
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material

for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.

Collaborative Learning Model for Cyberattack
Detection Systems in IoT Industry 4.0
Tran Viet Khoa1,2, Yuris Mulya Saputra2, Dinh Thai Hoang2, Nguyen Linh Trung1,

Diep N. Nguyen2, Nguyen Viet Ha1, and Eryk Dutkiewicz2
1 AVITECH, VNU University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam

2 School of Electrical and Data Engineering, University of Technology Sydney, Australia

Abstract—Although the development of IoT Industry 4.0
has brought breakthrough achievements in many sectors, e.g.,
manufacturing, healthcare, and agriculture, it also raises many
security issues to human beings due to a huge of emerging
cybersecurity threats recently. In this paper, we propose a novel
collaborative learning-based intrusion detection system which can
be efficiently implemented in IoT Industry 4.0. In the system
under consideration, we develop smart “filters” which can be
deployed at the IoT gateways to promptly detect and prevent
cyberattacks. In particular, each filter uses the collected data in
its network to train its cyberattack detection model based on
the deep learning algorithm. After that, the trained model will
be shared with other IoT gateways to improve the accuracy in
detecting intrusions in the whole system. In this way, not only
the detection accuracy is improved, but our proposed system
also can significantly reduce the information disclosure as well
as network traffic in exchanging data among the IoT gateways.
Through thorough simulations on real datasets, we show that the
performance obtained by our proposed method can outperform
those of the conventional machine learning methods.

Keywords- Cyberattack detection, Industry 4.0, IoT, feder-
ated learning, deep learning, and cybersecurity.

I. INTRODUCTION

The Industry 4.0 (known as the 4th industrial revolution)
has emerged as one of the most innovative solutions for
smart technology systems, e.g., smart factory, smart city, smart
house, and smart office. The development of Industry 4.0 is
expected to gain the greatest value by reducing manufacturing
costs (47%), improving product quality (43%) and attaining
operations agility (42%) [1]. In Germany, Industry 4.0 will
contribute about 1% to annual GDP over the next ten years,
creating as many as 390, 000 jobs, and adding e250 billion
to manufacturing investment [2]. In Industry 4.0, IoT operates
as a “bridge” to connect physical systems to the cyber world,
and it enables manufacturing ecosystems driven by smart sys-
tems with autonomic self-properties, e.g., self-configuration,
self-monitoring, and self-healing. With IoT, Industry 4.0 can
achieve breakthrough achievements in many sectors, such as
healthcare, food, and agriculture. For example, Industry 4.0
enables the food manufacturing sector to boost the operational
productivity, reduce the production costs, and improve clean,
safe and quality of products. However, when Industry 4.0 is
connected to the cyber world, cybersecurity risks become a key
concern due to open systems with IP addresses creating more
avenues for cyberattacks. According to the 2016 Symantec
Internet Security Threat Report, the manufacturing sector
remained among the top 3 industries targeted by spear phishing

attacks, suffering about 20% of all attacks. More seriously,
for sensitive sectors, such as, healthcare and food industry,
cybersecurity risks can cause serious effects to the human’s
lives. Therefore, countermeasures and risk mitigation solutions
for cybercrime impacts are urgently in need.

To mitigate the damage caused by cyberattacks to the
IoT Industry 4.0, it is essential to develop efficient solutions
for early attack detection. For example, an attack detection
approach based on the covariance matrix was proposed in [3].
In this approach, the attacks can be detected by discovering
the correlation of various features in IP packet header captured
from the network traffic. In [4], the authors introduced a
classification technique using Kappa coefficient to detect and
prevent Distributed Denial-of-Service (DDoS) attacks in the
public cloud environment. In addition, the authors of [5]
and [6] proposed to use autoencoder for anomaly detection
to detect Botnet attack in the IoT environment. Nevertheless,
these methods only can be implemented to detect some par-
ticular conventional attacks, e.g., DDoS and Botnet attacks
and their performance in terms of accuracy is still limited.
To address these issues, the authors in [7] developed a deep
learning framework leveraging a deep belief network (DBN)
that not only significantly improves the accuracy in detecting
attacks, but also can detect a wide range of attacks, i.e., up
to 38 types of attacks. The key idea of the deep learning
approach is using a multi-layer neural network architecture to
“learn” information from data many times over multiple layers.
Thus, the learning quality of deep learning approaches can be
greatly improved and outperform those of other conventional
machine learning techniques. As a result, deep learning-based
cyberattack detection systems have been received a lot of
attention recently.

Despite possessing the outstanding advantages, the imple-
mentation of deep learning-based intrusion detection systems
in IoT Industry 4.0 is facing several technical challenges.
First, the IoT Industry 4.0 is a decentralized network with
many subnetworks (SNs) deployed for various purposes, such
as manufacturing, agriculture, and logistics. Each SN only
controls a small set of IoT devices, and thus the data collected
from each subset is usually insufficient to train the DBN
for the cyberattack detection system. The insufficient data
for training reduces seriously the accuracy of deep learning
mechanism [8]. Sharing data among SNs may cause privacy
concerns and network congestion due to a huge amount of
data will be exchanged over the Internet. Second, SNs are
usually managed by IoT gateways and/or edge nodes which

Fig. 1: IoT Industry 4.0 network architecture.

are limited by computing resources, and thus running deep
learning algorithms with a huge dataset may not be efficient
in a long-run.

In this paper, we propose a novel cooperative learning
model which can be efficiently implemented on the cyberattack
detection system in the IoT Industry 4.0 network. In particular,
at each SN, we implement a smart “filter” on the IoT gateway
which can promptly detect and prevent cyberattacks to its
SN. The filter is developed based on a deep neural network
(DNN), and its DNN is trained based on the data collected in
its SN. To further improve the performance for the SNs, we
propose a collaborative learning model in which the filters
share their trained detection models with others instead of
exchanging their real data. In this way, we can not only
significantly enhance the accuracy in detecting attacks, but also
boost the learning speed, reduce the network traffic, and highly
protect data privacy for the SNs. Through simulation results
on nine emerging IoT datasets and three conventional network
datasets, we show that our proposed approach can improve
the classification accuracy up to 50% and the communication
overhead can reduce by 98% compared with those of other
conventional machine learning techniques.

II. SYSTEM MODEL

A. Network Architecture

Fig. 1 illustrates a general network architecture of the IoT
Industry 4.0 network with multiple IoT subnetworks (SNs).
In practice, each SN is deployed for a specific purpose,
e.g., managing/monitoring nuclear nuclear power plant, power
generation, solar power or smart farming. The IoT gateway in
a SN serves as a “gate” to control and monitor all traffic in and
out the SN. Each SN is controlled by a controller which can
be located at the IoT gateway. The controller can implement
a smart “filter”, i.e., the deep neural network, in order to
promptly detect and make decisions to protect its network. To
facilitate the cyberattack detection process, the controller will
store all data obtained in its network to a local database. This
database will be updated regularly based on new incoming
traffic, and it will be used to train the deep neural network for
the cyberattack detection system inside its network.

Fig. 2: Cyberattack detection system with collaborative learn-
ing model.

B. Cyberattack Detection System With Collaborative Learning
Model.

To improve the efficiency of the cyberattack detection in the
IoT Industry 4.0, we introduce a collaborative learning model
with smart filters deployed at the IoT gateways as illustrated in
Fig. 2. Each filter is controlled by its controller in its network
and uses data in the local database to train its deep neural
network. The trained model network will be then used to detect
real-time cyberattacks. In the collaborative learning model, to
exchange the trained model, a center server node (CS) will
be used to collect the trained models from the filters and
then gathering these models using the average gradient update
algorithm to create the trained global model. After that the
CS will send the trained global model to all the IoT gateways.
Finally, based on the trained global model, each filter will
update its local trained model. In this way, the filter of each
SN can “learn the knowledge” from other filters without a
need of sharing the raw dataset.

III. COLLABORATIVE LEARNING-BASED CYBERATTACK
DETECTION MODEL

In this section, we propose two machine learning-based
approaches which can be implemented in different scenarios
in the IoT Industry 4.0 network. Specifically, we introduce
classification-based and anomaly detection-based collaborative
learning approaches to detect cyberattacks when the SNs in
the IoT Industry 4.0 can only obtain labeled and unlabeled
datasets, respectively.

A. Classification-based Collaborative Learning

This method is applicable to predict and identify the
behavior of incoming packets for the cyberattack detection
system. In particular, we use a deep learning approach utilizing
deep belief network (DBN) to categorize the packets into

Visible

Layer

Hidden

Layers

Output

Layer

GRBM RBMs
Softmax

regression

Normal

Different

kinds of

Attacks

Training

data
Data

Normalization

Fig. 3: Deep belief learning network architecture.

normal and abnormal behaviors [7]. As such, we can classify
the packets into M + 1 classes, where M refers to the
types of attacks from the abnormal behavior. Consider X =
{X1, . . . ,Xt, . . . ,XT } as the training dataset containing the
packets with normal and abnormal behaviors in the network,
where T and Xt indicate the number of SNs and the training
dataset at SN-t, respectively.

In the collaborative learning, each SN-t can learn its training
dataset Xt locally. Alternatively, the CS only needs to collect
the gradient information for the global model update without
a need of downloading the training datasets from SNs. To
predict the class of the incoming packets, each SN can per-
form the deep learning algorithm through visible and hidden
layers of the DBN as illustrated in Fig. 3. Specifically, we
first use a Gaussian Binary Restricted Boltzmann Machine
(GRBM) [9] to convert the real training dataset at the input
of visible layer into binary values at the first hidden layer.
Let υt = [υt1, . . . , υ

t
k, . . . , υ

t
K] and ηt = [ηt1, . . . , η

t
l , . . . , η

t
L]

denote the vectors of visible and hidden neurons of the visible
and hidden layers at the SN-t, respectively. Here, K is the
number of visible neurons and L is the number of hidden
neurons in the GRBM. Then, the utility function of the GRBM
at SN-t can be written as

ξt(υt,ηt) =

K∑
k=1

(υtk − b1,k)2

2γ2k,t
−

K∑
k=1

L∑
l=1

wk,lη
t
l

υtk
γk,t
−

L∑
l=1

b2,lη
t
l ,

(1)

where b1,k and b2,l represent the global biases of visible and
hidden neurons, respectively. Additionally, wk,l indicates the
global weight between the visible and hidden neurons, and γk,t
specifies the standard deviation of visible neuron υtk. Based on
the Eq. (1), we can find the probability that a visible vector
υt at SN-t is used in the DBN as follows:

ρt(υt) =

∑
ηt
e−ξt(υt,ηt)∑

υt,ηt
e−ξt(υt,ηt)

. (2)

Then, we can obtain the local gradient of GRBM at SN-t for
each epoch time τ , i.e., the time when all training dataset Xt

at each SN-t has been observed, by

∇g(τ)t =

K∑
k=1

L∑
l=1

∇g(τ)t,k,l, (3)

where

∇g(τ)t,k,l =
∂ log ρt(υt)

∂wk,l

=
〈 1

γk,t
υtkη

t
l

〉
dataset

−
〈 1

γk,t
υtkη

t
l

〉
model

,
(4)

and 〈.〉 denotes the expectation value as described in [9].
Next, we execute deep learning process among the hidden

layers using a Restricted Boltzmann Machine (RBM) [9]. In
this case, the visible and hidden neurons have binary values,
i.e., [0, 1]. Then, given K∗ number of visible neurons and L∗

number of hidden neurons, we can compute the utility function
of the RBM at the SN-t as follows:

ξ∗t (υt,ηt) = −
K∗∑
k=1

L∗∑
l=1

wk,lυ
t
kη
t
l −

K∗∑
k=1

b1,kυ
t
k −

L∗∑
l=1

b2,lη
t
l .

(5)
Similar to GRBM, we can obtain the local gradient of RBM
at SN-t for each epoch time τ by using Eq. (5) as follows:

∇g∗(τ)t =

K∗∑
k=1

L∗∑
l=1

∇g(τ)t,k,l, (6)

where

∇g∗(τ)t,k,l =
〈
υtkη

t
l

〉
dataset

−
〈
υtkη

t
l

〉
model

. (7)

From the last hidden layer of the DBN, each SN-t can
obtain the output X̂t that will be used as the input of the
softmax regression. In this case, the softmax regression is
applied at the output of the DBN to classify the behaviors
of the packets. Suppose W and b are the weight matrix and
bias vector between the last hidden layer and the output layer,
respectively. Then, the probability that Y belongs to class m
and the prediction Yt of packets’ behaviors at SN-t are

ρ†t(Y = m|X̂t,W,b) = softmaxj(W,b)

=
eWmXt+bm∑
l e
WlXt+bl

,
(8)

and

Yt = argmax
m

[pt(Y = m|X̂t,W,b)],∀m ∈ {1, 2, . . . ,M+1},
(9)

respectively, where Y refers to an output prediction from Yt.
Given Eq. (8), we can calculate the local gradient between the
last hidden layer and the output layer as below

∇g†(τ)t =
∂ρ†t(Y = m|X̂t,W,b)

∂W
. (10)

Upon obtaining∇g(τ)t ,∇g∗(τ)t , and∇g†(τ)t for every τ , each
SN-t sends the local gradients to the CS for global gradient
aggregation as described by

∇g(τ) = 1

T

T∑
t=1

(
∇g(τ)t +∇g∗(τ)t +∇g†(τ)t

)
. (11)

In this way, the CS works as a global model controller to
accumulate the local gradients from the SNs synchronously,
and then updates the global model before sending back to the
SN-t, ∀t ∈ {1, . . . , T}.. Specifically, suppose that φ(τ) is the

current global model at τ containing all weights of the DBN.
The global model φ(τ+1) to learn Xt,∀t ∈ {1, . . . , T}, for the
next epoch time τ + 1 can be written as

φ(τ+1) = φ(τ) − α∇g(τ), (12)

where α is the learning rate. The deep learning process
continues and terminates when a convergence is reached or the
the number of epoch time τmax is achieved. As such, each SN
can obtain the final global model φ∗ containing the optimal
weights for all layers (including weight matrix Ŵ). Then, we
can find the final prediction Ŷt of packets’ behaviors at SN-t
as follows:

Ŷt = argmax
m

[pt(Y = m|X̂t,Ŵ,b)],∀m ∈ {1, . . . ,M +1}.
(13)

Finally, we summarize the collaborative learning algorithm in
Algorithm 1.

Algorithm 1 Collaborative learning based on classification
algorithm

1: while τ ≤ τmax or training process does not converge do
2: for ∀t ∈ T do
3: Learn Xt to get Yt.
4: Calculate local gradients ∇g(τ)t , ∇g∗(τ)t , ∇g†(τ)t .
5: Send local gradients to the CS.
6: end for
7: the CS calculates the trained global model φ(τ).
8: τ = τ + 1.
9: Update the next global model φ(τ+1).

10: Send the updated global model φ(τ+1) back to T SNs.
11: end while
12: Predict Ŷt based on the training set Xt at each SN-t and

optimal global model φ∗.

B. Anomaly Detection-based Collaborative Learning

This method is useful to detect anomaly in the case when
the cyberattack detection system only has unlabeled dataset for
the training deep neural network. In particular, we develop a
collaborative learning model leveraging autoencoder network
as illustrated in Fig. 4. Each SN-t generates the training dataset
Xt containing packets with normal behavior only. Meanwhile,
the testing dataset contains not only the packets with normal
behavior, but also the packets with abnormal behavior coming
from attack.

For the purpose of training process of autoencoder network,
the training dataset Xt is separated into three dataset: Xtrain,
Xopt, Xtest. To obtain accuracy prediction for the anomaly
detection, the autoencoder network utilizes Xtrain to train the
network and root mean square error (RMSE) loss function:

RMSE =

√√√√ 1

N

N∑
n=1

(
x− x̂

)2
, (14)

where N , x, and x̂ are the number of samples, the
actual packet behavior, and the predicted packet behavior,
respectively. Unlike the classification method, the autoencoder

network utilizes a gradient decent technique to re-generate the
input data at the output layer while storing data properties, e.g.,
weights and biases, in the neural network. After that, the Xopt

is used to create the margin for normal behavior identification:

Margin = RMSEopt + std(RMSEopt), (15)

where RMSEopt is the mean of RMSE and
std(RMSEopt) is the standard deviation of RMSE with the
Xopt. Subsequently, the Xtest is used to test the algorithm of
training process. After the training process, the testing data
with both normal and attack behavior is utilized for testing the
anomaly detection. In testing process, the network behavior
is considered attack when it has RMSE > Margin.

For the collaborative learning model using anomaly detec-
tion, we use the same mechanism as that of the classification
method. In particular, each SN will train its model based on the
anomaly detection algorithm, and then sends the trained model
to the CS for global model update. After that the global model
is sent back to the SNs for updates. This process is repeated
until the algorithm converges or the maximum number of
epoch time, τmax, is achieved.

IV. SIMULATION RESULTS

In this simulation, we use KDD [10], NSLKDD [11],
UNSW-NB15 [12], and N-BaIoT [5], [6] datasets to evaluate
the performance of the proposed approaches, i.e., collaborative
learning model using classification and anomaly detection, by
comparing to other baseline methods, i.e., centralized learning
model for classification [7] and anomaly detection [5], [6],
k-neigbours classifier, K-means, decision tree, multilayer per-
ceptron, logistic regression, and support vector machine [13].
For the baseline methods, the CS first needs to collect datasets
from all the SNs and then performs the machine learning

Auto-encoder neural network

Output
Training

data
Data

Normalization

Auto-encoder trained network

Normal
behavior

Testing

data
Data

Normalization
Attack

behavior

Create margin

Fig. 4: Autoencoder network architecture.

TABLE I: The performance comparison of various machine learning methods over three traditional network datasets.

KDD NSL-KDD UNSW
ACC PPV TPR ACC PPV TPR ACC PPV TPR

K Neighbours Classifier 88.56 77.19 71.39 94.31 77.42 71.52 96.85 94.12 92.13
K-means 82.78 84.96 56.95 87.05 74.01 35.23 86.19 89.16 65.47
Decision Tree 87.91 63.62 68.5 93.78 76.42 68.92 97.01 94.14 92.52
Multilayer Perceptron (MLP) 87.91 63.62 68.5 90.16 76.72 75.39 96.77 90.87 91.91
Logistic Regression 89.52 62.04 73.79 92.52 71.05 62.61 96.2 86.29 90.69
Support Vector Machine (SVM) 88.32 64.7 70.8 93.38 76.91 66.9 96.74 91.59 91.86
Centralized Deep Learning 97 94.26 92.52 90.86 80.68 77.15 95.67 82.48 78.33
Co-DL2 97.52 94.71 93.79 93.99 85.16 84.98 95.6 82.62 78.01
Co-DL3 97.54 95.03 93.85 93.37 84.38 83.42 95.67 82.32 78.35

algorithms to detect the normal and malicious packets. For
the proposed method, we distribute the dataset into different
SNs for the local training process.

A. Dataset Analysis

1) KDD dataset: The KDD dataset was built by DARPA
Intrusion Detection Evaluation Program in 1998. This dataset
includes 41 features, 24 types of attacks in the training dataset
and 38 types of attacks in the testing dataset. The types
of attacks are categorized into 4 groups including denial-of-
service (DoS), attack from remote to local machine (R2L),
unauthorized access to local administrator user (U2R), and
probing attack.

2) NSL-KDD dataset: The NSL-KDD dataset [11] was
built by cybersecurity group in the University of New
Brunswick, Canada. Although this dataset contains the same
properties of the KDD dataset, it eliminates many drawbacks
of the KDD dataset including removing any duplicate samples
in the dataset such that all records in both training and testing
datasets are unique and providing better proportion of training
and testing datasets.

3) UNSW-NB15 dataset: The UNSW-NB15 dataset [12]
was created by Cyber Range Lab group of the Australian
Centre for Cyber Security (ACCS). The dataset contains 49
features and 9 types of attacks with the class labels.

4) N-BaIoT dataset: The Network-based Detection of
IoT Botnet Attacks Using Deep Autoencoders (N-BaIoT)
dataset [5], [6] was developed by Yair Meidan from Ben-
Gurion University of the Negev, Israel. This dataset contains
the normal and malicious traffic from 9 IoT devices. Each
dataset of the IoT device contains benign traffic and 10 types
of attacks from Mirai and BASHLITE.

B. Evaluation Methods

As mentioned in [14], [15], the confusion matrix is typi-
cally used to evaluate the performance of system, especially
machine learning system. We denote TP, TN, FP, and FN to be
“True Positive”, “True Negative”, “False Positive”, and “False
Negative”, respectively. Then, to evaluate the accuracy of the
machine learning methods, we provide the following metrics:

1) Accuracy (ACC): This metric shows the correct detec-
tion of the learning process over the total traffic.

• Classification: If M + 1 is the total number classes for
normal and attack traffic, the ACC of class m is:

ACCm =
TPm + TNm

TPm + TNm + FPm + FNm
.

Then, the ACC of the whole system can be calculated by
averaging the ACC for M + 1 classes:

ACCclass =
1

M + 1

M+1∑
m=1

TPm + TNm
TPm + TNm + FPm + FNm

.

• Anomaly detection: If Te is the total number of testing
samples, then the ACC of anomaly detection is:

ACCanomaly =
1

Te

Te∑
t=1

1(x̂ = x),

where 1(x̂ = x) is a Boolean function with value “1”
indicating the correct prediction, and “0” otherwise.

2) Precision (PPV): This metric observes the real number
of attack traffic over all predicted attack samples, i.e.,

PPV =
TP

TP + FP
.

3) Recall (TPR): This metric represents the proportion of
correctly predicted attack traffic over all attack samples, i.e.,

TPR =
TP

TP + FN
.

Apart from the aforementioned metrics, we also analyze
the complexity, i.e., the data transmission in the network, by
comparing the learning time of all methods.

C. Performance Evaluation

In this section, we compare the performance of the pro-
posed and baseline methods in terms of the accuracy, privacy,
communication overhead, and learning time. For the collabo-
rative learning-based methods, we distribute the dataset into
T different SNs such as 2 SNs (Co-DL2) and 3 SNs (Co-
DL3). Table I shows accuracy in detecting attacks between
the proposed methods, i.e., Co-DL2 and Co-DL3, and other
conventional learning methods. Generally, when we utilize
traditional network datasets, the Co-DL3 can improve the
ACC, PPV, and TPR performance up to 14.76%, 32.99%, and
49.75%, respectively, compared to the other results obtained
by the conventional learning methods [7]. In this case, we
can obtain the best performance using Co-DL3 when the

TABLE II: The performance comparison of various machine learning methods over nine emerging IoT datasets.

Id IoT devices Centralized Deep Learning Co-DL2 Co-DL3
ACC PPV TPR ACC PPV TPR ACC PPV TPR

1 Danmini Doorbell 89.56 99.54 79.5 99.74 99.48 100 99.84 99.69 100
2 Ecobee Thermostat 98.08 96.32 100 99.29 98.6 100 99.11 98.25 100
3 Ennio Doorbell 67.17 97.39 35.3 67.53 98.21 35.52 67.27 97.42 34.96
4 Philips B120N10 Baby Monitor 98.53 97.15 99.99 98.64 97.38 99.98 98.96 97.97 100
5 Provision PT 737E Security Camera 85.83 98.96 72.42 98.73 97.52 100 99.74 99.48 100
6 Provision PT 838 Security Camera 86.89 99.62 74.06 99.84 99.7 99.98 99.81 99.63 99.99
7 Samsung SNH 1011 N Webcam 99.05 98.15 99.98 98.83 97.71 100 98.86 97.78 99.98
8 SimpleHome XCS7 1002 WHT Security Camera 88.15 99.9 76.37 99.39 98.84 99.97 99.56 97.2 99.98
9 SimpleHome XCS7 1003 WHT Security Camera 98.48 97.05 100 98.43 96.99 100 98.41 96.99 100

KDD dataset is used. The same trend can be observed for
the Co-DL2. Although the Co-DL2 produces lower detection
accuracy than that of the Co-DL3 by 1.5%, the Co-DL2 can
still outperform other conventional learning methods. Then, we
observe the anomaly detection using emerging IoT datasets in
Table II. Compared to the centralized method, the proposed
methods can increase the ACC, PPV and TPR by 13.91%,
0.53% and 27.58%, respectively.

In addition to the improvement of intrusion detection ac-
curacy, the proposed methods can reduce the network traffic
in the whole system significantly. Specifically, the proposed
methods can reduce the network overhead by 98.5% compared
with the conventional learning methods when KDD, NSL-
KDD, UNSW-NB15, and N-BaIoT datasets are applied. The
reason is that the SNs only need to transmit the small-size
trained models, i.e., local gradient information, instead of
sending the whole dataset to the CS. Furthermore, this trend
aligns with the privacy disclosure reduction as the the SNs
train the dataset locally. In this way, all the SNs can collaborate
with each other through the CS without revealing the private
information.

Next, we compare the learning speed performance of the
learning methods in Fig. 5. It can be observed that the learning
speed of Co-DL2 method is 30% faster than that of the
centralized method. Additionally, when we apply the Co-DL3,
we can further increase the learning speed by 40% compared
with the centralized method. This is because, in the proposed
methods, we can distribute the dataset to different SNs with
respect to the number of SNs in the network. Consequently,
each SN can perform the deep learning algorithm using smaller
number of samples efficiently.

V. CONCLUSION

In this paper, we have proposed the novel intrusion detection
system based on the collaborative learning model in IoT
Industry 4.0. Specifically, we have designed the smart “filters”
at the IoT gateways to train the collected data locally using the
deep learning algorithm, aiming at detecting and preventing
cyberattacks. To significantly enhance the accuracy in de-
tecting intrusions, and reduce the network traffic as well as
the information disclosure, we have proposed a collaborative
learning model which allows the filter to learn information
from others through exchanging the trained models only.
Through extensive simulations, we have demonstrated that the
performance of the proposed method can outperform other

Centralized Co-DL2 Co-DL3
0

10

20

30

40

50

60

70

80

90

100

P
e

rc
e

n
ta

g
e

 o
f

le
a

rn
in

g
 t

im
e

 (
%

)

Fig. 5: Learning speed comparison for various methods.

conventional machine learning methods on the real dataset
in terms of the detection accuracy, network traffic, privacy
disclosure, and learning speed.

VI. ACKNOWLEDGEMENT

This work is the output of the ASEAN IVO http://www.nict.
go.jp/en/asean ivo/index.html project Cyber-Attack Detection
and Information Security for Industry 4.0 and financially
supported by NICT http://www.nict.go.jp/en/index.html

REFERENCES

[1] The Boston Consulting Group, “Sprinting to Value in Indus-
try 4.0”. Available Online: http://r3ilab.fr/wp-content/uploads/2017/01/
BCG-Sprinting-to-Value-in-Industry-4-0-Dec-2016.pdf.

[2] The Boston Consulting Group, “Industry 4.0: The future of productivity
and growth in manufacturing industries”. Available Online: https:
//www.zvw.de/media.media.72e472fb-1698-4a15-8858-344351c8902f.
original.pdf.

[3] M. N. Ismail, A. Aborujilah, S. Musa, and A. Shahzad, “Detecting
flooding based DoS attack in cloud computing environment using
covariance matrix approach,” in Proceedings of the 7th international
conference on ubiquitous information management and communication.
ACM, 2013, pp. 36:1–36:6.

[4] A. Sahi, D. Lai, Y. Li, and M. Diykh, “An efficient DDoS TCP flood
attack detection and prevention system in a cloud environment,” IEEE
Access, vol. 5, pp. 6036–6048, April 2017.

[5] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Bre-
itenbacher, and Y. Elovici, “N-BaIoT-Network-based detection of IoT
botnet attacks using deep autoencoders,” IEEE Pervasive Computing,
vol. 17, no. 3, pp. 12–22, July 2018.

[6] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: an
ensemble of autoencoders for online network intrusion detection,” arXiv
preprint arXiv:1802.09089, 2018.

http://www.nict.go.jp/en/asean_ivo/index.html
http://www.nict.go.jp/en/asean_ivo/index.html
http://www.nict.go.jp/en/index.html
http://r3ilab.fr/wp-content/uploads/2017/01/BCG-Sprinting-to-Value-in-Industry-4-0-Dec-2016.pdf
http://r3ilab.fr/wp-content/uploads/2017/01/BCG-Sprinting-to-Value-in-Industry-4-0-Dec-2016.pdf
https://www.zvw.de/media.media.72e472fb-1698-4a15-8858-344351c8902f.original.pdf
https://www.zvw.de/media.media.72e472fb-1698-4a15-8858-344351c8902f.original.pdf
https://www.zvw.de/media.media.72e472fb-1698-4a15-8858-344351c8902f.original.pdf

[7] K. K. Nguyen, D. T. Hoang, D. Niyato, P. Wang, D. Nguyen, and
E. Dutkiewicz, “Cyberattack detection in mobile cloud computing: A
deep learning approach,” in 2018 IEEE Wireless Communications and
Networking Conference (WCNC), April 2018, pp. 1–6.

[8] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT Press,
2016.

[9] G. E. Hinton, “A practical guide to training restricted Boltzmann
machines,” in Neural networks: Tricks of the trade. Springer, 2012.

[10] http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
[11] “University of New Brunswick,” https://www.unb.ca/cic/datasets/nsl.

html.
[12] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for

network intrusion detection systems (UNSW-NB15 network data set),”
in 2015 military communications and information systems conference
(MilCIS), Nov 2015, pp. 1–6.

[13] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. M. Caicedo, “A comprehensive survey on
machine learning for networking: evolution, applications and research
opportunities,” Journal of Internet Services and Applications, vol. 9,
no. 1, pp. 1–99, Jun 2018.

[14] T. Fawcett, “An introduction to ROC analysis,” Pattern recognition
letters, vol. 27, no. 8, pp. 861–874, June 2006.

[15] D. M. Powers, “Evaluation: from precision, recall and F-measure to
ROC, informedness, markedness and correlation,” Journal of Machine
Learning Technologies, pp. 37–63, 2011.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/nsl.html

	Introduction
	System Model
	Network Architecture
	Cyberattack Detection System With Collaborative Learning Model.

	Collaborative Learning-based Cyberattack Detection Model
	Classification-based Collaborative Learning
	Anomaly Detection-based Collaborative Learning

	Simulation results
	Dataset Analysis
	KDD dataset
	NSL-KDD dataset
	UNSW-NB15 dataset
	N-BaIoT dataset

	Evaluation Methods
	Accuracy (ACC)
	Precision (PPV)
	Recall (TPR)

	Performance Evaluation

	Conclusion
	Acknowledgement
	References

