 Orchestration and Scheduling – At the Cluster level

At this level, users are provided with an interface to specify their requirements, e.g., IoT

services in which area, required period, how often results being sent to which destination (Figure

7.23). The users are also provided with available SD-IoT services (Figure 7.25). The resources

are updated whenever an SD-IoTD cluster joins the LSSD-IoT system. In the area A1

(ManagedArea), there are currently five IoT clusters, e.g., sdiot01, sdiot02, with different

capabilities (ProvidedServices). Each SD-IoTD cluster manages two locations

(ManagedLocation), e.g., LOC01 and LOC02.

Figure 7.25 Available SD-IoT resources

As shown in Figure 7.26, the LSSD-IoT can handle one or multiple requests that are marked

with IoTReq_ID at any time (Start_Time). The input requests may require one or multiple IoT

services (Req_Service). The user can monitor the status of IoT service achievement

(Completion_Status) of required services if it is “OnGoing” or “Completely Done.” “OnGoing”

indicates that the systems are still obtaining required services. “Completely Done” shows that all

required services have been sent to desired destinations after a required period. For example,

IoTReq_ID number 2 is with “Completely Done” status. As shown in Figure 7.28b, all sub-

requests of request number 2 have been “Completely Done,” so the “Completion_Status” of the

request is “Completely Done” (Figure 7.26). Meanwhile, regarding IoTReq_ID number 6, only

176

two out of five sub-requests have been done (Figure 7.28b), so its Completion_Status is still

“OnGoing” (Figure 7.26).

Figure 7.26 IoT Requests Status

The LSSD-IoT system configures and monitors data flows between sources of IoT services

(Sender_of_Results) and the destination of IoT results (IoT_Application_Receiver). Moreover,

it also presents information on the achieved services (Required_Sdiot_Services). All the

information is presented in Figure 7.27.

Figure 7.27 IoT Application Announcements

By default, SD-IoTD clusters can achieve all required services, but if any SD-IoTD cluster

cannot handle a request, it sends a response (Sdiot_Response) regarding its incapability to the

SD-IoTC controller. Hence, the SD-IoTC controller re-orchestrates other SD-IoTD resources to

process the request (Figure 7.28a). As shown in Figure 7.28a, IoT request number 4 cannot be

177

handled by sdiot01, so sdiot05 is orchestrated to handle request number 4. Thus, after re-

scheduling the resources, the SD-IoTC controller set the value for the Sdiot_Response to “New

replacement of sdiot01 for IoT_Req_ID 4.”

a) Reschedule results

b) Status of orchestrated SD-IoTD clusters

Figure 7.28 SD-IoTC Controller – Resource Orchestration

178

The SD-IoTC controller can obtain the status of SD-IoTD resources allocated to an IoT

request at a specific time (Figure 7.28b). For an IoT request (IoTReq_ID), a set of information

associated with each IoT service (Req_Service) is kept: the responsible SD-IoTD cluster

(Allocated_Cluster), the response status (Sdiot_Response), the execution status (IsExecuted), and

the processing status (Status) which is “OnGoing” or “Completely done.” When an SD-IoTD

cluster completes a task, it informs the SD-IoTC controller of its completion and marks the Status

“Completely Done.”

 Orchestration and Scheduling – At the Device level

The control and management of each SD-IoTD cluster have been shown in the control panel

of the SD-IoTD controller (Figure 7.29, 7.30, 7.31). The management panel includes three main

windows presenting information collected from the application layer, the orchestration layer, and

the device layer. The application window allows users to input their IoT requests or admit IoT

requests from the SD-IoTC controller via a user interface (Figure 7.24).

The operation of the controller is shown through multiple tables, including i) Resource

Manager, ii) Resource Orchestration, iii) Application-Results, iv) Message Exchanged.

Figure 7.29 SD-IoTD Controller – Resources Orchestration

179

The first table (Figure 7.29a) shows all SDVSs under the controller’s management. For

example, SDVS01 is in location LOC01 and has the “State” 9 that means the SDVS currently

handles 9 tasks.

The second table (Figure 7.29b) displays appropriate SDVSs for a service request. For

instance, for the incoming request, the SDVS01 is responsible for achieving services

SID01,02,03,04,05.

The third table (Figure 7.29c) reveals the results with resources provided for application

requests. From this table, we can see that the SDVS01 has achieved the required services

(IsExecuted) and sent results (Results) to the required destination.

The last table (Figure 7.29d) displays the number of packets sent out by SDVSs. The

SDVS01 has sent out a total of 51 data packets.

The device window is about the SDVS. It provides information regarding the Forwarding

table, Configuring Table, and Sensor services provided by the SDVS (Figure 7.30b). The SDVS

can be configured to provide desired services (Figure 7.30c) and forward data to the required

destination (Figure 7.30a). The SDVS shows a list of capable services and their associated status.

It also provides the details of each provisioned service (Figure 7.30a), including specific

requirements such as the processing start time (StartTime), the processing duration (RunTime),

and the remaining time (TTL). Moreover, it also shows the number of requests that are interested

in a specific service. With such recorded information, the SD-IoTD controller can notify the SD-

IoTC controller of the waiting time before the request can be processed.

180

Figure 7.30 SD-IoTD Controller – Device Configuration

7.6.2 Platform Performance

In this section, we carry out the tasks of service provisioning and evaluate the performance

through two performance measures: orchestration time and response time. Orchestration time is

the time required for orchestrating a requested service at the cluster level. Response time is the

service response time, which measures the time from when the SD-IoTC controller configures

SD-IoT resources at the device level to the time the first lot of data is collected at the collection

point. As illustrated in Figure 7.31, the Orchestration time is T1, the time needed for

orchestrating SD-IoT clusters for serving an IoT request. Total Response time is composed of

T2,T3,T4,T5,T61, and T62.

181

Figure 7.31 Timing diagram

The efficiency is examined via the above two parameters. The two measurements are

investigated through two test cases: a) with optimization and b) non-optimization. With the

optimized orchestration, the SD-IoTC controller reuses existing configurations/results associated

with an IoT service to provision multiple IoT service demands that share similar interests. The

LSSD-IoT system can save time in configuring SD-IoT resources to respond to multiple IoT

requests as well as in the reduction of the load over the transport network since the model may

only need to configure IoT clusters once to achieve services required by multiple requests. On

the other hand, for the non-optimization case, the SD-IoTC controller needs to orchestrate

available SD-IoT resources and configure them for every incoming request.

The orchestration is executed according to the availability of IoT resources and associated

achieved IoT services, and current IoT requests. The SD-IoTC controller needs to know the

amount of resources needed for handling current IoT requests, so it can allocate residual resources

appropriately to incoming requests. The controller knows the number of current IoT requests and

when they are processed, the allocated resources, and the needed duration. Figure 7.32 shows

the arrival of requests and the allocation of resources to the system at different times. At time t0,

182

all system resources are available for allocation to meet Req0’s demand. At time t1, Req0 has

been severed, and all the allocated resources to Req0 have been returned to the resource pool,

and hence, the total system resources are again available for allocation to Req1’s demand.

However, at time t2, Req1 is still being served, and hence, the resources available for allocation

to Req2 are the total system resources minus the amount of resources already allocated to Req1.

Similarly, at an arrival time of a request, the orchestrator has to determine the amount of resources

that have been allocated to existing requests and can only allocate residual resources from its

resource pool to the new request.

Figure 7.32 View of resource orchestration at the cluster level

We examine the orchestration for two cases a) with optimization (optimization case) and b)

without optimization (non-optimization case). A number of simultaneous requests have been sent

to the LSSD-IoT system. The requests may have one, two, three, or four common IoT services.

As displayed in Figure 7.33, 7.34a, and 7.34b, the time needed for orchestrating and provisioning

services for the two cases increases with the rising number of requests. Compared to the non-

optimization case, the average time for orchestrating the same number of simultaneous requests

183

for the optimization case is longer due to the computation for reutilizing available IoT services

that can be reused for provisioning IoT services to multiple IoT requests (Figure 7.33).

Figure 7.33 Orchestration time with and without optimization

In contrast, the response time for the non-optimization case is much longer than that of the

optimization case, as depicted in Figure 7.34a and Figure 7.34b for provisioning IoT services

to the same number of IoT requests. Particularly, for the optimization case, the maximum amount

of time for responding to 90 concurrent requests is about 50000ms, while the non-optimization

case requires about 249 times higher. This is because the optimization case a) reuses available

results of IoT services and shares them with multiple IoT applications, and b) minimizes the

configuration for the same type of services. The non-optimization case does not consider these

factors, and hence orchestrating and configuring the underlying resources have to be performed

for every incoming request.

184

a) Optimization case

b) Non-optimization case

Figure 7.34 SD-IoTC Controller – Response Time

185

To account for the increase in the orchestration time and response time for the optimization

case, we investigate the time for 4 cases, as shown in Figure 7.35. A variety of requests are sent

to the LSSD-IoT platform simultaneously. These requests may have a common interest in one,

two, three, or four services. As presented in Figure 7.35, the more services required per request,

the more time needed for orchestration as well as service response. In addition, for higher

numbers of concurrent requests coming to the systems, the time for processing them becomes

longer.

Figure 7.35 Orchestration and Response Time for optimization case with various input requests

 Summary

In this chapter, we have introduced an LSSD-IoT model with new concepts to reshape the

SDN and NFV technologies and overcome the limitations of IoT networked devices to support

the programming of IoT services on demand. In particular, we attempt to incorporate SDN

domain and SD-IoT domain for scalability in terms of the number of IT devices and their

186

geographical coverage for programming global IoT services on demand. We have developed and

deployed a new SD-IoTC controller to enable it to control and manage both SDN devices and

IoT devices. Details of the SD-IoTC controller’s components are described. We discussed

possible use cases of the proposed LSSD-IoT model and provided the operation of the model in

the provision of IoT services on demand. We presented the feasibility and efficiency of the

proposed model through the design and implementation of an LSSD-IoT platform prototype and

evaluated the performance of the model.

187

Chapter 8 Conclusion and Future

Work

2 This chapter summarizes this research and outlines the significant contributions. In

association with the achievements, we then suggest future work.

8.1 Research Remarks

Internet of Things (IoT) applications have started becoming one of indispensable elements in

various domains such as human life, social relationship, economy, education, health, industry,

manufacturing, environment, and the government. However, the development is limited by a

critical challenge of an increasing deployment cost and management of a rising number of

sensors/IoT devices. In fact, the majority of IoT systems are rigid with little capability for

programmable configuration or reusability as they are application-specific and manufacturer-

specific. It is crucial to share IoT resources, including IoT devices, IoT infrastructure, and IoT

services, among IoT applications in order to utilize IoT resources in an economical and timely

manner.

In this research, we have identified a number of major issues of the current generation IoT

systems/platforms. The first challenge is to manage the complexity of the interconnecting

infrastructure of billions of IoT devices and harness their capabilities to serve not only local

communities but also global communities in an efficient manner. The second challenging issue

is to automate the provisioning of IoT services whenever they are needed on demand. The third

challenge is in the developing of algorithms and supporting infrastructure for efficient utilization

of the resources through sharing and reusing resources.

188

In order to address the challenging issues, we propose a large-scale software-defined IoT

model and associated techniques for the provision of end-to-end services on demand.

In particular, on connectivity and networking architecture, Software-Defined Networking

enables network programmability and fine-grained flow-based automated management that are

not available with traditional distributed networks. Through the logically centralized knowledge

of the whole network, an SDN controller can configure network devices automatically to deal

with network dynamics. Many networks are currently being deployed for these purposes.

Unfortunately, SDN-like programmability in IoT is still not being commonly used or is still being

developed. We aim to adopt SDN for efficient deployment in the IoT domain and investigate a

large-scale architecture spanning both the SDN domain and the IoT domain.

On programmable mechanisms for the orchestration of IoT services on demand, we attempt

to enhance the capability of constrained IoT devices by using the virtual functions and the

virtualized interface for orchestrating and programming services. For that purpose, we investigate

algorithms and mechanisms for service orchestration.

As for communication and management protocol, sensors/IoT devices are not routing

devices, and heavy protocols for programming network flows in network devices are not

applicable to IoT devices. Efforts have been made to address this management issue with limited

success. We investigate the development of a new simple protocol for adapting and enhancing

the SDN paradigm to IoT networks to compensate for the different nature of network devices and

IoT devices.

With regard to device capability, the highly resource-constrained nature of the IoT devices in

terms of energy, computing power, storage, and wireless connectivity prevents a direct

application of the wired SDN techniques to the IoT world. Many sensor/IoT devices with simple

functionality do not possess a programmable interface which is required for resource and service

sharing. Research efforts have been attempted to address this issue; systematically enriching

devices with resource sharing capability remain open challenges. We investigate the

virtualization technology to enhance and supplement the programmability of physical devices.

189

In addition, the IoT resources and services need to be shared and reused for developing

multiple IoT applications, but the mechanism for that purpose has not been extensively explored.

We investigate a programmable platform for sharing the underlying IoT resources and

provisioning them on demand.

The contributions of this study can be summarized as follows.

We proposed a novel large-scale software-defined Internet of Things (LSSD-IoT) model that

enables the provision of IoT services on demand by orchestrating IoT systems distributed over a

large area. This model provides an end-to-end orchestration of IoT resources that involves

orchestrating not only a single sensor/IoT device but also transporting infrastructure that connects

geo-distributed IoT systems.

We introduced a software-defined virtual sensor (SDVS) that provides advanced capabilities

for the constrained IoT devices. The SDVS allows the control and management of IoT devices

and the network of these devices. It also enables the programmability of both the functional and

forwarding behavior of the IoT devices in provisioning their capabilities to IoT applications.

Through the SDVS, the IoT devices can be programmed for sharing their capabilities among IoT

applications on demand.

We proposed a novel control and management protocol for programming IoT devices. The

proposed protocol allows communication between IoT devices and the controller, which manages

the device in sharing IoT resources with an external application. The protocol supports the

controller in programming the IoT devices for provisioning IoT services on demand.

We proposed a software-defined IoT system that can be programmable and scalable to be a

part of a large-scale IoT platform. The proposed architecture allows an IoT cluster to program its

IoT resources, including IoT devices and the IoT network. In addition, via the SD-IoT model, the

IoT cluster can be controlled, managed, and orchestrated by a global controller in provisioning

IoT services on demand over a large-scale area.

Finally, we designed and implemented the proposed LSSD-IoT platform to demonstrate its

capabilities and performance in the provision of IoT services on demand. The proposed platform

190

provides a new software-defined environment for integrating IoT and SDN domains as well as

developing SDN-IoT-specific features.

On connectivity and networking architecture, we adapted SDN for efficient deployment in

the IoT domain and demonstrated the use of the proposed LSSD-IoT architecture spanning both

the SDN domain and IoT domain.

On device capability, we designed and implemented the Software-Defined Virtual Sensor to

enhance and supplement the programmability of physical devices.

On communication and management protocol, we designed and developed S-MANAGE, a

new simple protocol in a software-defined paradigm to manage IoT networks to compensate for

the different nature of network devices and IoT devices.

On programmable mechanisms for orchestrating services on demand, we enriched the

capability of IoT devices with virtual functions and interface for orchestrating and programming

services. We developed algorithms and mechanisms for service orchestration.

On resources and services reusing and sharing, we investigated and implemented a

programmable platform for sharing the underlying IoT resources and provisioning them on

demand.

In summary, we believe that this thesis provides an affirmative answer to the posed question

of “Can the SDN-NFV paradigm be leveraged for orchestration of geo-distributed IoT resources

on resource-constrained IoT devices in provisioning IoT services on demand, and can the

proposed model be realized in a practical implementation? Our proposal can be used to develop

platforms for programmable IoT services of the future.

The novelty of this research lies in building a large-scale software-defined Internet of Things

(LSSD-IoT) platform for provisioning IoT services on demand. The proposal includes a novel

model of virtual sensors and a new LSSD-IoT architecture that is constructed from a cluster layer

and a device layer. Each layer is implemented with a layer-specific software-defined controller

and a new controller-sensor/cluster management protocol to provide a software platform for

provisioning IoT services on demand.

191

The significance of this work is that it allows the orchestration and the programmability of

IoT devices in the provision of IoT services on demand over a wide area. It enables i) IoT service

providers to control end-to-end quality of services of IoT services provision over a large-scale

IoT environment; ii) owners of IoT devices or IoT systems to be able to gain benefits from sharing

their IoT resources; iii) IoT application developers to develop innovative and comprehensive IoT

applications on demand with more options regarding QoS, security, mobility, or billing and

without concern about the deployment of physical IoT infrastructure.

8.2 Future Work

In this study, we investigate technologies, network architectures, device capabilities,

protocols, and programmable mechanisms for orchestrating IoT services on demand. The

achievements open up a new research direction for end-to-end control and management of SDN-

NFV-based IoT infrastructure in the provision of IoT services on demand. Although this research

has significant research outcomes, there remain several limitations.

The proposed LSSD-IoT model can be a crucial platform for investigating new mechanisms

associated with big data/QoS-driven network. Billions of devices produce a massive volume of

data that causes a serious load on the transporting network. With the proposed LSSD-IoT model,

we can configure data flow within a local IoT system and among transporting devices. This

capability enables ease of developing and deploying a new paradigm in terms of QoS or big data

management. In the future, we need to design QoS schemes to avoid conflicts among

requirements from various IoT demands and improve the orchestration mechanism to maximize

the response time in the provision of IoT services on demand.

In addition, security can be a major concern in a shared IoT platform. Therefore, for future

research, we would study security policies that can cover both layers of the LSSD-IoT platform.

At the cluster level, we need to establish trust between the LSSD-IoT platform and the SD-IoT

platform when a local IoT system first joins a large-scale IoT platform. This protects both local

and global IoT platforms. At the device level, we also need to ensure the each IoT device in an

192

IoT cluster is trusted for and is protected from sharing their IoT services with multiple IoT

applications.

The proposed local SD-IoT model allows discrete IoT silos to share their resources with other

IoT applications, and this brings benefits to both owners and users. Utilizing their local IoT

system, the owners can achieve services for their own purposes, as well as they can obtain extra

incomes by offering their resources to other users. This also allows users/developers to develop

new IoT applications without concern about the deployment of a physical IoT infrastructure. For

future work, we develop a service management scheme that enables the owner of each IoT system

to manage their benefits from sharing their resources.

The proposed control and management S-MANAGE protocol is currently for control

forwarding and functioning behavior of the SDVS in the provision of IoT services on demand.

The protocol would be further developed to include more QoS-specific metrics but with a concern

on the limitation of IoT networks and IoT devices.

 The proposed SDVS is proposed as an interface between the SD-IoT model and

heterogeneous underlying IoT devices. Therefore, in the future, we would study and develop a

library of drivers that allows the SDVS to communicate with heterogeneity of IoT entities.

Besides that, we would investigate a discovery mechanism to allow mobile IoT devices to easily

participate in a local IoT system to share their IoT values.

The proposed LSSD-IoT platform has been implemented and evaluated via a practical

implementation. This makes the application of the SDN-NFV paradigm in an end-to-end control

and management of IoT infrastructure for provisioning IoT services on demand become a reality.

The efficiency of the proposed LSSD-IoT platform is evaluated by comparing two orchestration

approaches deployed on the platform that uses the Floodlight SDN controller. The feature needs

to be further investigated in various scenarios, including different SDN controller types and

network sizes. Besides that, we would implement the LSSD-IoT platform with different types of

IoT sensors/IoT devices and with different network sizes.

193

Appendices
Appendix 1 SD-IoTD controller – Software Components

a) ControllerAnalyseAppRequest

b) ControllerConnectDatabase

194

c) ResourceManager

d) ControllerResourceAllocation

195

e) ThreadExecuInputRequestFloodlight

f) ControllerFactorySdiot

g) ControllerInterfaceSdiot

196

h) AbstractControllerSdiot

197

198

i) ControllerDijkstraSdiot

j) ControllerGuiSdiot

199

200

Appendix 2 SD-IoTD controller – Data Storage

201

202

Bibliography

1. Columbus, L. IoT Market Predicted To Double By 2021, Reaching $520B. 2018;
Available from: https://www.forbes.com/sites/louiscolumbus/2018/08/16/iot-market-
predicted-to-double-by-2021-reaching-520b/#257cbfd41f94.

2. Noura, M., M. Atiquzzaman, and M. Gaedke, Interoperability in Internet of Things:
Taxonomies and Open Challenges. Mobile Networks and Applications, 2018.

3. Framingham, M. The Growth in Connected IoT Devices Is Expected to Generate 79.4ZB
of Data in 2025, According to a New IDC Forecast. 2019 [cited 2019 12-November];
Available from: https://www.idc.com/getdoc.jsp?containerId=prUS45213219.

4. Ray, P.P., A survey on Internet of Things architectures. Journal of King Saud University
- Computer and Information Sciences, 2018. 30(3): p. 291-319.

5. Jones, N. How to stop data centres from gobbling up the world’s electricity. 2018 [cited
2019 11 November]; Available from: https://www.nature.com/articles/d41586-018-
06610-y.

6. Botta, A., et al., Integration of Cloud computing and Internet of Things: A survey. Future
Generation Computer Systems, 2016. 56: p. 684-700.

7. Mell, P.M. and T. Grance, SP 800-145. The NIST Definition of Cloud Computing. 2011,
National Institute of Standards \& Technology.

8. Yu, R., et al., The Fog of Things Paradigm: Road toward On-Demand Internet of Things.
IEEE Communications Magazine, 2018. 56(9): p. 48-54.

9. Mora, H., et al., Collaborative Working Architecture for IoT-Based Applications. Sensors
(Basel, Switzerland), 2018. 18(6): p. 1676.

10. Zhao, S., et al., Internet of things service provisioning platform for cross-application
cooperation, in Securing the Internet of Things: Concepts, Methodologies, Tools, and
Applications. 2020, IGI Global. p. 655-678.

11. Thoma, M., et al. On IoT-services: Survey, Classification and Enterprise Integration. in
2012 IEEE International Conference on Green Computing and Communications. 2012.

12. Boulakbech, M., et al., IoT Mashups: From IoT Big Data to IoT Big Service, in
Proceedings of the International Conference on Future Networks and Distributed
Systems. 2017, ACM: Cambridge, United Kingdom.

13. Lee, D. and H. Lee, IoT service classification and clustering for integration of IoT service
platforms. The Journal of Supercomputing, 2018. 74(12): p. 6859-6875.

14. 5GPPP. View on 5G Architecture. 2019.
15. Gubbi, J., et al., Internet of Things (IoT): A vision, architectural elements, and future

directions. Future Generation Computer Systems, 2013. 29(7): p. 1645-1660.
16. El-Mougy, A., I. Al-Shiab, and M. Ibnkahla, Scalable Personalized IoT Networks.

Proceedings of the IEEE, 2019. 107(4): p. 695-710.
17. T.M.C Nguyen, D.H., Large-scale Software-Defined IoTs Platform for Provisioning IoT

Services on Demand. International Journal of Smart Sensor Technologies and
Applications (IJSSTA), 2020.

https://www.forbes.com/sites/louiscolumbus/2018/08/16/iot-market-predicted-to-double-by-2021-reaching-520b/#257cbfd41f94
https://www.forbes.com/sites/louiscolumbus/2018/08/16/iot-market-predicted-to-double-by-2021-reaching-520b/#257cbfd41f94
https://www.idc.com/getdoc.jsp?containerId=prUS45213219
https://www.nature.com/articles/d41586-018-06610-y
https://www.nature.com/articles/d41586-018-06610-y

203

18. Nguyen, T.M.C. and D.B. Hoang. Software-Defined Virtual Sensors for Provisioning IoT
Services On Demand. in 2020 International Conference on Information Technology and
Internet of Things. 2020. Shanghai, China: Scopus.

19. Nguyen, T.M.C. and D.B. Hoang. S-MANAGE Protocol For Software-Defined IoT. in
2018 28th International Telecommunication Networks and Applications Conference
(ITNAC). 2018.

20. Nguyen, C. and D. Hoang, S-MANAGE Protocol for Provisioning IoT Applications on
Demand. Journal of Telecommunications and the Digital Economy, 2019. 7(3): p. 37-57.

21. Nguyen, T.M.C., D.B. Hoang, and Z. Chaczko. Can SDN Technology Be Transported to
Software-Defined WSN/IoT? in 2016 IEEE International Conference on Internet of
Things (iThings) and IEEE Green Computing and Communications (GreenCom) and
IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData). 2016.

22. Nguyen, T.M.C., D.B. Hoang, and T.D. Dang. Toward a programmable software-defined
IoT architecture for sensor service provision on demand. in 2017 27th International
Telecommunication Networks and Applications Conference (ITNAC). 2017.

23. Nguyen, T.M.C., D.B. Hoang, and T.D. Dang. A software-defined model for IoT clusters:
Enabling applications on demand. in 2018 International Conference on Information
Networking (ICOIN). 2018.

24. Kothari, C.R., Research methodology: Methods and techniques. 2004: New Age
International.

25. Ashton, K. That 'Internet of Things' Thing : In the real world, things matter more than
ideas. 2009 [cited 2019 10 December]; Available from:
https://www.rfidjournal.com/articles/view?4986.

26. Suresh, P., et al. A state of the art review on the Internet of Things (IoT) history,
technology and fields of deployment. in 2014 International Conference on Science
Engineering and Management Research (ICSEMR). 2014.

27. Marks, L.V. Review: Nest Learning Thermostat. 2013.
28. Hung LeHong , J.F. Hype Cycle for Emerging Technologies, 2011. 2011.
29. Atzori, L., A. Iera, and G. Morabito, Understanding the Internet of Things: definition,

potentials, and societal role of a fast evolving paradigm. Ad Hoc Networks, 2017. 56: p.
122-140.

30. IEEE Towards a definition of the Internet of Things (IoT). 2015.
31. Bahga, A. and V. Madisetti, Internet of Things: A Hands-On Approach. 2014: Arshdeep

Bahga & Vijay Madisetti.
32. Kafle, V.P., Y. Fukushima, and H. Harai, Internet of things standardization in ITU and

prospective networking technologies. IEEE Communications Magazine, 2016. 54(9): p.
43-49.

33. Haller, S., The Things in the Internet of Things. 2010.
34. Mohammed, F.H. and R. Esmail, Survey on iot services: classifications and applications.

Int J Sci Res, 2015. 4: p. 2124-7.
35. Y.2066, R.I.-T., Common Requirements of the Internet of Things. 2014.

https://www.rfidjournal.com/articles/view?4986

204

36. Di Martino, B., et al., Internet of things reference architectures, security and
interoperability: A survey. Internet of Things, 2018. 1-2: p. 99-112.

37. Al-Fuqaha, A., et al., Internet of things: A survey on enabling technologies, protocols,
and applications. IEEE Communications Surveys & Tutorials, 2015. 17(4): p. 2347-2376.

38. Xiaojiang, X., W. Jianli, and L. Mingdong, Services and key technologies of the internet
of things. ZTE Communications, 2010. 2: p. 011.

39. Gigli, M. and S.G. Koo, Internet of Things: Services and Applications Categorization.
Adv. Internet of Things, 2011. 1(2): p. 27-31.

40. Chowdhury, A. and S.A. Raut, A survey study on internet of things resource management.
Journal of Network and Computer Applications, 2018. 120: p. 42-60.

41. Khan, R., et al. Future Internet: The Internet of Things Architecture, Possible
Applications and Key Challenges. in 2012 10th International Conference on Frontiers of
Information Technology. 2012.

42. Yang, Z., et al. Study and application on the architecture and key technologies for IOT.
in 2011 International Conference on Multimedia Technology. 2011. IEEE.

43. Wu, M., et al. Research on the architecture of Internet of Things. in 2010 3rd
International Conference on Advanced Computer Theory and Engineering (ICACTE).
2010. IEEE.

44. Chaqfeh, M.A. and N. Mohamed. Challenges in middleware solutions for the internet of
things. in 2012 international conference on collaboration technologies and systems
(CTS). 2012. IEEE.

45. Sarwesh, P., N.S.V. Shet, and K. Chandrasekaran, Envisioned Network Architectures for
IoT Applications, in Cyber-Physical Systems: Architecture, Security and Application, S.
Guo and D. Zeng, Editors. 2019, Springer International Publishing: Cham. p. 3-17.

46. Nguyen, P., et al. Advances in Deployment and Orchestration Approaches for IoT - A
Systematic Review. in 2019 IEEE International Congress on Internet of Things (ICIOT).
2019.

47. V, M., et al., A Scalable Framework for Provisioning Large-Scale IoT Deployments.
ACM Trans. Internet Technol., 2016. 16(2): p. 1-20.

48. Silva, d.C.J., et al., Management Platforms and Protocols for Internet of Things: A
Survey. Sensors, 2019. 19(3).

49. Noura, M., M. Atiquzzaman, and M. Gaedke, Interoperability in Internet of Things:
Taxonomies and Open Challenges. Mobile Networks and Applications, 2019. 24(3): p.
796-809.

50. Kreutz, D., et al., Software-defined networking: a comprehensive survey. Proceedings of
the IEEE, 2015. 103(1): p. 14-76.

51. Hoang, D., Software defined networking–shaping up for the next disruptive step?
Australian Journal of Telecommunications and the Digital Economy, 2015. 3(4).

52. Xie, J., et al., Control plane of software defined networks: a survey. 2015.
53. Stallings, W., Foundations of modern networking: SDN, NFV, QoE, IoT, and cloud. 2015:

Addison-Wesley Professional.

205

54. Gupta, N.V.R. and M. Ramakrishna, A Road Map for SDN-Open Flow Networks.
International Journal of Modern Communication Technologies & Research (IJMCTR),
2015. 3(6).

55. Rowshanrad, S., et al., A survey on SDN, the future of networking. Journal of Advanced
Computer Science & Technology, 2014. 3(2): p. 232-248.

56. Wenfeng, X., et al., A Survey on software-defined networking. IEEE Communications
Surveys & Tutorials, 2015. 17(1): p. 27-51.

57. Lara, A., A. Kolasani, and B. Ramamurthy, Network innovation using openflow: a survey.
Communications Surveys & Tutorials, IEEE, 2014. 16(1): p. 493-512.

58. Black, C. and P. Goransson, Software defined networks: a comprehensive approach.
2014, Elsevier USA, Waltham, MA: Elsevier Science.

59. Nunes, B.A.A., et al., A survey of software-defined networking: past, present, and future
of programmable networks. IEEE Communications Surveys & Tutorials, 2014. 16(3): p.
1617-1634.

60. Fei, H., H. Qi, and B. Ke, A survey on software-defined network and openflow: from
concept to implementation. IEEE Communications Surveys & Tutorials, 2014. 16(4): p.
2181-2206.

61. Trevizan de Oliveira, B., M.C. Borges, and G.L. Batista. TinySDN: Enabling multiple
controllers for software-defined wireless sensor networks. in Communications
(LATINCOM), 2014 IEEE Latin-America Conference on. 2014.

62. Costanzo, S., et al. Software defined wireless networks: unbridling sdns. in 2012
European Workshop on Software Defined Networking (EWSDN). 2012. IEEE.

63. Gante, A.D., M. Aslan, and A. Matrawy. Smart wireless sensor network management
based on software-defined networking. in 27th Biennial Symposium on Communications
(QBSC). 2014. IEEE.

64. Luo, T., H.-P. Tan, and T.Q.S. Quek, Sensor openflow: enabling software-defined
wireless sensor networks. Communications Letters, IEEE, 2012. 16(11): p. 1896-1899.

65. Galluccio, L., et al. SDN-WISE: design, prototyping and experimentation of a stateful
SDN solution for WIreless SEnsor networks. in 2015 IEEE Conference on Computer
Communications (INFOCOM). 2015.

66. Galluccio, L., et al. Reprogramming wireless sensor networks by using sdn-wise: a hands-
on demo. in IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). 2015. IEEE.

67. Mahmud, A. and R. Rahmani. Exploitation of OpenFlow in wireless sensor networks. in
2011 International Conference on Computer Science and Network Technology (ICCSNT).
2011.

68. Haleplidis, E., et al., Software-defined networking (sdn): layers and architecture
terminology. 2015.

69. Kumar Somappa, A.A., K. Øvsthus, and L.M. Kristensen, An industrial perspective on
wireless sensor networks: a survey of requirements, protocols, and challenges. IEEE
Communications Surveys & Tutorials, 2014. 16(3): p. 1391-1412.

206

70. Jayashree, P. and F. Infant Princy. Leveraging sdn to conserve energy in wsn-an analysis.
in 3rd International Conference on Signal Processing, Communication and Networking
(ICSCN). 2015. IEEE.

71. Yuan, A.S., H.-T. Fang, and Q. Wu. OpenFlow based hybrid routing in Wireless Sensor
Networks. in 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor
Networks and Information Processing (ISSNIP). 2014. IEEE.

72. Han, Z.-j. and W. Ren, A novel wireless sensor networks structure based on the SDN.
International Journal of Distributed Sensor Networks, 2014. 2014: p. 1-7.

73. Kim, H. and N. Feamster, Improving network management with software defined
networking. IEEE Communications magazine, 2013. 51(2): p. 114-119.

74. Mahmud, A., R. Rahmani, and T. Kanter. Deployment of flow-sensors in internet of
things' virtualization via openflow. in Third FTRA International Conference on Mobile,
Ubiquitous, and Intelligent Computing (MUSIC). 2012. IEEE.

75. Huang, R., et al., Energy-efficient monitoring in software defined wireless sensor
networks using reinforcement learning: a prototype. International Journal of Distributed
Sensor Networks, 2015. 2015.

76. Costanzo, S., et al. Software defined wireless networks: unbridling sdns. in European
Workshop on Software Defined Networking (EWSDN). 2012. IEEE.

77. Hoang, D.B. and S. Farahmandian, Security of Software-Defined Infrastructures with
SDN, NFV, and Cloud Computing Technologies, in Guide to Security in SDN and NFV:
Challenges, Opportunities, and Applications, S.Y. Zhu, et al., Editors. 2017, Springer
International Publishing: Cham. p. 3-32.

78. ETSI, Network Functions Virtualisation (NFV) - Virtual Network Functions Architecture.
2014.

79. Nitti, M., et al., The Virtual Object as a Major Element of the Internet of Things: A Survey.
IEEE Communications Surveys & Tutorials, 2016. 18(2): p. 1228-1240.

80. Madria, S., V. Kumar, and R. Dalvi, Sensor Cloud: A Cloud of Virtual Sensors. IEEE
Software, 2014. 31(2): p. 70-77.

81. Kabadayi, S., A. Pridgen, and C. Julien, Virtual sensors: Abstracting data from physical
sensors, in Proceedings of the 2006 International Symposium on on World of Wireless,
Mobile and Multimedia Networks. 2006, IEEE Computer Society. p. 587-592.

82. Gupta, A. and N. Mukherjee. Implementation of virtual sensors for building a sensor-
cloud environment. in 8th International Conference on Communication Systems and
Networks (COMSNETS). 2016. IEEE.

83. Evensen, P. and H. Meling. SenseWrap: A service oriented middleware with sensor
virtualization and self-configuration. in 2009 International Conference on Intelligent
Sensors, Sensor Networks and Information Processing (ISSNIP). 2009.

84. Jordán Pascual Espada, et al., Virtual Objects on the Internet of Things. International
Journal of Artificial Intelligence and Interactive Multimedia, 2011. 1(4): p. 24-30.

85. Bröring, A., et al., New Generation Sensor Web Enablement. Sensors, 2011. 11(3): p.
2652.

86. Omnes, N., et al. A programmable and virtualized network & IT infrastructure for
the internet of things: How can NFV & SDN help for facing the upcoming

207

challenges. in 2015 18th International Conference on Intelligence in Next Generation
Networks. 2015.

87. Mavromatis, A., et al. A Software Defined Device Provisioning Framework Facilitating
Scalability in Internet of Things. in 2018 IEEE 5G World Forum (5GWF). 2018.

88. Atzori, L., et al., SDN&NFV contribution to IoT objects virtualization. Computer
Networks, 2019. 149: p. 200-212.

89. Bera, S., S. Misra, and A.V. Vasilakos, Software-Defined Networking for Internet of
Things: A Survey. IEEE Internet of Things Journal, 2017. 4(6): p. 1994-2008.

90. Li, Y., et al. A SDN-based architecture for horizontal Internet of Things services. in 2016
IEEE International Conference on Communications (ICC). 2016.

91. Qin, Z., et al. A Software Defined Networking architecture for the Internet-of-Things. in
2014 IEEE Network Operations and Management Symposium (NOMS). 2014.

92. Farris, I., et al., A survey on emerging SDN and NFV security mechanisms for IoT systems.
IEEE Communications Surveys & Tutorials, 2018: p. 1-1.

93. Alenezi, M., K. Almustafa, and K.A. Meerja, Cloud based SDN and NFV architectures
for IoT infrastructure. Egyptian Informatics Journal, 2018.

94. Vilalta, R., et al. End-to-end SDN orchestration of IoT services using an SDN/NFV-
enabled edge node. in 2016 Optical Fiber Communications Conference and Exhibition
(OFC). 2016.

95. Li, J., E. Altman, and C. Touati, A General SDN-based IoT Framework with NVF
Implementation. ZTE Communications, 2015. 13(3): p. 42-45.

96. Jacobsson, M. and C. Orfanidis. Using software-defined networking principles for
wireless sensor networks. in 11th Swedish National Computer Networking Workshop
(SNCNW). 2015. Karlstad, Sweden.

97. Anadiotis, A.-C.G., et al., SD-WISE: a software-defined wireless sensor network. arXiv
preprint arXiv:1710.09147, 2017.

98. Bera, S., et al., Soft-WSN: Software-Defined WSN Management System for IoT
Applications. IEEE Systems Journal, 2016. PP(99): p. 1-8.

99. Habibi, P., et al. Virtualized SDN-Based End-to-End Reference Architecture for Fog
Networking. in 2018 32nd International Conference on Advanced Information
Networking and Applications Workshops (WAINA). 2018.

100. Muñoz, R., et al., Integration of IoT, Transport SDN, and Edge/Cloud Computing for
Dynamic Distribution of IoT Analytics and Efficient Use of Network Resources. Journal
of Lightwave Technology, 2018. 36(7): p. 1420-1428.

101. Sinh, D., et al. SDN/NFV—A new approach of deploying network infrastructure for IoT.
in 2018 27th Wireless and Optical Communication Conference (WOCC). 2018. IEEE.

102. K, K.O., et al. Efficient Deployment of Service Function Chains (SFCs) in a Self-
Organizing SDN-NFV Networking Architecture to Support IOT. in 2018 Tenth
International Conference on Ubiquitous and Future Networks (ICUFN). 2018.

103. Anadiotis, A.G., et al., Toward Unified Control of Networks of Switches and Sensors
Through a Network Operating System. IEEE Internet of Things Journal, 2018. 5(2): p.
895-904.

208

104. Mouradian, C., N.T. Jahromi, and R.H. Glitho, NFV and SDN-Based Distributed IoT
Gateway for Large-Scale Disaster Management. IEEE Internet of Things Journal, 2018.
5(5): p. 4119-4131.

105. Tricomi, G., et al. Software-Defined City Infrastructure: A Control Plane for Rewireable
Smart Cities. in 2019 IEEE International Conference on Smart Computing
(SMARTCOMP). 2019.

106. ONF, Use Cases for Carrier Grade SDN. 2016.
107. Čolaković, A. and M. Hadžialić, Internet of Things (IoT): A review of enabling

technologies, challenges, and open research issues. Computer Networks, 2018. 144: p.
17-39.

108. Li, S., L.D. Xu, and S. Zhao, 5G Internet of Things: A survey. Journal of Industrial
Information Integration, 2018. 10: p. 1-9.

109. Kobo, H.I., A.M. Abu-Mahfouz, and G.P. Hancke, A Survey on Software-Defined
Wireless Sensor Networks: Challenges and Design Requirements. IEEE Access, 2017. 5:
p. 1872-1899.

110. Kortuem, G., et al., Smart objects as building blocks for the Internet of things. IEEE
Internet Computing, 2010. 14(1): p. 44-51.

111. Alshehri, A. and R. Sandhu. Access Control Models for Cloud-Enabled Internet of
Things: A Proposed Architecture and Research Agenda. in 2016 IEEE 2nd International
Conference on Collaboration and Internet Computing (CIC). 2016.

112. Healy, M., T. Newe, and E. Lewis. Wireless Sensor Node hardware: A review. in
SENSORS, 2008 IEEE. 2008.

113. Ray, P.P., A survey on Internet of Things architectures. Journal of King Saud University
- Computer and Information Sciences, 2016.

114. INSTRUMENTS, T. SimpleLink™ multi-standard CC2650 SensorTag™ kit reference
design: TIDC-CC2650STK-SENSORTAG. 2019 [cited 2019 01-December]; Available
from: http://www.ti.com/tool/TIDC-CC2650STK-SENSORTAG.

115. Foundation, O.N., OpenFlow Switch Specification, in Version 1.0.0 (Wire Protocol 0x01).
2009.

116. Foundation, O.N., OpenFlow Configuration and Management Protocol OF-CONFIG
1.0. 2011.

117. Milardo, S. The stateful Software Defined Networking solution for the Internet of Things.
2017; Available from: https://github.com/sdnwiselab/sdn-wise-java.

118. Deva Priya, I. and S. Silas. A Survey on Research Challenges and Applications in
Empowering the SDN-Based Internet of Things. 2019. Singapore: Springer Singapore.

119. Sood, K., S. Yu, and Y. Xiang, Software-Defined Wireless Networking Opportunities and
Challenges for Internet-of-Things: A Review. IEEE Internet of Things Journal, 2016. 3(4):
p. 453-463.

120. Razzaque, M.A., et al., Middleware for Internet of Things: A Survey. IEEE Internet of
Things Journal, 2016. 3(1): p. 70-95.

121. Asghari, P., A.M. Rahmani, and H.H.S. Javadi, Internet of Things applications: A
systematic review. Computer Networks, 2019. 148: p. 241-261.

http://www.ti.com/tool/TIDC-CC2650STK-SENSORTAG
https://github.com/sdnwiselab/sdn-wise-java

209

122. Najjar, Y.S., Gaseous pollutants formation and their harmful effects on health and
environment. Innovative energy policies, 2011. 1: p. 1-9.

123. Alex, G., IoT for smart cities: Use cases and implementation strategies. 2018:
ScienceSoft.

	Title Page
	Certificate of Original Authorship
	Dedication
	Acknowledgment
	The Author’s Publications
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Abstract
	Chapter 1 Introduction
	1.1 Introduction
	1.2 Brief Background
	1.3 Research Questions
	1.4 Research Aim and Objectives
	1.5 Research Contributions and Significance
	1.6 Research Methodology
	1.7 Thesis Structure

	Chapter 2 Background and Related Work
	2.1 Introduction
	2.2 IoT System
	2.2.1 IoT Evolution Stages
	2.2.2 Things, Services, and Resources in IoT
	2.2.3 IoT System – Key Components
	2.2.4 IoT Architecture
	2.2.5 Requirements for an IoT System

	2.3 IoT Deployment Models and Scenarios
	2.3.1 IoT Deployment Models
	2.3.2 Real IoT Scenarios
	2.3.3 IoT Application Development - Challenges

	2.4 Software-Defined Networking (SDN) Technique
	2.4.1 SDN Architecture
	2.4.2 SDN Paradigm’s Implications to WSN/IoT
	2.4.3 Challenges of Application of SDN to WSN/IoT

	2.5 Network Function Virtualization (NFV) Technique
	2.6 Solutions to a Programmable IoT Device
	2.7 SDN-NFV-based Solutions to a Programmable IoT System
	2.8 SDN-NFV-Based Solutions to a Large-Scale IoT System
	2.9 Open-Sources for Developing LSSD-IoT Platform
	2.10 Summary

	Chapter 3 Large-Scale Software-Defined Internet of Things (LSSD-IoT) Model
	3.1 Introduction
	3.2 Why Large-Scale and Programmable Services on Demand?
	3.3 LSSD-IoT Model
	3.3.1 Software-Defined Cluster Layer
	3.3.2 Software-Defined Device Layer

	3.4 LSSD-IoT Features
	3.5 Practical Realization of the Proposed LSSD-IoT Model
	3.6 Thesis Roadmap
	3.7 Summary

	Chapter 4 Software-Defined Virtual Sensor (SDVS)
	4.1 Introduction
	4.2 Proposed SDVS
	4.3 SDVS – Representation Types
	4.4 SDVS Features
	4.5 SDVS Architecture and Software Implementation
	4.5.1 SDVS Architecture
	4.5.2 Software Implementation

	4.6 Use Case Scenario and Practical Implementation
	4.7 Performance Evaluation
	4.7.1 SDVS – Feasibility and Programmability
	4.7.2 SDVS – Efficiency

	4.8 Summary

	Chapter 5 S-MANAGE Protocol
	5.1 Introduction
	5.2 S-MANAGE in Relation to SD-IoT Model
	5.3 S-MANAGE Protocol
	5.3.1 S-MANAGE Header
	5.3.2 S-MANAGE Message types
	5.3.3 Forwarding Table Specifications
	5.3.4 Configuring Table Specifications

	5.4 Software Implementation
	5.5 Implementation and Performance Evaluation
	5.5.1 Implementation Set up
	5.5.2 Performance Evaluation

	5.6 Summary

	Chapter 6 Software-Defined Internet of Things (SD-IoT) Model
	6.1 Introduction
	6.2 SD-IoT Model
	6.2.1 Software-Defined Virtual Sensor (SDVS)
	6.2.2 S-MANAGE Protocol

	6.3 SD-IoTD Controller
	6.3.1 SD-IoTD Controller – Functional Components
	6.3.2 SD-IoTD Controller – Operational Mechanism

	6.4 SD-IoTD Controller - Software Implementation
	6.5 SD-IoT Model – Software Implementation
	6.5.1 Use Case Scenario
	6.5.2 Implementation Scenario
	6.5.3 Implementation Set up

	6.6 Performance Evaluation
	6.7 Summary

	Chapter 7 Software-Defined Cluster Layer and LSSD-IoT Platform
	7.1 Introduction
	7.2 SD Cluster Layer
	7.2.1 SD-IoTC Controller
	7.2.2 SD-IoT Clusters and Communication with the SD-IoTC Controller

	7.3 LSSD-IoT Platform – Procedure of the Provision of IoT Services on Demand
	7.4 LSSD-IoT Platform – Use cases
	7.5 LSSD-IoT Platform Implementation
	7.5.1 Implemented Platform
	7.5.3 Implementation Scenario
	7.5.3 Implementation Set up
	7.5.4 SD-IoTC Controller – Software Implementation

	7.6 Performance Evaluation
	7.6.1 Implementation Platform Capability
	7.6.2 Platform Performance

	7.7 Summary

	Chapter 8 Conclusion and Future Work
	8.1 Research Remarks
	8.2 Future Work

	Appendices
	Appendix 1 SD-IoTD controller – Software Components
	Appendix 2 SD-IoTD controller – Data Storage

	Bibliography

