

A DEVOPS REFERENCE ARCHITECTURE FOR MULTI-
CLOUD IOT APPLICATIONS DEPLOYMENT

Georges Bou Ghantous

Doctor of Philosophy (C02029)

Software Engineering

University of Technology Sydney

Faculty of Engineering and Information Technology

School of Computer Science

ii

Certificate of Authorship

I, Georges Bou Ghantous, declare that this thesis is submitted in fulfilment of the requirements
for the award of Doctor of Philosophy in Software Engineering in the Faculty of Engineering and
IT, School of Computer Science at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I
certify that all information sources and literature used are indicated in the thesis. This document
has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Signature:

Date: 22/04/2020

Production Note:

Signature removed prior to publication.

iii

Acknowledgments

I have been privileged to have Dr Asif Gill and Dr Farookh Hussain as my supervisors. I want to
express my sincere gratitude to my supervisor Dr Asif Gill for providing me with an opportunity
to work with him on this research project. His highly valuable support, coaching,
encouragement, quick feedback, and guidance helped me to finish this research project. Dr Asif
Gill was always there to provide support in meetings, phone conferences, and emails. His
valuable understanding in the field of agile and software engineering as an academic, researcher,
and practitioner provided a wealth of knowledge that I used in this research project.

This study would not have been possible without the support of my family. I am very grateful to
my parents, Salim Bou Ghantous and Laure Mikhail, for their precious love, blessings, support,
encouragement, sacrifice, and care since my childhood. I am thankful for the support of my
siblings. Their genuine care gave me confidence and peace of mind during my busy life. I am
blessed to be a member of such a loving, caring, and supportive family.

I want to express my sincere thanks to all of my colleagues and friends for their valuable
feedback and support—especially my dearest friends, Charbel Lahoud and John Mikhael (late).

I also wish to thank the Australian Government for its support and HECS-HELP for providing
the funding for my research project for the length of my PhD study period.

I am thankful to all of the reviewers for valuable feedback and comments.

Thank you all.

iv

Research Contributions and Publications

During this PhD research project, I collaborated with my supervisor and other colleagues. I
published the components of this research work (DRA) in several rigorously reviewed
international conference papers and scientific journals. The papers’ publications were an
opportunity to present my work for review before including it in this thesis. Appendix F presents
a list of the publications that have been included in this thesis.

v

Contents

CERTIFICATE OF AUTHORSHIP .. II

ACKNOWLEDGMENTS .. III

RESEARCH CONTRIBUTIONS AND PUBLICATIONS .. IV

CONTENTS .. V

LIST OF TABLES ... IX

LIST OF FIGURES .. XII

LIST OF EQUATIONS ... XIII

LIST OF ABBREVIATIONS ... XIV

GLOSSARY .. XV

ABSTRACT .. XVI

CHAPTER 1: INTRODUCTION .. 1
1.1. RESEARCH BACKGROUND AND RELATED WORK .. 2

1.1.1. SOFTWARE ENGINEERING .. 2
1.1.2. AGILE SOFTWARE DEVELOPMENT ... 3
1.1.3. DEVOPS ... 4
1.1.4. CLOUD COMPUTING ... 5
1.1.5. MULTI-CLOUD ... 6
1.1.6. INTERNET OF THINGS ... 7

1.1.7. CONVERGENCE OF RESEARCH IDEAS ... 9
1.2. RESEARCH PROBLEM .. 10
1.3. RESEARCH QUESTION ... 11
1.4. RESEARCH AIM ... 12
1.5. RESEARCH SCOPE.. 13
1.6. CONTRIBUTIONS .. 14
1.7. APPLICATION AND USERS ... 16
1.8. RESEARCH STRATEGY ... 18
1.9. THESIS ORGANISATION ... 19
1.10. SUMMARY ... 20

CHAPTER 2: LITERATURE REVIEW ... 21
2.1. SLR SCOPE ... 21

2.2. SLR FILTRATION PROCESS.. 22
2.2.1. STAGE 1: INCLUSION–EXCLUSION.. 22
2.2.2. STAGE 2: DATA SOURCE AND RESEARCH STRATEGY ... 23

2.2.3. STAGE 3: STUDY SELECTION PROCESS AND INCLUSION DECISION 24
2.2.4. STAGE 4: FINAL SELECTION PROCESS AND QUALITY ASSESSMENT 26

2.2.5. STAGE 5: DATA EXTRACTION AND DATA SYNTHESIS .. 27
2.3. SLR DATA REVIEW AND ANALYSIS .. 28

2.3.1. DEVOPS AND MULTI-CLOUD ... 28

2.3.2. DEVOPS AND IOT ... 29

vi

2.3.3. IOT SENSORS AND IOT APPLICATIONS ... 30

2.3.4. IOT MONITORING AND IOT SECURITY ... 31
2.3.5. CLOUD COMPUTING AND IOT... 31
2.3.6. MULTI-CLOUD, DEVOPS AND IOT ... 33
2.3.7. DATA ANALYSIS SUMMARY ... 34

2.4. SLR RESULTS ... 35
2.4.1. WHAT IS KNOWN ABOUT DEVOPS? ... 35
2.4.2. BENEFITS AND CHALLENGES OF DEVOPS ADOPTION FOR CLOUD IOT APPS 42
2.4.3. RESEARCH GAP .. 45

2.5. SUMMARY ... 47

CHAPTER 3: DESIGN SCIENCE RESEARCH METHOD .. 48
3.1. RESEARCH DESIGN .. 48
3.2. DSR: METHODOLOGY ... 50

3.2.1. PROBLEM IDENTIFICATION ... 52
3.2.2. ANALYSIS .. 53
3.2.3. DESIGN .. 54
3.2.4. DEVELOPMENT ... 55
3.2.5. EVALUATION .. 55

3.2.5.1. CASE STUDIES DESIGN .. 56
3.2.5.2. SURVEY DESIGN .. 58
3.2.5.2.1. SURVEY QUANTITATIVE EVALUATION... 59
3.2.5.2.2. SURVEY QUALITATIVE EVALUATION ... 59
3.2.5.2.3. SURVEY QUESTIONNAIRE DEVELOPMENT .. 60

3.2.6. OUTPUT .. 60
3.3. RESEARCH INSTRUMENTS ... 61

3.3.1. RESOURCES .. 61
3.3.2. DEVELOPMENT PROCESS .. 62
3.3.3. EXPERTS AND INDUSTRY FEEDBACK .. 62
3.3.4. RESEARCH ETHICS ... 63

3.4. SUMMARY ... 63

CHAPTER 4: DEVOPS REFERENCE ARCHITECTURE FRAMEWORK .. 64
4.1. DRA OVERVIEW ... 64
4.2. DRA FRAMEWORK CHARACTERISTICS ... 66

4.2.1. ABSTRACTION .. 67
4.2.2. HUMAN FACTOR .. 68
4.2.3. INFRASTRUCTURE .. 70

4.2.4. PROCESS .. 71

4.2.5. TOOLS .. 73
4.2.6. PRODUCT ... 74
4.2.7. BUSINESS VALUE ... 75

4.2.8. RULES .. 75
4.2.9. LEGAL .. 76

4.3. DRA ARCHITECTURE DESIGN ... 77
4.3.1. DRA CONTEXTUAL MODEL ... 77
4.3.2. DRA CONCEPTUAL MODEL ... 78
4.3.3. DRA LOGICAL MODEL .. 79

vii

4.3.4. DRA PHYSICAL MODEL ... 81

4.3.5. DRA OPERATIONAL MODEL .. 82
4.4. DRA FRAMEWORK COMPOSITION .. 83

4.4.1. RESOURCES .. 83
4.4.1.1. ARCHITECTURE DESIGN .. 83
4.4.1.2. SOFTWARE .. 83
4.4.1.3. HARDWARE ... 83

4.4.2. CONFIGURATION .. 84
4.4.2.1. PIPELINE .. 84
4.4.2.2. IOT APPLICATION.. 89
4.4.2.3. IOT NETWORK .. 93

4.4.3. OUTPUT .. 95
4.4.3.1. DRA MODEL ... 95

4.4.3.2. DRAV1.0 INSTANCE (SINGLE CLOUD) .. 95
4.4.3.3. DRAV2.0 INSTANCE (MULTI-CLOUD)... 97

4.5. DRA FRAMEWORK IMPLEMENTATION .. 99
4.5.1. DRA INSTANTIATION PROCESS .. 99
4.5.2. DRA EVALUATION PROCESS ... 104

4.6. SUMMARY ... 105

CHAPTER 5: DRA FRAMEWORK EMPIRICAL EVALUATION ... 106
5.1. FRAMEWORK EVALUATION OVERVIEW... 106
5.2. DRA INSTANTIATION .. 107
5.3. INDUSTRY CASE STUDY .. 110

5.3.1. CASE STUDY PLAN ... 111
5.3.2. PREPARATION FOR DATA COLLECTION .. 111

5.3.3. COLLECTING DATA .. 112
5.3.3.1. DRA ARCHITECTURE .. 112
5.3.3.2. DRA OPERATIONAL MODEL PIPELINE .. 112
5.3.3.3. SOFTWARE COMPONENT ... 113
5.3.3.4. HARDWARE COMPONENT .. 113

5.3.4. DATA ANALYSIS .. 113
5.3.5. REPORTING .. 114

5.4. RESEARCH CASE STUDY ... 116

5.4.1. CASE STUDY DESIGN ... 116
5.4.2. PREPARATION FOR DATA COLLECTION .. 117
5.4.3. COLLECTING DATA .. 118

5.4.3.1. DRA ARCHITECTURE .. 118

5.4.3.2. DRA OPERATIONAL MODEL PIPELINE .. 119
5.4.3.3. SOFTWARE COMPONENT ... 119
5.4.3.4. HARDWARE COMPONENT .. 119

5.3.4. DATA ANALYSIS .. 120
5.3.5. REPORTING .. 122

5.5. TEACHING CASE STUDY SURVEY .. 124
5.5.1. SEP CASE STUDY (DRAV1.0) ... 124

5.5.1.1. CASE STUDY INTRODUCTION .. 124
5.5.1.2. DATA COLLECTION AND ANALYSIS .. 125

viii

5.5.2. INP CASE STUDY (DRAV2.0) .. 129

5.5.2.1. CASE STUDY INTRODUCTION .. 129
5.5.2.2. DATA COLLECTION AND ANALYSIS .. 130

5.5.3. DRAV1.0 V. DRAV2.0 .. 135
5.6. INDUSTRY FIELD SURVEY ... 137

5.6.1. SURVEY DATA COLLECTION .. 140
5.6.2. SURVEY DATA ANALYSIS .. 143

5.6.2.1. SURVEY QUANTITATIVE EVALUATION .. 143
5.6.2.1.1. INDIVIDUAL DRA MODELS EVALUATION ... 143
5.6.2.1.2 COMBINED DRA MODELS EVALUATION ... 153
5.6.2.2. SURVEY QUALITATIVE EVALUATION .. 155
5.6.2.2.1 DRA USEFULNESS FEEDBACK AND RATING ... 155
5.6.2.2.2 DRA OVERALL FEEDBACK AND RATING ... 160

5.7. EMPIRICAL EVALUATION OVERALL ANALYSIS ... 163
5.7.1. QUANTITATIVE INDICATOR MATRIX .. 163
5.7.2. QUALITATIVE EVALUATOR MATRIX .. 165

5.8. FUTURE RESEARCH ... 168
5.9. SUMMARY ... 172

CHAPTER 6: DISCUSSION AND SUMMARY .. 173
6.1. RESEARCH JOURNEY AND OUTPUT.. 173

6.1.1. RESEARCH JOURNEY .. 173
6.1.2. RESEARCH OUTPUT .. 175

6.2. KEY CONTRIBUTIONS AND PUBLICATIONS .. 180
6.3. RESEARCH LIMITATIONS ... 181
6.4. SUMMARY ... 182

CONCLUSION .. 185

DECLARATIONS .. 186

BIBLIOGRAPHY ... 187

APPENDICES .. 202
APPENDIX A: ETHICAL APPROVAL... 202
APPENDIX B: CONSENT FORM.. 204
APPENDIX C: SURVEY INVITATION LETTER ... 207
APPENDIX D: ONLINE INDUSTRY SURVEY QUESTIONNAIRE .. 208

APPENDIX E: EMPIRICAL STUDY DATA .. 214
APPENDIX F: RESEARCH PAPERS ... 215
APPENDIX G: CASE STUDY TEMPLATE .. 216

ix

List of Tables

Table 1.1: Ideas Convergence ... 10

Table 1.2: RQ Sub-Division ... 12

Table 1.3: Project Scope ... 14
Table 2.1: Inclusion–Exclusion Benchmark ... 22

Table 2.2: Search Categories .. 23

Table 2.3: Stage 3—Filtration Process ... 24

Table 2.4: Stage 3—Filtration Process Results... 24

Table 2.5: Stage 4—Quality Criteria .. 26

Table 2.6: SLR Selection Process Results .. 26

Table 2.7: Stage 5—Selected Studies ... 27

Table 2.8: SLR Analysis Summary .. 34

Table 2.9: DevOps Concepts .. 36

Table 2.10: DevOps Practices ... 37

Table 2.11: DevOps Practices Categories ... 38

Table 2.12: DevOps Tools Categories .. 39

Table 2.13: Source Control Management ... 39

Table 2.14: Continuous Integration .. 40

Table 2.15: Continuous Deployment .. 40

Table 2.16: IaaS/PaaS ... 40

Table 2.17: Monitoring ... 41

Table 2.18: Database Management ... 41

Table 2.19: Logging/Security ... 41

Table 2.20: Build .. 41

Table 2.21: Testing ... 42

Table 2.22: Communication and Collaboration .. 42

Table 2.23: Benefits of DevOps Adoption ... 43

Table 2.24: Challenges of DevOps Adoption ... 44

Table 2. 25: Research Gaps .. 45
Table 3.1: DSR Steps .. 49

Table 3. 2: Case Study Evaluation Criteria ... 57

Table 3. 3: Survey Ratings .. 58

Table 3. 4: Survey Evaluation Criteria ... 60

Table 3. 5: Resources .. 61
Table 4.1: Human Factor Entities ... 69

Table 4.2: Infrastructure Services ... 71

Table 4.3: Process Types .. 72

Table 4.4: Product Entities .. 74

Table 4.5: Logical Model Features ... 80

x

Table 4.6: DRAv1.0 and DRAv2.0 Toolsets .. 85

Table 4.7: DRA Setup and Configuration Template .. 88

Table 4.8: CD Platforms Parameters .. 89

Table 4.9: DRA Repository (dev-repo) .. 91

Table 4.10: Python Scripts .. 92

Table 4.11: Action Shell Commands .. 93

Table 4.12: Initiation Checklist... 100

Table 4.13: Development Checklist .. 101

Table 4.14: Pipeline Configuration Checklist ... 102

Table 4.15: Deployment Checklist ... 103

Table 4.16: Management Checklist .. 104
Table 5. 1: DRA Instance Toolset ... 108

Table 5. 2: DRA Instance Setup and Configuration Template ... 109

Table 5. 3: Software Component .. 110

Table 5. 4: Hardware Component ... 110

Table 5.5: Industry Case study Analysis... 114

Table 5.6: Industry Case Study Reporting Summary ... 115

Table 5.7: Research Case study Analysis ... 120

Table 5.8: Research Lab Case Study Reporting Summary ... 122

Table 5.9: SEP SFS Spring 2017 Results Analysis .. 127

Table 5.10: SEP Students Qualitative Feedbacks ... 129

Table 5.11: Contribution to Learning Results Analysis ... 132

Table 5.12: Course Content Results Analysis... 133

Table 5.13: Overall Rating Results ... 134

Table 5.14: INP Students Qualitative Feedbacks ... 135

Table 5.15: DRAv1.0 vs DRAv2.0 (Design) .. 136

Table 5.16: DRAv1.0 v. DRAv2.0 (Instance) .. 136

Table 5.17: Participants Demographic Distribution ... 137

Table 5.18: DRA Contextual Model Questions Group ... 141

Table 5.19: DRA Conceptual Model Questions Group .. 141

Table 5.20: DRA Logical Model Design Questions Group .. 141

Table 5.21: DRA Logical Model Functions Questions Group ... 141

Table 5.22: DRA Physical Model Questions Group ... 142

Table 5.23: DRA Operational Model Questions Group ... 142

Table 5.24: Contextual Questionnaire Data (RT1) ... 144

Table 5.25: Contextual Group Data (CT1) ... 144

Table 5.26: Conceptual Questionnaire Data (RT2) .. 145

Table 5.27: Conceptual Group Data (CT2)... 145

Table 5.28: Logical Design Questionnaire Data (RT3) .. 147

Table 5.29: Logical Design Group Data (CT3) .. 147

xi

Table 5.30: Logical Features Questionnaires Data (RT4) .. 148

Table 5.31: Logical Features Group Data (CT4) .. 148

Table 5.32: Physical Model Questionnaires Data (RT5) .. 150

Table 5.33: Physical Model Group Data (CT5) .. 150

Table 5.34: Operational Model Questionnaires Data (RT6) ... 151

Table 5.35: Operational Model Group Data (CT6) .. 151

Table 5.36: DRA Total Data Results (RT7) ... 153

Table 5.37: DRA Total Data Chi2-Test (CT7) .. 154

Table 5.38: DRA Usefulness (FT1) .. 156

Table 5.39: DRA Usefulness Ratings (RT8) .. 158

Table 5.40: DRA Usefulness Categories Frequencies .. 160

Table 5.41: Survey Overall Feedback (FT2) .. 160

Table 5.42: Survey Overall Feedbacks Ratings (RT9) ... 162

Table 5.43: DRA Overall Criteria Occurrences .. 163

Table 5. 44: Quantitative Indicator Matrix (QIM) .. 165

Table 5. 45: Qualitative Evaluator Matrix .. 166

Table 5. 46: QEM Criteria Occurrences ... 168

Table 5. 47: Suggested Improvements .. 169

Table 5. 48: Future Research Ideas ... 172
Table 6. 1: DRA Characteristics Output ... 176

Table 6. 2: DRA Design Models... 177

Table 6. 3: DRA Instance Components .. 179

Table 6.4: Thesis Key Contributions .. 180

xii

List of Figures

Figure 1.1: Waterfall v. Agile (Bibik 2018) ... 3

Figure 1.2: DevOps Context ... 5

Figure 1.3: Cloud Structure... 6

Figure 1.4: Multi-Cloud .. 7

Figure 1.5: IoT Generic Structure ... 9

Figure 1.6: Research Question Dimensions .. 11

Figure 1.7: Research Aim ... 13

Figure 1.8: DRA Framework Overview ... 15

Figure 1.9: DRA Application .. 17

Figure 1.10: Research Organisation .. 19

Figure 2.1: SLR Filtration Process ... 25

Figure 2.2: Stage 3—Filtration Results Graph ... 25

Figure 2.3: Stage 4—SLR Quality Results Graph .. 26

Figure 2.4: SLR Selection Progress Overview ... 27

Figure 2.5: DRA for AEPM (adapted from the Gill Framework®) ... 47

Figure 3.1: DSR Overview ... 50

Figure 3.2: DSR Process ... 52

Figure 3.3: Problem Identification .. 53

Figure 3.4: Analysis .. 53

Figure 3.5: Design ... 54

Figure 3.6: Development .. 55

Figure 3.7: Evaluation ... 55

Figure 3.8: Output ... 61

Figure 4.1: DRA Framework .. 65

Figure 4.2: Framework Characteristics (Example View) ... 67

Figure 4.3: Abstraction Characteristic (Example View)... 68

Figure 4.4: Human Factor Characteristic (Example View) .. 70

Figure 4.5: Infrastructure Characteristic (Example View) ... 71

Figure 4.6: Process Characteristic (Example View) ... 73

Figure 4.7: Tools Characteristic (Example View) .. 74

Figure 4.8: Product Characteristic (Example View) ... 75

Figure 4.9: DRA Contextual Model.. 77

Figure 4.10: DRA Conceptual Model ... 78

Figure 4.11: DRA Logical Model ... 79

Figure 4.12: DRA Physical Model.. 81

Figure 4.13: DRAv1.0 Instance Pipeline .. 86

Figure 4.14: DRAv2.0 Instance Pipeline .. 86

Figure 4.15: IoT App (maven-app-heroku) https://maven-app-heroku.herokuapp.com 90

xiii

Figure 4.16: IoT App Control Panel ... 90

Figure 4.17: IoT Network ... 94

Figure 4.18: DRAv1.0 Instance .. 96

Figure 4.19: DRAv2.0 Instance .. 98

Figure 5.1: Empirical Evaluation Overview ... 107

Figure 5.2: SEP Spring 2017 SFS Results Graph ... 127

Figure 5.3: Contribution to Learning Graph ... 133

Figure 5.4: INP Survey Results Charts ... 134

Figure 5.5: Contextual Data Graph (RF1) .. 144

Figure 5.6: Conceptual Data Graph (RF2) .. 146

Figure 5.7: Logical Design Data Graph (RF3) ... 147

Figure 5.8: Logical Features Data Graph (RF4) ... 149

Figure 5.9: Physical Model Data Graph (RF5) ... 150

Figure 5.10: Operational Model Data Graph (RF6).. 152

Figure 5.11: DRA Models Combined Data (RF7) .. 154

Figure 5.12: DRA Usefulness Ratings Graph (RF8) .. 159

Figure 5.13: Survey Overall Feedbacks Graph (RF9) .. 162

Figure 6.1: Research Journey .. 174

Figure 6.2: DRA Framework Overview ... 175

List of Equations

Equation 3.1: Chi2 Formula .. 59

Equation 3.2: Average and Above Frequency (AAF) Formula .. 59

Equation 3.3: Average and Above Percentage (AAP) Formula ... 59

Equation 5.1: QI Formula ... 164

xiv

List of Abbreviations

AAF Average and Above Frequency
AAP Average and Above Percentage
API Application Programming Interface
App Software Application
CD Continuous Deployment
CI Continuous Integration
DB Database
DRA DevOps Reference Architecture
DSR Design Science Research
IaaS Infrastructure as a Service
IoT Internet of Things
MQTT Message Queuing Telemetry Transport
PaaS Platform as a Service
PC DevOps Practice
POC Proof of Concept
QEM Qualitative Evaluator Matrix
QIM Quantitative Indicator Matrix
QI Quantitative Indicator
RDF Resource Description Framework
Retro-QA Retrospective Quality Assurance
RFID Radio Frequency Identification
RPIB Raspberry Pi Model 3 B
RQ Research Question
SaaS Software as a Service
SLR Systematic Literature Review
SSH Secure Shell
UTS University of Technology Sydney
WAN Wide Area Network
WSN Wide Sensor Network
GPIO General-purpose input/output
FEIT Faculty of Engineering and Information Technology

xv

Glossary

Abstraction Abstraction refers to a logical view of entities such as objects, elements and
services.

Agile Agile is an iterative software development methodology that solves the
complexity of the software project by adopting an iterative approach to
‘revisit’ the development process (analysis, planning, architecture, design,
develop, test and deploy) and hasten the release or delivery of products to
customers.

Continuous
Integration (CI)
Broker

A CI broker is a DevOps cloud-based tool that hosts the deployment
configuration for the software applications (e.g. IoT-applications)
deployment to multi-cloud in a DRA architectural model.

DevOps DevOps is a set of software development practices that combine software
development (Dev) and information technology operations (Ops) to improve
agile software development.

DevOps
Pipeline

A pipeline is a set of integrated DevOps tools that enable an automated
software deployment process.

Framework A framework is a set of development elements and components that are
combined to produce a tailored process/method.

Internet of
Things (IoT)

IoT refers to a network of physical objects that feature an IP address for
internet connectivity, and the communication that occurs between these
objects and other internet-enabled devices and systems.

JavaScript
Object Notation
(JSON)

JSON is an open-standard file format that uses human-readable text to
transmit data objects consisting of attribute-value pairs and array data types
(or any other serializable value).

Multi-Cloud Multi-cloud is the integration of several cloud computing services in a
single heterogeneous architecture.

NoSQL
Database (DB)

A No SQL DB stores data in a document format such as JavaScript Object
Notation.

Process/Method ‘Process’ and ‘method’ are used interchangeably in this thesis (although it is
acknowledged that these terms are used differently in other areas of software
engineering).

Reference
Architecture

Reference architecture in the field of software architecture or enterprise
architecture provides a template solution for architecture for a particular
domain.

Vendor Lock-In Vendor lock-in is a situation in which a customer using a cloud product or
service cannot easily transition to a competitor’s cloud product or service.
Vendor lock-in may occur in several cases—for instance, when a cloud in
the multi-cloud system hosts the deployment configurations of the software
application and when a cloud in the multi-cloud system hosts the database
for the application data.

Waterfall Waterfall methodology aligns the software development process (analysis,
planning, architecture, design, develop, test, and deploy) in sequential order.

https://www.webopedia.com/TERM/I/IP_address.html
https://www.webopedia.com/TERM/I/Internet.html

xvi

Abstract

DevOps originated in the context of agile software development, which seems an appropriate
approach to enable the continuous delivery and deployment of a software application in small
releases. There is growing interest among organisations in adopting the DevOps approach and a
multi-cloud environment for IoT (Internet of Things) application deployment. However, the
challenge is how to apply DevOps when a multi-cloud heterogeneous environment is required
for IoT application deployment. To address this vital research need, this thesis applies a design
science research (DSR) method. It develops the DevOps reference architecture (DRA)
framework to automate IoT applications deployment to the heterogeneous multi-cloud
environment. The DRA is a cloud-enabled framework that mainly focuses on the deployment
part of the integrated agile–DevOps methodology. Using a DSR method, the DRA has been
incrementally developed by the iterative application of build, review, and adjust research
activities. The DRA is intended for use by software organisations, coaches, managers, engineers,
developers, and consultants as comprehensive reference architecture for deploying IoT
applications to a multi-cloud environment using the DevOps approach.

The DRA has three main components: framework characteristics, framework architecture, and
framework composition. Framework characteristics incorporate nine main elements arranged
into three categories: foundation (abstraction, human factor, infrastructure), core (process, tools,
product), and extended (business value, rules, legal). Framework characteristics provide the
building blocks necessary to create a reference architecture design using the DevOps approach
and cloud infrastructure. Framework architecture is composed of five models: contextual,
conceptual, logical, physical, and operational. Framework architecture is the blueprint used in the
framework composition to create DevOps pipeline instances that enable IoT application
deployment to the multi-cloud environment. The DRA framework composition includes three
components: resources (architecture design, software, and hardware), configuration (pipeline,
IoT application, IoT network), and output (DRA reference architecture, DRAv1.0 instance,
DRAv2.0 instance). The framework provides implementation instructions and an evaluation
template to implement and evaluate DRAv1.0 (single cloud) and DRA v2.0 (multi-cloud)
instances in different organisational contexts.

The proposed DRA framework is evaluated using an empirical evaluation composed of four
iterations: industry case study, research case study, teaching case study, and industry field
surveys. The results of this thesis indicate that the proposed DRA framework can be considered
reasonable for the successful adoption of the DevOps approach for IoT application deployment
to the multi-cloud environment. The evaluation results indicate that the DRA framework is
generic and can be used in different organisational contexts and technology stacks to establish a
cloud-based deployment architecture that is suitable for IoT applications.

1

Chapter 1: Introduction

Software development is continuously evolving from documentation-driven to more agile model-
driven and collaborative ways of working (Alzoubi, Gill & Al-Ani 2015; Alzoubi, Gill &
Moulton 2018). Initially, software development practices mainly focused on the development
(Dev) aspects of software delivery, and little attention was given to operations (Ops)
(Ahmadighohandizi & Systä 2015; Ghantous & Gill 2017; Syed & Fernandez 2016). More
recently, agile approaches introduced the integrated concept of DevOps (Colavita 2016;
Samarawickrama & Perera 2017; Snyder & Curtis 2017; Wang & Liu 2018). Conventional
development methods, including agile, are continuously challenged by the pressing need for the
fast delivery of quality solutions, including both software and hardware (Qumer, Henderson-
Sellers & McBride 2007; Bai et al. 2018). This has led to the emergence of an integrated DevOps
automation paradigm that was born from the necessity of frequent software releases in a
production environment in the context of agile development (Lwakatare, Kuvaja & Oivo 2016b;
Samarawickrama & Perera 2017; Wang & Liu 2018).

Recently, there has been increasing interest among organisations to adopt DevOps for the
Internet of Things (IoT) applications (Ghantous & Gill 2018; Moore et al. 2016). IoT is a new
emerging paradigm that consists of connecting physical devices and virtual objects over an
established network (Bradley et al. 2015; Lee & Lee 2015; Nguyen & Gendreau 2014;
Ungurean, Gaitan & Gaitan 2014; Yaqoob et al. 2017). IoT presents several challenges to
organisations and developers, including security, big data, heterogeneous, multiple applications,
real-time deployment, logging, and integration (Ngu et al. 2016). It has been observed that ‘IoT
applications require the integration of development, IT operations, and quality assurance which
can be achieved by practising DevOps’ (Syed & Fernandez 2016). In contrast, the cloud
computing paradigm has emerged as a technology that enables broad access and resource-sharing
(Jula, Sundararajan & Othman 2014).

Notably, software development effectiveness has exponentially increased as a result of cloud
efficiency and services (Avram 2014; Hu et al. 2017; Moldovan et al. 2014). The cloud provides
resources that are available for IoT application deployment (Botta et al. 2016; Cavalcante et al.
2016; Hughes & Lee 2010). Further, cloud computing broader access and services can be
increased by using multi-cloud environments to assist IoT application deployment (Guechi &
Maamri 2017; Tao et al. 2018). It is anticipated that the multi-cloud can be used to optimise IoT
application deployment using automation and continuous integration (CI) (Ghantous & Gill
2018; Srirama et al. 2016).

As stated earlier, DevOps may provide integration and automation for IoT application
deployment (Gendreau & Nguyen 2014). However, there is little guidance available on how to
use the DevOps approach to deploy IoT applications to the multi-cloud. Hence, there is a need to
construct a reference architecture using cloud technology and the DevOps approach to enable

2

IoT deployment to the multi-cloud. To address this critical issue, this research presents the
DevOps reference architecture (DRA) framework to assist in the adoption of DevOps for IoT
application deployment to the cloud (single and heterogeneous).

This chapter discusses the background of the research and related work to agile development, the
DevOps approach, cloud computing, multi-cloud, and IoT. It also outlines the research ideas
derived from the research background and related work analysis. Further, this chapter presents
the research problem and research question, as well as the research aim, scope, and contributions.
It also outlines the application and users of the DRA. Finally, it discusses the research strategy
used in the thesis and outlines the organisation and structure of the rest of the chapters.

1.1. RESEARCH BACKGROUND AND RELATED WORK

The research presented in this thesis has been conducted in the area of software engineering,
incremental software development, and agile software development and especially in the context
of DevOps for IoT application deployment to the multi-cloud. It is necessary to understand the
origin of software engineering and compare the waterfall and agile methodologies. The aim is to
understand why DevOps is required for agile development and how it can help agile. This
section also discusses the topics of cloud computing, multi-cloud, and IoT. This discussion
conveys valuable information about the work related to the topics of this research (DevOps,
multi-cloud, and IoT). The information is used in section 1.1.7 to highlight the convergence of
research ideas and identify the research problem.

1.1.1. SOFTWARE ENGINEERING

Software engineering is the application of a systematic approach to developing a software
artefact (Laplante 2007). The software engineering systematic approach entails the application of
scientific and technical knowledge, design, implementation, testing, quality assurance, and end-
user documentation of the software artefact output [ISO/IEC/IEEE std 24765:2010(E), 2010].
The emergence of early programming languages such as FORTRAN, ALGOL, and COBOL in
the 1950s led to an increase in the complexity of computing (Booch 2018; Campbell-Kelly
1982). Thus, it was necessary to adopt a common engineering discipline or methodology to
address the complexity of software development. The software engineering disciplines can be
traced back to the 1960s. Software engineering methodology was formally presented in the
NATO Science Committee conference in Garmisch, Germany, in October 1968 (Broy 2018).
The conference outlined the challenges in software development: correct software requirements,
adequate architecture design, practical implementation, testing, and quality of the software
artefact.

Two software engineering methodologies are commonly used in software development: waterfall
and agile (Bibik 2018). The waterfall methodology adopts the incremental software development
approach (Basili & Larman 2003) and aligns the development process (analysis, planning,

https://en.wikipedia.org/wiki/ISO
https://en.wikipedia.org/wiki/International_Electrotechnical_Commission
https://en.wikipedia.org/wiki/IEEE

3

architecture, design, develop, test, deploy) in sequential order. Thus, a project with a broad scope
may take a significant amount of time to deliver the software artefact (Bibik 2018).

1.1.2. AGILE SOFTWARE DEVELOPMENT

Agile is an iterative software development methodology. It has become a popular methodology
and may have surpassed the success of the waterfall model (Basili & Larman, 2003). Usage of
the iterative approach to solving complex software problems dates back to the early 1970s. Agile
methods adopt an iterative approach to ‘revisit’ the development process (analysis, planning,
architecture, design, develop, test, deploy) and hasten the release or delivery of products to
customers (Bibik 2018). Figure 1.1 illustrates the improvements to software development after
adopting the agile methodology. The success rate increased from 11% (waterfall) to 39% (agile).
The failure rate of adopting agile principles is only 9% compared with 29% for waterfall
adoption.

Figure 1.1: Waterfall v. Agile (Bibik 2018)

The agile manifesto for software development was published in 2001 and included 12 principles
(http://agilemanifesto.org/). Agile methodologies have since become a model-driven approach
that can improve the practices of software development (Brambilla et al. 2017). Model-driven
engineering (MDE) has received attention from academia and industry (Favre 2005). Its success
is founded on the reverse (or iterative) process model for software development. Agile
methodology adopted a flexible taxonomy as MDE (Mens & Van Gorp 2006), which enabled
developers to iteratively adapt to project challenges and produce improved products after
repeated releases. The iterative development model required further support to increase the
delivery frequency of software applications. Hence, the DevOps approach was introduced to
provide agile software development with the necessary practices and tools to address the need for
faster and automated software implementation (Curtis & Snyder 2017).

http://agilemanifesto.org/

4

1.1.3. DEVOPS

The history of DevOps can be traced back to 2007–2008 and was formally acknowledged in
October 2008 in Belgium (Pratibha & Khan 2018). Several definitions describe DevOps as a
complex integration of development and operations capabilities (Erich, Amrit & Daneva 2014;
Wettinger, Breitenbücher & Leymann 2014). For example, DevOps is a software development
process that emphasises communication and collaboration between Dev and Ops (Ghantous &
Gill 2017; Jabbari et al. 2016). Further, DevOps is a software development approach that enables
automation for software development (Ghantous & Gill 2017; Virmani 2015).
Moreover,‘DevOps extends the goals of the agile movement to continuous integration and
continuous delivery (Colavita 2016; Lwakatare et al. 2016b). DevOps emerged from the need for
agile software development to bridge the gap between developers and information technology
(IT) operations (Jha. & Khan 2018; Virmani, 2015).

Given the growing customer base and global market outreach, it became essential for software
delivery to be in line with business expectations (Mohamed 2016; Perera, Silva & Perera 2017).
Therefore, it was logical to introduce automation to the agile software development process.
DevOps offers developers a set of well-known practices and a wide range of tools for automating
the software development cycle (synchronise, build, test, deploy, release) (Ghantous & Gill
2017; Zheng et al. 2016). DevOps aims to improve the human factor experience in the context of
agile software development (De Bayser, Azevedo & Cerqueira 2015; Diel, Marczak & Cruzes
2016; Sharp & Babb 2018). The automation concept of DevOps is the key to achieve CI and
continuous delivery and to improve DevOps team communication and collaboration capability
(Ghantous & Gill 2017).

Several frameworks claim to support DevOps in an agile environment. For instance, DICER
(Artač et al. 2016) is a model-driven framework that shows how to implement DevOps practices
and enable quality awareness of software application. The Continuous Scrum Framework
(Samarawickrama & Perera 2017) presents a practical methodology to achieve CI and
continuous delivery in an agile environment. The SQUID (Specification Quality in DevOps) (Di
Nitto et al. 2016) and TOSCA (Wettinger, Breitenbücher & Leymann 2014) frameworks propose
the adoption of DevOps standards based on core DevOps concepts. In summary, the DevOps
approach is based on key concepts, practices, and tools (see Figure 1.2) that could be used to
support a platform that enables software applications deployment and delivery in a production
environment without unnecessary delays (Chen et al. 2015).

5

Figure 1.2: DevOps Context

1.1.4. CLOUD COMPUTING

Cloud computing is an innovative, internet-based computing model (see Figure 1.3) that provides
abstract infrastructures, virtual servers, deployment platforms, and software services (Shahzad
2014). Cloud is a network of remote servers linked together to provide a single ecosystem that
enables users to store data, deploy applications, and manage virtual infrastructures (Avram 2014;
Jula, Sundararajan & Othman 2014). It enables ubiquitous and on-demand access to shared
resources (Cloud API, software, and services). Cloud computing provides three service models
(Hu et al. 2017; Moldovan et al. 2014). First, software as a service (SaaS) provides on-demand
access to available cloud-based software subscriptions. Second, the platform as a service (PaaS)
provides developers with a software-based environment to develop, run, manage, and test their
applications without the complexity of maintaining infrastructure. Third, infrastructure as a
service (IaaS) provides self-managed cloud infrastructures for developers. IaaS users are
responsible for managing their applications, data, and connectivity protocols.

The cloud has five essential characteristics (Avram 2014; Hu et al. 2017): 1) resource pooling:
cloud computing provides centralised access to services; 2) rapid elasticity: a fast option for
users to scale their applications given the nature of the cloud as a software service (Moldovan et
al. 2014); 3) measured service: resources are automatically controlled, managed and monitored
by cloud providers (Lee & Hughes 2010); 4) on-demand self-service: clouds enable users to self-
provision their environment and infrastructure (Hanappi, Hummer & Dustdar 2016); 5) broad
network access: the cloud is globally available to users, which makes it typically suitable for
agile software development (Lee & Hughes 2010). However, the adoption of cloud computing
presents several challenges (Shahzad 2014): 1) security and privacy of user access, data, and
applications, 2) reliability and cloud availability (no downtime), and 3) interoperability and
portability standards required to increase information sharing. In essence, it may be useful to
orchestrate (or group) several clouds into a multiple cloud system to increase resource-sharing
(Munteanu, Şandru & Petcu 2014; Tricomi et al. 2017; Truong, Dustdar & Leymann 2016).

6

Figure 1.3: Cloud Structure

1.1.5. MULTI-CLOUD

Multiple clouds or multi-cloud (see Figure 1.4) is the integration of several cloud computing
services into a single heterogeneous architecture (Hilman et al. 2020; Yang et al. 2016).
Organisations, developers, and researchers can benefit from open-source cloud platforms
(Munteanu, Şandru & Petcu 2014). The multi-cloud has several advantages, such as broader user
access and availability of applications deployed on multiple cloud platforms (Willnecker et al.
2018; Wu & Madhyastha 2013; Yasrab & Gu 2016). Also, multi-cloud enables integration and
compatibility with high-level QoS (Quality of Service) cloud services for applications
(D’Agostino et al. 2013; Truong, Dustdar & Leymann 2016).

Several studies and frameworks have introduced ideas and architectures intending to achieve
continuous deployment on the multi-cloud (Ferry et al. 2015; Srirama, Iurii & Viil 2016). For
instance, CYCLONE (Slawik et al. 2017) is a software stack that focuses on the areas of
application deployment, management, and security and user authentication on the multi-cloud.
CloudMF (Ferry et al. 2018; Kumari at al. 2017) is an object-oriented domain-specific model
that is tailored for applications. CloudML (Ferry et al. 2013), MCPA (Yasrab & Gu 2016), and
MDE (Chondamrongkul & Temdee 2013) attempt to benefit from multi-cloud services by using
automation to simplify the complexity of deployment to the multi-cloud. The deployment
process of applications to the multi-cloud may follow specific migration patterns (Jamshidi et al.
2015) such as multi-cloud refactoring and multi-cloud rebinding.

In essence, the multi-cloud appears to offer many benefits to the application deployment process.
However, multi-cloud adoption may present some challenges to organisations, developers, and
researchers. Research shows that vendor lock-in is a central issue that may occur when adopting
the multi-cloud (Ferry et al. 2013; Kritikos & Plexousakis 2015). Vendor lock-in occurs in two
areas: (1) when a cloud service contains the deployment configuration of the applications
(application provisioning), which prevents the other clouds in the multi-cloud model from using

7

the same configuration; and (2) when a cloud service hosts the database for the application,
which prevents the same application deployed to other cloud vendors from storing its data in the
same database. Therefore, it is essential to address both issues of vendor lock-in to benefit from
multi-cloud integration for application deployment.

Figure 1.4: Multi-Cloud

1.1.6. INTERNET OF THINGS

IoT (see Figure 1.5) refers to a network of physical objects that feature an IP address for internet
connectivity, and the communication that occurs between these objects and other internet-
enabled devices (sensors and actuators) and systems (Gubbi et al. 2013; Lee & Lee 2015;
Nguyen & Gendreau 2014). IoT provides human–device interactions through middleware in a
secure environment (Alkhalil & Ramadan 2017; Novo and Di Francesco 2020). The middleware
is the IoT applications that use existing services to provide connectivity to devices (Ngu et al.
2016). For example, Hydra provides a web service for incorporating heterogeneous physical
devices into applications. In contrast, GSN (Global Sensor Network) provides a web service that
delivers a stable platform for flexible integration, sharing, and deployment of heterogeneous IoT
devices. Models such as SysADL (Rautmare & Bhalerao 2016) designed to preserve a system-
oriented, which is an ADL (Architectural Description Language) based on SysML (Systems
Modelling Language). Another model—Wi-Fi mesh infrastructure—is designed for IoT
applications (Muhendra, Rinaldi & Budiman 2017). A new architecture model called 3G-PLC
(Power Line Communication) (Yaqoob et al. 2017) combines two complex communication
networks: 3G and PLC. These models may need a reliable gateway to control information traffic
using a high-level design methodology (Chen, Lin & Guo 2017).

A study was conducted to develop an algorithm that enables an IoT gateway to automatically
configure itself and perform two essential functions (Kang & Choo 2018; Rao & Shorey 2017).
Ultimately, the objective is to improve human interactions with IoT devices through middleware,
whether manually or automated, using an IoT sensory controller (Alowaidi et al. 2017; Russell,

https://www.webopedia.com/TERM/I/IP_address.html
https://www.webopedia.com/TERM/I/Internet.html

8

Goubran & Kwamena 2015; Yonezawa et al. 2016). Connectivity of the IoT network and IoT
applications requires several software and hardware technologies (RFID, WSN, Bluetooth,
MQTT) (Luo & Sun 2015; Mongan et al. 2017, Muhendra, Rinaldi & Budiman 2017; Newmarch
2016; Su et al. 2014; Wu et al. 2013). Sensor nodes collect data through a WSN (Wireless Sensor
Network), Bluetooth, MQTT, SSH, LPWAN (Low-Power WAN), or NFC, which enable the
convergence of the IPv6 network and low-power wireless (Luo & Sun 2015; Shah & Mishra
2016). Connectivity protocols are configured on a Linux operating system running on Raspberry
Pi (Newmarch 2016). A RESTful WS can be used to manage IoT devices (Sheng et al. 2015);
the service can be scaled and deployed on a cloud platform.

Many practical architecture models have already been deployed on various sensor networks.
First, in EasyConnect (Lin et al. 2015), devices are attached to EasyConnect using a friendly
GUI (graphical user interface) that is compatible with most smart devices. Second, smart city
multipurpose architecture is based on the monitoring of environmental variables in urban areas
(Gómez et al. 2017). Third, SOXFire (Mongan et al. 2017) supports physical access to IoT
devices that require a high-level plan for a system of systems (SoS). For this purpose, service
lifecycle management (SLM) (Hefnawy, Bouras & Cherifi 2016), which is based on lifecycle
modelling language (LML), was suggested to analyse, plan, design, build and maintain IoT-
enabled smart city service systems. Fourth, AllJoyn (Khakimov et al. 2017) uses HTTP and
MQTT protocols for communication through the gateway. Fifth, self-configuration and wisdom
connection systems use WSN and actualise automated configurations based on RSSI (Hsieh et al.
2016).

The performance of IoT applications requires constant improvements to handle the increasing
amount of IoT data, which are generated from interactions between IoT applications and IoT
devices. These data are stored either in traditional SQL tables or using a NoSQL database
(Douzis et al. 2018; Rautmare & Bhalerao 2016). Given the continued growth of IoT networks
(sensors and actuators), it is necessary to enhance the performance of IoT applications using real-
time monitoring and detection of critical events in the COT (Cloud of Things) (Lee & Hughes
2010). Existing models could be used to automatically monitor physical sensors such as
LabVIEW (Wu et al. 2013), AnyControl (Wang et al. 2015), and TISH (Titled Time of Series
Histogram) (Wu et al. 2013). Sensor events in a smart environment are monitored at run time,
which enables decision-making based on data stream analysis (Agrawal et al. 2020; Kodeswaran
et al. 2015; Mongan et al. 2017). However, the research shows that IoT is extensive and requires
a comprehensive model to manage IoT application deployment, IoT connectivity using an
adequate connectivity protocol, and IoT data storage. In essence, cloud computing (see Sections
D and F) may provide IoT with the necessary services to achieve the required model.

9

Figure 1.5: IoT Generic Structure

1.1.7. CONVERGENCE OF RESEARCH IDEAS

This section discusses the convergence of research ideas (see Table 1.1), which helps to identify
the research aims in section 1.4. The convergence of ideas is a list of observations identified in
previous sections of this chapter concerning the analysis of the background studies and related
work. These ideas are selected from the analysis conducted in sections 1.1.1 to 1.1.6. Section
1.1.3 shows that DevOps concepts may vertically improve agile application deployment and
delivery in a production environment. Section 1.1.4 discusses cloud computing characteristics
and services. Section 1.1.5 shows that it may be useful to use the multi-cloud for application
deployment; section 1.1.5 also identifies key challenges in the process. Section 1.1.6 indicates
that IoT may require a model-driven architecture that benefits from cloud computing services to
manage IoT data and IoT applications (Botta et al. 2016; Ray 2016). In essence, research shows
that the deployment of IoT applications to the multi-cloud lacks adequate support and guidelines.
Table 1.1 identifies the critical research elements that could be used to outline the research
problem and highlight the research question of this thesis.

10

Table 1.1: Ideas Convergence
Idea Context Relationship Description

I1 Multi-cloud and IoT IoT applications can benefit from cloud services (auto-
scaling, virtual servers).

I2 Multi-cloud and IoT IoT data can benefit from cloud data management
services (cloud database, availability).

I3 DevOps and multi-cloud DevOps tools may support multi-cloud data management
to prevent vendor lock-in.

I4 DevOps and IoT IoT application deployment can benefit from DevOps
concepts (automation, integration).

I5 Multi-cloud and IoT IoT applications can benefit from multi-cloud services.
I6 DevOps and IoT IoT application deployment can benefit from DevOps

practices that enable automation for software
development chain (synchronise, build, test, deploy,
deliver, and monitor).

I7 DevOps and multi-cloud Multi-cloud can benefit from the DevOps approach.
DevOps tools may be integrated with cloud services.

I8 DevOps and multi-cloud DevOps tools may be used for provisioning multi-cloud
application deployment to prevent vendor lock-in.

I9 Agile and DevOps DevOps approach may improve agile application
deployment speed and frequency.

1.2. RESEARCH PROBLEM

This section discusses the main research problem. The research problem and underlying
statements are identified based on the analysis conducted in the research background and related
work (see Section 1.1). The adoption of the DevOps approach in agile software development
improves the delivery of the software application (Lwakatare, Kuvaja & Oivo 2016b; Perera,
Silva & Perera 2017). Agile software development achieves vertical improvement through the
DevOps concepts of automation and CI (Schaefer, Reichenbach & Fey 2013; Snyder & Curtis
2017; Wahaballa et al. 2015; Wettinger, Breitenbücher & Leymann 2014). Hence, it is crucial to
conduct an extensive investigation into the DevOps paradigm and to identify the DevOps
concepts, practices, and tools.

The thesis also discusses cloud computing and the emergence of the multi-cloud phenomenon.
Cloud computing provides on-demand services and abstract infrastructure for developers (Jula,
Sundararajan & Othman 2014; Moldovan et al. 2014). It is essential to investigate the measures
and factors required to improve application deployment to the cloud. Further, heterogeneous
clouds, or the multi-cloud, have emerged as a combined abstract architecture that enables
broader user access, a diverse bundle of services, and a higher level of application scalability
(Papaioannou, Metallidis & Magoutis 2015; Willnecker & Krcmar 2018; Wu & Madhyastha
2013). The major obstacle for adopting multi-cloud distributed deployment is vendor lock-in,
which prevents harmonious deployment and database integration for the software application
(Chondamrongkul & Temdee 2013; Kritikos & Plexousakis 2015; Yasrab & Gu 2016). Hence, it
is crucial to explore adequate options that support application deployment to the multi-cloud.

11

The third topic of discussion is IoT—in particular, the deployment of IoT applications. Section
1.1 showed that IoT applications require deployment platforms that enable auto-scaling, secure
user access, and a reliable database management system (Douzis et al. 2018; Syed & Fernandez
2016). Cloud computing appears to offer the services that may be necessary to support
application deployment (Atif, Ding & Jeusfeld 2016; Botta et al. 2016; Lee & Hughes 2010).
Further, multi-cloud architecture appears to offer broader access, broader services, and an API
(application programming interface) (Ghantous & Gill 2018; Papaioannou, Metallidis &
Magoutis 2015; Slawik et al. 2017). Therefore, it is essential to understand how IoT applications
can be provisioned to the multi-cloud and to discover suitable solutions to the vendor lock-in
problem, and the IoT application connectivity with the physical sensors.

As stated earlier, there has been interest in using DevOps for IoT applications in the multi-cloud;
however, the challenge is how to do so. Thus, the main research problem is how to create a DRA
that enables IoT application deployment to the multi-cloud using the DevOps approach. This
challenge leads to the definition of the research question, which is discussed in the next section.

1.3. RESEARCH QUESTION

RQ: How can IoT applications be deployed to the multi-cloud using the DevOps approach?

The research question dimensions indicate that the adoption of DevOps may first require
investigation and analysis and that a deployment method is needed to enable IoT application
deployment to the multi-cloud. The research question dimensions in Figure 1.6 show how
DevOps may support IoT application deployment to the multi-cloud.

Figure 1.6: Research Question Dimensions

12

The research dimensions in Figure 1.6, highlights the complexity of the RQ, which requires an
extensive investigation into the relationship between DevOps, the multi-cloud, and IoT. Hence,
the thesis RQ is subdivided into two questions (see Table 1.2). This approach has divided the
research question into an investigation about DevOps (RQ1) and the creation of a comprehension
model to enable IoT application deployment to the multi-cloud using DevOps (RQ2). The
research question underlying the objectives involves the convergence of ideas (see Table 1.1).
Table 1.1 identified key research ideas that should be considered when addressing the research
question. When addressing RQ1, it is necessary to identify the benefits and challenges of
adopting DevOps for IoT.

Further, the results should highlight the research gaps and identify the industry needs. Most
notably, for RQ2, it is necessary to address the issue of vendor lock-in that may occur when
provisioning IoT applications to the multi-cloud, and when a cloud from the multi-cloud set
hosts the IoT database. The solution for RQ2 should contain an innovative instrument
encapsulated in a comprehensive model that addresses the stated issues. The research questions
RQ1 and RQ2 aims are explained in detail in section 1.4 (Research Aims).

Table 1.2: RQ Sub-Division
Label Question Dimension
RQ1 What is known about DevOps? Cloud

DevOps
RQ2 How can IoT applications be deployed to the cloud (single and

heterogeneous) using the DevOps approach?
Cloud
Multi-cloud
IoT
DevOps

1.4. RESEARCH AIM

The research aim represents the underlying objectives of the research question. With the
highlighted research question in mind (see Table 1.2), the main aim of this thesis is to develop a
structured framework—the DRA framework—to enable the deployment of IoT applications to
the multi-cloud using the DevOps approach. The research aims to support the research question.
The research aims (see Figure 1.7) are encouraged by the convergence of ideas (see Table 1.1).

The research aims (see Figure 1.7) are outlined as follows:
 Understand the DevOps approach: analyse the related studies conducted on DevOps and

present the results of DevOps concepts, practices, tools, benefits, and challenges.
 Understand cloud architecture: analyse the related studies conducted on cloud computing

and the multi-cloud paradigm.
 Understand IoT architecture: analyse the related studies conducted on IoT and present the

findings of the IoT relationship with cloud, multi-cloud, and DevOps.

13

 Integrate DevOps tools with cloud services: This is the first step towards building an
operational model pipeline. The DevOps tools and cloud services are identified and
analysed in previous steps.

 Deploy IoT applications to a single cloud: create an operational model pipeline using the
DRA design models. The DRA development pipeline is constructed using DevOps tools
and cloud software and services.

 Avoid vendor lock-in issues when deploying IoT applications to the multi-cloud. In
essence, the DRA framework should include an instrument that deploys IoT applications
to the multi-cloud and addresses the issue of vendor lock-in of application provisioning.

 Avoid vendor lock-in issues when storing data generated by IoT applications to a
database hosted by a cloud from the multi-cloud set. In essence, the DRA framework
should include an instrument that addresses the issue of vendor lock-in that is caused
when a cloud vendor hosts an IoT applications database.

 Deploy IoT applications to the multi-cloud using a comprehensive model based on the
DevOps approach.

Figure 1.7: Research Aim

1.5. RESEARCH SCOPE

The research scope of this thesis is limited to DevOps, IoT applications, and their deployment to
the multi-cloud (see Table 1.3). The thesis output—namely, the DRA—will cover the objectives
explained in Table 1.3, which also contains the excluded research items. Table 1.3 scope
includes the construction of the DRA framework as a general reference architecture that enables
software application deployment to multi-cloud (including IoT-applications). A reference
architecture (Chen et al. 2016) defines a cooperative relationship of technology components and
methods integrated to create a comprehensive template solution for software development
projects. A reference architecture is an abstract solution pattern that can be re-used by
organisations to improve the interoperability, collaboration, communication, and governance of
software projects. The DRA framework reference architecture aims to provide a general design

14

model for IoT-applications to multi-cloud and accomplish the project’s aims, and scope
explained in Table 1.3 and Figure 1.7.

Table 1.3: Project Scope
Inclusion Exclusion
Investigate DevOps, multi-cloud, and IoT and their
relationships. Outline DevOps concepts, practices,
and tools and determine the benefits of the DevOps
adoption for IoT application deployment to the
multi-cloud.

The DRA framework will not provide specific
and custom security measures for the DevOps
pipeline, which is a separate PhD topic of
research.

Use DevOps concepts and practices to define
general characteristics that can be used to create a
reference architecture model using the multi-cloud
infrastructure.

The DRA framework will not provide specific
and custom security measures for the IoT
network, which is a separate PhD topic of
research.

Construct a general reference architecture model
that can be implemented in any context.

The DRA framework will not offer a solution for
IoT data management (taking actions based on
data, recycling IoT data, storage management,
and data synchronisation).

Create an operational model pipeline to deploy IoT
applications to the multi-cloud.
The DRA framework should include a tool that
hosts IoT application provisioning and prevents
vendor lock-in. This tool should enable deployment
to the multi-cloud.

The DRA will not provide a model to manage
vendor lock-in caused by IoT application
provisioning, which is a separate PhD topic of
research.

The DRA framework should include a tool that
hosts IoT data storage and prevents vendor lock-in.

The DRA will not provide a model to manage
vendor lock-in caused by IoT data storage
hosting, which is a separate PhD topic of
research.

Provide a DRA framework composition that can be
used to define architecture set output. The
framework composition includes DRA design
models, DRA operational model pipeline
(instance), IoT application, and IoT device (IoT
network). DRA composition is used to create an
implementation template that can be used as a
guideline to implement the DRA in the context of
the current development environment.

Analyse the applicability of the DRA based on
empirical evaluation results, determine research
contributions, and outline DRA limitations and
possible future research ideas.

1.6. CONTRIBUTIONS

This section outlines the main contributions of the research—the DRA framework (see Figure
1.8). The framework incorporates several ideas and methods that describe the contextual
relationship of DevOps, multi-cloud, and IoT at a contextual higher level. The DRA is rich in
range and includes numerous concepts, practices, and tools that have not been previously
explicitly discussed or integrated into a practical or theoretical framework. The contributions of
this research have been published in both industry, and academic outlets (e.g., Ghantous and Gill

15

2017, 2018, 2019), and they have been incorporated into the teaching of advanced software
development at the University of Technology Sydney.

Figure 1.8: DRA Framework Overview

The DRA overview (see Figure 1.8) shows that the framework is composed of three main
components: framework characteristics, framework architecture, and framework composition.
Framework characteristics are general terminologies that could be used to create a reference
architecture design using a DevOps approach and cloud infrastructure. Framework architecture is
a general design model that can be applied in any context. DRA composition represents the
resources and configurations required to create a DRA operational model instance. The DRA
operational model instance enables IoT application deployment to the multi-cloud.

The framework characteristics component includes nine key elements that are organised into
three categories: foundation (abstraction, human factor, infrastructure), core (process, tools,
product), and extended (business value, rules, legal). Framework characteristics are defined
using common terminology following the guidelines published in Berger, Häckel, and Häfner
(2019) and Nickerson, Varshney, and Muntermann (2013). DevOps and cloud infrastructure
support the characteristics’ terminologies. The framework characteristics can be used in any
context to create a reference architecture design.

The DRA architectural design is composed of five models: contextual, conceptual, logical,
physical, and operational. The architecture models are published in Ghantous and Gill (2018).
The DRA is created using general framework characteristics. Consequently, the DRA is a
general design that represents a class of domains and is not restricted to particular instances.
Instead, The DRA design model can be implemented in any development context and applied to
numerous instances.

16

The DRA composition entails the resources (framework architecture, software, hardware) and
configuration (DevOps tools integration, IoT application setup, IoT network setup) used to create
a DRA operational model instance (DRAv1.0: single cloud; DRAv2.0: multi-cloud) to deploy
IoT applications. The DRA composition is an application of the framework’s reference
architecture design model. The DRA composition outlines two outputs: DRAv1.0 instance
(single-cloud deployment) and DRAv2.0 instance (multi-cloud deployment). DRAv2.0 is an
updated version of DRAv1.0 that enables IoT application deployment to the multi-cloud using
the DevOps approach.

The proposed framework has been evaluated using empirical evaluation (see Chapter 5), which
was conducted in four iterations: industry case study, research case study, teaching case study,
and industry field surveys. The encouraging results of the empirical evaluation suggest that the
DRA framework may represent a high-level contextual integration of the DevOps, multi-cloud,
and IoT contexts. The evaluation results are used to determine the applicability and novelty of
the framework. The evaluation feedback helped to convey possible future research ideas. The
results also indicate that the DRA may be considered an appropriate and practical model for IoT
application deployment to the multi-cloud.

Also, serval contributions have been accomplished during this research. These contributions
have been published in conference volumes and peer-reviewed journals (Ghantous & Gill 2017,
2018, 2019).

1.7. APPLICATION AND USERS

This section discusses the DRA framework application and its users. The DRA is intended for
use by software organisations and experienced DevOps developers, engineers, managers, and
consultants as a general reference model for IoT application deployment to the multi-cloud using
the DevOps approach. The DRA should not be taken as an imposed heavy-handed step-by-step
process; instead, it should be taken as a comprehensive information framework to ensure that the
essential points are not missed. DevOps consultants and managers may use the proposed
framework models as a general reference architecture that represents a class of domains not fixed
to a particular instance. The proposed DRA instances are tailored to support numerous instances
that are applicable in the contexts of the development environment.

The DRA application and its users are illustrated in Figure 1.9, which shows the interactions
between DRA users or DevOps teams (consultants, developers, managers, coaches) and the
framework’s three mains components (characteristics, architecture, composition). Figure 1.9
outlines the user’s experience with the DRA setup (using the framework characteristics), design
(creating the reference architecture model), and application (configuring and implementing the
DRA pipeline instance). The DevOps team sets up the DRA in the context of the organisation
employing the framework’s characteristics using DevOps (concepts, practices, tools) and the

17

cloud (infrastructure, virtual servers, services). Managers and consultants plan the DRA design
based on the foundation’s characteristics. At the same time, developers and coaches build the
DRA pipeline and configure the IoT application deployment to the multi-cloud using a CI
broker.

Figure 1.9: DRA Application

The CI broker hosts the deployment configurations to avoid vendor lock-in. Managers and
consultants arrange the business rules and legalities applied in the context of the DRA
implementation. Managers and consultants determine the business value of the DRA application
in the organisation context. The DevOps team monitors the IoT application operations by end-
users in real-time. The IoT application operations and interactions with the IoT network generate
IoT data. The DRA pipeline also contains a tool to host IoT data storage and avoid vendor lock-
in. The IoT network is composed of Raspberry Pi and IoT sensors. The Raspberry Pi computer
board runs a Linux operating system and contains Python scripts that control the IoT sensors.
The IoT application interacts with the Raspberry Pi board using numerous connection protocols
(e.g., SSH, MQTT, AMQP, Mobile). The DevOps team has complete control over the DRA
implementation using DevOps practices and tools (real-time monitoring, application logging, and
collaboration tools).

18

1.8. RESEARCH STRATEGY

The main research question of this thesis is: ‘How can IoT applications be deployed to the multi-
cloud using the DevOps approach?’ To answer this question, this research proposes the main
research contribution—the DRA framework—which has been briefly introduced and discussed
in this chapter. This section presents an overview of the research strategy that has been adopted
to design, develop, and evaluate the DRA artefact output.

To address the main research question, the research question is divided into two sub-questions:
RQ1 and RQ2 (see Table 1.2). The research question underlying the statements involves the
convergence of ideas (see Table 1.1). Table 1.1 identified key research ideas that should be
considered when addressing the research question. With the research question in mind, the key
ideas in Table 1.1 are converted into a set of objectives (see Figure 1.7). To address these
objectives, this research uses a design science research (DSR) methodology following the
guidelines adopted from Gregor and Hevner (2013) and Peffers et al. (2007).

The initial step of the DSR is to conduct a systematic literature review (SLR) (see Chapter 2)
adopted from guidelines by Kitchenham and Charters (2007). The SLR filters, analyses, and
synthesises data from a collection of relevant studies. The SLR filtration process is composed of
five stages: 1) inclusion and exclusion process of related research papers; 2) data source location
and database search strategy; 3) selection criteria and inclusion decision; 4) final selection
process and quality assessment based on criteria questionnaire (Dybå & Dingsøyr 2008); and 5)
data extraction and synthesis from final collection of studies. The results of the SLR are used as
initial data for the DSR method.

The DSR methodology is used to develop the DRA artefact. Artefact development may involve a
review of existing theories and knowledge to develop a rigorous solution or artefact for the
intended purpose and audience. The DSR process is composed of six steps: problem
identification, analysis, design, development, evaluation and output.

The DRA framework is evaluated using an empirical evaluation composed of four iterations:
industry case study, research case study, teaching case study, and industry field surveys. The
DRA is then updated based on feedback received from participants. Qualitative data from the
case studies are collected, analysed, and reported using the guidelines for case studies (Runeson
& Höst 2009). Survey questionnaires are developed for the artefact evaluation (Prat, Comyn-
Wattiau & Akoka 2014). The survey produced quantitative and qualitative data. The qualitative
data are evaluated following the validation criteria for design research (Carvalho 2012), and the
quantitative data are evaluated using statistical formulas for numerical data analysis (Hyndman
2008). The DRA applicability and novelty is determined using the results of the empirical
evaluation.

19

1.9. THESIS ORGANISATION

This thesis is organised into six chapters, as illustrated in the organisation overview in Figure
1.10. Chapter 1 presents the thesis introduction and discusses the research background, research
aims, research problem, research question, project scope, research contributions, and research
strategy. Chapter 2 presents the SLR used in this research. Chapter 3 presents the DSR adopted
in this research. Chapter 4 presents the main thesis contribution—namely, the DRA framework.
Chapter 5 presents the empirical evaluation used to evaluate the DRA. Chapter 6 highlights the
contributions of this thesis and outlines the framework’s limitations and ideas for future research.
The rest of the thesis includes a research discussion, conclusion, and appendices. The appendices
contain the research data (link to CloudStor, the cloud storage recommended by the University of
Technology Sydney [UTS]), publications, ethics approval and consent forms, online survey
template, and case study template. The thesis also includes a brief declaration about the author.

Figure 1.10: Research Organisation

20

1.10. SUMMARY

This chapter presented an analysis conducted in the area of software development and, in
particular, the area of agile software development. It has been suggested that a DevOps approach
may improve agile through automation and CI of the development process. The topics of IoT and
cloud computing (single and multi-cloud) were discussed. It was suggested that DevOps might
improve the deployment of IoT applications to the multi-cloud. This research has proposed the
DRA as model architecture to address the main research question: How can IoT applications be
deployed to the multi-cloud using the DevOps approach? The framework is composed of three
main components: framework characteristics, framework architecture, and framework
composition. Framework characteristics are general terminologies that can be used to create a
reference architecture design using a DevOps approach and cloud infrastructure. The framework
architecture is a general design model that can be applied in any context. The DRA composition
represents the resources and configurations required to create DRA operational model instances.
The DRA is not fixed to a particular context but can be applied to numerous instances. The DRA
framework will be discussed in detail in Chapters 3–5. It is intended to be used by developers,
coaches, managers, and consultants as a comprehensive template or model to deploy IoT
applications to the multi-cloud in the organisation context. In Chapter 2, the adopted SLR
process attempts to answer RQ1.

21

Chapter 2: Literature Review

This chapter presents a systematic review of DevOps in the context of IoT application
deployment to a multi-cloud environment. While DevOps practices and tools are being embraced
by the industry, little research has been undertaken into how DevOps can be used for emerging
IoT application deployment to a heterogeneous and complex multi-cloud environment. Here, an
SLR method (Kitchenham & Charters 2007) has been used to systematically review the DevOps
concepts, practices, tools, challenges, and existing solutions. This review aims to establish the
current state of knowledge to locate a study area in DevOps in the context of IoT application
deployment and the multi-cloud. The SLR is the first step in DSR towards the development of
the initial version of the unified DRA to assist in the deployment of IoT applications to the multi-
cloud (Ghantous & Gill 2017, 2018).

This research adopts an SLR to filter, analyse, and synthesise data from a collection of relevant
studies. The SLR is founded on the guidelines of Kitchenham and Charters (2007). The SLR
filtration process is composed of five stages: 1) inclusion and exclusion process of related
research papers; 2) data source location and database search strategy; 3) selection criteria and
inclusion decision; 4) final selection process and quality assessment based on criteria
questionnaire (Dybå & Dingsøyr 2008); and 5) data extraction and synthesis from final
collection of studies.

The SLR examines and discusses DevOps, cloud computing, multi-cloud, and IoT, as well as
their relationships. The purpose of this analysis is to determine what is known about the DevOps,
IoT and multi-cloud in order to the research gaps and address the research question. The SLR
outlines the benefits and challenges of using the DevOps approach for IoT application
deployment to the cloud/multi-cloud. The findings in the results section are used to determine the
existing research gaps and address the agile software implementation (Alzoubi, Gill & Al-Ani
2015; Qumer, Henderson-Sellers & McBride 2007). The SLR augments the focus on the
perspectives of DevOps, cloud/multi-cloud, and IoT and outlines the necessary steps to integrate
these contexts and their relationship. The SLR results are used as initial data in the initiation step
of the DSR method (Gregor & Hevner 2013; Peffers et al. 2007) adopted in this thesis to develop
the proposed DRA framework.

2.1. SLR SCOPE

The scope of the SLR is based on the research aim in Section 1.4, which defines the underlying
objectives of the main research question (see Section 1.3). The SLR is conducted following the
guidelines published by Kitchenham and Charters (2007) to address the research questions (in
particular, RQ1) (see Table 1.2). The SLR is conducted using a list of selected studies. The
selected studies are chosen based on their relevance to the topics of the research (DevOps, cloud
[single and multiple], IoT), and their relationships. The selected studies in this research are

22

labelled S[index], where index = [1 ... 128] refers to a corresponding study listed in the
Bibliography of this thesis. The results of the SLR filtration process are assessed for quality
using guidelines adopted from Dybå and Dingsøyr (2008). This process generates rigorous raw
data, which are reviewed in the SLR results section. The results analysis intend to determine
what is known about DevOps (concepts, practices, tools), identify the benefits and challenges of
the adoption of the DevOps approach to deploy IoT applications to the cloud/multi-cloud, which
identify and highlight the research gap that primarily describes the industry’s needs.

2.2. SLR FILTRATION PROCESS

The SLR in this thesis is composed of five stages. Stage 1 discusses the type of studies included
and excluded in the study. Stage 2 describes the search strategy based on a well-crafted search
key. Stage 3 describes an iterative selection process conducted on a range of related studies.
Stage 4 describes a further process of study inclusion and exclusion based on quality assessment
criteria. Stage 5 separates the synthesised data from the selected studies into categories related to
the research technologies.

2.2.1. STAGE 1: INCLUSION–EXCLUSION

The SLR only included papers that presented quality data that were deemed helpful to address
the research question. The studies were selected if they satisfied the minimum quality assessment
criteria, as discussed in stage 4. Papers included journal articles and conference proceedings
written in English. Blogs, magazine websites, and book pages, as well as duplicates and non-
English papers, were excluded from the review because of their perceived low academic study
relevance and rigour. Table 2.1 shows the inclusion and exclusion benchmarks for the studies.

Table 2.1: Inclusion–Exclusion Benchmark
Inclusion Benchmark Exclusion Benchmark
Journals Papers from blogs
Conference proceeding Magazine websites
Papers from IEEE, Elsevier, Springer, Google Scholar, and ACM Book pages
Papers published between 2007 and 2009 Duplicate papers
Papers are written in English Non-English papers

23

2.2.2. STAGE 2: DATA SOURCE AND RESEARCH STRATEGY

This study uses the following well-known databases as data sources:
 IEEEXplore (www.ieeexplore.ieee.org/Xplore/)
 ACM Digital Library (www.portal.acm.org/dl.cfm)
 Google Scholar (http://scholar.google.com.au/)
 Elsevier Science Direct (www.sceincedirect.com/)
 SpringerLink (www.springerlink.com/).

It was anticipated that the search results from these databases would provide sufficient data
coverage for the SLR. The search key was created based on the research question (see Section
1.3) and the research aim (see Section 1.4). The search key’s logical expression parameters were
fit for purpose to investigate (DevOps, cloud [single and multiple], IoT). Table 2.2 shows the
search categories that form the search key and its associated key terms. The initial search
produced N = 950 papers.

Search Key = DevOps and IoT, DevOps concepts, DevOps tools, DevOps architecture, DevOps
practices, IoT architecture, IoT sensors, IoT applications, IoT security, cloud computing, and
IoT, DevOps and multi-cloud, multi-cloud and IoT.

Table 2.2: Search Categories
Search Category Key Terms
DevOps practices Collaboration, communication, automation, quality assurance, fast release,

logging, monitoring, testing, build, deployment, database management.
DevOps architecture Development pipeline architecture, agile architecture, DevOps framework,

TOSCA, SQUID, DICER, DRA.
DevOps concepts Automation (build, testing, deployment, monitoring, communication,

collaboration, planning). Continuous integration.
DevOps tools Travis CI, Jenkins, Codeship, Github, BitBucket, MongoDB, Docker, Azure,

AWS, Heroku, Papertrail, Trello, Slack, Cucumber, Junit, TestNG, Nagios.
DevOps and IoT PaaS, IaaS, Cloud programming, continuous updating, Cloud API,

Continuous testing, continuous reporting/logging.
IoT architecture IoT frameworks and architectures, connectivity protocols, RFID, SenML,

WSN, Middleware, ADL, MQTT, LPWAN, AMQP, Mobile.
IoT devices and sensors Proximity sensors, motion sensors, temperature sensors.
IoT applications IoT process, IoT interactions, IoT applications connectivity, Raspberry Pi.
IoT security P2P architecture, two-way authentication.
Cloud and IoT MQTT on the cloud, continuous deployment, fast delivery.
DevOps and cloud Automation, CI (cloud services, DevOps tools), real-time monitoring and

logging, automated testing.
Multi-cloud Multiple cloud services, broader access, application provisioning model.
Multi-cloud and IoT Broader access, vendor lock-in, central database.

24

2.2.3. STAGE 3: STUDY SELECTION PROCESS AND INCLUSION DECISION

The selection process used in this research was based on five steps (see Table 2.3). The selection
process included a system that removed duplicate papers and unrelated topic papers from the
initial cohort of papers identified in stage 2.

Table 2.3: Stage 3—Filtration Process
Filtration Step Method Assessment Criteria (Yes/No)
Step 1 Initial search using search key: PDF or

full text of relevant studies in stage 2
(N = 950)

Select papers: PDF or full text

Step 2 Exclude duplicate papers collected
from databases

Paper is duplicate

Step 3 Include papers on a title basis Title = key term(s)
Step 4 Include papers based on abstracts Abstract = key term(s)
Step 5 Include papers based on the

introduction
Connection to DevOps, cloud/multi-
cloud and IoT

The study filtration process was applied to the N = 950 papers to identify the relevant papers for
the review. The first filtration step included database results that contained full-text papers and
were available for download (The result was the selection of 938 papers). The second filtration
step eliminated duplicate papers through title comparisons; which lead to a selection of 868
papers. The third filtration step identified papers based on their title relevance; which lead to the
selection of 391 papers. The fourth filtration step removed papers based on the abstract’s
relevance to the research questions; which lead to the selection of 237 papers. The fifth filtration
step included papers based on the review of their introduction section and relevance to the
research. This resulted in the selection of 186 papers (see Table 2.4 and Figure 2.1).

Table 2.4: Stage 3—Filtration Process Results
Database Stage 2

Results

 Step 1

Step 2

Step 3

Step 4

Step 5

Stage 3
Results

Percentage

EEEXplore 185 183 176 101 71 66 66 35.48%
ACM Digital Library 154 151 131 74 31 22 22 11.83%
Elsevier 164 160 153 87 74 41 41 22.04%
SpringerLink 60 59 51 32 21 19 19 10.22%
Google Scholar 387 385 357 97 40 38 38 20.43%

N= 950 938 868 391 237 186 186 100%

The filtration process steps are illustrated in Figure 2.1, which shows the iterative steps that
started with N = 950 studies and finished with N = 186 selected studies.

25

Figure 2.1: SLR Filtration Process

The filtration process results are plotted into a histogram graph relative to the percentage of
papers selected from each database source (see Figure 2.2).

Figure 2.2: Stage 3—Filtration Results Graph

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

IEEE ACM Elsevier Springer Google

Percentage

26

2.2.4. STAGE 4: FINAL SELECTION PROCESS AND QUALITY ASSESSMENT

This stage uses five screening criteria (Dybå & Dingsøyr, 2008). A paper is selected if it satisfies
all five quality assessment criteria (see Table 2.5). The criteria were applied to the N = 186
selected studies that passed stage 3, and 128 papers were selected for data extraction and
synthesis.

Table 2.5: Stage 4—Quality Criteria

Item Question Answer:
Yes = 1, No = 0

1 Is there a clear statement of the aims of the research? 0
2 Does the paper provide relevant data related to the research topics? 0
3 Is there a clear statement of findings? 0
4 How adequately has the research results been documented? 0
5 Is the study of value for research? 0

Finally, Table 2.6 presents the SLR selection process results at every stage. Stage 4 results are
plotted in Figure 2.3 relative to its percentage.

Table 2.6: SLR Selection Process Results
Database Stage 2 Stage 3 Stage 4 Percentage
IEEEXplore 185 66 56 43.75%
ACM Digital Library 254 22 13 10.16%
Elsevier Science Direct 64 41 35 27.34%
SpringerLink 60 19 10 7.81%
Google Scholar 387 38 14 10.94%

N= 950 186 128 100%

Figure 2.3: Stage 4—SLR Quality Results Graph

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%
45.00%
50.00%

IEEE ACM Elsevier Springer Google

Percentage

27

2.2.5. STAGE 5: DATA EXTRACTION AND DATA SYNTHESIS

During this stage, data are extracted from all 128 studies that passed stage 4. The data synthesis
process summarises each paper from the selected studies. The purpose of this approach is to
assemble relevant data from the selected studies to address the research problem in Section 1.2
and answer the research question (see Table 1.2). As shown in Table 2.7, the search categories of
DevOps practices, continuous, automation, and tools have a high frequency or relevant sources
compared with the other search categories.

The selected studies in this research are labelled S[index] from S1 to S128; index = [1 ... 128] refers
to a corresponding study listed in the Bibliography of this thesis. The selected studies were
analysed, and the raw data were used to produce the results of this SLR (see Section 2.4).

Table 2.7: Stage 5—Selected Studies
Search Category Frequency Percentage Sources
DevOps practices 20 15% S1, S2, S3, S6, S7, S9, S10, S14, S19, S20, S22, S23, S24,

S26, S27, S30, S43, S12, S107, S125
DevOps architecture 11 8% S1, S2, S3, S7, S9, S19, S24, S26, S110, S107, S127
DevOps concepts 34 26% S1, S2, S3, S6, S7, S9, S10, S12, S14, S15, S19, S20, S22,

S23, S24, S26, S27, S30, S43, S107, S110, S116, S125, S126,
S127, S130, S132, S4, S5 S8, S13, S21, S25, S28

DevOps tools 17 13% S2, S3, S9, S14, S15, S19, S20, S22, S23, S24, S30, S43,
S107, S110, S7, S116, S127

DevOps and IoT 3 2% S7, S11, S107
IoT architecture 14 11% S32, S34, S37, S39, S40, S41, S47, S53, S56, S57, S60, S64,

S69, S79
IoT devices and
sensors

27 20% S32, S34, S35, S38, S39, S40, S44, S45, S46, S47, S48, S52,
S53, S54, S56, S57, S60, S61, S63, S64, S65, S66, S72, S74,
S78, S7, S107

IoT applications 15 11% S7, S35, S36, S50, S60, S64, S71, S75, S77, S79, S7, S93,
S103, S107, S124

IoT security 13 10% S32, S36, S37, S39, S48, S50, S52, S69, S71, S77 , S51, S76,
S67,

Cloud and IoT 17 13% S58, S62, S67, S68, S70, S83, S84, S85, S86, S90, S91, S92,
S93, S102, S103, S11, S107

DevOps and cloud 7 5% S4, S5, S8, S13, S21, S25, S28
Multi-cloud 21 16% S95, S96, S97, S98, S99, S100, S101, S104, S109, S113, S114,

S115, S118, S119, S121, S123, S128, S129, S107, S105 S112
Multi-cloud and IoT 3 2% S105, S107, S112

The overall SLR selection progress overview from stage 1 to stage 5 is illustrated in Figure 2.4.

Figure 2.4: SLR Selection Progress Overview

28

2.3. SLR DATA REVIEW AND ANALYSIS

This section presents the analysis and review of the data collected from the selected 128 studies.
The selected studies provide a rich and rigorous information platform to understand the contexts
of DevOps, cloud/multi-cloud, and IoT, as well as the relationships between them. The analysis
conducted in this section provides essential material to answer the research sub-question (RQ1)
(see Table 1.2). The collected data will be used as a platform to investigate the DSR method
adopted by Gregor and Hevner (2013) and Peffers et al. (2007) in Chapter 4.

2.3.1. DEVOPS AND MULTI-CLOUD

DevOps has emerged as a paradigm that aims to improve collaboration and communication
between Dev and Ops (Pratibha & Khan, 2018; Virmani 2015). DevOps provides a set of well-
known practices (Ghantous & Gill 2017; McCarthy et al. 2015) to enable the automation of
application deployment for timely release and delivery (Artač et al. 2016; Samarawickrama &
Perera 2017). The DevOps approach enables automation for the application development chain
(Diel, Marczak & Cruzes 2016; McCarthy et al. 2015; Nguyen & Gendreau 2014). Moreover, in
a test-driven development environment, DevOps tools augment release frequency and production
quality (De Bayser, Azevedo & Cerqueira 2015; Lwakatare, Kuvaja & Oivo 2016a). DevOps
offers a significantly broader perspective to application deployment to the cloud (Rajkumar et al.
2016; Wettinger, Andrikopoulos & Leymann 2015) through its concepts, known practices, and a
wide range of tools. Hence, the DevOps approach can be useful for the deployment of IoT
applications to the multi-cloud environment. IoT application deployment to the cloud/multi-
cloud requires a general DRA (Chondamrongkul & Temdee 2013; Srirama, Iurii & Viil 2016;
Tao et al. 2018). The suggested reference architecture can be instantiated to fit the context of the
development environment (Ghantous & Gill 2018). There are several challenges of IoT
application deployment to the multi-cloud, including security, connectivity, big data exchange,
automated data collection, real-time access, monitoring, scalability and heterogeneous IoT
devices (Alkhalil & Ramadan 2017; Bass et al. 2015; Farahzadi et al. 2018; Ghantous & Gill
2018; Ray 2016; Stergiou et al. 2018).

DevOps appears to provide the multi-cloud environment with the methods and tools to enable
automation and CI (Ghantous & Gill 2018; Singh et al. 2015; Soni 2015). For example, an open-
source framework such as TOSCA (Wettinger, Andrikopoulos & Leymann 2015) enables
automation across the deployment pipeline for application deployment to the cloud. In essence,
the multi-cloud could benefit from DevOps concepts and practices (Alam, Sopena & El Saddik
2015; Ghantous & Gill 2018; Shekhar & Gokhale 2017). A framework model could combine
DevOps and multi-cloud contexts in the general reference architecture. These contexts could
serve as a general platform of characteristics defined from commonly used terminologies
(Berger, Häckel & Häfner 2019). These characteristics could be used to create a general design
model that could be instantiated to fit the purpose of the development context.

29

2.3.2. DEVOPS AND IOT

There is growing interest in the IoT community in adopting DevOps (Moore et al. 2016; Syed &
Fernandez 2016). IoT, supported by cloud computing (Botta et al. 2016; Douzis et al. 2018; Ray
2016), aims to achieve interoperability and fast data exchange (Ferry et al. 2018; Yonezawa et
al.). Cloud offers PaaS as a virtual development platform for IoT application developers. It also
provides a back-end solution to manage the vast data streams of IoT application data through
IaaS and SaaS (Alam, Sopena & El Saddik 2015; Cavalcante et al. 2016; Massonet et al. 2017).
Similar to DevOps, IoT presents some challenges (Alkhalil & Ramadan 2017; Hefnawy, Bouras
& Cherifi 2016; Khakimov et al. 2017) because of its large number of interconnected and
heterogeneous sensors and devices (Gomes, da Rosa Righi & da Costa 2014; Su et al. 2014;
Ungurean, Gaitan & Gaitan 2014).

The value of IoT for enterprises resides in the fast delivery of IoT applications. However, similar
to DevOps, IoT applications are complex and involve real-time connectivity between IoT
devices. IoT also requires effective seamless integration with other systems such as the cloud
(Botta et al. 2016; Fan et al. 2012; Farahzadi et al. 2018). Some studies have proposed solutions
to big data generated by IoT sensors such as SLM (Kang & Choo 2018) and SOXFire
(Yonezawa et al. 2016), which provide a multi-community citywide sensor network for sharing
big sensor data. Other studies have focused on organising and mapping future directions for
better IoT infrastructure (Khakimov et al. 2017; Muhendra, Rinaldi & Budiman 2017). It has
been suggested that cloud infrastructure is suitable for IoT applications (Cavalcante et al. 2016;
Li et al. 2017). A reliable IoT gateway (Kang & Choo 2018) can be used to include new devices
outside the network using wireless or Bluetooth connection types (Yasaki, Ito & Nimura 2015).
Another study offered a management system to quickly connect IoT devices and their
applications (EasyConnect) (Lin et al. 2015; Luo & Sun 2015). An end-to-end security
architecture for IoT networks on the Federal Cloud (Massonet et al. 2017) is an example of how
IoT transmissions can be secured with the cloud. Another way of securing sensor communication
is a two-phase authentication protocol (Porambage et al. 2014). Monitoring internet traffic
between the cloud and IoT applications to sensors is necessary to ensure the performance and
efficiency of the IoT application (Hefnawy, Bouras & Cherifi 2016; Yonezawa et al. 2016).
AnyControl (Wang et al. 2015) provides a home appliance monitoring system that observes the
live data exchange between the user application and sensors.

The above information suggests that the cloud may be a practical platform for IoT application
deployment. The previous section observed that DevOps and cloud/multi-cloud contexts might
be combined into a general framework. Hence, IoT application deployment may benefit from the
DevOps approach, which offers automation, CI, and real-time monitoring. However, IoT may
pose challenges for the suggested framework, such as IoT application provisioning, IoT data
storage, IoT security, and IoT connectivity.

30

2.3.3. IOT SENSORS AND IOT APPLICATIONS

IoT provides human–device interactions through middleware in a secure environment (Kishore
Ramakrishnan, Preuveneers & Berbers 2014; Su et al. 2014; Yaqoob et al. 2017). Middleware
are IoT applications that use existing middleware service systems to provide connectivity with
devices (Ngu et al. 2016). For example, Hydra provides a web service for incorporating
heterogeneous physical devices into applications. GSN provides a web service that delivers a
stable platform for flexible integration, sharing and deployment of heterogeneous IoT devices
(Gomes, da Rosa Righi & da Costa 2014). Models such as SysADL are explicitly designed to
preserve a system-oriented (Leite, Batista & Oquendo 2017), which is an ADL based on SysML
architecture. Another model—Wi-Fi mesh infrastructure—is designed for IoT applications
(Muhendra, Rinaldi & Budiman 2017). A new architecture model called 3G-PLC (Yaqoob et al.
2017) combines two complex communication networks: 3G and PLC. Such models may need a
reliable gateway to control information traffic using a high-level design methodology (Chen, Lin
& Guo 2017). A study was conducted to construct a self-configurable IoT gateway (Kang &
Choo 2018). The idea was to develop an algorithm that enables an IoT gateway to automatically
configure itself and perform two essential functions (Rao & Shorey 2017). Ultimately, the
objective was to improve human interactions with IoT devices through middleware—whether
manually or automated—using an IoT sensor controller (Alowaidi et al. 2017).

Sensor nodes collect data through WSN, Bluetooth, MQTT, etc., which enables the convergence
of the IPv6 network and low-power wireless (Luo & Sun 2015). Such systems can be used on
Linux running on Raspberry Pi (Newmarch 2016). To maintain IoT sensors, a RESTful WS can
be used to enable the management of devices (Sheng et al. 2015); the service can be scaled and
deployed on a cloud platform. The expected lifetime of low-powered IoT devices should be
taken into consideration (Morin et al. 2017). Another reference architecture example is AllJoyn
(Khakimov et al. 2017), which uses HTTP and MQTT protocols for communications through the
gateway.

Many practical architecture models have already been deployed on various sensor networks.
First, in EasyConnect (Lin et al. 2015), devices are attached to EasyConnect using a friendly
GUI that is compatible with most smart devices. Second, smart city multipurpose architecture is
based on the monitoring of environmental variables in urban areas (Gómez et al. 2017). Third,
SOXFire (Mongan et al. 2017) supports physical access to IoT devices. For this purpose, SLM
(Hefnawy, Bouras & Cherifi 2016) was suggested to analyse, plan, design, build and maintain
IoT-enabled smart city service systems that could use a date sharing strategy for IoT-data (Adda,
& Saad 2014).

IoT is increasingly receiving attention in the IT industry (Gutiérrez-Madroñal, Medina-Bulo &
Domínguez-Jiménez 2018). It appears that a practical solution to solve the issue of substantial
quantities of data is to use the concept of automation in all configuration sectors: development,

31

testing, data management, deployment, device integration, and connection. The configuration
appears to be data-driven (Kolios et al. 2016). Actions or events are generated and analysed
based on signals received from sensors through gateways (Yasaki, Ito & Nimura 2015) and are
handled by IoT applications. Hence, it is essential to address the issue of connectivity between
IoT applications and IoT sensors because the performance of IoT applications is dependent on
the effectiveness of its connectivity with IoT devices. The performance of IoT applications is
deduced by measuring their latencies using communication protocols such as MQTT, RSSI,
NFC, Wi-Fi, and mobile (Babovic 2016). The performance of IoT applications requires constant
improvements to handle the increasing amount of IoT data, which could reach 30 exabytes per
month by 2020 (Sen 2016). IoT data are stored either in traditional SQL tables or by using a
NoSQL database such as MongoDB (Alkhalil & Ramadan 2017, Rautmare & Bhalerao 2016).

2.3.4. IOT MONITORING AND IOT SECURITY

Given the continued growth of IoT networks, it is necessary to enhance the performance of IoT
applications using real-time monitoring, analysis, and detection of critical events in the COT
(Lee & Hughes 2010). It is challenging to keep a whole system of sensors operating effectively.
Therefore, it is proposed that cloud services should be treated as sensor-generating log events
during the application run time (Lee & Hughes 2010). The exchanged data with physical sensors
can be maintained using a GUI such as LabVIEW (Russell, Goubran & Kwamena 2015).
AnyControl (Wang et al. 2015) is used to monitor and control home-based devices by treating
sensor data as event-driven objects. The action of ADLs in a smart environment is monitored at
run time, which enables decision-making for generated events from sensors’ RFID data streams
(Kodeswaran et al. 2016; Mongan et al. 2017). Another model—TISH—has been proposed to
automatically monitor and manage RFID data streams (Wu et al. 2013). This model was built on
the flow of P2P objects between IoT devices.

A secure end-to-end architecture is required for all application–device connections based on the
communication of various platforms (Mathur et al. 2017; Olivier et al. 2015). End-to-end
security for smart IoT applications in a centralised WSN requires a useful system model that is
based on a two-phase authentication solution (Porambage et al. 2014). Thus, IoT security and
IoT connectivity between applications and devices are primary challenges that need to be
addressed when implementing IoT applications.

2.3.5. CLOUD COMPUTING AND IOT

Cloud computing is an innovative, internet-based service that provides an abstraction to
infrastructures. The cloud enables ubiquitous, on-demand access to shared resources (Cloud API,
configurations, and services). Cloud computing provides three service models (Jula,
Sundararajan & Othman 2014): PaaS, SaaS, and IaaS.

32

The adoption of cloud computing for industry and research has exponentially increased due to
cloud efficiency and advantages (Avram 2014), which includes: 1) immediate access to
virtualised infrastructure and software; 2) enabling organisations to efficiently scale their
services and applications on an available cloud platform; 3) lower costs because clouds provide
virtual infrastructure and services; and 4) higher-level abstraction for existing software
applications. Developers can benefit from abstract cloud computing advantages to deploy
software applications to virtual servers that enable auto-scaling.

Cloud benefits have five essential characteristics (Shahzad 2014): 1) resource pooling: cloud
provides centralised access to services; 2) rapid elasticity: a fast option for users to scale their
applications given the nature of the cloud as a software service; 3) measured service: resources
are automatically controlled, managed and monitored by cloud providers; 4) on-demand self-
service: clouds enable users to provide their environment and infrastructure; 5) broad network
access: the cloud is globally available to users, which makes it typically suitable for agile
software development.

The adoption of cloud computing is threatened by some challenges (John et al. 2015; Shahzad
2014): 1) security and privacy: the cloud’s ability to provide secure access for individual users is
often questioned at an enterprise level; 2) global access: the full potential of the cloud is yet to be
achieved by reaching global access; 3) reliability: on-demand 24/7 cloud availability has become
critical, and cloud providers are introducing futuristic plans to counter failures, outages, and
lock-in; 4) interoperability and portability: necessary and innovative standards are increasingly
required to standardise information sharing.

Cloud computing is a promising solution that helps to overcome several challenges faced by the
IoT paradigm, which is mainly characterised by heterogeneous physical devices with
technological constraints. Cloud computing requires that IoT applications be enhanced
concerning computational resources, scalability, and performance (Cavalcante et al. 2015). The
interplay and cooperation between fog (edges: support IoT devices) and the core (cloud) can be
characterised using three-tier COT architecture (Li et al. 2017) to establish integration between
code and devices (Botta et al. 2016; Zabasta et al. 2020). Which highlights the issue of
connectivity between IoT devices and IoT applications deployed to the cloud.

Several factors should be considered in the design and implementation of IoT applications. One
of the most challenging problems is the heterogeneity of different objects (devices). However,
this can be addressed by deploying a suitable ‘middleware’ that sits between devices and
applications and acts as a communication platform (Farahzadi et al. 2018). Notably, middleware
is designed based on different architectures, which can be classified as follows: distributed,
component-based, service-based, node-based, and centralised and client-server (Farahzadi et al.
2018). There are some existing IoT middlewares, including Hydra, GSN, Google Fit, Xively,
Calvin, and UPnP (Farahzadi et al. 2018; Ngu et al. 2016). The use of middleware presents a

33

variety of challenges that threaten the stability of IoT application interactions with IoT devices
(Ray, 2016). These issues include: 1) near-real-time prioritising (resource/service allocation
issues; 2) proper resource discovery implementation because there is no guarantee of the
continuity of services/resources on a COT heterogeneous network; 3) user security and privacy
enhancement; and 4) finding an optimal place for data analysis. There is also an issue of secure
integration of applications and devices. Integration is composed of several layers (Rautmare &
Bhalerao 2016): 1) sensing and smart devices; 2) gateway/connectivity nodes; and 3) remote
cloud-based processing. Another connectivity protocol is mobile, which invokes the services
from the multi-cloud using mobile connectivity configured on a Raspberry Pi (AlOtaibi, Lo'ai &
Jararweh 2016; Farahzadi et al. 2018).

2.3.6. MULTI-CLOUD, DEVOPS AND IOT

Multiple clouds or multi-cloud is the integration of multiple cloud computing services in a single
heterogeneous architecture. Organisations, developers, and researchers can benefit from open-
source cloud platforms because they encourage the use of the multi-cloud through broader user
access and availability to the same or different applications deployed to multi-cloud platforms
(Domaschka et al. 2015; Zhang at al. 2020). Multi-cloud systems aim to enable integration and
compatibility of various cloud services following high-level QoS for applications (Ferry et al.
2013; Willnecker & Krcmar 2018). However, such platforms are limited to managing single-
cloud applications and often do not promote switching to other clouds because an application’s
code is hardwired to its cloud API (Kritikos & Plexousakis 2015).

The major obstacle for adopting multi-cloud distributed deployment is vendor lock-in, which
prevents harmonious deployment and database integration for the software application
(Chondamrongkul & Temdee 2013; Kritikos & Plexousakis 2015; Yasrab & Gu 2016). Vendor
lock-in may occur in two cases: when a cloud from the multi-cloud cohort hosts the deployment
configuration and when a cloud from the multi-cloud cohort hosts the database.

Several studies and frameworks have introduced innovative ideas and architectures to achieve
heterogeneous architecture (Yang et al. 2016) for continuous deployment to the multi-cloud. For
instance, CYCLONE (Slawik et al. 2017) is a software stack that focuses on the areas of
application deployment, management, and security and user authentication on the multi-cloud.
Another model, CloudMF (Ferry et al. 2018), is an object-oriented domain-specific model
tailored for IoT applications. The deployment process to the multi-cloud can follow specific
migration patterns (Jamshidi et al. 2015) such as multi-cloud refactoring and multi-cloud
rebinding. The multi-cloud appears to support application deployment by offering required
technology components and services (Syed & Fernandez 2016). The dynamic Data-Driven Cloud
and Edge Systems (D3CES) approach enables real-time IoT data collection and provides
feedback that enables effective decision-making to deploy IoT applications to the cloud
(Jamshidi et al. 2015; Shekhar & Gokhale 2017). As the examples show, IoT can benefit from

34

cloud/multi-cloud services and techniques that enable portability and interoperability (Di
Martino & Esposito 2016; Iqbal et al. 2010). Moreover, DevOps concepts (automation, CI, real-
time monitoring) can support IoT application deployment (Ghantous & Gill, 2018) in a secure
environment (Nguyen et al. 2020; Rahman & Williams 2016).

2.3.7. DATA ANALYSIS SUMMARY

This section summarises the SLR data analysis conducted in this section by converging the ideas
and observations to tailor the set of requirements necessary for integrating DevOps, cloud/multi-
cloud, and IoT. The data analysis summary is mapped in Table 2.8, which highlights the
requirements and descriptions of the research contexts and their relationships.

Table 2.8: SLR Analysis Summary
Contexts Requirement Description
DevOps Understand what is DevOps Definitions of DevOps
DevOps Outline DevOps concepts categories DevOps concepts list
DevOps Outline DevOps practices Standard DevOps practices
DevOps Catalogue and categorise DevOps tools DevOps tools and their uses
Cloud Understand cloud architecture Cloud architecture standards
Cloud Outline and discuss cloud services Cloud services
Cloud–DevOps Understand cloud–DevOps relationship

and tools integration
Cloud–DevOps tools integration

Cloud–DevOps DevOps adoption on the cloud Integrating DevOps and cloud
IoT Understand IoT connectivity IoT network types
IoT Understanding IoT devices and data

collection
IoT-devices setup and configuration

IoT Apps Understand IoT apps connection with IoT
devices

IoT (app–device) interaction

Cloud–IoT Understand cloud support for IoT IoT apps deployment to the cloud
DevOps–Cloud–
IoT

Enable automation and CI on the cloud for
IoT

IoT apps automated deployment and
automated development

Multi-cloud Interconnect multiple clouds Broader user access, more services
Multi-cloud Avoid vendor lock-in When a cloud from the multi-cloud

set hosts the deployment
configuration

Multi-cloud–
DevOps–IoT

Enable IoT apps automated deployment
and fast delivery on multiple platforms

Multi-cloud provides services and
virtual infrastructure for IoT apps;
DevOps provides automation, CI and
real-time monitoring concepts for
IoT apps

Multi-cloud–
DevOps–IoT

Avoid vendor lock-in for IoT data
collective

When a cloud from the multi-cloud
set hosts the database

Multi-cloud–
DevOps–IoT

Understand deployment parameters and
IoT app connections with Raspberry Pi that
control the IoT sensors

Determine the connectivity protocol
suitable for IoT applications
deployed to the cloud/multi-cloud.

35

2.4. SLR RESULTS

This section of the SLR analyses the data in Section 2.3 to further describe DevOps, cloud
(single and multiple), and IoT relationships. Consequently, this section will address the research
sub-question RQ1 outlined in Table 1.2. Answering RQ1 is the first step towards achieving the
research objectives shown in Figure 1.6. The research aims are based on a set of ideas outlined in
Table 1.1. This section uses the SLR analysis results and outlines what is known about DevOps.
It then discusses and outlines the benefits and challenges of DevOps adoption for IoT application
deployment to the cloud (single and multiple). The research gap is then outlined. The
construction of the DRA framework is an attempt to produce an output that provides a solution to
the research gap and answers the research question.

2.4.1. WHAT IS KNOWN ABOUT DEVOPS?

This section discusses what is known about DevOps. DevOps concepts, practices, and tools are
rediscovered and refined based on the thorough analysis conducted in the previous section of this
SLR (see Section 2.3).

 DevOps Concepts

DevOps aims to improve collaboration and communication between traditionally separated Dev
and Ops (Ghantous & Gill 2017; Jabbari et al. 2016) teams through the automation of software
deployment and fast product delivery (De Bayser, Azevedo & Cerqueira 2015; Schaefer,
Reichenbach & Fey 2013; Wettinger, Breitenbücher & Leymann 2014). This research identified
a set of 10 key concepts using the well-known generic conceptual element classes (e.g., people,
event, activity, thing) that underpin the DevOps approach (see Table 2.9).

DevOps is perceived as a technology-centric venture. The results indicate that communication
and collaboration (11%), along with continuous delivery (9%) and continuous deployment
(10%), are essential concepts based on their frequency of appearance in the selected studies (see
Table 2.9). Notably, the SLR indicates that CI (15%) and automation (15%) are vital DevOps
concepts according to their frequency of appearance in the selected studies S[index].

DevOps teams are composed of Devs and Ops that need to effectively communicate and
collaborate to improve the delivery of software and hardware infrastructure (infrastructure as a
code) in production (Ghantous & Gill 2017; Rajkumar et al. 2016; Wettinger, Andrikopoulos &
Leymann 2015). Thus, task synchronisation is essential to deliver software that satisfies
stakeholders’ requirements (Bai et al. 2018; Diel, Marczak & Cruzes 2016; Qumer, Henderson-
Sellers & McBride 2007; Wahaballa et al. 2015). Therefore, continuous code management (5%)
and continuous planning (7%) are essential in the adoption of DevOps. It can be concluded that
all concepts require automation and CI of DevOps tools to establish a successful agile software
development environment using DevOps. Hence, automation and CI are among the most cited

36

concepts in Table 2.9. DevOps concepts are labelled C[index] and referenced in the first column in
Table 2.9. These concepts are based on information about gathered from the selected sources
(Sindex) located in the Bibliography. DevOps concepts are the building blocks to construct a
reference architecture based on the proposed DRA framework characteristics generic
terminologies. The DRA general terminologies (Berger, Häckel & Häfner 2019; Nickerson,
Varshney & Muntermann 2013) are not fixed to a particular instance and can be applied to any
development context adopting the DevOps approach.

Table 2.9: DevOps Concepts
Element DevOps Concepts Frequency Percentage Sources
People
C1

Communication and
collaboration

26 11% S31, S111, S117, S131, S1, S2, S3, S6,
S9, S10, S12, S14, S15, S19, S20, S22,
S23, S24, S26, S27, S43, S116, S125,
S107, S7

Event
C2

Continuous
deployment

23 10% S31, S111, S117, S131, S6, S9, S10, S14,
S15, S19, S20, S22, S23, S30, S43, S110,
S125, S127, S130, S107, S132, S8, S28

Event
C3

Continuous delivery 22 9% S31, S111, S117, S131, S6, S10, S14, S19,
S6, S20, S22, S23, S26, S27, S30, S43,
S110, S126, , S6127, S130 , S13

Thing
C4

Continuous
development

26 11% S31, S111, S117, S131, S6, S10, S14, S19,
S6, S20, S22, S23, S26, S27, S30, S43,
S110, S126, , S127, S130, S132, S13, S21

Thing
C5

Continuous planning 18 7% S31, S117, S131, S2, S6, S9, S10, S12,
S14, S19, S20, S23, S26, S27, S43, S116,
S130, S128

Activity
C6

Continuous
integration

35 15% S31, S111, S117, S131, S1, S2, S3, S6,
S9, S10, S12, S14, S15, S19, S20, S22,
S23, S24, S26, S27, S43, S116, S125,
S107, S132, S7, S4, S5, S8, S13, S21,
S25, S28, S11, S7

Thing
C7

Continuous code
management

13 5% S31, S117, S6, S9, S10, S19, S20, S22,
S23, S24, S27, S43, S116

Event
C8

Continuous quality
assurance and
review

19 8% S31, S117, S131, S2, S6, S9, S14, S15,
S19, S20, S22, S23, S26, S27, S43, S107,
S125, S130, S128

Activity
C9

Automation 35 15% S31, S111, S117, S131, S1, S2, S3, S6,
S9, S10, S12, S14, S15, S19, S20, S22,
S23, S24, S26, S27, S43, S116, S125,
S107, S128, S7, S4, S5, S8, S13, S21,
S25, S28, S11, S7

Event
C10

Real-time
monitoring

22 9% S1, S2, S3, S6, S9, S10, S12, S14, S15,
S19, S20, S22, S23, S24, S26, S27, S43,
S116, S125, S107, ,S128, S7

 Total Frequency
Connections

240 100% Sources N = 128 Studies

37

 DevOps Practices

This study identified a set of 20 DevOps practices (McCarthy et al. 2015; Soni 2015) that
support the DevOps concepts (see Table 2.9). Retro-QA represents an agile retrospective
improvement and quality assurance process (Rajkumar et al. 2016). Some practices focus on
Dev, and others focus on Ops. DevOps practices can be considered concrete guidelines that
implement DevOps concepts (Jabbari et al. 2016). The DevOps practices (PC [index]) referenced
in Table 2.10 are derived from the raw data synthesised from 128 selected studies for this SLR
and are analysed in Section 2.3.

Table 2.10: DevOps Practices
Practices Definitions

PC1 Create development sandboxes for minimum code build
PC2 Automate sandboxes deployment through the pipeline
PC3 Provide a continuous collaboration system in real-time using DevOps tools
PC4 Automate testing sandboxes to run in conjunction with development sandboxes
PC5 Perform Retro-QA tests on build sandboxes
PC6 Reduce the variance between development and production to a minimum
PC7 Use DevOps tools to automate deployment, build, testing, synchronisation of code
PC8 Developers must be able to access the IT operations incident reports and synchronize

with operations to improve project supportability
PC9 Testing reports (auto-generated by a DevOps tool, Sandbox test units, quality testing)

must be shared between Developers and Operations
PC10 Monitoring logs (generated by DevOps tools or Retro-QA monitoring logs) must be

shared between Development and Operations
PC11 DevOps team synchronises critical services such as transactions, performance, uptime,

deployment schedule, run-time costs, version control, and project scope
PC12 DevOps team uses central repository for build, deployment, testing, versioning,

synchronisation, CI and continuous deployment
PC13 Application release deployments must be fully automated across the pipeline
PC14 DevOps team must provide overall visibility into project scope and release timing to

DevOps team
PC15 DevOps team must provide self-service and resources management of platform (cloud,

hybrid, server) to DevOps team
PC16 DevOps team must be able to increase release frequency to satisfy business demand
PC17 DevOps team must have a clear insight into the SD project to ensure business reliability

and application performance on a cross-platform infrastructure environment
PC18 DevOps team must provide safe deployment parameters to avoid excessive workload on

the infrastructure
PC19 DevOps team must be able to update system iterations or sandboxes based on monitoring

reports and defect logs
PC20 DevOps team optimise SD project based on behaviour-driven development and Retro-

QA results of a process

38

Table 2.11 shows the DevOps practices categories and relationships to DevOps concepts. It is
essential to categorise the 20 DevOps practices and assemble them according to their relationship
to DevOps concepts (see Table 2.9). Therefore, it can be concluded that DevOps practices aim to
provide developers and operations with software development standards that enable the concepts
shown in Table 2.8. The practices defined in Table 2.10 are a set of well-known guidelines
collected from an SLR data analysis of the selected studies. It can be concluded that all practices
require automation and CI to enhance the developers’ experience. In the later stage of the SLR
results, the review indicates that automation and CI are supported by various DevOps tools. This
realisation indicates that the DevOps approach can effectively integrate with the cloud because
the cloud (single and multiple) provides a wide range of services and infrastructure as code at the
abstract level.

Table 2.11: DevOps Practices Categories
Practices Category DevOps Concepts

PC1 Development, build C4; C6; C7; C9
PC2 Deployment C2; C6; C7; C9
PC3 Communication/collaboration C1; C6; C9
PC4 Testing C4; C6; C9
PC5 Retro-QA, agile planning C4; C4; C6; C9
PC6 Manage, synchronise C6; C7; C9
PC7 Development, release, testing, build,

synchronise, deploy, automation
C2; C3; C4; C6; C7; C9

PC8 Manage, synchronise C6; C7; C9
PC9 Testing, Retro-QA, automation C1; C4; C5; C6; C8; C9
PC10 Monitoring, Retro-QA, automation C1; C4; C5; C6; C8; C9; C10
PC11 Release, manage, deploy, CI, automation,

synchronise
C1; C2; C3; C4; C5; C6; C7; C9

PC12 Release, manage, synchronise C1; C2; C3; C4; C6; C7; C9
PC13 Release, manage, automation C1; C2; C3; C4; C6; C7; C9
PC14 Manage, release, clear insight C1; C2; C3; C4; C6; C7; C9; C10
PC15 Manage, cloud services, resources management C1; C6; C7; C9
PC16 Release, automation C2; C3; C6; C7
PC17 Manage, clear insight, cloud platform C1; C6; C7; C9; C10
PC18 Deploy, synchronise C2; C3; C6; C7; C9
PC19 Development, testing, monitoring C2; C3; C4; C6; C7; C9; C10
PC20 Development, Retro-QA, testing C2; C3; C4; C6; C7; C9

 DevOps Tools

DevOps tools and practices are core to the DevOps architecture (Ghantous & Gill 2017;
Domaschka et al. 2015; Wettinger et al. 2016). DevOps tools are organised according to the tool
category and its connection to DevOps practices (see Table 2.10 and Table 2.11). The SLR
presents 12 categories of DevOps tools (see Table 2.12). Continuous integration, deployment,
IaaS/PaaS, and configuration, and provisioning are the most cited categories of tools based on

39

their appearance in the selected studies. These categories are vital for constructing a reference
architecture based on the proposed DevOps framework generic characteristics.

DevOps tools are mapped in Tables 2.12–2.22 according to their categories and relationship to
DevOps practices. As stated in the previous section, DevOps is technology-centric; in fact, it is
tools-centric. A software development pipeline can be configured from a set of tools (see Tables
2.12–2.22). The pipeline’s most crucial element is the automation of the development lifecycle
(code synchronisation, build, test, deploy, and deliver). The automation is achieved using a
robust CI of the tools involved in the pipeline. Hence, cloud and DevOps relationships are
intertwined because cloud services and platforms enable end-to-end automation and provisioning
of software applications (Singh et al. 2015; Soni 2015). Therefore, the effect of the DevOps
culture on cloud delivery is evident (Rajkumar et al. 2016) because it enables development and
deployment automation and supports the auto-scaling of applications (Cukier 2013).

Table 2.12: DevOps Tools Categories
Purpose Tool Categories DevOps Practices
Asset and change
management

Source control management PC6; PC7; PC8; PC11; PC12; PC18

Integration Continuous integration PC1 PC20
Deployment Continuous deployment/delivery PC2; PC7; PC11; PC12; PC13; PC16; PC18
Platform IaaS/PaaS PC15; PC17
Control Monitoring PC10; PC14; PC17; PC19
Platform Database management PC6; PC8; PC11; PC12; PC13; PC14; PC15;

PC17
Deployment Containerisation PC2; PC7; PC11; PC12; PC13; PC14; PC16;

PC18
Audit Logging/security PC10; PC14; PC15; PC17; PC19
Development Build PC1; PC7; PC19; PC20
Quality Testing PC4; PC5; PC7; PC9; PC10; PC19; PC20
Team Collaboration/communication PC3; PC5; PC6; PC8; PC11; PC12; PC14;

PC17

Table 2.13: Source Control Management
Source Control Management

Tools Features
Github
https://github.com

- Github is a web-based Git (private and public accounts) repository
- Github provides team collaboration
- Provide logs containing (Commit history, tracking labels, pull requests,

code review comments, email notifications, task lists)
Bitbucket
https://bitbucket.org

- Similar features to Github
- Offers both free public and private commercial accounts

https://github.com/
https://bitbucket.org/

40

Table 2.14: Continuous Integration
Continuous Integration

Tools Features
Codeship
https://codeship.com

- Use Docker abilities to automate development and deployment
- Enable developers to create their test units
- Provide team notifications with code changes and test results
- Deploy and run code in parallel simultaneously with tests
- Integrate many programming languages (Java, Ruby, Python, PHP, GO)
- Integrate many platforms (Heroku, AWS, GAE)

Travis CI
https://travis-ci.com

- Used to build, test, deploy code hosted on Github
- Notify team with test results through email, postings or any IRC channel
- Support various programming languages (Java, Python, Ruby, Node.js)
- Provide its command-line UI
- Enable parallel deployment and testing

Table 2.15: Continuous Deployment
Continuous Deployment

Tools Features
Codeship
https://codeship.com

- Enable multiple deployments sequentially or parallel
- Enable developers to run deployments commands on an authenticated

remote server using SSH; this feature allows developers to trigger
deployment/update on external systems for stakeholders

Travis CI
https://travis-ci.com

- Enable developers to setup continuous deployment schedule
- Enable developments to automate deployment schedule
- Integrated deployment with Github

Table 2.16: IaaS/PaaS
IaaS/PaaS

Tools Features
Heroku
https://www.heroku.com

- Heroku is a PaaS that support (Ruby, Java, Node.js, Python, PHP)
- Enables continuous automated deployment
- Provide logs (using Logplex) and maintain version control of code

AWS
https://aws.amazon.com

- AWS enables automated application deployment
- AWS enables automated monitoring and reporting
- AWS enables Database management
- AWS enables tools integration
- AWS enables auto-scaling

Google App Engine
https://cloud.google.com

- Cloud database
- Enable cloud and tools integration
- Synchronise, Google Accounts, OpenID, and OAuth
- Auto-scale Google Cloud Endpoints
- Enable automated deployment
- Enable real-time monitoring
- GAE offers pay-per-use and a free account for researchers and students
- GAE enables custom and multi-languages applications development
- GAE offers services via APIs

https://codeship.com/
https://travis-ci.com/
https://codeship.com/
https://travis-ci.com/
https://www.heroku.com/

41

Table 2.17: Monitoring
Monitoring

Tools Features
Nagios
https://www.nagios.org

- Nagios is an open-source application that monitors systems
- Nagios also provides remote monitoring through its Remote Plugin

Executor, which supports SSH and SSL encrypted tunnels
- Nagios enables developers to build reporting units using programming

languages (Shell Scripts, C++, Perl, Ruby, Python, C#, etc.)
- Provide automated logs

New Relic
https://newrelic.com

- New Relic provides insight into an SD application at runtime
- New Relic delivers unique monitoring log metrics of cloud application

development and its deployment from UI to the backend
- New Relic provides continuous automated reporting on health, status,

runtime, build, deployment, and performance or a cloud application

Table 2.18: Database Management
Database Management

Tools Features
MongoDB
https://www.mongodb.com

- MongoDB is a free, open-source, cross-platform, document-oriented
database program

- Classified as NoSQL database application, MongoDB avoids a
traditional table-based relational database in favour of JSON-like
documents with the dynamic schema

- MongoDB provides developers with ad hoc queries, aggregation using
MapReduce and Server-side JS

Table 2.19: Logging/Security
Logging/Security

Tools Features
Loggly
https://www.loggly.com

- Loggly summarises the software application log and provides real-time
analysis for software processes

- Loggly increases delivery speed and provides a guided-data log to
DevOps team based on application troubleshooting results

- Loggly manages logs from any source or application test units

Papertrail
https://papertrailapp.com/

- Cloud-based log monitoring system
- Integrates with Heroku metrics logs
- Integrates with Slack collaborative tool

Table 2.20: Build
Build

Tools Features
Codeship
https://codeship.com

- Codeship provides build capability for DevOps team
- Codeship provide custom build configuration for many programming

languages
Travis CI
https://travis-ci.com

- Travis CI provides a robust build environment that can be setup in
.travis.yml

https://www.nagios.org/
https://newrelic.com/
https://www.loggly.com/
https://papertrailapp.com/
https://codeship.com/
https://travis-ci.com/

42

Table 2.21: Testing
Testing

Tools Features
Cucumber
https://cucumber.io

- Cucumber runs automated acceptance tests written in a behaviour-
driven development

- Cucumber merges SD specifications and tests documentation into one
cohesive log

- Cucumber uses Gherkin, a language that defines Cucumber test cases,
which is designed to be human-readable non-technical

Junit
http://junit.org/junit4

- Junit builds test functions from normal functions by providing @Test
annotation to the method header

- Automated test units are composed of a collection of annotated Java
methods that handle particular exceptions or provide run-time reports

Table 2.22: Communication and Collaboration
Communication and Collaboration

Tools Features
Trello
https://trello.com/

- Trello is a web-based collaboration tool that improves DevOps team
project management and project tracking by offering a shared
dashboard for automated custom task cards.

Slack
https://www.Slack.com

- Slack is a web-based service for internal private chat and messaging
- Slack supports group chats, and support video
- Slack relays messages through SMS services
- Slack integrates the team progress from different repositories such as

BitBucket and Github.

2.4.2. BENEFITS AND CHALLENGES OF DEVOPS ADOPTION FOR CLOUD IOT APPS

As discussed, DevOps is culture-driven and technology-driven. It has been suggested that the
DevOps culture is a central characteristic in adopting the DevOps approach using a defined set of
practices (see Table 2.10) (Ghantous & Gill 2017). The DevOps development pipeline can be
constructed using a cloud-centric set of tools (see Tables 2.12–2.22). However, the adoption of
DevOps for software applications (in particular, IoT) may also pose challenges for developers,
especially when deploying an IoT-type application in a cloud-configured development pipeline.
The SLR identified a set of 20 DevOps benefits and seven challenges (see Table 2.23 and Table
2.24). This review of selected studies indicates that the adoption of DevOps offers several
benefits (72%). However, some challenges (28%) need to be considered when adopting the
DevOps approach to deploy IoT applications to the cloud/multi-cloud.

https://cucumber.io/
http://junit.org/junit4
https://trello.com/
https://www.hipchat.com/

43

Table 2.23: Benefits of DevOps Adoption
Benefits Sources
Central code management S6, S9, S19, S20, S22, S23, S31, S43 ,S107
Increase jobs processing using automated
deployment

S6, S9, S19, S20, S22, S23, S31, S43, S12 , S14 , S30,
S110, S107, S130

Enable automated build S1, S3, S6, S9, S10, S12, S14, S19, S20, S22, S23, S31,
S43 ,S30, S110, S107, S130

Enable automated unit (function) testing S6, S9, S10, S19, S20, S22, S23, S43 , S107
Provide automated behaviour-driven testing S6, S9, S10, S19, S20, S22, S23, S43, S107
Provide automated Integration for pipeline tools S1, S3, S6, S9, S19, S20, S22, S23, S31, S43, S12 , S14 ,

S30, S110, S107, S130
Provide real-time automated monitoring and log
collection from application deployment

S1, S3, S6, S9, S19, S20, S22, S23, S31, S43, S12 , S14 ,
S30, S110, S107, S130

Provide real-time communication for the DevOps
team

S6, S9, S10, S12, S19, S20, S22, S23, S27, S43, S107,
S116, S132

Provide cloud database management S1, S6, S27, S43, S25, S11, S107
Provide rollback of code and continuous planning S3, S6, S9, S12, S19, S20, S43, S116, S107
Continuous development of new ideas based on
continuous planning

S3, S6, S9, S12, S19, S20, S43, S116, S107

Rapid delivery using cycle build–test–deploy in a
fully automated environment

S6, S9, S19, S20, S22, S23, S31, S43, S12 , S14 , S30,
S110, S107, S130

High scalability of resources: no downtime S15, S43, S107, S25, S13, S21
Provide real-time visibility of the pipeline S6, S9, S12, S19, S20, S22, S23, S27, S43, S107, S125,

S25, S13, S21
Provide support for IoT applications automated
nature

S7, S11, S107, S103, S93, S112, S102

Secure pipeline using API-key exchange, Oath, two-
way authentication

S43, S107, S17, S105, S17, S51, S59, S76, S67

Use cloud capabilities to provide IoT apps with
necessary support using SaaS, PaaS and IaaS

S7, S11, S107, S103, S93, S112, S102, S58, S62, S70, S85,
S86, S91, S102, S103

Use of middleware software or cloud services to
connect to IoT applications and devices

S91, S92, S93, S107, S11, S7

Use MQTT, RDF, RFID, WSN, WAN, mobile,
Bluetooth and internet to connect to IoT devices and
sensors

S32, S34, S38, S38, S53, S57, S66, S73, S78, S79, S72

Exchange IoT data that can be stored and managed
in the cloud using DevOps tools

S7, S11, S107, S84, S83, S84, S33, S49, S55, S81

72%

44

Table 2.24: Challenges of DevOps Adoption
Challenges Sources
Reliance on various tools: proposed automated
pipeline relies mainly on the integration of many
tools, which increases the risk of failure and
incompatibility

S10, S20, S22, S23, S43, S116, S8, S4, S21, S107

DevOps team culture clashes: different languages,
geographical difference, time difference

S10, S20, S22, S23, S43, S116, S107, S117, S131

IoT applications: IoT-applications interactions with
sensors and devices generate a large amount of data,
which could prove challenging to store and process.
The IoT-applications require a deployment platform
that enables scalability, interoperability, and
resources sharing.

S107, S36, S37, S69, S71, S11, S90, S7, S102, S85, S55,
S80, S33, S49, S81

Data mining: due to a large amount of transmitted
data by IoT devices, organisations need to rely more
on data mining tools for processing and discovery,
which could prove challenging to integrate

S107, S36, S37, S69, S71, S11, S90, S7, S102, S85, S49,
S81, S72, S62, S46, S47, S45

Privacy: protecting user privacy could prove
difficult due to the amount of IoT data exchanged,
which may include user information

S36, S107, S37, S39, S7, S11, S69, S105, S17, S18, S51,
S59

Security: security threats escalate with more IoT
devices and sensors connected to the network,
which exposes organisations and users to potential
attacks from hackers and cybercriminals

S36, S107, S37, S39, S7, S11, S69, S105, S17, S18, S51,
S59, S76, S37, S32

Chaos: evaluation of IoT could lead to untested or
incompatible devices and sensors to be added to the
network without testing which could create chaos
and performance inconsistency

S32, S34, S35, S36, S37, S47, S53, S54, S56, S60, S61,
S63, S64, S65, S66, S69, S72, S75, S78, S107

28%

Table 2.24 shows several challenges that could face organisations adopting DevOps for software
projects. The challenges in Table 2.24 are the results of the SLR survey conducted to answer the
first research question RQ1. The SLR results section contains the collective knowledge about
DevOps paradigm (concepts, practices, tools). SLR results provide rigour data about DevOps
that can be used to develop a reference architecture that enables the adoption of DevOps. With
the research scope in mind (see Section 1.5), this thesis focuses on providing a template solution
for the first three challenges listed in Table 2.24. The challenges in Table 2.24 highlight the
constituents of the research gaps. The research gaps explained in section 2.4.3 indicate the need
for a reference architecture to address the challenges identified in this section and to accomplish
the thesis aims and scope.

45

2.4.3. RESEARCH GAP

The SLR analysis and review (see Section 2.3, Table 2.24) has identified gaps related to the
DevOps adoption, IoT-applications deployments and interactions, and deployment platforms. An
investigation into the context of DevOps, the cloud/multi-cloud and IoT indicates that DevOps
adoption for IoT application deployment to the cloud/multi-cloud lacks contextual guidelines.
The SLR results (see Sections 2.3.4, 2.3.5 and 2.3.6) indicate that model-driven reference
architecture based on the DevOps approach may be a possible solution for IoT application
deployment to the cloud/multi-cloud. The research gaps in this thesis are derived from the
research problem (see Section 1.2), research aims (see Section 1.4), and research question (see
Section 1.3) and SLR data analysis see Section 2.3. The proposed DRA framework aims to
address the research gaps (see Table 2.25) by providing a comprehensive reference architecture
that enables IoT-applications deployment to multi-cloud using DevOps approach and addresses
the research challenges presented by DevOps and IoT. The research gaps are presented in Table
2.25 and linked to the corresponding DevOps and IoT challenges:

Table 2. 25: Research Gaps

DevOps Adoption
Challenges

(Thesis Scope)
Research Gaps Research Question

Reliance on various
tools: proposed
automated pipeline relies
mainly on the
integration of many
tools, which increases
the risk of failure and
incompatibility

The vast number of available
DevOps tools that could be used
to create a DevOps pipeline for
the reference architecture could
face integration and
compatibility challenges.

- RQ1 must address the matter by
recommending a set of DevOps and
cloud tools.

- RQ2 must provide a template
solution for the DevOps applying
using the proposed DRA reference
architecture.

DevOps team culture
clashes: different
languages, geographical
difference, time
difference

There are many types of research
about DevOps paradigm. Hence,
it is crucial to understand the
DevOps concepts and outline the
DevOps practices and tools
before embarking on adopting
the DevOps approach.

- RQ1 must address the DevOps
paradigm and provide a detailed
listing of the DevOps concepts,
practices and tools.

- RQ1 must also highlight the
importance of integrating DevOps
and multi-cloud to support IoT-
application deployment to multi-
cloud.

IoT applications: IoT
applications interactions
with sensors and devices
generate a large amount
of data, which could
prove challenging to

- Deploy IoT applications
to the cloud/multi-cloud

- Manage connectivity
between the IoT
application and IoT

- RQ2 main aim is to address the
challenges of deploying IoT-
applications to multi-cloud using
DevOps.

- RQ2 must address the

46

DevOps Adoption
Challenges

(Thesis Scope)
Research Gaps Research Question

store and process.

The IoT-applications
require a deployment
platform that enables
scalability,
interoperability, and
resources sharing.

sensors configured on a
Raspberry Pi; in this step,
it is necessary to choose a
suitable connection
protocol for the
organisation context.

- Avoid vendor lock-in for
IoT application
deployment to the multi-
cloud.

- Avoid database vendor
lock-in for IoT application
deployment to the multi-
cloud

connectivity challenges of
between multi-could IoT-
applications and devices.

- RQ2 must provide an answer to
the vendor lock-in challenge
encountered when deploying
software applications to multi-
cloud. The vendor lock-in is
caused when any of the clouds in
the heterogeneous system hosts
the deployment configurations of
the application.

- RQ2 must provide an answer to
the vendor lock-in challenge
cause when any of the clouds in
the heterogeneous system hosts
the IoT-database.

The research gap (see Table 2.25) can be summarised as follows:
 Deploy IoT applications to the cloud/multi-cloud
 Manage connectivity between the IoT-applications and IoT-sensors
 Avoid vendor lock-in for IoT application deployment to the multi-cloud
 Avoid database vendor lock-in for IoT application deployment to the multi-cloud
 Improve the agile adaptive implementation using DevOps (see Figure 2.5).

The proposed DRA framework may fill the research gaps. In particular, the DRA framework
may provide a practical solution to the iterative approach used in the Gill Framework Adaptive
Enterprise Project Management (APEM) (Alzoubi, Gill & Al-Ani 2015) for software
implementation which may improve agile adoption for software development (Qumer,
Henderson-Sellers & McBride 2007).

The proposed DRA framework may provide applicable solutions to the highlighted agile
adaptive iteration implementation (see Figure 2.5) because it is founded on general
characteristics based on DevOps concepts—most importantly, automation, CI, continuous
deployment and real-time monitoring.

47

Figure 2.5: DRA for AEPM (adapted from the Gill Framework®)

2.5. SUMMARY

This chapter presented an SLR based on guidelines published by Kitchenham and Charters
(2007). The SLR generated raw data from a list of selected studies (Sindex). These data were
reviewed and analysed to investigate the relationship between the contexts of DevOps, the
cloud/multi-cloud and IoT. The SLR analysis produced notable results regarding DevOps
concepts, practices and tools. The results also identified the benefits, challenges and research
gaps based on the analysis in Section 2.3. The purpose of the SLR is to determine what is known
about DevOps (see Section 2.4.1). The SLR analysis in Section 2.3 presented rigorous data that
indicates that the DevOps approach might be linked to the cloud/multi-cloud and IoT. The results
of the SLR addressed the first research question (RQ1) and provided richness and rigour to the
information about DevOps (concepts, practices, tools and DevOps adoption benefits and
challenges to the cloud and IoT). The second research question (RQ2) is addressed in Chapters
3–5. The answer to RQ1 and RQ2 may provide a practical solution to the research gaps (see
Table 2.25). This chapter has laid the foundation for the DSR method adopted from Gregor and
Hevner (2013) and Peffers et al. (2007) in Chapter 3, which uses the DSR method to develop and
evaluate the proposed DRA framework.

48

Chapter 3: Design Science Research Method

A research methodology explains how a researcher should proceed in the development and
evaluation of an artefact. The selection of a research methodology and its research instruments
depends mostly on the landscape of the research problem and its underlying objectives specified
in the research aim in Chapter 1. The selection of a research methodology also depends on the
availability of resources and data from the SLR conducted in Chapter 2. Many research methods
could have been used to perform this research. However, the nature of the research question and
its underlying objectives required a practical iterative approach to achieve the research aims
specified in Chapter 1. Thus, a DSR method based on guidelines published by Gregor and
Hevner (2013) and Peffers et al. (2007) was selected to develop and evaluate the proposed DRA
framework. The DSR method is the most suitable approach to investigate and iteratively produce
the DRA framework. This chapter discusses the potential research methodological choices for
this research. It presents the iterative approach used in the DSR to identify the research problem,
analyse the SLR data, design, develop and evaluate the proposed DRA and outline the thesis
output.

3.1. RESEARCH DESIGN

The research objectives and motivation for the development of the proposed DRA framework
were discussed in Chapters 1 and 2. This chapter outlines the methodology adopted in this thesis.
The research methodology explains how a researcher should go about finding a suitable
approach to develop and evaluate an artefact (Guba & Lincoln 1994). The selection of a research
method depends on several factors, including the nature of the research problem and its
underlying objectives, the availability of resources and data, and the research traditions that are
local to that institute or organisation (Benbasat et al. 1987). The nature of agile, iterative
development indicates that an iterative DSR method may be suitable for this project. An iterative
DSR may be helpful to focus on the description of the study. The fundamentals of DSR include
rigorous data gathering and analysis, the design and development of a general artefact and the
evaluation of that artefact. The DSR method has been similarly used in previous research and
studies concerning the configuration information system architecture (Gill & Chew 2019), IoT-
enabled digital information systems (Dasgupta et al. 2019), the areas of cloud computing and big
data (Litchfield & Althouse 2014), and the areas of adaptive enterprise management using action
design research case study (Gill et al. 2016).

Consequently, it is beneficial for this project to select a research method that enables an iterative
problem-solving approach. Thus, the DSR iterative method is selected in this thesis. The DSR
adopted in this thesis is founded on guidelines published by Gregor and Hevner (2013) and
Peffers et al. (2007). The DSR overview is composed of several steps, which are mapped in
Table 3.1 and illustrated in Figure 3.1.

49

Table 3.1: DSR Steps
Step Description
Purpose and
scope

The purpose of the DSR is to establish a transparent systematic approach that could
be used to create the DRA artefact. The DSR systematic process uses a well-known
method founded on guidelines published by Gregor and Hevner (2013) and
Peffers et al. (2007). The DSR approach is explained as follows:
The DSR method identifies the research problem using the rigorous from the
initial research (see Chapter 1, research background and related work and see
Chapter 2, SLR results).
The DSR scope is to achieve the research goals and create the DRA artefact
that satisfies the thesis scope (see Chapter 1, Table 1.3) and research aims
(see Chapter1, Figure 1.7).
The DSR method includes an evaluation method to determine that DRA is fit
for its purpose (address the research gaps explained in Table 2.25).

Knowledge of
initial research

The DSR uses initial research from the SLR analysis and results to identify what is
known about the research topics and to determine the research gaps that highlight the
research problem. The initial research also includes recent publications that
addressed RQ1 and RQ2 (e.g., Ghantous and Gill 2017, 2018, 2019).

Abstraction and
generalisation

The DSR aims to produce or generate a comprehensive reference architecture that
uses characteristics based on common terminologies. The reference architecture is
explained in chapter 1, section 1.4; can be used to the DRA design models in any
context to address the research gaps (see Table 2.25). The general characteristics in
the reference architecture are based on DevOps concepts and cloud terminologies in
the SLR Results in chapter 2.

Design and
development of
artefacts

The DSR aims to create a comprehensive architectural design artefact that enables
DevOps adoption and address the challenges and research gaps explained in Table
2.24 and 2.25. The DSR design and development produce a new DRA framework
composed of general characteristics, a general abstract design, and reusable
framework composition. The DRA can be instantiated into a composition set suitable
for the context of an organisation or institute. The DRA is not fixed to a particular
instance. Instead, the proposed DRA can be applied to numerous instances
depending on the development environment context. The DRA framework provides
new knowledge about the adoption of the DevOps approach for software application
(e.g. IoT-application) deployment to multi-cloud.

Evaluation The DSR includes an evaluation method (Empirical Evaluation) to evaluate the
proposed new DRA framework (see Chapter 5) and determine if the framework is fit
for its purpose (e.g. answering the research question (see Section 1.3) and achieving
the aims of the thesis (see Section 1.4) with the scope of the research (see Section
1.5). The evaluation of the DRA (see Chapter 5) aim to establish if the DRA
framework addresses the research gaps explained in Table 2.25.

Justificatory
knowledge and
output

The DRA’s usefulness and applicability are determined in Chapter 5 using
instruments that apply indicative measurement techniques using the evaluation data.
The DSR output outlines the project outputs and discusses the proposed DRA
limitations and possible future research ideas.

50

Figure 3.1: DSR Overview

3.2. DSR: METHODOLOGY

This research adopts a well-known DSR methodology (Gregor & Hevner 2013; Peffers et al.
2007), which is a system of principles, practices and procedures applied to a specific branch of
knowledge to produce and present high-quality research artefacts. The DSR aims to provide
verifiable contributions through the design, development and evaluation of an artefact. The
artefact development may involve the review of existing theories and knowledge to develop a
solution or artefact for the intended purpose and audiences. The DSR is composed of three
primary process stages (see Figure 3.2):

 Stage 1—DSR main flows. There are two flows of this stage:
o Initial research and SLR Results: Research background and related work analysis,

SLR analysis and results.
o DRA Framework: The DRA framework construction (create the DRA framework

architectural model).
 Stage 2—DSR process steps. The DSR process in this thesis is composed of six steps:

o Problem identification: In Chapter 1, the research background and related work
analysis helped identify the research problem, research question and its underlying
objectives. This initial research laid the foundation of the project scope and helped in
recognising the research aims.

o Analysis: The SLR conducted in Chapter 2 provided rich information about DevOps
and its relationship with the cloud/multi-cloud and IoT. The SLR results identifying
the challenges presented by the adoption of DevOps for software application
deployment (e.g. IoT-applications) to multi-cloud. The challenges identified in chapter
2, Table 2.24 identified the problems facing the project scope and aims and
consequently highlighted the research gaps (see Chapter 2, Table 2.25).

51

o Design: This step aims to create a comprehensive architectural design model for the
proposed DRA framework. The reference architecture model is founded on general
characteristics terminologies derived from the DevOps concepts, cloud infrastructure
and services. The DRA design model that aims to address the research gaps (see
Chapter 2, Table 2.25) within the boundaries of the research scope (see Chapter 1,
Section 1.5).

o Development: Develop the DRA framework components based on the architectural
design model. The new comprehensive DRA framework aims to address the research
gaps (see Chapter 2, Table 2.25). The new comprehensive DRA reference architecture
is not fixed to a particular situation or environment but can be applied to numerous
instances in any context.

o Evaluation: Evaluate the comprehensive DRA framework and determine if the new
DRA reference architecture is fit for its purpose (address the research gaps within the
project scope boundaries). The evaluation step adopts an empirical evaluation method
(see Chapter 3) composed of 4 case studies (Industry case study, research case study,
teaching case study, and industry field survey).

o Output: The research journey and output, the project’s key contributions and
publications, the project’s limitations, and future research.

 Stage 3—DSR outcomes. The DSR method outcomes in this thesis is composed of six
outputs:
A. Research question and research aim (see Chapter 1).
B. Objective solutions and research gaps (see Chapter 2).
C. Design artefact (see Chapter 4).
D. Development artefact (see Chapter 4).
E. Empirical evaluation (see Chapter 5).
F. Thesis results (see Chapter 6).

52

Figure 3.2: DSR Process

3.2.1. PROBLEM IDENTIFICATION

As presented in Section 1.3, the main research question is: ‘How can IoT applications be
deployed to the multi-cloud using the DevOps approach?’

The first stage of the DSR is about the background studies, related work analysis (see Chapter 1)
and the SLR conducted in Chapter 2. The analysis conducted in Chapter 1 helped identify the
research problem. The research question (and its underlying objectives) was defined based on the
problems at hand explained in the research gaps (see Chapter 2, Table 2.25). The research gaps
discussed in chapter 2 identify the challenges presented by the adoption of DevOps for software
application (e.g. IoT-applications) deployment to multi-cloud. The research question was
subdivided into RQ1 and RQ2:

 RQ1: What is known about DevOps?
 RQ2: How can IoT applications be deployed to the cloud (single and heterogeneous)

using the DevOps approach?

53

Figure 3.3: Problem Identification

3.2.2. ANALYSIS

The analysis step of the DSR method reviews and synthesises the information and resources
available about cloud/multi-cloud, DevOps and IoT (see Figure 3.4). The SLR conducted in
Chapter 2 provided rich information about DevOps and its relationship with the research topics
(cloud/multi-cloud and IoT). The SLR results also highlighted vital research gaps (see Chapter 2,
Table 2.25). The research gaps presented the challenges for research aim (see Chapter 1, Section
1.5) concerning the adoption of the DevOps approach for application deployment to multi-cloud.
The suggested solutions below align with the research aims (see Chapter 1, Section 1.4) and aim
to present practical solutions to the research gaps (see Chapter 2, Table 2.25):

 Define DRA set characteristics: DRA characteristics are common terminologies used to
provide a foundation to create a general architectural design. The characteristics are
based on DevOps concepts and use the cloud/multi-cloud infrastructure as a platform.

 Create a DRA architectural design: The DRA architectural design is a general design
model that is not fixed to a particular instance but can be applied to numerous instances.

 Define DRA composition: The DRA composition is founded on DRA characteristics and
development using the DRA design model as a blueprint. The DRA composition can be
instantiated to fit the context of the development environment.

 Use a CI broker to host IoT applications provisioning and deployment configurations to
avoid vendor lock-in.

 Use a central database to store IoT data and avoid vendor lock-in.

Figure 3.4: Analysis

54

3.2.3. DESIGN

This step focuses on developing contextual, conceptual, logical, physical and operational models
of DRA for deploying IoT applications to the cloud (single and multiple). The proposed DRA
architecture model is based on DRA general characteristics. The DRA architectural design is a
general model that is not fixed to a particular instance but can be applied to any development
context. The DRA architectural design includes a CI broker instrument that hosts application
deployment configurations to avoid vendor lock-in. DRA architecture includes a central database
to host the IoT application database and avoid vendor lock-in. The below DRA architectural
models are illustrated in Figure 3.5:

 DRA contextual model: Describes the relationship between the research topics.
 DRA conceptual model: Represents conceptual architecture based on the DRA general

characteristics, DevOps concepts and cloud/multi-cloud (infrastructure, services).
 DRA logical model: Represents the logical architecture based on DevOps practices and

cloud services.
 DRA physical model: Describes the physical representation of the logical model and

explains the structural deployment flow based on the logical model components.
 DRA operational model: Represents the deployment chain of the software application

(IoT application). DRA pipeline instances follow the operational model flow of
operations.

The DRA reference architecture design model is a template solution that can be used to address
the research gaps (see Chapter 2, Table 2.25). The DRA reference architecture is not fixed to a
particular situation. The objective is to design a reference architecture that could be instantiated
for any development context. The DRA reference architecture model provides a practical method
to how to adopt DevOps for software development and how to enable automated software
applications (e.g. IoT-applications) deployment to multi-cloud. The comprehensive DRA
reference architecture is an applicable answer to the research question (RQ2) of this thesis.

Figure 3.5: Design

55

3.2.4. DEVELOPMENT

The proposed DRA framework components are developed in this section. The DRA is founded
on three main components:

 Resources: This component includes DRA architecture design, software and hardware.
 Configuration: This component presents the development of the IoT application, the

configuration of the DRA pipeline instance and setup of the IoT network.
 Output: This step presents the DRA operational model instances DRAv1.0 and DRAv2.0.

The DRA framework is a new comprehensive artefact development in this step of the DSR
method to provide practical solutions to the research gaps (see Chapter 2, Table 2.25) and
address the research problem highlighted in the research questions (RQ1 and RQ2). DRAv1.0
(single-cloud) and DRAv2.0 (multi-cloud) are applicable instances of the DRA framework that
explains precisely how to adopt DevOps for software applications (e.g. IoT-applications
deployment to (cloud/multi-cloud).

Figure 3.6: Development

3.2.5. EVALUATION

The proposed DRA framework is evaluated using an empirical evaluation (see Figure 3.7). The
evaluation process is composed of four iterations:

 industry case study
 research case study
 teaching case study
 industry field survey.

Figure 3.7: Evaluation

56

3.2.5.1. Case Studies Design

The case study methodology is commonly used to evaluate software engineering research
phenomena (Runeson & Höst 2009). A case study is virtually any contemporary phenomenon in
a real-world context (Aberdeen 2013 & Yin 2009). In software engineering, a phenomenon may
involve development, operation, maintenance and related artefacts (Jedlitschka & Pfahl 2005).
Case study research methodology is an empirical research method that can be used to test, generate
or describe a theory or phenomenon (Runeson & Höst 2009) to determine whether the context of
the phenomenon can be replicated or reused in real-world settings. The possible outcomes and
contributions of case studies can be frameworks or theory (conceptual). Hence, the case study
methodology is suitable for evaluating the DRA research project.

Klein and Myers (1999) defined three types of case study—positivist, critical and interpretive—
depending on the research perspective:

 A positivist case study searches evidence for formal propositions, measures variables,
tests hypotheses and draws inferences from a sample of a stated population. Software
engineering case studies tend to lean towards a positivist perspective, especially for
analytical and conceptual-type research (Runeson & Höst 2009).

 A critical case study aims at social critique by identifying different forms of social,
cultural and political aspects that may hinder human ability.

 An interpretive case study attempts to understand a phenomenon from the participants’
interpretation of their context.

Case studies may include qualitative and quantitative data. Conveniently, qualitative data
collected from organisations are required to evaluate the DRA framework. The method used to
evaluate the DRA artefact may be replicated to comply with the organisation context. The case
study evaluation method is composed of five main steps (Runeson & Höst 2009):
1. Case study plan: Plan the case study and identify the objectives:

 Identify the case study organisation: State the organisation and participants. Ethical
considerations have been given to organisations and participants to provide anonymity.
Organisations and participants have been identified with codenames. Ethical
considerations must be prepared following formal ethics approval obtained from the
researcher’s organisation. Key ethical factors may include informed consent,
confidentiality and handling of sensitive results.

 Organisation context: Describe the organisation’s environment and aims.
 Organisation need and problem: Identify the problems and needs of the organisation.
 Solutions: Outline the possible solutions provided by the DRA framework.
 POC and testing: Outline the testing materials used in the organisation context to evaluate

the DRA.
2. Preparation for data collection: Define the data collection method used in the case study.

In this research, a case study template was used as a collection procedure in the case studies

57

(industry and research lab). The case study template is a formal template-based approach that
includes structured pre-planned questions about the evaluated components of the DRA. See
Appendix G for further information.

3. Collecting data: The case study data were collected using the case study template. The data
are stored on CloudStor (UTS-recommended cloud storage). See Appendix E for further
details. The participants in the case studies provided qualitative feedback about the DRA.

4. Data analysis: The qualitative data collected using the case study template were analysed
using the hypothesis confirmation general technique of analysis (Runeson & Höst 2009). The
hypotheses are the evaluation criteria (Carvalho 2012) (see Table 3.2). Participants’ feedback
was cross-examined against the evaluation criteria by highlighting the occurrences of the
criteria in the text. The data was organised in tables, and cross-examined to determine its
association with the evaluation criteria (see Table 3.2). The industry case study data and the
research case study data were analysed and organised into analysis tables.

5. Reporting: The report communicates the findings of the case studies. The case study
template used the linear-analytic approach (Runeson & Höst 2009), which is suitable for
academic purposes because of its structured method of reporting experiments. The industry
case study report was organised into tables, which included the testing steps of the case study
and the description of each step. The report tables of the case studies followed a similar
pattern to the case study design (Runeson & Höst 2009), with more emphasis on each step to
highlight its interest for the audience. The report provides evidence of DRA’s applicability in
the context of the organisations of the case studies using the evaluation criteria (see Table
3.2). Thus, the hypotheses were correct in the setting of the DRA.

Table 3. 2: Case Study Evaluation Criteria
Criteria Description

Generalisations
DRA is general in the sense that it is not fixed to one situation or environment.
DRA can adapt to different situations and be used with different technology stacks.
DRA is instantiable and applicable to a class of problem situations.

Usefulness
DRA is useful for DevOps adoption in any context
DRA is useful for application (e.g. IoT applications) deployment to multi-cloud
DRA reference architecture is a useful template solution for the research gaps

Novelty
DRA offers new knowledge based on DevOps practices.
DRA offers CI broker to host multi-cloud deployment configuration
DRA avoids vendor lock-in using the CI-Broker mechanism

Coverage
DRA provides sufficient explanation about DevOps adoption
DRA provides setup and configuration guidelines for DRA instance pipelines
DRA provides setup and configuration for IoT-devices (hardware)

Reusable
DRA can be replicated and reconfigured using a different combination of DevOps tools
DRA design can be reused to create instances for a class of problem situations.
DRA is reusable for different application-types (IoT, Web, etc.)

58

3.2.5.2. Survey Design

The surveys conducted in this research use the ratings described in Table 3.3. The ratings
transform the participants’ qualitative responses to the survey questions into numerical data
(quantitative ratings). The following rating table was used in the industry field survey and the
teaching case study surveys.

Table 3. 3: Survey Ratings
Qualitative Ratings Quantitative Ratings

Strongly agree 5
Agree 4

Average 3
Disagree 2

Strongly disagree 1

The qualitative ratings were transformed into numerical data to help with the quantitative
analysis of the surveys. The qualitative ratings in Table 3.3 are explained as follows:

 Strongly agree: The participants strongly agreed with the statement.
 Agree: The participants agreed with the statement.
 Average: The participants somewhat agreed with the statement.
 Disagree: The participants disagreed with the statement.
 Strongly disagree: The participants strongly disagreed with the statement.

The surveys followed a commonly used structure (Hyndman 2008):
 Planning a survey: Outline the survey objectives (purpose, need, knowledge

requirements).
 Design the sampling procedure: Identity the target participants (ethical considerations

are required).
 Select a survey method: Data collection plan (online method was used in this research).
 Develop the questionnaire:

o SEP SFS questionnaires were predefined by UTS.
o INP SFS questionnaires were developed by the researcher for the capstone project.
o Industry survey questionnaires were developed by the researcher using artefact

evaluation criteria (Prat, Comyn-Wattiau & Akoka 2014).
 Conduct the survey: Execute the survey effectively in a fixed period.
 Collect and analyse the data: The surveys provided quantitative and qualitative data.

The surveys data analysis is composed of two main steps:
o Survey quantitative evaluation
o Survey qualitative evaluation.

59

3.2.5.2.1. Survey Quantitative Evaluation

The data generated from the surveys (industry and teaching) were categorical. The participants in
the surveys contributed their responses to the survey questionnaires as qualitative ratings (see
Table 3.3). This research used statistical formulas to make sense of the survey data. Statistical
formulas are better suited to provide analysis of a survey’s numerical data. According to
Hyndman (2008), ‘statistics is the study of making sense of data’. The statistical formulas used
to analyse the survey data are explained in Equations 3.1–3.3.

Equation 3.1: Chi2 Formula
Chi2 Statistical Formula

Chi2 or X2 = ∑ (O−E)2

E
 (O = frequency and E = expected value) (p-value < 0.01)

E = O/N (O = frequency and N = total number of observations)
The p-value determines if the null hypothesis H0 is accepted or rejected based on a critical value = 0.01
If p-value < , then H0 is rejected and H1 is accepted, and there is a positive association between the test
variables (DRA models) and the evaluation criteria (see Table 3.4).
[If p-value < 0.000 (is a small number), then p is mathematically corrected to: p < 0.001]
H0 (null hypothesis): there is no association between the test variables and the evaluation criteria
H1 (alternative hypothesis): test variables and the evaluation criteria are positively associated

Equation 3.2: Average and Above Frequency (AAF) Formula
AAF Formula

AAF = Frequency (Ratings >= 3)
AAF is the sum of all participants responses [Average (3) + Agree (4) + Strongly Agree (5)]

Equation 3.3: Average and Above Percentage (AAP) Formula
AAP Formula

AAP = Percentage (ratings >= 3)
AAP is the sum of all percentages of responses [Average (3) + Agree (4) + Strongly Agree (5)]

3.2.5.2.2. Survey Qualitative Evaluation

The qualitative data collected in the industry survey were analysed using the hypothesis
confirmation general technique of analysis (Runeson & Höst 2009). The hypotheses were the
artefact evaluation criteria (Prat, Comyn-Wattiau & Akoka 2014) (see Table 3.4). Participants’
feedback was cross-examined against the evaluation criteria by highlighting the occurrences of
the criteria in the text. The industry feedback was organised into tables. The analysis tables
include an explanation column about each item of feedback and a reference column to identify
the criteria in each item of feedback. Feedback from the teaching case study surveys is quoted to
reflect the participants’ opinions about the subjects’ (INP and SEP) contents and their overall
experience. Feedback from the teaching surveys added further opinions about the usefulness of
the DRA for teaching.

60

Table 3. 4: Survey Evaluation Criteria
Criteria Description

Generalisations
DRA is general in the sense that it is not fixed to one situation or environment.
DRA can adapt to different situations and be used with different technology stacks.
DRA is instantiable and applicable to a class of problem situations.

Usefulness
DRA is useful for DevOps adoption in any context
DRA is useful for application (e.g. IoT applications) deployment to multi-cloud
DRA reference architecture is a useful template solution for the research gaps

Coverage
DRA provides sufficient explanation about DevOps adoption
DRA provides setup and configuration guidelines for DRA instance pipelines
DRA provides setup and configuration for IoT-devices (hardware)

Relevance
DRA is relevant for deployment IoT applications on the multi-cloud at the industry level.
DRA framework new knowledge is relevant for teaching, industry and research.
DRA is relevant for organisations seeking to improve agility using a DevOps approach.

Importance
DRA enables end-to-end automation process and allows decentralised control.
DRA uses integrated DevOps and cloud tools to support IoT apps process.
DRA models are a high-level design that can be replicated for any software application.

3.2.5.2.3. Survey Questionnaire Development

The industry survey evaluation criteria were used in the quantitative and qualitative evaluation.
The survey evaluation criteria were designed for the DRA artefact using a well-known artefact
evaluation process (Prat, Comyn-Wattiau & Akoka 2014). The survey evaluation criteria were
used to develop the survey questionnaires for the industry survey. The survey questionnaires
were developed to evaluate the DRA design models (see Chapter 4) both individually and overall
(see Appendix D). The INP SFS (teaching capstone survey) questionnaires were developed by
the researcher following similar ideas utilized by UTS SFS questionnaires. The SEP-SFS
questionnaires were developed by UTS-FEIT and were used in FEIT subjects every semester
(see Chapter 5, Section 5.5).

3.2.6. OUTPUT

The thesis result is a comprehensive DRA framework for IoT application deployment to the
cloud/multi-cloud. The DSR outcome (see Figure 3.8) is composed of two outputs:

 DRA framework.
 Project publications.

The DSR output step presented the DRA framework. The DSR output step also discussed the
project limitations and the possible future research for DRA.

61

Figure 3.8: Output

3.3. RESEARCH INSTRUMENTS

This section presents the various instruments used in the construction of the proposed DRA
framework. The research instruments implemented in this thesis are resources, development
methods, experts and industry feedback, and research ethics.

3.3.1. RESOURCES

The essential resources used for the design, development and evaluation of the proposed DRA
are mapped in Table 3.4. The resources used to develop and evaluate the DRA framework are a
combination of DevOps practices and tools (see Chapter 2, SLR Results), software development
and cloud tools, IoT hardware (devices and sensors), and custom survey and case study
templates. The integration of the DevOps practices and tools with the cloud services, and with
the IoT hardware indicates that the DRA framework development process aims to address the
research question and provide a practical working solution to the research gaps determined by
the challenges of the adoption of DevOps for software projects.

Table 3. 5: Resources
Resources Description Reference
Data - Background and related work

- SLR data review and analysis
- SLR results

- Section 1.1
- Section 2.3
- Section 2.4

Method - DSR method for DRA design, development and
evaluation

- Section 3.2

DevOps concepts - 10 concepts used to create DRA conceptual model - Table 2.9
DevOps practices - 20 practices used to create DRA logical model - Table 2.10
DevOps tools - Selection of tools used to create DevOps pipeline

instances
- Tables 2.12–2.22
- Table 4.6

Software - Development IDE (Netbeans, VS Code)
- Programming languages (Java, JavaScript, Python)

- Table 4.9, Table
4.10 and 4.19

Cloud - PaaS, IaaS, SaaS (Heroku, AWS, GAE) - Table 4.7
Hardware - Raspberry PI board

- IoT sensors (light sensors, motion sensors)
- Table 5.4

Empirical
evaluation

- Online field survey template
- Case study template

- Appendix D
- Appendix G

62

3.3.2. DEVELOPMENT PROCESS

This thesis uses an iterative development process using guidelines described in the DSR method
(see Section 3.2). The DRA development process is composed of the following steps:

 Research and data collection from selected studies related to the research topics (see
Background and Related in section 1.1 and SLR in chapter 2).

 Address RQ1 and outline the research gaps using the SLR results (see Chapter 2).
 Outline and explain the DSR used in this research (see Chapter 3). The DSR uses the

SLR results and the Chapter 1 analysis as initial data.
 Design and develop the DRA framework (see Chapter 4). This step includes the

following items:
o Define the general characteristic terminologies of DRA.
o Design the architectural model of DRA.
o Develop DRA components (DRA instances, IoT application, IoT network).

 Create an online survey (see Appendix D).
 Create an implementation process for the DRA (see Chapter 4).
 Create a case study template (see Appendix G).
 Conduct an empirical evaluation for the DRA (see Chapter 5).
 Outline the DRA limitations (see Chapter 6).
 Outline the DRA future research ideas (see Chapter 6).
 Outline the thesis contributions (see Chapter 6).

3.3.3. EXPERTS AND INDUSTRY FEEDBACK

This section describes the methods used to collect feedback from experts, researchers and
industry experts. To collect feedback and opinions, this research used two types of templates:

 online field survey (see Appendix D)
 case study template (see Appendix G)

The case study template was used in the industry case study and research case study. The
collected feedback from the case studies was used to determine the DRA relationship with the
evaluation criteria (see Table 3.2).

The online survey contained questionnaires for experts and researchers to complete regarding the
DRA architectural design. The survey also collected feedback about the framework’s operational
capability for IoT application deployment to the multi-cloud. The survey generated qualitative
and quantitative data. Participants’ feedback was analysed to determine the DRA relationship
with the evaluation criteria (see Table 3.4). The quantitative data were analysed using statistical
formulas (see Equation 3.1-3.3). The anonymous details of the data collection are as follows:

63

Industry case study participants: 1 (conducted at the organisation’s premises by industry
experts in the area of software engineering—in particular, in the areas of DevOps, agile, cloud
and IoT).

Research case study participants: 1 (conducted at DigiSAS Lab with the help of the lab
director, who was an expert in software engineering and agile).

Survey participants: 82 (offered online to industry experts in the area of software
engineering—in particular, in the areas of DevOps, agile, cloud computing and IoT).

Teaching case study participants: 208 (offered online to the students of SEP48440 and
INP31261 (Inter-Networking Project) at the UTS School of Software).

3.3.4. RESEARCH ETHICS

Formal approval was obtained from the UTS Research Ethics Committee in compliance with the
research ethics policies of the University of Technology Sydney. The approval document can be
found in Appendix A. The research did not raise any ethical issues. A formal consent letter (see
Appendix C) was sent to each participant. The participants were free to withdraw from the
research at anytime, and could contact the supervisor or the university. Additional forms that
provided information about the online survey and the DRA framework were also sent to willing
participants, along with the consent form (see Appendix B). The purpose of these forms was to
provide transparent details about the project, the survey questionnaires, the anonymity of the data
collection, and storage.

3.4. SUMMARY

This research was conducted to develop a new framework—the DRA framework—for IoT
application deployment to the cloud/multi-cloud by using a constructive and iterative DSR
method. The DSR used in this thesis was established on guidelines published by Gregor and
Hevner (2013) and Peffers et al. (2007). This chapter presented the resources and development
process used to construct the DRA, and it outlined the evaluation methods used in the empirical
evaluation to obtain experts’ feedback. The empirical evaluation was conducted by involving
practitioners and experts from the software industry to acquire information regarding the
applicability, novelty, relevance and usefulness of the DRA framework. The DRA is presented in
detail in chapter 4 and evaluated in chapter 5.

64

Chapter 4: DevOps Reference Architecture Framework

This chapter presents the new DRA framework, which is the main contribution of the research.
The DRA framework is a practical solution to the research question identified in chapter 1. The
DRA framework was developed using the well-known DSR method discussed in chapter 3. The
DRA framework aims to assist in the adoption of the DevOps to support IoT application
deployment to the multi-cloud, and to address the research gaps identified in chapter 2. The
framework is composed of three main components: 1) framework characteristics; 2) framework
architecture; and 3) framework composition. The DRA composition incorporates the steps
required to create instances of the framework. This chapter presents two instances of the DRA:
DRAv1.0 (single cloud) and DRAv2.0 (multi-cloud). The DRA instances are evaluated in
chapter 5, using an empirical evaluation. This chapter also includes implementation and case
study templates, which can be used by experts and organisations to implement and evaluate the
DRA framework in their development contexts.

4.1. DRA OVERVIEW

This thesis has observed that organisations want to determine how DevOps can be adopted to
enable IoT application deployment to the cloud/multi-cloud. The analysis and review of relevant
background studies and related work identified the research problem that led to the main research
question (see Chapter 1). The first part of the research question was answered in the SLR in
Chapter 2, which has been previously published (Ghantous & Gill, 2017). The SLR also
highlighted vital research gaps (see Table 2.25) that organisations want to address. The second
part of the research question aligns with the research gaps identified in the SLR in Chapter 2.

This chapter presents the new DRA framework (see Figure 4.1), which addresses the second part
of the research question (see Table 1.2). The DRA has been designed and developed using a
well-known DSR method explained in Chapter 3. The DRA provides comprehensive knowledge
on deploying IoT applications to the cloud/multi-cloud, avoiding vendor lock-in caused by
application provisioning and database hosting. The DRA implementation process needs to take
into account the connectivity and interactions of IoT applications and IoT devices. The DRA also
supports agile, adaptive implementation using the DevOps approach. The new DRA framework
is composed of three main components:

 Framework characteristics: The DRA characteristics are general terminologies that can
be used to create reference architecture founded on the DevOps concepts and cloud
services. The DRA characteristics are not fixed to a particular context but can be used in
numerous development contexts.

 Framework architecture: The DRA architecture is founded on the DRA characteristics.
Organisations and experts can use the key elements of the DRA characteristics to design

65

reference architecture. The DRA architectural model is a general design that can be
instantiated to fit the context of the development environment.

 Framework composition: The composition incorporates the essential components
required to instantiate the DRA. The composition incorporates the DRA resources and
configuration needed to create the framework output instances. This chapter presents two
instances of the DRA model: DRAv1.0 and DRAv2.0. DRAv1.0 enables software
application deployment to the single cloud, while DRAv2.0 enables IoT application
deployment to the multi-cloud. DRAv1.0 and DRAv2.0 use the DevOps approach and the
cloud/multi-cloud (services, infrastructure) identified in the SLR (see Chapter 2). The
application of the DRAv2.0 instance, which is created using the DRA architecture model,
was published in Ghantous and Gill (2018).

Figure 4.1: DRA Framework

66

4.2. DRA FRAMEWORK CHARACTERISTICS

The DRA characteristics (see Figure 4.2) represent the fundamental elements or attributes of the
framework. They are defined using common terminology following the guidelines published by
Berger, Häckel and Häfner (2019) and Nickerson, Varshney and Muntermann (2013). The DRA
characteristics can be used to create a reference architecture design model in the organisation’s
context. A reference architecture model illustrates the relations of the characteristics. The
reference architecture illustration of the framework characteristics uses DevOps concepts and
cloud services. The framework characteristics are organised into three categories:

 The foundation is composed of the human factor, infrastructure and abstraction elements.
 The core is composed of tools, process and product elements.
 The extended is composed of business value, rules and legal elements.

The framework characteristics presented in this chapter are a result of the synthesis of the
information gathered in Chapters 1 and 2. Figure 4.2 presents an example of the associations
between DRA characteristics in a harmonious relationship. The DevOps concepts identified in
Chapter 2 and the cloud services identified in Chapters 1 and 2 can be used in an organisation’s
context to create a reference architecture design founded on the characteristics illustrated in
Figure 4.2. The DRA characteristics model is not fixed to a particular instance (or example view)
but can be associated with numerous instances or examples to fit organisations’ contexts. In
Figure 4.2, the associations between DRA characteristics can be explained and connected to the
relevant DevOps concepts (see Table 2.9 labelled C[index]) and cloud services as follows:

 The DevOps team represents the human factor, which is affected by geography, team
communication, knowledge background, resource-sharing and team collaboration.
DevOps concepts (C1, C5, C7) support this association.

 The DevOps team requires a development platform. Cloud infrastructure and services
(PaaS, SaaS, IaaS) provide the necessary platform.

 The DevOps team applies the rules within the approved legal boundaries of the
organisation’s development context.

 The DevOps team conducts a process that is supported by the infrastructure (cloud or
multi-cloud). The DevOps team uses abstract architecture design to provide a
development environment (or workspace). The development environment (workspace)
can support multiple processes initiated by the team. DevOps concepts (C4, C5, C6, C7,
and C9) support this association.

 The DevOps team uses DevOps tools and cloud services to create a product. The selected
tools are integrated into the development workspace. DevOps concepts (C1, C2, C3, C6,
C7, C9, and C10) support this association.

 The DevOps team delivers a product, which is the output of the completed processes. The
team uses the development workspace to design and develop a product, and uses the tools

67

to create a product and the infrastructure to deploy a product. DevOps concepts (C2, C3,
C6, C8, C9, and C10) support this association.

 The product has a business value that is determined by the organisation. The value of a
product should cover the cost of development and resources. The business value of a
product is bound to the rules of the organisation context. The business value also follows
the legal attributes set up by the organisation at the start of the process.

Figure 4.2: Framework Characteristics (Example View)

4.2.1. ABSTRACTION

Abstraction represents a logical view of the software development structure (Analyti et al. 2007;
Theodorakis et al. 1999). The abstraction characteristic incorporates several mechanisms such as
people-oriented, service-oriented, tools-oriented and process-oriented (see Figure 4.3). A
framework abstract design may combine more than one abstraction mechanism. The mechanism
combination is used to create the design model for the development environment (or workspace).
The reason for including the abstraction in the DRA framework is based on four key factors.
First, the DRA is people-oriented because it supports the human factor (people) using DevOps
concepts and practices, as indicated in Chapters 1 and 2. Second, the DRA is service-oriented
because it uses cloud services (PaaS, SaaS, IaaS) to set up the development workspace. Third,
the DRA is tools-oriented because it uses DevOps tools to create an operational pipeline in the
development workspace. Fourth, the DRA is process-oriented because it enables automated and

68

integrated processes to accomplish the deployment of a software application product. However,
organisations are not tied to any specific abstraction mechanism mentioned in the example view
(see Figure 4.3). Organisations may use, combine or integrate other abstraction mechanisms to fit
the purpose of the software project. Thus, the abstraction element is linked to the human factor,
process, infrastructure and product. The DRA architecture is not fixed to a particular
combination of abstraction mechanisms.

Figure 4.3: Abstraction Characteristic (Example View)

4.2.2. HUMAN FACTOR

The human factor (see Figure 4.4) is an essential element in the DevOps framework
characteristics. It was observed in Chapter 1 (background and related work analysis) and Chapter
2 (SLR analysis) that the DevOps approach supports people or DevOps teams. In an
organisation, a DevOps team may involve many individuals that have one or many roles. People
in a DevOps team may belong to different types of communities and have different types of
skills (social skills, development skills, management skills, technical skills). Regardless of the
people’s skills, location, languages and knowledge base, a DevOps team is expected to be
involved in the entire product deployment lifecycle (or development chain), which includes code
management, build, testing, deployment and monitoring. To increase the positive effect of the
human factor on the project and improve people’s experiences, the DRA framework uses the
DevOps approach, which provides concepts, practices and tools (see Chapter 2) that enable
better communication and collaboration in a team. While the DRA uses the DevOps approach
tools to enable communication and collaboration, it is not tied to a fixed combination of tools.

69

Instead, the DRA may be implemented using numerous combinations of tools that fit the context
of the organisation or project. Hence, the human factor characteristic in the DRA is affected by
several entities (technology-based or non-human-based). However, the human factor in the DRA
is not fixed to a particular technology. Table 4.1 incorporates the technology-related and non-
technology-related entities that affect the human factor.

Table 4.1: Human Factor Entities
Entities Description
Location and
communication

- People may belong to different types of communities and speak different
languages. People in a team should have the ability to work in a communications-
oriented environment enabled by DevOps practices and tools.

Access and
collaboration

- People may be located in different cities or countries. People in a team should have
the ability to work in a collaboration-oriented environment enabled by DevOps
practices and tools.

Repository - People are required to synchronise their code in the development chain. People
should have the ability to use DevOps approach practices and tools to enable code
management.

Role and skills - People may have different types of skills. A DevOps team should have the ability
to use the skills of its individuals in properly assigned roles. People in a team
should be encouraged to support their colleagues for the benefit of the project.

- Organisations should assign roles (developer, manager, consultant, coach)
according to their skills in a project.

Transparency - People in a team should be encouraged to act with professionalism and
transparency.

Sharing People in a team should have the following options enabled in sharing:
- Provide fast global resources exchange
- Provide maximum possible free resources for DevOps team
- Enable sharing notifications
- Enable team global access to resources

Security - People in a team should work in a secure environment. Security measures should
cover resource access and role access within the organisation.

70

Figure 4.4: Human Factor Characteristic (Example View)

4.2.3. INFRASTRUCTURE

The infrastructure characteristic is also a foundational element in the framework’s construction.
As observed in Chapter 1 (background and related work analysis) and Chapter 2 (SLR Results,
Section 2.4), the cloud seems to provide the required infrastructure for the DRA framework.
Cloud IaaS, PaaS and SaaS offer virtual servers, resource-sharing, adaptive deployment options,
software services and standard security measures. The cloud supports automation, CI, continuous
deployment and monitoring. In the DRA framework, DevOps and cloud services integrate into
architecture. The DRA cloud infrastructure provides the development platform for DevOps
teams to use tools and create the product. The product is deployed to the virtual cloud servers.
The infrastructure services are listed in Table 4.2 and shown in Figure 4.5.

71

Table 4.2: Infrastructure Services
Layers Features
IaaS - Global access, share and pay-as-you-use option

- Provide virtual servers with assured availability (no downtime)
- Enable scalability (scale applications up or down on demand)
- Enable load balancing (distribute application traffic across used servers)

PaaS - Provide development environment, tools and support most programming languages
- Enable auto-scaling of applications
- Support automated application deployment, testing, monitoring and logging
- Provide database management system

SaaS - Scalability of product and option to integrate with SaaS software services
- Enable interoperability of applications
- Offer configuration and setup options for various applications

Figure 4.5: Infrastructure Characteristic (Example View)

4.2.4. PROCESS

The process characteristic is an essential element in the DRA framework. A process is composed
of different sub-processes such as design, development, deployment and business. Processes are
compliant to rules and legal requirements that represent the policy in an organisation context.
The process characteristic can be represented by attributes explained in Table 4.3. A process has
a unique process ID and a lifecycle that runs for a specific time and for a particular task (each
sub-process has its lifecycle). A process lifecycle is the combination of lifecycles of all sub-
processes. A process can be categorised as a software process, design process, business process
or deployment process (see Figure 4.6). The software process is the development procedure used
to create a software component. The design process is used to create a product architecture

72

model. The deployment process is a combination of the practices and functionalities required to
create and deploy a product. The process is the progression of the product from development to
delivery. DevOps teams perform quality assurance checks (performance, usability, sustainability,
availability) as part of DevOps retrospective application review (Ghantous & Gill 2018; Perera,
Silva & Perera 2017). The quality assurance can be performed for each sub-process in a
particular process.

Table 4.3: Process Types
Attributes Description
Design process - Process ID and Name of the task [component]

- The conceptual relationship between entities
- Physical abstract design for entities
- Logical, abstract design for entities
- The operational model for the deployment process
- Process lifecycle [duration]
- Degree of DevOps practices adoption

Software process - Process ID and Name of the task [component]
- The development environment and tools workspace [DevOps tools]
- Degree of human factor effect
- Process lifecycle [duration]
- Degree of DevOps practices adoption

Deployment
process

- Process ID and Name of the task [component]
- Deployment environment [DevOps pipeline]
- Process monitoring
- Software testing [Retrospective review: application health and performance]
- Process lifecycle [duration]
- Degree of human factor effect
- Degree of DevOps practices adoption

Business process - Process ID and Name of the task [product]
- Virtual environment for the product (Cloud: IaaS, PaaS, SaaS)
- Retrospective review: Product sustainability, availability, and usability
- Process lifecycle [duration]
- Degree of human factor effect

73

Figure 4.6: Process Characteristic (Example View)

4.2.5. TOOLS

The tools characteristic refers to DevOps and non-DevOps tools (cloud/multi-cloud services)
(see Chapters 1 and 2) that are used in a process to create a product (see Figure 4.7). The tools
characteristic is used in the development workspace founded on the abstract design of the
framework. A configured development workspace may contain many tools, which can be used to
support multiple processes. The tools should enable the DevOps concepts identified in the SLR
Results in Chapter 2, Section 2.4.

In the DRA framework, tools are used to create an operational model to deploy and deliver a
product (IoT application). However, the framework is not fixed to a particular set of tools.
Organisations may use different tools suitable for the development context of the project. When
selecting tools, organisations take into account the DevOps team’s knowledge base and skills,
the product type and requirements, the development environment and the workspace. Thus, the
tools characteristic is linked to the human factor, process and product characteristics.

74

Figure 4.7: Tools Characteristic (Example View)

4.2.6. PRODUCT

The product characteristic presents the executable project output (e.g., IoT application) (see
Figure 4.8). The product characteristic is the output of a process or multiple processes conducted
in the development workspace. The proposed DRA framework deploys and delivers a product
using an operational model composed of several tools. A product can be of different types and
may contain one or many sub-products. A product is described in Table 4.4.

Table 4.4: Product Entities
Description
- Product ID and name (this rule also applies to the product’s components)
- Documentation (description and purpose)
- Abstraction (architecture design model)
- Development (technologies, tools, workspace)
- Environment (deployment, synchronisation, automation)
- Quality (monitoring logs, testing logs, performance logs, continuous planning)
- Lifecycle (duration of development, duration of deployment, duration of delivery)
- Business value (value added to a product or sub-product)
- People (DevOps team creates a product, users access a product)
- Risks and constraints (product disclosure for risk management, scope, limitations)

75

Figure 4.8: Product Characteristic (Example View)

4.2.7. BUSINESS VALUE

The business value characteristic has not been investigated to any great extent in this thesis.
However, it should be included in the characteristics because it affects the deployment and
delivery of the product (e.g., IoT application) to users. Business value is generated by using other
characteristics such as people, tools, processes, infrastructures and products. Thus, the business
value characteristic is explicitly included in the extended characteristics category of the DRA
framework.

4.2.8. RULES

The rules characteristic is explicitly included in the extended characteristics category of the DRA
framework. Business rules are a form of knowledge that states the guidelines being adopted in
the organisation (de AR Gonçalves et al. 2011). Business rules are an essential concept and can
be viewed as general declarations about the organisation’s means of conducting business.
Business rules affect the delivery of a product to users (deployment of IoT application) because a
product is the result of a process or multiple processes, and it is associated with abstract design
and tools (Cysneiros, de Macedo-Soares & do Prado Leite 1999).

76

4.2.9. LEGAL

The legal characteristic is explicitly included in the extended characteristics category of the DRA
framework. The legal agreement and governing requirements may also affect the software
development process and product (e.g., IoT application) delivery. This thesis has established that
the DRA framework is not fixed to any organisation context but can be instantiated to suit the
organisation’s project. The DRA is implemented for organisations using the framework
characteristics explained previously (abstraction, infrastructure, process, people, tools, product).
Given that the DRA is not fixed to a particular context, it is the local organisation’s
responsibility to organise the legal regulation to manage the development process (Islam,
Mouratidis & Jürjens 2011). The agile manifesto (Fowler & Highsmith 2001) provides a
convenient reference for organisations to implement their rules and regulations. The following
contract laws are applicable when creating a product (Hoeren & Pinelli, 2018). This list can be
used as a generic set of rules to deploy and deliver a product (e.g., IoT applications) using a
DRA instance.

 Specification of the accepted work: Specify the product, tools, abstract design, people
and infrastructure.

 Copyright rules: Outline the copyright related to the DRA characteristics.
 Due date and payment date: Set up the product delivery date and business value.
 Risk and constraints: Identify the risks and constraints that may occur during the

implementation of the DRA and the deployment of the IoT application (software build
and deployment issues, internet access, IoT network configuration, connectivity
protocols, vendor lock-in).

 Exclusion of known and not reserved defects: The DevOps team should identify known
defects that may obstruct the product’s deployment.

 Beginning of intended use of the product: Specify the deployment time and delivery time
according to the development schedule of the organisation.

 Cost planning of the product and time constraint: The DevOps team should provide a
detailed plan for the project schedule and cost estimation.

 Product development and implementation schedule: The DevOps team should provide a
detailed development and implementation plan.

 DevOps team roles and responsibility contracts: Specify the roles of the DevOps team
members in the project.

 The development environment and product delivery: Configure and set up the
development workspace for the DRA implementation.

 Performance assessment and quality assurance: The DevOps team should monitor the
product deployment and ensure the performance of the IoT application.

The legal characteristic may include or exclude different items depending on the current
organisation context.

https://www-sciencedirect-com.ezproxy.lib.uts.edu.au/topics/social-sciences/exclusion

77

4.3. DRA ARCHITECTURE DESIGN

The DRA architectural design is a generic design model founded on the DRA characteristics
discussed in the previous section. DRA characteristics are common terminologies used to
represent the DRA elements (DevOps and cloud/multi-cloud). DevOps elements or concepts
were identified in Chapter 1 (background and related work analysis) and Chapter 2 (SLR
analysis and results) and were previously published by Ghantous and Gill (2017). The
cloud/multi-cloud elements were identified in Chapters 1 and 2. DRA characteristics are used to
create a reference architecture design to deploy a product (IoT application) to the cloud/multi-
cloud (the primary objective of this research). The DRA framework design is composed of five
models: contextual, conceptual, logical, physical and operational (Ghantous & Gill 2018).

4.3.1. DRA CONTEXTUAL MODEL

The contextual model for the DRA illustrates the relationship in the context between the research
topics (DevOps, cloud/multi-cloud, IoT). The contextual model is a block diagram that shows
how cloud/multi-cloud and DevOps assist with the deployment of the IoT application (see Figure
4.9). The research aim (see Chapter 1) and research gap (see Chapter 2) indicated that it is vital
to avoid vendor lock-in when deploying IoT applications to the multi-cloud. Thus, a CI broker
mechanism is needed to perform the operations required to handle the vendor lock-in issue. The
framework’s characteristics represent the elements required to create a generic contextual model
that is suitable for any organisation’s context. For instance, the abstraction element is required to
identify the combination of mechanisms used to create the contextual model (process-oriented,
people-oriented, service-oriented, product-oriented). The infrastructure element represents the
DRA deployment platform, the tools element identifies the DevOps and cloud tools used in the
model, the process element represents the application deployment, and the product element
represents the IoT application.

Figure 4.9: DRA Contextual Model

78

4.3.2. DRA CONCEPTUAL MODEL

The DRA conceptual model (see Figure 4.10) expands the contextual model of Figure 4.9 and
incorporates the DevOps concepts and cloud services that are required to enable IoT application
deployments. DevOps concepts (see Chapter 2) and cloud services (see Chapters 1 and 2)
represent DRA characteristics (see Section 4.2), which are commonly used attributes that can be
used to create a reference architecture model. The conceptual model is constructed by replacing
the characteristics’ elements with DevOps concepts and cloud services. This method indicates
that the conceptual model is a generic design that can be applied to any context.

The conceptual model includes a vital mechanism—the CI broker. The CI broker idea was
established in the research aim (see Chapter 1) and research gap (see Chapter 2). With the
research question in mind, it was essential to devise a procedure to deploy IoT applications to the
multi-cloud and avoid vendor lock-in, which occurs when a cloud vendor hosts the deployment
configurations and when a cloud vendor hosts the database. The CI broker is an essential part of
the DRA conceptual model because it incorporates several operations. For instance, the CI
broker enables automation (build, testing, logging, deployment), CI, branching development and
automated code synchronisation. Most importantly, it hosts the deployment configurations for
the IoT application. The CI broker packages the IoT application in a container and deploys it to
the multi-cloud platforms used in the DRA instance. This procedure prevents any of the clouds
incorporated in the multi-cloud platform from hosting the IoT application deployment
parameters and consequently prevents vendor lock-in.

Figure 4.10: DRA Conceptual Model

79

4.3.3. DRA LOGICAL MODEL

The DRA logical model (see Figure 4.11) expands on the conceptual model of Figure 4.10 and
incorporates DevOps practices and cloud services to represent the concepts highlighted in Figure
4.10. The DRA logical model is composed of five components (M1–M5) that represent the DRA
instance tiers or phases. Each component includes functions and features related to the required
DevOps practices and cloud service in that tier. The components are integrated into a logical
view that represents the interactions between these components. The logical model represents the
blueprint for physical model instances of the DRA. DRA instances should enable all logical
model operations discussed in Table 4.5, which outline the functions and features that represent
the DevOps practices and cloud services incorporated in the DRA logical model.

Figure 4.11: DRA Logical Model

80

The DRA logical model components (M1–M5) incorporate the functions and features (see Table
4.5) that are necessary to conduct the deployment process of IoT applications (product) to the
multi-cloud. The logical model features (DevOps practices and cloud services) were identified in
Chapters 1 and 2. The logical model features are discussed in Table 4.5, which includes a set of
suggested tools that could be used in the DRA instances to enable logical model features. The
suggested tools are selected from an extensive list of DevOps tools (Ghantous & Gill 2017).

The logical model components are vital for the construction of the DRA physical model and the
creation of the DevOps instances. Notably, two critical components represent the key factors to
enable a successful IoT application deployment to the multi-cloud. With the research gap in
mind, M2 (CI broker) and M5 (database tier) help the DevOps team avoid vendor lock-in. For
instance, M2 operations (features) include the hosting of IoT application deployment parameters,
while M5 represents a central cloud database for IoT data. M2 and M5 give the DRA framework
the necessary procedure to prevent vendor lock-in when deploying IoT applications to the multi-
cloud.

Table 4.5: Logical Model Features
Components Features Tools
M1 - Branching development

- Automated code synchronisation
- Automate logs reporting to M4

- Github
- BitBucket

M2 - Automated build
- Automated testing
- Automated deployment to multi-cloud
- Host deployment configuration
- Automate logs reporting to M4
- Branching development
- Automated code synchronisation

- Codeship
- Travis CI
- Jenkins

M3 - Automated scaling
- Software as services
- Virtual servers—orchestration
- Automated delivery
- Automate logs reporting to M4

- Heroku
- Google App Engine
- AWS CodeDeploy

M4 - Acquire commit logs
- Acquire build/testing logs
- Acquire deployment logs
- Automated reporting
- Integrate with a communication tool
- Automated notifications

- Papertrail
- Nagios
- New Relic
- Slack
- Slack

M5 - Cloud DB management
- Central database
- Dynamic application access
- Shared resources
- Virtual DB servers
- NoSQL DB

- MongoDB (mLab)
- DB-Maestro
- Firebase

81

4.3.4. DRA PHYSICAL MODEL

The DRA physical model is an implementation of the DRA logical model. It creates a tangible
design of the logical components (M1–M5) and their integrations. The operational workflow for
the DRA physical model is illustrated in Figure 4.12. This model can be subdivided into three
layers:

1. The DevOps team layer is composed of:
 M1 enables team communication and real-time notification. M1 receives build/test

logs from M2 and deployment and performance logs from M4.
2. The cloud layer is composed of:

 M2 is the CI broker that includes the build, testing, and logging and deployment
parameters of the IoT application. M2 is essential to prevent vendor lock-in.

 M3 is the deployment cloud(s) platform for the application.
 M4 is monitoring and tracking the progress of application deployment.
 M5 is the database cloud for IoT data. M5 is essential to avoid vendor lock-in.

3. The user layer represents the user devices used to access and operate the IoT application.

The DRA physical model represents a harmonious integration of tangible DevOps tools and
cloud services. The physical model is the template used to create the DRA operational model.

Figure 4.12: DRA Physical Model

82

4.3.5. DRA OPERATIONAL MODEL

The operational model of the DRA framework is based on the physical model of Figure 4.12 and
enables the logical model features (DevOps practices) of Table 4.5. The DRA operational model
is configured using an integrated set of DevOps tools (see Chapter 2). It provides automated IoT
application deployment to the cloud/multi-cloud (Ghantous & Gill 2018). This model is the
application of the logical model that represents the DRA characteristics incorporated in the DRA
conceptual model. The DRA operational model is not fixed to a particular set of tools but can be
configured using numerous tools to suit the context of the organisation. The DRA operational
model enables a fully automated deployment process.

 Operational model deployment process [M1 M2M3M4M5 IoT app]

The operational model deployment process in a pipeline begins at M1 and ends back at M1,
completing a fully automated deployment process circle. The deployment process is as follows:

 The IoT app code is pushed from M1 to M2.
 The M2 model (CI broker) is a CI broker intended for automatically deploying an IoT

app to M3. The CI broker includes the deployment configurations of the software
applications (e.g. IoT-applications) to avoid vendor lock-in.

 M3 is the deployment platform of the DRA. DRA instances can be represented by a
single cloud [DRAv1.0, see Figure 4.13] or a multi-cloud [DRAv2.0, see Figure 4.14].

 The M4 model provides the DevOps team with real-time management and clear insights
across the deployment steps using DevOps monitoring and communication tools.

 Users can run or execute the IoT app from any smart device once it is deployed to the
cloud/multi-cloud. The IoT app interacts with an IoT network (IoT devices). The data are
collected at run-time and saved as NoSQL data entries at M5. M5 represents a centralized
database to avoid vendor lock-in.

 IoT application operations logs are recorded in M4 and reported to M1. M1 also sends
notifications to the DevOps team about the code synchronisation logs, build logs, testing
logs and deployment logs.

 DRA operational model instances [DRAv1.0 and DRAv2.0]

This thesis presents two operational model instances: DRAv1.0 and DRAv2.0. The DRA
instances are created using the DRA reference architecture models defined in previous sections
(contextual model, conceptual model, logical model, physical model). The difference between
them is that DRAv2.0 enables deployment to the multi-cloud, whereas DRAv1.0 enables
deployment to a single cloud. DRAv1.0 and DRAv2.0 instances can be applied in organisations
using a specific implementation, as discussed in Section 4.4. DRAv1.0 and DRAv2.0 instances
were evaluated using an empirical evaluation (see Chapter 5).

83

4.4. DRA FRAMEWORK COMPOSITION

This section presents the DRA composition of the framework (see Figure 4.1). The DRA
composition incorporates the essential elements needed to create DRA instances for deploying
IoT applications to the cloud/multi-cloud. The DRA composition is founded on the DRA
characteristics, which were used to create a comprehensive reference architecture for deploying
IoT applications (products) to the cloud/multi-cloud (infrastructure). The DRA composition
integrates the DRA architectural models to create practical implementations (instances) that are
applicable in the context of the organisation. The DRA composition includes three main
components:

 resources (architecture design, software, hardware)
 configuration (Pipeline, IoT application, IoT network)
 output (DRA framework architectural models, DRAv1.0 instance, DRAv2.0 instance).

4.4.1. RESOURCES

The resources element of the DRA composition incorporates the architecture design models
presented in Section 4.3, as well as the software and hardware items required to implement the
DRA instances. The DRA composition integrates architecture design models to create automated
pipeline instances for deploying the software product to the cloud/multi-cloud. The software
application (product) interacts with the hardware (infrastructure) and generates data. The data are
stored in a cloud database (infrastructure) to prevent vendor lock-in issues.

4.4.1.1. Architecture Design

The architecture design represents the integration of the DRA models discussed in Section 4.3 to
create a practical implementation (instance) in the context of the organisation. The architecture
design is constructed to accommodate and support the framework characteristics explained in
Section 4.2. The DRA architecture is not fixed to a particular instance. Instead, numerous
pipeline instances (e.g., Figures 4.13 and 4.14) can be created using the DRA design models.

4.4.1.2. Software

The software element represents the product characteristic in the framework. The software
element is an IoT application to be deployed to the cloud/multi-cloud in the context of the
organisation.

4.4.1.3. Hardware

The hardware component is used to interact with the IoT application deployed to the cloud/multi-
cloud. The hardware represents the IoT network used in this project to demonstrate the
interactions of IoT applications deployed to the cloud/multi-cloud with the IoT devices.

84

4.4.2. CONFIGURATION

The configuration component represents the DRA composition procedures needed to create the
DRA instances, configure the DRA instances’ pipelines, develop the product (IoT application)
and set up the hardware infrastructure (IoT network).

4.4.2.1. Pipeline

The DRA pipeline is a physical instance of the DRA operational model (see Section 4.3.E). The
DRA instance pipeline enables automation and CI of the DevOps tools and cloud services (see
Chapters 1 and 2). The DRA instance pipeline is created using the DRA design models defined
in Section 4.3. The DRA pipeline application deployment is an end-to-end automated process
that enables DevOps practices (see Table 2.10).

Two instances pipelines of the DRA are discussed in this thesis:
 DRAv1.0 instance pipeline: This instance pipeline is founded on the DRA architectural

design models and is configured using set integrated tools (DevOps and cloud) to enable
application deployment to the single cloud (see Figure 4.13).

 DRAv2.0 instance pipeline: This instance pipeline is founded on the DRA architectural
design models and is configured using set integrated tools (DevOps and cloud) to enable
application deployment to the multi-cloud (see Figure 4.14).

DRAv2.0 instance (multi-cloud) is an upgraded version of DRAv1.0 instance (single cloud). The
DevOps tools used in both versions can be substituted with other tools that perform the same
roles. The instances’ configurations are explained as follows:

 DRAv1.0 instance pipeline (see Figure 4.13) toolsets used in the research are BitBucket,
Codeship, Heroku, Papertrail, mLab MongoDB and Slack. Table 4.6 outlines the
DRAv1.0 instance, toolset features and descriptions.

 DRAv2.0 instance pipeline (see Figure 4.14) toolsets used in the research are BitBucket,
Codeship, Heroku, AWS CodeDeploy, Google App Engine, Papertrail, mLab MongoDB
and Slack. DRAv2.0 instance pipeline is constructed from the same toolset as DRAv1.0
instance pipeline with the addition of two more tools to enable multi-cloud deployment:
AWS (CodeDeploy) and GAE (Google App Engine). Table 4.6 outlines the features and
descriptions of the DRAv2.0 instance toolset. The pipeline (see Figure 4.14) illustrates
the deployment of the IoT app using Codeship (CI broker) to the multi-cloud (Heroku,
AWS, GAE). The mLab tool (MongoDB) is used as a central database for IoT data.
Hosting the IoT data in a central database prevents the vendor lock-in issue.

 For the DRA framework, the CI broker is an important mechanism. The CI broker
enables automated build, testing, logging and deployment. The CI-Broker contains the
deployment parameters for the software application (e.g. IoT application); which prevents
the vendor lock-in issue raised in the research gaps.

85

Table 4.6: DRAv1.0 and DRAv2.0 Toolsets
DRAv1.0 Instance Toolsets

Tools Features Description
BitBucket - Code synchronisation

- Automated code push
- Automate commit logs to Slack

BitBucket is a team collaboration and code
management tool. It enables code
synchronisation and automatically pushes the
application to Codeship. It also sends commit-
logs to Slack.

Codeship - Automated build/testing
- Automated deployment
- Host the deployment configuration

of the IoT application
- Automate build/testing logs to

Slack

It is the CI broker tool and enables automated
build/testing for code automatically received
from BitBucket. It also enables automated
deployment to clouds and sends
build/testing/deployment logs to Slack.

Heroku - Automated scaling
- Virtual servers—orchestration
- Fast delivery—scaling
- Automate deployment logs to

Papertrail

Heroku cloud enables automated scaling of the
application deployed from Codeship. It enables
automated scaling of the app for users. Run-
time logs of the application are sent to
Papertrail.

Papertrail - Acquire deployment logs
- Automated deployment logs to

Slack
- Automated notifications

Papertrail monitoring the deployment and
execution logs of the IoT application. It sends
those logs to Slack.

MLab - Cloud DB management
- Dynamic application access
- Virtual DB servers
- NoSQL DB
- Host the database for the IoT data

MLab is a MongoDB cloud database
management service. It enables automated data
access and mapping. MLab collects IoT data
from the IoT application and stores the data in
JSON NoSQL. DevOps team can dynamically
manage IoT data on MLab.

Slack - Automated log management
- Automated notifications
- Real-time communication (chat,

video)
- Resource-sharing option
- Integration with Codeship and

Papertrail

Slack is a communication and collaboration
tool that provides DevOps teams with real-time
chat/video conference options and enables
automated real-time notifications. Slack
collects commit logs from BitBucket, build/test
logs from Codeship and deployment/run logs
from the cloud, and then notifies the team.

DRAv2.0 Instance Toolsets (Added Tools to DRAv1.0)
AWS
(CodeDeploy)

- Automated scaling
- Load balancing
- Virtual servers—orchestration
- Fast delivery—scaling
- Deployment monitoring

AWS CodeDeploy enables automated scaling
of the application deployed from Codeship. It
enables automated scaling of the app for users.
It also provides monitoring components for the
application health at run time.

GAE - Automated scaling
- User access management
- Virtual servers—orchestration
- Fast delivery—scaling
- Deployment monitoring

GAE enables automated scaling of the
application deployed from Codeship. It enables
automated scaling of the app for users. It also
provides monitoring components for the
application health at run time.

86

Figure 4.13: DRAv1.0 Instance Pipeline

Figure 4.14: DRAv2.0 Instance Pipeline

87

 DRA setup and configuration template

The DRA framework offers a practical solution for IoT application deployment to the cloud
(Ghantous & Gill 2018). This thesis provides a setup and configuration template for case studies’
to prove the usability of the DRA (see Table 4.7). The DRA template will be used in case studies
in Chapter 5. It provides general setup guidelines for the DRA pipeline to support the
development environment for any application (supporting many programming languages). The
template shows how to construct an operation pipeline that follows the conceptual model
blueprint and enables the features and functions of the logical model functions. Hence, the DRA
template (see Table 4.7) offers setup guidelines for the physical components of the framework:
1) DevOps team development environment, 2) repository, 3) CI broker, 4) CD platform
(continuous development platform) or clouds, 5) monitoring, and 6) database. The template is an
application for DRAv1.0 instance and DRAv2.0 instance (see Table 4.7).

88

Table 4.7: DRA Setup and Configuration Template
 Step DRAv1.0 and DRAv2.0 Instances –Setup and Configuration

Features Tools
DevOps
team

- Create Maven Project (maven-app-heroku) and configure its
project descriptor pom.xml to include minimum required plugin
plugins to enable DRA pipeline tools in the maven-app-heroku
project

- Create JUnit tests and Cucumber tests as part of the application
- Create MongoDB (mLab) connector module
Note: Other types of applications may be programmed using various
programming languages

Maven plugin
JUnit Plugin
Heroku Plugin
MongoDB plugin
Cucumber plugin
Bootstrap plugin
Web jar plugin
Net. ssh plugin

Repository - Create a cloud repository for the maven-app-heroku, called ‘dev-
repo’ on BitBucket

- Integrate BitBucket with Slack and push commit logs

Bitbucket
Codeship
Slack

CI broker - Setup Codeship environment script:
jdk_switcher use oraclejdk8
mvn install
mvn compile
mvn test

- Setup Codeship deployment master branch to:
Heroku (see documentation link)
AWS (see documentation link)
Google App Engine (see documentation link)

- Integrate Codeship with Slack and push build/test logs

Codeship

CD platform Heroku setup:
- Create the maven-app-heroku project on Heroku
- Add Web Dyno on Heroku for auto-scaling
- Add Procfile with the same web dyno script to project root

directory
AWS setup:
- Create the maven-app-heroku application on AWS
- Create a user and get: the secret key and access key
- Set up 2 or more EC2 instances
- Set up a security group
- Set up an IAM role
- Set up a deployment group using EC2 instances
- Set up an S3 bucket
- Provide Codeship with access to S3 bucket and CodeDeploy
GAE Setup:
- Create the maven-app-heroku application on Google App Engine
- Set up a bucket on Google
- Provide Codeship with access to the bucket and the GAE

Heroku

AWS

Google App
Engine

Monitoring - Enable log capturing on Papertrail account from Heroku, AWS
and Codeship

- Integrate Papertrail to push deployment logs to Slack
- Integrate Slack with Papertrail, Codeship and BitBucket, and

collect all logs then notify users in real-time

Papertrail

Slack

Database - Create a mLab DB account through Heroku
- Provide the connection link of mLab DB to the IoT application

connector class

mLab (MongoDB)

https://documentation.codeship.com/basic/continuous-deployment/deployment-to-heroku/
https://documentation.codeship.com/basic/continuous-deployment/deployment-to-aws-codedeploy/
https://documentation.codeship.com/basic/continuous-deployment/deployment-to-google-app-engine/

89

In addition to the above instructions, AWS, GAE and Heroku require custom deployment setup
parameters. These files are embedded within the maven-app-heroku project. Table 4.8 presents
the deployment files and their descriptions for each deployment cloud.

Table 4.8: CD Platforms Parameters
Models File Name Code
AWS appsepc.yml

(Located in the root
directory of IoT app)

 version: 0.0
os: linux

files:

 - source: /target/maven-app-heroku-1.0-

SNAPSHOT

 destination: /var/www/html

 - source: /target/

 destination: /var/www/html
GAE appengine-web.xml

(Located in directory
WEB-INF of IoT app)

<?xml version="1.0" encoding="utf-8"?>
<appengine-web-app
xmlns="http://appengine.google.com/ns/1.0">
 <application>propane-primacy-193602</application>
 <version>1</version>
 <runtime>java8</runtime>
 <threadsafe>true</threadsafe>
 <system-properties>
 <property name="java.util.logging.config.file"
value="WEB-INF/logging.properties"/>
 </system-properties>
</appengine-web-app>

Heroku Procfile
(Located in root
directory of IoT app)

web: java $JAVA_OPTS -jar

target/dependency/webapp-runner.jar --port

$PORT target/*.war

4.4.2.2. IoT Application

The DRA software component used in this research is a Java maven web application with an
integrated IoT application component (see Figure 4.15) called maven-app-heroku (https://maven-
app-heroku.herokuapp.com/). The IoT app interacts with IoT sensors using Python scripts
programmed on a Raspberry Pi Model 3 B (named RPIB).

https://maven-app-heroku.herokuapp.com/
https://maven-app-heroku.herokuapp.com/

90

Figure 4.15: IoT App (maven-app-heroku) https://maven-app-heroku.herokuapp.com

The interaction of maven-app-heroku and the IoT devices is triggered using shell commands.
The shell commands activate the Python scripts programmed on RPIB and read the RPIB GPIO
pins data. Figure 4.16 shows that each pressed button on the IoT-application control panel runs
an SSH command SSHC [index] from table 4.11.

Figure 4.16: IoT App Control Panel

This section outlines the development steps and provides a development script of maven-app-
heroku, the Python scripts and the shell commands used. It also provides key deployments for
the IoT app setup. The complete IoT app (maven-app-heroku) code and Raspberry Pi Python
scripts are stored on BitBucket.

https://maven-app-heroku.herokuapp.com/

91

This thesis provides ‘observer’ access to the project repository ‘dev-repo’ (see Table 4.9). It is
necessary to add the correct plugins (see Table 4.7) in maven-app-heroku POM.XML. Complete
details of POM.XML are located on BitBucket/dev-repo repository (see Table 4.9). The
POML.XML file must be placed in the root directory of the maven-app-heroku application
project.

Table 4.9: DRA Repository (dev-repo)

Software Components IoT Application (maven-app-heroku)
Source Code Location Tools

maven-app-heroku

BitBucket Link: https://bitbucket.org/product

Username: devopsobserver@hotmail.com
Password: observer

maven-app-heroku link:
https://maven-app-heroku.herokuapp.com/

BitBucket

Python applications

BitBucket Link: https://bitbucket.org/product

Username: devopsobserver@hotmail.com
Password: observer

BitBucket

 Java components

The main Java code components in this section are located in the following Java classes and JSP
files of the maven-app-heroku project (see Table 4.9 for access to full code description):

 In package src.main.java.uts.wsd.iot:
o SSHExec.java
o NullHostKeyVerifier.java

 In package src.main.java.uts.wsd.controller:
o IOTServlet.java
o MongoDBConnector.java

 In package src.main.webapp:
o index.jsp

 In test Package uts.wsd.test:
o CucumberTest.Java
o MavenJUnitTest.java
o RunTest.java

 Python components

The Python scripts used to interact with the IoT sensors are programmed on RPIB (see Table
4.10). The scripts can communicate with IoT sensors set up on GPIO pins 13, 17, 19 and 22.
The python scripts are labelled PScript[index] in table 4.10. The Python scripts are described as
follows:

https://bitbucket.org/product
mailto:devopsobserver@hotmail.com
https://maven-app-heroku.herokuapp.com/
https://bitbucket.org/product
mailto:devopsobserver@hotmail.com

92

 blink.py: starts/stops each of the 4 LED lights with a sleep timer of 0.05 seconds. Repeat
the process 10 times.

 startLED.py: starts the 4 LED lights all at once.
 stopLED.py: stops the 4 LED lights all at once.

Table 4.10: Python Scripts
PScript[1] = blink.py PScript[2] = startLED.py PScript[3] = stopLED.py

import RPi.GPIO as GPIO
import time

GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM)
xmas_led = (13,17,19,22)
GPIO.setup(xmas_led,GPIO.OU
T)
j=0
while j<10:
 for i in range(len(xmas_led)):

GPIO.output(xmas_led[i],True)
 time.sleep(0.05)
GPIO.output(xmas_led[i],False)
 time.sleep(0.05)
 j+=1
GPIO.cleanup()

import RPi.GPIO as GPIO
import time

GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM)
xmas_led = (13,17,19,22)
GPIO.setup(xmas_led,GPIO.OU
T)

for i in range(len(xmas_led)):

GPIO.output(xmas_led[i],True)

import RPi.GPIO as GPIO
import time

GPIO.setwarnings(False)
GPIO.setmode(GPIO.BCM)
xmas_led = (13,17,19,22)
GPIO.setup(xmas_led,GPIO.OU
T)

for i in range(len(xmas_led)):

GPIO.output(xmas_led[i],False)

 Action shell commands

This section discusses the shell commands required to establish communication between the IoT
application over the internet, and the Python scripts (see Table 4.10) programmed on an RPIB
using SSH port 22. The action shell commands are executed in the Java class ‘SSHExec.java’ by
clicking on buttons from ‘index.jsp’ (see Figures 4.15 and 4.16) and controlled by Java servlet
‘IOTServlet.java’ (see Table 4.9 for the complete code on BitBucket). The ‘firecommand’
method of ‘SSHExec.java’ class is used to execute the shell commands and establish a secure
connection to RPIB and IoT sensors using port 22. The results of every shell command execution
are stored as a string in a variable called ‘result’ in the class SSHExec.java. The IoT data stored
in ‘result’ are automatically saved into the (MLab) DRA cloud database as JSON format. There
are four SSH commands labelled SSHC[index] (see Table 4.11) used to communicate with IoT-
sensors (Sensor_A and Sensor_B) (see Figure 4.17). The SSHC[index] commands have two
roles: 1) activate the python scripts PScript[index] (see Table 4.10) and read the data from the
sensors GPIO pins (see Section 4.4.B.3 IoT-Network).

93

Table 4.11: Action Shell Commands
SSHExec-firecommand (String Shell
Command)

Shell Commands

public void fireCommand(String command)
throws Exception {
 final SSHClient ssh = new SSHClient();
 Command cmd = null;
 ssh.addHostKeyVerifier(new
NullHostKeyVerifier());
 int pn = 22;
 String ipaddress = "1.40.181.169";
 String username = "pi";
 String password = "georges034302";
 try {
 ssh.connect(ipaddress, pn);
 } catch (IOException e) { }
 ssh.authPassword(username, password);
 final Session session = ssh.startSession();
 cmd = session.exec(command);
 result =
IOUtils.readFully(cmd.getInputStream()).toString(
);
 ssh.close();
 }}

//Activate PScript[2] which runs startLED.py and
read the IoT light sensor on pin 13 using the
following SSH command:
SSHC[2] =
 fireCommand("sudo python startLED.py");
 fireCommand("gpio -g read 13")

//Activate PScript[3] which run stopLED.py and
read the IoT light sensor on pin 13 using the
following SSH command:
SSHC[3] =
 fireCommand("sudo python stopLED.py");
 fireCommand("gpio -g read 13");

//Activate PScript[1] which runs blink.py and make
the IoT light sensor turn on and off for a short
period using the following SSH command:
SSHC[1] =
 fireCommand("sudo python blink.py");

//To read data from motion sensor installed on pin
12 using the following SSH command:
SSHC[4] =
 fireCommand("gpio -g read 12");

4.4.2.3. IoT Network

This section discusses the IoT network (IoT devices and IoT sensors) that is used to demonstrate
the IoT application interactions with IoT devices. This section outlines an IoT inventory of
devices, sensors and connectivity protocols used to connect IoT applications with the IoT
network. This section also shows how the devices are configured together to create a sample IoT
network (IoT network). The IoT application (maven-app-heroku) interacts with the IoT network
and generates IoT data, which are stored automatically in the DRA central database (MLab) in
JSON format.

 IoT network inventory

The IoT devices and IoT sensors (IoT network) used in this research are explained as follows:
 Raspberry Pi Model 3 B (named RPIB)
 4 LED lights connected to 4 GPIO pins (13, 17, 19 and 22) (named Sensor_A).
 Motion Sensor + 1 LED connection to a single GPIO pin (12) (named Sensor_B).

Sensor_A and Sensor_B are configured on the RPIB board (see Figure 4.17).

94

The IoT network is used in the empirical evaluation (see Chapter 5) to demonstrate the
application of the DRA instances. The DRA instances are not fixed to a particular IoT network
and can be used to deploy IoT applications that interact with numerous types of IoT devices.

 IoT network configuration

The IoT network is used for demonstration purposes and DRA proof of concept (POC) and
evaluation (see Chapter 5). Figure 4.17 shows Sensor_A lights installed on GPIO pins (13, 17,
19 and 22) and Sensor_B installed on GPIO pin 12. These sensors are activated using Python
scripts programmed on the RPIB board. The Python scripts (see Table 4.10) are triggered over
the internet using shell commands executed using the Java method defined in ‘SSHExec.java’.

Figure 4.17: IoT Network

As noted in previous sections, the IoT network sample used for demonstration in this thesis is
controlled using Python scripts. IoT network operational interaction with Python scripts (see
Table 4.9) can be observed in the following YouTube video (Link).

 Connectivity

The IoT network is configured to connect to the internet using the organisation’s local Wi-Fi
network. Raspberry Pi (see Figure 4.17) can be configured on any network to obtain an IP
address. The IoT application deployed to the cloud/multi-cloud interacts with the IoT network
using the SSH protocol. The IoT network can be configured using different connectivity options
such as mobile networks (3G, 4G, and 5G). The IoT application can interact with the IoT

https://youtu.be/JpM733jKWwQ

95

network using different protocols such as MQTT or Bluetooth. Thus, IoT network connectivity
options are not fixed to a particular instance and can be configured using internet connection
options and connectivity protocols that are available in the organisation’s context.

4.4.3. OUTPUT

This section presents the framework composition output, which are the DRA instances created
using generic DRA reference architecture models (see Section 4.3). The output component is
composed of three elements: DRA model, DRAv1.0 instance and DRAv2.0 instance.

4.4.3.1. DRA model

This section presents the fundamental structure for the DRA framework that can be instantiated
by DevOps teams (developers, managers, coaches, and consultants) to deploy IoT applications to
the cloud/multi-cloud.

A DRA model has three partitions:
a) DRA characteristics used by organisations as a foundation for DRA implementation.
b) DRA architectural design models used by organisations as a template to create instances.
c) DRA composition used by organisations to create a practical implementation of the

framework.

4.4.3.2. DRAv1.0 instance (Single Cloud)

The DRAv1.0 instance (see Figure 4.18) structure is composed of four constituents or models:
 conceptual
 logical
 physical
 operational.

The operational model is an instance of the physical model that enables IoT application
deployment to a single cloud (e.g., Heroku). The operational pipeline instance is built using
integrated DevOps tools and cloud services. DRAv1.0 instance is an output of the DRA
composition. Organisations may configure and set up the DRAv1.0 instance based on the DRA
architectural models using numerous tools for different types of applications and technology
stacks. Figure 4.18 shows how the conceptual model is expanded into a logical model that
contains the necessary DevOps practices and cloud services to support and enable the DRA
characteristics defined in Section 4.2. Figure 4.18 also shows how the physical model is created
using the logical model as a template. The physical model is instantiated into an operational
model pipeline that enables the product’s (IoT application) deployment to a single cloud (e.g.,
Heroku).

96

Figure 4.18: DRAv1.0 Instance

97

4.4.3.3. DRAv2.0 instance (Multi-Cloud)

The DRAv2.0 instance (see Figure 4.19) structure is composed of four constituents or models:
 conceptual
 logical
 physical
 operational.

The operational model is an instance of the physical model that enables IoT application
deployment to the multi-cloud (e.g., Heroku, GAE). The operational pipeline instance is built
using integrated DevOps tools and cloud services. The DRAv2.0 instance is an output of the
DRA composition. Organisations may configure and set up the DRAv2.0 instance based on the
DRA architectural models using numerous tools for different types of applications and
technology stacks.

Figure 4.19 shows how the conceptual model is expanded into a logical model that contains the
necessary DevOps practices and cloud services to support and enable the DRA characteristics
defined in Section 4.2. Figure 4.19 also shows how the physical model is created using the
logical model as a template. The physical model is instantiated into an operational model
pipeline that enables the product’s (IoT application) deployment to the multi-cloud (e.g., Heroku,
AWS, GAE).

To prevent vendor lock-in issues, the DRAv2.0 instance contains a vital mechanism—the CI
broker (e.g., Codeship)—that hosts the IoT application deployment configuration, as well as a
central database (MongoDB mLab) to host the IoT data.

98

Figure 4.19: DRAv2.0 Instance

99

4.5. DRA FRAMEWORK IMPLEMENTATION

This section discusses the implementation steps required to create practical instances of the DRA
framework in the organisation context. The DRA framework can be presented to organisations,
research labs and academic courses using the implementation process and the case study
template (CST) (see Appendix G). The CST is a procedure designed to guide experts,
practitioners and researchers in how to apply DRA framework characteristics and use DRA
architectural models to create practical instances. The implementation process is based on the
DRA composition, which demonstrates how to do design, create and instantiate the DRA to
enable IoT application deployment to the multi-cloud (DRAv2.0 instance). The DRA framework
is composed of two steps: DRA implementation process and DRA evaluation process.

4.5.1. DRA INSTANTIATION PROCESS

The DRA instantiation process is a method aimed at helping organisations (managers,
developers, engineers, coaches, consultants) create an instance of the DRA operational model for
an organisation or a team. The DRA instance is tailored to adapt to the current environment and
to use the DRAv2.0 instance (see Section 4.5.3.3) model to enable IoT application deployment to
the multi-cloud. There are five steps to consider for the DRA instantiation process:

 initiation
 development
 pipeline configuration
 deployment
 management.

Each step has three elements:
 step goal
 step checklist
 step review.

The step goal is a unique entity that explains the purpose of a particular step. The step checklist
is formed of 10 entities, which are requirements related to the particulate implementation step.
Each entity description is determined by the response of the organisation team (developers,
manager, engineers, consultants, coaches) to the corresponding question about that entity. The
purpose of the checklist step is to provide the organisation’s team with guidelines for
implementing the numerous steps of the framework instance. The review step determines the
level of success of the implementation of a particular step. The initiation step guidelines allow
organisations and teams to decide if the implementation of DRA is achievable or feasible in the
context of the organisation.

100

1. Initiation

Goal: To perform DevOps contextual analysis of the current environment in an organisation and
determine whether a team should proceed with adopting the DRA framework.

Checklist: Table 4.12

Table 4.12: Initiation Checklist
Entity Description
Identify the infrastructure Which infrastructure is being used for the project (clouds)?

Identify the prospects Who is involved in the framework adoption (consultants,
managers, developers)?

Identify the hardware What type of hardware is being used in the framework adoption
(IoT devices)?

Identify DevOps concepts Which DevOps concepts (see Table 2.9) are applicable in the
adoption?

Determine business context The business context (products, services, customers).

Determine the technology context The technology context used in the adoption (tools,
programming languages, network).

Determine prospect readiness How ready are the prospects for the adoption (knowledge, skills,
resources)?

Determine the time frame
The timeframe for the adoption (implementation, development,
deployment, delivery).

Determine implementation area
The implementation area or location for the framework
implementation (lab, remote).

Determine the adoption framework Which framework will be adopted (e.g., DRA)?

Review: Organisations or teams can decide to implement the DRA framework based on the
managers’ and consultants’ reviews of the initiation checklist success.

101

2. Development

Goal: To develop a product in the organisation’s current environment using a DevOps approach.
The prospects apply DevOps practices during the development process of the product. The DRA
is founded on DevOps concepts and practices; it is relevant and practical to check the
applicability of DevOps adoption during the development.

Checklist: Table 4.13

Table 4.13: Development Checklist
Entity Description
Identify the product
owner

Who owns the process (organisation, developers, managers, consultants)?

Identify the process What is the developed product (type of application, requirements)?
Determine the
environment

Where is the product being developed (cloud, lab, remote, integrated)?

Identify DevOps
practices

Which DevOps practices (see Table 2.10) are applicable in the adoption?

Determine business value What is the benefit of the product (access, data, performance)?
Determine technology The technology used for development (tools, programming languages,

libraries).
Determine prospect
readiness

How ready are the prospects for the adoption (knowledge, skills,
resources)?

Determine the time frame The timeframe for development (construction, synchronisation, build,
test).

Determine usability How the product is being used and by who (purpose, users)?
Determine version
control

Which version of the development product is being used (synchronisation,
Retro-QA)?

Review: Organisations or teams can decide to implement the development process based on the
managers’ and consultants’ reviews of the development checklist. The checklist success
determines whether it is feasible to develop an IoT application or use a sample product that is
compatible with the organisation’s current environment.

102

3. Pipeline configuration

Goal: To develop a product in the organisation’s current environment using a DevOps approach.
The prospects apply DevOps practices during the development process of the product. DRA is
founded on DevOps, multi-cloud and IoT integration; therefore, it is necessary to check the
success of integration and application of the DRAv2.0 instance (see Table 4.10).

Checklist: Table 4.14

Table 4.14: Pipeline Configuration Checklist
Entity Description
Identify the process owner Who owns the process (organisation, developers, managers,

consultants)?
Determine the code
management tool

Which tool is being used for code synchronisation?

Determine CI broker Which tools are being used for CI broker?
Determine CD clouds Which clouds are being used for continuous deployment and

delivery?
Determine the monitoring tool Which tools are being used to monitor the application’s deployment?
Determine the collaboration
tool

Which tools are being used for communication and collaboration of
prospects?

Determine DB tool Which tools are being used for database management?
Determine IoT connection Is the DRA pipeline connected to the IoT devices and IoT sensors?
Determine application delivery Is the application being auto-scaled on all clouds for users?
Determine DRA instance Which instance of DRA is being used (e.g., DRAv2.0 instance)?

Review: Organisations or teams can decide to use the operational model of the DRA based on
managers’ and consultants’ reviews of the checklist (see Table 4.14). The checklist success
determines whether it is feasible to construct a deployment pipeline for IoT application to the
multi-cloud in the organisation’s current environment. The deployment pipeline is a physical
instance of the DRA operational model (see Chapter 4). DRAv2.0 instance pipeline
configuration follows the DRA setup (see Chapter 4 for configuration guidelines).

103

4. Deployment

Goal: To deploy a product in the organisation’s current environment using the DRA. The
prospects apply DevOps practices to achieve the optimal deployment process. It is necessary to
verify the effectiveness of the deployment in the pipeline based on the checklist table.

Checklist: Table 4.15

Table 4.15: Deployment Checklist
Entity Description
Identify the process owner Who owns the process (organisation, developers, managers,

consultants)?
Verify commit logs Can the prospects view application commit logs on the code

management tool?
Verify build logs Can the prospects view application build logs on the CI broker?
Verify testing logs Can the prospects view application testing logs on the CI broker?
Verify deployment logs Can the prospects view application deployment logs on the CI

broker?
Verify application delivery Can the prospects view application delivery logs on the cloud?
Verify IoT app usability Can the prospects use the deployed application?
Verify IoT app and DB
interaction

Are the data being saved to the cloud DB of the DRA?

Verify application availability Is the application auto-scaled on the multi-cloud?
Determine deployment
timeframe

How long did it take to deploy the application?

Review: Organisations or teams can identify the success of application deployment in DRAv2.0
instance pipeline is based on managers’ and consultants’ reviews of the checklist. The checklist
determines whether the success of the deployment of the IoT application to the multi-cloud in the
current organisation environment is feasible.

104

5. Management

Goal: To focus on facilitation, leading and supporting (management mindset) at the organisation,
department or team level to deliver results and determine the business value of DRA adoption.
The management scorecard is the crucial resource that can be used to determine DRA
practicality and usefulness in the current environment of DRA. It is necessary to verify the level
of success based on the checklist of management entities in the checklist table.

Checklist: Table 4.16

Table 4.16: Management Checklist
Entity Description
Identify the process owner Who owns the process (organisation, managers, and consultants)?
Manage collaboration Does the DRA improve collaboration (developers, managers, consultants)?
Manage risk What is the risk of DRA adoption?
Manage facilitation Does the DRA facilitate team tasks?
Manage change Does the DRA enable application examination and allow replanning?
Manage benchmark How close is the DRA to a practical benchmark?
Manage business value Does the DRA improve agile delivery?
Manage compatibility Does the DRA have an adaptive characteristic?
Manage communication Does the DRA enable real-time communication and notification?
Manage feasibility Is the DRA considered a practical and useful model (DRAv2.0)?

Review: Organisations decide, or teams can measure the degree of success of DRAv2.0 instance
is based on managers’ and consultants’ reviews of the checklist (see Table 4.16). The
management review determines whether DRAv2.0 instance implementation is feasible in the
organisation’s current environment.

4.5.2. DRA EVALUATION PROCESS

The DRA evaluation for organisations aims to determine the applicability and usability of the
DRA framework. The DRA evaluation is presented to participants (industry, research lab, and
teaching) using a case study template (see Appendix G) and an industry field survey (see
Appendix D). The case study template (CST) (see Appendix G) is used in chapter 5 provides
industry and research experts with information and guidelines about the instantiation of the DRA
architectural model. The survey questionnaires (see Appendix G) were developed to obtain the
industry experts’ perspectives about the DRA framework. The data collected from the case
studies and surveys were analysed to determine that the DRA meets the validation criteria for the
case study (see Table 3.2) and for the survey (see Table 3.4); explained in chapter 3-DSR.

105

4.6. SUMMARY

This chapter presented the main components of the DRA framework. The DRA framework is
founded on three main components (framework characteristics, framework architecture, and
framework composition). The framework characteristics are commonly used terminologies that
represent the DRA entities. The DRA framework characteristics are used to create a generic
architecture design model using the DevOps approach and cloud services. The DRA framework
architecture model is composed of five components (contextual, conceptual, logical, physical,
and operational). DRA architecture can be used as a template or blueprint to create instances in
organisations’ contexts. The DRA framework composition incorporates the DRA resources and
configuration needed to create the framework output instances. This chapter presented two
instances of the DRA model: DRAv1.0 and DRAv2.0. The chapter also presented the DRA
implementation and evaluation templates. These templates are used in Chapter 5 to evaluate the
DRA framework using an empirical evaluation. Information about the DRA framework
development, implementation and publications are available on the development website:
https://maven-app-heroku.herokuapp.com/.

https://maven-app-heroku.herokuapp.com/

106

Chapter 5: DRA Framework Empirical Evaluation

Chapter 4 presented the DRA framework to address the main research question (see Chapter 1).
The validity of this assertion is explained in the current chapter using an empirical evaluation.
This evaluation has been conducted in four iterations. First, this chapter presents an industry case
study that demonstrates the applicability of the DRA to a practical context. Second, it discusses a
research case study conducted in a lab environment at UTS. Third, the chapter discusses a
teaching case study that demonstrates how the DRA can be used in a project-based software
development environment for teaching at UTS Faculty of Engineering and Information
Technology (FEIT). Fourth, this chapter presents the results of the industry survey that was
conducted with software professionals from various organisations. The survey data are analysed
to conclude the final evaluation of the DRA. The applicability and relevance of the DRA
framework are evaluated based on the feedback collected from the case studies and field survey.

5.1. FRAMEWORK EVALUATION OVERVIEW

This section presents high-level testing of the DRA to provide POC of the proposed framework
in the industry, research and teaching. Two types of empirical evaluations are used in this thesis:
case study evaluation and survey evaluation. The results from the empirical evaluation are used
in to determine that the DRA framework meets the evaluation criteria (see Chapter 3, Table 3.2,
Table 3.4). The DRA empirical evaluation overview is illustrated in Figure 5.1 and represents the
empirical evaluation overall results analysis to determine the applicability, reusability and
novelty of the DRA. The testing was conducted in four iterations:
1. An industry case study (see Section 5.3) was conducted at the organisation code-named CPF

using a case study template (see Appendix G). The participant was a DevOps engineer (DE)
from the CPF organisation who evaluated the applicability of the DRA for the CPF context.

2. A research case study (see Section 5.4) was conducted at DigiSAS Lab UTS FEIT using a
case study template (see Appendix G). The participant was the DigiSAS Lab director and
supervisor who evaluated the applicability of the DRA for the DigiSAS Lab software
development and deployment context.

3. For the teaching case study surveys (see Section 5.5) the DRA framework was integrated into
two subjects at UTS FEIT (SEP 48440 School of Computer Science and INP 31261 School
of Electrical and Data Engineering). Data from the SFS (student feedback survey) were
collected anonymously from students in these subjects to determine the relevance and
usefulness of the DRA for teaching.

4. An industry survey (see Section 5.6) was offered to a cohort of 82 professionals from local
and international companies. The survey (Link) was offered to participants through LinkedIn.
The data were collected anonymously to help provide POC to the DRA and to determine its
relevance from the experts’ point of view.

http://handbook.uts.edu.au/subjects/48440.html
http://handbook.uts.edu.au/subjects/31261.html
http://tiny.cc/99dldz
https://www.linkedin.com/in/georges-bou-ghantous/

107

Figure 5.1: Empirical Evaluation Overview

5.2. DRA INSTANTIATION

This section presents the DRA instantiation process used to create instances for the empirical
evaluation. The empirical evaluation evaluates the implementation of two DRA instances:
DRAv1.0 (single-cloud) and DRAv2.0 (multi-cloud). The DRA instantiation process is
explained in four tables:

 Table 5.1: Identifies and recommends commonly used DevOps and cloud tools that could
be used to create an instance pipeline. Table 5.1 provides a list of features and a brief
description of every tool.

 Table 5.2: Identifies the steps required to create a DRA instance and the configuration
required for every recommend tool in the instance.

 Table 5.3: Describes the software application (IoT-application) used to test the DRA
instances applicability. The software application is stored on BitBucket and can be
accessed using and observer (guest) account setup for the evaluators.

 Table 5.4: Describes the IoT-devices (IoT-Network) used in the evaluation to test the
IoT-application interactions. Table 5.4 includes two sensors (Sensor A and Sensor B) and
a brief description of the sensors setup and configuration on the Raspberry Pi board
(RPIB).

108

Table 5. 1: DRA Instance Toolset
Tools Features Description
BitBucket 1. Code synchronisation

2. Automated code push
3. Automate commit logs to
Slack

BitBucket is a team collaboration and code
management tool. It enables code synchronisation
and automatically pushes the application to
Codeship. It also sends commit- logs to Slack.

Codeship 1. Automated build/testing
2. Automated deployment
3. Hosts deployment
configuration for applications
4. Enables automated testing
5. Automate build/testing logs
to Slack

It is the Continuous Integration Broker (CI-Broker)
tool. It enables automated build/testing for code
automatically received from BitBucket. It also
enables automated deployed to clouds. It also sends
build/testing/deployment logs to Slack.

Heroku 1. Automated scaling
2. Virtual servers—
orchestration
3. Fast delivery—staging
4. Automate deployment logs
to Papertrail

Heroku cloud enables the automated staging of the
application deployed from Codeship. It enables
automated scaling of the app for users. Run-time
logs of the application are sent to Papertrail.

Papertrail 1. Acquire deployment logs
2. Automated deployment
logs to Slack
3. Automated notifications

Papertrail monitoring the deployment and execution
logs of the IoT application. It sends those logs to
Slack.

MLab 1. Cloud DB management
2. Dynamic application access
3. Virtual DB servers
4. NoSQL DB

MLab is a MongoDB cloud database management
service. It enables automated data access and
mapping. MLab collected IoT data from the IoT
application and store that data in JSON NoSQL.
DevOps team can dynamically manage IoT data on
MLab.

Slack 1. Automated log
management
2. Automated notifications
3. Real-time communication
(chat, video)
4. Resource-sharing option
5. Integration with Codeship
and Papertrail

Slack is a communication and collaboration tool. It
provides DevOps team with real-time chat/video
conference option and enables automated real-time
notifications. Slack collects commit logs from
BitBucket, build/test/deployment logs from
Codeship, and deployment/run logs from the cloud
then notifies the team.

AWS
(CodeDeploy)

1. Automated scaling
2. Load balancing
3. Virtual servers—
orchestration
4. Fast delivery—staging
5. Deployment monitoring

AWS CodeDeploy enables the automated staging of
the application deployed from Codeship. It enables
automated scaling of the app for users. It also
provides monitoring components for the application
health at run time.

GAE 1. Automated scaling
2. User access management
3. Virtual servers—
orchestration
4. Fast delivery—staging
5. Deployment monitoring

GAE enables the automated staging of the
application deployed from Codeship. It enables
automated scaling of the app for users. It also
provides monitoring components for the application
health at run time.

109

Table 5. 2: DRA Instance Setup and Configuration Template
Steps Configuration Tools

[or other tools of choice]
DevOps team - Create an application project (IoT app)

- Create testing modules
- Create MongoDB (mLab) connector module
- Add necessary dependencies and plugins

[Provide a list of plugins
and dependencies]

Repository - Create a cloud repository for the application
- Integrate BitBucket with Slack and push commit logs

Bitbucket
Slack

CI broker - Setup Codeship environment script:
[which programming language]
[which compiler-compiler command]
[which tester–testing command]

- Setup Codeship deployment master branch to:
Heroku (see documentation link)
AWS (see documentation link)
Google App Engine (see documentation link)

- Integrate Codeship with Slack

Codeship

CD platform Heroku Setup:
- Create the maven-app-heroku project on Heroku
- Add Web Dyno on Heroku for auto-scaling
- Add Procfile web dyno script to the root directory
AWS Setup:
- Create the maven-app-heroku application on AWS
- Create a user and get: the secret key and access key
- Setup 2 or more EC2 instances
- Setup a security group
- Setup a deployment group using EC2 instances
- Setup an S3 bucket
- Provide Codeship with access to S3 and CodeDeploy
GAE Setup:
- Create the maven-app-heroku application on GAE
- Setup a bucket on Google
- Provide Codeship with access to GAE

Heroku

AWS

GAE

Monitoring - Enable log capturing from Heroku, AWS and Codeship
- Integrate Papertrail to push deployment logs to Slack
- Integrate Slack with Papertrail, Codeship, BitBucket

Papertrail
Slack

Database - Create a mLab DB account through Heroku
- Provide the connection link of mLab DB to the IoT

application

mLab

https://documentation.codeship.com/basic/continuous-deployment/deployment-to-heroku/
https://documentation.codeship.com/basic/continuous-deployment/deployment-to-aws-codedeploy/
https://documentation.codeship.com/basic/continuous-deployment/deployment-to-google-app-engine/

110

Table 5. 3: Software Component
Software Component Checklist Description
Application name [required] maven-app-heroku
Application type [IoT] Java Maven app with IoT module
Programming languages [required] Java/Python
IDE [required] Netbeans
Unit testing module [required] JUnit
Acceptance testing module [required] Cucumber
Resources https://bitbucket.org/product
Access observer
Username devopsobserver@hotmail.com
Password observer

Table 5. 4: Hardware Component

Step Setup and Configuration Tools

Sensor A 4 LED lights (multi-coloured) connected to 4 GPIO
pins (13, 17, 19, 22) (named Sensor_A) on a RPIB.

LED lights
Raspberry Pi

Sensor B Motion Sensor + 1 LED connection to a single GPIO
pin (12) (named Sensor_B) on a RPIB.

Motion sensor
Raspberry Pi

5.3. INDUSTRY CASE STUDY

The evaluation of the DRA was conducted in real-world settings in the organisation context. The
case study was conducted using a case study template tailored to the context of the industry and
research (see Appendix G). The data collected from the case study were qualitative feedback.
The industry case study was conducted following specific steps outlined in chapter 3 (DSR
Evaluation step):

1. case study design
2. preparation for data collection
3. collecting data
4. data analysis
5. reporting.

The industry case study is illustrated in Figure 5.1 as an iteration of the empirical evaluation of
the DRA framework.

https://bitbucket.org/product

111

5.3.1. CASE STUDY PLAN

The case study is organised to demonstrate the applicability of the DRA in a real-world context.
The case study process adopted to evaluate the DRA for CPF is as follows:
 Identify the case study organisation:

The case study is conducted at the organisation [CODE_NAME: CPF]. Date: 24/04/2019
This evaluation involved the organisation’s DE, who is involved in the company’s business
product models. DE’s personal information was kept anonymous following the ethics
approval code ETH18-2339 (see Appendix A).

 Case study organisation context: CPF efficiently consolidates and integrates the digital
strategy, solution designs and project delivery across the portfolio. CPF aims to provide a
cloud-based modelling platform to enable the business transformation from strategy to
execution.

 Need, and problem: Need a DevOps approach to deploy their platform features to the multi-
cloud environment for different customers.

 Solutions: The DRA seems to address the need and problems mentioned above. The DRA
enables the deployment of software to the multi-cloud. It automates the process of
deployment to the multi-cloud and enables faster software release. The DRA has been
explained as a guideline for setting the DevOps for the multi-cloud.

 Objective: The objective is to evaluate the applicability of the DRA in the practical
organisational context. The organisation objective is to have a working DevOps environment
based on a cloud platform that enables the automation of software deployment.

 DRA POC demo and presentation: To evaluate the DRA framework, a presentation slide
pack and demo were developed to demonstrate the deployment of a predeveloped sample IoT
application to the multi-cloud environment. The POC package demonstrates the applicability
and functioning of the DRA in operations:

o Demo Video YouTube video: Link
o Presentation Slides: Link

5.3.2. PREPARATION FOR DATA COLLECTION

The case study was conducted at organisation CPF using a case study template (see Appendix G)
that was tailored for the context of the industry and research to provide a flexible application of
the DRA in real-world settings. The DRA was tested using a prepared testing package at the
organisation premises under the supervision of the participant (DE), who was able to assess the
DRA using the POC package as a reference to understand the characteristics and concepts of the
framework. The demo and presentation of the DRA ran for approximately 30 minutes. The
participant also contributed to the industry field survey (duration approximately 30 minutes). The
participant evaluated the following DRA components defined in Chapter 4 (duration
approximately 30 minutes):

https://youtu.be/JN38xS27ek0
https://docs.google.com/presentation/d/1VkoH-kwWcYRyd0IY6AHa3TwCdDEhl-GifnNdeNx3D9I/edit#slide=id.p

112

1. DRA architecture (see chapter 4)
2. DRA operational model pipeline (see Table 5.1 and Table 5.2)
3. Software components (see Table 5.3)
4. Hardware components (see Table 5.4).

5.3.3. COLLECTING DATA

After the demo and presentation, the PhD researcher organised an evaluation session with the
evaluator (DE) (duration approximately 30 minutes). The total duration of data collection,
including the demo, presentation, survey contribution and case study contribution, was
approximately 120 minutes. The case study data were stored on CloudStor, the UTS-
recommended cloud storage (see Appendix E). The participant provided qualitative feedback
about the DRA components from its practical application perspectives as follows.

5.3.3.1. DRA Architecture

The DRA architecture was presented to the industry case study organisation CPF. The DRA
architecture is composed of four design architecture models: conceptual, logical, physical and
operational. The case study participant provided feedback on the architecture design and its
applicability to their organisation. The expert from the CPF (DE) reviewed the design and
provided positive feedback with further opportunities for improvements.

DE’s feedback about the DRA architecture: ‘It has been very well thought and process-driven. I
think it would be excellent to include some controls which could be used in the case to re-deploy
or even roll back to a previous version in an automated fashion’.

5.3.3.2. DRA Operational Model Pipeline

In this step, the case study template provides a checklist for the DRAv2.0 instance pipeline
implementation. The organisation’s DE may reuse the recommended toolset in Table 4.6 or
configure DRAv2.0 instance pipeline with other tools of choice. Table 4.7 outlines the setup
process of DRAv2.0 instance pipeline. Table 4.7 is designed to facilitate the configuration of the
DRA for organisation prospects.

DE’s feedback about the DRA toolset: ‘Tools used in operation model pipeline are industry used
tools and are an excellent choice for the DRA operation mode pipeline’.

DE’s feedback about the DRA setup and configuration process: ‘Configuration template is easy
to use and can be replicated’.

113

5.3.3.3. Software Component

DRAv2.0 instance pipeline can be configured to deploy any applications. The participant (DE)
was provided with a demo application (maven-app-heroku) to test the DRA architecture (see
Table 5.3). The demo application source code may be accessed on the code repository using
observer public access stated in Table 5.3. However, in the case studies, prospects may use their
IoT application (or non-IoT application) to test DRAv2.0 instance.

DE’s feedback about the IoT app: ‘Testing software component is functioning properly’.

5.3.3.4. Hardware Component

Table 5.4 presents information about a sample IoT device network that was used to test the IoT
application process. The IoT network sample (see Figure 4.17) was configured by the researcher
to provide POC of the DRA operation model and its applicability for enabling IoT processes and
interactions on the multi-cloud. However, in the case studies, organisations’ prospects may use
their IoT devices and sensors to test the IoT application deployed using DRAv2.0 instance
pipeline.

DE’s feedback about the IoT network: ‘Testing hardware component is functioning properly and
responding appropriately’.

Overall Feedback

The participant provided feedback about the demo package and the presentation prepared for the
organisation’s case study and imparted overall feedback about the DRA framework. The
feedback represents DE’s opinion about the DRA application in the organisation context.

DE’s feedback about the demo video used in the presentation: ‘Demo was easy to understand
and well presented’.

DE’s overall feedback about the DRA framework: ‘DRA framework would help organisations
understanding DevOps methodologies and agile application deployment and delivery’.

5.3.4. DATA ANALYSIS

The case study data collected during the experiment are analysed in Table 5.5. The data were
analysed using the cross-examination method between DE’s feedback and the case study
evaluation criteria in Table 3.2. This analysis aims to connect or relate the hypotheses
(evaluation criteria) to the expert’s feedback. The output of the analysis is organised into two
columns: ‘interpretation’, which is the researchers’ interpretation of the feedback, and ‘DRA
categories’, which is the relationship between the feedback and the evaluation criteria.

114

Table 5.5: Industry Case study Analysis
Participant Feedback Interpretation DRA Categories
‘It has been very well thought
and process-driven. I think it
would be excellent to include
some controls which could be
used in the case study to re-
deploy or even roll back to a
previous version in an
automated fashion’.

This feedback indicates that DRA design models
are well thought of and could be improved with
controls to enable automated rollback. DRAv2.0
enables automated deployment and automated
rollback to stable software versions.

Usefulness

‘Tools used in Operation
model pipeline are industry
used tools and are an excellent
choice for the DRA Operation
Mode Pipeline’.

This feedback indicates that the DRA toolset
choice is excellent for the instance pipeline.

Usefulness

‘Configuration template is easy
to use and can be replicated’.

This feedback indicates that the DRA is easy to
use in the organisation. It also indicates that the
DRA is applicable and instantiable.

Reusable

‘Testing the software
component is functioning
properly’.

This comment indicates that the DRA IoT
application is functioning as intended on the
multi-cloud.

Usefulness

‘Testing hardware component
is functioning properly and
responding appropriately’.

This comment indicates that the IoT devices are
interacting with IoT application deployed on the
multi-cloud.

Usefulness

‘Demo was easy to understand
and well presented’.

This feedback indicates that the organisation’s
DE seems to be satisfied with the DRA demo
package used for presenting the framework
operations.

Coverage

‘DRA framework would help
organisations understanding
DevOps methodologies and
agile application deployment
and delivery’.

This feedback indicates that the DRA provides
helpful new knowledge for organisations about
the DevOps approach and agile application
deployment and delivery process.

Coverage
Usefulness

5.3.5. REPORTING

The case study report is an organised case study outcome presented to the audience. The report
aims to draw a conclusion from the DE’s point of view about the DRA framework in the context
of CPF. Table 5.6 presents the systematic testing procedure of the industry case study at CPF.

115

Table 5.6: Industry Case Study Reporting Summary
Case Study 01 Description
Organisation CPF [CODE-NAMED]
Test date 24/04/2019
Organisation context CPF efficiently consolidates and integrates the digital strategy, solution designs

and project delivery across the portfolio. CPF aims to provide a cloud-based
modelling platform to enable business transformation from strategy to
execution.

Test team (TT)
(Participants)

DE at CPF who is involved in the company business product models.

Organisation need CPF need DevOps approach to deploy their platform features to the multi-cloud
environment for different customers.

Test objective The objective is to evaluate the applicability of the DRA in the practical
organisational context. The organisation objective is to have a working DevOps
environment based on a cloud platform that enables the automation of software
deployment.

Test case question How can the application features be deployed to the multi-cloud using DevOps?
Test package
(Pre-prepared)

To evaluate the DRA framework, a presentation slide pack and demo were
developed to demonstrate the deployment of a predeveloped sample IoT
application to the multi-cloud environment:
- Demo YouTube video: Link
- Presentation slides: Link

Main test component The participant (DE) evaluated the following DRA components:
1. DRAv2.0 architecture (see Figure 4.19)
2. DRA operational model pipeline (see Figure 4.14)
3. Software components (see Table 5.3)
4. Hardware components (see Table 5.4)

Test method Case study template (see Appendix G)
Industry survey (see Appendix D)

Test duration 120 minutes (presentation, demo, survey, case study)
Data type Qualitative feedback provided by the organisation’s DE.
Pretesting The researcher presented the case study project to the participant using the

presentation slides. The researcher organised a question-answer session to
explain necessary DRA aspects if required.

Key activities - TT verifies that DRA supports DevOps concepts (see Table 2.9).
- TT verifies that DRA enables DevOps practices (see Table 2.10).
- TT verifies that DRAv2.0 toolset (see Table 4.6) are easy to configure using

the guidelines provided by the case study (see Table 4.7).
- TT verifies that DRAv2.0 instance pipeline enables CI using CI broker (see

Table 4.7 and Figure 4.19).
- TT verifies the automated and continuous deployment and delivery of the

IoT app to multi-cloud (see Table 5.3 and case study demo package).
- TT verifies the IoT app interaction with IoT network sample (see Tables 4.19

and 4.20 and case study demo package).
- TT verifies that DRA design models can be reusable and instantiable.
- TT verifies that DRA conceptual model offers new knowledge for the

organisation to further understand the DevOps approach for agile application
deployment and delivery.

Expected outcome The expected outcome of the case study is to determine that the DRA provides
possible solutions to CPF’s needs and, by extension, verify that the framework

https://youtu.be/JN38xS27ek0
https://docs.google.com/presentation/d/1VkoH-kwWcYRyd0IY6AHa3TwCdDEhl-GifnNdeNx3D9I/edit#slide=id.p

116

Case Study 01 Description
addresses the research gaps (see Section 4.C).

Actual outcome The actual outcome is determined in the case study analysis section (see Table
5.5). The participant (DE) from CPF imparted valuable qualitative data (as
feedback) about the DRA. The cross-examination between the feedback and
Table 3.2 indicates that the evaluator (DE) considers DRA design models
reusable in the organisation context and easy to configure. The participant
indicated that the framework offers new knowledge about DevOps
methodologies for the agile application deployment and delivery process. After
cross-examination with Table 3.2, this also indicates that the DRA provides a
sufficient explanation about the framework elements that support the DevOps
approach.

Observation and
interpretation

DE contributed to the case study data collection and the industry field survey
based on the information provided by the demo package. It has been observed
that the framework can be easily reconfigured for an experimental situation
using the DRA design models. This indicates that the framework is not fixed for
a particular situation and may be generalised as a conceptual design to fit the
purpose of the organisation’s context.
TT indicated that the DRAv2.0 instance pipeline uses excellent industry tools of
choice. The pipeline demonstrated in the demo video shows that the IoT
application was successfully deployed to the multi-cloud and successfully
interacted with the IoT network of sample devices, which responded correctly
to the IoT application actions and events.
The observations are drawn from TT’s feedback. They indicate that the DRA
framework seems to provide an adequate solution to deploy IoT applications on
the multi-cloud using the DevOps approach.

5.4. RESEARCH CASE STUDY

The evaluation of the DRA was conducted in a real-world setting of the organisation context.
The case study was conducted using a case study template tailored to the context of the industry
and research (see Appendix G). The data collected from the case study were qualitative. The
industry case study was conducted following specific steps outlined in chapter 3 (DSR
Evaluation).

1. case study design
2. preparation for data collection
3. collecting data
4. data analysis
5. reporting.
The research case study is illustrated in Figure 5.1 as an iteration of the empirical evaluation
of the DRA framework.

5.4.1. CASE STUDY DESIGN

The case study at the DigiSAS Lab, UTS (15/08/2019) is organised to demonstrate the
applicability of the DRA in the real-world context. This evaluation involved the lab leader who

117

leads and manages several software-related research and development projects at the DigiSAS
Lab, including this PhD project. A summary of the process adopted for the evaluation of the
DRA for the DigiSAS Lab is presented below:

 Identify the case study organisation: UTS SCS DigiSAS Lab. I am undertaking a PhD
with this lab. Date: 15/08/2019

 Case study organisation context: Conduct research and development in collaboration
with industry partners, who are working on several software-related projects involving
web and IoT and the multi-cloud. The partners are from large to small- and medium-sized
enterprises (SMEs) and start-ups.

 Need and problem: Need a multi-cloud deployment environment for meeting the needs
of different industry partners, as they have different cloud deployment needs. The
challenge or problem is how to perform multi-cloud deployments.

 Solutions: The DRA seems to address the abovementioned need and problem. The DRA
has been explained and used as a guideline framework for setting the DevOps for the
multi-cloud.

 Objective: The researcher’s objective is to evaluate the applicability of the DRA in the
research lab environment. The lab’s objective is to have a working DevOps environment
for multi-cloud IoT application deployments.

 DRA POC demo and presentation: To evaluate the DRA framework, a presentation
slide pack and demo were developed to demonstrate the deployment of a predeveloped
sample IoT application to the multi-cloud environment. The POC package demonstrates
the application and working of the DRA in operations.
o Demo Video YouTube video: Link
o Presentation Slides: Link

5.4.2. PREPARATION FOR DATA COLLECTION

The case study was conducted at the UTS SCS DigiSAS Lab using a case study template (see
Appendix G) that was tailored for the context of the industry and research to provide a flexible
application of the DRA in a research lab setting. The DRA was tested using a prepared testing
package at the lab premises under the lab leader who leads and manages several software-related
research and development projects at the DigiSAS Lab, including this PhD project. The
participant was able to assess the DRA using the POC demo package as a reference to
understand the characteristics and concepts of the framework. The demo and presentation of the
DRA ran for approximately 30 minutes. The participant (Lab Leader or LL) evaluated the
following DRA components defined in Chapter 4 (duration approximately 30 minutes):

1. DRAv2.0 architecture (see Figure 4.19)
2. DRA operational model pipeline (see Table 5.1 and Table 5.2)
3. software components (see Table 5.3)
4. hardware components (see Table 5.4).

https://youtu.be/JN38xS27ek0
https://docs.google.com/presentation/d/1VkoH-kwWcYRyd0IY6AHa3TwCdDEhl-GifnNdeNx3D9I/edit#slide=id.p

118

5.4.3. COLLECTING DATA

After the demo and presentation, the PhD researcher organised an evaluation session with the
evaluator (LL) (duration approximately 30 minutes). The total duration of data collection,
including demo, presentation and case study contribution, was approximately 60 minutes. The
case study data were stored on CloudStor, the UTS-recommended cloud storage (see Appendix
E). The participant (LL) provided qualitative feedback about the DRA components from its
practical application perspectives as follows.

5.4.3.1. DRA Architecture

The DRAv2.0 was presented to the case study DigiSAS Lab. DRA architecture is composed of
four design architecture models: conceptual, logical, physical and operational. The case study
participant provided feedback on the architecture design and its applicability to their
organisation. The expert (LL) reviewed the design and provided positive feedback with further
opportunities for improvements.

LL’s feedback about the DRA architecture:

The output of this research is the DRA artefacts, and the outcome of this research is
new scientific or design knowledge about the DRA itself. As a research group leader, I
reviewed the DRA from following four perspectives, and my comments are noted
below:

Usefulness: DRA is applicable and is fit for setting-up the DevOps multi-cloud IoT
environment for lab research projects.

Generalisation: DRA is general in the sense that it is not fixed to one situation or
environment and can adapt to different situations and be used with different technology
stacks as appropriate to the situation. Thus DRA is applicable to a class of problem
situations and is applicable to several instantiations.

Novelty: DRA offers new knowledge, which has not been discussed before in the form
of complex DevOps for Multi-cloud and IoT. In particular, the concept of a broker
DevOps Cloud in the DRA.

Explainability: DRA models seem to provide sufficient explanation about the elements
and their relationships as a ‘design knowledge’, which can be used or reused for a
class of a problem addressed in this work.

My overall feedback is that DRA can be successfully instantiated for the similar
research lab environment needs for the deployment of IoT applications using multi-

119

cloud. Overall, DRA is fit for purpose; however, the following are some opportunities
for further research and development, perhaps new PhD projects.
 Extending the DRA for handling robotics and drones, this could be a direction

for further research.
 Extending DRA to deploy different AI/ML models and applications to

heterogeneous environments.

5.4.3.2. DRA Operational Model Pipeline

In this step, the case study template provides a checklist for the DRAv2.0 instance pipeline
implementation. The DigiSAS Lab evaluator (LL) may reuse the recommended toolset in Table
4.6 or configure DRAv2.0 instance pipeline with other tools of choice. Table 4.7 contains the
setup process of DRAv2.0 instance pipeline. Table 4.7 is designed to facilitate the configuration
of the DRA for research prospects.

LL’s feedback about the DRA toolset: ‘The instance of the DRA is working fine with above
technology stack’.

LL’s feedback about the DRA setup and configuration process: ‘The instance of the DRA setup/
configuration is working as intended’.

5.4.3.3. Software Component

DRAv2.0 can be configured to deploy any applications. The evaluator (LL) was provided with a
demo application (maven-app-heroku) to test the DRAv2.0 architecture (see Table 5.3). The
demo application source code may be accessed on the code repository using observer public
access stated in Table 5.3. However, in the case studies, prospects may use their IoT application
(or non-IoT applications) to test DRAv2.0 instance.

LL’s feedback about the IoT app: ‘The use and applicability of the DRA to deploy the sample
demo application are working as intended. This seems to be used for other different types of IoT
application’.

5.4.3.4. Hardware Component

Table 5.4 presents information about a sample IoT device network that was used to test the IoT
application process. The IoT network sample (see Figure 4.17) was configured by the researcher
to provide POC of the DRA operation model and its applicability for enabling IoT processes and
interactions on the multi-cloud. However, in the case studies, organisations’ prospects may use
their IoT devices to test the IoT application deployed using DRAv2.0 instance pipeline.

LL’s feedback about the IoT network: ‘The DRA is working as intended for the selected
hardware’.

120

Overall Feedback

The participant provided feedback about the demo package and the presentation prepared for the
DigiSAS Lab case study and imparted overall feedback about the DRA framework. The
feedback represents LL’s opinion about the DRA application in the research and development
context.

LL’s overall feedback about the DRA framework: ‘Lab is bidding for drone and robotics
application development and deployment projects. This is a huge research area and has the
potential to extend DRA, perhaps another PhD, for the secure deployment of drone and robotics
application projects’.

5.3.4. DATA ANALYSIS

The case study data collected during the experiment are analysed in Table 5.7. The data were
analysed using the cross-examination method between LL’s feedback and the case study
evaluation criteria in Table 3.2. This analysis aims to connect or relate the hypotheses
(evaluation criteria) to the expert’s feedback. The output of the analysis is organised into two
columns: ‘interpretation’, which is the researchers’ interpretation of the feedback, and ‘DRA
categories’, which is the relationship between the feedback and the evaluation criteria.

Table 5.7: Research Case study Analysis
Participant Feedback Interpretation DRA Aspects
‘The output of this research is the DRA
artefacts, and the outcome of this research
is new scientific or design knowledge
about the DRA itself. As a research group
leader, I reviewed the DRA from following
four perspectives, and my comments are
noted below:
Usefulness: DRA is applicable and is fit
for setup the DevOps multi-cloud IoT
environment for lab research projects.
Generalisation: DRA is general in the
sense that it is not fixed to one situation or
environment and can adapt to different
situations and be used with different
technology stacks as appropriate to the
situation. Thus DRA is applicable to a class
of problem situations and is applicable to
several instantiations.
Novelty: DRA offers new knowledge,
which has not to be discussed before in the
form of complex DevOps for Multi-cloud
and IoT. In particular, the concept of a
broker DevOps Cloud in the DRA.

The detailed feedback
indicates that the DRA is
useful and applicable at
the research level. It also
shows that the DRA
provides a general
abstract design model that
could be implemented for
research labs using
different technology
stacks.
The DRA seems to offer
new knowledge about the
adoption of the DevOps
approach for multi-cloud
IoT applications.
The DRA seems to offer
a sufficient explanation
about the framework
concepts needed for the
lab.
The DRA seems to be fit
for purpose and seems to

Generalisations
Usefulness
Novelty
Coverage
Reusable

121

Participant Feedback Interpretation DRA Aspects
Explainability: DRA models seem to
provide sufficient explanation about the
elements and their relationships as a
“design knowledge,” which can be used or
reused for a class of a problem addressed
in this work.
My overall feedback is that DRA can be
successfully instantiated for the similar
research lab environment needs for the
deployment of IoT applications using
multi-cloud. Overall, DRA is fit for
purpose; …’

be flexible and applicable
at the research level.

‘The instance of the DRA is working fine
with the above technology stack’.

DRAv2.0 instance is
working with the
software and hardware
technology stacks used in
the demo.

‘The instance of the DRA setup/
configuration is working as intended’.

This feedback indicates
that the DRA is
configurable, and the
setup is working.

‘The use and applicability of the DRA to
deploy the sample demo application is
working as intended. This seems to be used
for other different types of IoT
application’.

This comment indicates
that the DRA is useful
and applicable for
deploying the IoT
application (demo) and
may be used for different
types of applications.

Usefulness

‘The DRA is working as intended for the
selected hardware’.

This comment indicates
that the IoT devices are
interacting with the IoT
application deployed on
the multi-cloud.

‘Lab is bidding for drone and robotics
application development and deployment
projects. This is a huge research area and
has the potential to extend DRA, perhaps
another PhD (s), for the secure deployment
of drone and robotics application projects’.

This feedback indicates
that there is potential for
improvements for the
DRA. LL’s suggestion is
discussed as an avenue
for future research in
Chapter 5.

122

5.3.5. REPORTING

The case study report summary is an organised case study outcome presented to the audience.
The report aims to draw a conclusion from LL’s point of view about the DRA framework in the
context of the DigiSAS Lab. Table 5.8 presents the systematic testing procedure of the case
study at the DigiSAS Lab.

Table 5.8: Research Lab Case Study Reporting Summary
Case Study 02 Description
Organisation UTS SCS DigiSAS Lab
Test date 15/08/2019
Organisation context DigiSAS Lab conducts research and development in collaboration with industry

partners’ projects. They are working on several software-related projects
involving web and IoT and the multi-cloud. The partners are from large to
SMEs and start-ups.

Test team (TT)
(Participants)

This evaluation involved the LL who leads and manages several software-
related research and development projects at the DigiSAS Lab, including this
PhD project.

Organisation need DigiSAS Lab needs a multi-cloud deployment environment to meet the needs of
different industry partners, as they have different cloud deployment needs. The
challenge or problem is how to perform multi-cloud deployments.

Test objective The objective is to evaluate the applicability of the DRA in the research lab
environment. The Lab’s objective is to have a working DevOps environment
for multi-cloud IoT application deployments.

Test case question How can applications be deployed to the multi-cloud using DevOps?
Test package
(Pre-prepared)

To evaluate the DRA framework, a presentation slide pack and demo were
developed to demonstrate the deployment of a predeveloped sample IoT
application to the multi-cloud environment:
- Demo YouTube video: Link
- Presentation slides: Link

Main test component The participant (LL) evaluated the following DRA components:
1. DRAv2.0 architecture (see Figure 4.19)
2. DRA operational model pipeline (see Figure 4.14)
3. Software components (see Table 5.3)
4. Hardware components (see Table 5.4)

Test method Case study template (see Appendix G)
Industry survey (see Appendix D)

Test duration 60 minutes (presentation, demo, survey, case study)
Data type Qualitative feedback provided by the evaluator (LL)
Pretesting The researcher presented the case study project to the participant (LL) using the

presentation slides. The researcher organised a question-answer session to
explain necessary DRA aspects if required.

Key activities - TT verifies that the DRA supports DevOps concepts (see Table 2.9).
- TT verifies that the DRA enables DevOps practices (see Table 2.10).
- TT verifies that DRAv2.0 toolset (see Table 4.6) is easy to configure using

the guidelines provided by the case study (see Table 4.7).
- TT verifies that DRAv2.0 instance pipeline enables CI using CI broker (see

Table 4.7 and Figure 4.19).

https://youtu.be/JN38xS27ek0
https://docs.google.com/presentation/d/1VkoH-kwWcYRyd0IY6AHa3TwCdDEhl-GifnNdeNx3D9I/edit#slide=id.p

123

Case Study 02 Description
- TT verifies the automated and continuous deployment and delivery of the

IoT application to the multi-cloud (see Table 5.3 and case study demo
package).

- TT verifies the IoT application interaction with the IoT network sample (see
Tables 4.19 and 4.20 and case study demo package).

- TT verifies that DRA design models can be reusable and instantiable.
- TT verifies that the DRA conceptual model offers new knowledge for the

organisation to further understand the DevOps approach for agile application
deployment and delivery.

Expected outcome The expected outcome of the case study is to determine that the DRA provides
possible solutions to the research lab’s needs and, by extension, verify that the
framework address the research gaps (see Section 4.3).

Actual outcome The actual outcome is determined in the case study analysis section (see Table
5.7). The LL of DigisSAS Lab imparted valuable qualitative data (as feedback)
about the DRA. The cross-examination between the feedback and Table 3.2
indicates that the evaluator (LL) considers DRA design models reusable in the
research context and provides a sufficient explanation about the concepts of the
framework drawn from DevOps methodologies. TT indicated that DRA offers
new knowledge base in the form of CI broker used for deploying IoT
applications to the multi-cloud. TT specified that the DRA is a general concept
and is not fixed to a particular situation. It can adapt to different situations and
be used with different technology stacks as appropriate to the situation. Thus,
the DRA applies to a class of problem situations and applies to several
instantiations.

Observation and
interpretation

TT contributed to the case study data collection based on the information
provided by the demo package. It has been observed that the framework can be
easily reconfigured and is reusable for any experimental situation. TT indicated
that the DRA is a general design and is adaptable for the current situation of the
experiment.
TT specified that the DRA is useful and applicable for DevOps, multi-cloud and
IoT projects in the research lab environment. The new knowledge in the form of
CI broker offers a possible solution to the complex problem of multi-cloud
deployment.
TT indicated that the DRAv2.0 instance is working correctly with the
technology stack of the demo. The pipeline in the demo video shows that the
IoT application was successfully deployed to the multi-cloud and successfully
interacted with the IoT network of sample devices, which responded correctly
to the IoT application actions and events. TT outlined that the DRAv2.0
instance is working as intended with the software/hardware in the demo
package.
The observations are drawn from TT’s feedback and indicate that the DRA
framework can be successfully instantiated for similar research lab needs.
Overall, the framework is fit for purpose and seems to provide an adequate
solution to deploy IoT applications on the multi-cloud using the DevOps
approach.

124

5.5. TEACHING CASE STUDY SURVEY

This section presents a teaching case study that emphasises the method of teaching the DevOps
approach and agile software development. The teaching case study evaluates the integration of
DRA in two subjects offered by the UTS FEIT School of Software:
- SEP 48440—Spring 2017 (http://handbook.uts.edu.au/subjects/48440.html).
- INP 31261—Autumn 2019 (http://handbook.uts.edu.au/subjects/31261.html).

The teaching case study followed a simplified case study structure based on the commonly used
structure discussed in chapter 3 (DSR Evaluation step). The simplified case study for teaching is
composed of two main steps:

1. Case study introduction: Introduce the subjects of the case study (SEP and INP).
2. Data collection and analysis: Present the data collection and analysis process for SFS

data. The subjects’ SFS data collection and analysis process are based on the commonly
used survey structure discussed in chapter 3 (DSR Evaluation step):
a. survey planning
b. design the sampling procedure
c. select the survey method
d. develop the questionnaire
e. conduct the survey
f. collect and analyse the data.

The subjects’ SFS data were transformed from categorical ratings into ordinal (numerical)
ratings for the data analysis process using the survey rating table (see Table 3.3). The SFS
numerical data were analysed using statistical formulas discussed in chapter 3 (see Equation 3.2
and Equation 3.3).

5.5.1. SEP CASE STUDY (DRAV1.0)

UTS offers an undergraduate subject (Software Engineering Practice) in spring sessions for
approximately 200 students (SEP: http://handbook.uts.edu.au/subjects/48440.html). The DRA
(see Chapter 4) was taught to students, which enabled them to apply automated deployment, CI,
automated testing (acceptance and unit) and real-time monitoring practices to the delivery or
release of a software product on a single cloud (Ghantous & Gill 2019).

5.5.1.1. Case Study Introduction

The SEP program organises students into groups (4–7 students per group). All group projects are
independent and can be developed using a selection of software technologies (e.g., web app, IoT
app, mobile app, desktop app using Java, JSP, Python, HTML, JS, Node.JS, Angular.JS,
REACT, RUBY, C#, ASP.NET). The groups had to self-organise as a virtual start-up company
and appoint a student project manager to coordinate the group project activities using agile

http://handbook.uts.edu.au/subjects/48440.html
http://handbook.uts.edu.au/subjects/31261.html
http://handbook.uts.edu.au/subjects/48440.html

125

practices (e.g., Scrum). Groups were expected to deliver the software using the agile release
management practice (Alzoubi, Gill & Al-Ani 2015). Students were only required to deliver
release 0 (R0) and release 1 (R1). R0 deliverable is a documented software prototype based on
the project proposal. R0 prototype is an excellent way to learn how to identify project-related
risks and technical dependencies earlier in the project before committing too many resources
upfront. R1 deliverable is a full-working software. The groups had to appoint a release manager
or Scrum master to manage the delivery of releases. In R1, groups were required to implement
DRAv1.0 instance and replicate the DRA operational model. Each group constructed their
automated pipeline using their DevOps toolset of choice. Integrating DRAv1.0 (single cloud) in
the course taught students how to apply DevOps practices (Ghantous & Gill 2017) to improve
their agile development process and release management of software (Ghantous & Gill 2019).

The groups developing R0 and R1 were expected to apply:
 agile requirements analysis and planning
 agile architecture and design
 agile implementation and testing using a DevOps approach using the DRA as a template.

The DRA used for SEP (see Figure 4.18) is discussed in Chapter 4. Students were provided with
a testing video that demonstrated how the operational pipeline works. They were also provided
with project slides that explained how the DRA adopts DevOps concepts and practices and
showed how the DRA could be configured for any software application:

 Demo YouTube video: Link
The video demonstrates the testing of Java-web app deployment in DRAv1.0 instance.
This video was provided to students for spring 2017 SEP.

 Presentation slides: Link
The workshop slides introduce DevOps concepts and practices and show how to set up
and configure the DRA for single-cloud deployment.

5.5.1.2. Data Collection and Analysis

The SFS data collection and analysis process was based on the commonly used survey structure
discussed in chapter 3 (DSR Evaluation step).

a. Survey planning

The survey aimed to evaluate the subject quality and relevance from the students’ perspective.
UTS needs the survey data to evaluate the subjects offered every semester and determine
possible improvements based on students’ contributions. UTS values the quality of the student
learning experience. The SFS offers students an opportunity to provide teaching staff, faculty
and university management with constructive feedback to improve education at UTS.

https://youtu.be/IJP9qYcatHs
https://goo.gl/nq8vJc

126

b. Design the sampling procedure

The SFS is an anonymous survey (survey no. 200063) that allows students (total 203 enrolled in
spring 2017) to input ratings based on a scale composed of five possible entries for each question
(see Table 3.3). The SFS follows the UTS Vice-Chancellor’s Directive: Link.

c. Select the survey method

The survey was offered online to students enrolled in SEP spring 2017 using the UTS standard
SFS delivery portal: Link.

d. Develop the questionnaire

The SFS questionnaires for SEP were developed and offered by UTS FEIT. The researcher did
not contribute to the development of the questionnaires. The SFS questionnaires are standard
across the FEIT cohort of subjects. The SEP SFS questions are as follows:
Q1: The learning opportunities provided helped me meet the stated objectives of this subject.
Q2: I made the most of my opportunities to learn in this subject.
Q3: Overall, I am satisfied with the quality of this subject.
Q4: This subject provided practical learning activities to develop new skills and knowledge I may
need in the workplace.
Q5: This subject has developed my understanding of my intended profession.
Q6: This subject’s learning opportunities motivated me to conduct further self-directed learning.
Q7: This subject has developed my ability to think critically.
Q8: The layout of UTSOnline for this subject helped me navigate and locate materials with ease.
Q9: The look and feel of the UTSOnline subject site improved my user experience.
Q10: Overall, I am satisfied with how this staff member facilitated my learning.

e. Conduct the survey

The SFS for SEP was offered online to students between 9 October 2017 and 12 November
2017. The SFS is an anonymous survey (survey no. 200063) that allows students (total of 203
enrolled in spring 2017) to provide feedback and rating about the subject(s) materials.

f. Collect and analyse the data

The SFS results were published in Ghantous and Gill (2019). The students’ responses
(85 participants) were transformed from categorical data to ordinal (numerical) data using the
survey ratings presented in Table 3.3. Table 5.9 shows the frequency and percentage value
distributions for each question. The total number of answers collected from 85 students was
T = 1004. The SFS generated two key values: AAF = 892 and AAP = 88.85% (see Equation 3.2
and 3.3). The AAP and AAF indicate that most of the participants in the SEP SFS were satisfied
with the quality of the subject content and agreed that the subject provided practical learning that

http://www.gsu.uts.edu.au/policies/studentfeedback.html
http://www.gsu.uts.edu.au/policies/studentfeedback.html
https://www.sfs.uts.edu.au/

127

met the stated objectives of the course. The SFS raw data are stored on CloudStor, the UTS-
recommended data storage (see Appendix E).

Table 5.9: SEP SFS Spring 2017 Results Analysis
Total Answers = 1004 Strongly Disagree Disagree Average Agree Strongly Agree

Q1 5 5 21 40 29
Q2 4 5 15 41 35
Q3 7 8 24 34 27
Q4 5 2 19 44 31
Q5 5 6 20 40 29
Q6 6 5 15 45 29
Q7 6 7 19 38 31
Q8 6 6 26 38 25
Q9 6 7 26 36 25
Q10 4 7 25 27 38

Frequency 54 58 210 383 299
Percentage 5.38% 5.78% 20.92% 38.15% 29.78%

Figure 5.2 shows the distribution of the participants’ answers. It illustrates the perspectives of the
participants in the SFS.

Figure 5.2: SEP Spring 2017 SFS Results Graph

128

Figure 5.2 shows that most of the students seem to agree or strongly agree with the survey
questions about the teaching materials. Table 5.9 indicates that 88.85 % of the students scored
average and above in the survey questionnaires and 67.93 % of the students scored
agree/strongly agree in the survey questionnaires. The figures indicate that the students enrolled
in SEP 2017 subject are satisfied with the subject materials that include teaching DevOps and
DRAv1.0 instance, as explained in the case study introduction (section A.1).

A total of 1004 responses from 85 participants to the 10 questions were obtained in the SFS
survey in spring 2017. The contribution to learning is reflected in the analysis of every specific
questionnaire responses in the survey. The individual questionnaire analysis is explained below:

- Q1 scored 90% average and above, which means that the subject materials met the objectives
stated in the subject outline of SEP.

- Q2 score 91% average and above; which means that most of the students had the opportunity
to learn from the materials of SEP (including DevOps and DRAv1.0 instance).

- Q3 scored 85% average and above, which means that most of the students are satisfied with
the quality of the materials taught in SEP 2017.

- Q4 scored 91% average and above, which means that the subject materials provided practical
learning activities to develop new skills and knowledge needed in the workplace.

- Q5 scored 89% average and above, which means that the subject has developed the students
understanding of professions related to agile and DevOps.

- Q6 scored 89% average and above, which means that learning opportunities motivated the
students to conduct further self-directed learning and research in the fields related to agile
and DevOps.

- Q7 scored 87% average and above, which means that the subject helped the students improve
their analytical and problem-solving in the area of software development.

- Q8, Q9, Q10 are related to the subject delivery. The statistical results show that the students
are satisfied with the materials delivery method (either in a class by the staff or remotely on
UTSOnline blackboard).

Table 5.10 discusses and interprets the SEP surveys qualitative feedback. The students are
analysed by highlighting critical phrases in the quotes related to the quality of the subject, the
subject objectives, the students’ experience, the flexibility of software development adopted in
SEP 2017, the encouragement towards teamwork and the creativity in project design. Table 5.10
explains that the students enrolled in SEP are satisfied with the learning experience and with the
teaching materials quality.

129

Table 5.10: SEP Students Qualitative Feedbacks
Students Quotes Interpretation
‘I liked the fact that it ran as a start-up, and there was so
much flexibility in what we were able to develop. I liked
the idea of workshops where we have time to meet our team
and work on our great project. It was a great subject for
me to learn and advance in a skill which I was not
familiar with before’.

The participant seems to have learnt new
skills from the course in a flexible
development manner.

‘How the subject has prepared me for the real world,
professional environment. The practical experience I got
from the assignments was very valuable. I’ve haven’t had
experience collaborating with others on a project before, and
this was very good preparation for it’.

The participant indicated that the subject
content prepared them for the real-world
professional environment.

‘Industry experience being integrated into lectures’. The student seems satisfied with the
integration of industry experience into
the lecture slides.

‘The idea of creativity in project design and the use of
teamwork to develop software with an agile approach’.

The participant seems to consider the
agile software approach creative.

5.5.2. INP CASE STUDY (DRAV2.0)

UTS also offers an undergraduate Inter-Networking Project (INP subject 31261), which is
conducted as a capstone group project with 4–6 students (INP:
http://handbook.uts.edu.au/subjects/31261.html). The INP group is expected to develop its
application using agile methodology and principles and adopt DRA. The group is expected to
replicate DRAv2.0 instance using the same DevOps toolset and develop an IoT application that
interacts with the multi-cloud and manages (collects and saves) IoT data from sensors at run
time. Data from IoT sensors are saved automatically to the NoSQL cloud database. The IoT
application can be developed using any programming language (technology stack). Students in
the INP group are expected to reconfigure the DRA to enable their IoT application deployment
to the multi-cloud (Ghantous & Gill 2018). DRAv2.0 instance testing demonstrates how an IoT
application is deployed through the DRA pipeline to the multi-cloud. The test aims to determine
the usefulness of the DRA for the deployment of IoT applications on the multi-cloud. DRAv2.0
is an upgraded version of DRAv1.0 instance; the upgraded options are multi-cloud deployment
options and IoT application.

5.5.2.1. Case Study Introduction

The INP capstone project aims to teach students how to develop and deploy IoT applications to
the multi-cloud using the DevOps approach. The IoT application may be developed using, for
example, Java, JSP, Python, HTML, JS, Node.JS, Angular.JS, REACT, RUBY, C#, ASP.NET.
The IoT application was required to interact at run time with selected IoT sensors and report the

http://handbook.uts.edu.au/subjects/31261.html

130

data on the application dashboard. The IoT data were also saved automatically on a NoSQL
cloud database. The students learn to: 1) configure IoT devices and sensors; 2) configure their
DevOps pipeline; 3) configure and develop the IoT application to interact with the IoT devices;
4) deploy the application to the multi-cloud; 5) monitor the applicaton performance in real-time;
6) apply automated testing use CI-Broker; and 6) enable automated notification. Therefore, the
group had to self-organise as a virtual start-up company and appoint a student project manager to
coordinate the group’s project activities using agile practices (e.g., Scrum). The students were
expected to deliver the software using the agile release management practice (Alzoubi, Gill &
Al-Ani 2015). Students were only required to deliver release 0 (R0) and release 1 (R1). R0
deliverable is a documented software prototype based on the project proposal. R0 prototype is an
excellent way to learn how to identify the project-related risks and technical dependencies earlier
in the project before committing too many resources upfront. R1 deliverable is a full-working
software. The groups had to appoint a release manager or Scrum master to manage the delivery
of releases. In R1, students were required to implement DRAv2.0 architecture and replicate the
DRA operational model. The groups were expected to construct their automated pipeline using
their DevOps toolset of choice. Integrating DRAv2.0 (multi-cloud) in the course taught students
how to apply DevOps practices (Ghantous & Gill 2017) to improve their agile development
process and release management of software (Ghantous & Gill 2019). Groups developing R0 and
R1 were expected to apply:

 agile requirements analysis and planning
 agile architecture and design
 agile implementation and testing using a DevOps approach using the DRA as a template.

The DRA used for INP (see Figure 4.19) is discussed in Chapter 4. Students were provided with
a testing video that demonstrated how the operational pipeline works. They were also provided
with project slides that explained how the DRA adopts DevOps concepts and practices and how
the DRA can be configured for any software application:

 Demo YouTube video: Link
The video demonstrates the testing of Java-web app deployment. This video was
provided to students for autumn 2019 INP.

 Presentation slides: Link
The workshop slides introduce DevOps concepts and practices. The slides also show how
to set up and configure DRA for multi-cloud deployment.

5.5.2.2. Data Collection and Analysis

The subjects’ SFS data collection and analysis process were based on the commonly used survey
structure discussed in chapter 3 (DSR Evaluation step).

https://youtu.be/DmrIAciPKAU
https://goo.gl/3PYfPh

131

a. Survey planning

The survey aimed to evaluate the subject’s contribution to teaching and learning and to evaluate
subject content, from the students’ perspective. The general need is to add further constructive
feedback and data to support the relevance and usefulness of the DRA for teaching.

b. Design the sampling procedure

The SFS is an anonymous survey that allows a group of five students (enrolled in INP autumn
2019) to input ratings based on a scale composed of five possible entries for each question (see
Table 3.3). The SFS follows the guidelines of the ethics approval ETH18-2339 (see Appendix A
and Appendix B).

c. Select the survey method

The survey was offered online to students enrolled in INP autumn 2019. The SFS can be viewed
on the following web page: Link.

d. Develop the questionnaire

The SFS questionnaire was developed by the researcher using artefact evaluation criteria for
software engineering (133). There were two types of questionnaires in the survey:
 Quantitative data questionnaires (ratings): level of effort, contribution to learning, skill and

responsiveness of the instructor, course content and overall ratings
 Qualitative data questionnaires (feedbacks): course useful aspects, suggested improvements.

Note: Data related to the SFS instructor and students (i.e., level of effort, skill and
responsiveness of instructor) were omitted from the analysis because they were not related to the
DRA evaluation. Data relating to contribution to learning, course content data, overall ratings,
course useful aspects and suggested improvements were considered in this evaluation.

 Contribution to learning questionnaire set

The contribution to learning is a set of seven questionnaires listed as follows:
Q1: Contribution to learning [The learning opportunities provided helped me meet the stated
objectives of this subject].
Q2: I made the most of my opportunities to learn in this subject.
Q3: This subject provided practical learning activities to develop new skills and knowledge I
may need in the workplace.
Q4: This subject has developed my understanding of my intended profession.
Q5: This subject’s learning opportunities motivate me to conduct further self-directed learning.
Q6: This subject has developed my ability to think critically.
Q7: Overall, I am satisfied with the quality of this subject.

http://www.gsu.uts.edu.au/policies/studentfeedback.html
http://tiny.cc/czsddz

132

The course content is a set of ten questionnaires listed as follows:
Q1: The project learning objectives were clear.
Q2: R0 and R1 report required materials helped me to understand agile development process.
Q3: DRA helped with agile development, testing, deployment, delivery.
Q4: DRA architecture was easy to configure for my IoT application.
Q5: DRA CI broker feature helps with multi-cloud deployment.
Q6: Learning how to setup and configure IoT devices was interesting.
Q7: DRA is adaptive to any application type.
Q8: DRA is adaptive to any DevOps toolset.
Q9: I learnt a lot about DevOps, multi-cloud and IoT by using DRA.
Q10: Overall, I am satisfied with DRA as INP subject architecture.

The course useful aspects question is: What aspects of this course were most useful or valuable?

The course suggested improvements question is: How would you improve this course?

e. Collect and analyse the data

The students’ responses (five participants) were transformed from categorical data to ordinal
(numerical) data using the survey ratings in Table 3.3.

The contribution to learning data was analysed in Table 5.11 using the statistical equations
discussed in chapter 3 (see Equation 3.2 and 3.3). Table 5.11 results are computed to calculate
AAF = 20 and AAP = 100%. AAF and AAP indicate that the students are satisfied with the
course’s contribution to their learning. The students responded with 98% score of agree/strongly
agree that the subject has motivated them to think critically and improved their understanding of
software development using the agile-DevOps approach. The students strongly agreed (75%) that
the subject has provided practical learning modules that helped to improve their skills and
knowledge in software development.

Table 5.11: Contribution to Learning Results Analysis
 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Frequency Percentage

Strongly Disagree 0 0 0 0 0 0 0 0 0.00%
Disagree 0 0 0 0 0 0 0 0 0.00%
Neutral 0 0 0 2 0 0 0 2 10.00%
Agree 2 2 1 0 1 0 1 3 15.00%
Strongly Agree 2 2 3 2 3 4 3 15 75.00%

The course content value to students’ learning was represented in Table 5.12 using the statistical
equations discussed in chapter 3 (see Equation 3.2 and 3.3). The results in Table 5.12 are
computed to calculate AAF = 26 and AAP = 100%. AAF and AAP indicate that the students are
satisfied with the course contribution to their learning.

133

Table 5.12: Course Content Results Analysis
 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Frequency Percentage
Strongly Disagree 0 0 0 0 0 0 0 0 0 0 0 0.00%
Disagree 0 0 0 0 0 0 0 0 0 0 0 0.00%
Neutral 0 0 0 1 0 0 0 0 0 0 1 3.85%
Agree 0 2 1 3 2 2 2 1 1 1 7 26.92%
Strongly Agree 5 3 4 1 3 3 3 4 4 4 18 69.23%

The contribution to learning data is plotted in Figure 5.3. The graph shows that the group either
agrees or strongly agrees that the DRA has contributed to their learning. Figure 5.3 clearly shows
that the students agree or strongly agree with the level of course contribution to learning.

Figure 5.3: Contribution to Learning Graph

The course content data are plotted in Figure 5.4. The graph shows that the group either agrees or
strongly agrees that the DRA framework contents (architecture, pipeline, and demo) helped
improve their skills in agile software development using the DevOps approach. Figure 5.4
illustrates that 96.15% of students agree/strongly agree that the course content of INP provides a
comprehensive new mechanism (CI-Broker) that improved software application deployment to
multi-cloud. The students agree/strongly agree (96.15%) that DRA is not fixed to a particular
situation. It can be concluded from the survey results that students consider DRA instantiable
and applicable in the context of a software development project.

134

Figure 5.4: INP Survey Results Charts

The INP case study qualitative evaluation is based on the students’ overall feedback and overall
ratings to the DRA used in their capstone project. Feedback is quoted from the students who
participated in the INP SFS survey for autumn 2019. The overall rating data are shown in Table
5.13, which shows that, overall, the group is 100% strongly satisfied with the course. The course
content included instantiating DRA architecture to create DRAv2.0 development pipeline to
deploy the project’s IoT-application to multi-cloud.

Table 5.13: Overall Rating Results
 Overall how satisfied are you with the course
Strongly Disagree 0
Disagree 0
Neutral 0
Agree 0
Strongly Agree 5

The participants contributed to the qualitative questionnaire in the SFS by providing feedback
about the DRA’s useful aspects and suggesting possible improvements to the DRA from their
perspective. The students’ feedback is quoted and mapped in Table 5.14.

135

Table 5.14: INP Students Qualitative Feedbacks
Questions Students Quotes Interpretation
What aspects
of this course
were most
useful or
valuable?

- The testing and the knowledge of how the DRA
V2.0 connects/works together.

- I learnt how to understand code much better
than I ever have before as I was thrown in the
deep end and had to use various types of
technology in order to develop my
understanding of learning to write code

- The most valuable aspect of this course was able
to work as a group on a real project. It helps me
build my communication and time management
skills.

- Regular contact with supervisor
- Weekly meetings with the supervisor helped

my understanding of IoT devices and how
multi-cloud works.

The participants considered that
knowledge of the DRA operational
model is useful. The course also
helped them further understand the
concepts of IoT and multi-cloud.

How would
you improve
this course?

- Clearer understanding and communication from
the subject coordinator to our group and
supervisor

- The subject coordinator can be more responsive.
- More IOT resources available through the

university
- More communication from the subject

coordinator

The students seem to require IoT
resources at the faculty level.

5.5.3. DRAV1.0 V. DRAV2.0

This section analyses the results of the teaching case study (see Sections 5.1.2 and 5.1.3). The
data extracted from the student survey in subject SEP47440 (see Figure 5.2) and INP31261 (see
Figures 5.3 and 5.4) indicated that the integration of the DRA in agile software engineering at the
academic level has been successful. The quantitative results from both surveys indicated that the
DRA helps agile application delivery by automating the development process. The qualitative
survey feedback showed that students were satisfied with the subject materials.

This section also presents a comparison between the DRA architecture instances: DRAv1.0 and
DRAv2.0. The cross-comparison in Tables 5.15 and Table 5.16 shows that DRAv2.0 instance
includes all DRAv1.0 instance features. DRAv2.0 pipeline is an extended version of DRAv1.0
and enables multi-cloud deployment features using a CI broker for CI. Further, DRA2.0 uses IoT
application and IoT devices and sensors for testing and demonstration, which makes it more
tailored to address the research question. Hence, it can be concluded that DRAv2.0 instance is
more suitable to use in the industry case study for evaluation and review. Section 5.5 uses
DRAv2.0 instance as a case study in the industry.

136

Table 5.15: DRAv1.0 vs DRAv2.0 (Design)

Table 5.16: DRAv1.0 v. DRAv2.0 (Instance)

DRAv1.0 VS DRAv2.0
DRA

Characteristics
Instance of
DRAv1.0

Instance of
DRAv2.0

 DRA
Architecture

Instance
of

DRAv1.0

Instance of
DRAv2.0

Human factor Contextual model
Infrastructure Conceptual model
Tools Logical model
Process Physical model

Product Operational
model

Abstraction
Business value
Rules
Legal

DRA
Pipeline

Instance of
DRAv1.0

Instance of
DRAv2.0

DRA Demo Application
Software/Hardware

DRAv1.0 DRAv2.0

Repository Java-web app
Collaboration IoT app
CI broker IoT network sample
NoSQL DB
Monitoring
CD-cloud1
CD-cloud2
CD-cloud3

137

5.6. INDUSTRY FIELD SURVEY

The field industry survey is the fourth iteration in the empirical evaluation conducted in this
thesis. The survey is a collection of specified information offered to specialised and specific
populations (Runeson & Höst 2009; Sjøberg et al. 2005). The survey was offered online to a
cohort of domestic and international industry experts. It was constructed using a commonly
survey design as follows (Hyndman 2008).

a. Survey planning

The aim was to obtain experts’ feedback and opinions about the DRA phenomenon. The survey
plan was to attain qualitative and quantitative data from participants. The survey data analysis
aims to support that the DRA meets the evaluation criteria (see Chapter 3, Table 3.4).

b. Design the sampling procedure

The survey (Link) was offered to participants and experts in the IT industry who specialise in the
areas of software engineering, DevOps, cloud computing and architecture, and IoT. The
participants came from a cohort of companies located in Australia, the US, UK, Russia, Japan,
Spain, Switzerland, India, Portugal, Sweden, Brazil, Costa Rica, Italy, South Korea, Canada,
Germany and the Netherlands. The participants were initially contacted via LinkedIn using the
formal invitation letter approved by the UTS ethics approval ETH18-2339 (see Appendix A,
Appendix B and Appendix C). In line with the ethics approval outlined in Appendix A, no
personal information was collected about the participants. The survey was offered to participants
after they replied to the survey invitation letter (see Appendix C) and agreed to participate in the
survey and receive the survey form (see Appendix B). The original survey data were stored on
CloudStor (see Appendix E). The demographic representation of the participants is mapped in
Table 5.17, including information about their professional experience, organisation location and
years of experience in their IT field (see Table 5.17). The minimum number of years of
experience in the industry was three years. The participants’ years of experience, as shown in
Table 5.17 ranged from 3 to 16 years. It indicates that the participants may provide abundant
feedback and comments based on their years of experience and their expertise in the IT industry.

Table 5.17: Participants Demographic Distribution

Participant Organisation
Location Area of Expertise Experience

1 Denmark DevOps Engineer, Cloud Engineer, Developer 3 years+
2 India DevOps Engineer, Cloud Engineer 5 years +
3 US Sr. DevOps Engineer, Software Engineer 9 years +

4 India Thought Leadership, Agile DevOps Coach, AWS
Engineer 5 years +

5 US Senior DevOps Engineer 4 years+
6 Sweden DevOps Engineer (Cloud Lead, Security Lead) 3 years +

http://tiny.cc/99dldz
https://www.linkedin.com/in/georges-bou-ghantous/

138

Participant Organisation
Location Area of Expertise Experience

7 India Director of Development Operations, Head of DevOps 5 years +

8 India Senior DevOps Engineer, AWS Certified Solutions
Architect 4 years+

9 India DevOps Consultant, Consulting & Services
Integration (C&SI) 7 years +

10 Australia Senior Developer, Senior DevOps Engineer 7 years +
11 Australia Senior DevOps Engineer 5 years +
12 Australia Software Architect, Senior Cloud Engineer 7 years +
13 Australia Software Engineer—Mobile, Web, IoT 3 years +
14 Netherlands Software Developer, Software Engineer 3 years +
15 Costa Rica Software Engineer 7 years +

16 UK Reliability Engineer, System Engineer, Continuous
Integration 7 years +

17 Italy Agile DevOps Coach 5 years +

18 Australia DevOps Engineer, Developer, Robotic Process
Automation 4 years +

19 Australia Agile Coach, Senior Developer 7 years +
20 Australia Senior Software Engineer 4 years +
21 US Software/Build & Infrastructure Engineer 7 years +

22 Costa Rica Cloud Architecture, DevOps Engineer, Professional
Scrum Master 4 years +

23 Costa Rica DevOps Engineer 7 years +
24 India DevOps Engineer, Cloud Engineer 5 years +
25 South Korea Software Engineer, Developer 5 years +
26 Australia DevOps Engineer 4 years +

27 US DevOps Engineer, Product Transformation,
Consultant 6 years+

28 India DevOps Consultant, Engineer 4 years +
29 Netherlands DevOps, Team Lead Big Data Engineer 12 years +
30 Japan Head of DevOps 3 years +
31 India Developer (Python) & DevOps Engineer 3 years +
32 Australia Cloud Architect, Senior DevOps Consultant 4 years +
33 Australia BizDevOps, Enterprise Technology 11 years +
34 US Cloud Consultant, DevOps Engineer 3 years +
35 Portugal Senior DevOps Engineer, Site Reliability Engineer 3 years +
36 US DevOps Engineer, Automation Developer 3 years +
37 US Software Engineer 4 years +
38 Australia Lead Tech. Consultant, Senior Software Engineer 4 years +

39 Australia Principal Software Engineer, Software Architect,
Director 11 years +

40 Australia CEO, IoT 14 years +

41 Australia Senior Test Consultant, Technical Manager, Author &
Blockchain, Cryptocurrency Advisor, Director 16 years +

42 Costa Rica Site Reliability & DevOps Engineer, Developer 8 years +

43 Australia Lead Technical Architect—Azure Apps &
Infrastructure 5 years +

44 Australia DevOps and Automation Specialist, Senior Software 7 years +

139

Participant Organisation
Location Area of Expertise Experience

Engineer
45 Australia Software Delivery Manager, Senior Consultant 6 years +
46 Australia Senior DevOps Engineer 4 years +
47 Australia Senior Architect—AWS (CSA-A), TOGAF9 6 years +
48 Australia Cloud Consultant—DevOps Engineer 5 years +
49 Germany DevOps Engineer, Cloud Engineer 4 years +
50 Netherlands Head of DevOps 6 years +
51 Australia DevOps Engineer 6 years +
52 Australia Senior DevSecOps Engineer 3 years +

53 Australia Software Engineering Leader, Digital Transformation,
Lean Product Development 11 years +

54 Australia DevOps Engineer 6 years +

55 Australia Senior Program Architect, DevOps, Cloud Solution
Architect 4 years +

56 Australia Senior Cloud Architect (AWS, Azure, GCP),
Technical Architecture 6 years +

57 Brazil Principal Engineer, Consultant 7 years +
58 Australia DevOps, Data Engineer 5 years +
59 Russia Senior Application Support Analyst 7 years +
60 Australia DevOps Consulting Partner, Cloud Migration/Native 8 years +
61 Switzerland Product Owner, Agile Coach, DevOps Engineer 13 years +
62 US Senior Software Engineer 11 years +
63 Canada Senior DevOps, Cloud Architect 7 years +

64 Switzerland Head of Development Platform Services, Senior
Engineer, QA Test Automation Manager 13 years +

65 Australia Senior Software Engineer, DevOps Engineer, Senior
Software Developer 15 years +

66 Australia Cloud AppOps & DevOps Lead 10 years +
67 Australia Development Lead (DevOps) 6 years +
68 Brazil CTO, IT Executive, Agile and Digital Transformation 6 years +
69 Australia Cloud Solutions, DevOps Engineer 8 years +
70 Australia DevOps Tech Lead 8 years +
71 Australia Cloud Solution Architect—Application Development 4 years +

72 Australia Lean-Agile Coach, Service Transformation, Project
Manager 6 years +

73 Australia Head of Cloud Transformation, Enterprise DevOps
Architect 4 years +

74 Australia Senior Technical Engineer (Cloud), DevOps Practice
Lead 6 years +

75 Australia Enterprise Agile Coach 8 years +
76 Australia Software Engineer, Senior Tech. Specialist 10 years +
77 Australia Head of Engineering 10 years +
78 Germany DevOps Engineer, Consulting Manager 10 years +
79 Australia Senior Software Engineer 7 years +
80 Australia Senior Developer, DevOps Architect, Cloud Specialist 5 years +
81 Spain DevOps Engineer, Solutions Architect 4 years +
82 Brazil Senior Consultant, Software Engineer, Developer 11 years +

140

c. Select the survey method
The DRA framework was evaluated using a field survey (Link) (see Appendix D) and was
offered online to industry experts who were contacted via LinkedIn (see Table 5.17).

The survey was opened in January 2019 and closed in June 2019. A total of 82 participants
completed the survey online.

d. Develop the questionnaire

The survey was composed of nine questionnaire sets (see Appendix D):
 Q1 set: DRA contextual model questionnaire set (5 questions)
 Q2 set: DRA conceptual model questionnaire set (6 questions)
 Q3 set: DRA logical model questionnaire set (5 questions)
 Q4 set: DRA logical model features (9 questions)
 Q5 set: DRA physical model (5 questions)
 Q6 set: DRA operational model (8 questions)
 Q7 set: DRA usefulness feedbacks and ratings (2 questions)
 Q8 set: DRA-suggested improvement (1 question)
 Q9 set: DRA overall feedbacks and ratings (2 questions).

e. Collect and analyse the data

The survey questionnaire sets (see Appendix D) generated two types of data:
 Quantitative data: rating data or categorical data transformed into ordinal data

(participants’ ratings in sets Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q9)
 Qualitative data (participants’ feedback in sets Q7, Q8, Q9)

The survey evaluation is composed of two main steps:
 survey data collection
 survey data analysis.

5.6.1. SURVEY DATA COLLECTION

The survey collection process presents the procedure used in the data collection. The collected
data from the survey can be categorised into two types: quantitative and qualitative.

The quantitative data sources are the ratings collected from the survey questionnaire sets Q1, Q2,
Q3, Q4, Q5, Q6, Q7 and Q9 (see Appendix D).

The quantitative data sources are the feedback collected from the survey questionnaire sets Q7,
Q8 and Q9 (see Appendix D).

http://tiny.cc/99dldz
https://www.linkedin.com/in/georges-bou-ghantous/

141

The collected data were organised into groups according to the questionnaire related to the
survey evaluation criteria (see Table 3.4). The questionnaire was organised as follows.

 DRA Models Questionnaire Groups (Sets Q1–Q6)

The DRA survey questionnaires (sets Q1–Q6) are organised into Tables 5.18 to 5.23. The
questions in these sets offer the survey participants the option to evaluate DRA models against
the criteria in Table 3.4 (coverage, relevance and importance). The questionnaires are grouped as
follows:

Table 5.18: DRA Contextual Model Questions Group
Question Description Category
Q1 Does the contextual model provide the overall scope and purpose of using a

DevOps approach for IoT app and multi-cloud at a high level?
Coverage

Q2 Do you think DevOps is appropriate for deploying IoT apps to the multi-
cloud environment?

Coverage

Q3 Are the model elements (technologies) sufficient for the context? Coverage
Q4 Is the contextual model relevant to the DRA framework? Relevance
Q5 Are the contextual model elements important to the DRA framework? Importance

Table 5.19: DRA Conceptual Model Questions Group
 Question Description Category
Q1 Does the conceptual model provide enough components for DevOps? Coverage
Q2 Does the conceptual model provide enough components for the cloud? Coverage
Q3 Does the conceptual model provide enough components for the multi-cloud

deployment platform of IoT apps?
Coverage

Q4 Is the conceptual model relevant for DRA framework? Relevance
Q5 Is the conceptual model important for DRA framework? Importance
Q6 Is CI-Broker an important component for deploying IoT apps on multi-cloud? Importance

Table 5.20: DRA Logical Model Design Questions Group
 Question Description Category
Q1 Does the logical model provide enough components for DevOps? Coverage
Q2 Does the logical model provide enough components for IoT apps

deployment?
Coverage

Q3 Does the logical model provide enough components for the cloud platform? Coverage
Q4 Is the logical model relevant to the DRA framework? Relevance
Q5 Is the logical model important to the DRA framework? Importance

Table 5.21: DRA Logical Model Functions Questions Group
 Question Description Category
Q1 DRA M1 automate code synchronisation for DevOps team. Coverage
Q2 DRA M2 enable automation for: repository update, build, testing. Coverage
Q3 DRA M2 enables deployment to M3 (using CI broker). Coverage

142

 Question Description Category
Q4 DRA M3 automate scaling and application staging for users. Coverage
Q5 DRA M4 enable automated log capture from build, testing and deployment of

IoT app.
Coverage

Q6 DRA M5 provides cloud database management for DevOps team. Coverage
Q7 Do you think that the M1–M5 sub-models provide enough functions for the

DRA framework?
Coverage

Q8 Do you think that the M1–M5 sub-models are relevant for the DRA
framework?

Relevance

Q9 Do you think that the M1–M5 sub-models are important for the DRA
framework?

Importance

Table 5.22: DRA Physical Model Questions Group
 Question Description Category
Q1 Does the physical model provide enough features for DevOps? Coverage
Q2 Does the physical model provide enough features for the cloud? Coverage
Q3 Does the physical model provide enough features for IoT apps deployment? Coverage
Q4 Is the physical model relevant to the DRA framework? Relevance
Q5 Is the physical model important for the DRA framework? Importance

Table 5.23: DRA Operational Model Questions Group
Question Description Category
Q1 Does the pipeline provide enough components to support DevOps? Coverage
Q2 Does the pipeline provide enough components to support multi-cloud

deployment?
Coverage

Q3 Does the pipeline provide enough components to enable IoT app deployment
on multi-cloud?

Coverage

Q4 Does DRA pipeline enable automated IoT app deployment on multi-cloud
using Codeship as CI broker?

Importance

Q5 Is DRA pipeline tools integration relevant for the framework? Relevance
Q6 Are the DevOps tools in the pipeline sufficient for the framework? Importance
Q7 Does the DRA pipeline reflect the conceptual design model? Relevance
Q8 Does the DRA pipeline provide all the functions and features defined in the

Logical model?
Importance

 DRA Overall Questionnaire Groups (Sets Q7–Q9)

The DRA survey questionnaires (sets Q7–Q9) are organised into one group. The questions in
these sets offer the survey participants the option to evaluate DRA models against the criteria in
Table 3.4. The qualitative data collected from these questionnaire sets were analysed to
determine the relationship between the participants’ quotes and comments and DRA categories
represented by the evaluation criteria in Table 3.4. This process aimed to make sense of the
qualitative data and correlate the participants’ feedback with the framework. The quantitative
data collected from sets Q7–Q9 provide overall ratings that aim to determine the usefulness and
applicability of the DRA based on the participants’ ratings.

143

5.6.2. SURVEY DATA ANALYSIS

The survey evaluation process is composed of two main phases:
 Survey quantitative evaluation: Participants’ ratings were transformed from categorical

data to ordinal data (numerical) using the survey ratings in Table 3.3. The ordinal data
were used in statistical formulas to evaluate the survey results (see Equation 3.1–3.3).

 Survey qualitative evaluation: Participants’ feedback was analysed using the hypothesis
confirmation general technique of analysis (Runeson & Höst 2009). The hypotheses are
the artefact evaluation criteria (Prat, Comyn-Wattiau & Akoka 2014) (see Table 3.4).
Participants’ feedback was cross-examined against the evaluation criteria by highlighting
the occurrences of these criteria in the text. The industry feedback is organised in tables.

5.6.2.1. Survey Quantitative Evaluation

The quantitative evaluation process is composed of two sections:
1. Individual DRA design model evaluation based on the data collected from sets Q1–Q6.
2. Combined DRA design model evaluation based on the total responses from participants

collected in sets Q1–Q6.

5.6.2.1.1. Individual DRA Models Evaluation

The individual DRA model evaluation has six steps (based on sets Q1–Q6). The survey data are
located on CloudStor (Link). The individual evaluation process is as follows:

 Collect and map the survey rating into tables labelled RT[Index].
 Group the ordinal data from the rating tables into category rating tables labelled

CT[Index] based on the questionnaire sets (see Tables 5.18–5.23).
 Plot the RT [index] tables into a bar graph representation of the data labelled RF[Index].
 Calculate the AAP and AAF statistical values for all RT[Index] tables and calculate

goodness-of-fit Chi2 for all CT[Index] (see Equation 3.1-3.3). The aim is to determine
whether the DRA models meets the evaluation criteria positively (see Table 3.4):
o AAF determines the frequency of participants agreeing or strongly agreeing that the

DRA models meets the evaluation criteria positively.
o AAP determines the percentage of participants agreeing or strongly agreeing that the

DRA models meets the evaluation criteria positively.
o Goodness-of-fit Chi2, and p-value for each of the CT[Index] tables.
H0 (null hypothesis): There is no association between the DRA models and the

evaluation criteria.
H1 (alternative hypothesis): The DRA models meets the evaluation criteria positively.
If p-value < , then H0 is rejected and H1 is accepted, and the DRA models meets the
evaluation criteria positively (Coverage, Importance, Relevance).
[If p-value < 0.000 (is a small number), then p is corrected to: p < 0.001].

https://cloudstor.aarnet.edu.au/plus/s/mCG4EUEjN5Gw6UR

144

 Contextual Model

Table 5.24: Contextual Questionnaire Data (RT1)

 Q1 Q2 Q3 Q4 Q5 Row Total Percentage
Strongly Disagree 3 1 5 3 3 15 3.66%
Disagree 9 1 9 3 3 25 6.10%
Average 14 3 17 15 15 64 15.61%
Agree 40 23 32 44 42 181 44.15%
Strongly Agree 16 54 19 17 19 125 30.49%
Column Total 82 82 82 82 82 410 100.00%

Table 5.25: Contextual Group Data (CT1)

Category → Coverage (Q1, Q2,
Q3) Relevance (Q4) Importance (Q5)

N = 5; E=O/N O E O E O E
Strongly Disagree 9 49.2 3 16.4 3 16.4
Disagree 19 49.2 3 16.4 3 16.4
Average 34 49.2 15 16.4 15 16.4
Agree 95 49.2 44 16.4 42 16.4
Strongly Agree 89 49.2 17 16.4 19 16.4

H0 is rejected for p < 0.01 Chi2 =
130.911

p <
0.00001

Chi2 =
68.488

p <
0.00001

Chi2 =
62.39

p <
0.00001

Figure 5.5: Contextual Data Graph (RF1)

AAF = 370

AAP = 90.25%

145

REVIEW

The ordinal data in Table 5.24 (RT1) and Table 5.25 (CT1) produced fundamental statistical
values based on participants’ responses. The contextual model evaluation results can be
interpreted as follows:

 AAF = 370 out of 410 response indicates that most of the participants agree the DRA
contextual model meets the coverage evaluation criteria positively.

 AAP = 90.25% indicates that a high percentage of participants agree that the DRA
contextual model meets the coverage evaluation criteria positively.

 The p-value for the test variables:
o Coverage p-value is set at 0.001 < =0.01. It means that H0 is rejected, H1 is accepted,

and the DRA contextual model meets the coverage evaluation criteria positively.
o Relevance p-value is set at 0.001 < =0.01. It means that H0 is rejected, H1 is

accepted, and the DRA contextual model meets the relevance evaluation criteria positively.
o Importance p-value is set at 0.001 < =0.01. It means that H0 is rejected, H1 is

accepted, and the DRA contextual model meets the importance evaluation criteria
positively.

The statistical values indicate that the participants consider the DRA contextual model relevant
and an important design and that it covers the industry needs. Figure 5.5 illustrates the frequency
of participants’ responses to add further visual insight to the results.

 Conceptual Model

Table 5.26: Conceptual Questionnaire Data (RT2)
 Q1 Q2 Q3 Q4 Q5 Q6 Row Total Percentage

Strongly Disagree 1 1 2 1 1 2 7 1.71%
Disagree 4 5 9 2 2 3 21 5.12%
Average 15 14 17 13 12 11 67 16.34%
Agree 39 44 40 46 42 31 203 49.51%
Strongly Agree 23 18 14 20 25 35 112 27.32%
Column Total 82 82 82 82 82 82 410 100.00%

Table 5.27: Conceptual Group Data (CT2)

Category → Coverage
(Q1, Q2, Q3) Relevance (Q4) Importance (Q5, Q6)

N = 5; E=O/N O E O E O E
Strongly Disagree 4 49.2 1 16.4 3 16.4
Disagree 18 49.2 2 16.4 5 16.4
Average 46 49.2 13 16.4 23 16.4
Agree 123 49.2 46 16.4 73 16.4
Strongly Agree 55 49.2 20 16.4 60 16.4
H0 is rejected for
p < 0.01

Chi2 =
172.902

p <
0.00001

Chi2 =
82.024

p <
0.00001

Chi2 =
125.39

p <
0.00001

AAF = 382

AAP = 93.17%

146

Figure 5.6: Conceptual Data Graph (RF2)

REVIEW:

The ordinal data in Table 5.26 (RT2) and Table 5.27 (CT2) produced key statistical values based
on participants’ responses. The conceptual model evaluation results can be interpreted as
follows:

 AAF = 382 out of 410 response indicates that most of the participants agree the DRA
conceptual model meets the coverage evaluation criteria positively.

 AAP = 93.17% indicates that a high percentage of participants agree that the DRA
conceptual model meets the coverage evaluation criteria positively.

 The p-value for the test variables:
o Coverage p-value is set at 0.001 < =0.01. It means that H0 is rejected, H1 is accepted,

and the DRA conceptual model meets the coverage evaluation criteria positively.
o Relevance p-value is set at 0.001 < =0.01. It means that H0 is rejected, H1 is

accepted, and the DRA conceptual model meets the relevance criteria positively.
o Importance p-value is set at 0.001 < =0.01. It means that H0 is rejected, H1 is

accepted, and the DRA conceptual model meets the importance criteria positively.

The statistical values indicate that the participants consider the DRA conceptual model relevant
and an important design and that it covers the industry needs. Figure 5.6 illustrates the frequency
of participants’ responses to add further visual insight to the results.

147

 Logical Model Design

Table 5.28: Logical Design Questionnaire Data (RT3)
 Q1 Q2 Q3 Q4 Q5 Row Total Percentage

Strongly Disagree 2 2 3 1 1 9 2.20%
Disagree 3 4 5 1 2 15 3.66%
Average 8 14 17 5 7 51 12.44%
Agree 48 44 40 52 45 229 55.85%
Strongly Agree 21 18 17 23 27 106 25.85%
Column Total 82 82 82 82 82 410 100.00%

Table 5.29: Logical Design Group Data (CT3)

Category → Coverage
(Q1, Q2, Q3) Relevance (Q4) Importance (Q5)

N = 5; E=O/N O E O E O E
Strongly Disagree 7 49.2 1 16.4 1 16.4
Disagree 12 49.2 1 16.4 2 16.4
Average 39 49.2 5 16.4 7 16.4
Agree 132 49.2 52 16.4 45 16.4
Strongly Agree 56 49.2 23 16.4 27 16.4

H0 is rejected for p < 0.01 Chi2 =
206.724

p <
0.00001

Chi2 =
116.78

p <
0.00001

Chi2 =
89.22

p <
0.00001

Figure 5.7: Logical Design Data Graph (RF3)

AAF = 386

AAP = 94.14%

148

REVIEW

The ordinal data in Table 5.28 (RT3) and Table 5.29 (CT3) produced key statistical values based
on participants’ responses. The logical model evaluation results can be interpreted as follows:

 AAF = 386 out of 410 response indicates that most of the participants agree the DRA
logical design model meets the coverage evaluation criteria positively.

 AAP = 94.14% indicates that a high percentage of participants agree that the DRA logical
design model meets the coverage evaluation criteria positively.

 The p-value for the test variables:
o Coverage p-value is set at 0.001 < =0.01. It means that H0 is rejected, H1 is accepted,

and the DRA logical design model meets the coverage evaluation criteria positively.
o Relevance p-value is set at 0.001 < =0.01. It means that H0 is rejected, H1 is

accepted, and the DRA logical design model meets the relevance criteria positively.
o Importance p-value is set at 0.001 < =0.01. It means that H0 is rejected, H1 is

accepted, and the DRA logical design model meets the importance criteria positively.

The statistical values indicate that the participants consider the DRA logical design model
relevant and an important design and that it covers the industry needs. Figure 5.7 illustrates the
frequency of participants’ responses to add further visual insight to the results.

 Logical Model Features

Table 5.30: Logical Features Questionnaires Data (RT4)
 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Row Total Percentage

Strongly Disagree 0 0 0 0 1 1 2 1 1 6 0.81%
Disagree 2 3 3 3 3 2 1 2 2 21 2.85%
Average 8 6 7 12 8 12 11 5 6 75 10.16%
Agree 45 39 43 43 39 39 45 46 38 377 51.08%
Strongly Agree 27 34 29 24 31 28 23 28 35 259 35.09%
Column Total 82 82 82 82 82 82 82 82 82 738 100.00%

Table 5.31: Logical Features Group Data (CT4)

Category → Coverage (Q6, Q7) Relevance (Q8) Importance (Q1-Q5,
Q9)

N = 5; E=O/N O E O E O E
Strongly Disagree 3 32.8 1 16.4 3 114.8
Disagree 3 32.8 2 16.4 18 114.8
Average 23 32.8 5 16.4 59 114.8
Agree 84 32.8 46 16.4 286 114.8
Strongly Agree 51 32.8 28 16.4 208 114.8

H0 is rejected for p < 0.01 Chi2 =
147.098

p <
0.00001

Chi2 =
96.659

p <
0.00001

Chi2 =
547.596

p <
0.00001

149

Figure 5.8: Logical Features Data Graph (RF4)

REVIEW

The ordinal data in Table 5.30 (RT4) and Table 5.31 (CT4) produced key statistical values based
on participants’ responses. The logical features evaluation results can be interpreted as follows:

 AAF = 711 out of 738 response indicates that most of the participants agree the DRA
logical model features meet the coverage evaluation criteria positively.

 AAP = 96.33% indicates that a high percentage of participants agree that the DRA logical
model features meet the coverage evaluation criteria positively.

 The p-value for the test variables:
o Coverage p-value is set at 0.001 < =0.01. It means that H0 is rejected, H1 is accepted,

and the DRA logical model features meet the coverage evaluation criteria positively.
o Relevance p-value is set at 0.001 < =0.01. It means that H0 is rejected, H1 is

accepted, and the DRA logical model features meet the relevance criteria positively.
o Importance p-value is set at 0.001 < =0.01. It means that H0 is rejected, H1 is

accepted, and the DRA logical model features meet the importance criteria positively.

The statistical values indicate that the participants consider the DRA logical model feautures are
relevant and an important design and that it covers the industry needs. Figure 5.8 illustrates the
frequency of participants’ responses to add further visual insight to the results.

AAP = 711

AAF = 96.33 %

150

 Physical Model

Table 5.32: Physical Model Questionnaires Data (RT5)

Q1 Q2 Q3 Q4 Q5 Row Total Percentage

Strongly Disagree 3 2 3 1 3 12 2.93%
Disagree 2 4 7 4 1 18 4.39%
Average 9 9 8 10 11 47 11.46%
Agree 42 41 39 42 38 202 49.27%
Strongly Agree 26 26 25 25 29 131 31.95%
Column Total 82 82 82 82 82 410 100.00%

Table 5.33: Physical Model Group Data (CT5)

Category → Coverage
(Q1, Q2, Q3) Relevance (Q4) Importance (Q5)

N = 5; E=O/N O E O E O E
Strongly Disagree 8 49.2 1 16.4 3 16.4
Disagree 13 49.2 4 16.4 1 16.4
Average 26 49.2 10 16.4 11 16.4
Agree 122 49.2 42 16.4 38 16.4
Strongly Agree 77 49.2 25 16.4 29 16.4
H0 is rejected for
p < 0.01

Chi2 =
195.504

p <
0.00001

Chi2 =
70.805

p <
0.00001

Chi2 =
65.317

p <
0.00001

Figure 5.9: Physical Model Data Graph (RF5)

AAF = 380

AAP = 92.68%

151

REVIEW

The ordinal data in Table 5.32 (RT5) and Table 5.33 (CT5) produced key statistical values based
on participants’ responses. The logical features evaluation results can be interpreted as follows:

 AAF = 380 out of 410 response indicates that most of the participants agree the DRA
physical model meets the coverage evaluation criteria positively.

 AAP = 92.68% indicates that a high percentage of participants agree that the DRA
physical model meets the coverage evaluation criteria positively.

 The p-value for the test variables:
o Coverage p-value is set at 0.001 < =0.01. It means that H0 is rejected, H1 is accepted,

and the DRA physical model meets the coverage evaluation criteria positively.
o Relevance p-value is set at 0.001 < =0.01. It means that H0 is rejected, H1 is

accepted, and the DRA physical model meets the relevance evaluation criteria positively.
o Importance p-value is set at 0.001 < =0.01. It means that H0 is rejected, H1 is

accepted, and the DRA physical model meets the importance evaluation criteria
positively.

The statistical values indicate that the participants consider the DRA physical model relevant and
an important design and that it covers the industry needs. Figure 5.9 illustrates the frequency of
participants’ responses to add further visual insight to the results.

 Operational Model

Table 5.34: Operational Model Questionnaires Data (RT6)
 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Row Total Percentage

Strongly Disagree 2 3 3 2 2 1 2 2 17 2.59%
Disagree 0 1 2 1 2 3 2 3 14 2.13%
Average 11 11 12 9 10 13 10 10 86 13.11%
Agree 37 38 39 42 38 41 34 38 307 46.80%
Strongly Agree 32 29 26 28 30 24 34 29 232 35.37%
Column Total 82 82 82 82 82 82 82 82 656 100.00%

Table 5.35: Operational Model Group Data (CT6)

Category → Coverage
(Q1, Q2, Q3, Q6) Relevance (Q5, Q7) Importance (Q4, Q8)

N = 5; E=O/N O E O E O E
Strongly Disagree 9 65.6 4 32.8 4 32.8
Disagree 6 65.6 4 32.8 4 32.8
Average 47 65.6 20 32.8 19 32.8
Agree 155 65.6 72 32.8 80 32.8
Strongly Agree 111 65.6 64 32.8 57 32.8
H0 is rejected for
p < 0.01

Chi2 =
261.512

p <
0.00001

Chi2 =
132.098

p <
0.00001

Chi2 =
142.159

p <
0.00001

AAF= 625

AAP= 95.28%

152

Figure 5.10: Operational Model Data Graph (RF6)

REVIEW

The ordinal data in Table 5.34 (RT6) and Table 5.35 (CT6) produced key statistical values based
on participants’ responses. The operational model evaluation results can be interpreted as
follows:

 AAF = 625 out of 656 response indicates that most of the participants agree the DRA
operational model meets the coverage evaluation criteria positively.

 AAP = 92.28% indicates that a high percentage of participants agree that the DRA
operational model meets the coverage evaluation criteria positively.

 The p-value for the test variables:
o Coverage p-value is set at 0.001 < =0.01. It means that H0 is rejected, H1 is accepted,

and the DRA operational model meets the coverage evaluation criteria positively.
o Relevance p-value is set at 0.001 < =0.01. It means that H0 is rejected, H1 is

accepted, and the DRA operational model meets the relevance criteria positively.
o Importance p-value is set at 0.001 < =0.01. It means that H0 is rejected, H1 is

accepted, and the DRA operational model meets the importance criteria positively.

The statistical values indicate that the participants consider the DRA operational model relevant
and an important design and that it covers the industry needs. Figure 5.10 illustrates the
frequency of participants’ responses to add further visual insight to the results.

153

5.6.2.1.2 Combined DRA Models Evaluation

The combined DRA models evaluation uses the total categorical data from the six individual
DRA models questionnaires (sets Q1–Q6). The combined data collected from these
questionnaires are evaluated as follows:

 Add all survey rating from every category questionnaire into Table 5.37, labelled RT [7].
 Plot RT [7] data into a bar graph Figure 5.1,1 labelled RF [7].
 Calculate the statistical values AAP and AAF for each RT [7] table:

o AAF determines the frequency of participants that may agree or strongly agree that the
DRA models meet the evaluation criteria positively. (Table 3.4).

o AAP determines the percentage of participants that are likely to agree or strongly
agree that the DRA model meets the evaluation criteria positively (see Table 3.4).

 Calculate the 5x5 Chi2 (see Equation 3.1) for RT [7] data and map the results into Table
5.37 labelled CT [7].

The Chi2 test is a 5x5 table test that aims to evaluate the DRA design models against the
evaluation criteria (see Table 3.4) using the total responses of participants in the survey for the
six category questionnaires.

 H0 (null hypothesis): There is no association between the DRA models and the
evaluation criteria in Table 3.4.

 H1 (alternative hypothesis): The DRA models meet the evaluation criteria positively:
o DRA contextual model
o DRA conceptual model
o DRA logical model + logical features
o DRA physical model
o DRA operational model

The overall p-value is calculated to determine whether to accept or reject the null hypothesis at a
critical value = 0.01. The test calculates the Chi2 and the p-value for each cell in Table 5.37.
If p-value < , then H0 is rejected, H1 is accepted, hence then participants agree or strongly agree
that the DRA models meet the evaluation criteria positively. (coverage, relevance, importance).
[If p-value < 0.000 (is a small number), then p is mathematically corrected to p: < 0.001].

Table 5.36: DRA Total Data Results (RT7)

 Contextual Conceptual Logical Physical Operational Rows Percentage
Strongly
Disagree 15 7 18 12 17 69 2.27%

Disagree 25 21 39 18 14 117 3.86%
Average 64 67 122 47 86 386 12.72%
Agree 181 203 579 202 307 1472 48.52%
Strongly Agree 125 112 390 131 232 990 32.63%
Column Total 410 410 1148 410 656 3034 100.00%

154

Table 5.37: DRA Total Data Chi2-Test (CT7)
The chi2 test is 41.4224. The p-value is 0.000481. p < 0.01 and H0 is rejected

 Contextual Conceptual Logical Physical Operationa
l

Row
Total

Strongly
Disagree

15 (9.32)
[3.45]

7 (9.32)
[0.58]

18 (26.11)
[2.52]

12 (9.32)
[0.77]

17 (14.92)
[0.29] 69

Disagree 25 (15.81)
[5.34]

21 (15.81)
[1.70]

39 (44.27)
[0.63]

18 (15.81)
[0.30]

14 (25.30)
[5.05] 117

Average 64 (52.16)
[2.69]

67 (52.16)
[4.22]

122 (146.05)
[3.96]

47 (52.16)
[0.51]

86 (83.46)
[0.08] 386

Agree 181 (198.92)
[1.61]

203 (198.92)
[0.08]

579 (556.97)
[0.87]

202 (198.92)
[0.05]

307
(318.27)
[0.40]

1472

Strongly
Agree

125 (133.78)
[0.58]

112 (133.78)
[3.55]

390 (374.59)
[0.63]

131 (133.78)
[0.06]

232
(214.05)
[1.50]

990

Column
Total 410 410 1148 410 656 3034

Figure 5.11: DRA Models Combined Data (RF7)

AAF = 2848

AAF = 93.87%

155

REVIEW

The ordinal data in tables Table 5.36 (RT7) and Table 5.37 (CT7) produced key statistical values
based on participants’ responses. The DRA design models evaluation results can be interpreted
as follows:

 AAF = 2848 out of 3034 responses indicates that most of the participants agree that that
the DRA models meet the evaluation criteria positively.

 AAP = 93.87% indicates that a high percentage of participants agree that the DRA
models meet the evaluation criteria positively.

 The Chi2 test is 41.4224. The p-value is .000481. The result is significant at p < 0.01. H0
is rejected, and H1 is accepted.

The statistical values indicate that the participants consider the DRA design models a relevant
and important design and may cover industry needs. Figure 5.11 illustrates provide further visual
insights that the DRA models positively meet the evaluation criteria (see Table 3.4).

5.6.2.2. Survey Qualitative Evaluation

This section presents the qualitative evaluation of the participants’ feedback and comments about
the DRA. The survey qualitative evaluation is based on the participants’ feedback provided about
DRA design models in the questionnaire sets (Q7–Q9). The survey feedback is located on
CloudStor (Link).

The qualitative evaluation process is composed of two sections:
 DRA usefulness (for teaching, research and industry) evaluation [Q7 set]
 DRA overall feedback and ratings [Q9 set].

Note: DRA-suggested improvements [Q8 set] are used in Chapter 6 to determine future research
based on participants’ suggestions in this question.

5.6.2.2.1 DRA Usefulness Feedback and Rating

This section evaluates the participants’ responses about DRA usefulness in industry, teaching
and research. The evaluation process is as follows:

 Collect and map the feedback about DRA usefulness into Table 5.38, labelled FT1.
 Analyse FT1 feedback based on the occurrences of the criteria (see Table 3.4) in the text

using the cross-examination method (see in chapter 3, DSR Evaluation step).
 Collect and map the usefulness rating as numerical data in Table 5.39, labelled RT8.
 Plot Table 5.39 (RT8) data into a bar graph in Figure 5.12, labelled RF8.
 Calculate the statistical values AAF and AAP from Table 5.39 (RT8) data (see Equation

3.1-3.2):

https://cloudstor.aarnet.edu.au/plus/s/PUBjxbgVdnhGGar

156

o AAP determines the frequency of participants that consider the DRA useful for
industry, teaching and research (see Equation 3.2).

o AAF determines the percentage of participants that consider the DRA useful for
industry, teaching and research (see Equation 3.3).

o Calculate the goodness-of-fit Chi2 and p-value for each test variable (teaching,
industry, research) at a critical value = 0.01 (see Equation 3.1).

If p < , then the null hypothesis H0 is rejected and H1 is accepted.
H0: There is no association between the test variables.
H1: The DRA models meet the evaluation criteria positively (usefulness for teaching,
industry, research).

Table 5.38: DRA Usefulness (FT1)
Category Participants’ Feedbacks Interpretation
Importance
Generalisations

One particular aspect that I think is very important
in the DRA framework is the flexibility to choose
the instantiations of each component (or indeed
have several instantiations). Given the
heterogeneous nature of the cloud and IoT
environments, I think this is a critical feature.

Flexibility
Instantiations of each
component
Heterogeneous nature
Cloud and IoT relationship
important in the DRA

Usefulness
Relevance
Coverage

The models provided are all very useful as they
deconstruct and disambiguate what is required in
order to deploy any code as a single or multi-cloud
application. In essence, this is achieved through
presenting both abstract and concrete examples and
clearly defining steps involved at each stage of the
process.

Useful models
Disambiguate
Deploy any code
Adaptive to technology
Process
What is required

Usefulness
Importance

The continuous integration and automated
deployment to multi-cloud are very useful.

Continuous integration
Useful
Automated deployment

Coverage
Generalisations

All of it, it provides a comprehensive overview of
what’s needed for an IoT application deployment
and management.

What is needed for IoT apps
Comprehensive overview

Relevance
Importance

Decentralized logging, cloud-hosted CI,
deployment to multiple hosting vendors, etc. are
all acceptable modern solutions for the
demonstrated problem.

Decentralised logging
Cloud CI
Deployment to multiple
vendors
Acceptable modern solutions

Usefulness DRA logical model specifications and DRA pipeline
instance are very useful in the enterprise world, as
they focus on the low-level implementation scheme.

DRA logical, pipeline instance
is very useful
Low-level implementation

Usefulness The video was good with the Raspberry Pi
implementation, although implementing a ‘real’
code change, e.g., changing the frequency of
flickering LEDs and showing the before and after
results of the change would have been more concrete
rather than just changing a text file, which we cannot

Acceptable demo

157

Category Participants’ Feedbacks Interpretation
verify has been deployed to the target destination in
the video.

Relevance The fact that the entire deployment process is
automated and seamless is really nice.

Automated deployment
process
Seamless deployment process

Relevance An interesting approach to combine DevOps and
IoT.

DevOps and IoT combination
IoT interaction

Coverage
Usefulness
Generalisations

I do like this model for the deployment of
applications. I think it is quite extensive and
applicable to developers (ops) and IT management,
including project management.

Extensive model
Applicable
IT and project management

Usefulness It provides a framework that I’m pretty sure would
be invaluable for people that don’t know all the
components and would like to implement it.

Invaluable framework
Easy to implement

Usefulness
Relevance

An IDE integrated plugin which can deploy code
readily to an IoT device, without being able to
manage the entire infrastructure pipeline in between
is a great value addition for any start-up working
on IoT.

IoT code deployment
A valuable addition to IoT

Coverage Correctly identifies the benefits of DevOps. DevOps benefit
Importance Very appropriate tools and real use case

implementation.
Appropriate tools
Use case implementation

Relevance It gives a clear idea of a path to production that
could be used in IoT development process.

Path to production
IoT development process

Usefulness Useful for IoT cloud solutions. Useful for cloud–IoT
Importance
Usefulness

The DevOps section is very good as all the tools are
perfectly used. As it will make good automation in
architecture.

Correct use of tools
Automated architecture
Useful

Generalisations
Relevance
Usefulness

Having a high-level view of specifications, logic,
modelling, and behaviour of the whole system is
paramount to a solid implementation of the
pipeline between IoT and multi-cloud.

High-level view, logic, models
IoT and multi-cloud
IoT interaction

Relevance
Importance

It’s good that you’re creating a platform on multi-
cloud level. The idea of Automating end to end
pipeline is a good thing.

Multi-cloud platform
End-to-end automation

Usefulness I am really impressed with DRA I think the IoT
environment are missing some DevOps structure like
that provided by DRA, so it is very useful to guide
teams to have a simple workflow to implement
DevOps in IoT projects.

Significance of DRA
Useful
DevOps implementation
IoT projects

Relevance
Usefulness

The value proposition that is to enable IoT
architecture by the DevOps efforts in order to start
using this amazing technology for an application like
smart cities or even the set a cloud architecture for a
smart house system.

DevOps for IoT
Cloud architecture
IoT interaction
May be used for the smart
house system

Importance
Usefulness

Definitely automation. When IoT makes to the top,
it will be so hard to test things manually, and those
things are going to be interacting directly and

Automation
Interaction
It’s going to be a very good

158

Category Participants’ Feedbacks Interpretation
physically with users... So the automation process
it’s going to be a very good friend for the UX of
anything related IoT.

friend for the UX of anything
related IoT.

Coverage My feedback would be the same for DRA as well as
for the framework, this info and the project itself
is excellent, but has a lot of info, a lot of information
very wide. Would also be good to watch more real-
life scenarios.

Framework
Information is excellent

Usefulness
Relevance
Importance

This can be a useful reference document for IoT
based Apps deployment with DevOps culture in
the team process and toolset.

Useful
IoT apps deployment
DevOps culture

Generalisations I thought it was a good overview of how DevOps
can be applied with IoT.

DevOps applied with IoT
Overview

Importance It is a good high-level design for the IoT cloud app
deployment workflow.

High-level design
IoT cloud app deployment
IoT interaction

Relevance
Importance

Agility, CI/CD, automation, Speed. Agility, speed
CI/CD

Importance
Relevance

Allowing users to interact with IoT devices
remotely using cloud services. The ability to track
usage through the use of Paper-trail and
automation of IoT device by using the cloud.

IoT interaction
Cloud services
Tracking
Cloud–IoT monitoring
Useful

Relevance
Importance
Coverage

Perfect pick up as industry is facing these issues as
to how to integrate or implement DevOps
transformation when it comes to Cloud and IoT
related Apps. In a nutshell its part of Digital
Transformation which is one of future in Industry.

Industry needs
Implement DevOps
transformation
Cloud and IoT relationship
IoT interaction
Digital transformation

Table 5.39: DRA Usefulness Ratings (RT8)
DRA Usefulness Research Teaching Industry
N = 5; E=O/N O E O E O E Rows

Total
Percentag

e
Strongly Disagree 1 16.4 2 16.4 2 16.4 5 2.03%
Disagree 1 16.4 4 16.4 7 16.4 12 4.88%
Average 12 16.4 10 16.4 21 16.4 43 17.48%
Agree 32 16.4 37 16.4 27 16.4 96 39.02%
Strongly Agree 36 16.4 29 16.4 25 16.4 90 36.59%
H0 is rejected for

p < 0.01
Chi2 =
68.366

p <
0.001

Chi2 =
60.073

p <
0.001

Chi2 =
30.683

p <
0.001 246 100.00%

159

Figure 5.12: DRA Usefulness Ratings Graph (RF8)

REVIEW

The ordinal data in Table 5.38 (RT8) key statistical values based on participants’ responses
ordinal data. The DRA usefulness questionnaire results can be interpreted as follows:

 AAF = 229 out of 246 responses indicates that most of the participants agree or strongly
agree that the DRA is useful for teaching, research and industry.

 AAP = 93.09% indicates that a high percentage of participants agree or strongly agree
that the DRA usefulness for teaching, research and industry.

 The p-value for the test variables:
o Research p-value is set at 0.001 < =0.01. H0 is rejected, H1 is accepted, and the DRA

models meet the evaluation criteria positively (usefulness for research).
o Teaching p-value is set at 0.001 < =0.01. H0 is rejected, H1 is accepted, and the DRA

models meet the evaluation criteria positively (usefulness for teaching).
o Industry p-value is set at 0.001 < =0.01. H0 is rejected, H1 is accepted, and the DRA

models meet the evaluation criteria positively (usefulness for the industry).
 In Table 5.38 (FT1), there are T = 50 referenccing of the evaluation criteria (see Table

3.4). The frequency distribution of FT1 categories is mapped in Table 5.40. The results in
Table 5.40 can be interpreted as follows: The participants consider DRA models useful
(28.00%), relevant (26.00%) and important (24.00%). The DRA seems to be a general
design (10.00%) that provides what is needed (12.00%) for the industry.

AAF = 229

AAP = 93.09%

160

Table 5.40: DRA Usefulness Categories Frequencies
T = 50 Generalisation Usefulness Coverage Relevance Importance
Frequency 5 14 6 13 12
Percentage 10.00% 28.00% 12.00% 26.00% 24.00%

5.6.2.2.2 DRA Overall Feedback and Rating

This section evaluates the participants’ overall feedback and rating about the DRA models. The
evaluation process is as follows:

 Collect and map the feedback provided about the DRA into Table 5.41, labelled FT2.
 Analyse FT2 feedback based on the frequency criteria occurences in the text (see Table

3.4) using the cross-examination method (see in chapter 3, DSR Evaluation step).
 Collect DRA overall rating and map them as numerical data in Table 5.42, labelled RT9.
 Plot Table 5.42 (RT9) data into a bar graph representation in Figure 5.13, labelled RF9.
 Calculate the statistical value AAP from Table 5.42 (RT9) data (see Equation 3.2):

o AAP determines the frequency of participants satisfied with the DRA overall.

Table 5.41: Survey Overall Feedback (FT2)
Category Overall Participants Feedbacks Interpretation
Usefulness
Coverage
Relevance

Overall it seems very well thought-out and could be
extremely useful in practice. However, it is fairly complex and
might not be ideal for a newcomer. Perhaps some of the
graphics in this form could be further simplified to present
DRA’s ideas in a cleaner way. I strongly agreed to the
‘provide enough components’ statements; are there too many
components? Could it be made simpler? Aside from this, the
DRA framework certainly makes sense.

DRA is very well
thought is
Extremely useful in
practice
I strongly agreed to
the ‘provide enough
components’
DRA framework
certainly makes
sense

Relevance
Usefulness

This work illustrates how the DevOps methodology can be
applied to IoT development in a multi-cloud environment. It
will be useful for students. It can evolve into a practical
solution.

DevOps applied to
IoT in multi-cloud.
A useful, practical
solution

Usefulness
Relevance

I’m afraid it’s just not the kind of thing relevant to my work,
but I can see how it might be useful to someone starting up a
DevOps, multi-cloud, IoT project.

Useful for DevOps,
multi-cloud IoT

Relevance I am not technical, so a lot of what is being proposed seemed
practical from my view. How would this work with
mainframes? I deal with the cultural aside of organisations so
while this looks pretty good on paper, I wonder how practical
it would be to implement. We get involved a lot in
implementing transformations. The people side of things is the
hardest. Before we even attempt to introduce technical
changed, e.g., dev-ops plus CI/CD, we need to set the
organisation up to be able to adapt to the new changes that are
about to come. Culture is sometimes the biggest impediment

DRA seems Practical

161

Category Overall Participants Feedbacks Interpretation
to a successful transformation as you cannot change the
culture without first changing the organisation, then this
becomes a question of ‘what is your appetite to change’. My
point is that this needs to happen prior to introducing any
change to an organisations technical practices and approach if
you want it to be successful. Perhaps this is a given as a
prerequisite, if not then it should be unless of course, it is a
start-up.

Coverage
Usefulness

I really appreciated the breakdown of the theory behind the
DevOps culture; it’s very good to explain for teaching
reasons. In the enterprise world, most of the companies
already take it as a practice, and it is consolidated and
evolved further with a ‘You Build It You Run It’ paradigm
where operations are part of development, including
maintenance and incident management. This is somewhat new
to developers to respond to incidents on shifts, without
delegating to an ops team designated for maintenance only.
This includes the adoption of paging tools (such as OpsGenie
or PagerDuty) to be able to manage an on-call roster for 24/7
response. In the enterprise world, this framework would be
separate into two parts, one being technical implementation,
and the other one being organisation and practices. Architects
define the practices and the required organisation, while
engineers look deeper into the design and implementation of
the technical part of the software.

DevOps Culture
Very good for
teaching reasons
In the enterprise
world, this framework
would be separate in
two parts:
implementation and
practice.

Usefulness
Coverage

Great idea about organizing the structure for an IoT
project, the main reason for projects failures of IoT is the lack
of structure.

IT projects
Organising the DRA
project for IoT

Generalisations I feel this is a more general architectural reference than
specific to IoT devices. I feel there are further unsolved
challenges there.

General architecture

 Self-remediation, infrastructure provisioning should be a part
of the framework.

DRA allows
retrospective
approach for DevOps
team

Relevance

Looks effective and definitely have invested a lot of efforts
and work but utmost wonderfully presented Many of
Industries are already trying to get on these paths. Keep up
the good work.

Effective
Industries are already
trying to get on these
paths

Importance It will be great automated IoT deploy tool if you keep work
on it. It would be good if add a case study of build failure.
Sometimes build fails it without reasons.

Automation

Usefulness Happy to see more researches like this. The reason I put
average for the usefulness of this framework in the industry is
that technological innovation happens every day and new and
better tools are constantly introduced into the DevOps space;
therefore some of the tools mentioned in this framework could
be replaced and become irrelevant at some point, maybe soon.
With that said, I agree the concept remains valid and could

Useful
DevOps Practices
Appropriate
Significant concepts

162

Category Overall Participants Feedbacks Interpretation
be very helpful.

Relevance This is an excellent project. Brilliant. Excellent project
Relevance Thanks for sharing your research with me. Unfortunately, I

don’t have the technical experience to provide more thorough
and valuable feedback. But at a conceptual level, it all makes
sense. Thanks again, and best of luck!

conceptual level all
makes sense

Relevance Nice project, I never imagined using DevOps for IoT. DevOps for IoT
Relevance Very interesting, but I think that one should consider GitLab

CI/CD as well.
Interesting

Relevance
Importance

I have learnt a lot within using the DRA approach, and it has
enabled me to better understand the way code works and also
how these clouds are integrated together.

Framework
Heterogeneous

Table 5.42: Survey Overall Feedbacks Ratings (RT9)
On a scale of 1 to 5. Please provide an overall rating for the DRA framework

Strongly Disagree 1.00%
Disagree 2.00%
Average 11.00%
Agree 46.00%
Strongly Agree 22.00%

Figure 5.13: Survey Overall Feedbacks Graph (RF9)

Overall AAP =

77.00%

163

Table 5.43: DRA Overall Criteria Occurrences
T = 22 Generalisation Usefulness Coverage Relevance Importance

Frequency 1 6 3 10 2
Percentage 4.55% 27.27% 13.64% 45.45% 9.09%

REVIEW

The ordinal data in Table 5.42 (RT9) produced a statistical value based on participants’
responses. Overall, the DRA Q9 set showed that:

 AAP = 77.00%, indicating that a percentage (77%) of participants agree that the DRA
architectural models meet the evaluation criteria (see Chapter 3, Table 3.4).

 In Table 5.41 (FT2), there are T = 22 related references to the evaluation criteria (see
Table 3.4). The frequency distribution of the FT2 categories is mapped in Table 5.43.
Table 5.43 shows that participants seem to consider the DRA useful (27.27%) and
relevant (45.45%) to the industry, and it may be useful for their organisation’s context.

5.7. EMPIRICAL EVALUATION OVERALL ANALYSIS

This section presents the overall analysis of the empirical evaluation results. The purpose of this
investigation is to provide more insight and evidence of the DRA applicability and novelty based
on the evaluation data collected in this chapter. The DRA empirical evaluation was organised
into four iterations: industry case study, research case study, teaching case study and industry
field survey. The data from the evaluation section are combined into an indicative matrix to
provide overall evidence that the DRA meets the overall evaluation criteria (see Table 3.2 and
Table 3.4). There are two types of indicative matrices:

1. Quantitative indicator matrix (QIM) (see Table 5.44)
2. Qualitative evaluator matrix (QEM) (see Table 5.45).

5.7.1. QUANTITATIVE INDICATOR MATRIX

The quantitative indicator matrix (QIM) contains the combined numerical data results reported in
the empirical evaluation. Three data streams are feeding into the QIM. The data streams are the
results of the analysis conducted on numerical data in the teaching case study surveys (SEP and
INP) and the industry field survey. The collected data are the:

 AAF from all survey result tables
 AAP from all survey result tables
 Chi2 test results from all field survey result tables.

164

The QIM (see Table 5.44) aims to determine that there is a probability of 75% or above that the
participants may agree with that the DRA architectural models meet the survey criteria (see
Chapter 3, Table 3.4) The QIM is organised as follows:

 reference column: indicates the tables from which the data originated
 AAP column: indicates the AAP from each data source table
 AAF column: indicates the AAF from each data source table
 coverage p-value column: indicates the coverage criteria p-value from each source table
 relevance p-value column: indicates the relevance criteria p-value from each source table
 importance p-value column: indicates the criteria p-value from each source table
 combined DRA models p-value column: indicates the overall two-way p-value
 industry usefulness p-value column: indicates the industry usefulness p-value
 research usefulness p-value column: indicates the research usefulness p-value
 teaching usefulness p-value column: indicates the teaching usefulness p-value
 indicator column P(X): indicates the probability of participants agreeing with AAP.

The Quantitative Indicator (QI) formula is an average value that indicates that the DRA models
meet the evaluation criteria (see Chapter 3, Table 3.4) at a probability above 75%. The QI
formula is described in Equation 5.1:

Equation 5.1: QI Formula
QI Formula

QI definition: The Quantitative Indicator (QI) is the average probability (AAP) for every table source in
chapter 5, the QIM table (see Table 5.44).
The probability of a source table is: [Probability (X) or P(X)] = AAP[Table (index)]
QI = [P(X)]row[i] / Count(row[i]); where (i = the row index in QIM and X = participants score ≥ 3)
QI objective: Determine the average probability of participants’ likely to agree with the data results from
source tables (Table (index)). It indicates that the DRA models meet the evaluation criteria positively (see
Chapter 3, Table 3.4).
Specific QI condition: Participants agree with a table results: if [AAF > 75%, p-value < 0.01]
QI Result: QI = [P(X) > 75%]row[i] / Count(row[i]) [Indicates the average probability of participants
scoring ≥ 3 in a particular survey table]
Conclusion: QI > 75 % then DRA is significant.
Data Source: Table 5.9, Table 5.11, Table 5.12, Table 5.24, Table 5.25, Table 5.26, Table 5.27, Table
5.28, Table 5.29, Table 5.30, Table 5.31, Table 5.32, Table 5.33, Table 5.34, Table 5.35, Table 5.36,
Table 5.37, Table 5.39

165

Table 5. 44: Quantitative Indicator Matrix (QIM)

Table(index) AAP AAF Coverage
p-value

Relevance
p-value

Importance
p-value

DRA
Models

Useful
for

Research

Useful
for

Teaching

Useful
for

Industry
P(X)

Table 5.9 892 88.85% 88.85%

Table 5.11 20 100% 100%

Table 5.12 26 100% 100%
Table 5.24
Table 5.25 370 90.25% < 0.001 < 0.001 < 0.001 90.25%

Table 5.26
Table 5.27 382 93.17% < 0.001 < 0.001 < 0.001 93.17%

Table 5.28
Table 5.29 386 94.14% < 0.001 < 0.001 < 0.001 94.14%

Table 5.30
Table 5.31 711 96.33% < 0.001 < 0.001 < 0.001 96.33%

Table 5.32
Table 5.33 380 92.68% < 0.001 < 0.001 < 0.001 92.68%

Table 5.34
Table 5.35 625 95.28% < 0.001 < 0.001 < 0.001 95.28%

Table 5.36
Table 5.37 2848 93.87% <0.001 93.87%

Table 5.39 229 93.09% < 0.001 < 0.001 < 0.001 93.09%

QI Result QI= [P(X) > 75%]row[i] / Count(row[i]) = 86.47 %

REVIEW

The QI = 86.47%, indicates that the cohort of participants in the surveys seem to agree that the
DRA models meet the evaluation criteria at a probability [Probability > 75% and/or p-value <
0.001]. Overall it can be concluded that participants seem to consider the DRA framework
applicable and reusable in a class of situations and provide a novelty knowledge base about the
DevOps adoption in any context.

5.7.2. QUALITATIVE EVALUATOR MATRIX

The qualitative data evaluator is a combination of feedback gathered in Chapter 5 and the aim of
providing a further indication that the DRA architectural models meet the evaluation criteria (see
Chapter 3, Table 3.2). Three data streams are feeding into the qualitative evaluator matrix
(QEM). The data streams are acquired from Tables 5.6, 5.7, 5.38 and 5.41, and they are a
combination of feedback and comments provided by the industry case study, research case study
and the survey participants. QEM (see Table 4.45) feedback was analysed using the cross-
examination method between the participants’ feedback and the combined evaluation criteria in
Table 3.2. This analysis aims to connect or relate the hypotheses (evaluation criteria) to the
experts’ feedback. The QEM (see Table 5.45) aims to provide overall insights into the DRA
applicability and novelty from the participants’ perspectives.

166

Table 5. 45: Qualitative Evaluator Matrix
Criteria Feedback—Participants’ Quotes
Importance
Reusable
Generalisations

‘One particular aspect that I think is very important in the DRA framework is the
flexibility to choose the instantiations of each component (or indeed have several
instantiations). Given the heterogeneous nature of the cloud and IoT environments,
I think this is a critical feature’.

Usefulness
Coverage
Relevance

‘The models provided are all very useful as they deconstruct and disambiguate
what is required in order to deploy any code as a single or multi-cloud application -
this is achieved through presenting both abstract and concrete examples and clearly
defining steps involved at each stage of the process’.

Usefulness
Importance

‘The continuous integration and automated deployment to multi-cloud are very
useful’.

Generalisations
Coverage

‘All of it, it provides a comprehensive overview of what’s needed for an IoT
application deployment and management’.

Novelty
Importance
Relevance

‘Decentralized logging, cloud-hosted CI, deployment to multiple hosting vendors,
etc. are all acceptable modern solutions for the demonstrated problem’.

Usefulness ‘DRA logical model specifications and DRA pipeline instance are very useful in
the enterprise world, as they focus on the low-level implementation scheme’.

Relevance ‘The fact that the entire deployment process is automated and seamless is really
nice’.

Relevance An interesting approach to combine DevOps and IoT.
Coverage
Usefulness
Generalisations

‘I do like this model for the deployment of applications. I think it is quite extensive
and applicable to developers, (ops) and IT management, including project
management’.

Usefulness ‘It provides a framework that I’m pretty sure would be invaluable for people that
don’t know all the components and would like to implement it’.

Coverage ‘Correctly identifies the benefits of DevOps’.
Importance
Reusable

‘Very appropriate tools and real use case implementation’.

Relevance ‘It gives a clear idea of a path to production that could be used in IoT development
process’.

Usefulness ‘Useful for IoT cloud solutions’.
Importance
Usefulness

‘The DevOps section is very good as all the tools are perfectly used. As it will make
good automation in architecture’.

Generalisations
Relevance
Usefulness

‘Having a high-level view of specifications, logic, modelling, and behaviour of the
whole system is paramount to a solid implementation of the pipeline between IoT
and multi-cloud’.

Relevance
Importance

‘It’s good that you’re creating a platform on multi- cloud level. The idea of
Automating end to end pipeline is a good thing’.

Usefulness ‘I am really impressed with DRA I think the IoT environment are missing some
DevOps structure like that provided by DRA so it is very useful to guide teams to have
a simple workflow to implement DevOps in IoT projects’.

Relevance
Usefulness
Reusable

‘The value proposition that is to enable IoT architecture by the DevOps efforts in
order to start using this amazing technology for application like smart cities or even the
set an cloud architecture for a smart house system’.

Importance
Usefulness

‘Definitely automation. When IoT makes to the top, it will be so hard to test things
manually, and those things are going to be interacting directly and physically with

167

Criteria Feedback—Participants’ Quotes
users... So the automation process it’s going to be a very good friend for the UX of
anything related IoT’.

Usefulness
Relevance
Importance

‘This can be useful reference document for IoT based Apps deployment with
DevOps culture in team process and tool set’.

Generalisations ‘I thought it was a good overview of how DevOps can be applied with IoT’.
Importance ‘It is a good high level design for IoT cloud app deployment workflow’.
Relevance
Importance

‘Agility, CI/CD, automation, Speed’.

Importance
Relevance

‘Allowing users to interact with IoT devices remotely using cloud services. The
ability to track usage through the use of Paper-trail and automation of IoT device
by using the cloud’.

Relevance
Importance
Coverage
Novelty

‘Perfect pick up as industry is facing this issues as to how to integrate or implement
DevOps transformation when it comes to Cloud and IOT related Apps. In a
nutshell its part of Digital Transformation which is one of future in Industry’.

Usefulness
Coverage
Relevance

‘Overall it seems very well thought-out and could be extremely useful in practice.
However, it is fairly complex and might not be ideal for a newcomer. Perhaps some of
the graphics in this form could be further simplified to present DRA’s ideas in a
cleaner way. I strongly agreed to the “provide enough components” statements; are
there too many components? Could it be made simpler? Aside from this, the DRA
framework certainly makes sense’.

Coverage
Usefulness

‘I really appreciated the breakdown of the theory behind the DevOps culture; it’s very
good to explain for teaching reasons. In the enterprise world most of the companies
already take it as a practice and its consolidated and evolved further with a “You Build
It You Run It” paradigm where operations are part of development, including
maintenance and incident management …etc’.

Relevance ‘Looks effective and definitely have invested lot of efforts and work but utmost
wonderfully presented Many of Industries are already trying to get on these path. Keep
up the good work’.

Usefulness ‘Happy to see more researches like this. The reason I put average for the usefulness of
this framework in the industry is because technological innovation happens every day
and new and better tools are constantly introduced into the DevOps space, therefore
some of the tools mentioned in this framework could be replaced and become
irrelevant at some point, maybe soon. With that said I agree the concept remains valid
and could be very helpful’.

Usefulness ‘Tools used in Operation model pipeline are industry used tools and are excellent
choice for the DRA Operation Mode Pipeline’.

Reusable ‘Configuration template is easy to use and can be replicated’.
Coverage
Usefulness

‘DRA framework would help organisations understanding DevOps methodologies
and agile application deployment and delivery’.

Generalisations
Usefulness
Novelty
Coverage
Reusable

‘DRA is applicable and is fit for purpose to setup the DevOps multi-cloud’.
‘DRA is general in the sense that it is not fixed to one situation or environment and can
adapt to different situations and be used with different technology stacks as
appropriate to the situation. Thus DRA is applicable to a class of problem situations
and is applicable to several instantiations’.
‘DRA offers new knowledge, which has not been discussed before in the form of
complex DevOps for Multi-cloud and IoT’.

168

Criteria Feedback—Participants’ Quotes
‘DRA models seem to provide sufficient explanation about the elements and their
relationships as a “design knowledge”, which can be used or reused for a class of a
problem addressed in this work’.
‘My overall feedback is that DRA can be successfully instantiated for the similar
research lab environment needs for the deployment of IoT applications using
multi-cloud. Overall DRA is fit for purpose’.

Table 5. 46: QEM Criteria Occurrences
 T = 67 Generalisations Usefulness Coverage Relevance Reusable Novelty Importance

Frequency 6 18 9 14 5 3 12

Percentage 8.96% 26.87% 13.43% 20.90% 7.46% 4.48% 17.91%

REVIEW

Table 5.45 shows T = 67 related references to the evaluation criteria (see Chapter 3, Table 3.2
and Table 3.4). The occurrences of the evaluation criteria in the QEM is mapped in Table 5.46,
which shows that participants seem to consider the DRA useful (26.87%), relevant (20.90%) and
important (17.91%) to research and industry, and they believe it may be useful for their
organisation’s context.

QEM (Table 5) quotes seem to acknowledge the following elements:
 DRA is instantiable and easy to implement, using various tools and technologies.
 DRA is flexible and may be reconfigured with another technology stack.
 DRA includes integrated tools that enable automated deployment to the multi-cloud.
 DRA is based on high-level modelling that supports DevOps concepts and practices.
 DRA enables IoT processes and IoT interactions in IoT projects.
 DRA enables DevOps, cloud and IoT relationships.
 DRA enables decentralised logging and notifications.
 DRA supports DevOps culture and the human factor.
 DRA is an extensive comprehensive architecture that supports digital transformation.
 DRA provides a new knowledge base regarding adopting the DevOps approach.
 DRA provides a fast and clear path to software production in agile.

5.8. FUTURE RESEARCH

The second version of the DRA framework (DRAv2.0) was incrementally developed, refined
and presented at the international conference CBI2018, the 20th IEEE International Conference
on Business Informatics 11–13 July 2018, Vienna, Austria; (Ghantous & Gill 2018). DRAv2.0 is
an upgrade from single-cloud deployment (DRAv1.0) to multi-cloud deployment (see Chapter
4). The evaluation of the DRA in Chapter 5 determined its relevance, usefulness and
applicability for the industry, research and teaching contexts.

169

The DRA framework answered the main research question and achieved the thesis objectives
(see Chapter 1). However, as noted in the previous section and the research scope (see Chapter
1), there are limitations to the project, which indicate that there is room for improvement in the
framework. Several future research options can be suggested as improvements to the DRA. The
suggested future research topics are outside the scope of this thesis but are recommended by
industry survey participants and industry experts. The implementation of the suggested topics
could be considered an important upgrade to the current version of the DRA.

This section evaluates the participants’ responses regarding suggested improvements to the DRA
at the industry level. The feedback was in response to the Q8 set (see Appendix D). Feedback to
the Q8 set provided key suggestions to further improve the DRA, as well as valuable ideas that
may be considered as future research projects or DRA upgrades. The evaluation data results for
the Q8 set are presented in Table 5.47, which is organised as follows: the participants’
suggestions column, which contains the participants’ feedback and comments; and the
interpretations column, which includes the researcher’s answers to suggestions. In this column,
the researcher identifies the key ideas considered possible future research topics.

Table 5. 47: Suggested Improvements
Suggested Improvements Interpretations
The only issue I’ve seen is the scope; this framework is
useful beyond the scope of just IoT.

DRA output is the architecture design; it can
deploy other application types, not just IoT.

Need to look more at the IoT device part of the lifecycle
to elaborate how that is managed.

DRA output is the architecture design; IoT
devices management and software patching
may be considered a future research.

Including more open-source tools and including the
private/on premise cloud may be a nice touch.

DRA can be configured with any tools set.
The tools used in the DRA pipeline are for
demo and testing.

The technology stack is acceptable however I would be
using AWS ECS for long running services and
Lambda/API Gateway where applicable, Heroku’s
performance in Australia is subpar and cost model is
poor for large scale projects, most companies I’ve
worked for don’t tend to use Cloud hosted CI for
security reasons and the most fit for purpose solution
seems to be Buildkite. Papertrail/Loggly/etc. aren’t
generally used for cost reasons at scale however
SumoLogic is priced more effectively. HipChat is an
abomination and end-of-life, use Slack.

DRA can be configured with any tools set.
The tools used in the DRA pipeline are for
demo and testing.
CI broker security is a two-way authentication
system enabled by exchanging API tokens.
Although security is not in this project scope.

Multi stage deployment would need more attention in
terms of testing the app before releasing.

DRA BitBucket and CI broker both enable in-
house branching. It is a common practice to
test features on development branches before
committing to the production master. The
video shows ready IoT app features deployed.
The video is used for pipeline testing only.
The project aim is not to address the best
practices of software application development.

170

Suggested Improvements Interpretations
Think about the activities of the developers up front of
the DRA such as using TDD or BDD activities and
how they will influence how the DRA is used e.g.,
writing tests first, writing code to satisfy the tests,
checking in -> deployment, then refactoring the code,
running the tests, checking in -> new deployment etc.
etc.

DRA output is the architecture design; how
DRA may be adopted in a current organisation
environment. Testing scripts and code are
used within the DRA design.

This is more of a question than an improvement. I saw
that there are multiple steps in the deployment process.
What if it fails at one of the last steps? When you re-run
the deployment process does it start from the first step
or continue from the last successful step? Is it
configurable? Maybe something you want to look into?

DRA enables dev/prod (branching). DevOps
team may work on the production branch and
test their features. Application new features
are released to production after passing the
tests. Git technology enables the team to
revert to previous stable software versions.

What strategies are there for controlling and
monitoring the multi-cloud environments in the
context of DRA Framework?

DRA enables real-time application
monitoring. Logs of incidents are collected
and sent to Slack. DevOps team can act in
real-time to fix application issues based on
incidents reports.

The only thing missing in the framework is the addition
of high availability. We are using multi-cloud but
what is not covered is failure. This is extremely
important if you want to promote this framework
from research to industry.

Multi-cloud ensures multiple service
availability for the application. IT means that
the application can be accessed from the
different vendor if one or more has failed.

The tools change all the time; I feel that is quite a
challenge to keep up to date. I think there are some
unsolved challenges handling multi-cloud
deployments. I would suggest taking a look at
Artifactory. A lot of steps in the pipeline may generate
artefacts which are good to keep somewhere. I feel that
while the technology side has been covered, in
practice getting a DevOps team to work with a few
other teams can be challenging. I would separate
practices into a different set of models and contrast what
different practices say. For example, I’m about to take
some SAFE training in DevOps! (agile), but there are
books in other materials and other ways to work under
different methodologies.

DRA output is the architecture design; tools
and services can be added or replaced within
the design.

Self-remediation, infrastructure provisioning should be
a part of the framework

DRA CI broker enables clouds provisioning.
DRA requires CD clouds to be a deployment
platform only. CD clouds do not host database
or provision deployments in DRA.

Address deployment to multiple environments (e.g.,
test, staging, prod); configuration management;
access to shared infrastructure - brokers, MQs, etc.

DRAv2.0 enables multi-cloud provisioning
and deployment. The deployment
infrastructure is intentionally kept to the CD
cloud.

An important aspect that should be considered is
governance. Although it does not play a role in
automation, it is a very important component in real
businesses. Could be an improvement for future

<Possible Future Research Idea>

171

Suggested Improvements Interpretations
versions.
Firstly I would ask you to concentrate on the IoT
application as the deployment strategies, build tools
differ for android, IOS and windows. Try using some
kind of Artifactory or the roll back purpose if the release
doesn’t go well. Research more about the tool set and
will that particular tool set can be used with your
application pipeline.

DRA output is the architecture design; tools
and services can be added or replaced within
the design. Organisations adopting DRA may
use their in-house applications and tools into
DRA framework configuration. Roll-back
option is enabled on Git if DevOps team
decided to revert to stable application version
based on current testing logs.

Consider have a step to create and monitoring error
logs from production devices.

<Possible Future Research Idea>

Missing from the framework and the pipeline it the
focus on the telemetry and analytics that would be
retrieved from IoT devices. This usually involves large
analytics platforms like Big Query, Apache SOLR or
Hadoop. CDNs are usually employed to provide low-
latency updates to IoT devices as well.

DRA output is the architecture design; tools
and services can be added or replaced within
the design. Organisations adopting DRA may
use their in-house applications and tools into
DRA framework configuration.

Once deployed, how do you address hot fix? DRA enables dev/prod (branching). DevOps
team may work on the production branch and
test their features. Application new features
are released to production after passing the
tests. Git technology enables the team to
revert to previous stable software versions.

DevOps is all about improvement and there can much
addition to this framework in coming future. Using
feedback loops can be helpful in improving processes
and further learning which specifically found for an IoT
app infrastructure. This is a real good start indeed and
helps many people.

DRA framework is based on DevOps
practices and enables collaboration and
communication. This help with feedback and
logging.

Security and Metrics are an important piece of
DevOps.

<Possible Future Research Idea>

Security for infrastructure as well as application and
deployment speed improvements

<Possible Future Research Idea>

Scope for improvement. DevSecOps or DevQAOps can
be included as part of detailing. E.g., TDD / BDD
Framework or Security related tools can be added.

<Possible Future Research Idea>

Like I said before, I did not see any IoT specific design
in DRA framework.

IoT specific design is outside the project
purpose. The aim is to deploy IoT apps to
multi-cloud using DevOps.

172

Future research topics identified in this research are shown in Table 5.48.

Table 5. 48: Future Research Ideas
Future Research Source
To provide IoT devices management system as an upgrade to DRA IoT application
that aims to automate IoT sensors discovery and connectivity to a network

Table 5.47

An important aspect that should be considered is governance. Although it does not
play a role in automation, it is a very important component in real businesses. Could
be an improvement for future versions.

Table 5.47

DRA security improvements. DevOps security Table 5.47
DRA design to enable parallel application deployment to multi-cloud which
improves speed of deployment and enable parallel branching

Table 5.47

DRA security improvements. IoT security Table 5.47
Extend DRA to support drone and robotics application development and
deployment projects. It is a huge research area and perhaps another PhD (s) idea, for
the secure deployment of drone and robotics application projects.

Table 5.7

5.9. SUMMARY

This chapter evaluated the DRA framework using an empirical evaluation, which was composed
of four iterations: industry case study, research case study, teaching case study and industry field
survey. The collected data from the evaluation iterations were reviewed to determine the
relevance and importance of the DRA and whether it covered the institution’s (industry,
research, teaching) needs. The industry case study results appeared to indicate that the DRA is
applicable and flexible at the industry level. The research case study results indicated that the
DRA is fit for purpose and useful. The results from the research case study also showed that the
DRA could be part of future innovative projects. The teaching case study (for SEP and INP)
indicated that students were satisfied with their course content and have learnt a practical
DevOps approach. Finally, the industry field survey data were organised into quantitative and
qualitative data. The evaluation of the quantitative data indicated that most participants appeared
to agree that the DRA was applicable and fit for purpose at the industry level. The evaluation of
the survey qualitative data showed that the participants appeared to consider the DRA useful and
believed that it might cover industry needs. The empirical evaluation combined data was
analysed to determine that the DRA architectural models meet positively the evaluation criteria
discussed in chapter 3 (DSR). The survey participants imparted valuable comments and
suggested further improvements for the DRA that could be future research projects. The thesis
output, limitations and key contributions are discussed in Chapter 6.

173

Chapter 6: Discussion and Summary

This chapter outlines the research journey that started in August 2016. This chapter also presents
the main output of the research—the DRA. The contributions and publications are also listed in
this chapter. The DRA limitations are discussed based on the feedback from the empirical
evaluation. Finally, this section includes an overall summary of the research project.

6.1. RESEARCH JOURNEY AND OUTPUT

This section discusses the research journey and its outputs. It is organised as follows:
 The research journey, which started in August 2016
 The main output of this research—the DRA framework.

6.1.1. RESEARCH JOURNEY

The research journey is illustrated in Figure 6.1. It began in August 2016 at the higher degree
research level and was upgraded to PhD in autumn 2017. The research thesis is expected to be
submitted for review by the end of spring 2019.

174

Figure 6.1: Research Journey

175

6.1.2. RESEARCH OUTPUT

The main research output of this thesis is the DRA framework for IoT application deployment on
the multi-cloud. The framework was discussed in Chapter 4 and evaluated in Chapter 5 using an
empirical evaluation. The DRA framework was constructed using the DSR method outlined in
Chapter 3. The following sections outline the output of this research. The DRA framework has
three main components (see Figure 4.1): framework characteristics, framework design and
framework composition. The DRA framework logo is illustrated in Figure 6.2.

Figure 6.2: DRA Framework Overview

 Framework Characteristics

The framework characteristics were discussed in Chapter 4. They contain a set of nine elements:
human factor, infrastructure, abstraction, process, tools, product, business value, rules and legal.
The DRA can be tailored using its characteristics as guidelines that support the relationship
between DevOps, IoT and the multi-cloud. DRA characteristics can be used in the
implementation process of the DRA for a situation in the organisation context. The framework
characteristics’ output is mapped and explained in Table 6.1, which outlines the characteristics, a
brief description, and where the characteristics are located in this thesis.

176

Table 6. 1: DRA Characteristics Output
Characteristic Description Source
Abstraction Abstraction represents a logical view of the software

development structure. The abstraction characteristic
incorporates several mechanisms such as people-oriented,
service-oriented, tools-oriented and process-oriented. A
framework abstract design may combine than one abstraction
mechanism. The mechanism combination is used to create the
design model for the development environment (or workspace).

Chapter 4
Section 4.2.1
Figure 4.3

Human factor The human factor is an essential element in the DevOps
framework characteristics. DevOps approach supports people or
DevOps team. In an organisation, a DevOps team may involve
many individuals that have one or many roles. People in a
DevOps team may belong to different types of communities and
have different types of skills (social skills, development skills,
management skills, technical skills). Regardless of the people
skills, location, languages or knowledge base, a DevOps team is
expected to be involved in the entire product deployment
lifecycle (or development chain), which includes code
management, build, testing, deployment and monitoring.

Chapter 4
Section 4.2.2
Table 4.1
Figure 4.4

Infrastructure The infrastructure characteristic is also a foundational element in
the framework construction. Cloud seems to provide the required
infrastructure for the DRA framework. Cloud IaaS, PaaS and
SaaS offer virtual servers, resource-sharing, adaptive
deployment options, software services, and standard security
measures. Cloud supports automation, CI, continuous
deployment, monitoring. In the DRA framework, DevOps and
cloud services integrate into architecture. The DRA cloud
infrastructure provides the development platform for the DevOps
team to use the tools and create the product.

Chapter 4
Section 4.2.3
Figure 4.5

Process The process characteristic is an important element in the DRA
framework. A process is composed of different sub-processes
such as design, development, deployment, business. Processes
are compliant to rules, legal requirements that represent the
policy in an organisation context. A process can be categorised
as a software process, design process, business process, and
deployment process. The software process is the development
procedure used to create a software component. The deployment
process is combination practices and functionalities required to
create and deploy a product. The process is the progression of a
product from development to delivery.

Chapter 4

Section 4.2.4
Table 4.3
Figure 4.6

Tools Tools characteristic refers to DevOps and non-DevOps tools
(cloud/multi-cloud services) that are used in a process to create a
product. The tools characteristic is used in the development
workspace founded on the abstract design of the framework. In
the DRA framework, tools are used to create an operational
model to deploy and deliver a product (IoT application).
However, the framework is not fixed to a particular set of tools.
Organisations may use different tools suitable for the
development context of the project.

Chapter 4
Section 4.2.5
Figure 4.7

177

Characteristic Description Source
Product The product characteristic presents the executable project output

(e.g., IoT application). It is the output of a process or multiple
processes conducted in the development workspace. The
proposed DRA framework deploys and delivers a product using
an operational model composed of several tools.

Chapter 4
Section 4.2.6
Table 4.4
Figure 4.8

Business Value The business value characteristic has not been investigated to
any great extent in this thesis. However, the business should be
included in the characteristics because it affects the deployment
and delivery of the product (e.g., IoT application) to users. The
business value is generated by using other characteristics such as
people, tools, process, infrastructure and product.

Chapter 4
Section 4.2.7

Rules The rules characteristic is explicitly included in the extended
characteristics category of the DRA framework. Business rules
are a form of knowledge that states the guidelines being adopted
in the organisation. Business rules are an essential concept and
can be seen as general declarations about the organisations’
means of conducting business.

Chapter 4
Section 4.2.8

Legal The legal characteristic is explicitly included in the extended
characteristics category of the DRA framework. The legal
agreement and governing requirements may also affect the
software development process and product (IoT application)
delivery.

Chapter 4
Section 4.2.9

 Framework Design

The DRA design is a generic design model founded on the DRA characteristics discussed in
Section 4.2. DRA characteristics are common terminologies used to represent DRA elements
(DevOps and cloud/multi-cloud). DRA characteristics are used to create a reference architecture
design to deploy a product (IoT application) to the cloud/multi-cloud (the primary objective of
this research). Table 6.2 also includes the two versions of DRA architecture sets: DRAv1.0 and
DRAv2.0.

Table 6. 2: DRA Design Models
Model Description Source
Contextual model The DRA contextual model describes the relationship between

DevOps, multi-cloud and IoT at a higher level. This model
shows that DevOps can be used for deploying IoT applications
to the multi-cloud environment.

Chapter 4
Section 4.3.1
Figure 4.9

Conceptual model The DRA conceptual model describes the integration of
elements of the three technologies (DevOps, multi-cloud, IoT)
into one blueprint tailored to support the DRA characteristics.
The conceptual model includes a vital mechanism—the CI
broker. The CI broker is an essential part of the DRA
conceptual model because it incorporates several operations.
For instance, it enables automation (build, testing, logging,
deployment). The CI broker enables CI, branching
development and automated code synchronisation.

Chapter 4
Section 4.3.2
Figure 4.10

178

Model Description Source
Most importantly, it hosts the deployment configurations for
the IoT application. The CI broker packages the IoT app in a
container and deploys it to the multi-cloud platforms used in
the DRA instance. This procedure prevents any of the clouds
incorporated in the multi-cloud platform from hosting the IoT
application deployment parameters and consequently prevents
vendor lock-in.

Logical model The DRA logical model is founded on the conceptual model.
It expands the conceptual model and incorporates DevOps
practices. The DRA logical model is composed of five
components (M1–M5). The components represent the DRA
instance tiers or phases. Each logical model component
includes functions and features related to the required DevOps
practices and cloud service in that tier. The logical model
components are integrated into a logical view that represents
the interactions between these components. The logical model
represents the blueprint for physical model instances of the
DRA.

Chapter 4
Section 4.3.3
Figure 4.11
Table 4.5

Physical model The DRA physical model layer is an implementation of the
DRA logical model. It represents a harmonious integration of
tangible DevOps tools and cloud services. The physical model
is the template used to create the DRA operational model.

Chapter 4
Section 4.3.4
Figure 4.12

Operational model The operational model of the DRA framework is based on the
physical model that enables the logical model features
(DevOps practices). The DRA operational model is configured
using an integrated set of DevOps tools (see Chapter 2). The
DRA operational model provides automated IoT application
deployment to the cloud/multi-cloud. It is the application of
the logical model that represents the DRA characteristics
incorporated in the DRA conceptual model. The DRA
operational model is not fixed to a particular set of tools but
can be configured using numerous tools to suit the context of
the organisation.

Chapter 4
Section 4.3.E

DRAv1.0 The DRAv1.0 structure is composed of four constituents or
models: 1) conceptual, 2) logical, 3) physical, 4) operational.
The operational model is an instance of a physical model that
supports IoT application deployment on the single cloud (e.g.,
Heroku). The operational pipeline construct is built using
DevOps tools and cloud services.

Chapter 4
Section 4.5.1
Figure 4.18

DRAv2.0 The DRAv2.0 (see Figure 4.19) structure is composed of four
constituents or models: 1) conceptual, 2) logical, 3) physical,
4) operational. The operational model is an instance of a
physical model that supports IoT application deployment on
the multi-cloud (e.g., Heroku, AWS, GAE). The operational
pipeline construct is built using DevOps tools to provide end-
to-end automation of IoT app deployment on the multi-cloud
(Heroku, AWS, and GAE). DRAv2.0 is an upgraded version
of DRAv1.0.

Chapter 4
Section 4.5.2
Figure 4.19

179

 Framework Composition

This section presents the DRA composition of the framework (see Figure 4.1). The DRA
composition incorporates the essential elements needed to create DRA instances for deploying
IoT applications to the cloud/multi-cloud. The DRA composition is founded on the DRA
characteristics that were used to create a generic reference architecture for deploying IoT
applications (products) to the cloud/multi-cloud (infrastructure). The DRA composition
integrates the DRA models to create practical implementation (instances) applicable in the
context of the organisations. The DRA composition includes three main components:

 resources (architecture design, software, hardware)
 configuration (Pipeline, IoT application, IoT network)
 output (DRA models, DRAv1.0 instance, DRAv2.0 instance).

The DRA composition used for creating an instance of the framework is mapped in Table 6.3.

Table 6. 3: DRA Instance Components
Component Description Source
DRA
abstract
architecture

DRA abstract architecture is composed of the five main design models:
contextual, conceptual, logical, physical and operational.

Chapter 4
Section 4.4.1

DRA
pipeline
structure

The DRA pipeline is a physical instance of the DRA operational
model. The DRA pipeline enables automation and CI for IoT
application deployment. The DRA pipeline lifecycle supports DevOps
concepts. There are two versions of the DRA pipeline: DRAv1.0 and
DRAv2.0. Both versions are founded on the DRA architecture.
DRAv2.0 (multi-cloud) is an upgraded instance of DRAv1.0 (single
cloud). The DevOps tools set used in both versions can be substituted
with other tools that perform the same roles.

Chapter 4
Section 4.4.2
Figure 4.13
Figure 4.14
Table 4.7
Table 4.8

DRA
software
component

The DRA software component used in this research is a Java maven
web application called maven-app-heroku https://maven-app-
heroku.herokuapp.com/.
IoT app interacts with IoT sensors using Python scripts.
Note: The DRA applies to many software situations and can adapt to
various programming languages. The application used in this research
is designed for evaluation and POC purposes.

Chapter 4
Section 4.4.3
Table 4.9
Table 4.10
Table 4.11

IoT devices
and sensors

The IoT devices and IoT sensors (IoT network) used in this research
are the following:
- RPIB
- 4 LED lights connected to 4 GPIO pins (13, 17, 19, 22) (named

Sensor_A).
- Motion Sensor + 1 LED connection to a single GPIO pin [12]

(named Sensor_B).

Chapter 4
Section 4.4.4
Figure 4.17

https://maven-app-heroku.herokuapp.com/
https://maven-app-heroku.herokuapp.com/

180

6.2. KEY CONTRIBUTIONS AND PUBLICATIONS

The DRA framework outlined in the previous section was evaluated and tested in Chapter 5.
Three types of testing and evaluation were used to determine the validity and relevance of the
framework in the industry. Key publications contributed to the construction of the DRA
framework. The conference publications were peer-reviewed by key international researchers
and experts. This section presents the key contributions of the research (see Table 6.4):

Table 6.4: Thesis Key Contributions
Contribution Reference Source
DRA framework The main contribution of this thesis is the construction and

development of the DRA framework for IoT application
deployment on the multi-cloud. It is also important to add to this
key contribution to the empirical evaluation results conducted in
Chapter 5 (industry case study, teaching case study, research case
study, industry field survey).

Thesis output
Chapter 4
Chapter 5
Chapter 6.1.2

Conference Ghantous, G. & Gill, A. 2017, ‘DevOps: concepts, practices,
tools, benefits and challenges’, PACIS2017.
http://aisel.aisnet.org/pacis2017/96

PACIS(2017)

Conference Ghantous, G.B. & Gill, A.Q. 2018, ‘DevOps reference
architecture for multi-cloud IOT Applications’, IEEE 20th
Conference on Business Informatics 2018, vol. 1, pp. 158–167.
https://ieeexplore.ieee.org/abstract/document/8452669

CBI2018
IEEE

Journal Ghantous, G.B. and Gill, A.Q. 2019, ‘An agile-DevOps reference
architecture for teaching enterprise agile’, International Journal of
Learning, Teaching and Educational Research, vol. 18, no. 7.
https://opus.lib.uts.edu.au/handle/10453/135151

IJLTE

Journal
(in progress)

Title: ‘An Empirical Evaluation of the DevOps Reference
Architecture for Multi-Cloud IoT applications’
Authors: Ghantous, G.B. and Gill, A.Q.
Journal home-page: https://www.computer.org/csdl/magazine/so

IEEE
Transactions

Journal
(in progress)

Title: ‘The DevOps Reference Architecture Framework’
Authors: Ghantous, G.B. and Gill, A.Q.
Journal home-page: https://www.computer.org/csdl/magazine/so

IEEE
Software

Conference
(in progress)

Title: The DevOps Reference Architecture Evaluation – A Design
Science Research Case Study

Authors: Ghantous, G.B. and Gill, A.Q.
Conference home-page:
https://www.uantwerpen.be/en/conferences/business-informatics/

IEEE
CBI 2020

https://www.google.com/url?q=http://aisel.aisnet.org/pacis2017/96&sa=D&ust=1551086752984000&usg=AFQjCNHRhOZsgf8O6LhjE2sxe0pg4l7jEA
https://www.google.com/url?q=https://ieeexplore.ieee.org/abstract/document/8452669&sa=D&ust=1551086752984000&usg=AFQjCNHDz0XIpnl1i5sSNVKuBFnUlXYqkA
https://opus.lib.uts.edu.au/handle/10453/135151
https://www.computer.org/csdl/magazine/so
https://www.computer.org/csdl/magazine/so
https://www.uantwerpen.be/en/conferences/business-informatics/

181

6.3. RESEARCH LIMITATIONS

The DRA framework in this thesis has been tested in the case studies (see Chapter 5) and
assessed by experts using survey questionnaires. The framework has also been peer-reviewed at
renowned conferences (Ghantous & Gill 2018). The DRA has been evaluated using an empirical
evaluation conducted in Chapter 5. It was noted in Chapter 1 that the current version of the
framework (DRAv2.0) has a few limitations. Table 1.3 indicated that the DRA has four current
limitations that have been excluded from the research objectives. This section discusses the
project’s exclusions (DRA limitations) as outlined in Table 1.3.

 Custom Pipeline Security

The DRA operational model (see Chapter 4) provides an end-to-end automated pipeline instance
created by integrating DevOps tools (see Tables 2.12–2.22). A DRA pipeline toolset is integrated
by exchanging the API key (access key). The integration of tools provides standard security to
the automated deployment process chain consisting of Code Build Provision Test
Defect Fix Deploy Release. The DRA framework relies on the standard security measures
provided by the integrated tools and does not provide custom or additional security measures to
the deployment process chain.

 Custom IoT Security

This thesis uses a sample IoT network (see Chapter 4) to test the interaction of IoT app (maven-
app-heroku) deployed on the multi-cloud with IoT devices and sensors. The IoT sample network
was used to demonstrate and test the DRA (see Chapter 5). The IoT app (maven-app-heroku)
used for demonstration in this project interacts with the IoT network over the internet using SSH
commands (see Table 4.10) through port 22. The SSH commands activate Python scripts that are
programmed to activate and engage with IoT sensors installed on an RPIB. The IoT sample
network used in this research is built for DRA testing and does not provide custom or additional
security measures for IoT sensors. IoT security is a research topic of its own. The flow of the
interaction of Multi-cloud IoT app IoT network is secured by the current network on
which the DRA is tested. The SSH commands enable a standard secure interaction between the
IoT app and IoT sensors. The data collected from the IoT sensors has been stored on the
MongoDB cloud (mLab), which provides users with secure data storage.

 IoT Data Management

The complexity of IoT introduces several challenges to software systems. IoT data management
is one of the main concerns for organisations and practitioners (see Chapter 2). In this research,
the DRA architecture does not provide a solution for IoT data management.

182

 DevOps–Agile Integration

The integration of DevOps–agile methods into a combined architecture or framework may prove
to be effective may vertically augment software engineering. The transformation to DevOps–
agile, integrated architecture is not handled in this thesis. However, it can be considered the next
step towards future research and further improvement of the DRA.

 IoT application Scalability
The complexity of IoT increases the scalability challenge to the software system deployed to
multi-cloud and the cloud database (Mongo DB). In this research, the DRA architecture does not
provide a solution to the growing IoT data and a large amount of IoT interactions.

6.4. SUMMARY

This research was conducted between 2016 and 2019. Firstly, the background study and related
work analysis conducted in Chapter 1 revealed that DevOps, cloud/multi-cloud and IoT appear to
be connected. Further investigation into the related work suggested that the multi-cloud
warranted further research to determine its relationship with DevOps and IoT. The analysis led to
the convergence of ideas (see Chapter 1).

Further analysis of these ideas (see Table 1.1) revealed the research problem of the thesis. This
helped in determining the research question (RQ): How can IoT applications be deployed to the
multi-cloud using the DevOps approach? The study dimensions explained in Figure 1.5 showed
the complexity of the research question. Thus, the research question was further subdivided into
two questions (see Table 1.2):

1. RQ1: What is known about DevOps?
2. RQ2: How can IoT applications be deployed to the cloud (single and heterogeneous)

using the DevOps approach?

Second, the research aimed to understand DevOps and its effect on software development. For
this reason, an SLR was conducted in Chapter 2. The SLR was founded on the guidelines
adopted by Kitchenham and Charters (2007). It was used to systematically review the DevOps
concepts, practices, tools, challenges and existing solutions. The SLR examined and discussed
the topics of DevOps, cloud computing, multi-cloud and IoT. The results of the adopted SLR
helped to answer the first sub-question (RQ1). They provided rich information about DevOps
(concepts, practices, tools and adoption benefits and challenges to cloud and IoT). Part of the
SLR results that provided rich information about the DevOps approach was refined and
published in the international PACIS2017 (proceedings 96) conference in Malaysia. The SLR
data analysis also helped to reveal the research gaps of the thesis, which were addressed in
Chapters 3–5, consequently answering the second sub-question (RQ2).

183

Third, this research adopted a DSR process based on the guidelines derived from Gregor and
Hevner (2013) and Peffers et al. (2007). The DSR process steps are mapped in Table 3.1 and
Figure 3.1. The thesis DSR uses the background study and related work analysis (see Chapter 1)
and SLR data analysis and results (see Chapter 2) as initial data. The DSR aims to provide a
verifiable contribution through the development and evaluation of an artefact. The DSR follows
six steps (see Figure 3.2): problem identification, analysis, design, development, evaluation and
outcome. The DSR process produced several artefacts, most notably the new DRA framework,
which is the main contribution of the thesis.

Fourth, this research was carried out to develop a new framework called the DRA framework for
IoT by using a constructive and iterative DSR (see Chapter 3). The framework aims to assist in
the adoption of the DevOps approach for software development. The DRA is tailored to support
IoT application deployment to the cloud. The framework has three main components: framework
characteristics, framework architecture and framework composition. The DRA framework has
two versions (instances discussed in this thesis): DRAv1.0 (deployment to a single cloud) and
DRAv2.0 (deployment to the multi-cloud). Chapter 4 also included an implementation set that
could be used to help with the application and evaluation of the framework in organisational
contexts. The implementation set (see Chapter 4) was used to create a case study template, which
was used in the industry case study and the research lab case study (see Chapter 5) to evaluate
the DRA.

Fifth, an empirical evaluation was conducted to determine the relationship between the DRA
elements and the evaluation criteria (see Tables 5.1 and 5.4). The empirical evaluation of the
DRA has four iterations: 1) industry case study, 2) research case study, 3) teaching case study,
and 4) industry field survey. The case studies used a case study template (see Appendix G) to
provide instructive guidelines for DRA implementation and evaluation in organisations’
contexts. The industry case study obtained feedback from a DE expert at CPF. The feedback was
organised in Table 5.5 and reported in Table 5.6 and acknowledged that the DRA is useful,
reusable and covers the organisation’s needs. The feedback provided by the lab leader at the
research lab (DigiSAS Lab) was organised in Table 5.7 and reported in Table 5.8. The analysis
report conceded that the DRA offers new and useful knowledge that may cover what is needed to
consider the DRA a general template that could be instantiated for IT project situations with
various technology stacks. The teaching case study was conducted in two iterations: SEP case
study and INP case study. SEP and INP are subjects offered by UTS FEIT. The SFS results for
SEP produced an AAF = 88.85% (see Table 5.9) and the SFS results for INP produced an AAF =
100% (see Tables 5.11 and 5.12). These results indicated that the DRA is useful for teaching.
The qualitative feedback in Tables 5.10 and 5.14 indicated that the students were satisfied with
the subject content quality.

The industry field survey used in this research (see Appendix D) was anonymous. The survey
was offered online via LinkedIn to industry experts from organisations located locally and

https://www.linkedin.com/in/georges-bou-ghantous/

184

internationally (see Table 5.17). The survey evaluation process had two phases: quantitative
evaluation process and qualitative evaluation process. The quantitative evaluation process
collected rating data from the individual DRA models questionnaires (see Appendix D). The
collected ratings were mapped as numerical data into results (see Tables 5.24–5.37. The RT and
CT tables produced key statistical values (AAP, AAF and Chi2 p-value). The AAP values in the
results tables were above 90% overall, and the p-value for each test variable was less than the
critical value = 0.01. The qualitative evaluation process collected feedback and ratings from the
overall survey questionnaires and mapped the data in Tables 5.38 and 5.40.

The data in these tables were analysed to determine the relationship between the feedback and
the evaluation criteria (see Table 3.2). Table 5.39 calculated an AAP = 93.09% and p-value <
0.01. This result indicated that the participants considered the DRA useful for the industry,
teaching and research contexts. The analysis of the empirical evaluation combined data using
QIM (see Table 5.44) and QEM (5.46) showed that the participants agree that the DRA meets the
evaluation criteria positively (see Table 3.2 and Table 3.4) at a probability of QI = 86.47%. The
QEM results (see Table 5.45) provided further insights from the participants’ perspectives about
the DRA architectural models relationships with the evaluation criteria. Chapter 5 also discussed
future research based on suggested improvements to the DRA framework based on the feedback
collected in the empirical evaluation. Chapter 6 presented the research journey, research output
and key contributions. Chapter 6 also discussed the framework’s limitations and research
contributions.

Finally, and based on the empirical evaluation results, it appears that the proposed DRA
framework is a practical, applicable comprehensive solution for IoT application deployment to
the multi-cloud. Practitioners and researchers may benefit from the framework and the empirical
evaluation results to understand the usefulness and applicability of the DevOps approach on the
multi-cloud platform for the automated deployment of IoT applications.

185

Conclusion

This thesis presented a DRA framework that appears to provide a practical solution for deploying
IoT applications to the cloud/multi-cloud. The DRA was developed iteratively using a well-
known DSR. The DRA framework is intended for use by DevOps teams (managers, consultants,
engineers, developers) as a practical guide for using DevOps, cloud/multi-cloud and IoT contexts
in software development environments. The DRA offers a comprehensive architectural design
model that could be implemented and applied in any organisational context using numerous
technology stacks. The DRA operational model instance may vary from each implementation;
however, the architecture is generic and fixed. The architecture models of the DRA are
effectively used as a blueprint. This framework should not be taken as an imposed heavy-handed
step-by-step process; rather, it should be understood as a comprehensive guide to ensure that the
important points are not ignored. DevOps teams may use some or all of the framework’s
characteristics and components to generate their operational models that are suitable for the
development environment of their organisation. This framework will be further extended based
on future learning, research and experience.

186

Declarations

This section contains information about the thesis author. It includes a brief bio about the thesis
author.

A. AUTHOR INFORMATION

Author: Georges Bou Ghantous

Thesis: Doctor of Philosophy (C02029)

Thesis Title: A DevOps Reference Architecture for Multi-Cloud IoT-applications Deployments.

Email: Georges.BouGhantous-1@uts.edu.au and Georges.BouGhantous@student.uts.edu.au
UTS Profile: https://www.uts.edu.au/staff/georges.boughantous-1
Linked In Profile: https://www.linkedin.com/in/georges-bou-ghantous
Development Website: https://maven-app-heroku.herokuapp.com

B. AVAILABILITY OF DATA AND MATERIALS

The data collected during the evaluation process of the DRA framework have been securely
stored on ‘CloudStor’ by AARNet (Link) the UTS-recommended cloud storage to researchers
and academics. The collected data consists of:

 Industry survey data is stored on CloudStor. The collected data from the survey is completely
anonymous. No information about participants was collected.

 Industry case study data and feedback. No information about organisations or participants
was recorded.

 Research case study data and feedback. No information about organisations or participants
was recorded.

 Teaching case study data is stored on CloudStor. No information about organisations or
participants was recorded.

Please Note: Only the author (Mr Georges Bou Ghantous) and the principal supervisor (Dr
Asif Gill) have access to the original thesis data is stored on CloudStor. The anonymous
results data are available for public access (see Appendix E).

mailto:Georges.BouGhantous-1@uts.edu.au
mailto:Georges.BouGhantous@student.uts.edu.au
https://www.linkedin.com/in/georges-bou-ghantous
https://maven-app-heroku.herokuapp.com/
https://www.aarnet.edu.au/network-and-services/cloud-services-applications/cloudstor

187

Bibliography

Aberdeen, T. 2013, ‘Yin, R. K. 2009. Case study research: design and methods (4th ed.).
Thousand Oaks, CA: Sage’, Canadian Journal of Action Research, vol. 14, no. 1, pp. 69–
71.

Adda, M. & Saad, R. 2014, ‘A data sharing strategy and a DSL for service discovery, selection
and consumption for the IoT’, Procedia Computer Science, vol. 37, pp. 92–100. (S33).

Ahmadighohandizi, F. & Systä, K. 2015, ‘ICDO: integrated cloud-based development tool for
DevOps’, Published in SPLST 2015, pp. 76–90. (S21).

Alam, K.M., Sopena, A. & El Saddik, A. 2015, ‘Design and development of a cloud based
cyber-physical architecture for the Internet-of-Things’, IEEE International Symposium on
Multimedia 2015, IEEE, Piscataway, NJ, pp. 459–464. (S60).

Alkhalil, A. & Ramadan, R.A. 2017, ‘IoT data provenance implementation challenges’, Procedia
Computer Science, vol. 109, pp. 1134–1139. (S53).

AlOtaibi, M., Lo'ai, A.T. & Jararweh, Y. 2016, ‘Integrated sensors system based on IoT and
mobile cloud computing’, IEEE/ACS 13th International Conference of Computer Systems
and Applications 2016, IEEE, Piscataway, NJ, pp. 1–5. (S66).

Alowaidi, M., Rahman, M.A., Hassanain, E. & El Saddik, A. 2017, ‘Demo abstract: a semantic
notification approach for IoT-based sensory data’, IEEE/ACM Second International
Conference on Internet-of-Things Design and Implementation 2017, IEEE, Piscataway,
NJ, pp. 289–290. (S42).

Alzoubi, Y.I., Gill, A.Q. & Al-Ani, A. 2015, ‘Distributed agile development communication: an
agile architecture driven framework’, Journal of Software, vol. 10, no. 6, pp. 681–694.
(S113).

Alzoubi, Y.I., Gill, A.Q. & Moulton, B. 2018, ‘A measurement model to analyze the effect of
agile enterprise architecture on geographically distributed agile development’, Journal of
Software Engineering Research and Development, vol. 6, no. 1, p. 4. (S127).

Analyti, A., Theodorakis, M., Spyratos, N. & Constantopoulos, P. 2007, ‘Contextualization as an
independent abstraction mechanism for conceptual modeling’, Information Systems, vol.
32, no. 1, pp. 24–60.

Anatolijs Zabasta, Nadezda Kunicina, Kaspars Kondratjevs, and Leonids Ribickis. 2020.
‘Adaptive Workflow of Service Oriented IoT Architectures for Small and Distributed
Automation Systems’. In Proceedings of the 3rd International Conference on Applications of

188

Intelligent Systems (APPIS 2020). Association for Computing Machinery, New York, NY,
USA, Article 5, 1–6. DOI:https://doi-org.ezproxy.lib.uts.edu.au/10.1145/3378184.3378189

Artač, M., Borovšak, T., Di Nitto, E., Guerriero, M. & Tamburri, D.A. 2016, ‘Model-driven
continuous deployment for quality DevOps’, Proceedings of the 2nd International
Workshop on Quality-Aware DevOps, ACM, New York, NY, pp. 40–41. (S106).

Atif, Y., Ding, J. & Jeusfeld, M.A. 2016, ‘Internet of Things approach to cloud-based smart car
parking’, Procedia Computer Science, vol. 98, pp. 193–198. (S82).

Avram, M.G. 2014, ‘Advantages and challenges of adopting cloud computing from an enterprise
perspective’, Procedia Technology, vol. 12, pp. 529–534. (S86).

Babovic, Z.B., Protic, J. & Milutinovic, V. 2016, ‘Web performance evaluation for Internet of
Things applications’, IEEE Access, vol. 4, pp. 6974–6992. (S75).

Bai, X., Li, M., Pei, D., Li, S. & Ye, D. 2018, ‘Continuous delivery of personalized assessment
and feedback in agile software engineering projects’, IEEE/ACM 40th International
Conference on Software Engineering: Software Engineering Education and Training
2018, IEEE, Piscataway, NJ, pp. 58–67. (S107).

Bass, L., Holz, R., Rimba, P., Tran, A.B. & Zhu, L. 2015, ‘Securing a deployment pipeline’,
Proceedings of the Third International Workshop on Release Engineering, IEEE,
Piscataway, NJ, pp. 4–7. (S17).

Berger, S., Häckel, B. & Häfner, L. 2019, ‘Organizing self-organizing systems: a terminology,
taxonomy, and reference model for entities in cyber-physical production systems’,
Information Systems Frontiers, pp. 1–24.

Botta, A., De Donato, W., Persico, V. & Pescapé, A. 2016, ‘Integration of cloud computing and
Internet of Things: a survey’, Future Generation Computer Systems, vol. 56, pp. 684–
700. (S89).

Bradley, D., Russell, D., Ferguson, I., Isaacs, J., MacLeod, A. & White, R. 2015, ‘The Internet of
Things—the future or the end of mechatronics’, Mechatronics, vol. 27, pp. 57–74. (S38).

Carvalho, J.Á. 2012, ‘Validation criteria for the outcomes of design research’, a Pre-ECIS and
AIS SIG Prag Workshop on IT Artefact Design & Workpractice Intervention, Barcelona,
10 June.

Cavalcante, E., Pereira, J., Alves, M.P., Maia, P., Moura, R., Batista, T., Delicato, F.C. & Pires,
P.F. 2016, ‘On the interplay of Internet of Things and cloud computing: a systematic
mapping study’, Computer Communications, vol. 89, pp. 17–33. (S83).

189

Chen, C.H., Lin, M.Y. & Guo, X.C. 2017, ‘High-level modeling and synthesis of smart sensor
networks for Industrial Internet of Things’, Computers & Electrical Engineering, vol. 61,
pp. 48–66. (S52).

Chen, H.M., Kazman, R. and Haziyev, S., 2016. ‘Agile big data analytics for web-based systems:
An architecture-centric approach’. IEEE Transactions on Big Data, 2(3), pp.234-248.

Chen, H.M., Kazman, R., Haziyev, S., Kropov, V. & Chtchourov, D. 2015, ‘Architectural
support for DevOps in a neo-metropolis BDaaS platform’, IEEE 34th Symposium on
Reliable Distributed Systems Workshop 2015, IEEE, Piscataway, NJ, pp. 25–30. (S3).

Chondamrongkul, N. & Temdee, P. 2013, ‘Multi-cloud computing platform support with model-
driven application runtime framework’, 13th International Symposium on
Communications and Information Technologies 2013, IEEE, Piscataway, NJ, pp. 715–
719. (S114).

Colavita, F. 2016, ‘DevOps movement of enterprise agile breakdown silos creates collaboration,
increase quality, and application speed’, Proceedings of 4th International Conference in
Software Engineering for Defence Applications, Springer, Cham, pp. 203–213. (S128).

Cukier, D. 2013, ‘DevOps patterns to scale web applications using cloud services’, Proceedings
of the 2013 Companion Publication for Conference on Systems, Programming, &
Applications: Software for Humanity, ACM, New York, NY, pp. 143–152. (S25).

Cysneiros, L.M., de Macedo-Soares, T. & do Prado Leite, J.C.S. 1999, ‘Using ISO 9000 to elicit
business rules’, Proceedings 4th IEEE International Software Engineering Standards
Symposium and Forum, IEEE, Piscataway, NJ, pp. 88–98.

D’Agostino, D., Galizia, A., Clematis, A., Mangini, M., Porro, I. & Quarati, A. 2013, ‘A QoS-
aware broker for hybrid clouds’, Computing, vol. 95, no. 1, pp. 89–109. (S124).

Dasgupta, A., Gill, A. and Hussain, F., 2019. A Conceptual Framework for Data Governance in
IoT-enabled Digital IS Ecosystems.

de AR Gonçalves, J.C., Santoro, F.M. & Baião, F.A. 2011, ‘Collaborative narratives for business
rule elicitation’, IEEE International Conference on Systems, Man, and Cybernetics 2011,
IEEE, Piscataway, NJ, pp. 1926–1931.

De Bayser, M., Azevedo, L.G. & Cerqueira, R. 2015, ‘ResearchOps: the case for DevOps in
scientific applications’, IFIP/IEEE International Symposium on Integrated Network
Management 2015, IEEE, Piscataway, NJ, pp. 1398–1404. (S14).

190

Dev Agrawal, Rahul Bhagwat, Rajdeep Bandopadhyay, Vineela Kunapareddi, Eric Burden,
Shane Halse, Pamela Wisniewski, and Jess Kropczynski. 2020. ‘Enhancing Smart Home
Security using Co-Monitoring of IoT Devices’. In Companion of the 2020 ACM
International Conference on Supporting Group Work (GROUP ’20). Association for
Computing Machinery, New York, NY, USA, 99–102. DOI:https://doi-
org.ezproxy.lib.uts.edu.au/10.1145/3323994.3369883

Di Martino, B. & Esposito, A. 2016, ‘Semantic techniques for multi-cloud applications
portability and interoperability’, Procedia Computer Science, vol. 97, pp. 104–113.
(S109).

Di Nitto, E., Jamshidi, P., Guerriero, M., Spais, I. & Tamburri, D.A. 2016, ‘A software
architecture framework for quality-aware DevOps’, Proceedings of the 2nd International
Workshop on Quality-Aware DevOps, ACM, New York, NY, pp. 12–17. (S2).

Diel, E., Marczak, S. & Cruzes, D.S. 2016, ‘Communication challenges and strategies in
distributed DevOps’, IEEE 11th International Conference on Global Software
Engineering 2016, IEEE, Piscataway, NJ, pp. 24–28. (S12).

Domaschka, J., Griesinger, F., Baur, D. & Rossini, A. 2015, ‘Beyond mere application structure
thoughts on the future of cloud orchestration tools’, Procedia Computer Science, vol. 68,
pp. 151–162. (S29).

Douzis, K., Sotiriadis, S., Petrakis, E.G. & Amza, C. 2018, ‘Modular and generic IoT
management on the cloud’, Future Generation Computer Systems, vol. 78, pp. 369–378.
(S56).

Dybå, T. & Dingsøyr, T. 2008, ‘Empirical studies of agile software development: a systematic
review’, Information and Software Technology, vol. 50, no. 9–10, pp. 833–859.

Erich, F., Amrit, C. & Daneva, M. 2014, Report: DevOps literature review, Technical Report,
University of Twente, The Netherlands (S23).

Fan, T.R., Feng, G.A.O., Zhang, X. & Xu, W.A.N.G. 2012, ‘Integration of IoT and DRAGON-
lab in cloud environment’, Journal of China Universities of Posts and
Telecommunications, vol. 19, no. 2, pp. 87–91. (S90).

Farahzadi, A., Shams, P., Rezazadeh, J. & Farahbakhsh, R. 2018, ‘Middleware technologies for
Cloud of Things: a survey’, Digital Communications and Networks, vol. 4, no. 3, pp.
176–188. (S91).

Ferry, N., Chauvel, F., Song, H., Rossini, A., Lushpenko, M. & Solberg, A. 2018, ‘CloudMF:
model-driven management of multi-cloud applications’, ACM Transactions on Internet
Technology, vol. 18, no. 2, p. 16. (S97).

191

Ferry, N., Chauvel, F., Song, H. & Solberg, A. 2015, ‘Continuous deployment of multi-cloud
systems’, Proceedings of the 1st International Workshop on Quality-Aware DevOps,
ACM, New York, NY, pp. 27–28. (S101).

Ferry, N., Rossini, A., Chauvel, F., Morin, B. & Solberg, A. 2013, ‘Towards model-driven
provisioning, deployment, monitoring, and adaptation of multi-cloud systems’, IEEE
Sixth International Conference on Cloud Computing 2013, IEEE, Piscataway, NJ, pp.
887–894. (S94).

Fowler, M. and Highsmith, J., 2001. The agile manifesto. Software Development, 9(8), pp.28-35.

Ghantous, G.B. & Gill, A. 2017, ‘DevOps: concepts, practices, tools, benefits and challenges’,
Pacific Asia Conference on Information Systems 2017, AISeL
https://aisel.aisnet.org/pacis2017/. (S41).

Ghantous, G.B. & Gill, A.Q. 2018, ‘DevOps reference architecture for multi-cloud IOT
applications’, IEEE 20th Conference on Business Informatics 2018, IEEE, Piscataway,
NJ, pp. 158–167. (S104).

Ghantous, G.B. & Gill, A.Q. 2019, ‘An agile-DevOps reference architecture for teaching
enterprise agile’, International Journal of Learning, Teaching and Educational Research,
vol. 18, no. 7, pp. 128–144.

Gill, A.Q., Chew, E.K., Kricker, D. and Bird, G., 2016, August. Adaptive enterprise resilience
management: Adaptive action design research in financial services case study. In 2016
IEEE 18th Conference on Business Informatics (CBI) (Vol. 1, pp. 113-122). IEEE.

Gill, A.Q. and Chew, E., 2019. Configuration information system architecture: Insights from
applied action design research. Information & Management, 56(4), pp.507-525.

Gomes, M., da Rosa Righi, R. & da Costa, C.A. 2014, ‘Internet of Things scalability: analyzing
the bottlenecks and proposing alternatives’, 6th International Congress on Ultra Modern
Telecommunications and Control Systems and Workshops 2014, IEEE, Piscataway, NJ,
pp. 269–276. (S120).

Gómez, J.E., Marcillo, F.R., Triana, F.L., Gallo, V.T., Oviedo, B.W. & Hernández, V.L. 2017,
‘IoT for environmental variables in urban areas’, Procedia Computer Science, vol. 109,
pp. 67–74. (S54)

Gregor, S. & Hevner, A.R. 2013, ‘Positioning and presenting design science research for
maximum impact’, MIS Quarterly, vol. 37, no. 2, pp. 337–355.

https://aisel.aisnet.org/pacis2017/

192

Gubbi, J., Buyya, R., Marusic, S. & Palaniswami, M. 2013, ‘Internet of Things (IoT): a vision,
architectural elements, and future directions’, Future Generation Computer Systems, vol.
29, no. 7, pp. 1645–1660. (S37).

Guechi, F.A. & Maamri, R. 2017, ‘Secure self-destruction of shared data in multi-cloud IoT’,
IEEE 5th International Conference on Future Internet of Things and Cloud 2017, IEEE,
Piscataway, NJ, pp. 161–168. (S102).

Gutiérrez-Madroñal, L., Medina-Bulo, I. & Domínguez-Jiménez, J.J. 2018, ‘IoT–TEG: test event
generator system’, Journal of Systems and Software, vol. 137, pp. 784–803. (S55).

Hanappi, O., Hummer, W. & Dustdar, S. 2016, ‘Asserting reliable convergence for configuration
management scripts’, ACM SIGPLAN Notices, vol. 51, no. 10, pp. 328–343. (S16).

Hefnawy, A., Bouras, A. & Cherifi, C. 2016, ‘IoT for smart city services: lifecycle approach’,
Proceedings of the International Conference on Internet of Things and Cloud Computing,
ACM, New York, NY, p. 55. (S45).

Hoeren, T. & Pinelli, S. 2018, ‘Agile programming—introduction and current legal challenges’,
Computer Law & Security Review, vol. 34, no. 5, pp. 1131–1138.

Hsieh, W.K., Hsieh, W.H., Chen, J.L. & Lin, C.Y. 2016, ‘Self-configuration and smart binding
control on IOT applications’, 18th International Conference on Advanced
Communication Technology 2016, IEEE, Piscataway, NJ, pp. 80–85. (S73).

Hu, P., Dhelim, S., Ning, H. & Qiu, T. 2017, ‘Survey on fog computing: architecture, key
technologies, applications and open issues’, Journal of Network and Computer
Applications, vol. 98, pp. 27–42. (S103).

Hyndman, R.J. 2008, Quantitative business research methods, Department of Econometrics and
Business Statistics, Monash University, Melbourne, Vic.

Iqbal, A., Ullah, F., Anwar, K.H. & Sup, K. 2010, ‘Interoperable Internet-of-Things platform for
Smart’, Networks, vol. 54, no. 15, pp. 2787–2805. (S99).

Islam, S., Mouratidis, H. & Jürjens, J. 2011, ‘A framework to support alignment of secure
software engineering with legal regulations’, Software & Systems Modeling, vol. 10, no.
3, pp. 369–394.

Jabbari, R., bin Ali, N., Petersen, K. & Tanveer, B. 2016, ‘What is DevOps? A systematic
mapping study on definitions and practices’, Proceedings of the Scientific Workshop
Proceedings of XP2016, ACM, New York, NY, p. 12. (S20).

193

Jamshidi, P., Pahl, C., Chinenyeze, S. & Liu, X. 2015, ‘Cloud migration patterns: a multi-cloud
service architecture perspective’, Service-Oriented Computing-ICSOC 2014 Workshops,
Springer, Cham, pp. 6–19. (S98).

Jedlitschka, A. & Pfahl, D. 2005, ‘Reporting guidelines for controlled experiments in software
engineering’, International Symposium on Empirical Software Engineering 2005, IEEE,
Piscataway, NJ, pp. 95–104.

Jha, P. & Khan, R. 2018, ‘A review paper on DevOps: beginning and more to know.
International Journal of Computer Applications, vol. 180, no. 48, pp. 16–20. (S1).

John, W., Meirosu, C., Pechenot, B., Sköldström, P., Kreuger, P. & Steinert, R. 2015, ‘Scalable
software defined monitoring for service provider DevOps’, Fourth European Workshop
on Software Defined Networks 2015, IEEE, Piscataway, NJ, pp. 61–66. (S15).

Jula, A., Sundararajan, E. & Othman, Z. 2014, ‘Cloud computing service composition: a
systematic literature review’, Expert Systems with Applications, vol. 41, no. 8, pp. 3809–
3824. (S85).

Kang, B. & Choo, H. 2018, ‘An experimental study of a reliable IoT gateway’, ICT Express, vol.
4, no. 3, pp. 130–133. (S48).

Khakimov, A., Muthanna, A., Kirichek, R., Koucheryavy, A. & Muthanna, M.S.A. 2017,
‘Investigation of methods for remote control IoT-devices based on cloud platforms and
different interaction protocols’, IEEE Conference of Russian Young Researchers in
Electrical and Electronic Engineering 2017, IEEE, Piscataway, NJ, pp. 160–163. (S68).

Kishore Ramakrishnan, A., Preuveneers, D. & Berbers, Y. 2014, ‘Enabling self-learning in
dynamic and open IoT environments’, Procedia Computer Science, vol. 32, pp. 207–214.
(S35).

Kitchenham, B. & Charters, S. 2007, Guidelines for performing systematic literature reviews in
software engineering, EBSE Technical Report, Keele University and University of
Durham.

Klein, H.K. & Myers, M.D. 1999, ‘A set of principles for conducting and evaluating interpretive
field studies in information systems’, MIS Quarterly, vol. 23, no. 1, pp. 67–94.

Kodeswaran, P.A., Kokku, R., Sen, S. & Srivatsa, M. 2016, ‘Idea: a system for efficient failure
management in smart IoT environments’, Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and Services, ACM, New York, NY, pp.
43–56. (S43).

194

Kolios, P., Panayiotou, C., Ellinas, G. & Polycarpou, M. 2016, ‘Data-driven event triggering for
IoT applications’, IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1146–1158. (S78).

Kritikos, K. & Plexousakis, D. 2015, ‘Multi-cloud application design through cloud service
composition’, IEEE 8th International Conference on Cloud Computing 2015, IEEE,
Piscataway, NJ, pp. 686–693. (S92).

Kumari, S., Li, X., Wu, F., Das, A.K., Choo, K.K.R. & Shen, J. 2017, ‘Design of a provably
secure biometrics-based multi-cloud-server authentication scheme’, Future Generation
Computer Systems, vol. 68, pp. 320–330. (S111).

Lee, I. & Lee, K. 2015, ‘The Internet of Things (IoT): applications, investments, and challenges
for enterprises’, Business Horizons, vol. 58, no. 4, pp. 431–440. (S36).

Lee, K. & Hughes, D. 2010, ‘System architecture directions for tangible cloud computing’, First
ACIS International Symposium on Cryptography, and Network Security, Data Mining
and Knowledge Discovery, E-Commerce and Its Applications, and Embedded Systems
2010, IEEE, Piscataway, NJ, pp. 258–262. (S80).

Leite, J., Batista, T. & Oquendo, F. 2017, ‘Architecting IoT applications with SysADL’, IEEE
International Conference on Software Architecture Workshops 2017, IEEE, Piscataway,
NJ, pp. 92–99. (S77).

Li, W., Santos, I., Delicato, F.C., Pires, P.F., Pirmez, L., Wei, W., Song, H., Zomaya, A. &
Khan, S. 2017, ‘System modelling and performance evaluation of a three-tier Cloud of
Things’, Future Generation Computer Systems, vol. 70, pp. 104–125. (S84).

Litchfield, A. and Althouse, J., 2014. A systematic review of cloud computing, big data and
databases on the cloud. AMCIS (2014)

Lin, Y.B., Lin, Y.W., Chih, C.Y., Li, T.Y., Tai, C.C., Wang, Y.C., Lin, F.J., Kuo, H.C., Huang,
C.C. & Hsu, S.C. 2015, ‘EasyConnect: a management system for IoT devices and its
applications for interactive design and art’, IEEE Internet of Things Journal, vol. 2, no. 6,
pp. 551–561. (S62).

Luo, B. & Sun, Z. 2015, ‘Enabling end-to-end communication between wireless sensor networks
and the internet based on 6LoWPAN’, Chinese Journal of Electronics, vol. 24, no. 3, pp.
633–638. (S64).

Lwakatare, L.E., Kuvaja, P. & Oivo, M. 2016a, ‘An exploratory study of DevOps extending the
dimensions of DevOps with practices’, ICSEA 2016: The Eleventh International
Conference on Software Engineering Advances, IARIA, 2016, pp. 91–99. (S27).

195

Lwakatare, L.E., Kuvaja, P. & Oivo, M. 2016b, ‘Relationship of DevOps to agile, lean and
continuous deployment’, International Conference on Product-Focused Software Process
Improvement, Springer, Cham, pp. 399–415. (S126).

Massonet, P., Deru, L., Achour, A., Dupont, S., Levin, A. & Villari, M. 2017, ‘End-to-end
security architecture for federated cloud and IoT networks’, IEEE International
Conference on Smart Computing 2017, IEEE, Piscataway, NJ, pp. 1–6. (S65).

Mathur, A., Newe, T., Elgenaidi, W., Rao, M., Dooly, G. & Toal, D. 2017, ‘A secure end-to-end
IoT solution’, Sensors and Actuators A: Physical, vol. 263, pp. 291–299. (S49).

McCarthy, M.A., Herger, L.M., Khan, S.M. & Belgodere, B.M. 2015, ‘Composable DevOps:
automated ontology based DevOps maturity analysis’, IEEE International Conference on
Services Computing 2015, IEEE, Piscataway, NJ, pp. 600–607. (S6).

Minh Nguyen, Saptarshi Debroy, Prasad Calyam, Zhen Lyu, and Trupti Joshi. 2020. ‘Security-
aware Resource Brokering for Bioinformatics Workflows across Federated Multi-cloud
Infrastructures’. In Proceedings of the 21st International Conference on Distributed
Computing and Networking (ICDCN 2020). Association for Computing Machinery, New
York, NY, USA, Article 26, 1–10. DOI:https://doi-
org.ezproxy.lib.uts.edu.au/10.1145/3369740.3369791

Mohamed, S. 2016, ‘DevOps maturity calculator DOMC-value oriented approach’, International
Journal of Engineering Science and Research, vol. 2, no. 2, pp. 25–35. (S26).

Moldovan, D., Copil, G., Truong, H.L. & Dustdar, S. 2014, ‘On analyzing elasticity relationships
of cloud services’, IEEE 6th International Conference on Cloud Computing Technology
and Science 2014, IEEE, Piscataway, NJ, pp. 447–454. (S116).

Mongan, W.M., Rasheed, I., Ved, K., Vora, S., Dandekar, K., Dion, G., Kurzweg, T. &
Fontecchio, A. 2017, ‘On the use of radio frequency identification for continuous
biomedical monitoring’, IEEE/ACM Second International Conference on Internet-of-
Things Design and Implementation 2017, IEEE, Piscataway, NJ, pp. 197–202. (S46).

Moore, J., Kortuem, G., Smith, A., Chowdhury, N., Cavero, J. & Gooch, D. 2016, ‘DevOps for
the urban IoT’, Proceedings of the Second International Conference on IoT in Urban
Space, ACM, New York, NY, pp. 78–81. (S7).

Morin, E., Maman, M., Guizzetti, R. & Duda, A. 2017, ‘Comparison of the device lifetime in
wireless networks for the Internet of Things’, IEEE Access, vol. 5, pp. 7097–7114. (S59).

Muhendra, R., Rinaldi, A. & Budiman, M. 2017, ‘Development of WiFi mesh infrastructure for
Internet of Things applications’, Procedia Engineering, vol. 170, pp. 332–337. (S51).

196

Muhammad H. Hilman, Maria A. Rodriguez, and Rajkumar Buyya. 2020. ‘Multiple Workflows
Scheduling in Multi-tenant Distributed Systems: A Taxonomy and Future Directions.’ ACM
Comput. Surv. 53, 1, Article 10 (February 2020), 39 pages. DOI:https://doi-
org.ezproxy.lib.uts.edu.au/10.1145/3368036

Munteanu, V.I., Şandru, C. & Petcu, D. 2014, ‘Multi-cloud resource management: cloud service
interfacing’, Journal of Cloud Computing, vol. 3, no. 1, p. 3. (S125).

Newmarch, J. 2016, ‘Low power wireless: 6LoWPAN, IEEE802. 15.4 and the Raspberry Pi’,
Linux Journal, vol. 2016, no. 271, p. 1. (S76).

Ngu, A.H., Gutierrez, M., Metsis, V., Nepal, S. & Sheng, Q.Z. 2016, ‘IoT middleware: a survey
on issues and enabling technologies’, IEEE Internet of Things Journal, vol. 4, no. 1, pp.
1–20. (S69).

Nguyen, V. & Gendreau, A. 2014, ‘A vision of a future IoT architecture supporting messaging,
storage, and computation’, International Journal of Future Computer and
Communication, vol. 3, no. 6, p. 405. (S32).

Nickerson, R.C., Varshney, U. & Muntermann, J. 2013, ‘A method for taxonomy development
and its application in information systems’, European Journal of Information Systems,
vol. 22, no. 3, pp. 336–359.

Olivier, F., Carlos, G. & Florent, N. 2015, ‘New security architecture for IoT network’, Procedia
Computer Science, vol. 52, pp. 1028–1033. (S39).

Oscar Novo and Mario Di Francesco. 2020. ‘Semantic Interoperability in the IoT: Extending the
Web of Things Architecture’. ACM Trans. Internet Things 1, 1, Article 6 (March 2020),
25 pages. DOI:https://doi-org.ezproxy.lib.uts.edu.au/10.1145/3375838

Papaioannou, A., Metallidis, D. & Magoutis, K. 2015, ‘Cross-layer management of distributed
applications on multi-clouds’, IFIP/IEEE International Symposium on Integrated
Network Management 2015, IEEE, Piscataway, NJ, pp. 552–558. (S118).

Peffers, K., Tuunanen, T., Rothenberger, M.A. & Chatterjee, S. 2007, ‘A design science research
methodology for information systems research’, Journal of Management Information
Systems, vol. 24, no. 3, pp. 45–77.

Perera, P., Silva, R. & Perera, I. 2017, ‘Improve software quality through practicing DevOps’,
Seventeenth International Conference on Advances in ICT for Emerging Regions 2017,
IEEE, Piscataway, NJ, pp. 1–6. (S121).

Porambage, P., Schmitt, C., Kumar, P., Gurtov, A. & Ylianttila, M. 2014, ‘Two-phase
authentication protocol for wireless sensor networks in distributed IoT applications’,

197

IEEE Wireless Communications and Networking Conference 2014, IEEE, Piscataway,
NJ, pp. 2728–2733. (S74).

Prat, N., Comyn-Wattiau, I. & Akoka, J. 2014, ‘Artifact evaluation in information systems
design-science research—a holistic view’, Pacific Asia Conference on Information
Systems 2017, AIS eLibrary https://aisel.aisnet.org/pacis2014/23/, p. 23.

Qumer, A., Henderson-Sellers, B. & McBride, T. 2007, ‘Agile adoption and improvement
model’, Proceedings of European and Mediterranean Conference on Information
Systems. (S31).

Rahman, A.A.U. & Williams, L. 2016, ‘Software security in DevOps: synthesizing practitioners’
perceptions and practices’, IEEE/ACM International Workshop on Continuous Software
Evolution and Delivery 2016, IEEE, Piscataway, NJ, pp. 70–76. (S18).

Rajkumar, M., Pole, A.K., Adige, V.S. & Mahanta, P. 2016, ‘DevOps culture and its impact on
cloud delivery and software development’, International Conference on Advances in
Computing, Communication, & Automation 2016, IEEE, Piscataway, NJ, pp. 1–6. (S13).

Rao, S. & Shorey, R. 2017, ‘Efficient device-to-device association and data aggregation in
industrial IoT systems’, 9th International Conference on Communication Systems and
Networks 2017, IEEE, Piscataway, NJ, pp. 314–321. (S63).

Rautmare, S. & Bhalerao, D.M. 2016, ‘MySQL and NoSQL database comparison for IoT
application’, IEEE International Conference on Advances in Computer Applications
2016, IEEE, Piscataway, NJ, pp. 235–238. (S79).

Ray, P.P. 2016, ‘A survey of IoT cloud platforms’, Future Computing and Informatics Journal,
vol. 1, no. 1–2, pp. 35–46. (S88).

Runeson, P. & Höst, M. 2009, ‘Guidelines for conducting and reporting case study research in
software engineering’, Empirical Software Engineering, vol. 14, no. 2, p. 131.

Russell, L., Goubran, R. & Kwamena, F. 2015, ‘Personalization using sensors for preliminary
human detection in an IoT environment’, International Conference on Distributed
Computing in Sensor Systems 2015, IEEE, Piscataway, NJ, pp. 236–241. (S72).

Samarawickrama, S.S. & Perera, I. 2017, ‘Continuous scrum: a framework to enhance scrum
with DevOps’, Seventeenth International Conference on Advances in ICT for Emerging
Regions 2017, IEEE, Piscataway, NJ, pp. 1–7. (S123).

198

Schaefer, A., Reichenbach, M. & Fey, D. 2013, ‘Continuous integration and automation for
DevOps’, IAENG Transactions on Engineering Technologies, Springer, Dordrecht, pp.
345–358. (S30).

Sen, S. 2016, ‘Context-aware energy-efficient communication for IoT sensor nodes’, 53nd
ACM/EDAC/IEEE Design Automation Conference 2016, IEEE, Piscataway, NJ, pp. 1–6.
(S44)

Shah, J. & Mishra, B. 2016, ‘Customized IoT enabled wireless sensing and monitoring platform
for smart buildings’, Procedia Technology, vol. 23, pp. 256–263. (S50).

Shahzad, F. 2014, ‘State-of-the-art survey on cloud computing security challenges, approaches
and solutions’, Procedia Computer Science, vol. 37, pp. 357–362. (S87).

Sharp, J. & Babb, J. 2018, ‘Is information systems late to the party? The current state of DevOps
research in the Association for Information Systems eLibrary’, Twenty-fourth Americas
Conference on Information Systems, New Orleans, 2018, DevOps Research in the
AISeL. (S22).

Shekhar, S. & Gokhale, A. 2017, ‘Enabling IoT applications via dynamic cloud-edge resource
management’, IEEE/ACM Second International Conference on Internet-of-Things Design
and Implementation 2017, IEEE, Piscataway, NJ, pp. 331–332. (S100).

Sheng, Z., Wang, H., Yin, C., Hu, X., Yang, S. & Leung, V.C. 2015, ‘Lightweight management
of resource-constrained sensor devices in Internet of Things’, IEEE Internet of Things
Journal, vol. 2, no. 5, pp. 402–411. (S70).

Singh, N.K., Thakur, S., Chaurasiya, H. & Nagdev, H. 2015, ‘Automated provisioning of
application in IAAS cloud using Ansible configuration management’, 1st International
Conference on Next Generation Computing Technologies 2015, IEEE, Piscataway, NJ,
pp. 81–85. (S5).

Sjøberg, D.I., Hannay, J.E., Hansen, O., Kampenes, V.B., Karahasanovic, A., Liborg, N.K. &
Rekdal, A.C. 2005, ‘A survey of controlled experiments in software engineering’, IEEE
Transactions on Software Engineering, vol. 31, no. 9, pp. 733–753.

Slawik, M., Blanchet, C., Demchenko, Y., Turkmen, F., Ilyushkin, A., de Laat, C. & Loomis, C.
2017, ‘CYCLONE: the multi-cloud middleware stack for application deployment and
management’, IEEE International Conference on Cloud Computing Technology and
Science 2017, IEEE, Piscataway, NJ, pp. 347–352. (S96).

Snyder, B. & Curtis, B. 2017, ‘Using analytics to guide improvement during an agile–DevOps
transformation’, IEEE Software, vol. 35, no. 1, pp. 78–83. (S122).

199

Soni, M. 2015, ‘End to end automation on cloud with build pipeline: the case for DevOps in
insurance industry, continuous integration, continuous testing, and continuous delivery’,
IEEE International Conference on Cloud Computing in Emerging Markets 2015, IEEE,
Piscataway, NJ, pp. 85–89. (S8).

Srirama, S.N. 2017, ‘Mobile web and cloud services enabling Internet of Things’, CSI
Transactions on ICT, vol. 5, no. 1, pp. 109–117. (S81).

Srirama, S.N., Iurii, T. & Viil, J. 2016, ‘Dynamic deployment and auto-scaling enterprise
applications on the heterogeneous cloud’, IEEE 9th International Conference on Cloud
Computing 2016, IEEE, Piscataway, NJ, pp. 927–932. (S119).

Stergiou, C., Psannis, K.E., Kim, B.G. & Gupta, B. 2018, ‘Secure integration of IoT and cloud
computing’, Future Generation Computer Systems, vol. 78, pp. 964–975. (S57).

Su, X., Zhang, H., Riekki, J., Keränen, A., Nurminen, J.K. & Du, L. 2014, ‘Connecting IoT
sensors to knowledge-based systems by transforming SenML to RDF’, Procedia
Computer Science, vol. 32, pp. 215–222. (S34).

Syed, M.H. & Fernandez, E.B. 2016, ‘Cloud ecosystems support for Internet of Things and
DevOps using patterns’, IEEE First International Conference on Internet-of-Things
Design and Implementation 2016, IEEE, Piscataway, NJ, pp. 301–304. (S11).

Tao, M., Zuo, J., Liu, Z., Castiglione, A. & Palmieri, F. 2018, ‘Multi-layer cloud architectural
model and ontology-based security service framework for IoT-based smart homes’,
Future Generation Computer Systems, vol. 78, pp. 1040–1051. (S108).

Theodorakis, M., Analyti, A., Constantopoulos, P. & Spyratos, N. 1999, ‘Contextualization as an
abstraction mechanism for conceptual modelling’, International Conference on
Conceptual Modeling, Springer, Berlin, pp. 475–490.

Tricomi, G., Panarello, A., Merlino, G., Longo, F., Bruneo, D. & Puliafito, A. 2017,
‘Orchestrated multi-cloud application deployment in OpenStack with TOSCA’, IEEE
International Conference on Smart Computing 2017, IEEE, Piscataway, NJ, pp. 1–6.
(S117).

Truong, H.L., Dustdar, S. & Leymann, F. 2016, ‘Towards the realization of multi-dimensional
elasticity for distributed cloud systems’, Procedia Computer Science, vol. 97, pp. 14–23.
(S110).

Ungurean, I., Gaitan, N.C. & Gaitan, V.G. 2014, ‘An IoT architecture for things from industrial
environment’, 10th International Conference on Communications 2014, IEEE,
Piscataway, NJ, pp. 1–4. (S40).

200

Virmani, M. 2015, ‘Understanding DevOps & bridging the gap from continuous integration to
continuous delivery’, Fifth International Conference on the Innovative Computing
Technology, IEEE, Piscataway, NJ, pp. 78–82. (S10).

Wahaballa, A., Wahballa, O., Abdellatief, M., Xiong, H. & Qin, Z. 2015, ‘Toward unified
DevOps model’, 6th IEEE International Conference on Software Engineering and
Service Science 2015, IEEE, Piscataway, NJ, pp. 211–214. (S9).

Wang, C. & Liu, C. 2018, ‘Adopting DevOps in agile: challenges and solutions’, Master thesis,
Blekinge Institute of Technology, Sweden. (S112).

Wang, D., Lo, D., Bhimani, J. & Sugiura, K. 2015, ‘Anycontrol—IoT based home appliances
monitoring and controlling’, IEEE 39th Annual Computer Software and Applications
Conference 2015, IEEE, Piscataway, NJ, vol. 3, pp. 487–492. (S58).

Wettinger, J., Andrikopoulos, V. & Leymann, F. 2015, ‘Automated capturing and systematic
usage of DevOps knowledge for cloud applications’, IEEE International Conference on
Cloud Engineering 2015, IEEE, Piscataway, NJ, pp. 60–65. (S4).

Wettinger, J., Breitenbücher, U., Kopp, O. & Leymann, F. 2016, ‘Streamlining DevOps
automation for cloud applications using TOSCA as standardized metamodel’, Future
Generation Computer Systems, vol. 56, pp. 317–332. (S28).

Wettinger, J., Breitenbücher, U. & Leymann, F. 2014, ‘Standards-based DevOps automation and
integration using TOSCA’, IEEE/ACM 7th International Conference on Utility and
Cloud Computing 2014, IEEE, Piscataway, NJ, pp. 59–68. (S19).

Willnecker, F. & Krcmar, H. 2018, ‘Multi-objective optimization of deployment topologies for
distributed applications’, ACM Transactions on Internet Technology, vol. 18, no. 2, p. 21.
(S93).

Wu, Y., Sheng, Q.Z., Shen, H. & Zeadally, S. 2013, ‘Modeling object flows from distributed and
federated RFID data streams for efficient tracking and tracing’, IEEE Transactions on
Parallel and Distributed Systems, vol. 24, no. 10, pp. 2036–2045. (S71).

Wu, Z. & Madhyastha, H.V. 2013, ‘Understanding the latency benefits of multi-cloud
webservice deployments’, ACM SIGCOMM Computer Communication Review, vol. 43,
no. 2, pp. 13–20. (S105).

Xiantao Zhang, Xiao Zheng, Zhi Wang, Hang Yang, Yibin Shen, and Xin Long. 2020. ‘High-
density Multi-tenant Bare-metal Cloud’. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating Systems

201

(ASPLOS ’20). Association for Computing Machinery, New York, NY, USA, 483–495.
DOI:https://doi-org.ezproxy.lib.uts.edu.au/10.1145/3373376.3378507

 Yang, C., Shen, W., Lin, T. & Wang, X. 2016, ‘A hybrid framework for integrating multiple
manufacturing clouds’, International Journal of Advanced Manufacturing Technology,
vol. 86, no. (1–4), pp. 895–911. (S95).

Yaqoob, I., Ahmed, E., Hashem, I.A.T., Ahmed, A.I.A., Gani, A., Imran, M. & Guizani, M.
2017, ‘Internet of Things architecture: recent advances, taxonomy, requirements, and
open challenges’, IEEE Wireless Communications, vol. 24, no. 3, pp. 10–16. (S67).

Yasaki, K., Ito, H. & Nimura, K. 2015, ‘Dynamic reconfigurable wireless connection between
smartphone and gateway’, IEEE 39th Annual Computer Software and Applications
Conference 2015, IEEE, Piscataway, NJ, vol. 3, pp. 228–233. (S61).

Yasrab, R. & Gu, N. 2016, ‘Multi-cloud PaaS Architecture (MCPA): a solution to cloud lock-in’,
3rd International Conference on Information Science and Control Engineering 2016,
IEEE, Piscataway, NJ, pp. 473–477. (S115).

Yonezawa, T., Ito, T., Nakazawa, J. & Tokuda, H. 2016, ‘Soxfire: a universal sensor network
system for sharing social big sensor data in smart cities’, Proceedings of the 2nd
International Workshop on Smart, ACM, New York, NY, p. 2. (S47).

Zheng, J., Liu, Y. & Lin, J. 2016, ‘Exploring DevOps for data analytical system with essential
demands elicitation’, International Journal of Software Engineering and Knowledge
Engineering (SEKE), Vol. 26, No. 09n10, pp. 1453-1472. (S24).

202

Appendices

The appendices contain the information required to evaluate the framework. They also contain
the contribution research papers.

Appendix A: Ethical Approval

Your ethics application has been approved as low risk—ETH18-2339

From: research.ethics@uts.edu.au

Mon 11/06/2018

To: Georges Bou Ghantous; Asif Gill

Dear Applicant

Your local research office has reviewed your application titled, ‘DevOps Reference Architecture
for IoT (single and multi-cloud)’, and agreed that the application meets the requirements of the
National Statement on Ethical Conduct in Human Research (2007). I am pleased to inform you
that ethics approval has now been granted.

Your approval number is UTS HREC REF NO. ETH18-2339

You should consider this your official letter of approval. If you require a hardcopy please contact
your local research office.

Approval will be for a period of five (5) years from the date of this correspondence subject to the
provision of annual ethics reports to your local research office.

Your approval number must be included in all participant material and advertisements. Any
advertisements on the UTS Staff Connect without an approval number will be removed.

Please note that the ethical conduct of research is an on-going process. The National Statement
on Ethical Conduct in Human Research (2007) requires us to obtain reports about the progress of
the research, and in particular about any changes to the research which may have ethical
implications. You will be contacted when it is time to complete your first report.

Please refer to the AVCC guidelines relating to the storage of data, which require that data be
kept for a minimum of 5 years after publication of research. However, in NSW, longer retention
requirements are required for research on human subjects with potential long-term effects,
research with long-term environmental effects, or research considered of national or international

203

significance, importance, or controversy. If the data from this research project falls into one of
these categories, contact University Records for advice on long-term retention.

To access this application, please follow the URLs below:

* If accessing within the UTS network: https://rm.uts.edu.au

* If accessing outside of UTS network: https://vpn.uts.edu.au, and click on ‘RM6 – Production
‘after logging in.

If you have any queries about this approval, or require any amendments to your approval in
future, please do not hesitate to contact your local research office or
Research.Ethics@uts.edu.au.

REF: 12a

204

Appendix B: Consent Form

Participant Information Sheet

DevOps Reference Architecture for Multi-Cloud IoT Applications
[UTS HREC NO. ETH18-2339]

WHO IS DOING THE RESEARCH?

My name is Georges Bou Ghantous and I am an academic/student at UTS. My supervisor is Dr.
Asif Q Gill.

WHAT IS THIS RESEARCH ABOUT?

The aim of the research is to create a DevOps Reference Architecture (DRA) that provides
automation for application deployment using DevOps tools, and practices. The research utilizes
cloud platform (single and multi-cloud) for deployment.

FUNDING

Funding for this project has been received from Commonwealth Government as student funding
help for higher education and research students.

WHY HAVE I BEEN ASKED?

You have been invited to participate in this study because of your distinguished experience in IT/
Software Development field and understanding of DevOps, Cloud based software development
and IoT applications. Your contact details were obtained from LinkedIn and/or by Supervisors’
Industry Contacts as he is actively engaged with the industry on similar projects.

IF I SAY YES, WHAT WILL IT INVOLVE?

If you decide to participate, I will invite you to kindly participate in the evaluation of my
research outcome using the method of online survey google form.

The google online form includes:

 A detailed description of the research project.
 A You Tube video that demonstrate the deployment of IoT application through DRA

pipeline implementation.
 A list of publications about the research project.
 A set of questionnaires designed to evaluate and rate the research outcome artefact

(DRA)

I will ask you to:

205

 Read the project description PDF and refer to the publications’ list for further
information.

 Watch the demo/testing YouTube video.
 Answer online questionnaire and rating survey questions in the online form.

Further information:

 The completion of the google online survey form may require 60 to 90 mins.
 No travelling or payments are required.
 The form is sent to you by email. The surveys will be conducted online. Upon completion

the data will be sent back to me.
 The data will not include any information that may identify you in any way. No personal

data will be collected; the survey collected data is technical and completely anonymous.
 The data will be stored in UTS systems as per UTS research data management policy on

the UTS-recommended cloud storage CloudStor https://cloudstor.aarnet.edu.au/. Only my
supervisor and I have access to data via UTS secure login to CloudStor.

 The collected technical/anonymous data will be used for publications of conference
papers, journal papers and the research thesis.

ARE THERE ANY RISKS/INCONVENIENCE?

There is no risk, (low category) because it only involves online survey and video viewing of the
DRA for IoT. It is only a technical and software content. Therefore, it is highly unlikely for any
risk to occur.

DO I HAVE TO SAY YES?

Participation in this study is voluntary. It is completely up to you whether or not you decide to
take part.

WHAT WILL HAPPEN IF I SAY NO?

If you decide not to participate, it will not affect your relationship with the researchers or the
University of Technology Sydney. If you wish to withdraw from the study once it has started,
you can do so at any time without having to give a reason, by contacting the researcher (Georges
Bou Ghantous, email: Georges.BouGhantous-1@gmail.com).

If you withdraw from the study, you can do so at any time, the participation in this study is
voluntary. However, it may not be possible to withdraw your response-data from the study
results. Your response-data collected from the online survey will not contain any personal
information about you. The collected data is technical and anonymous.

https://cloudstor.aarnet.edu.au/

206

CONFIDENTIALITY

By signing the consent form you consent to the research team collecting and using online survey
anonymous response-data for the research project. All this information will be treated
confidentially. The data will be stored in UTS systems as per UTS research data management
policy. Only my supervisor and I have access to data via UTS secure login. The collected
anonymous data from your response to the online survey form will not identify you in any way
and will only be used for the purpose of this research project (thesis) and papers publications
(conference and journal).

WHAT IF I HAVE CONCERNS OR A COMPLAINT?

If you have concerns about the research that you think I or my supervisor can help you with,
please feel free to contact us on [Mr. Georges Bou Ghantous (researcher):
Georges.BouGhantous-1@uts.edu.au

Dr. Asif Q. Gill (supervisor): Asif.Gill@uts.edu.au]

You will be given a copy of this form to keep.

NOTE:

This study has been approved by the University of Technology Sydney Human Research Ethics
Committee [UTS HREC]. If you have any concerns or complaints about any aspect of the
conduct of this research, please contact the Ethics Secretariat on ph.: +61 2 9514 2478 or email:
Research.Ethics@uts.edu.au], and quote the UTS HREC reference number. Any matter raised
will be treated confidentially, investigated and you will be informed of the outcome.

file:///C:/Users/George/AppData/Roaming/Microsoft/Word/Georges.BouGhantous-1@uts.edu.au
mailto:Asif.Gill@uts.edu.au

207

Appendix C: Survey Invitation Letter

INFORMATION SHEET AND CONSENT FORM FOR ONLINE SURVEYS

DevOps Reference Architecture for Multi-Cloud IoT Applications

(UTS HREC REF NO. ETH18-2339)

My name is Georges Bou Ghantous and I am an academic/student at UTS. (My supervisor is Dr.
Asif Q. Gill at UTS.)

I am conducting research in the area of software engineering and developed a DevOps reference
architecture for Multi-Cloud IoT Applications deployment and would welcome your assistance.
In order to evaluate the design and applicability of reference architecture, I would like to request
you to participate in my research, review the reference architecture and provide your feedback
via online google survey form. The research review and evaluation will involve an online google
survey form will not take more than 60-90 minutes of your time. I kindly request you to
participate in this research because of your expertise in the field of software engineering. No
travels or payment will be required by participants.

Only technical data will be collected about the evaluation of the research artefact. No personal
information will be collected. The data will be stored in UTS systems as per UTS storage and
archiving policy. Only my supervisor and I have access to data via UTS secure login.

You can change your mind at any time and stop completing the survey without consequences.

If you agree to be part of the research and to research data gathered from this survey to be
published in a form that does not identify you, please continue with answering the survey
questions. The survey form will be sent to you by email.

If you have concerns about the research that you think I or my supervisor can help you with,
please feel free to contact us.

Mr. Georges Bou Ghantous (researcher): Georges.BouGhantous-1@uts.edu.au

Dr Asif Q. Gill (supervisor): Asif.Gill@uts.edu.au

If you would like to talk to someone who is not connected with the research, you may contact the
Research Ethics Officer on 02 9514 9772 or Research.ethics@uts.edu.au and quote this number:
(UTS HREC REF NO. ETH18-2339)

mailto:Georges.BouGhantous-1@uts.edu.au

208

Appendix D: Online Industry Survey Questionnaire

The following is a sample of the online Google survey that has been used to record the
participants’ responses. The survey participants are industry experts in the fields of software
engineering, software architecture, DevOps, cloud computing and IoT. The participants are from
Australia, the US, UK, Russia, Japan, Spain, Switzerland, India, Portugal, Sweden, Brazil, Costa
Rica, Italy, South Korea, Canada, Germany and the Netherlands.

To access the online survey, please follow: https://goo.gl/JgQaUa

--Start Survey--

DRAv2.0 Framework Evaluation

Please submit feedback regarding DevOps Reference Architecture Framework for IOT-app
deployment to Multi-Cloud (DRAv2.0)

DRA Framework Design Models

1. DRA Contextual Model
2. DRA Conceptual Model
3. DRA Logical Model
4. DRA Physical Model
5. DRA Pipeline Instance (Operational Model)

Survey Rating Factors

DRA Framework Description

1. Research Project Outline: https://goo.gl/WWiwNA
2. IoT app deployment in DRA on Multi-Cloud demo video: https://youtu.be/DmrIAciPKAU
3. DRA Framework development website: https://maven-app-heroku.herokuapp.com/

https://goo.gl/JgQaUa
https://www.google.com/url?q=https://goo.gl/WWiwNA&sa=D&ust=1549789724091000&usg=AFQjCNE89f4cp8cyhiHv88zHjQhdjOftaw
https://www.google.com/url?q=https://youtu.be/DmrIAciPKAU&sa=D&ust=1549789724091000&usg=AFQjCNGkmlxKrgEdCgSZb33kHBYqRsyMzg
https://www.google.com/url?q=https://maven-app-heroku.herokuapp.com/&sa=D&ust=1549789724091000&usg=AFQjCNEcKJM21F4zvR7YBW4hZCKmntlQrA

209

Publications

Publication 1:
Ghantous, Georges Bou and Gill, Asif, ‘DevOps: Concepts, Practices, Tools, Benefits and
Challenges’ (2017). PACIS 2017 Proceedings. 96.
http://aisel.aisnet.org/pacis2017/96 OR: https://goo.gl/R9edjS

Publication 2:
G. Bou Ghantous, A. Gill, ‘DevOps Reference Architecture for Multi-Cloud IOT Applications’,
20th IEEE International Conference on Business Informatics CBI2018 Vienna Austria, 2018.
https://ieeexplore.ieee.org/abstract/document/8452669 OR: https://goo.gl/ya8J61

Q1 set: DRA Contextual Model Questionnaires

DRA Contextual Model (Describes in context the relationship between the tri-topology DevOps,
Multi-Cloud, IoT at higher level). This model shows that DevOps can be used for deploying IoT
apps to Multi-Cloud environment.

 Strongly
disagree

Disagree Average Agree Strongly
agree

Does the contextual model provide the overall scope and
purpose of using DevOps approach for IoT app and Multi-
Cloud at the high level?

Do you think DevOps is appropriate for deploying IoT apps
to multi-cloud environment?

Are the model elements (technologies) sufficient for the
context?

Is the contextual model relevant to the DRA framework?
Are the contextual model elements important to the DRA
framework?

Please provide comments or suggested improvements to DRA Contextual Model
Your Answer: ……………………………………………………………………..

Q2 set: DRA Conceptual Model Questionnaires

DRA Conceptual Model (Describes the Tri-Topology concept relationship and environment).
DRA Conceptual Model is composed of two main tiers: 1) DevOps: enable concepts that evolve
around team support and management. Communication and Collaboration: enable Dev and Ops
team work Manage: Project management in real-time. Monitoring: monitor project development
and deployment process in real-time. Sharing: enable global access for the team Human factor
and culture: support human diverse cultures and geographical differences. Automation: enable
automate project development and deployment throughout the life-cycle. Integration: integrate
various aspect of project development to form one entity using automation. QA/Testing: provide
logs and reporting for project deployment and application behaviour and health. Planning: enable
retrospective agile planning based on QA/Testing reports. 2) Cloud: Abstract platform that

https://www.google.com/url?q=http://aisel.aisnet.org/pacis2017/96&sa=D&ust=1549789724092000&usg=AFQjCNFgLRbr_fj-TjAcSJjMS35Z6N7bkA
https://www.google.com/url?q=https://goo.gl/R9edjS&sa=D&ust=1549789724092000&usg=AFQjCNFADBTmO5wBHXFmz96YCptYeONHcA
https://www.google.com/url?q=https://ieeexplore.ieee.org/abstract/document/8452669&sa=D&ust=1549789724092000&usg=AFQjCNFr_oxsAamooJBbAGjRxXDYqFp4Xg
https://www.google.com/url?q=https://goo.gl/ya8J61&sa=D&ust=1549789724092000&usg=AFQjCNGNs74Q3qR0vr-6XLOsS32uDqIHDA

210

provides services and virtual servers for DevOps team. Cloud offer services such as PaaS, SaaS,
DaaS, IaaS which provide DevOps team with features, practices, and functions that help enable
DevOps approach such as (Monitoring, Security, Low Cost, Auto-Scaling, Automation and
Integration) IoT app deployment on Multi-Cloud is achieved using CI-Broker (a DevOps tool)
that enables the deployment functionality for the development life-cycle.

 Strongly
disagree

Disagree Average Agree Strongly
agree

Does the conceptual model provide enough components for
DevOps?

Does the conceptual model provide enough components for
Cloud?

Does the conceptual model provide enough components for
the Multi-Cloud deployment platform of IoT apps?

Is the conceptual model relevant for DRA framework?
Is the conceptual model important for DRA framework?
Is CI-Broker an important component for deploying IoT apps
on Multi-Cloud?

Please provide comments or suggested improvements to DRA Conceptual Model
Your Answer: ……………………………………………………………………..

Q3 set: DRA Logical Model Questionnaires

DRA Logical Model (DRA Logical Model is based on the interactions of 5 sub-models M1-M5.
The sub-models apply DevOps practices for software development). M1 enables code
synchronization, automated code push to CI-Broker, automated commit logging. M4 enable
communication of DevOps team and provide real-time logging and reports. M2 enable
automation of build/test of IoT app and deploy to multi-cloud. M3 provide virtual servers of
various cloud for IoT app deployment and auto-scaling. M5 provide cloud NoSQL DB and
management of IoT data for DevOps team.

 Strongly
disagree

Disagree Average Agree Strongly
agree

Does the logical model provide enough components for
DevOps?

Does the logical model provide enough components for IoT
apps deployment?

Does the logical model provide enough components for cloud
platform?

Is the logical model relevant to the DRA framework?
Is the logical model important to the DRA framework?

Please provide comments or suggested improvements to DRA Logical Model
Your Answer: ……………………………………………………………………..

211

Q4 set: DRA Logical Model Specifications Questionnaires

DRA Logical Model Specifications (Organized into 5 sub-models M1-M5 which provide
development features using suggested DevOps tools and practices). M1-M5 sub-models are
based on cloud tools integration. The M1-M5 integrations enable DevOps practices.

 Strongly
disagree

Disagree Average Agree Strongly
agree

DRA M1 automate code synchronization for DevOps team
DRA M2 enable automation for: repository update, build,
testing

DRA M2 enable deployment to M3 (using CI-Broker)
DRA M3 automate scaling, and application scaling for users
DRA M4 enable automated log capture from: build, testing
and deployment of IoT app

DRA M5 provide cloud Database management for DevOps
team

Do you think that the M1-M5 sub-models provide enough
functions for the DRA framework?

Do you think that the M1-M5 sub-models are relevant for the
DRA framework?

Do you think that the M1-M5 sub-models are important for
the DRA framework?

Please provide comments or suggested improvements to DRA Logical Sub-Models
Your Answer: ……………………………………………………………………..

Q5 set: DRA Physical Model Questionnaires

DRA Physical Model (This is a physical illustration for applying DevOps logical model to create
a cloud-centric pipeline). DRA Physical Model is a tangible cloud structure based on multiple
tools integration that provide DevOps teams with automated development practices and real-time
management features. This model is based on the DRA Logical 5 sub-models and illustrates the
development life-cycle of an application using M1-M5.

 Strongly
disagree

Disagree Average Agree Strongly
agree

Does the physical model provide enough features for
DevOps?

Does the physical model provide enough features for cloud?
Does the physical model provide enough features for IoT
apps deployment?

Is the physical model relevant for the DRA framework?
Is the physical model important for the DRA framework?

Please provide comments or suggested improvements to DRA Physical Model
Your Answer: ……………………………………………………………………..

212

Q6 set: DRA Operational Model Questionnaires

DRA Pipeline Instance (Instance of DRA physical model which enables automation, continuous
integration, real-time monitoring and communication for IoT app deployment on Multi-Cloud).
DevOps team can manage IoT app automated build, testing and deployment on three clouds
(AWS, GAE, Heroku). DevOps team can monitor application build, testing and heath using
Slack (collects build, deployment logs). The IoT app interacts with IoT sensors through the
Raspberry Pi. The central component in the pipeline is CI-Broker (i.e., Codeship) which enables
automation of test/build and deploy to Multi-Cloud.

 Strongly
disagree

Disagree Average Agree Strongly
agree

Does the pipeline provide enough components to support
DevOps?

Does the pipeline provide enough components to support
Multi-Cloud deployment?

Does the pipeline provide enough components to enable IoT
app deployment on Multi-Cloud?

Does DRA pipeline enable automated IoT app deployment on
Multi-Cloud using Codeship as CI-Broker

Is DRA pipeline tools integration relevant for the framework?
Are the DevOps tools integrated in the pipeline sufficient for
the framework?

Does the DRA pipeline reflect the conceptual design model?
Does the DRA pipeline provide all the functions and features
defined in the Logical model?

Please provide comments or suggested improvements to DRA Operational Model
Your Answer: ……………………………………………………………………..

Q7 set: DRA Usefulness Feedback and Ratings

Q7. What aspects are useful or valuable about DRA?
Your Answer: ……………………………………………………………………..

Do you consider DRA framework useful? Strongly
disagree

Disagree Average Agree Strongly
agree

For research proposes?
For teaching purposes?
In the industry?

Q8 set: DRA Suggested Improvements Feedback

Q8. What improvements would you suggest to DRA Framework?
Your Answer: ……………………………………………………………………..

213

Q9 set: Overall Feedback and Ratings

DRA Framework Overall Rating 1 2 3 4 5
On a scale of 1 to 5 please provide overall rating for the DRA
framework

Q9. Comments?
………………………..……………………………………………………………………..

………………………..……………………………………………………………………..

………………………..……………………………………………………………………..

………………………..……………………………………………………………………..

………………………..……………………………………………………………………..

---End Survey---

214

Appendix E: Empirical Study Data

This section contains the source of the data used in the empirical evaluation in this thesis. The
data have been stored on CloudStor, the UTS-recommended cloud storage service. Only the
thesis author (Georges Bou Ghantous) and the principle supervisor (Dr Asif Q. Gill) have access
to the data files on CloudStor. The empirical original data files are organised as follows:

 Case Study Template (CST):
http://tiny.cc/nyu9iz

 Industry case study data files:
https://cloudstor.aarnet.edu.au/plus/s/qSTTY96UgjBNDaC

 Research Lab case study files:
https://cloudstor.aarnet.edu.au/plus/s/BdkVGQaSzqGLEnm

 Teaching survey files:
o SEP files: https://cloudstor.aarnet.edu.au/plus/s/XPe8sd3tUGMSNyt
o INP files: https://cloudstor.aarnet.edu.au/plus/s/tn9MYctbTNBwydZ

 Industry Survey:
http://tiny.cc/99dldz

 Industry survey files:
https://cloudstor.aarnet.edu.au/plus/s/plwJtmRbUM8oaJ0

 DRA Application Demo Video (Used in CST and Survey):
https://youtu.be/JN38xS27ek0

 DRA Presentation Slides (Used in CST and Survey):
http://tiny.cc/pcv9iz

 Ethical approval letter, invitation letters, PIS form:
https://cloudstor.aarnet.edu.au/plus/s/KMSxYyO8HWKfXe5

Note: The author’s LinkedIn page has been used to communicate with professionals from
the IT industry and offer the industry field survey to the participants using the survey
invitation letter (see Appendix C).
Note: All links in Appendix E were active at the time of thesis publications.

http://tiny.cc/nyu9iz
https://cloudstor.aarnet.edu.au/plus/s/qSTTY96UgjBNDaC
https://cloudstor.aarnet.edu.au/plus/s/BdkVGQaSzqGLEnm
https://cloudstor.aarnet.edu.au/plus/s/XPe8sd3tUGMSNyt
https://cloudstor.aarnet.edu.au/plus/s/tn9MYctbTNBwydZ
http://tiny.cc/99dldz
https://cloudstor.aarnet.edu.au/plus/s/plwJtmRbUM8oaJ0
https://youtu.be/JN38xS27ek0
https://youtu.be/JN38xS27ek0
http://tiny.cc/pcv9iz
https://cloudstor.aarnet.edu.au/plus/s/KMSxYyO8HWKfXe5

215

Appendix F: Research Papers

This appendix lists the conference papers that have been published as part of the ongoing
research process during the development of this thesis (2016–2019):

Publication 1: Ghantous, G.B. & Gill, A. 2017, ‘DevOps: concepts, practices, tools, benefits and
challenges’, Pacific Asia Conference on Information Systems 2017, AISeL.
https://aisel.aisnet.org/pacis2017/96/

Publication 2: Ghantous, G.B. & Gill, A.Q. 2018, ‘DevOps reference architecture for multi-
cloud IOT applications’, IEEE 20th Conference on Business Informatics 2018, IEEE,
Piscataway, NJ, vol. 1, pp. 158–167. https://ieeexplore.ieee.org/abstract/document/8452669

Publication 3: Ghantous, G.B. & Gill, A.Q. 2019, ‘An agile-DevOps reference architecture for
teaching enterprise agile’, International Journal of Learning, Teaching and Educational
Research, vol. 18, no. 7. https://www.ijlter.org/index.php/ijlter/article/view/1499

https://aisel.aisnet.org/pacis2017/96/
https://ieeexplore.ieee.org/abstract/document/8452669
https://www.ijlter.org/index.php/ijlter/article/view/1499

216

Appendix G: Case Study Template

This appendix contains the case study template that will be used by organisations to determine
the applicability of DRA implementation in the organisation’s current environment. As explained
in Chapter 5, the case study template is composed of two main steps: the DRA implementation
process and the DRA evaluation process. Participants in case studies may use the DRA
implementation process checklist (see Chapter 4) to manage the process of the DRA operational
model implementation for the case study host (IT organisation, research lab, teaching lab). The
DRA evaluation process is used by the case study participants to provide a qualitative review of
the applicability of the DRA framework and test the DRAv2.0 instance.

DRAv2.0 Case Study Template: Date: --/--/----

The case study at the [organisation] is organised to demonstrate the applicability of the DRA in a
real-world context. This evaluation involved the [participants] [identify the role of the
participants]. A summary of the process adopted for the evaluation of DRA for [organisation] is
presented below.

A. Case Study Introduction

 Identify the case study organisation: [organisation brief information]
 Case study organisation context: Conduct research and development [purpose and with

whom]. [Identify the case study context in the organisation and identify]
 Need, and problem: [Identify the problem or the need of the hosting organisation. Identify

how the problem or the organisation need is related to DRA]
 Solutions: [Briefly highlight how DRA can help the organisation and how DRA seem to

answer the organisation needs].
 Objective: [Identify the DRA evaluation object and the organisation goal and gain from

helping with the evaluation].
 DRA Proof of Concept (POC) demo and presentation: To evaluate the DRA framework, a

presentation slide pack and demo was developed demonstrating the deployment of a
predeveloped sample IoT application to a multi-cloud environment. This demonstrated the
application and working of the DRA in operations.

o Demo Video YouTube video: Link
o Presentation Slides: Link

B. Evaluation Feedback

After the demo and presentation, the PhD researcher organised an evaluation session with the
evaluator [participants] [identify the role of the participants]. The participants from the case
study organisation [identify the role of the participants] provided qualitative feedback on the

https://youtu.be/JN38xS27ek0
https://docs.google.com/presentation/d/1VkoH-kwWcYRyd0IY6AHa3TwCdDEhl-GifnNdeNx3D9I/edit#slide=id.p

217

DRA from a practical application perspective. The [organisation] [participants] evaluated the
following DRA components:

 DRA architecture
 DRA operational model pipeline
 Software components
 Hardware components

1. DRA Architecture:

The DRA architecture was presented to the case study [organisation]. DRA architecture is
composed of four design architecture models: Conceptual, Logical, Physical and Operational.
The case study participants provided feedback on the architecture design and its applicability to
their organisation. The expert from the [organisation] [participants] reviewed the design and
provided feedback and comments.

Figure G.1: DRAv2.0 Instance

Comments: Please provide comments about the DRA architecture

218

2. DRA Operational Model Pipeline:

In this step, the case study template provides a checklist for the DRAv2.0 instance pipeline
implementation. The [organisation] [participants] may reuse the recommended toolset in Table
4.6 or configure DRAv2.0 instance with other tools of choice. Table G.1 shows the setup process
of DRAv2.0 instance. Table G.2 is designed to facilitate the configuration of DRA for
[organisation] [participants].

Table G.1: DRAv2.0 Instance Toolset
Tools Features Description
BitBucket 1. Code synchronisation

2. Automated code push
3. Automate commit logs to Slack

BitBucket is a team collaboration and code management
tool. It enables code synchronisation and automatically
pushes the application to Codeship. It also sends commits
logs to Slack.

Codeship 1. Automated build/testing
2. Automated deployment
3. CLI scripting for testing/
deployment
4. Automate build/testing logs to
Slack

It is the Continuous Integration Broker (CI-Broker) tool.
It enables automated build/testing for code automatically
received from BitBucket. It also enables automated
deployed to clouds. It also sends build/testing/deployment
logs to Slack.

Heroku 1. Automated scaling
2. Virtual servers—orchestration
3. Fast delivery—scaling
4. Automate deployment logs to
Papertrail

Heroku cloud enables automated scaling of the
application deployed from Codeship. It enables
automated scaling of the app for users. Run-time logs of
the application are sent to Papertrail.

Papertrail 1. Acquire deployment logs
2. Automated deployment logs to
Slack
3. Automated notifications

Papertrail monitoring the deployment and execution logs
of the IoT application. It sends those logs to Slack.

MLab 1. Cloud DB management
2. Dynamic application access
3. Virtual DB servers
4. NoSQL DB

MLab is a MongoDB cloud database management
service. It enables dynamic data access and mapping.
MLab collected IoT data from the IoT application and
store that data in JSON NoSQL. DevOps team can
dynamically manage IoT data on MLab.

Slack 1. Automated log management
2. Automated notifications
3. Real-time communication (chat,
video)
4. Resources sharing option
5. Integration with Codeship and
Papertrail

Slack is a communication and collaboration tool. It
provides DevOps team with real-time chat/video
conference option and enables automated real-time
notifications. Slack collects commit logs from BitBucket,
build/test/deployment logs from Codeship and
deployment/run logs from the cloud then notifies the
team.

AWS
(CodeDeploy)

1. Automated scaling
2. Load balancing
3. Virtual servers—Orchestration
4. Fast delivery
5. Deployment monitoring

AWS CodeDeploy enables automated scaling of the
application deployed from Codeship. It enables
automated scaling of the app for users. It also provides
monitoring components for the application health at run-
time.

GAE 1. Automated scaling
2. User access management
3. Virtual servers—orchestration
4. Fast delivery
5. Deployment monitoring

GAE enables automated scaling of the application
deployed from Codeship. It enables automated scaling of
the app for users. It also provides monitoring components
for the application health at run time.

219

Comments: Please provide comments about the DRA tools set

Table G.2: DRAv2.0 Instance Setup and Configuration Template

Step Features
Tools
[or other tools of choice]

DevOps Team

 Create an application project (IoT app)
 Create testing modules
 Create MongoDB (mLab) connector module
 Add necessary dependencies and plugins

[Provide a list of plugins
and dependencies]

Repository
 Create a cloud repository for the application
 Integrate BitBucket with Slack and push commit logs

Bitbucket
Slack

CI-Broker

 Setup Codeship environment script:
[which programming language]
[which compiler – compiler command]
[which tester – testing command]

 Setup Codeship deployment master branch to:
Heroku (see documentation link)
AWS (see documentation link)
Google App Engine (see documentation link)

 Integrate Codeship with Slack and push build/test logs

Codeship

CD Platform

Heroku Setup:
 Create the maven-app-heroku project on Heroku
 Add Web Dyno on Heroku for auto-scaling
 Add Procfile web dyno script to the root directory
AWS Setup:
 Create the maven-app-heroku application on AWS
 Create a user and get: the secret key and access key
 Setup 2 or more EC2 instances
 Setup a security group
 Setup a deployment group using EC2 instances
 Setup an S3 bucket
 Provide Codeship with access to S3 and CodeDeploy
GAE Setup:
 Create the maven-app-heroku application on GAE
 Setup a bucket on Google
 Provide Codeship with access to the bucket and the GAE

Heroku

AWS

GAE

Monitoring
 Enable log capturing from Heroku, AWS, and Codeship
 Integrate Papertrail to push deployment logs to Slack
 Integrate Slack with Papertrail, Codeship, BitBucket

Papertrail
Slack

Database
 Create a mLab DB account through Heroku
 Provide the connection link of mLab DB (MongoDB) to the

IoT application

mLab

https://documentation.codeship.com/basic/continuous-deployment/deployment-to-heroku/
https://documentation.codeship.com/basic/continuous-deployment/deployment-to-aws-codedeploy/
https://documentation.codeship.com/basic/continuous-deployment/deployment-to-google-app-engine/

220

Comments: Please provide comments about the DRA setup and configuration process

3. Software Component:

DRAv2.0 instance pipeline can be configured to deploy any type of applications. Table G.3
provides the [organisation] [participants] with a demo application (maven-app-heroku) to test the
DRA. However, in case studies, [organisation] [participants] may use their own IoT application
(or no IoT applications) to test DRAv2.0 instance pipeline.

 Table G.3: Software Component
Software Component Checklist Description
Application Name [required] maven-app-heroku
Application Type [IoT] Java Maven app with IoT module
Programming Languages [required] Java/Python
Unit Testing Module [required] JUnit
Acceptance Testing Module [required] Cucumber
Resources https://bitbucket.org/product
Access observer
Username devopsobserver@hotmail.com
Password observer

Comments: Please provide comments about the IoT app

4. Hardware Component:

Table G.4 provides a sample IoT device network (see Copy of Figure 4.17) to test the IoT
application process. However, in case studies, [organisation] [participants] may use their own
IoT devices and sensors to test the IoT application deployed using DRAv2.0 instance pipeline.

https://bitbucket.org/product

221

Figure G.2: IoT Network

Table G.4: Hardware Component

Sensor Setup and Configuration Type

Sensor A 4 LED lights (multi-coloured) connected to 4 GPIO pins [13, 17, 19, 22]
(named Sensor_A) on a Raspberry Pi Model 3 B (named RPIB).

LED lights
Raspberry Pi

Sensor B Motion Sensor + 1 LED connection to a single GPIO pin [12] (named
Sensor_B) on a Raspberry Pi Model 3 (named RPIB).

Motion Sensor
Raspberry Pi

Comments: Please provide comments about the IoT network

Comments: Please provide comments about the demo video

Comments: Please provide overall comments about DRA

222

	Title Page
	Certificate of Authorship
	Acknowledgments
	Research Contributions and Publications
	Contents
	List of Tables
	List of Figures
	List of Equations
	List of Abbreviations
	Glossary
	Abstract
	Chapter 1: Introduction
	1.1. Research Background and Related Work
	1.1.1. Software Engineering
	1.1.2. Agile Software Development
	1.1.3. DevOps
	1.1.4. Cloud Computing
	1.1.5. Multi-Cloud
	1.1.6. Internet of Things
	1.1.7. Convergence of Research Ideas

	1.2. Research Problem
	1.3. Research Question
	1.4. Research Aim
	1.5. Research Scope
	1.6. Contributions
	1.7. Application and Users
	1.8. Research Strategy
	1.9. Thesis Organisation
	1.10. Summary

	Chapter 2: Literature Review
	2.1. SLR Scope
	2.2. SLR Filtration Process
	2.2.1. Stage 1: Inclusion–Exclusion
	2.2.2. Stage 2: Data Source and Research Strategy
	2.2.3. Stage 3: Study Selection Process and Inclusion Decision
	2.2.4. Stage 4: Final Selection Process and Quality Assessment
	2.2.5. Stage 5: Data Extraction and Data Synthesis

	2.3. SLR Data Review and Analysis
	2.3.1. DevOps and Multi-Cloud
	2.3.2. DevOps and IoT
	2.3.3. IoT Sensors and IoT Applications
	2.3.4. IoT Monitoring and IoT Security
	2.3.5. Cloud Computing and IoT
	2.3.6. Multi-Cloud, DevOps and IoT
	2.3.7. Data Analysis Summary

	2.4. SLR Results
	2.4.1. What Is Known About DevOps?
	2.4.2. Benefits and Challenges of DevOps Adoption for Cloud IoT Apps
	2.4.3. Research Gap

	2.5. Summary

	Chapter 3: Design Science Research Method
	3.1. Research Design
	3.2. DSR: Methodology
	3.2.1. Problem Identification
	3.2.2. Analysis
	3.2.3. Design
	3.2.4. Development
	3.2.5. Evaluation
	3.2.5.1. Case Studies Design
	3.2.5.2. Survey Design
	3.2.5.2.1. Survey Quantitative Evaluation
	3.2.5.2.2. Survey Qualitative Evaluation
	3.2.5.2.3. Survey Questionnaire Development

	3.2.6. Output

	3.3. Research Instruments
	3.3.1. Resources
	3.3.2. Development Process
	3.3.3. Experts and Industry Feedback
	3.3.4. Research Ethics

	3.4. Summary

	Chapter 4: DevOps Reference Architecture Framework
	4.1. DRA Overview
	4.2. DRA Framework Characteristics
	4.2.1. Abstraction
	4.2.2. Human Factor
	4.2.3. Infrastructure
	4.2.4. Process
	4.2.5. Tools
	4.2.6. Product
	4.2.7. Business Value
	4.2.8. Rules
	4.2.9. Legal

	4.3. DRA Architecture Design
	4.3.1. DRA Contextual Model
	4.3.2. DRA Conceptual Model
	4.3.3. DRA Logical Model
	4.3.4. DRA Physical Model
	4.3.5. DRA Operational Model

	4.4. DRA Framework Composition
	4.4.1. Resources
	4.4.1.1. Architecture Design
	4.4.1.2. Software
	4.4.1.3. Hardware

	4.4.2. Configuration
	4.4.2.1. Pipeline
	4.4.2.2. IoT Application
	4.4.2.3. IoT Network

	4.4.3. Output
	4.4.3.1. DRA Model
	4.4.3.2. DRAv1.0 Instance (Single Cloud)
	4.4.3.3. DRAv2.0 Instance (Multi-Cloud)

	4.5. DRA Framework Implementation
	4.5.1. DRA Instantiation Process
	4.5.2. DRA Evaluation Process

	4.6. Summary

	Chapter 5: DRA Framework Empirical Evaluation
	5.1. Framework Evaluation Overview
	5.2. DRA Instantiation
	5.3. Industry Case Study
	5.3.1. Case Study Plan
	5.3.2. Preparation for Data Collection
	5.3.3. Collecting Data
	5.3.3.1. DRA Architecture
	5.3.3.2. DRA Operational Model Pipeline
	5.3.3.3. Software Component
	5.3.3.4. Hardware Component

	5.3.4. Data Analysis
	5.3.5. Reporting

	5.4. Research Case Study
	5.4.1. Case Study Design
	5.4.2. Preparation for Data Collection
	5.4.3. Collecting Data
	5.4.3.1. DRA Architecture
	5.4.3.2. DRA Operational Model Pipeline
	5.4.3.3. Software Component
	5.4.3.4. Hardware Component

	5.3.4. Data Analysis
	5.3.5. Reporting

	5.5. Teaching Case Study Survey
	5.5.1. Sep Case Study (DRAv1.0)
	5.5.1.1. Case Study Introduction
	5.5.1.2. Data Collection and Analysis

	5.5.2. INP Case Study (DRAv2.0)
	5.5.2.1. Case Study Introduction
	5.5.2.2. Data Collection and Analysis

	5.5.3. DRAv1.0 V. DRAv2.0

	5.6. Industry Field Survey
	5.6.1. Survey Data Collection
	5.6.2. Survey Data Analysis
	5.6.2.1. Survey Quantitative Evaluation
	5.6.2.1.1. Individual DRA Models Evaluation
	5.6.2.1.2 Combined DRA Models Evaluation

	5.6.2.2. Survey Qualitative Evaluation
	5.6.2.2.1 DRA Usefulness Feedback and Rating
	5.6.2.2.2 DRA Overall Feedback and Rating

	5.7. Empirical Evaluation Overall Analysis
	5.7.1. Quantitative Indicator Matrix
	5.7.2. Qualitative Evaluator Matrix

	5.8. Future Research
	5.9. Summary

	Chapter 6: Discussion and Summary
	6.1. Research Journey and Output
	6.1.1. Research Journey
	6.1.2. Research Output

	6.2. Key Contributions and Publications
	6.3. Research Limitations
	6.4. Summary

	Conclusion
	Declarations
	Bibliography
	Appendices
	Appendix A: Ethical Approval
	Appendix B: Consent Form
	Appendix C: Survey Invitation Letter
	Appendix D: Online Industry Survey Questionnaire
	Appendix E: Empirical Study Data
	Appendix F: Research Papers
	Appendix G: Case Study Template

