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Abstract—Frequency estimation is a fundamental problem in
many areas. The previously proposed q-shift estimator (QSE),
which interpolates the discrete Fourier transform (DFT) coef-
ficients by a factor of q, enables the estimation accuracy to
approach the Cramér-Rao lower bound (CRLB). However, it
becomes less effective when the number of samples is small. In
this letter, we provide an in-depth analysis to unveil the impact of
q on the convergence of QSE, and derive the bounds of a refined
region of q that ensures the convergence of QSE to the CRLB
even with a small number of samples. Simulations validate our
analysis, showing that the refined interpolation factor is able to
reduce the estimation mean squared error of QSE by up to 13.14
dB when the sample number is as small as 8.

Index Terms—Frequency estimation; discrete Fourier trans-
form (DFT) coefficients; interpolation factor.

I. INTRODUCTION

Frequency estimation of a single-tone complex exponential
signal is a fundamental research issue in many areas, includ-
ing radar/medical signal processing, wireless mobile/satellite
communications, power grid stability, etc. [1]–[4]. Offering
a low complexity and high efficiency, frequency estimation
exploiting the discrete Fourier transform (DFT) coefficients
has attracted extensive attention [4]–[8]. DFT coefficients
used to be directly applied for frequency estimation without
interpolation, which, however, causes uneven estimation bias
for different frequencies [4]. In [5], the authors introduced
an iterative DFT-interpolated frequency estimator, known as
A&M, which interpolates the DFT coefficients by a factor
two. A&M was further extended to improve estimation bias
[6], to process real sinusoidal signal [7], and to facilitate the
estimation of multi-tone resolvable exponential signals [8].
Despite the improved accuracy compared to the earlier works
without interpolation, the asymptotic variance of A&M (and
its derivatives) is limited to 1.0147 times of the Cramér-Rao
lower bound (CRLB) [5].

In [1], a q-shift estimator (QSE) was proposed by increasing
the interpolation factor to 1

q (> 2) with |q| < 0.5, which
for the first time enables QSE to asymptotically approach
CRLB. Therefore, QSE is able to achieve the lowest estimation
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variance and outperforms, in terms of estimation accuracy,
the earlier works [4]–[8]. It is noteworthy that the accuracy
improvement of QSE [1] over earlier works benefits from
taking q in (−0.5, 0.5) (c.f. q = 0.5 in [4]–[8]). However,
QSE only approaches CRLB when the sample number is large
and it fails to converge when the sample number is small, e.g.,
16 [1, Fig. 2].

This letter is motivated to uncover the reason underlying
the divergence of QSE from the CRLB and proposes a simple,
effective solution to substantially improve the performance of
QSE, particularly when the sample number is small. A key
contribution is that we carry out a comprehensive analysis to
unveil the impact of q on the convergence of QSE, which was
not captured in [1]. Another contribution is that we derive
the bounds of a refined region of q and provide a simple
refinement technique to the optimal q (specified in [1]), which
ensures the convergence of QSE to the CRLB even in the
presence of only small numbers of available samples.

Validated by simulation results, the new optimal q can
reduce the estimation mean squared error (MSE) of QSE
substantially. The MSE is reduced by up to 13.14 dB with only
8 samples (even smaller than 16 in [1]). The rest of this letter
is organized as follows. Section II presents the signal model
and briefly reviews QSE. Section III investigates the impact
of q on the convergence of QSE, followed by simulations and
conclusions in Sections IV and V, respectively.

II. SIGNAL MODEL AND QSE

With reference to [1], the frequency f of the complex single-
tone exponential signal s(n) = Aej(

2πfn
fs

+φ) + z(n) (n =
0, 1, · · · , N − 1) is to be estimated, where A is the signal
amplitude, fs is the sampling rate, φ is the initial phase, N is
the sample number and z(n) is additive white Gaussian noise
(AWGN) with the noise variance σ2. Here, f can be expressed
as f = k?+δ

N fs, δ ∈ [−0.5, 0.5], with k? and δ denoting the
closest frequency bin to f and frequency residual, respectively.
It is assumed in [1] that k? can be accurately identified via a
maximum likelihood estimator, and hence the work [1] only
focuses on δ estimation.

Given k?, the iteration number Q and the initial residual
estimate δ̂0 = 0, QSE updates the i-th (i = 1, . . . , Q)
frequency residual by [1, eq. 7]

δ̂i =
1

c(q)
×Re {βi}+ δ̂i−1, |q| < 0.5, (1)

where c(q) = 1−πq cot(πq)
q cos2(πq) ; βi =

S+q−S−q
S+q+S−q

; and S±q is the
1
±q -interpolated DFT coefficients around k?, as give by S±q =
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Fig. 1. Illustration of the monotonicity of Re{βi} w.r.t. ∆i, affected by q.∑N−1
n=0 s(n)e−j

2π(k?+δ̂i−1±q)n
N . Eq.(1) is obtained based on the

following linear approximation [1, eq. 19]

Re{βi} = c(q)∆i +O(∆3
i ), |q| < 0.5, (2)

where ∆i = δ̂i− δ is the estimation error in the i-th iteration.
After Q iterative updates in (1), QSE produces the final
frequency estimation as f̂ =

k?+δ̂Q
N fs.

III. IMPACT AND REFINEMENT OF q

This section analyzes the impact of q on the convergence of
QSE. We start by presenting the motivation of this analysis.
Then, the refined q region is derived, also leading to the
refinement of the optimal q.

A. Impact of q on the Convergence of QSE

We find that the linear approximation (2) can be invalidated
by some values of q. To illustrate this, Fig. 1 plots Re{βi}
w.r.t. ∆i ∈ [−0.5, 0.5] by taking different values of q. We see
that not only the linearity of Re{βi} w.r.t. ∆i degrades as q
increases, but the monotonicity of Re{βi} over ∆i can also
change twice for some q values. Obviously, the invalidation
of (2) fails the core step of QSE, as given in (1).

Without considering the impact of q, the optimal q specified
in [1, eq. 39] can make the frequency residual δ fall out of
the monotonic region of Re{βi} w.r.t. ∆i, leading to the
divergence of QSE from the CRLB. Take the divergence of
QSE in [1, Fig. 2] for an example, where N = 16, δ = 0.25
and the optimal q = 1

3√
N
≈ 0.4 was taken. According to Fig.

1, q = 0.4 makes δ = 0.25 fall out of the monotonic region
of Re{βi} w.r.t. ∆i which is |∆i| ≤ 0.2164.

It is noteworthy that, although [1] states that the optimum
value of q is the smallest possible value of |q| > 0, QSE
was established based on the linear approximation in (2).
Moreover, the optimal q suggested in [1, eq. (39)] can be
larger than the threshold when N is small (e.g., 16 in [1, Fig.
2], which can make QSE diverge from the CRLB. Therefore,
it is important to derive the upper bound of |q|, which specifies
a condition for the convergence of QSE.

B. Refinement of q

As revealed in Section III-A, q is vital to preserving the
monotonicity ofRe{βi} and hence the validity of the core step
of QSE, i.e., (1). Therefore, we refine q through analyzing the
monotonicity of Re{βi} w.r.t. ∆i(∈ [−0.5, 0.5]). However,
it is mathematically intractable to carry out the analysis

based on βi in (1) due to the strong coupling of linear and
complex exponential functions of ∆i. In this section, we first
reformulate βi by collecting the common terms of ∆i and q
into an auxiliary function, denoted by Q(∆i, q). Then, we
apply the chain rule of nested functions [9] to separately
investigate the monotonicity of Re{βi} w.r.t. Q(∆i, q) and
Q(∆i, q) w.r.t. ∆i. Finally, the individual monotonicity is
synthesized to achieve the overall monotonicity of Re{βi}
w.r.t. ∆i, through which the q region of interest is specified.
βi in (1) can be reformulated as βi = 1−Q(∆i,q)e

j2πq

1+Q(∆i,q)ej2πq
, where

Q(∆i, q) is given by

Q(∆i, q) =
∆i − q
∆i + q

× sin[π(∆i + q)]

sin[π(∆i − q)]
. (3)

Taking the real part of βi, we have βRi = Re{βi} =
1−Q2(∆i,q)

1+2Q(∆i,q) cos(2πq)+Q2(∆i,q)
, which is much simplified com-

pared to [1, eq. 18]. By applying the Chain Rule of nested
functions [9], the first derivative of βRi w.r.t. ∆i is given by

(βRi )′∆i
= (βRi )′Q × (Q)′∆i

, (4)

where (βRi )′Q is the first derivative of βRi w.r.t. Q(∆i, q),
and (Q)′∆i

is the first derivative of Q(∆i, q) w.r.t. ∆i. In
the following, we examine the signs of (Q)′∆i

and (βRi )′Q
in Sections III-C and III-D, respectively. The refinement of q
is accordingly achieved in Section III-D.

C. Evaluation of the Sign of (Q)′∆i

According to (3), (Q)′∆i
is expressed in (5), where the

denominator is always non-negative. Therefore, the sign
of its numerator, as given by P(∆i, q) = 2q sin[π(∆i +
q)] sin[π(∆i− q)]−π(∆2

i − q2) sin(2πq), determines the sign
of (Q)′∆i

, and hence is analyzed below.

(Q)′∆i
= P(∆i, q)

/
(∆i + q)2 sin2[π(∆i − q)] (5)

Let (P)′∆i
and (P)′′∆i

denote the first and second derivatives
of P(∆i, q) w.r.t. ∆i, respectively. Using (5), we have

(P)′∆i
= 2πq sin(2π∆i)− 2π∆i sin(2πq); (6)

(P)′′∆i
= 4π2q cos(2π∆i)− 2π sin(2πq). (7)

By setting (P)′∆i
= 0, we obtain ∆i = ±q at the local

optima of P(∆i, q). By taking ∆i = ±q in (7), (P)′′±q =

4π2q
[
cos(2πq)− sin(2πq)

2πq

]
, where cos(2πq) − sin(2πq)

2πq < 0

holds for ∀|q| < 0.5. Therefore, (P)′′±q satisfies

(P)′′±q

{
< 0, if q > 0
> 0, if q < 0

. (8)

Eq. (8) indicates that both local optima ∆i = ±q of P(∆i, q)
are local minima when q < 0 or local maxima when q > 0. By
taking ∆i = ±q in P(∆i, q), we obtain P(±q, q) = 0. This
indicates that P(∆i, q) ≥ 0 when q < 0 and P(∆i, q) ≤ 0
when q > 0. However, P(±q, q) = 0 does not guarantee
(Q)′∆i

= 0 due to the singular denominators of (Q)′∆i
at

∆i = ±q; see (5). By taking ∆i = ±q in (5), we achieve

lim
∆i→±q

(Q)′∆i
=


(P)′′q
8π2q2 when ∆i → q

(P)′′q
2 sin2[π(∆i−q)] when ∆i → −q

. (9)
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Combining (8) and (9), we can conclude that the local minima
of (Q)′∆i

are always positive, when q < 0; and the local
maxima of (Q)′∆i

are always negative, when q > 0. This
finally leads to

(Q)′∆i

{
< 0, if q > 0
> 0, if q < 0

, ∀|∆i| ≤ 0.5. (10)

D. Evaluation of the Sign of (βRi )′∆i
and Refinement of q

We proceed to investigate the sign of (βRi )′Q which, based
on βRi , is given in (11). Since the denominator of (βRi )′Q is
non-negative, we focus on the sign of its numerator function,
as given by N (Q) = −[2Q2(∆i, q)+2] cos(2πq)−4Q(∆i, q).
It is noted that N (Q) is a quadratic function of Q(∆i, q),
and hence the sign of N (Q) only changes if the solutions
to N (Q) = 0 are valid. According to (11), the solutions to
N (Q) = 0 are given in (12). In the following, we examine
the validity of (12) to analyze the sign of N (Q).

(βRi )′Q =
N (Q)

[1 + 2Q(∆i, q) cos(2πq) +Q2(∆i, q)]2
(11)

Q∗± = (−1± | sin(2πq)|)
/

cos(2πq) (12)

Case 1: In this case of |q| < 0.25, cos(2πq) > 0; and (−1±
| sin(2πq)|) < 0 due to | sin(2πq)| < 1. Thus, we have

Q∗± < 0, ∀|q| < 0.25. (13)

However, (3) indicates that

Q(∆i, q) > 0, ∀|∆i| ≤ 0.5, ∀|q| < 0.5, (14)

since sin[π(∆i±q)]
∆i±q > 0 given |∆i ± q| < 1. Clearly, (13)

contradicts with (14), and hence Q∗± invalid ∀|q| < 0.25.
Case 2: In the case of |q| = 0.25, cos(2πq) = 0, and
hence lim

|q|→0.25
Q∗− → −∞, contradicting with (14). Similarly,

substituting |q| = 0.25 in Q∗+ leads to

lim
q→
±0.25

Q∗+ = lim
q→
±0.25

−1 + sin(2πq)

cos(2πq)

(a)
= lim

q→
±0.25

2π cos(2πq)

−2π sin(2πq)
= 0,

(15)

where the L’Höpital’s rule [9] is applied to achieve the
equality (a). However, by substituting q = 0.25 in (3), we
notice that Q = 0 does not happen1. Therefore, we can
conclude that both Q∗± are invalid solutions in the case of
q = 0.25. By substituting |q| = 0.25 into (11), we have
N (Q) = −4Q(∆i, q) < 0 based on (14). Accordingly, by
substituting (4) into (10), we can obtain

(βRi )′∆i

{
≥ 0, q = 0.25
≤ 0, q = −0.25

, ∀|∆i| ≤ 0.5. (16)

Case 3: In the case of 0.25 < |q| < 0.5, cos(2πq) < 0, and
hence Q∗± > 0. To further examine the validity of Q∗± > 0,
we check whether the solutions to (17), i.e., ∆∗i±, are valid by
falling in [−0.5, 0.5] in the following.

Q(∆∗i±, q) = Q∗± (17)

1According to (3), Q = 0 can only happen when ∆i ± q = 1; however,
we have |∆i ± q| < 1 given |∆i| ≤ 0.5 and |q| < 0.5.

By studying the monotonicity of Q(∆∗i±, q) w.r.t. q, the
following can be obtained; see Appendix A for details,

q ↑ (↓) =⇒
{
Q∗+ ↑ (↓) =⇒ ∆∗i+ ↓ (↑)
Q∗− ↓ (↑) =⇒ ∆∗i− ↑ (↓) , (18)

where “↑”, “↓” and “ =⇒ ” denote “increasing”, “decreasing”
and “leading to”, respectively.

From (18), we assert that there exists a q∗L such that ∆∗i =
0.5 if |q| = q∗L; otherwise, ∆∗i > 0.5 for |q| < q∗L, and ∆∗i <
0.5 for |q| > q∗L, where ∆∗i = |∆∗i+| = |∆∗i−|, as proved in
Appendix A. To this end, when |q| ≤ q∗L, (17) has feasible
solutions, and hence Q∗± is valid, which, according to (11),
lead to

N (Q)

{ <
(>)0, if |∆i| <(>)∆

∗
i

= 0, if |∆i| = ∆∗i
, |q| ≤ q∗L. (19)

On the contrary, when |q| > q∗L, (17) does not have feasible
solutions, hence invalidating Q∗±. By examining the coefficient
of Q2(∆i, q) in N (Q); see (11), we obtain −2 cos(2πq) > 0
for |q| > q∗L and, in turn,

N (Q) > 0, for |∆i| ≤ 0.5, |q| > q∗L. (20)

Finally, by substituting (10), (19) and (20) into (4), the
monotonicity of βRi w.r.t. ∆i can be revealed as follows

(βRi )′∆i

{
≥ 0, for |∆i| ≤ 0.5, 0.25 < q ≤ q∗L ≈ 0.32
≤ 0, for |∆i| ≤ 0.5, − q∗L ≤ q < −0.25

;

(21a)

(βRi )′∆i

{
< 0, for |∆i| ∈ (∆∗i , 0.5]
≥ 0, for |∆i| ≤ ∆∗i

, q ∈ (q∗L, 0.5);

(21b)

(βRi )′∆i

{
> 0, for |∆i| ∈ (∆∗i , 0.5]
≤ 0, for |∆i| ≤ ∆∗i

,
q ∈

(−0.5,−q∗L)
, (21c)

where the critical point q∗L ≈ 0.32 is derived in Appendix B.
From Cases 1∼3, we conclude that QSE only works for a

refined region of q, as given by (c.f., |q| < 0.5 in [1])

|q| ≤ q∗L ≈ 0.32. (22)

As illustrated in Section III-A, the optimal q specified in [1],
denoted by qo

opt, can invalidate QSE. Taking into account the
unveiled impact of q, we propose a simple way to refine the
optimal q, as given by

qopt = min
{
qo
opt, q

∗
L

}
. (23)

The asymptotic convergence of QSE towards the CRLB,
resulting from the new optimal q in (23), is analyzed as
follows. As evident from (23), qopt ≤ qo

opt and therefore
var
(
δ̂Q
)∣∣
q=qopt

≤ var
(
δ̂Q
)∣∣
q=qoopt

. Here, var
(
δ̂Q
)

= 6
2π2Nγ +

O(q4) + o(N−1) is the estimation variance of QSE after Q
iterations [1, eq. (38)]. γ = A2

σ2 is the received SNR. Since
the convergence of var

(
δ̂Q

) ∣∣
q=qoopt

has been confirmed by

[1, Thrm. 3], we conclude that var
(
δ̂Q
)∣∣
q=qopt

asymptotically
converges towards the CRLB.

The advantages of QSEr over the original QSE [1] are
summarized as follows. QSEr refers to the refined QSE using
the new optimal q given in (23). First, QSEr is able to converge
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to the CRLB even for small values of N , e.g., 8 and 16,
while QSE diverges from the CRLB for small N . Second,
validated by the convergence analysis in Section III-D, QSEr
converges faster than QSE if N ≤ 30. Third, QSEr has more
uniform convergence performance across the whole region of
δ (|δ| ≤ 0.5), as compared to QSE.

IV. NUMERICAL VALIDATION

In this section, we exploit the new optimal q refined in (23)
to re-evaluate QSE [1]. The same simulation parameters are set
as in [1, Sec. V]. The simulation codes provided by the authors
of [1] on the web page [10] are modified to simulate QSE-
related estimators QSE based on (23), referred to as “QSEr”.
By taking N = 8 in [1, eq. 39], the value qo

opt = 0.5 would
be used by the original QSE. However, q = qo

opt = 0.5 leads
to the singularity of c(q); see (1). Thus, q = (0.5− 10−8) is
taken to simulate the original QSE [1].

Fig. 2 plots the MSE of frequency estimates against the
estimation SNR, where a hybrid algorithm of A&M [5] and
QSE, referred to as HAQSE [1], is simulated as a benchmark;
and the phased-corrected Quinn estimator (PCQ) [6] and
the estimator using three DFT points (TDP) [11] are also
simulated. In the figure, we see that only the proposed QSEr
and HAQSE [1] can approach CRLB asymptotically. From the
right y-axis, QSEr outperforms HAQSE mostly with the MSE
improvement up to 0.5 dB. We also see that, while QSEr can
reach the CRLB in a wide SNR region, PCQ [6] and TDP [11]
remain 1.5 dB and 2.2 dB away from the CRLB, respectively,
even after convergence.

Fig. 3 compares the MSEs of QSEr, QSE and HAQSE, as
the estimation SNR increases. We see that the revised optimal
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q can improve the estimation accuracy of QSEr substantially
at N = 8 and 16, as compared to the original QSE [1]. In
specific, the MSE improvement of QSEr over QSE can be as
large as 13.14 dB. The reason is because the refined qopt can
guarantee the monotonicity of βRi w.r.t. ∆i. In contrast, the
original qo

opt cannot guarantee the monotonicity. We also see
that QSEr and QSE have the same performance at N = 64,
which is because qopt = qo

opt according to (23).
In Fig. 3, we also see that QSEr outperforms HAQSE

for a large SNR range at N = 8 and 16, with an MSE
improvement of up to 1.897 dB. This is different to what
was shown in [1, Fig. 2], where HAQSE outperformed QSE
substantially. The reason underlying the superiority of HAQSE
over the original QSE [1] is that HAQSE runs A&M estimator
[5] prior to QSE. Unlike QSE, A&M does not require the
monotonicity as QSE does. Thus, the initial frequency bias for
QSE can be reduced after running A&M, and is very likely
to fall within the monotonic region of βRi w.r.t. ∆i even at
qo
opt = N−1/3 > q∗L. To this end, running A&M makes QSE

valid. However, it cannot be guaranteed that A&M always
reduces the frequency bias to within the monotonic region of
βRi w.r.t. ∆i. In contrast, the refined qopt guarantees that βRi
is always monotonic against ∆i.

Fig. 4 compares the MSEs of QSEr and QSE [1] as q varies.
We see that a smaller q produces a better frequency estimation
with the MSEs of both QSEr and QSE overlapping with
the CRLB. However, we see that the MSE of QSE starts to
increase, as q becomes larger than q∗L = 0.32. In contrast, the
proposed QSEr is able to converge to the CRLB in the whole
region of q, since the new optimal q in (23) is always confined
below 0.32. It is noteworthy that the asymptotic performance
of QSE is supposed to be consistent for any |q| < qopt = 0.5;
see [1, Sec. II-G]. However, QSE diverges from the CRLB due
to the discussed impact of q, which is adequately addressed
in our proposed QSEr.

Fig. 5 compares the MSEs of QSEr and QSE [1] as N
increases, where, for fair comparison, qopt and qo

opt are applied
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for QSEr and QSE, respectively. We see that QSEr based on
the new optimal q ensures the convergence of the MSE to the
CRLB even for small values of N , e.g., 8 and 16. From Fig.
5, we also see that the MSE improvement of QSEr is about 15
dB and 3 dB for N = 8 and 16, respectively, as compared to
QSE. Moreover, Fig. 5 also validates the convergence analysis
of QSEr in Section III-D.

Fig. 6 plots MSE against δ. We see that only QSEr with the
proposed optimal q can achieve a relatively uniform estimation
performance (by approaching the CRLB), across the whole
region of δ. We also see that, as expected, the original QSE
diverges from the CRLB substantially for large values of
δ, which is caused by overlooking the impact of q on the
monotonicity of βRi w.r.t. ∆i. From the zoomed in sub-figure,
we see that the proposed QSEr also outperforms HAQSE
obviously, with an MSE improvement of 0.5 dB at δ = ±0.4.
The superiority of QSEr over QSE and HAQSE validates the
significance our finding on the overlooked impact of q to the
convergence of the state-of-the-art QSE [1]; and also validates
the efficacy of the proposed optimal q in (23).

V. CONCLUSION

We investigate the impact of q on QSE and refine the region
of q to ensure the asymptotic convergence of QSE to the CRLB
even with a small number of small samples. Validated by
simulations, the refined (optimal) q can substantially improve
the accuracy of QSE. The trade-off, caused by q, between the
estimation variance and bias of the frequency is also unveiled
by our simulations.

APPENDIX

A. Derivations of (18)

Consider the positive value of q first, i.e., taking 0.25 < q <
0.5. Q∗± in (12) becomes −1±sin(2πq)

cos(2πq) which, based on the ba-
sic properties of trigonometric functions, can be simplified into
(24). Given 0.25 < q < 0.5, we have cos(πq) > − cos(πq),
and hence cos(πq) + sin(πq) > sin(πq)− cos(πq).

Q∗+ =
sin(πq)− cos(πq)

sin(πq) + cos(πq)
, Q∗− =

sin(πq) + cos(πq)

sin(πq)− cos(πq)
. (24)

Substituting this into (24) leads to

Q∗+ < 1 and Q∗− > 1. (25)

By letting Q(∆i, q) in (3) equal to 1, ∆i = 0 is the solution.
Combining this with (10) and (25), we obtain

∆∗i+ > 0 and ∆∗i− < 0, (26)

where ∆∗i± (∈ [−0.5, 0.5]) is the valid solution to equation
(17). From (24), we have Q∗+Q∗− = 1. Replacing Q∗± with
Q(∆∗i±, q) and then employing (3), we have

∆∗i+ = −∆∗i−. (27)

By substituting (25)∼(27) into (11), the sign of N (Q) satisfies
(19), where ∆∗i = |∆∗i±|. Given (12), the first derivative of Q∗±
w.r.t. q can be examined, leading to{

(Q∗+)′q > 0
(Q∗−)′q < 0

. (28)

Combining (10) and (28), (18) can be achieved.

B. Derivation of q∗L ≈ 0.32

By substituting ∆i = ∆∗i = 0.5 into (3) and applying
the basic manipulations, we obtain Q(0.5, q∗L) =

0.5−q∗L
0.5+q∗L

×
sin[π(0.5+q∗L)]
sin[π(0.5−q∗L)] =

0.5−q∗L
0.5+q∗L

. Similarly, Q∗+ can be simplified into

Q∗+ =
−1+sin(2πq∗L)

cos(2πq∗L) =
sin(πq∗L)−cos(πq∗L)
cos(πq∗L)+sin(πq∗L) . Setting Q(0.5, q∗L) =

Q∗+ and collecting terms, we have

cot(πq∗L) = 2q∗L. (29)

An accurate analytical solution is intractable mathematically.
To solve (29), we replace cot(πq∗L) with its Taylor series, i.e.,
cot(πq∗L) = 1

πq∗L
− πq∗L

3 +O{(q∗L)3}, and obtain 1
πq∗L
− πq∗L

3 ≈

2q∗L. This finally yields q∗L ≈
(
π2

3 ± 2π
)− 1

2

= 0.3232, where
the invalid solution is suppressed. Similarly, we can prove that
the solution to Q(−0.5, q∗) = Q∗− is q∗ = −q∗L.
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