
An Investigation into the Notion of Non-Functional
Requirements

Dewi Mairiza, Didar Zowghi, Nurie Nurmuliani

Faculty of Engineering and Information Technology

University of Technology Sydney, PO Box 123 Broadway, NSW 2007, Australia
(mairiza, didar, nur)@it.uts.edu.au

ABSTRACT
Although Non-Functional Requirements (NFRs) are recognized as
very important contributors to the success of software projects,
studies to date indicate that there is still no general consensus in
the software engineering community regarding the notion of
NFRs. This paper presents the result of an extensive and
systematic analysis of the extant literature over three NFRs
dimensions: (1) definition and terminology; (2) types; and (3)
relevant NFRs in various types of systems and application
domains. Two different perspectives to consider NFRs are
described. A comprehensive catalogue of NFRs types as well as
the top five NFRs that are frequently considered are presented.
This paper also offers a novel classification of NFRs based on
types of systems and application domains. This classification
could assist software developers in identifying which NFRs are
important in a particular application domain and for specific
systems.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications

General Terms
Documentation, Performance, Reliability, Security

Keywords
Non-Functional Requirements, classification, types, type of
system, application domain

1. INTRODUCTION
Non-Functional Requirements (NFRs) are recognized as very
important factor to the success of software project.[1-3]. If NFRs
are not addressed adequately, a number of potential problems may
occur. For instance software which is inconsistent and of poor
quality; dissatisfaction of clients, end-users, and developers;
causing time and cost overrun for fixing software errors [1]. In the
software development life cycle, NFRs are considered as the
constraints or qualifications of the operations [4]. NFRs place
restrictions on the product being developed, the development

process, and specify external constraints that the product must
exhibit [5]. [6] [7] [8]

NFRs are often more critical than individual Functional
Requirements (FRs) in the determination of a system's perceived
success or failure [6; cited by 7, 8]. Neglecting NFRs has led to a
series of software failures [3, 9-12], such as systemic failure in
London Ambulance System [10, 11], the system failure because of
performance-scalability problems in the New Jersey Department
of Motor Vehicles Licensing System [13] and some other
examples as described in [10, 13-15].

Though NFRs are widely recognized very important, literature
review shows that NFRs are often neglected, poorly understood
and not considered adequately in software development. In the
development of software system, users naturally focus on
specifying their functional or behavioral requirements, i.e. the
things the product must do [1, 7]. Hence NFRs are often
overlooked in the software development process [3, 16]. A
number of studies investigating practices of dealing with NFRs in
the software industry also report that commonly software
developers do not pay sufficient attention to NFRs [3, 16-18].
NFRs are not elicited at the same time and the same level of
details as the FRs and they are often poorly articulated in the
requirements document [17, 18].

Further investigation shows that neglecting NFRs in developing a
software system is strongly influenced by NFRs’ characteristics,
that are subjective, relative, interacting [1], abstract [10, 19] and
not uniform in nature [2]. These characteristics cause NFRs
difficult to deal with. It is more difficult to model, verify, test, and
measure NFRs to compare with FRs [1, 8, 20, 21]. Also,
capturing, specifying, and managing NFRs are still difficult to
perform because most of software developers do not have
adequate knowledge about NFRs and little help is available in the
literature [22]. Majority of software engineering research,
particularly requirements engineering research only deal with
FRs, i.e. ensuring that the necessary functionality of the system is
delivered to the user [23].

The term NFRs has been in use for almost three decades.
However, studies to date indicate that currently there is still no
general consensus in the software engineering community
regarding the notion of NFRs [1, 7, 24, 25]. Glinz [24, 25] even
argues to rethink the notion of NFRs due to the fact that there is
not a clear concept about what a non-functional requirement really
is. Literature review also shows that a number of essential

mailto:(mairiza,%20didar,%20nur)@it.uts.edu.au

dimensions related to NFRs (e.g. a variety of perspectives in
considering NFRs as well as the relevant NFRs in various types of
systems and application domains) are not well understood. Due to
these reasons, this research is motivated to perform an extensive
and systematic investigation of the notion of NFRs in the software
engineering literature in order to increase the understanding of
this complex and multifaceted phenomena.

This study covers three essential dimensions: (1) definition and
terminology; (2) types; and (3) NFRs in various types of systems
and application domains. A number of research questions have
been derived from these three parameters:

1. How many perspectives are there in the software
engineering community when considering NFRs?

2. What is the typology of NFRs?
3. Which types of NFRs are commonly considered or

often discussed in the literature?
4. Which types of NFRs are of concern in various

types of systems?
5. Which types of NFRs are of concern in various

application domains?

The major contributions of this paper are a novel classification of
NFRs based on typology, definition, types of systems, and
application domains. These contributions would benefit software
engineering community (i.e. researcher and practitioner) in many
ways. Mapping between NFRs and the types of systems as well as
between NFRs and the application domains were developed by
conducting a cross-referencing analysis of the literature.

This paper is organized in four sections. The first section is
introduction that describes the importance of NFRs in the
software development. The second section describes the research
approach and source of information. Findings from investigation
are described in section three. Then, section 4 gives a conclusion,
discussion and future works by highlighting some open issues
which are acquired from this investigation.

2. RESEARCH METHODOLOGY
The investigation was conducted from 182 sources of information
published over the last three decades. Majority of them are articles
from academic resources within the discipline of software
engineering in general and requirements engineering in particular
(e.g. journal paper, articles from conference proceeding, and
IEEE/ISO standard), and a few are industrial reports (e.g.
technical reports and white papers). All of these articles cover
various issues of NFRs, as illustrated in Figure 1. The starting
point for selection of the papers to be reviewed was the study
conducted by Chung et al. [1]. The detail composition of software
engineering literature investigated for this research is presented in
Table 1.

Table 1 - Sources of Information

Type of Literature Number of
Literature

Journal 78
Conference Paper/Proceeding 70
Book 16
Others (technical report, standard, etc) 18

Each article was then analyzed systematically using content
analysis technique [26, 27]. Content analysis was selected because
it enables researchers to identify trends and patterns in the
literature through the frequency of key words, and by coding and
categorizing the data into a group of words with similar meaning
or connotations [27, 28]. This technique is also applicable to all
domain contexts [26, 29].

Non-functional Requirements (NFRs) Research

Identifying
NFRs

Managing
NFRs

Evaluating
NFRs

Product-OrientedProcess-Oriented

Modeling
NFRs

Figure 1 - NFRs Research

Three essential dimensions were defined as the research baseline:
(1) definition and terminology, (2) types, and (3) NFRs in various
types of systems and application domains. For the first dimension,
definition and terminology, each of definition and terminology
that were presented in literature were catalogued. Then, the
similarity and dissimilarity aspects among them were analyzed.
From this investigation, the different perspectives of how software
engineering community considers NFRs and terminologies
introduced to represent NFRs in each perspective were visualized.

For the second dimension, types of NFRs, all types from the
catalogue of NFRs types were collected. Their definition and
attribute1 were recorded. Then, frequency analysis for each type in
order to identify the more commonly considered NFRs, i.e. NFRs
that are frequently listed in the catalogues of NFRs types, was
conducted.

For the last of those three dimensions, NFRs in various types of
systems and application domains, a mapping was created between
types of systems (as well as application domains) and the types of
NFRs considered in each type of system (or application domain).
In this study, five different types of systems and their relevant
NFRs were identified, while for the application domain, a well-
known application domain taxonomy from Digital’s Industry
Taxonomy [30, 31] was adopted.

3. FINDINGS
With respect to the research questions, findings in this
investigation can be categorized into three groups: definition and
terminology; types; the relevant NFRs in various types of systems
and application domains. [32-34]

1In this paper, the term attribute is considered as the major

components of each NFRs type. In the literature, attribute is also
referred as quality subfactors [32-34] or NFRs subtypes [1].

3.1 Definition and Terminology

NFRs Definition

NFRs as the set of system
properties/characteristics/

constraints

Quality Attributes

Development Constraints

Business Rules

External Interfaces

quality requirements,
software system attributes,

quality attributes

NFRs as the
Quality Attributes

constraints, non-behavioral requirements,
concerns, goals, extra-functional requirements

Similar Terms Similar Terms

Figure 2 - Definition and Terminology NFRs

Figure 2 shows the result of investigation about definition and
terminology NFRs in literature. This figure illustrates that
generally, the term NFRs is considered for two different
perspectives: (1) NFRs as the requirements that describe the
properties, characteristics or constraints that a software system
must exhibit; and (2) NFRs as the requirements that describe the
quality attributes that the software product must have.

In the first perspective, NFRs consist of several aspects, such as
development constraints, business rules, external interfaces,
quality attributes, and any other requirements that do not describe
the functionality of the system. The term constraints,
nonbehavioral requirements, concerns, goals, and extra-functional
requirements are also used to represent NFRs in this perspective.
The second perspective takes the narrow focus of NFRs by only
considering the quality attributes. Therefore, this perspective is
the subset of the first perspective. The term quality requirements,
software system attributes, and quality attributes are also used to
represent NFRs.

1. Accessibility/Access Control
2. Accountability
3. Accuracy
4. Adaptability
5. Additivity
6. Adjustability
7. Affordability
8. Agility
9. Analyzability
10. Anonymity
11. Atomicity
12. Attractiveness
13. Auditability
14. Augmentability
15. Availability
16. Certainty
17. Changeability
18. Communicativeness
19. Compatibility
20. Completeness
21. Complexity/Interacting
 Complexity
22. Composability
23. Comprehensibility
24. Comprehensiveness
25. Conciseness
26. Confidentiality
27. Configurability
28. Conformance
29. Consistency

30. Controllability
31. Correctness
32. Customizability
33. Debuggability
34. Decomposability
35. Defensibility
36. Demonstrability
37. Dependability
38. Distributivity
39. Durability
40. Effectiveness
41. Efficiency/Device Efficiency
42. Enhanceability
43. Evolvability
44. Expandability
45. Expressiveness
46. Extendability
47. Extensibility
48. Fault/Failure Tolerance
49. Feasibility
50. Flexibility
51. Formality
52. Functionality
53. Generality
54. Immunity
55. Installability
56. Integratability
57. Integrity
58. Interoperability
59. Learnability

60. Legibility
61. Likeability
62. Localizability
63. Maintainability
64. Manageability
65. Maturity
66. Measurability
67. Mobility
68. Modifiability
69. Nomadicity
70. Observability
71. Operability
72. Performance/Efficiency/
 Time or Space Bounds
73. Portability
74. Predictability
75. Privacy
76. Provability
77. Quality of Service
78. Readability
79. Reconfigurability
80. Recoverability
81. Reliability
82. Repeatability
83. Replaceability
84. Replicability
85. Reusability
86. Robustness
87. Safety

88. Scalability
89. Security/Control and
 Security
90. Self-Descriptiveness
91. Simplicity
92. Stability
93. Standardizability/
 Standardization/Standard
94. Structuredness
95. Suitability
96. Supportability
97. Survivability
98. Susceptibility
99. Sustainability
100. Tailorability
101. Testability
102. Traceability
103. Trainability
104. Transferability
105. Trustability
106. Understandability
107. Uniformity
108. Usability
109. Variability
110. Verifiability
111. Versatility
112. Viability
113. Visibility
114. Wrappability

Figure 3 - The List of NFRs Types

20.18%

26.32%
53.51%

have definition and attributes have definition without definition and attributes

have definition

accuracy; analyzability; attractiveness;
changeability; communicativeness;

completeness; complexity; composability;
confidentiality; consistency; correctness;
defensibility; dependability; evolvability;

extendability; flexibility; immunity;
installability; interoperability; learnability;

likeability; localizability; maturity;
operability; quality of service;

recoverability; replaceability; stability;
suitability; survivability

without definition and attributes

accountability; additivity; adjustability;
affordability; agility; anonymity; atomicity;

auditability; augmentability; certainty;
compatibility; comprehensibility;

comprehensiveness; conciseness;
configurability; conformance; controlability;

customizability; debuggability;
decomposability; demonstrability;

distributivity; durability; effectiveness;
enhanceability; expandability;

expressiveness; extensibility; feasibility;
formality; generality; legibility;

manageability; measurability; mobility;
nomadicity; observability; predictability;

provability; reconfigurability; repeatability;
replicability; self-descriptiveness; simplicity;

standardizability; structuredness;
supportability; susceptibility; sustainability;

tailorability; traceability; trainability;
transferability; trustability; uniformity;

variability; verifiability; versatility; viability;
visibility; wrappability

have definition and attributes

accessibility; adaptability; availability;
efficiency; fault tolerance; functionality;
integratability; integrity; maintainability;
modifiability; performance, portability;

privacy; readability; reliability; reusability;
robustness; safety; scalability; security;

testability; understandability; and usability

Figure 4 - NFRs Definition and Attributes

3.2 Types
Our investigation on the types of NFRs in literature resulted in
identifying 252 types of NFRs. Generally these NFRs consist of
quality attributes (e.g. maintainability, performance, and
reliability); development constraints (e.g. timing, cost, and
development personnel); external interfaces requirements (e.g.
user interface & human factors, look & feel, and system
interfacing); business rules (e.g. production life span), and others
(e.g. cultural, political, and environmental). Among these 252
types, 114 types correspond to the NFRs definitions that have
been discussed specifically in relation to “the quality”. The list of
these 114 NFRs types is presented in Figure 3.

Further investigation to the NFRs types list shows that 23 types of
NFRs (20.18%) have definition and attributes, 30 types (26.32%)
only have definition, and the rest 61 types (53.50%) were
introduced without definition or attributes. The detail list of NFRs
in each of this classification is illustrated in Figure 4.

Furthermore, the result of frequency analysis indicates that
performance (88.68%); reliability (67.92%); usability (62.26%);
security (60.38%); and maintainability (54.72%) are the top five
of the most frequent types of NFRs listed in the NFRs catalogue2.
The detail definition and attributes of these top five NFRs are
presented in Table 2. These definitions and attributes are
decomposed by integrating several definitions and NFRs
attributes based on general complementary description stated in
the scholarly literatures. The investigation also shows that some
types of NFRs are also recognized as the attribute of the other
NFRs. For example, integrity, availability, and confidentiality are
those NFRs which also become the attributes of security.
Therefore, in one place those three NFRs are considered as NFRs
while in another place they are also considered as the attributes of
the other NFRs.

2 We refer to these NFRs as the most commonly considered

NFRs.

3.3 NFRs, Types of Systems and Application
Domains
In this section, mapping between each type of system and its
relevant NFRs as well as between each application domain and its
relevant NFRs are presented.

Legend:

1 Accuracy
2 Availability
3 Communicativeness
4 Compatibility
5 Completeness
6 Confidentiality
7 Conformance
8 Dependability
9 Extensibility

10 Installability
11 Integrity
12 Interoperability
13 Maintainability
14 Performance
15 Privacy
16 Portability
17 Provability
18 Reliability

19 Reusability
20 Safety
21 Scalability
22 Security
23 Standardizability
24 Traceability
25 Usability
26 Verifiability
27 Viability

Figure 5 - Type of Systems and Relevant NFRs

3.3.1 NFRs and Types of Systems
From the investigation, five types of systems with their relevant
NFRs were identified. These are real-time systems; safety-critical
systems; web systems; information systems; and process
controlled systems. Mapping between each type of system and its
relevant NFRs is illustrated in Figure 5.

As shown in Venn diagram (Figure 5), three types of NFRs:
performance, security, and usability are NFRs that are considered
in all five types of systems, while reliability is a type of NFRs
considered in four types of systems (real-time systems, safety-
critical systems, information systems, and process-controlled
systems). It indicates that the former three NFRs are the most
common NFRs in each type of software being developed.

3.3.2 NFRs and Application Domains
By adopting a well-known software application domain taxonomy
from the Digital’s Industry Taxonomy [30, 31], in this
investigation eight different application domains were considered:
banking and finance; education; energy resources; government
and military; insurance; medical/health care; telecommunication
services; and transportation. Mapping between each software
application domain and its relevant NFRs is presented in Table 3.

Further analysis of Table 3 shows that performance and usability
requirements are considered in almost all application domains
(seven out of eight domains); security is considered in six
domains; confidentiality is considered in five domains; and
accuracy and reliability are considered in four domains.
Therefore, findings from section 3.3.1 and 3.3.2 indicate that
performance and usability are the most commonly considered
NFRs in various types of systems and application domains.

Table 2 - The Most Commonly Considered NFRs

NFRs Definition Attributes

Performance

requirements that specify the capability of software
product to provide appropriate performance relative to
the amount of resources needed to perform full
functionality under stated conditions

response time, space, capacity, latency, throughput,
computation, execution speed, transit delay, workload,
resource utilization, memory usage, accuracy, efficiency
compliance, modes, delay, miss rates, data loss,
concurrent transaction processing

Reliability

requirements that specify the capability of software
product to operates without failure and maintains a
specified level of performance when used under
specified normal conditions during a given time period

completeness, accuracy, consistency, availability,
integrity, correctness, maturity, fault tolerance,
recoverability, reliability, compliance, failure rate/critical
failure

Usability

requirements that specify the end-user-interactions
with the system and the effort required to learn,
operate, prepare input, and interpret the output of the
system

learnability, understandability, operability, attractiveness,
usability compliance, ease of use, human engineering,
user friendliness, memorability, efficiency, user
productivity, usefulness, likeability, user reaction time

Security
requirements that concern about preventing
unauthorized access to the system, programs, and data

confidentiality, integrity, availability, access control,
authentication

Maintainability

requirements that describe the capability of the
software product to be modified that may include
correcting a defect or make an improvement or change
in the software

testability, understandability, modifiability, analyzability,
changeability, stability, maintainability compliance

Table 3 - Application Domains and Relevant NFRs

Application
Domain Relevant NFRs

Banking and
Finance

accuracy, confidentiality, performance,
security, usability

Education interoperability, performance, reliability,
scalability, security, usability

Energy
Resources

availability, performance, reliability,
safety, usability

Government
and Military

accuracy, confidentiality, performance,
privacy, provability, reusability, security,
standardizability, usability, verifiability,
viability

Insurance accuracy, confidentiality, integrity,
interoperability, security, usability

Medical/Health
Care

communicativeness, confidentiality,
integrity, performance, privacy, reliability,
safety, security, traceability, usability

Telecommuni-
cation Services

compatibility, conformance, dependability,
installability, maintainability,
performance, portability, reliability,
usability

Transportation

accuracy, availability, compatibility,
completeness, confidentiality,
dependability, integrity, performance,
safety, security, verifiability

4. DISCUSSION AND CONCLUSION
This paper presents the results of a systematic investigation of
three essential dimensions of NFRs: (1) definition and
terminology; (2) types; and (3) NFRs in various types of systems
and application domains. Two different perspectives of how
software engineering community considers the notion NFRs have
been identified. Other similar terms to represent NFRs in each
perspective have also been discussed. By conducting an extensive
literature review, 252 types of NFRs have been identified where
114 of them are NFRs that have been discussed specifically in
relation to the quality of the system. Among them, performance,
reliability, usability, security, and maintainability are five of the
most frequent NFRs listed in the NFRs catalogue. Mapping
between NFRs and various types of systems as well as between
NFRs and the application domains have also been presented as the
paper’s original contribution. From this study, performance,
security, and usability are the most common NFRs considered in
all five types of systems (real time systems, safety critical systems,
web systems, information systems, and process-controlled
systems) while performance and usability requirements are two
NFRs that are considered in almost all application domains (seven
out of eight application domains).

It is expected that findings presented in this paper would
contribute to the software engineering research community in
three ways: (1) to improve the understanding about the notion of
NFRs; (2) to motivate the software engineering community to

reach a consensus about several NFRs dimensions (e.g. definition,
scope, terminology, types and granularity level of NFRs types and
attributes, and the taxonomy of NFRs); and (3) the top five most
considered NFRs presented in this paper (performance, reliability,
usability, security, and maintainability) are expected to inform and
motivate the research community to perform in-depth studies
about these NFRs. Furthermore, these findings would benefit
software developers in three ways. (1) The comprehensive list of
NFRs types will let developers know what types of NFRs are
there for the system being developed. (2) The matrix of relevant
NFRs is expected to help developers to identify the important
NFRs for their particular system being developed. Therefore,
developers would be able to discover which NFRs should get
attention in the project they are working on, depending on the
type of system and/or the system application domain. For
example, in the development of an embedded system, the
catalogue of NFRs types as well as the matrix of relevant NFRs
will help developers in identifying which NFRs need to be
included in the software requirements specification. This matrix
can act as a checklist which software developers can use to ensure
that the system specification is complete with respect to the NFRs
coverage. (3) This matrix can help the elicitation process by
making sure that in the elicitation activity, those relevant NFRs
have been discussed with the system stakeholders.

This study is conducted as part of a long term project of
investigating conflicts among NFRs. The ultimate goal is to
develop a framework to effectively identify and manage potential
conflicts among them. Findings in this investigation will provide
valuable insight into the mostly cited and investigated NFRs in
the literature. The next step in this overall research project is to
select those NFRs that are known to be frequently in conflict.
Therefore the insight gained from the findings presented in this
paper will assist in the selection of which NFRs to investigate for
further research.

This study has two constraints: (1) the potential overlaps that exist
among definitions and attributes of each NFRs were not
investigated; (2) this study does not have the intention to create a
structural hierarchy of NFRs types. These constraints will be
considered for future research.

ACKNOWLEDGMENTS
We would like to thank The International Schlumberger
Foundation for funding this research through Faculty for the
Future Award Program.

REFERENCES
[1] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-

functional requirements in software engineering.
Massachusetts: Kluwer Academic Publishers, 2000.

[2] D. Firesmith, "Using quality models to engineer quality
requirements," Journal of Object Technology, vol. 2,
pp. 67-75, 2003.

[3] C. Ebert, "Putting requirement management into praxis:
dealing with nonfunctional requirements," Information
and Software Technology, vol. 40, pp. 175-185, 1998.

[4] R. T. Mittermeir, N. Roussopoulos, R. T. Yeh, and P.
A. Ng, Modern software engineering, foundations and

current perspectives. New York, NY, USA: Van
Nostrand Reinhold Co, 1989.

[5] G. Kotonya and I. Sommerville, Non-functional
requirements, 1998.

[6] R. N. Charette, Applications strategies for risk analysis.
New York: McGraw-Hill, 1990.

[7] K. E. Wiegers, Software requirements, 2nd ed.
Washington: Microsoft Press, 2003.

[8] I. Sommerville, Software Engineering, 7 ed. Essex,
England: Pearson Education Limited, 2004.

[9] M. Barbacci, M. H. Klein, T. A. Longstaff, and C. B.
Weinstock, "Quality Attributes," CMU/SEI-95-TR-021
ESC-TR-95-021 1995.

[10] K. K. Breitman, J. C. S. Prado Leite, and A. Finkelstein,
"The world's a stage: a survey on requirements
engineering using a real-life case study," Journal of the
Brazilian Computer Society, vol. 6, pp. 1-57, 1999.

[11] A. Finkelstein and J. Dowell, "A comedy of errors: the
London ambulance service case study," in Eigth
International Workshop Software Specification and
Design, 1996, pp. 2-5.

[12] D. R. Lindstrom, "Five ways to destroy a development
project," IEEE Software, vol. 10, pp. 55-58, 1993.

[13] B. Boehm and H. In, "Identifying quality-requirements
conflict," IEEE Software, vol. 13, pp. 25-35, 1996.

[14] N. G. Leveson and C. S. Turner, "An investigation of
the Therac-25 accidents," IEEE Computer, vol. 26, pp.
18-41, 1993.

[15] H. In, "Conflict identification and resolution for
software attribute requirements," in Faculty of the
Graduate School vol. Doctor of Philosophy: University
of Southern California, 1998.

[16] D. J. Grimshaw and G. W. Draper, "Non-functional
requirements analysis: deficiencies in structured
methods," Information and Software Technology, vol.
43, pp. 629-634, 2001.

[17] N. Heumesser, A. Trendowicz, D. Kerkow, H. Gross,
and L. Loomans, "Essential and requisites for the
management of evolution - requirements and
incremental validation," Information Technology for
European Advancement, ITEA-EMPRESS consortium
2003.

[18] N. Yusop, D. Zowghi, and D. Lowe, "The impacts of
non-functional requirements in web system projects,"
International Journal of Value Chain Management vol.
2, pp. 18-32, 2008.

[19] G.-C. Roman, "A taxonomy of current issues in
requirements engineering," Computer, vol. 18, pp. 14 -
23, 1985.

[20] J. Cleland-Huang, R. Settimi, O. B. Khadra, E.
Berezhanskaya, and S. Cristina, "Goal-centric
traceability for managing non-functional requirements,"
in ICSE 2005 St. Louis, Missouri, USA: ACM, 2005.

[21] L. M. Cysneiros and J. C. S. do Prado Leite,
"Nonfunctional requirements: from elicitation to
conceptual models," IEEE Transaction on Software
Engineering, vol. 30, pp. 328-350, 2004.

[22] S. Lauesen, Software requirements: styles and
techniques: Addison-Wesley, 2002.

[23] B. Paech and D. Kerkow, "Non-functional requirements
engineering - quality is essential," in 10th International
Workshop on Requirements Engineering: Foundation
for Software Quality, 2004, pp. 27-40.

[24] M. Glinz, "Rethinking the notion of non-functional
requirements," in Third World Congress for Software
Quality, Munich, Germany, 2005, pp. 55-64.

[25] M. Glinz, "On non-functional requirements," in 15th
IEEE International Requirements Engineering
Conference (RE '07), 2007, pp. 21-26.

[26] K. Krippendorff, Content analysis: and introduction to
its methodology, Second ed. Thousand Oaks, USA:
Sage Publications, Inc., 2004.

[27] R. P. Weber, Basic content analysis: Sage Publications,
Inc., 1989.

[28] S. Stemler, "An overview of content analysis," Practical
Assessment, Research & Evaluation, vol. 7, 2001.

[29] K. A. Neuendorf, The content analysis guidebook, First
ed.: Sage Publications, Inc., 2001.

[30] D. E. Corporation, VAX VMS Software Source Book:
Maynard, Mass, 1991.

[31] R. L. Glass and I. Vessey, "Contemporary application-
domain taxonomies," IEEE Software, vol. 12, pp. 63-
76, 1995.

[32] D. Firesmith, "Security use cases," Journal of Object
Technology, vol. 2, pp. 53-64, 2003.

[33] D. Firesmith, "Engineering safety requirements, safety
constraints, and safety-critical requirements," Journal of
Object Technology, vol. 3, pp. 27-42, 2004.

[34] D. Firesmith, "Specifying reusable security
requirements," Journal of Object Technology, vol. 3,
pp. 61-75, 2004.

	1. INTRODUCTION
	2. RESEARCH METHODOLOGY
	3. FINDINGS
	3.1 Definition and Terminology
	3.2 Types
	3.3 NFRs, Types of Systems and Application Domains
	3.3.1 NFRs and Types of Systems
	3.3.2 NFRs and Application Domains

	4. DISCUSSION AND CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

