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Representation of Uncertain Occupancy Maps with High Level Feature
Vectors

Janindu Arukgoda', Ravindra Ranasinghe! and Gamini Dissanayake'

Abstract— This paper presents a novel method for repre-
senting an uncertain occupancy map using a “feature vector”
and an associated covariance matrix. Input required is a point
cloud generated using observations from a sensor captured at
different locations in the environment. Both the sensor locations
and the measurements themselves may have an associated
uncertainty. The output is a set of coefficients and their
uncertainties of a cubic spline approximation to the distance
function of the environment, thereby resulting in a compact
parametric representation of the environment geometry. Cubic
spline coefficients are computed by solving a non-linear least
squares problem that enforces the Eikonal equation over the
space in which the environment geometry is defined, and zero
boundary condition at each observation in the point cloud. It
is argued that a feature based representation of point cloud
maps acquired from uncertain locations using noisy sensors
has the potential to open up a new direction in robot mapping,
localisation and SLAM. Numerical examples are presented to
illustrate the proposed technique.

I. INTRODUCTION

Availability of a map of the environment is crucial for
achieving many robotic tasks such as path-planning and
localisation. The map of an environment can be represented
in many different ways, typically tailored to the task at hand.
For example, motion planning requires a map that describes
the regions that the robot can freely move avoiding collisions
while localisation requires the environment to be represented
in a way that the measurements from the sensors on board
the robot can easily be related to the map, and navigation
in an uneven terrain requires the map to provide a three
dimensional description of the environment.

Current simultaneous localisation and mapping (SLAM)
algorithms make it possible to acquire maps of environments
in a number of ways. When the environment can be repre-
sented by the locations of a set of geometric primitives such
as points, corners, lines or planes, a feature based SLAM
algorithm [1][2] can be used to obtain the locations of such
features and their uncertainty. While such feature maps can
provide a very compact representation, they do not provide
information about the free space that navigation tasks such
as motion planning and path planning require. Alternatively,
given information captured by a high resolution range sensor
such as a laser range finder or a depth camera, it is possible
to use a pose-slam algorithm [3] to compute the location
of the robot poses from which the sensor observations were
acquired. A “point cloud” map of the environment (fig. 1)
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Fig. 1: Point Cloud Map of an Office Space

can then be obtained by transforming all sensor observations
into a global coordinate frame. Although the point cloud
inherently captures the observation uncertainty, any errors
in the robot location from where the data was collected is
typically ignored. By converting the point cloud into an occu-
pancy grid map (OGM), a representation suitable for tasks
such as localisation, path planning and obstacle avoidance
can be obtained. Alternatively Gaussian process occupancy
maps [4][5] can generate a continuous representation of the
environment and capture the observation uncertainty inherent
in the point cloud data. However, the uncertainty of the
measurements themselves or the uncertainty of the robot
locations from which the point cloud is captured is not
addressed.

The main contribution of this paper is a technique for
building a map together with its uncertainty from a point
cloud. Uncertainty of each point in the point cloud is
computed using sensor noise and the robot location uncer-
tainties. The focus is to generate a compact, parameterised
representation, where the mean and the covariance matrix of
the parameter vector naturally captures the map uncertainty,
exactly the same way as in the case of a geometric feature
based map. In effect, these parameters can be thought of
as high level features, making it possible to write appro-
priate observation equations relating these features”, robot
locations and sensor observations. As a result any existing
probabilistic localisation technique may be used to generate
robot location estimates that incorporate the uncertainty of



the map. Furthermore, the possibility to extend these ideas
for SLAM and motion planning under uncertainty also exist.

The key idea is to use a parametric approximation to the
distance function (DF) to represent environments. Signed
distance function (SDF) represents the magnitude of the
distance to the closest occupied point in a given environ-
ment while the vector distance function (VDF) captures this
magnitude as well as its direction. Both SDF and VDF are
differentiable at the object boundaries unlike their unsigned
counterpart making these suitable for the strategy proposed in
this paper. Parametric approximation to the SDF/VDF using
a set knot points of a cubic spline surface are obtained by
enforcing the Eikonal equation over the region to be mapped
and boundary conditions that captures the uncertainty of each
of the points in the point cloud. The problem of obtaining
the estimates of the coefficients and their uncertainties is
formulated as a weighted non-linear least squares problem.
Numerical examples of generating such parametric maps are
presented to illustrate the proposed methodology.

This paper is organized as follows. In section II, a contin-
uous parametric DF map representation that can capture the
map error is presented. Section III explains the numerical
examples with a discussion and conclusions in section IV.

II. METHODOLOGY

This section outlines the proposed methodology. Properties
of the distance function that can be used to capture all
essential characteristics of a given environment are described
first. A method to numerically solve the Eikonal equation
at unit speed to obtain a parametric approximation to the
distance function, followed by equations that are needed to
compute the covariances associated with these parameters
are then presented.

A. Environment Representation With Distance Functions

Distance functions represent the distance at each location
to the closest occupied space in a given environment. The
geometry of the environment is implicitly captured in the DF
as a level set of a function defined over the space in which
the geometry is defined. Therefore, in addition to capturing
the occupied regions of the environment, by providing a
continuous measure of the distance to the closets occupied
region, it offers a much richer representation in comparison
to occupancy grid maps[6]. There are several types of
distance functions. The unsigned distance function (UDF)
provides the absolute distance to the closest occupied region
while the signed distance function (SDF) is given a sign
corresponding to whether the point under consideration is in
free or occupied space. The vector distance function (VDF)
captures both the magnitude of the distance and the direction
to the closest occupied point in space. All three types of
DF have been used to localise mobile robots[7][8][9][10].
However, at the boundaries, the gradients of UDF are dis-
continuous whereas they are continuous for SDF and VDEF,
making UDF unsuitable for localisation frameworks which
use derivatives as locations used to compute the observation
equation typically fall around this region. Although truncated

SDF is widely used to match point clouds[11][12], clearly
defining regions as ’inside’ or ’outside’ in a complex envi-
ronment is difficult, and sometimes impossible. VDF on the
other hand overcomes this difficulty [10]. In the following,
the problem formulation based on VDF is presented. The
equations associated with SDF can easily be derived as SDF
is a special case of VDF.

If u(z),z € R? is the distance from point z to a manifold
S where dim(S) = 0 (i.e. a set of points), then u(x)
describes the unsigned distance transform. It has been shown
that UDF is also the entropy satisfying solution of an Eikonal
equation at unit speed[13] shown in (1).

[Vul =1, uls =0 )

The relationship between a VDF, denoted by the function
DF, : ®2 — R2, and a UDF, denoted by the function DF, :
N2 — R! for any (z,y) € N is given by (2)

DF,(z,y)* = DF,(z,y)* + DF,(z,y)* )

where DF,, and DF, are the two orthonormal components
of DF,[10].

From (1) and (2), a partial differential equation (PDE), for
which the solution is a VDF can be derived as (3)

and the boundary conditions are given by (4).

DF,(x,y) =0,DF,(z,y) =0,Y(x,y) € S “4)

B. Parametric Approximation of a Solution to a PDE

Given a problem modeled as (5) and (6) where .¢ and %
are differential operators, f and g are given functions and 02
is the boundary of a bounded open domain €2, an approximate
solution for a PDE can be derived by reducing the problem
to an unconstrained optimization problem when a function
with enough parameters that can be arbitrarily close to any
element in the underlying space 7 is available. Given such
function u,(x,3;) where §; represents the parameters, the
objective function of the unconstrained optimization problem
that results in the approximate solution u = wug(x, ;) is
given by (7) [14].

Lu=fxe (5)

PBu = g,r € 00 (6)

h=/|\$ua—f||2d7/+/ | Bua — gPdS ()
Q o

C. Cubic Spline Surface Approximation of VDF

Cubic splines are widely used for representing complex
shapes. A cubic spline surface is constructed by a set of
surface patches that connect with C? continuities. A surface
patch can be defined as (8)
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where M is the basis matrix defined as (9), P is a 4x4
control point grid defined as (10) and 0 < w,w > 1
are the parameters that describe the relative location within
the surface patch with four corner points Koo = P(0,0),
KOI = P(O, 1), K10 = P(LO), K11 = P(l, 1) The set of
control points P;; is the sole set of parameters that govern
the behavior of the cubic spline surface.
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It will be numerically illustrated in the next section that
cubic splines provide a suitable approximation to the distance
function given a sufficiently dense set of control points.
Furthermore as they have local support, the jacobians asso-
ciated with the optimisation problem defined by (7) become
sparse. The objective function h, for a VDF representation
of the environment is given by (11). A similar equation
can be derived in the case where the environment is to be
represented by its SDF. It is important to note that the VDF
and the gradient of the SDF are both discontinuous at the
cut locus [6]. Therefore, the cubic spline approximation is
not able to represent the distance function in this region
and as a consequence Eikonal equation can not be enforced.
However, previous work with the use of distance function
representations for localisation [15] has shown that it is not
essential to accurately represent the distance function near its
discontinuities as in practice only a very small percentage
of observations fall in these regions and therefore such
observations can be discarded without significant information
loss.

D. Estimating Map Uncertainty

This subsection presents the essential equations for gener-
ating the uncertainty associated with the map representation
proposed in the specific situation where a point cloud is
acquired from multiple locations in a two-dimensional en-
vironment using a robot equipped with a laser range finder.

Let £r = (2, Yr, ¢»)T be a mobile robot pose estimate
in a 2D environment with covariance cov(xr) and S,p =
{(r4,0;}) be the observations obtained from the laser range

finder with a range uncertainty of o, at xg. Each observation
from the sensor can be projected into the world coordinate
frame using (12) to obtain a point cloud.

- Jwo| _ far 4 1icos(0; — ¢r)
XOZ N {yo’i} h {yr + T Sin(ﬂi — ¢T’) } (12)

The uncertainties of the robot pose estimate and range
measurements can be propagated to the each of the points in
the point cloud cov(X,;) as (13).

The uncertainty of the observations can be integrated as
a set of weights p,;, derived as (14) to remodel objective
function described in (11). Although the Eikonal equation
described in (3) should be satisfied everywhere in ¥, there
will be a residue that depends on the quality of the ap-
proximation. Accordingly, a weight p.; that is empirically
determined using simulation examples needs to be associated
with the relevant elements of the objective function. This
leads to the weighted non linear least squares problem A«
defined in (15).

1

d(DF2+DF?2) a(DF24+DF2)\T
(Tiy)COU(Xm‘) (Ty

Poi = (14)

In case of the VDF, the approximate solution consists of
two cubic spline surfaces that correspond to DF, and DF),.
On the other hand SDF requires one cubic spline surface.
As the parameters representing the environment is obtained
through solving an optimisation problem, an explicit function
relating the inputs to this solution does not exist. Therefore
the covariance matrices for the optimized parameter vectors
corresponding to DF, and DF), denoted by Pxfj and nyj
are given by (16) and (17)

cov(Pzj;) = Ju x cov(Xoi) * Jr

x

(16)

cov(Py;;) = Jy * cov(Xo;) * JyT (17)

where J, and J, are the corresponding Jacobians at the
optimal solution. J, is derived using the implicit function
theorem[16] as (18) where H is the Hessian matrix of h,-
with respect to Px;;. It is straightforward to derive a similar
equation for J,,.

o }

Jp=—H ' {7(91:@]. o (18)

III. EXPERIMENTAL RESULTS

This section illustrates the proposed approach using two
simulation experiments.
1) Experiment 1 : A robot equipped with a 180° FOV
LiDAR observing an L-shaped environment from three
poses is used to acquire a point cloud.
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Noise Parameter
oz =0.0lm oy = 0.0lm

Measurement
Position Estimates

Orientation Estimates o4 = 0.005rad
Range Measurements or = 0.02m 5
TABLE I: Noise Parameters used in Experiment 1 sl
16
2) Experiment 2 : A Turtlebot robot equipped with a 270° 14+
FOV LiDAR navigates through a corridor in an office 12l —>
environment simulated in Gazebo is used to gather the z
point cloud. = U l <
08t
A. Experiment 1
A robot equipped with a 180° FOV LiDAR observing an o
L-shaped environment from 3 poses is simulated as shown 04r
in Fig. 2. The range observations and pose estimates are cor- 02
rupted using zero mean Gaussian noise with the parameters 0 ) ‘ ‘ ‘
given in Table 1. The point cloud map generated from the the 0 0.5 “ (1“) L5 2
resulting pose estimates and range measurements is shown
in in Fig. 3. Fig. 2: Experiment 1 : Environment and Robot Poses
Given the simplicity of the environment, SDF was used
as the basis for its representation where sign of the distance
function was set to negative inside the room. To determine
an appropriate control point density required to approximate
the SDF for this environment, numerical experiments in
which the true SDF is approximated with cubic spline
surfaces with different resolutions were conducted. Fig. 4 2r
demonstrates the difference between the true SDF and its 18}
least square approximation at different resolutions. Note that 16l
there are large errors in the regions near the cut locus where
the gradient of the distance function is discontinuous and L4y
therefore does not satisfy the Eikonal equation as mentioned 12
previously. Using this data as a basis, control point resolution E 4l
of 0.2m was selected for the cubic spline approximation. .
At the optimal solution, the zero contour of the SDF 08y
approximation is shown with the observed point cloud in 061
Fig. 5. The approximated SDF is shown in Fig. 6. The values 04l
of the approximated SDF at the true boundary locations are
shown in Fig. 7 with the associated two-sigma bounds. Fig. o2
8 shows the zero contour of the SDF at the optimal solution, % o5 1 s 5
approximated by multiple resolutions. X(m)
B. Experiment 2 Fig. 3: Experiment 1 : The Point Cloud Obtained

A Turtlebot robot equipped with a 270° FOV LiDAR is
simulated to navigate through a corridor in an example office
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Noise Parameter
oz = 0.05m oy = 0.05m
04 = 0.005rad
or = 0.02m

Measurement
Position Estimates
Orientation Estimates
Range Measurements

TABLE II: Noise Parameters for Experiment 2

environment (Willow Garage office) in Gazebo. As in the
case of experiment 1, the range measurements and the true
robot pose are corrupted using zero mean Gaussian noise.
The noise parameters are given in Table II. The point cloud
map generated from the corrupted pose estimates and range
measurements is shown in in Fig. 9. A VDF is approximated
in this experiment.

To manage the computational load, the VDF is approxi-
mated with a control point resolution of 0.25m. Fig. 10 shows
the resulting OGM at the same resolution.

IV. DISCUSSION AND CONCLUSIONS

The proposed method for representing environments using
a parameter vector and its covariance matrix presented in
this paper can be seen as an attempt to unify occupancy grid
maps that capture environment geometry using aggregation



Control Point Resolution : 0.05m

16

14¢

12

Y(m)

0.8 - Wi

06 :

Zero Contour Post Optimization
Observations
Ground Truth

0.4 0.6 0.8 1 1.2 1.4 1.6

16

1.4¢

12

0.8 - i

061 : A=

Zero Contour Post Optimization
Observations
Ground Truth

0.4 0.6 0.8 1 1.2 1.4 1.6
X(m)

Control Point Resolution : 0.1m

16

14+

1.2

08 - i

06l :

Zero Contour Post Optimization
Observations
Ground Truth

0.4 0.6 0.8 1 1.2 1.4 1.6
X(m)

16 Control Point Resolution : 0.25m

14+

1.2+

m)

0.8F - i

o6l i

Zero Contour Post Optimization
Observations
Ground Truth

0.4 0.6 0.8 1 1.2 1.4 1.6

Fig. 8: Experiment 1 : Zero Contour of the SDF Representation at Different Resolutions, Observations and True Boundary

10

Y{m}
W os o,

]

Fig. 9: Experiment 2 : Point Cloud Map

of point clouds with maps that are a collection geometric
features such as points and lines. Ability to represent point
clouds with a parameter vector can help extend probabilistic
techniques that can only be used with feature maps to deal
with point clouds. During the experimental evaluation, it

was observed that weights in the objective function of the
weighted non linear least squares problem has a significant
impact on the accuracy of the resulting map. In the examples
presented, these were derived by trial and error. The set
of weights p,; were normalized into a range between 1.0-
2.0 inclusive. The weight p.; was set to 0.125. Strategies
to automatically determine these values is currently being
explored.

There are a number of future directions for investigation,
some of which are currently being pursued. The proposed
methodology is computationally heavy. One way to ad-
dress this is to represent environments with submaps that
are tractable and develop a strategy to merge these while
preserving all the associated uncertainties. In the spirit of
truncated signed distance functions that have become a
popular in representing 3D point clouds, it is clearly worth
investigating whether a non-uniform splines can be used to
reduce the dimensionality of the problem without a signif-
icant loss of utility. Exploring whether there are a different
basis functions that naturally satisfy the Eikonal equation
in order to reduce the dimensionality of the representation
to make the optimisation process converge faster and also
provide guarantees that the true optimum has been reached
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could be valuable. Using the parametrised representation and
the associated covariance matrix in localisation and SLAM
algorithms that are currently limited to environments with
geometric features, for example extended Kalman filters, and
evaluate their relative merits when compared with traditional
solutions in occupancy grids is also likely to be a fruitful
avenue for further research.
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