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Abstract—Deep Neural Networks (DNNs) have been success-
fully applied to various real-world machine learning applications.
However, performing large DNN inference tasks in real-time
remains a challenge due to its substantial computational costs.
Recently, Spiking Neural Networks (SNNs) have emerged as an
alternative way of processing DNN’s task. Due to its event-
based, data-driven computation, SNN reduces both inference
latency and complexity. With efficient conversion methods from
traditional DNN, SNN exhibits similar accuracy, while leveraging
many state-of-the-art network models and training methods. In
this work, an efficient neuromorphic hardware architecture for
image recognition task is presented. To preserve accuracy, the
analog-to-spiking conversion algorithm is adopted. The system
aims to minimize hardware area cost and power consumption,
enabling neuromorphic hardware processing in edge devices.
Simulation results have shown that, with the MNIST digit
recognition task, the system has reached an accuracy of 94.4%
with a core area of 15 µm2 at a maximum frequency of 250
MHz.

Index Terms—Hardware Accelerator, Convolutional Neural
Network, Event-driven Neural Network, Neuromorphic Comput-
ing

I. INTRODUCTION

OVER the past few years, modern deep neural networks
(DNNs) architectures such as AlexNet [1], VGG-16 [2],

ResNet [3] have contributed to the success of many machine
learning applications. Ranging from the small, simple task
of handwritten digits recognition [4] to challenging datasets
with millions of images with 1000s classes [5], DNNs have
proven to be the de facto standard with better-than-human
accuracy. However, inference on such large networks, e.g.,
classification on a single image from ImageNet, requires
significant computational and energy costs, limiting the uses of
such networks on powerful GPUs and datacenter accelerators
such as Google TPUs [6].

The VLSI research community has made considerable re-
search efforts to push the DNNs computing task on mobile and
embedded platforms. Notable research trends include devel-
oping specialized dataflow for Convolutional Neural Network
(CNN) to minimize power consumption of DRAM access
[7], reducing the network size for mobile applications [8],
[9], model compression (pruning redundant parameters while
preserving accuracy) [10], quantization of parameters [11] and
applying new computing paradigm, such as computing in log-
domain [12], in frequency-domain [13] or stochastic comput-

ing [14]. These techniques rely on the traditional frame-based
operation of DNN, where each frame is processed sequentially,
layer by layer until the final output recognition can be made.
This may result in long latency and may not be suitable for
applications where fast, real-time classification is crucial.

Spiking Neural Network (SNN) has been widely adopted
in the neuroscience research community, where it serves as
a model to simulate and study the behaviors of human brain
[15]. Recently, it has emerged as an efficient way of doing
inference tasks on complex DNN architectures. The event-
based mode of operations is particularly attractive for complex
DNN workloads for several reasons. Firstly, the output classi-
fication result can be queried as soon as the first output spike
arrives [16], reducing the latency and computational workload.
Secondly, simple hardware-efficient Integrate-and-Fire (IF)
neuron models may be used in SNN, replacing the expensive
multiplication operation with addition. Thirdly, SNN has been
reportedly proven to be equal in terms of recognition accuracy
with state-of-the-art DNN models [17], [18]. With clever and
efficient algorithms to convert the parameters of traditional
DNN models to spiking domain, SNN opens up the possibility
of leveraging the plethora amount of pre-trained DNN models
and training techniques in the literature, without the need to
develop specific networks models for SNN.

Even though DNN-to-SNN conversion algorithms have
proven to be useful, specific hardware accelerator targeting
this method is still lacking in the literature. In this work, we
propose an efficient event-driven neuromorphic architecture to
support the inference of image recognition tasks. The main
contributions of this paper include a novel digital IF neuron
model to support SNN operations, and a system-level hardware
architecture which supports handwritten digit recognition with
the MNIST dataset [19]. Simulation results have shown that
the hardware system only incurs negligible loss (0.2%) with
10-bit precision format compared to the software floating point
results. Hardware implementation results with a standard 45nm
library also show that the system is resource efficient with a
gate equivalent (GE) count of 19.2k (2-input NAND), at a
maximum frequency of 250 MHz and throughput of 325,000
frames-per-second.

The remaining part of the paper is organized as follows.
Section II presents some preliminaries regarding SNN and
the conversion algorithms adopted in this work. Section III
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introduces the hardware architecture in details. Section IV
covers the simulation and implementation results. Finally,
Section V concludes the paper.

II. SNN PRELIMINARIES

In this section, the basic theory and methods for DNN-to-
SNN conversion are presented. This work adopt the methods
introduced in [16], [20]. More detailed information can be
found in these works.

A. Introduction to SNN

The human brain, despite possessing a great computational
power, only consumes an average power of 20 Watts [21].
This is thanks to a very large interconnection networks of
primitive computing elements called the neurons and synapses.
Figure 1 shows a schematic diagram of a biological neuron.
Each neuron consists of many dendrites, which act as input
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Fig. 1: Schematic diagram of a biological neuron.

device. The dendrites receive inputs from connected neurons
in the previous layer of the networks. The connection between
neurons from the previous layer and the dendrites are called
synapses. Each neurons may have an arbitrary number of such
connections. The membrane voltage of the soma integrates
those inputs, and transmits the outputs to the next layer
through the axon and its many axon terminals, which act as
the output devices.

Inspired from the working mechanism of such biological
neuron, many research efforts have been made to create bio-
logical plausible neuromorphic computing paradigm to solve
many difficult tasks for traditional Von Neumann computers,
while maintaining a very low energy consumption profile.
SNN recently attracted many research interests as a feasible
candidate for future neuromorphic computing. SNN is the
third generation of Artificial Neural Networks, and it is
particularly suitable for low-power hardware implementation
due to its event-driven operations, while still maintaining
equivalent computing power to its DNN counterpart [22]. The
general behaviour of a neuron in SNN is depicted in Fig.
2 (recreated from [23]). The neurons in SNN operates with
binary input and output spikes. When a neuron receives pre-
synaptic spikes from previous layers, the membrane potential

will integrate these spikes with the corresponding weights.
Each neuron population will have its own threshold potential.
If the membrane potential crosses this threshold value, the
neuron will emit an output spike to the neurons in the next
layer. After emitting a spike, the neuron will enter a refractory
state within a specific refractory period, in which incoming
spikes are not integrated.

B. Rate-coded input and output representations in SNN

A fundamental shift of SNN from traditional DNN oper-
ations is how the inputs to the networks are represented. In
frame-based DNN operations, inputs to the first layer of the
network are analogue values (for example, the pixel intensity
values of an image). SNN operates on binary input spike
trains generated as function of each simulation time step.
There are different ways to represent information with binary
input spikes, which can be broadly classified as rate-coding
or temporal coding. In rate-coding scheme, the information
encoded as the mean firing rate of emitting spikes over a
timing window [16] [20]. In temporal coding, the information
is encoded in the timing of emitting spikes [24]

In this work, we adopt the rate-coding scheme in [16]. The
inputs to the first layer in SNNs are rate-coded binary input
spikes. The inputs spike trains are generated in each time step
based on a Poisson process as indicated in (1):

I(xi, t) =

{
1 if xi ≤ X
0 if xi > X

(1)

where xi are the analog inputs from neuron i and X ∼
U [(0, 1)] is a random variable uniformly distributed on [0, 1].
With a large enough time window, the number of binary input
spikes generated is directly proportional to the analog input
value.

Given a set of input spike trains, the spikes are accumulated
and transmit through each layer of the networks. Each layer of
the network can start its operation as soon as there is a spike
input coming from the previous layer. At the final output layer,
the inference is made based on the cumulative spike counts,
e.g., the output neuron with the highest output spike counts is
deemed to be the classification result.

C. Synaptic operations in SNN

In traditional DNN, the analog inputs values are accumu-
lated and go through an activation function. Various activation
functions are introduced in the literature, such as the sigmoid,
tanh, or Rectified Linear Unit (ReLU). The ReLU activation
function, firstly introduced in [1], is currently the most used
activation function in modern DNN architectures. A DNN
neuron with ReLU activation, receiving xi inputs from the
previous layer, each with synaptic weights wi and zero bias,
produce the following output:

y = max(0,
∑
i

wixi) (2)

The conversion algorithm from DNN to SNN is firstly in-
troduced in [20] by Cao et al.. The author proposed the
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Fig. 2: Schematic diagram of operations of a spiking neuron [23].

conversion process by noting an equivalence between tradi-
tional ReLU neuron and an IF Neuron without a leaky and
refractory period. Given that Ii(t) is the spike input from
previous layer’s neuron i in time step t, Vm is the membrane
potential of neurons, the synaptic integration in each time step
t is expressed in the following equation

Vm(t+ 1) = Vm(t) +
∑
i

wi.Ii (3)

After input accumulation, the neuron will check for the reset
condition, generate output spikes and reset the membrane
potential as follows:

O(t) =

{
1 if Vm(t) ≥ Vth
0 if Vm(t) < Vth

(4)

Vm(t+ 1) =

{
0 if Vm(t) ≥ Vth
Vth if Vm(t) < Vth

(5)

The neurons will generate an output spike if their membrane
potential cross a predefined threshold Vth, and the membrane
potentials will be reset to zero.

It is intuitive to see the correlation between IF neuron
and DNN’s neuron with ReLU activation. The input spikes
Ii(t) are rate-coded so the average value E(Ii(t)) ∝ xi..
If the weight vector w is positive, the output spike rate is
E(O(t)) ∝ E(Ii(t)), which corresponding to the positive
region wixi of the ReLU function in (2). On the other hand,
if w is negative, the input spikes never cause the neuron to
produce any output spike. Hence, the output spike rate is
clamped to 0.

It has been shown that the major factor affecting the
classification accuracy in converted SNN models is the ratio
between the threshold Vth and the learned weights w [16]. A
high ratio can quickly cause a deep network to not produce any
output spike for a long simulation time. A low ratio can cause
the network to lose its ability to distinguish between input
spikes with different weights; hence inputs information loss

may occur. Major research efforts in this conversion algorithm
have been dedicated to finding the balanced ratio [16] [17]. In
this work, the weight-threshold balance approach in [16] has
been adopted.

III. HARDWARE ARCHITECTURE

In this section, the proposed hardware architecture is dis-
cussed in details.

A. Digital Neuron - the basic processing element

The basic processing element (PE) of the proposed hardware
architecture is an efficient digital design of an IF neuron, which
dynamics have been described in Section II-B. Fig. 3 shows
the dataflow of one PE in different modes of operations.

The operation of a single PE is governed by the flag EN.
When EN = 1, the PE is in synaptic integration mode and will
integrate the incoming input spikes with their corresponding
weights. When EN = 0, the PE will check for the threshold
condition and reset and fire if the integrated potential crosses
the threshold.

1) Synaptic Integration Mode: If there is an input spike,
the PE integrates its current membrane potential value with
the corresponding weight. If there is no input spike, the PE
skips the integration.

2) Reset and Fire Mode: In this mode, the PE will check its
current membrane potential Vm against a predefined threshold
value Vth. If Vm > Vth, the PE will reset Vm to a reset value
VRESET . In this work, Vth is set to 1 ,VRESET is set to 0.

B. System-level Architecture

The system level architecture is presented in Fig. 4. The
system supports the SNN conversion of a fully-connected,
feedforward DNN with one hidden layer.
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(a) Synaptic integration mode, no input spike.
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(b) Synaptic integration mode, one input spike.
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(c) Reset and Fire mode
Reset to VRESET = 0, one output spike.
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(d) Reset and Fire mode
No reset, No output spike.

Fig. 3: Microarchitecture of a single PE and its dataflow in different modes of operation.
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Fig. 4: The system level architecture.

1) PEs complex: Each layer of PEs is grouped into a PE
complex as shown in Fig. 4b. A PEs complex consists of a
number of PEs working in parallel. Each PE is associated
with an SRAM block of size 16b×1024. The memory bank
is used to store the off-line weights after training and will be
controlled by the system controller.

2) Parallel input - Serial output shift register: Two parallel
input, serial output (PISO) shift registers are used to transmit
the output spikes between each layer.

3) Output spike counter and classifier: This block counts
the output spikes from the second PEs complex and makes the
classification based on the class with the most spike count.

4) System controller: The system controller governs the
operations of all the individual blocks in the system. The
control flow is as follows:

• Step 1: At the arrival of new input spikes from new
images, the Vm of each PE is cleared and set to zero. The
trained off-line inputs are loaded into the weight memory
banks.
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Fig. 5: Simulation flow and results.

• Step 2: At the beginning of each time step, input spikes
are loaded from the host memory to the input block ram.
The first PISO shift register will then load the input spikes
and transmit it to the first PEs complex. The spikes are
processed sequentially but all the PEs in the same PEs
complex will operate in parallel.

• Step 3: The output spikes from the first hidden layer are
loaded into the second PISO shift register. The spikes
are processed in the second PEs complex and the output
spikes will be counted at the output counter. This marks
the end of one simulation time step.

• Step 4: Step 2 and 3 are repeated for a number of
predefined time steps. After the system has finished
processing for all time steps, the system will wait for
new input images.

IV. SIMULATION AND IMPLEMENTATION RESULTS

A. Software-Hardware simulation results

The handwritten digit recognition application is chosen as
a benchmark for the system’s performance. One of the most
popular dataset for this task is the MNIST dataset [19]. This
dataset contains 60,000 training images and 10,000 testing
images, with each image of size 28 × 28 pixels.

The network model size is 784×48×10. The network was
trained and simulated in MATLAB with the open-source
scripts from the authors of [16]1. The software-hardware
simulation flow is depicted in Fig.5 The off-line weights
trained with 32b floating point accuracy are quantized with
MATLAB to 10b fixed point format. The input spikes are
generated from the testing images and are given as inputs to
the inference phase.

The system architecture has been realized with VHDL at
RTL level. The same set of input spikes are loaded into the
VHDL testbench to verify the correctness of the hardware
design. Table I shows the simulation results. It can be seen that
the quantization process incurs a negligible loss of accuracy
(0.2%) compared to the floating point implementation. The
hardware simulation results matched the quantized software
simulation results.

1https://github.com/dannyneil/spiking relu conversion

TABLE I: Simulation results

Recognition Accuracy
MATLAB 32b Floating Point 94.6%
MATLAB 10b Fixed Point 94.4%
VHDL 10b Fixed Point 94.4%

TABLE II: Implementation results for a single neuron

Author Merolla [25] Joubert [26]
Publication CICC 2011 IJCNN 2012 This work
Implementation Digital Digital Digital
Technology IBM 45nm SOI 65nm NANGATE 45nm
Neuron Area (mm2) 0.00325 0.000538 0.000127
Neuron Type IF LIF IF
Frequency 200MHz 256MHz 250MHz

B. Hardware implementation results

The system has been implemented with a 45nm NANGATE
library. This section reports the implementation results.

1) Results for a single PE: Table II compares the results
of a single PE with related works. Compared to other related
works with digital implementation of a single IF neuron, our
design can achieve better hardware area cost and operate at
comparable frequency. The author in [26] has proposed and
implemented LIF neuron model in both digital and analog
technology. This work has achieved 4.2× reduction in terms
of area cost compared to the digital implementation [26],
mainly due to the compact design of the neuron block, with
the synapse weight values are implemented as simple block
memories.

2) Results for system level architecture: Table III compares
the results of our system level architecture with related works
in the literature. Compared to the other works with the MNIST
handwritten digit recognitions application, we could achieve
much lower hardware area cost. This is thanks to the smaller
number of neurons per core (58 neurons, 2 layer network
model). However, even with a small number of neurons
per core, we could still achieve a comparable performance
accuracy of 94.4%.

The system-level implementation results have shown that
our system is lightweight with only a core area of 15 µm2

(19.2k 2-input NAND Gate Equivalent). At the maximum
clock frequency of 250 MHz, the system can reach a through-
put of 325,000 frames per second.

V. CONCLUSION

Significant research efforts have been made to push the
inference phase of machine learning applications on embedded
devices. In this work, we propose a lightweight neuromorphic
architecture that can be applied to the handwritten digit
recognition application. The simulation results show that even
with limited fixed-point precision, our hardware system can
reach a similar accuracy compared to floating point software
implementation. Hardware implementation results have shown
that our system is resource-efficient and can satisfy the con-
straints of real-time applications. For future works, the system
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TABLE III: Implementation results for system level architecture

Author Merolla [25] Seo [27] Davies [28] Lee [29] Zheng [30] Knag [31]
Publication CICC 2011 CICC 2011 IEEE Micro 2018 ISCA 2018 ISCAS 2018 JSSC 2015 This work
Implementation Digital Digital Digital Digital Digital Digital Digital
Technology IBM 45nm SOI IBM 45nm SOI 14nm FinFET 45nm TSMC 65nm 65nm NANGATE 45nm
Core Area[mm2] 4.2 0.8 0.4 9.26/7.62 1.1 3.06 0.015
Neurons per core 256 256 1024 12/72 60 256 58
Learning Type Offline Online Online Online/Offline Online Online Offline
Neuron Type IF LIF Adaptive LIF LIF & Variants Modified LIF LIF LIF
Frequency 200MHz N.A N.A 500/250MHz 167MHz 310MHz 250MHz
Solve MNIST Yes No Yes No Yes No Yes
MNIST Accuracy 94% N.A 96% N.A 91% No 94.4%

can be adapted to a more generic scalable neurosynaptic core
(supports different networks topology like convolutional neural
networks, recurrent neural networks etc.). Possible online
learning mode to support unsupervised learning algorithm will
also be considered.
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