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Abstract  

Alkali-silica reaction (ASR) describes reactions between certain forms of silica and the 

high alkaline pore solution of concrete that form an ASR gel product that causes the 

concrete to expand and crack. ASR poses a threat to concrete stability particularly in cases 

where the formation of cracks leads to a loss in the mechanical performance and 

properties of the concrete. The addition of supplementary cementitious materials (SCMs) 

such as fly ash and slag for the partial replacement of Portland cement in concrete is 

considered to be the most economical option in mitigating the occurrence of ASR. 

However, the closure of coal-fired power stations and increased recycling of steel threaten 

the supply of fly ash and slag. 

 

In order to be able to identify future SCMs for use in ASR mitigation, there is a need to 

understand the mechanisms by which conventional SCMs mitigate ASR. At present, the 

mitigation mechanisms are still poorly understood. Furthermore, the influence of other 

components of the binder system on the efficacy of SCMs in ASR mitigation such as 

limestone (which is a standard cement addition) and cement itself (the introduction of 

higher alkali contents) also warrant investigation. Currently, there is an ongoing interest 

in Australia to increase the limestone content in General Purpose (GP) cement from 7.5% 

to 12% in order to reduce CO2 emissions associated with cement production. In addition, 

there is a requirement to increase the alkali limits in cement, which is currently set at 

0.6% Na2Oeq (sodium equivalent), in order to minimize the amount of raw materials 

thrown to waste. Sodium equivalent is equal to the sum of alkali oxides in the 

cement (Na2O + 0.658K2O). 
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In this study, the accelerated mortar bar test (AMBT) was carried out to assess the efficacy 

of traditional SCMs in mitigating ASR as a function of SCM type (fly ash, slag, 

metakaolin and silica fume) and dosage in binder systems with various limestone 

contents (0%, 8%, 12% and 17%). The effect of SCM type, SCM replacement level and 

limestone addition on the portlandite amount, the pore solution alkalinity and the 

composition of the calcium silicate hydrate (main cement hydration product) as well as 

the dissolution of SCMs in an alkali environment were investigated and compared with 

the expansion results. To be able to assess the effect of cement alkalinity on the efficacy 

of the SCMs in ASR mitigation, the expansion of concrete prisms was studied by 

immersion of concrete prisms in simulated pore solution derived from the 28-day pore 

solution of pastes with equivalent composition of the binder used in the concrete. This 

alternative testing method addresses the limitations of the conventional ASR testing 

methods of AMBT (excessive alkali) and CPT (alkali leaching) for assessing the effect 

of binder alkalinity on the level of ASR expansion. 

 

The results demonstrate that SCMs at recommended dosages work effectively to mitigate 

ASR even in cements with effective alkali content of 1% Na2Oeq. The efficacy of SCMs 

in reducing ASR expansion is related to their ability to release silicon and aluminium in 

solution, consume portlandite, reduce pore solution alkali concentration and modify the 

calcium silicate hydrate (C-S-H) composition. Thus, siliceous materials, aluminosilicates 

and even pure aluminium present a potential to mitigate ASR. Limestone (98% CaCO3) 

does not aggravate ASR and has no detrimental effect on the efficacy of SCMs in 

mitigating ASR. Moreover, experimental findings indicate that limestone has no 

capability to actively mitigate ASR as it does not modify the C-S-H composition and does 

not actively reduce the pore solution alkali concentration like SCMs. 
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