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ABSTRACT 
Although Non-Functional Requirements (NFRs) are recognized as 
very important contributors to the success of software projects, 
studies to date indicate that there is still no general consensus in 
the software engineering community regarding the notion of 
NFRs. This paper presents the result of an extensive and 
systematic analysis of the extant literature over three NFRs 
dimensions: (1) definition and terminology; (2) types; and (3) 
relevant NFRs in various types of systems and application 
domains. Two different perspectives to consider NFRs are 
described. A comprehensive catalogue of NFRs types as well as 
the top five NFRs that are frequently considered are presented. 
This paper also offers a novel classification of NFRs based on 
types of systems and application domains. This classification 
could assist software developers in identifying which NFRs are 
important in a particular application domain and for specific 
systems.  

Categories and Subject Descriptors 
D.2.1 [Software Engineering]: Requirements/Specifications 

General Terms 
Documentation, Performance, Reliability, Security 

Keywords 
Non-Functional Requirements, classification, types, type of 
system, application domain  

1. INTRODUCTION 
Non-Functional Requirements (NFRs) are recognized as very 
important factor to the success of software project.[1-3]. If NFRs 
are not addressed adequately, a number of potential problems may 
occur. For instance software which is inconsistent and of poor 
quality; dissatisfaction of clients, end-users, and developers; 
causing time and cost overrun for fixing software errors [1]. In the 
software development life cycle, NFRs are considered as the 
constraints or qualifications of the operations [4]. NFRs place 
restrictions on the product being developed, the development 

process, and specify external constraints that the product must 
exhibit [5].  [6] [7] [8] 
   
NFRs are often more critical than individual Functional 
Requirements (FRs) in the determination of a system's perceived 
success or failure [6; cited by 7, 8]. Neglecting NFRs has led to a 
series of software failures [3, 9-12], such as systemic failure in 
London Ambulance System [10, 11], the system failure because of 
performance-scalability problems in the New Jersey Department 
of Motor Vehicles Licensing System [13] and some other 
examples as described in [10, 13-15]. 
 
Though NFRs are widely recognized very important, literature 
review shows that NFRs are often neglected, poorly understood 
and not considered adequately in software development. In the 
development of software system, users naturally focus on 
specifying their functional or behavioral requirements, i.e. the 
things the product must do [1, 7]. Hence NFRs are often 
overlooked in the software development process [3, 16]. A 
number of studies investigating practices of dealing with NFRs in 
the software industry also report that commonly software 
developers do not pay sufficient attention to NFRs [3, 16-18]. 
NFRs are not elicited at the same time and the same level of 
details as the FRs and they are often poorly articulated in the 
requirements document [17, 18].  
 
Further investigation shows that neglecting NFRs in developing a 
software system is strongly influenced by NFRs’ characteristics, 
that are subjective, relative, interacting [1], abstract [10, 19] and 
not uniform in nature [2]. These characteristics cause NFRs 
difficult to deal with. It is more difficult to model, verify, test, and 
measure NFRs to compare with FRs [1, 8, 20, 21]. Also, 
capturing, specifying, and managing NFRs are still difficult to 
perform because most of software developers do not have 
adequate knowledge about NFRs and little help is available in the 
literature [22]. Majority of software engineering research, 
particularly requirements engineering research only deal with 
FRs, i.e. ensuring that the necessary functionality of the system is 
delivered to the user [23].  
 
The term NFRs has been in use for almost three decades. 
However, studies to date indicate that currently there is still no 
general consensus in the software engineering community 
regarding the notion of NFRs [1, 7, 24, 25]. Glinz [24, 25] even 
argues to rethink the notion of NFRs due to the fact that there is 
not a clear concept about what a non-functional requirement really 
is. Literature review also shows that a number of essential 
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dimensions related to NFRs (e.g. a variety of perspectives in 
considering NFRs as well as the relevant NFRs in various types of 
systems and application domains) are not well understood. Due to 
these reasons, this research is motivated to perform an extensive 
and systematic investigation of the notion of NFRs in the software 
engineering literature in order to increase the understanding of 
this complex and multifaceted phenomena.  
 
This study covers three essential dimensions: (1) definition and 
terminology; (2) types; and (3) NFRs in various types of systems 
and application domains. A number of research questions have 
been derived from these three parameters: 

1. How many perspectives are there in the software 
engineering community when considering NFRs? 

2. What is the typology of NFRs?   
3. Which types of NFRs are commonly considered or 

often discussed in the literature? 
4. Which types of NFRs are of concern in various 

types of systems?   
5. Which types of NFRs are of concern in various 

application domains? 
 
The major contributions of this paper are a novel classification of 
NFRs based on typology, definition, types of systems, and 
application domains. These contributions would benefit software 
engineering community (i.e. researcher and practitioner) in many 
ways. Mapping between NFRs and the types of systems as well as 
between NFRs and the application domains were developed by 
conducting a cross-referencing analysis of the literature. 
 
This paper is organized in four sections. The first section is 
introduction that describes the importance of NFRs in the 
software development. The second section describes the research 
approach and source of information. Findings from investigation 
are described in section three. Then, section 4 gives a conclusion, 
discussion and future works by highlighting some open issues 
which are acquired from this investigation. 

2. RESEARCH METHODOLOGY 
The investigation was conducted from 182 sources of information 
published over the last three decades. Majority of them are articles 
from academic resources within the discipline of software 
engineering in general and requirements engineering in particular 
(e.g. journal paper, articles from conference proceeding, and 
IEEE/ISO standard), and a few are industrial reports (e.g. 
technical reports and white papers). All of these articles cover 
various issues of NFRs, as illustrated in Figure 1. The starting 
point for selection of the papers to be reviewed was the study 
conducted by Chung et al. [1]. The detail composition of software 
engineering literature investigated for this research is presented in 
Table 1. 
 

Table 1 - Sources of Information 

Type of Literature Number of 
Literature 

Journal 78 
Conference Paper/Proceeding 70 
Book 16 
Others (technical report, standard, etc) 18 

Each article was then analyzed systematically using content 
analysis technique [26, 27]. Content analysis was selected because 
it enables researchers to identify trends and patterns in the 
literature through the frequency of key words, and by coding and 
categorizing the data into a group of words with similar meaning 
or connotations  [27, 28]. This technique is also applicable to all 
domain contexts [26, 29].  
 

Non-functional Requirements (NFRs) Research

Identifying 
NFRs

Managing 
NFRs 

Evaluating 
NFRs

Product-OrientedProcess-Oriented

Modeling 
NFRs

 
Figure 1 - NFRs Research 

 
Three essential dimensions were defined as the research baseline: 
(1) definition and terminology, (2) types, and (3) NFRs in various 
types of systems and application domains. For the first dimension, 
definition and terminology, each of definition and terminology 
that were presented in literature were catalogued.  Then, the 
similarity and dissimilarity aspects among them were analyzed. 
From this investigation, the different perspectives of how software 
engineering community considers NFRs and terminologies 
introduced to represent NFRs in each perspective were visualized. 
 
For the second dimension, types of NFRs, all types from the 
catalogue of NFRs types were collected. Their definition and 
attribute1 were recorded. Then, frequency analysis for each type in 
order to identify the more commonly considered NFRs, i.e. NFRs 
that are frequently listed in the catalogues of NFRs types, was 
conducted.  
 
For the last of those three dimensions, NFRs in various types of 
systems and application domains, a mapping was created between 
types of systems (as well as application domains) and the types of 
NFRs considered in each type of system (or application domain). 
In this study, five different types of systems and their relevant 
NFRs were identified, while for the application domain, a well-
known application domain taxonomy from Digital’s Industry 
Taxonomy [30, 31] was adopted. 

3. FINDINGS 
With respect to the research questions, findings in this 
investigation can be categorized into three groups: definition and 
terminology; types; the relevant NFRs in various types of systems 
and application domains. [32-34] 
                                                                 
1In this paper, the term attribute is considered as the major 

components of each NFRs type. In the literature, attribute is also 
referred as quality subfactors [32-34] or NFRs subtypes [1].  



3.1 Definition and Terminology 

NFRs Definition
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Development Constraints
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Figure 2 - Definition and Terminology NFRs 

 
Figure 2 shows the result of investigation about definition and 
terminology NFRs in literature. This figure illustrates that 
generally, the term NFRs is considered for two different 
perspectives: (1) NFRs as the requirements that describe the 
properties, characteristics or constraints that a software system 
must exhibit; and (2) NFRs as the requirements that describe the 
quality attributes that the software product must have. 
 
In the first perspective, NFRs consist of several aspects, such as 
development constraints, business rules, external interfaces, 
quality attributes, and any other requirements that do not describe 
the functionality of the system. The term constraints, 
nonbehavioral requirements, concerns, goals, and extra-functional 
requirements are also used to represent NFRs in this perspective. 
The second perspective takes the narrow focus of NFRs by only 
considering the quality attributes. Therefore, this perspective is 
the subset of the first perspective. The term quality requirements, 
software system attributes, and quality attributes are also used to 
represent NFRs.  

 

1. Accessibility/Access Control
2. Accountability
3. Accuracy
4. Adaptability
5. Additivity
6. Adjustability
7. Affordability
8. Agility
9. Analyzability
10. Anonymity
11. Atomicity
12. Attractiveness
13. Auditability
14. Augmentability
15. Availability
16. Certainty
17. Changeability
18. Communicativeness
19. Compatibility
20. Completeness
21. Complexity/Interacting    
      Complexity
22. Composability
23. Comprehensibility
24. Comprehensiveness
25. Conciseness
26. Confidentiality
27. Configurability
28. Conformance
29. Consistency

30. Controllability
31. Correctness
32. Customizability
33. Debuggability
34. Decomposability
35. Defensibility
36. Demonstrability
37. Dependability
38. Distributivity
39. Durability
40. Effectiveness
41. Efficiency/Device Efficiency
42. Enhanceability
43. Evolvability
44. Expandability
45. Expressiveness
46. Extendability
47. Extensibility
48. Fault/Failure Tolerance
49. Feasibility
50. Flexibility
51. Formality
52. Functionality
53. Generality
54. Immunity
55. Installability
56. Integratability
57. Integrity
58. Interoperability
59. Learnability

60. Legibility
61. Likeability
62. Localizability
63. Maintainability
64. Manageability
65. Maturity
66. Measurability
67. Mobility
68. Modifiability
69. Nomadicity
70. Observability
71. Operability
72. Performance/Efficiency/  
      Time or Space Bounds
73. Portability
74. Predictability
75. Privacy
76. Provability
77. Quality of Service
78. Readability
79. Reconfigurability
80. Recoverability
81. Reliability
82. Repeatability
83. Replaceability
84. Replicability
85. Reusability
86. Robustness
87. Safety

88. Scalability
89. Security/Control and 
      Security
90. Self-Descriptiveness
91. Simplicity
92. Stability
93. Standardizability/ 
      Standardization/Standard
94. Structuredness
95. Suitability
96. Supportability
97. Survivability
98. Susceptibility
99. Sustainability
100. Tailorability
101. Testability 
102. Traceability
103. Trainability
104. Transferability
105. Trustability
106. Understandability
107. Uniformity
108. Usability
109. Variability
110. Verifiability
111. Versatility
112. Viability
113. Visibility
114. Wrappability

 

Figure 3 - The List of NFRs Types 
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have definition and attributes have definition without definition and attributes
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accuracy; analyzability; attractiveness; 
changeability; communicativeness; 

completeness; complexity; composability; 
confidentiality; consistency; correctness; 
defensibility; dependability; evolvability; 

extendability; flexibility; immunity; 
installability; interoperability; learnability; 

likeability; localizability; maturity; 
operability; quality of service; 

recoverability; replaceability; stability; 
suitability; survivability

without definition and attributes

accountability; additivity; adjustability; 
affordability; agility; anonymity; atomicity; 

auditability; augmentability; certainty; 
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comprehensiveness; conciseness; 
configurability; conformance; controlability; 

customizability; debuggability; 
decomposability; demonstrability; 
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enhanceability; expandability; 
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formality; generality; legibility; 

manageability; measurability; mobility; 
nomadicity; observability; predictability; 

provability; reconfigurability; repeatability; 
replicability; self-descriptiveness; simplicity; 

standardizability; structuredness; 
supportability; susceptibility; sustainability; 

tailorability; traceability; trainability; 
transferability; trustability; uniformity; 

variability; verifiability; versatility; viability; 
visibility; wrappability            

have definition and attributes

accessibility; adaptability; availability; 
efficiency; fault tolerance; functionality; 
integratability; integrity; maintainability; 
modifiability; performance, portability; 

privacy; readability; reliability; reusability; 
robustness; safety; scalability; security; 

testability; understandability; and usability

 

Figure 4 - NFRs Definition and Attributes

 
3.2 Types 
Our investigation on the types of NFRs in literature resulted in 
identifying 252 types of NFRs. Generally these NFRs consist of 
quality attributes (e.g. maintainability, performance, and 
reliability); development constraints (e.g. timing, cost, and 
development personnel); external interfaces requirements (e.g. 
user interface & human factors, look & feel, and system 
interfacing); business rules (e.g. production life span), and others 
(e.g. cultural, political, and environmental). Among these 252 
types, 114 types correspond to the NFRs definitions that have 
been discussed specifically in relation to “the quality”. The list of 
these 114 NFRs types is presented in Figure 3.  
 
Further investigation to the NFRs types list shows that 23 types of 
NFRs (20.18%) have definition and attributes, 30 types (26.32%) 
only have definition, and the rest 61 types (53.50%) were 
introduced without definition or attributes. The detail list of NFRs 
in each of this classification is illustrated in Figure 4.  

Furthermore, the result of frequency analysis indicates that 
performance (88.68%); reliability (67.92%); usability (62.26%); 
security (60.38%); and maintainability (54.72%) are the top five 
of the most frequent types of NFRs listed in the NFRs catalogue2. 
The detail definition and attributes of these top five NFRs are 
presented in Table 2. These definitions and attributes are 
decomposed by integrating several definitions and NFRs 
attributes based on general complementary description stated in 
the scholarly literatures. The investigation also shows that some 
types of NFRs are also recognized as the attribute of the other 
NFRs. For example, integrity, availability, and confidentiality are 
those NFRs which also become the attributes of security. 
Therefore, in one place those three NFRs are considered as NFRs 
while in another place they are also considered as the attributes of 
the other NFRs. 
                                                                 
2 We refer to these NFRs as the most commonly considered 

NFRs. 



3.3  NFRs, Types of Systems and Application 
Domains 
In this section, mapping between each type of system and its 
relevant NFRs as well as between each application domain and its 
relevant NFRs are presented.  
 

 
 

Legend: 
 

 

1 Accuracy 
2 Availability 
3 Communicativeness 
4 Compatibility 
5 Completeness 
6 Confidentiality 
7 Conformance 
8 Dependability 
9 Extensibility 
 

 

10 Installability 
11 Integrity 
12 Interoperability 
13 Maintainability 
14 Performance 
15 Privacy 
16 Portability 
17 Provability 
18 Reliability 

 

19 Reusability 
20 Safety 
21 Scalability 
22 Security 
23 Standardizability 
24 Traceability 
25 Usability 
26 Verifiability 
27 Viability 

Figure 5 - Type of Systems and Relevant NFRs 

3.3.1 NFRs and Types of Systems 
From the investigation, five types of systems with their relevant 
NFRs were identified. These are real-time systems; safety-critical 
systems; web systems; information systems; and process 
controlled systems. Mapping between each type of system and its 
relevant NFRs is illustrated in Figure 5. 
 
As shown in Venn diagram (Figure 5), three types of NFRs:  
performance, security, and usability are NFRs that are considered 
in all five types of systems, while reliability is a type of NFRs 
considered in four types of systems (real-time systems, safety-
critical systems, information systems, and process-controlled 
systems). It indicates that the former three NFRs are the most 
common NFRs in each type of software being developed. 

3.3.2 NFRs and Application Domains  
By adopting a well-known software application domain taxonomy 
from the Digital’s Industry Taxonomy [30, 31], in this 
investigation eight different application domains were considered: 
banking and finance; education; energy resources; government 
and military; insurance; medical/health care; telecommunication 
services; and transportation. Mapping between each software 
application domain and its relevant NFRs is presented in Table 3.  
 
Further analysis of Table 3 shows that performance and usability 
requirements are considered in almost all application domains 
(seven out of eight domains); security is considered in six 
domains; confidentiality is considered in five domains; and 
accuracy and reliability are considered in four domains. 
Therefore, findings from section  3.3.1 and  3.3.2 indicate that 
performance and usability are the most commonly considered 
NFRs in various types of systems and application domains. 

 

Table 2 - The Most Commonly Considered NFRs 

NFRs Definition Attributes 

Performance 

requirements that specify the capability of software 
product to provide appropriate performance relative to 
the amount of resources needed to perform full 
functionality under stated conditions 

response time, space, capacity, latency, throughput, 
computation, execution speed, transit delay, workload, 
resource utilization, memory usage,  accuracy, efficiency 
compliance, modes, delay, miss rates, data loss, 
concurrent transaction processing 

Reliability 

requirements that specify the capability of software 
product to operates without failure and maintains a 
specified level of performance when used under 
specified normal conditions during a given time period 

completeness, accuracy, consistency, availability, 
integrity, correctness, maturity, fault tolerance, 
recoverability, reliability, compliance, failure rate/critical 
failure 

Usability 

requirements that specify the end-user-interactions 
with the system and the effort required to learn, 
operate, prepare input, and interpret the output of the 
system 

learnability, understandability, operability, attractiveness, 
usability compliance, ease of use, human engineering, 
user friendliness, memorability, efficiency, user 
productivity, usefulness, likeability, user reaction time 

Security 
requirements that concern about preventing 
unauthorized access to the system, programs, and data 

confidentiality, integrity, availability, access control, 
authentication 

Maintainability 

requirements that describe the capability of the 
software product to be modified that may include 
correcting a defect or make an improvement or change 
in the software 

testability, understandability, modifiability, analyzability, 
changeability, stability, maintainability compliance 



Table 3 - Application Domains and Relevant NFRs 

Application 
Domain Relevant NFRs 

Banking and 
Finance 

accuracy, confidentiality, performance, 
security, usability 

Education interoperability, performance, reliability, 
scalability, security, usability 

Energy 
Resources 

availability, performance, reliability, 
safety, usability 

Government 
and Military 

accuracy, confidentiality, performance, 
privacy, provability, reusability, security, 
standardizability, usability, verifiability, 
viability 

Insurance accuracy, confidentiality, integrity, 
interoperability, security, usability 

Medical/Health 
Care 

communicativeness, confidentiality, 
integrity, performance, privacy, reliability, 
safety, security, traceability, usability 

Telecommuni-
cation Services 

compatibility, conformance, dependability, 
installability, maintainability, 
performance, portability, reliability, 
usability 

Transportation 

accuracy, availability, compatibility, 
completeness, confidentiality, 
dependability, integrity, performance, 
safety, security, verifiability 

 

4. DISCUSSION AND CONCLUSION 
This paper presents the results of a systematic investigation of 
three essential dimensions of NFRs: (1) definition and 
terminology; (2) types; and (3) NFRs in various types of systems 
and application domains. Two different perspectives of how 
software engineering community considers the notion NFRs have 
been identified. Other similar terms to represent NFRs in each 
perspective have also been discussed. By conducting an extensive 
literature review, 252 types of NFRs have been identified where 
114 of them are NFRs that have been discussed specifically in 
relation to the quality of the system. Among them, performance, 
reliability, usability, security, and maintainability are five of the 
most frequent NFRs listed in the NFRs catalogue. Mapping 
between NFRs and various types of systems as well as between 
NFRs and the application domains have also been presented as the 
paper’s original contribution. From this study, performance, 
security, and usability are the most common NFRs considered in 
all five types of systems (real time systems, safety critical systems, 
web systems, information systems, and process-controlled 
systems) while performance and usability requirements are two 
NFRs that are considered in almost all application domains (seven 
out of eight application domains).  
 
It is expected that findings presented in this paper would 
contribute to the software engineering research community in 
three ways: (1) to improve the understanding about the notion of 
NFRs; (2) to motivate the software engineering community to 

reach a consensus about several NFRs dimensions (e.g. definition, 
scope, terminology, types and granularity level of NFRs types and 
attributes, and the taxonomy of NFRs); and (3) the top five most 
considered NFRs presented in this paper (performance, reliability, 
usability, security, and maintainability) are expected to inform and 
motivate the research community to perform in-depth studies 
about these NFRs. Furthermore, these findings would benefit 
software developers in three ways. (1) The comprehensive list of 
NFRs types will let developers know what types of NFRs are 
there for the system being developed. (2) The matrix of relevant 
NFRs is expected to help developers to identify the important 
NFRs for their particular system being developed. Therefore, 
developers would be able to discover which NFRs should get 
attention in the project they are working on, depending on the 
type of system and/or the system application domain. For 
example, in the development of an embedded system, the 
catalogue of NFRs types as well as the matrix of relevant NFRs 
will help developers in identifying which NFRs need to be 
included in the software requirements specification. This matrix 
can act as a checklist which software developers can use to ensure 
that the system specification is complete with respect to the NFRs 
coverage. (3) This matrix can help the elicitation process by 
making sure that in the elicitation activity, those relevant NFRs 
have been discussed with the system stakeholders.  
 
This study is conducted as part of a long term project of 
investigating conflicts among NFRs. The ultimate goal is to 
develop a framework to effectively identify and manage potential 
conflicts among them. Findings in this investigation will provide 
valuable insight into the mostly cited and investigated NFRs in 
the literature. The next step in this overall research project is to 
select those NFRs that are known to be frequently in conflict. 
Therefore the insight gained from the findings presented in this 
paper will assist in the selection of which NFRs to investigate for 
further research.  
 
This study has two constraints: (1) the potential overlaps that exist 
among definitions and attributes of each NFRs were not 
investigated; (2) this study does not have the intention to create a 
structural hierarchy of NFRs types. These constraints will be 
considered for future research. 
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