IMPORTANCE Understanding causes and correlates of health loss among children and adolescents can identify areas of success, stagnation, and emerging threats and thereby facilitate effective improvement strategies.

OBJECTIVE To estimate mortality and morbidity in children and adolescents from 1990 to 2017 by age and sex in 195 countries and territories.

DESIGN, SETTING, AND PARTICIPANTS This study examined levels, trends, and spatiotemporal patterns of cause-specific mortality and nonfatal health outcomes using standardized approaches to data processing and statistical analysis. It also describes epidemiologic transitions by evaluating historical associations between disease indicators and the Socio-Demographic Index (SDI), a composite indicator of income, educational attainment, and fertility. Data collected from 1990 to 2017 on children and adolescents from birth through 19 years of age in 195 countries and territories were assessed. Data analysis occurred from January 2018 to August 2018.

EXPOSURES Being under the age of 20 years between 1990 and 2017.

MAIN OUTCOMES AND MEASURES Death and disability. All-cause and cause-specific deaths, disability-adjusted life years, years of life lost, and years of life lived with disability.

RESULTS Child and adolescent deaths decreased 51.7% from 13.77 million (95% uncertainty interval [UI], 13.60-13.93 million) in 1990 to 6.64 million (95% UI, 6.44-6.87 million) in 2017, but in 2017, aggregate disability increased 4.7% to a total of 145 million (95% UI, 107-190 million) years lived with disability globally. Progress was uneven, and inequity increased, with low-SDI and low-middle–SDI locations experiencing 82.2% (95% UI, 81.6%-82.9%) of deaths, up from 70.9% (95% UI, 70.4%-71.4%) in 1990. The leading disaggregated causes of disability-adjusted life years in 2017 in the low-SDI quintile were neonatal disorders, lower respiratory infections, diarrhea, malaria, and congenital birth defects, whereas neonatal disorders, congenital birth defects, headache, dermatitis, and anxiety were highest-ranked in the high-SDI quintile.

CONCLUSIONS AND RELEVANCE Mortality reductions over this 27-year period mean that children are more likely than ever to reach their 20th birthdays. The concomitant expansion of nonfatal health loss and epidemiological transition in children and adolescents, especially in low-SDI and middle-SDI countries, has the potential to increase already overburdened health systems, will affect the human capital potential of societies, and may influence the trajectory of socioeconomic development. Continued monitoring of child and adolescent health loss is crucial to sustain the progress of the past 27 years.

Published online April 29, 2019.
Childhood and adolescence are vulnerable periods and a crucial window for adult health determination. While improvements in the mortality rate of children younger than 5 years (the population often called under-5) have been undeniably dramatic and positive,1 the full story of child and adolescent health is more nuanced and heterogeneous, with a notably broader range of characteristics than can be told with a single summary statistic.2 The effects of acute and chronic infectious diseases, nutrition, physical functioning, mental health, and intellectual development set the stage for both individual prosperity and the future human capital of all societies.3

Eleven of the 18 Sustainable Development Goals (SDGs) and 19 of the 53 health-associated SDG indicators are about child and adolescent health.4,5 These include ending all forms of malnutrition (SDG 2.2), reducing maternal mortality ratio to fewer than 70 per 100 000 live births (SDG 3.1), decreasing neonatal and under-5 mortality rate to fewer than 12 and 25 per 1000 live births, respectively (SDG 3.2), ensuring universal access to reproductive health care (SDG 3.7), and multiple objectives aimed at combating specific causes of health loss, such as malaria, tuberculosis, HIV, road traffic crashes, air pollution, substance abuse, and noncommunicable diseases (NCDs). However, many of the leading drivers of health loss among children and adolescents are notably absent from the SDG agenda.6

We have compiled this third annual global report to detail the levels, trends, causes, and correlates of health loss from birth through age 19 years. It reflects several notable improvements from Global Burden of Disease (GBD) 2017. First, we have generated a complete set of internally consistent demographic estimates, with uncertainty intervals (UIs), for age-specific fertility, population, and all-cause mortality.7 Second, additional countries (Ethiopia, Iran, New Zealand, Norway, and Russia) were estimated at the subnational level. Third, in addition to adding many new sources of data, we have improved data-processing algorithms. Methods for redistributing deaths coded to nonspecific, implausible, or intermediate causes of death were updated to incorporate statistical uncertainty of cause reassignment. Clinical administrative data (hospital and claims) processing methods were updated to better account for hospital readmissions, multiple clinical visits, and ordering of discharge codes by age, sex, location, and time. Fourth, we have improved the epidemiological transition analysis through improved estimation of the SDI.

Methods

Comprehensive descriptions of each analytic component of GBD 2017 are detailed elsewhere7-12 and compliant with the Guidelines for Accurate and Transparent Health Estimates Reporting.13 The GBD 2017 included 11 467 unique sources for cause of death estimation and 26 007 for estimation of nonfatal health loss. Data sources for each cause-level analysis are available online at the Global Health Data Exchange.14

The GBD 2017 used a geographic hierarchy of 7 superregions (high-income countries; Latin America and the Caribbean; North Africa and the Middle East; South Asia; sub-Saharan Africa [SSA]; Central Asia, Central Europe, and Eastern Europe; and Southeast Asia, East Asia, and Oceania) containing 21 regions and 195 countries and territories. Fifteen countries were estimated at the subnational level: Brazil, China, England, Ethiopia, India, Indonesia, Iran, Kenya, Mexico, New Zealand, Norway, the United States, Russia, Sweden, and South Africa. Estimates were produced for male individuals and female individuals separately in each of 23 standard age groups. We cover the first 7 of these age groups in this report: early neonatal (0-6 days’ postbirth age), late neonatal (7-27 days’ postbirth age), postneonatal (28-364 days’ postbirth age), 1 to 4 years, 5 to 9 years, 10 to 14 years, and 15 to 19 years.

Each of 359 diseases and injuries were arranged in a 4-level mutually exclusive and collectively exhaustive cause hierarchy; most were analyzed as causing both death and disability. The first level (level 1) of the cause list has 3 categories: communicable, maternal, neonatal, and nutritional conditions (CMNN); NCDs; and injuries. At level 2, there are 22 cause groups, and level 3 includes more disaggregated causes of burden (169 causes), as does level 4 (293 causes). The full GBD cause list, including corresponding International Classification of Diseases, Ninth Revision (ICD-9) and Tenth Revision (ICD-10) codes, is detailed in appendices to the GBD 2017 summary publications.4,9

All-cause mortality, cause-specific mortality, and years of life lost (YLLs) were estimated using standardized approaches of data identification, extraction, and processing to address data challenges such as incompleteness, variation in classification systems and coding practices, and inconsistent age group and sex reporting. Nonfatal estimates were generated using data from literature, hospital discharge and claims data systems, cross-sectional surveys, cohort studies, case notification systems, and disease-specific registries. Cause-specific years lived with disability (YLDs) were calculated by multiplying sequela-level prevalence with corresponding disability weights that were derived from population and internet surveys of more than 60,000 persons and adjusted for comorbidity through microsimulation.15,16 Disability-adjusted life years (DALYs) are the sum of YLDs and YLLs and used to measure the comprehensive health status of a population for a given location, sex, year, and age combination.

Key Points

Question How have the levels, trends, and leading causes of child and adolescent mortality and nonfatal health loss changed from 1990 to 2017?

Findings This study found that child and adolescent mortality decreased throughout the world from 1990 to 2017, but morbidity has increased as a proportion of total disease burden, because the major causes of nonfatal health loss during childhood and adolescence have not changed dramatically.

Meaning As the global health community continues to prioritize child and adolescent health during the Sustainable Development Goal era, careful attention should also be placed on examining and addressing nonfatal illness and disability across the development spectrum.
Results

All-Cause Mortality and Decomposition of Causes of Death

Premature mortality is the dominant component of health loss in children and adolescents. The Table shows deaths by age group globally and by SDI quintile. The Table shows the same for superregions, regions, countries, and territories. All-cause child and adolescent deaths decreased 51.7% from 13.77 million (95% UI, 13.60-13.93 million) in 1990 to 6.64 million (95% UI, 6.44-6.87 million) in 2017. More than half (60.1% [95% UI, 59.6%-60.5%]) occurred in infants younger than 1 year and, of those, 46.6% (95% UI, 46.0%-47.3%) occurred in the first week of life. The fastest decline was among children aged 1 to 4 years, in whom global deaths decreased by 61% from 3.62 million (95% UI, 3.52-3.72 million) in 1990 to 1.40 million (95% UI, 1.34-1.48 million) in 2017. Over the same period, mortality decreased 51% to 3.99 million (95% UI, 3.85-4.14 million) in infants younger than 1 year, by 52% to 0.41 million (95% UI, 0.40-0.42 million) in children aged 5 to 9 years, and by 27% to 0.84 million (95% UI, 0.82-0.85 million) in children aged 10 to 19 years. Improvements by age were similar across SDI quintiles.

Decomposition of changes in probability of death between birth and age 20 years from 1990 to 2017 revealed different level 2 cause-level drivers across GBD regions (Figure 1; country results are in eFigure 2 in the Supplement). Decreases in deaths owing to infectious diseases, neonatal disorders, and unintentional injuries drove improvements at the global level and for many less-developed regions (eg, CMNN deaths were virtually absent in high-SDI regions). In western, central, and eastern SSA, the probability of surviving to adulthood increased from 1990 to 2017 (western SSA: 1990, 78.8%; 2017, 89.1%; central SSA: 1990, 80.5%; 2017, 90.7%; eastern SSA: 1990, 80.0%; 2017, 92.1%), primarily as a result of decreased mortality owing to respiratory infections (percentage of decreased mortality owing to this change: western SSA, 20.4%; central SSA, 19.1%; eastern SSA, 17.9%), enteric infections (western SSA, 24.6%; central SSA, 13.3%; eastern SSA, 13.7%), neglected tropical diseases and malaria (western SSA, 11.9%; central SSA, 22.6%; eastern SSA, 22.6%), other infectious diseases (western SSA, 25.0%; central SSA, 16.7%; eastern SSA, 19.6%), and nutritional deficiencies (western SSA, 6.4%; central SSA, 8.5%; eastern SSA, 7.1%). The total decrease in mortality from these causes was 88.4% in western SSA, 80.3% in central SSA, and 81.0% in eastern SSA.

Decreased mortality from other NCDs (primarily congenital birth defects and hemoglobinopathies) and neonatal disorders contributed the most to survival improvements in most of high-middle–SDI and high-SDI regions (decrease in death rate, 1990-2017, for congenital birth defects: high-SDI countries, 52.6% [95% UI, 41.6%-55.8%]; high-middle–SDI countries, 59.4% [95% UI, 53.1%-64.8%]; hemoglobinopathies: high-SDI countries, 54.1% [95% UI, 38.8%-60.0%]; high-middle–SDI countries, 61.3% [95% UI, 49.1%-68.7%]; neonatal disorders: high-SDI countries, 45.5% [95% UI, 42.3%-50.4%]; high-middle–SDI countries, 65.0% [95% UI, 61.3%-68.4%]). Exceptions to broad survival improvements included a 0.6% increase in probability of death owing to HIV/AIDS and sexually transmitted infections (1990, 0.6%; 2017, 1.2%; death rate per 100 000 population) in individuals younger than 20 years from HIV/AIDS and STI: 1990, 33.6 [95% UI, 22.4-46.7]; 2017, 57.2 [95% UI, 49.5-65.9]) in Southern sub-Saharan Africa.

There were a total of 50 countries where the probability of death by self-harm and interpersonal violence increased between 1990 and 2017. Nine of them had increase of more than 0.1% in the overall probability of death owing to self-harm and interpersonal violence between birth and age 20 years: Syria (1990, 0.04%; 2017, 3.45%), Iraq (1990, 0.26%; 2017, 1.22%), Yemen (1990, 0.07%; 2017, 0.89%), Central African Republic.
<table>
<thead>
<tr>
<th>Metric</th>
<th>Individuals No.</th>
<th>Late Mortality %</th>
<th>Low-middle</th>
<th>Low-middle</th>
<th>Low-middle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>3 037 044</td>
<td>3 546 312</td>
<td>11 500</td>
<td>13 000</td>
<td>13 500</td>
</tr>
<tr>
<td>1990</td>
<td>8 149 312</td>
<td>9 658 312</td>
<td>27.5</td>
<td>30.5</td>
<td>33.5</td>
</tr>
<tr>
<td>2000</td>
<td>8 189 312</td>
<td>9 738 312</td>
<td>27.8</td>
<td>30.8</td>
<td>33.8</td>
</tr>
<tr>
<td>2017</td>
<td>8 194 312</td>
<td>9 743 312</td>
<td>27.9</td>
<td>30.9</td>
<td>33.9</td>
</tr>
<tr>
<td>% Change</td>
<td>1990-2017</td>
<td>-13.5</td>
<td>-16.5</td>
<td>-19.5</td>
<td>-22.5</td>
</tr>
<tr>
<td>% of Total, 1990</td>
<td>24.0</td>
<td>27.0</td>
<td>30.0</td>
<td>33.0</td>
<td></td>
</tr>
<tr>
<td>% of Total, 2000</td>
<td>25.5</td>
<td>28.5</td>
<td>31.5</td>
<td>34.5</td>
<td></td>
</tr>
<tr>
<td>% of Total, 2017</td>
<td>25.7</td>
<td>28.7</td>
<td>31.7</td>
<td>34.7</td>
<td></td>
</tr>
<tr>
<td>% Change, 2000-2017</td>
<td>-2.0</td>
<td>-5.0</td>
<td>-8.0</td>
<td>-11.0</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
Table. All-Cause Mortality in 1990, 2000, and 2017, With Mean Percentage Changes for Combined Sexes by Age (continued)

<table>
<thead>
<tr>
<th>Metric</th>
<th>Early Neonatala</th>
<th>Late Neonatalb</th>
<th>Postneonatalc</th>
<th>Aged 1 to 4 y</th>
<th>Aged 5 to 9 y</th>
<th>Aged 10 to 14 y</th>
<th>Aged 15 to 19 y</th>
<th><1 y</th>
<th><5 y</th>
<th><20 y</th>
<th>Aged 10 to 19 y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deaths, 2000, No.</td>
<td>1027894</td>
<td>337892</td>
<td>111094</td>
<td>266250</td>
<td>145940</td>
<td>207612</td>
<td>2468880</td>
<td>3580061</td>
<td>14986</td>
<td>351552</td>
<td></td>
</tr>
<tr>
<td>% of total, 2000</td>
<td>20.7 (20.0-21.4)</td>
<td>18.9 (18.1-19.7)</td>
<td>22.5 (21.8-23.3)</td>
<td>14.9 (14.2-15.4)</td>
<td>23.7 (23.3-24.1)</td>
<td>25.9 (25.6-26.3)</td>
<td>25.7 (25.3-26.1)</td>
<td>21.3 (20.7-21.9)</td>
<td>19.3 (18.8-19.8)</td>
<td>20.1 (19.6-20.6)</td>
<td>25.8 (25.4-26.2)</td>
</tr>
<tr>
<td>Deaths, 2017, No.</td>
<td>741928</td>
<td>201579</td>
<td>599744</td>
<td>1343646</td>
<td>1089589</td>
<td>171571</td>
<td>1545245</td>
<td>2098384</td>
<td>2522915</td>
<td>281467</td>
<td>2352874</td>
</tr>
<tr>
<td>% of total, 2017</td>
<td>39.9 (37.9-42.0)</td>
<td>39.7 (37.7-41.4)</td>
<td>36.9 (34.6-39.4)</td>
<td>39.6 (36.9-42.2)</td>
<td>34.7 (33.7-35.7)</td>
<td>34.4 (33.6-35.3)</td>
<td>33.2 (32.1-34.4)</td>
<td>38.7 (36.7-40.7)</td>
<td>38.9 (36.9-41.0)</td>
<td>38.0 (36.2-39.8)</td>
<td>33.7 (32.7-34.7)</td>
</tr>
<tr>
<td>% Change, 1990-2017</td>
<td>-27.8 (-34.1 to -21.1)</td>
<td>-40.3 (-45.4 to -34.9)</td>
<td>-45.7 (-51.3 to -39.6)</td>
<td>-50.0 (-55.1 to -44.0)</td>
<td>-36.8 (-39.5 to -34.0)</td>
<td>-24.7 (-27.0 to -22.1)</td>
<td>-17.4 (-20.8 to -13.5)</td>
<td>-37.5 (-42.4 to -32.3)</td>
<td>-41.4 (-46.1 to -36.1)</td>
<td>-39.4 (-43.7 to -34.5)</td>
<td>-20.4 (-23.3 to -17.1)</td>
</tr>
<tr>
<td>Middle SDI</td>
<td>2017, No.</td>
<td>628643</td>
<td>238799</td>
<td>868238</td>
<td>537299</td>
<td>202488</td>
<td>121109</td>
<td>173289</td>
<td>1735679</td>
<td>2272978</td>
<td>2769865</td>
</tr>
<tr>
<td>% of total, 2017</td>
<td>20.7 (20.0-21.4)</td>
<td>18.9 (18.1-19.7)</td>
<td>22.5 (21.8-23.3)</td>
<td>14.9 (14.2-15.4)</td>
<td>23.7 (23.3-24.1)</td>
<td>25.9 (25.6-26.3)</td>
<td>25.7 (25.3-26.1)</td>
<td>21.3 (20.7-21.9)</td>
<td>19.3 (18.8-19.8)</td>
<td>20.1 (19.6-20.6)</td>
<td>25.8 (25.4-26.2)</td>
</tr>
<tr>
<td>Deaths, 2000, No.</td>
<td>462225</td>
<td>139884</td>
<td>493464</td>
<td>278288</td>
<td>141272</td>
<td>17567</td>
<td>1059573</td>
<td>1373862</td>
<td>1790380</td>
<td>275246</td>
<td>267328</td>
</tr>
<tr>
<td>% of total, 2000</td>
<td>28.7 (27.9-29.5)</td>
<td>34.7 (33.9-35.5)</td>
<td>28.6 (27.8-29.4)</td>
<td>16.8 (15.9-17.7)</td>
<td>19.1 (18.2-19.9)</td>
<td>19.3 (18.8-19.8)</td>
<td>20.1 (19.6-20.6)</td>
<td>25.8 (25.4-26.2)</td>
<td>33.0 (32.0-34.0)</td>
<td>47.1 (46.8-47.5)</td>
<td>57.5 (57.2-57.8)</td>
</tr>
<tr>
<td>% Change, 1990-2017</td>
<td>-27.8 (-34.1 to -21.1)</td>
<td>-40.3 (-45.4 to -34.9)</td>
<td>-45.7 (-51.3 to -39.6)</td>
<td>-50.0 (-55.1 to -44.0)</td>
<td>-36.8 (-39.5 to -34.0)</td>
<td>-24.7 (-27.0 to -22.1)</td>
<td>-17.4 (-20.8 to -13.5)</td>
<td>-37.5 (-42.4 to -32.3)</td>
<td>-41.4 (-46.1 to -36.1)</td>
<td>-39.4 (-43.7 to -34.5)</td>
<td>-20.4 (-23.3 to -17.1)</td>
</tr>
</tbody>
</table>
Table. All-Cause Mortality in 1990, 2000, and 2017, With Mean Percentage Changes for Combined Sexes by Age (continued)

<table>
<thead>
<tr>
<th>Metric</th>
<th>Individuals, No. (95% Uncertainty Intervals)</th>
<th>% of Total, 1990 (%)</th>
<th>% of Total, 2000 (%)</th>
<th>% of Total, 2017 (%)</th>
<th>% Change, 1990-2017</th>
<th>% Change, 2000-2017</th>
<th>% Change, 1990-2017</th>
<th>% Change, 2000-2017</th>
<th>% of Total, 1990 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deaths, 2000, No</td>
<td>168 748 (163 067-174 696)</td>
<td>68 245 (62 983-74 255)</td>
<td>50 772 (48 938-52 476)</td>
<td>53 762 (53 025-54 508)</td>
<td>−59.9 (−62.1 to −57.7)</td>
<td>−56.9 (−59.0 to −54.8)</td>
<td>−52.9 (−55.4 to −50.4)</td>
<td>−56.9 (−59.0 to −54.8)</td>
<td>0.8 (0.7-0.8)</td>
</tr>
<tr>
<td>Deaths, 2000, No</td>
<td>69 837 (66 696-73 000)</td>
<td>24 030 (22 380-25 680)</td>
<td>23 862 (22 087-24 712)</td>
<td>23 101 (22 269-23 920)</td>
<td>−72.6 (−74.3 to −71.9)</td>
<td>−52.3 (−53.6 to −50.9)</td>
<td>−77.8 (−78.9 to −76.6)</td>
<td>−74.6 (−76.4 to −72.7)</td>
<td>1.1 (1.0-1.2)</td>
</tr>
<tr>
<td>High SDI</td>
<td>51 138 (50 076-52 156)</td>
<td>14 066 (13 636-14 520)</td>
<td>49 672 (48 425-50 930)</td>
<td>50 842 (49 599-52 086)</td>
<td>0.4 (0.3-0.5)</td>
<td>0.0 (0.0-0.1)</td>
<td>0.0 (0.0-0.1)</td>
<td>0.0 (0.0-0.1)</td>
<td>0.9 (0.8-1.0)</td>
</tr>
<tr>
<td>Deaths, 2017, No</td>
<td>24 050 (23 335-24 802)</td>
<td>7 181 (6 937-7 450)</td>
<td>16 108 (15 624-16 662)</td>
<td>16 437 (16 009-16 868)</td>
<td>0.1 (0.0-0.2)</td>
<td>0.0 (0.0-0.1)</td>
<td>0.0 (0.0-0.1)</td>
<td>0.0 (0.0-0.1)</td>
<td>0.0 (0.0-0.1)</td>
</tr>
<tr>
<td>% Change, 2000-2017</td>
<td>−5.0 (−4.6 to −5.4)</td>
<td>−4.8 (−4.3 to −4.8)</td>
<td>−6.0 (−5.6 to −6.5)</td>
<td>−5.3 (−5.0 to −5.6)</td>
<td>−5.0 (−4.6 to −5.4)</td>
</tr>
<tr>
<td>% Change, 2000-2017</td>
<td>−27.4 (−29.9 to −24.9)</td>
<td>−29.8 (−33.1 to −26.3)</td>
<td>−31.7 (−34.3 to −28.8)</td>
<td>−36.6 (−39.1 to −34.0)</td>
<td>−40.6 (−41.5 to −39.8)</td>
<td>−41.1 (−41.8 to −40.5)</td>
<td>−40.4 (−41.2 to −39.5)</td>
<td>−29.3 (−31.5 to −27.0)</td>
<td>−30.6 (−32.6 to −28.5)</td>
</tr>
</tbody>
</table>

Abbreviation: SDI, Socio-Demographic Index.

* Early neonatal includes individuals aged 0 to 6 days.

b Late neonatal includes individuals aged 7 to 27 days.

c Postneonatal includes individuals aged 28 to 364 days.
Temporal and Sociodemographic Trends in DALYs

Total DALYs in children and adolescents decreased by 46% from 1.31 billion (95% UI, 1.27–1.36 billion) in 1990 to 709 million (95% UI, 665–757 million) in 2017 (Figure 2). Absolute DALYs decreases were greatest in the low-SDI quintile (1990, 476 million [95% UI, 464–490 million]; 2017, 292 million [95% UI, 277–309 million]), but slower relative gains led to increased inequity as the proportion of global DALYs rose from 36% in 1990 to 41% in 2017. The CMNN causes were by far the largest contributor to DALYs in the low-SDI quintile (75.3% of total DALYs [95% UI, 73.5%–77.0%]), low-middle-SDI quintile (71.6% of total DALYs [95% UI, 69.6%–73.6%]), and middle-SDI quintile (49.8% of total DALYs [95% UI, 47.6%–52.0%]) but also posted the biggest improvements, decreasing globally by 52.3% from 992 million (95% UI, 962 million–1.025 billion) to 473 million (95% UI,
452-498 million) in 2017, including a 72.3% reduction in the middle-SDI quintile from 179 million (95% UI, 172-187 million) to 49.5 million (95% UI, 46.5-52.9 million) in 2017. The NCDDALY rates were relatively similar across SDI quintiles and had the slowest global decrease (17.1%), from 210 million (95% UI, 186-238 million) to 174 million (95% UI, 151-201 million) in 2017. The NCDs were the bulk of DALYs in high-SDI locations (63.8% [95% UI, 60.1%-67.3%]), while the high-middle–SDI quintile transitioned in 2000 to also having the largest proportion of child and adolescent DALYs owing to NCDs (1990, 32.0% [95% UI, 29.9%-34.3%]; 2000, 39.2% [95% UI, 36.7%-41.8%]; 2017, 47.7% [95% UI, 44.7%-50.8%]). Global DALYs owing to injuries decreased by 46.0% from 113 million (95% UI, 101-122 million) to 61.0 million (95% UI, 58.0-64.1 million) in 2017 but also fluctuated widely by country and region, mainly because of war and (notably) the 1994 Rwandan genocide, 2004 tsunami in Southeast Asia, the 2010 earthquake in Haiti, and other recent conflicts and disasters.

Absolute difference in DALY rates between the lowest-SDI and highest-SDI locations were more apparent in children younger than 5 years than other age groups (eFigure 3 and eFigure 4 in the Supplement). The CMNN category was associated with the most DALYs in all SDI quintiles for children younger than 1 year (DALYs per 100 000 population, by SDI: low, 374 554 [95% UI, 357 534-392 461]; low-middle, 301 824 [95% UI, 278 689-326 511]; middle, 96 368 [95% UI, 92 615-100 368]; high-middle, 48 272 [95% UI, 46 183-50 491]; high, 21 319 [95% UI, 19 936-22 237]). The NCDs increased in importance with age, causing the most DALYs in the middle-SDI quintile (3355 DALYs [95% UI, 2657-4169] per 100 000), high-middle–SDI quintile (3266 [95% UI, 2570-4102] per 100 000), and high-SDI quintile (2938 [95% UI, 2195-3800] per 100 000) in children aged 5 to 9 years, and in all but the low-SDI quintile in children aged 10 to 14 years (per SDI: low-middle quintile, 5161.1 [95% UI, 4061.4-6371.4]; middle quintile, 4503.3 [95% UI, 3519.9-5643.3]; high-middle quintile, 4446.0 [95% UI, 3453.1-5604.5]; high quintile, 4662.8 [95% UI, 3478.0-6089.5]) and 15 to 19 years (per SDI: low-middle quintile, 7266.1 [95% UI, 5839.7-8903.7]; middle quintile, 6370.9 [95% UI, 5039.9-7939.6]; high-middle quintile, 6420.5 [95% UI, 5018.1-
Identifying Exemplars

Changes in the ratio of observed-to-expected (O:E) DALY rates from 1990 to 2000 and 2000 to 2017 are mapped in Figure 3 (and by age group in eFigure 6 in the Supplement). Before 2000, 117 countries improved more than expected on the basis of SDI changes, while 116 countries did so after 2000. Seventy-six countries had faster than expected improvement in both periods; the O:E ratio of all-cause DALY rates were most notable in Liberia (1990-2000, −35.7; 2000-2017, −30.0), Niger (1990-2000, −14.7; 2000-2017, −43.3), Kyrgyzstan (1990-2000, −36.1; 2000-2017, −21.0), Peru (1990-2000, −32.8; 2000-2017, −19.0), and Georgia (1990-2000, −37.6; 2000-2017, −12.0).

Syria was also an outlier in how much worse than expected observed DALY rates were in children and adolescents (O:E ratios in 1990: all-cause, 0.48; injuries, 0.49; O:E ratios in 2017: all-cause, 1.09; injuries, 4.73). This was primarily owing to increased injury rates (for all individuals younger than 20 years: 1990, 189,305 [95% UI, 154,987-224,769]; 2017, 1,253,214 [95% UI, 1,125,825-1,288,824]; percentage change, 562.0% [95% UI, 462.5%-705.8%]).

Corresponding maps depicting data for children younger than 1 year, 1 to 4 years, 5 to 9 years, and 10 to 19 years for CMNN, NCDs, and injuries separately are shown in eFigure 7 and eTable 3 in the Supplement. For most countries in sub-Saharan Africa, improvements were much faster than expected between 2000 and 2017 for children aged 1 to 4 years in particular, with several countries also having more rapid DALY improvement than expected in children younger than 1 year and aged 5 to 9 years. Among adolescents, on the other hand, there was little evidence of accelerated improvement after the turn of the century, with almost half of the countries in sub-Saharan Africa lagging behind expected improvements in DALY rates.

Leading Causes of DALYS

The top 10 level 3 GBD causes of DALYs globally in 2017 for each region and country, along with their O:E DALY rates on the basis of SDI, are shown in eFigure 8 in the Supplement. Globally, for all children and adolescents, only 1 primarily nonfatal disease ranked in the top 10 of global DALYs: iron-deficient anemia (eighth; O:E ratio, 2.08). The rest of the top 10 are also leading causes of death, including neonatal disorders (O:E ratio, 1.38), lower respiratory infection (O:E ratio, 1.83), diarrhea (O:E ratio, 4.96), congenital birth defects (O:E ratio, 0.78), malaria (O:E ratio, 4596.33), meningitis (O:E ratio, 1.54), road injuries (O:E ratio, 0.69), protein-energy malnutrition (O:E ratio, 9.73), and HIV/AIDS (O:E ratio, 10.49). Every country in sub-Saharan Africa had either neonatal disorders, malaria, or HIV/AIDS as the leading cause of DALYs, with either diarrhea or lower respiratory infection often ranked second. Neonatal disorders or congenital birth defects were ranked either first or second in most other countries. Important country-specific exceptions included natural disasters...
Figure 3. Percentage Change From 1990 to 2017 in Observed-to-Expected (O:E) Disability-Adjusted Life-Years Ratio in Children and Adolescents of Both Sexes, Aged 0 to 19 Years

A. Map of percentage change of observed to expected all-cause DALY rates from 1990 to 2000 in individuals younger than 20 y

B. Map of percentage change of observed to expected all-cause DALY rates from 2000 to 2017 in individuals younger than 20 y

Percentage changes in observed-to-expected disability-adjusted life-years (DALYs) are plotted for 1990 to 2017 for all children and adolescents younger than 20 years. Both sexes are combined. Subnational differentiation occurs within each country’s Global Burden of Disease models at the subnational level. Inset plots provided for detailed inspection of small or clustered regions. ATG indicates Antigua and Barbuda; BB, Barbados; COM, Comoros; DMA, Dominica; E Med, Eastern Mediterranean; Fiji; FSM, Federated States of Micronesia; GRD, Grenada; Kiribati; LCA, St Lucia; MDV, Maldives; MHL, Marshall Islands; MLD, Malta; MUS, Mauritius; SGP, Singapore; SLB, Solomon Islands; SYC, Seychelles; TLS, Timor-Leste; TON, Tonga; TTO, Trinidad and Tobago; W Africa, West Africa; WSM, Samoa; VCT, St Vincent and the Grenadines; and VUT, Vanuatu.
ranked first in Puerto Rico (O:E ratio, 5993.81), interpersonal violence ranked second or third in Brazil (O:E ratio, 5.36) and most of Central Latin America (example O:E ratios: Mexico, 3.59; Honduras, 3.11; Guatemala, 2.74; El Salvador, 5.89; Colombia, 3.36; Panama, 2.84; Venezuela, 7.18), and conflict and terror ranked first in Syria (O:E ratio, 11 497.8) and second in Iraq (3204.1) and Libya (O:E ratio, 3442.5).

Also notable was the burden of sudden infant death syndrome (SIDS) in infants; SIDS was ranked third cause of DALYs in children younger than 1 year in the high-SDI quintile and in the top 10 for all high-income countries, plus all of Eastern Europe and Central Europe, accounting for 0.71% of deaths in the late neonatal period (age range, 7-27 days) and 2.24% in the postneonatal period (age range, 28-364 days) in 2017 globally. Sudden infant death syndrome also accounted for 3.4% of postneonatal deaths and 17.0% of deaths in the late neonatal period in high-SDI locations, but only 0.67% and 2.15% of deaths, respectively, in low-SDI settings.

The Growing Burden of Nonfatal Health Loss
Rates of YLDs decreased only slightly and nonsignificantly between 1990 and 2017. Amidst a backdrop of decreasing premature childhood death and population growth, global YLDs increased 4.7% to a total of 145 million (95% UI, 107-190 million) among children and adolescents. The YLD rates increased with age, from 4366 (3168-5797) per 100 000 population in children younger than 1 year to 4486 (3242-5956) per 100 000 population in children aged 1 to 4 years, 4981 (3560-6619) per 100 000 population in children aged 5 to 9 years, to 6542 (4845-8493) per 100 000 population in those aged 10 to 19 years. Temporal trends by region in YLL-to-YLD ratio and SDI (eFigure 9 in the Supplement) demonstrate an epidemiologic transition to nonfatal health loss even more pronounced than the transition in DALYs. The association of the YLL-to-YLD ratio and SDI categories was consistent for CMNN in all age groups (children younger than 1 year, 67.0 [95% UI, 48.8-90.4]; 1-4 years, 6.9 [95% UI, 4.9-9.0]; 5-9 years, 1.5 [95% UI, 0.8-1.6]; 10-19 years, 1.5 [95% UI, 0.8-1.4]) but was stark for NCDs in children younger than 1 year (children younger than 1 year, 34.0 [95% UI, 24.7-46.4]; 1-4 years, 2.1 [95% UI, 1.2-2.4]; 5-9 years, 0.9 [95% UI, 0.3-0.6]; 10-19 years, 0.8 [95% UI, 0.2-0.4]).

In this case, there was barely any association between SDI level and the YLL-to-YLD ratio until the highest SDI strata, which may have reflected a poor penetration of prevention and treatment services for congenital birth defects and neonatal illnesses outside of high-income countries. In the case of NCDs, increasing SDI was associated with an increased YLL-to-YLD ratio in children aged 5 to 9 years and 10 to 19 years.

A similar association was found in the case of injuries (children younger than 1 year, 169.2 [95% UI, 117.2-245.8]; 1-4 years, 38.7 [95% UI, 27.2-52.7]; 5-9 years, 9.4 [95% UI, 6.4-11.7]; 10-19 years, 7.1 [95% UI, 4.8-8.3]). This could possibly reflect poorer prevention and treatment access for these causes and the effect of wars and natural disasters on disease burden.

In 2017, the top 10 level-3 causes of YLDs globally were iron-deficient anemia (O:E ratio, 2.08), vitamin A deficiency (O:E ratio, 1.88), headache (O:E ratio, 0.82), conduct disorder (O:E ratio, 0.87), neonatal disorders (O:E ratio, 1.13), anxiety disorder (O:E ratio, 0.86), skin diseases (O:E ratio, 0.79), lower back pain (O:E ratio, 0.79), congenital disorders (O:E ratio, 0.99), and depression (O:E ratio, 0.87) (eFigure 10 in the Supplement for results by age). Iron-deficient anemia or asthma sometimes lead most low and low-middle SDI countries, with neonatal disorders leading in most middle, high-middle, and high SDI countries.

Neonatal disorders was the only level 3 cause that ranked in the top 10 of both mortality and disability globally, ranking among the top 10 causes of YLDs in many countries in North Africa and the Middle East and sub-Saharan Africa. Musculoskeletal and mental health disorders (including anxiety disorders, conduct disorder, depression, autism spectrum disorders, and drug use disorders) were all highly ranked in high-income countries, in central and eastern Europe, and throughout Asia, Latin America, and the Caribbean. Hemoglobinopathies, such as sickle cell disorders and thalassemias, were also in the top 10 by O:E ratio in a number of countries, including Yemen (O:E ratio, 2.7), Burkina Faso (1.74), Côte d’Ivoire (2.03), Guinea (1.74), Liberia (1.85), Nigeria (3.21), and Sierra Leone (2.32). Among CMNN causes, HIV/AIDS was among the top 10 causes of YLDs in Malawi (O:E ratio, 55.32), Mozambique (O:E ratio, 54.35), Lesotho (O:E ratio, 150.1), Namibia (O:E ratio, 188.47), South Africa (O:E ratio, 339.23), Eswatini (also known as Swaziland; O:E ratio, 246.47), and Zimbabwe (O:E ratio, 58.79). Protein-energy malnutrition was in the top 10 causes in India (O:E ratio, 18.45), Mauritania (O:E ratio, 27.03), Djibouti (O:E ratio, 13.81), and South Sudan (O:E ratio, 1.82).

Malaria was ranked in the top 5 causes in most countries of western and central sub-Saharan Africa, as well as Mozambique (O:E ratio, 2.48). Diarrhea, onchocerciasis, and intestinal nematode infections were the other CMNN causes among the top 10 causes of YLDs in certain countries. Injuries did not rank high in most countries, with notable exceptions of Iraq (where conflict ranked ninth; O:E ratio, 672.19) and Syria (where conflict ranked first; O:E ratio, 2962.5).

Associating Maternal Health Outcomes With Those of Children and Adolescents
To evaluate the association between population-level trends in child and adolescent DALYs and those of their mothers, we compared percentage change from 1990 to 2017 in all-cause DALY rates for children younger than 1 year, 1 to 4 years, 5 to 9 years, and 10 to 19 years with percentage change in death rates owing to maternal disorders for women aged 10 to 54 years (eFigure 11 in the Supplement). There were strong correlations between trends in maternal death and all-cause DALY rates in all childhood age groups (<1 year, r = 0.589; 1-4 years, r = 0.452; 5-9 years, r = 0.507; 10-19 years, r = 0.379); those countries with the most improvement in maternal mortality also tended to have higher performance in reducing child and adolescent deaths. Statistical correlation was strongest for children younger than 1 year of age (r = 0.59), but continued even to health outcomes of older children and adolescents (r range = 0.38-0.45). The overall association between trends in maternal mortality and all-cause child and adolescent DALY rates became stronger after 2000 in all SDI quintiles other than...
diabetes, and these investments must continue. In locations with higher SDIs, a continuing shift toward nonfatal health loss from NCDs, such as congenital birth defects, mental and behavioral disorders, injuries, and asthma are challenging health systems to adapt. The consistent burden of NCD-attributable DALYs in adolescents over the past 28 years illustrates a need for continued research and action on NCDs as communicable disease burden declines across the development spectrum. The burden of injuries in adolescents surpasses that of CMNN causes throughout the study period for middle-SDI through high-SDI countries, and with the relative faster decline of CMNN causes in low and low-middle countries, the relative ranking of injuries may switch in those locations in the near future.

Overall health improvements were slowest in adolescents. Few locations showed any evidence of improvements in health among adolescents that exceeded the trends expected with general societal development gains. Adolescence is a key phase of the life course and human development, including a phase of growth and maturation of the reproductive, musculoskeletal, neurodevelopmental, endocrine, metabolic, immune, and cardiometabolic systems into adulthood. Gains or lack thereof in adolescent health thus have the potential to influence individual and societal outcomes for periods substantially longer than the teenage years. In terms of family and home life, key issues include the improvement of sanitary and living conditions, stable food systems, quality education, and gainful employment. Also, HIV/AIDS remains an imminent threat to the health and well-being of older children and adolescents in many countries in sub-Saharan Africa, such as South Africa, Zimbabwe, Lesotho, Eswatini, Botswana, and Zambia. The large and growing burden of mental health and substance use disorders among older children and adolescents also is an emerging threat to the thrive component of the SDG survive and thrive agenda. While the psychological needs of children and adolescents show similarities across geographical settings, comparatively little is understood about modifiable risk factors or effective prevention programs for childhood mental illness, outside of ensuring that caregivers are attuned to the link between mental health disorders and self-harm. Injuries in general continue to be a major cause of early mortality and long-term disability among older children and adolescents in all countries. While many types of injuries, such as those arising from war and natural disasters, may not be preventable with health sector-based approaches, diligent preparedness planning can help mitigate the immediate health aftermath of them. Others are much more amenable to policies and programs that focus on prevention using what have come to be regarded as common-sense safety measures, such as speed limits, seat belts, and bicycle helmets for road traffic accidents, fencing around water hazards and swimming-skill training for drowning, and policies to prevent self-harm via improving safety and limiting access to firearms and chemicals.

At the other end of the age spectrum, neonatal disorders remain a major prevention and treatment challenge, especially for countries outside the high-SDI quintile that lack the same level of financial and human resources to dedicate to the...
intensive care needs of sick neonate. Investment is needed to develop and implement cost-effective interventions for neonatal disorders that take into account the dynamics of maternal health, risk-factor exposures during pregnancy, clinical care systems, supportive equipment needs, and the cultural differences around how families and communities care for newborns. It is important also to invest in the ongoing care of children who survive perinatal emergencies only to develop long-term complications, such as cerebral palsy. Congenital birth defects and hemoglobinopathies are 2 other groups of causes for which there is little evidence of improved outcomes outside the high-SDI quintile, perhaps reflecting the resource-intensive nature of averting deaths owing to such conditions and societal barriers to care 48 but also likely because of a failure of recent clinical advances to be adopted in lower-resource settings. 49

The close linkage between trends in maternal and child health reinforces the notion that the health of different population segments are closely interconnected. 40 The simultaneous focus of the Millennium Development Goals on maternal and child mortality appears to have led to closer association between them since 2000 via alignment of funding streams, targeting of common risk factors between mothers and their children, an increased focus on delaying the age of parenthood by increasing education, contraception, and increased birth spacing, and catalyzing improved gender equity. 41-47 There are strong ties between the physical health of women (eg, high body mass index, NCDs, nutrition) and neonatal outcomes (such as pregnancy complications, short gestational age, and low birth weight), which are in turn linked with poorer health outcomes and delayed development. 3,6 This is to say nothing of the potential epigenetic connections between mothers and the health of their children that have the potential to extend beyond the neonatal period into childhood, adolescence, adulthood, and the next generation. 48 The subset of countries that are outliers to this trend of concomitant improvement in maternal and child health warrant close examination to determine the underlying causes. Challenges are likely to arise whenever funding streams are decoupled, education or family planning programs are disrupted, or the health of young women is not prioritized.

The epidemiological transition has unique implications for the health of children and adolescents and the potential trajectory of socioeconomic development. In particular, as more children survive, the human capital potential societies will expand, but as more children with health problems are also surviving, there is potential for increased burden on health and education systems. The cost of sustaining progress on child and adolescent health and well-being is not insignificant. To achieve the goal of surviving and thriving and realized the human capital potential of children and adolescents, all countries must make strategic investments in education and health systems, including human resources for health, supply chains, infrastructure, governance, and increased support for children with developmental disabilities. Alignment of funding around interconnected drivers of human development and health loss is also required to achieve the SDGs. 49

The SDGs are expansive, but they should not be considered a comprehensive rubric for achieving improved child and adolescent health. For example, outside of women’s reproductive health and experiences of sexual violence during adolescence, the SDG goals, targets, and indicators remain largely silent on the unique social, environmental, and biological determinants of health occurring in adolescence across the socioeconomic development spectrum. This blind spot in international health targets, planning, and prevention fails to capture the complex transitions occurring during adolescence in particular. Many additional nonhealth SDG indicators also focus on reducing poverty, expanding education, stabilizing environments, strengthening economies, and reducing overall socioeconomic inequality within each country and throughout the world, all of which are relevant to the health and well-being of young persons.

Limitations

The GBD study is an iterative process and, despite continued methodological advancements and improvements in data, this study has a number of limitations. First, all limitations documented in the elements of the GBD estimation process that allow for YLL, YLD, and DALY estimation will contribute to uncertainty in these summary measures. Second, these summary measures of population health are influenced by data availability. Time lags in the reporting of health information by national authorities and thus subsequent incorporation into the GBD estimation mean that these estimates are based on data that are already out of date. Relatedly, data deficiencies from populations in conflict zones (eg, Syria, Iraq, Yemen, South Sudan, Afghanistan), autonomous subnational regions, and certain nongeographical subpopulations (ie, migrants, refugees, and some indigenous peoples) limit the precision of some of the estimated levels and trends of disease burden. Third, the association between YLLs, YLDs, DALYs, and SDIs, although explanatory, cannot be viewed as causal. Fourth, a nontrivial assumption of the analyses is the independence of the uncertainty calculated for YLLs and YLDs. Because of the link between death and prevalence, a positive correlation probably exists between these uncertainties that are not captured in this analysis. Study limitations specific to child and adolescent health include the comparatively poor quality of cause-of-death certification in neonates and infants vs older persons, the relatively broad age categorization of all 1-to-4-year-old children in 1 group, and the limited ability to quantify the magnitude of specific intergenerational, societal, and environmental factors that are ecologically suggested by this study.

Conclusions

Globally, the aggregate health status of children and adolescents improved dramatically between 1990 and 2017, particularly owing to declines in death owing to infectious diseases, but nonfatal health loss has increased in both absolute and relative terms, and the gap between best and
worst performers has widened. Continued monitoring of the
drivers of child and adolescent health loss is crucial to
sustain the progress of the past 26 years in the SDG era. The
global community must commit to creating systematic
accounting of drivers and consequences of long-lasting
negative health outcomes beginning in childhood and the
effects of long-term morbidity on health systems and
human capital and ensuring that no populations are left
behind. Only then will we be able to accelerate progress to
2030 and beyond.

ARTICLE INFORMATION
Accepted for Publication: January 17, 2019.
Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2019 GBD 2017 Child and Adolescent Health Collaborators. JAMA Pediatrics.

GBD 2017 Child and Adolescent Health Authors:
The following investigators take authorship responsibility for the study results: Robert C. Reiner Jr, PhD; Helen Elizabeth Olsen, MA; Chad Thomas Ilieda, BS; Michelle M. Echko, BS; Katherine E. Ballestrero, PhD; Helen Manguerra, BS; Ira Martopullo, MPH; Anoushka Milhear, MPH; Chloe Shiel, BSc; Michael J. Smith, BA; Bryan Strub, BS; Molla Abebe, MSc; Zageye Abebe, MSc; Beyene Meressa Adhena, MPH; Tara Ballav Adhikari, MSc; Mohammed Akiub, MSc; Rajaa M. Al-Raddadi, PhD; Nelson Alvish-Guzman, PhD; Carl Abelardo T. Antonio, MD; Olatunde Aremu, PhD; Solomon Woldemariam Agedom, MD; Mohsanat Sadegh Assefa, MPH; Leticia Avila-Burgos, PhD; Aleksandra Barac, PhD; Till W. Bärnighausen, MD; Quique Bassat, MD; Isabela M. Bensoner, PhD; Zulfiqur A. Bhutta, PhD; Ali Baihi, PhD; Nigus Billign; 88thSci; Lucero Cahuana-Hurtado, PhD; Deborah Carvalho Malta, PhD; Jung-Chen Chang, PhD; Fiona J. Charlson, PhD; Samath Dhamindra Dharmaratne, MD; David Tye Doku, PhD; Dumessa Edessa, MSc; Ziad El-Khatib, PhD; Holly E. Erskine, PhD; Alize J. Ferrari, PhD; Nancy Fullman, MPH; Rahul Gupta, MD; Hamid Yimam Hassen, MPH; Simon I. Hay, MFSc; Olajyina Stephen Illensami, PhD; Kathryn H. Jacobsen, PhD; Amaha Khaosay, MPH; Amir Kasean, PhD; Tesfaye Desale Kassa, MSc; Seifu Kebede, MSc; Youssef Saleh Khader, PhD; Ejah Ahmad Khan, MPH; Mohammed Nuruzzaman Khan, MSc; Young-Ho Kang, MD; Jagdish Khubchandani, PhD; Yahommes Kinfu, PhD; Sonali Kochhar, MD; Yoshihiro Kohoku, PhD; Al Koyang, MD; Barthelemy Kuate Defo, PhD; Dharmesh Kumar Lal, MD; Fekede Asena Kumsa, MPh; Heidi J. Larson, PhD; Janni Leung, PhD; Abdullah A. Mamun, PhD; Suresh Mehta, PhD; Mulugeta Melk, MSc; Walter Mendoza, MD; Haifay Berhane Mogebe, MSc; Ted R. Miller, PhD; Nurilgin Abebe Mogens, MPH; Shafiul Mohammed, PhD; Ali H. Mokdad, PhD; Lorenzo Monasta, DSc; Subas Neupane, PhD; Huang Lan Thi Nguyen, MPh; Dina Nur Anggraini Ngrung, MPH; Yira Legesse Nirayo, MS; Vuong Minh Nong, MPH; Felix Akpoge Onuo, PhD; Bhalaria; EA; T. O. Smith, PhD; Bolaloko Olubukoluola Olusanya, PhD; Jacob Olusegun Olusanya, MBA; George C. Patton, MD; David M. Pereira, PhD; Farshad Pourmalek, PhD; Mostafa Qorbani, PhD; Anwar Rafay, MS; Rajesh Kumar Rai, MPH; Usha Ram, PhD; Chihabi Lal Ranabhat, PhD; Andre R. A. Sardesai, MD; Marta Asusia, PhD; Luca Ronfani, PhD; Gregory A. Roth, MD; Saeid Safiri, PhD; Benn Sartorius, PhD; James G. Scott, PhD; Katye Anna Shackelford, BA; Karen Sliwa, MD; Chandrashekhar Sreeramareddy, MD; Muawiyyah Babi Sufiyani, MD; Abdullah Suleiman Terkawi, MD; Roman Topor-Madry, PhD; Bach Xuan Tran, PhD; Kingsley Nnanna Ukwa, MD; Olalekan A. Utman, PhD; Ismail Yaseen Valisett, MD; Kidi Gidey Weldergers, MSc; Andrew Werdecker, PhD; Harvey A. Whiteford, PhD; Tissa Wijeratne, MD; Naohiro Yonemoto, MPH; Marcel Yotebieng, PhD; Liesl J. Zuhlike, PhD; Hmwe Hmyw Kyu, PhD; Mohsen Naghavi, PhD; Theo Vos, PhD; Christopher J. L. Murray, DPhil; Nicholas J. Kassebaum, MD.

Affiliations of GBD 2017 Child and Adolescent Health Authors: Institute for Health Metrics and Evaluation, Seattle, Washington (Reiner, Olsen, Ilieda, Echko, Ballestreros, Manguerra, Martopullo, Millar, Shields, Smith, Strub, Dharmaratne, Fullman, Hay, Larson, Mokdad, Roth, Shackleford, Vollset, Whiteford, Kyu, Naghavi, Vos, Murray, Kassebaum); Department of Global Health Metrics Sciences, University of Washington, Seattle (Reiner, Hay, Mokdad, Vollset, Kyu, Naghavi, Vos, Murray); Department of Clinical Chemistry, University of Gondar, Gondar, Ethiopia (A. Abebe); School of Public Health, Mekelle University, Tigray, Ethiopia (Adhana); Nepal Health Research Environment, Center for Social Science and Public Health Research Nepal, Lalitpur, Nepal (Adhikari); Unit for Health Promotion Research, University of Southern Denmark, Eiberg, Denmark (Adhikari); Department of Midwifery, Debre Berhan University, Debre Berhan, Ethiopia (Akiub); Department of Family and Community Medicine, King Abdulaziz University, Jeddah, Saudi Arabia (Al-Raddadi); Research Group on Health Economics, University of Cartagena, Cartagena, Colombia (Alvizo-Guzman); Research Group on Hospital Management and Health Policies, University of the Coast, Barranquilla, Colombia (Alvizo-Guzman); Department of Health Policy and Administration, University of the Philippines Manila, Manila, Philippines (Antonio); Department of Applied Social Sciences, Hong Kong Polytechnic University, Hong Kong (Antonio); School of Health Sciences, Birmingham City University, Birmingham, United Kingdom (Arenou); School of Pharmacy, Mekelle University, Mekelle, Ethiopia (Assegmed); School of Public Health, Wolaita Sodo University, Wolaita Dolo, Ethiopia (Assefa); Center for Health Systems Research, National Institute of Public Health, Cuemavaca, Mexico (Avila-Burgos, Cahuana-Hurtado); Clinic for Infectious and Tropical Diseases, Clinical Center of Serbia, Belgrade, Serbia (Barac); Faculty of Medicine, University of Belgrade, Belgrade, Serbia (Barac); Institute of Public Health, Heidelberg University Germany (Bärnighausen, Mohammed); Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts (Barnighausen); Barcelona Institute for Global Health, Barcelona, Spain (Bassat); Catalan Institution for Research and Advanced Studies, Manresa Research Center, Manresa, Mozambique (Bassat); Department of Internal Medicine, University of São Paulo, São Paulo, Brazil (Benson); The Centre for Global Child Health, University of Toronto, Toronto, Canada (Bhutta); Center of Excellence in Women and Child Health, Aga Khan University, Karachi, Pakistan (Bhatta); Social Determinants of Health Research Center, Babol University of Medical Sciences, Babol, Iran (Bijani); Woldia University, Woldia, Ethiopia (Billign); Department of Maternal and Child Nursing and Public Health, Federal University of Minas Gerais, Minas Gerais, Brazil (Maia); College of Medicine, National Taiwan University, Taipei, Taiwan (Chang); School of Public Health, The University of Queensland, Brisbane, Queensland, Australia (Charlson, Erskine, Ferrari, Scott); Department of Global Health, University of Washington, Seattle (Charlson, Kochhar); Department of Community Medicine, University of Perara, Peradeniya, Sri Lanka (Chokhara); Department of Population and Health, University of Cape Coast, Cape Coast, Ghana (Doku); Faculty of Social Sciences, Health Sciences, University of Tampere, Tampere, Finland (Doku); School of Pharmacy, Haramaya University, Harar, Ethiopia (Edessa); Department of Public Health Sciences, Caroli Institutet, Stockholm, Sweden (El-Khatib); Queensland Centre for Mental Health Research, Brisbane, Queensland, Australia (Erskine, Ferrai); West Virginia Bureau for Public Health, Charleston, West Virginia (Gupta); Department of Health Policy, Management, and Leadership, West Virginia University, Morgantown (Gupta); Public Health Department, Mian-Tepi University, Teppi, Ethiopia (Hassen); Unit of Epidemiology and Social Medicine, University Hospital Antwerp, Antwerp, Belgium (Hassen); Department of Health and Community Medicine, University of Liberia, Monrovia, Liberia (Ilesanmi); Department of Global and Community Health, George Mason University, Fairfax, Virginia (Jacobsen); Department of Nutrition and Dietetics, Mekelle University, Tigray, Ethiopia (Kabisa); Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran (Kaseaei); Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran (Kaseaei); Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran (Kaseaei); Clinical Pharmacy Unit, Mekelle University, Mekelle, Ethiopia (Kassa, Nirayo, Weldergers); Midwifery Program, Salae University, Fiche, Ethiopia (Kebede); Department of Public Health and Community Medicine, Jordan University of Science and Technology, Ramtha, Jordan (Khader); Department of Epidemiology and Biostatistics, Health Services Academy, Islamabad, Pakistan (E. A. Khan); School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia (M. N. Khan); Department of Population Sciences, Jatiya Kabi Kazi Nazrul Islam University, Mymsings, Bangladesh (M. N. Khan); Department of Health Policy and Management, Seoul National University, Seoul, South Korea (Khang); Institute of Health Policy and Management, Seoul National University, Seoul, South Korea (Khang); Department of Nutrition and Health Science, Ball State University, Muncie, Indiana (Khubchandani); Faculty of Health, University of Canberra, Canberra, Australian Capital Territory, Australia (Kirfu); Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.
Global Burden of Diseases, Injuries, and Risk Factors in Child and Adolescent Health, 1990 to 2017

Original Investigation

Research

June 2019 Volume 173, Number 6

JAMA Pediatrics

