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Abstract

This paper investigates dependence among insurance claims arising from different lines
of business (LoBs). Using bivariate and multivariate portfolios of losses from different LoBs,
we analyse the ability of various copulas in conjunction with skewed generalised hyperbolic
(GH) marginals to capture the dependence structure between individual insurance risks
forming an aggregate risk of the loss portfolio. The general form skewed GH distribution is
shown to provide the best fit to univariate loss data. When modelling dependency between
LoBs using one-parameter and mixture copula models, we favour models that are capable
of generating upper tail dependence, that is, when several LoBs have a strong tendency to
exhibit extreme losses simultaneously. We compare the selected models in their ability to
quantify risks of multivariate portfolios. By performing an extensive investigation of the in-
and out-of-sample Value-at-Risk (VaR) forecasts by analysing VaR exceptions (i.e., observa-
tions of realised portfolio value that are greater than the estimated VaR), we demonstrate that
the selected models allow to reliably quantify portfolio risk. Our results provide valuable
insights with regards to the nature of dependence and fulfils one of the primary objectives
of the general insurance providers aiming at assessing total risk of an aggregate portfolio of
losses when LoBs are correlated.
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1. Introduction

One of the main objectives of general insurance providers is to determine a risk capital
needed to cover a series of simultaneous claims arising from losses in an unfavourable worst
case scenario. When the total loss of the portfolio is generated by the sum of dependent
losses, it depends not only on the individual losses, but also on the relationship among the
individual risk factors. The need for a reliable dependence modelling framework is captured
in Figure 1, which shows the relationship among fire losses arising from profit, building and
content lines of business (LOBs) in the left panel and between content and profit losses in
the right panel. The data is obtained from Copenhagen reinsurance for the period from
1980 to 1990.1 Strong positive relationship is evident between all individual risks, which is
also confirmed when computing Pearson correlation r, Spearman’s ρ and Kendall’s τ (refer
to Table 1).2 Thus, the insurer should have a realistic view not only on the distribution of
the marginal losses, but also on the dependence between losses arising from different LoBs
for risk management purposes as together they determine adequate capital requirements.
If the allocated capital requirement is underestimated, an insurance company may become
insolvent, while an unnecessary high capital level introduces unnecessary costs.

The risk of insurance losses has been examined by several authors, which include McNeil
et al. (2004), Jorion (2007), Dowd and Blake (2006) and Alemany et al. (2013) among many
others. The impact of the dependency between marginal risks on the sum of these dependent
risks has been assessed by Denuit et al. (1999), Kaas et al. (2000), Denuit et al. (2001), Cossette
et al. (2002), Bolancé et al. (2008) and Bolancé et al. (2014). The findings reported in these
works confirm that when determining allocation of risk capital to each LoB, it is essential to
have a reliable dependence modelling framework that can capture the dependence structure
between individual insurance risks forming an aggregate portfolio risk.

Several research papers have examined the connection between insurance risks in the
context of risk quantification (see, for example, Lee and Lin, 2012; Salzmann and Wüthrich,
2012; Merz et al., 2013; Alm, 2016), but very few have utilised copulas to capture the pos-
sibly non-linear dependence structure between insurance losses (see, e.g., De Jong, 2012;

1We use data from McNeil (1997) that represents log-transformation of fire losses (reported in units of one
million Danish Krone) that result from building, contents and profit claims, for details refer to Section 4.1 on
data description.

2All pairwise correlation coefficients reported in the table are statistically significant: Testing pairwise the
null hypothesis of zero correlation at 5% significance level, we strongly reject the null with p-values ranging
from zero (for the pair contents-profit and Pearson correlation) to 6.77× 10−5 (for the pair contents-building
and Kendall coefficient).
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Figure 1: Profit, building and content losses data (in log-scale) are plotted in the left panel with XY, YZ, and XZ projections, representing
our three-dimensional portfolio example. The size of the data points represents the total loss from all three LoBs. The right panel represents
our two-dimensional portfolio example with a scatter of content and profit losses (in log-scale). The Danish fire data are from Copenhagen
reinsurance for the period from 1980 to 1990.

Diers et al., 2012; Bolancé et al., 2014; Albrecher et al., 2017). Moreover, far less effort has
been directed towards answering what marginal distributions ought to be used when mod-
elling individual insurance losses. In Solvency II3 the standard formula for solvency capital
requirement (SCR) suggests log-normal distribution for losses (i.e., normal distribution for
logarithmic losses) in conjunction with parameter calibration to get an SCR corresponding to
the 99.5% VaR of the insurer’s one-year loss distribution (refer to EIOPA, 2014). However, as
demonstrated in the literature, insurance losses exhibit extreme tails and are severely right
skewed (see, e.g., McNeil (1997), Embrechts et al. (2002), Bernardi et al. (2012), Eling (2012)
and Miljkovic and Grün (2016)). Furthermore, even after applying a logarithmic transforma-
tion, the data is still positively right-skewed and cannot be reliably captured using normal
distribution. This has been recognised by several authors (see, e.g., Lane (2000) and Ver-
nic (2006)) and reconfirmed in this paper. As a consequence, skewed distributions have
emerged in the insurance literature. Bolancé et al. (2008) and Eling (2012) are the pioneering
papers that consider skewed normal and skewed Student-t distributions, respectively, to fit
the insurance claims data and conduct risk analysis for non-life insurance portfolios.

To address the need of a reliable model for the marginals and a reliable non-linear de-
pendence structure between losses, this paper goes beyond considering skewed elliptical

3The Solvency II is a Directive in European Union law that codifies and harmonises the EU insurance
regulation. Primarily this concerns the amount of capital that EU insurance companies must hold to reduce
the risk of insolvency.
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Table 1: Pearson correlation coefficient r, Spearman’s ρ and Kendall’s τ computed for the profit, building and content losses are based on
the Danish fire data obtained from Copenhagen reinsurance for the period from 1980 to 1990.

Building Contents Profits
Panel A: Pearson correlation coefficient r

Building 1.000000 0.282251 0.306523
Contents 0.282251 1.000000 0.667119
Profits 0.306523 0.667119 1.000000

Panel B: Spearman’s ρ

Building 1.0000000 0.1855800 0.2925118
Contents 0.1855800 1.0000000 0.6437903
Profits 0.2925118 0.6437903 1.0000000

Panel C: Kendall’s τ

Building 1.0000000 0.1173472 0.2009090
Contents 0.1173472 1.0000000 0.4621741
Profits 0.2009090 0.4621741 1.0000000

distributions (such as skewed Normal and skewed Student-t), and investigates a broader
class of skewed generalised hyperbolic (GH) distributions. The skewed GH distributions are
used as marginal distributions in conjunction with various copula models in context of the
multivariate risk analysis for non-life insurance portfolios. Thus, the objectives of our paper
can be formulated as follows.

The first objective of this paper is to investigate which marginal distributions from the class
of skewed GH distributions capture reliably insurance losses that are severely right-skewed
and exhibit excess kurtosis. As documented in Nelsen (2006), the choice of the appropri-
ate marginal distributions may be crucial in modelling the dependence behaviour between
variables. To model distributions of the marginals we consider the family of skewed GH
distributions, which incorporates skewed Student-t, variance gamma (VG), normal inverse
gaussian (NIG) and hyperbolic (HYP) distributions as special cases. We aim to identify
the best performing distribution from the skewed GH family as a marginal distribution for
univariate losses.

Our second objective is to find an appropriate multivariate model to capture the depen-
dence structure that is essential to reliable estimation of the total risk of portfolio of losses.
In order to model the dependency between insurance risks we resort to copulas, which are
multivariate distribution functions allowing separation of the marginal distributions (i.e. dis-
tributions of losses from profit, losses from building and losses from content) from the mul-
tivariate dependence structure, see Nelsen (2006), Embrechts (2009), Genest et al. (2009). We
then fit several copula models to the two-dimensional portfolio constructed of content and
profit losses and a three-dimensional portfolio constructed of building, content and profit
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losses. The considered models include one-parameter copulas: Clayton, survival Clayton,
Gaussian, Gumbel, survival Gumbel, Student-t; as well as mixture copula models such as
Clayton - survival Clayton mixture, Clayton - Gumbel mixture, survival Clayton - survival
Gumbel mixture, Gumbel - survival Gumbel mixture. We aim to identify the best performing
copula model for dependence modelling between individual losses in an aggregate portfolio.

In addition to providing an extensive analysis of the copula models with skewed GH
marginals, our final goal is to test the performance of the applied copula models with se-
lected marginals in the in- and out-of-sample risk management application where we esti-
mate the Value-at-Risk (VaR) and the expected shortfall (ES) for bivariate and multivariate
portfolios of losses arising from different LoBs. Using Monte Carlo simulations, we perform
an extensive analysis by investigating the number of exceptions (i.e., observations of realised
portfolio value that are greater than the estimated VaR), the size-adjusted loss function, and
test for unconditional coverage and independence of VaR exceptions. Our results are of im-
portance to market participants wishing to select the best performing model for computing
total risk of an aggregate portfolio of losses, assuming that business lines are correlated.

Our findings highlight important insights into the structure of dependence between in-
surance losses arising from different LoBs as well as their univariate behaviour, and provide
guidance to insurance companies on the risks inherited in the portfolios of such losses. When
assessing the quality of fit to the univariate losses data arising from building, contents and
profit lines, we demonstrate that all special cases from the family of skewed GH distribu-
tions are capable to reliably capture a heavy tailed and right skewed insurance data. We
find that the most general form GH distribution outperforms all other distributions, which
is due to its flexibility achieved through the number of estimated parameters. Regarding the
nature of dependence, we find that those models that are capable of generating upper tail
dependence (i.e. when LoBs have a strong tendency to jointly exhibit extreme losses) pro-
vide the best multivariate fit to the data. These models include Clayton and survival Clayton
mixture, survival Clayton and survival Gumbel mixture, as well as one-parameter models
survival Clayton copula and Gumbel copula. Finally, when comparing these copula models
in their ability to quantify risks of the two- or three-dimensional portfolios we find that for
both, in- and out-of-sample analysis, the one-parameter Gumbel copula in conjunction with
skewed generalised hyperbolic marginals leads to the best performance across all consid-
ered models, resulting in the most reliable VaR and ES forecasts. Our results are important
for insurance companies wishing to reliably quantify portfolio risks, assuming correlation
between insurance business lines within this portfolio.

The remainder of the paper is organised as follows. Section 2 provides an overview of
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multivariate copulas. Section 3 introduces the family of skewed generalised hyperbolic dis-
tributions that will be used as marginal distributions. Empirical analysis, which includes
results on the parametric estimation of marginal distributions and the copula parameters is
presented in Section 4. Section 5 deals with quantification of risks of multivariate portfo-
lios using Value-at-Risk and expected shortfall risk measure, and provides comprehensive
analysis of VaR exception. Section 6 concludes the paper.

2. Copula methodology

In this section we provide an overview of parametric copula families that will be used in
our empirical analysis. Copulas are multivariate distributions which allow to connect d one-
dimensional uniform-(0,1) marginals to a joint cumulative distribution. Pursuant to Sklar’s
theorem (see Joe, 1997), if F is a d-dimensional distribution function with marginals F1 . . . , Fd,
then there exists a copula C with

F(x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)} (2.1)

for every x1, . . . , xd ∈ R. Alternatively, if we let u1 = F1(x1), ..., ud = Fd(xd), then Eq. (2.1)
can be written as

C(u1, ..., ud) = F(F−1
1 (u1), ..., F−1

1 (ud)). (2.2)

Copulas provide a very flexible way to capture the dependence structure between random
variables. They allow to model non-linear dependencies that the linear correlation coefficient
fails to capture, see e.g. Embrechts et al. (2001); Dias (2004).

Additionally, in our empirical analysis, we resort to various survival copulas. A survival
copula C∗ corresponding to a copula C is defined as:

F(x1, . . . , xd) = C∗{F1(x1), . . . , Fd(xd)}, (2.3)

where F(x1, . . . , xd) = P(X1 > x1, . . . Xd > xd). For the bivariate case, C∗ is given by

C∗(u1, u2) = u1 + u2 − 1 + C(1− u1, 1− u2), (2.4)

see Nelsen (2006).

When modelling a non-linear dependence, one may be particularly interested in mod-
elling the occurrence of joint extreme events that can be captured by the coefficient of tail
dependence. For insurance markets this scenario refers to the situation when extreme losses
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occur simultaneously in several LoBs (in our case, when extreme building, contents and
profits losses occur simultaneously).

The tail dependence measure describes the amount of comovements in the tails of the
distributions. For a pair of uniform variables (U1, U2) on the unit square [0, 1]2, we can
define the upper and the lower tail dependence coefficients as

λu = lim
u→1−

P(U1 > u|U2 > u) = lim
u→1−

1− 2u + C(u, u)
1− u

(2.5)

and
λl = lim

u→0+
P(U1 ≤ u|U2 ≤ u) = lim

u→0+

C(u, u)
u

, (2.6)

respectively.

If λu ∈ (0, 1], then U1 and U2 are said to be asymptotically dependent in the upper tail,
and if λu = 0, then U1 and U2 are said to be asymptotically independent in the upper tail.
Similarly, if λl ∈ (0, 1] or λl = 0, then U1 and U2 are said to be asymptotically dependent,
or independent, respectively, in the lower tail. The tail dependence measures for mixture
copula models are detailed in Hu (2006).

We focus our attention on two popular copula families: the elliptical family of copulas and
the Archimedean family of copulas. Elliptical copulas have dependence structures generated by
elliptical distributions, including, for example, the normal and Student-t distributions (see
Lindskog et al., 2003). The Gaussian copula generates the dependence structure given by
the multivariate normal distribution, allowing the choice of any marginal distribution, for
example, normal or Student-t. For the case of normal marginals, that is, if Xj ∼ N(0, 1) and
X = (X1, . . . , Xd)

> ∼ Nd(0, Ψ), where Ψ denotes a correlation matrix, an explicit expression
for the Gaussian copula is given by

CGa
Ψ (u1, . . . , ud) = FX{Φ−1(u1), . . . , Φ−1(ud)}. (2.7)

Thus, combining normal marginals via a Gaussian copula leads to the multivariate normal
distribution. The Student-t copula generates the dependence structure from the multivariate
Student-t distribution. If X = (X1, . . . , Xd)

> ∼ td(ν, µ, Σ) has a multivariate Student-t
distribution with ν degrees of freedom (d.f.), mean vector µ and positive-definite dispersion
or scatter matrix Σ, the Student-t copula is given by

Ct
ν,Ψ(u1, . . . , ud) = tν,Ψ{t−1

ν (u1), . . . , t−1
ν (ud)}, (2.8)
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where t−1
ν is the quantile function from the univariate Student-t distribution, and Ψ is the

correlation matrix associated with Σ.4 The Student-t copula generates symmetric tail depen-
dence with the tail dependence coefficients defined by

λu = λl = 2
(
−tν+1

√
(ν + 1)(1− ρ)/(1 + ρ)

)
, (2.9)

where tν denotes the Student-t distribution function, ν is the number of d.f., and ρ is the
correlation coefficient. Further details in modelling dependence using elliptical distributions
can be found in Hult and Lindskog (2002), Fang et al. (2002) and Frahm et al. (2003). Appli-
cations in risk management are considered, for instance, in Breymann et al. (2003) and Dias
and Embrechts (2010).

Furthermore, we apply the Gumbel and Clayton copulas from the family of Archimedean
copulas. The Clayton copula with the dependence parameter θ ∈ (0, ∞) is defined by

Cθ(u1, . . . , ud) =

{(
d

∑
j=1

u−θ
j

)
− d + 1

}−1/θ

. (2.10)

As θ → ∞, the dependence becomes maximal whilst the independence in the tail is achieved
when θ → 0. The Clayton copula can mimic lower tail dependence with the tail dependence
coefficient of λl = 2−1/θ but no upper tail dependence, that is, λu = 0.

The Gumbel copula with dependence parameter θ ∈ [1, ∞) is given by

Cθ(u1, . . . , ud) = exp

−{ d

∑
j=1

(− log uj)
θ

}1/θ
 . (2.11)

For θ > 1 this copula generates an upper tail dependence with the tail dependence coefficient
of λu = 2− 21/θ but no dependence in the lower tail, that is, λl = 0. For θ = 1 it reduces
to the product copula (i.e., exhibiting independence in the tail): Cθ(u1, . . . , ud) = ∏d

j=1 uj.
Maximal dependence is achieved when θ → ∞. Applications of Archimedean copulas to
financial markets and insurance have been considered in Dias (2004), Wu et al. (2007) and
Chavez-Demoulin and Embrechts (2010).

Apart from the Archimedean and elliptical families of copulas discussed above we con-

4Since copula functions remain invariant under any series of strictly increasing transformations of X (e.g.,
standardisation of the marginal distributions), the copula of a td(ν, µ, Σ) distribution is identical to that of a
td(ν, 0, Ψ). For details, refer to Nelsen (2006).
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sider some mixture models of Archimedean copulas as introduced in Joe (1993). Mixture
copulas usually take the form of a convex combination of two or more copulas. Denoting
CA and CB copulas with dependence parameters θ1 and θ2, respectively, the mixture model
takes the following form:

CX(u1, . . . , ud, θ) = θ3CA
X (u1, . . . , ud, θ1) + (1− θ3)CB

X(u1, . . . , ud, θ2). (2.12)

Empirical applications of mixture copulas in financial and insurance markets can be
found in Dias (2004) and Hu (2006). In our empirical analysis we will consider four mix-
ture models of copulas, namely the Clayton & survival Clayton, Clayton & Gumbel, survival
Clayton & survival Gumbel and the Gumbel & survival Gumbel mixture copulas.

Note that the literature suggests different approaches to the estimation of copulas (e.g.,
see Joe, 1997; Cherubini et al., 2004). In our empirical analysis, we estimate copula parame-
ters using the so-called inference for marginals (IFM) method, which is a sequential two-step
maximum likelihood method. The method recommends estimating marginal parameters in
the first step, and then, substitute those into the copula to obtain the pseudo log-likelihood
function, which is then maximised with respect to the copula dependence parameter θ. For
details on the IFM estimation refer to Appendix (Section 7). An overview of different esti-
mation techniques, including IFM, can be found in McLeish and Small (1988) and Joe (1997).

3. Specification of marginal distributions: Generalised hyperbolic family

Barndorff-Nielsen and Stelzer (1997) has introduced the family of generalised hyperbolic
(GH) distributions with its general form discussed in Barndorff-Nielsen and Stelzer (2005)
and McNeil et al. (2015). GH distributions provide a sufficiently rich class of distributions,
which can be represented as a normal mean-variance mixture where the mixture variable
follows the generalised inverse gaussian (GIG) distribution. A multivariate representation
of skewed GH distributions as well as its applications in insurance risk management can
be found in Ignatieva and Landsman (2017). For the purpose of our empirical analysis,
we will only require the univariate skewed GH distributions to model marginals (insurance
resulting from individual days on building, contents and profits). The univariate skewed
GH distributions, its special and liming cases are presented below.

The distribution of a random variable X ∼ GH(λ, χ, ψ, µ, σ, γ) is characterised by its
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probability density function (pdf)

fX(x) =
ψλ(ψ + γ2σ−2)

1
2−λ(
√

χψ)−λ

√
2πσKλ(

√
χψ)

×
Kλ− 1

2

(√
(χ + Q)(ψ + γ2σ−2)

)
(√

(χ + Q)(ψ + γ2σ−2)
) 1

2−λ
e(x−µ)γσ−2

(3.1)

where parameters χ ≥ 0, ψ ≥ 0 and the quadratic form corresponds to Q = (x − µ)2σ−2.
Function Kλ(·) denotes a modified Bessel function of the third kind with index λ (refer to
Abramowitz and Stegun, 1972 for more details). In Eq. (3.1), µ is interpreted as a location
parameter, σ as a dispersion parameter and γ as a skewness parameter. If γ is set to zero, the
distribution is symmetric around µ. We notice that a linear transformation of GH random
variable is again a GH random variable, see McNeil et al. (2015). Special and limiting cases
of GH distributions are discussed below.

3.1. Special and limiting cases of GH distributions

The GH family contains several special and limiting cases. The limiting cases include
(skewed) Student-t distribution obtained by setting λ < 0, ψ = 0, χ = ν− 2 and ν = −2λ,
see Praetz (1972); and Variance Gamma (VG) distribution obtained when λ > 0, χ = 0
and ψ = 2λ, see Madan and Seneta (1990). In what follows the densities of these limiting
cases are presented. The other two cases, a hyperbolic (HYP) and a normal inverse gaussian
(NIG) distributions are special cases that can be obtained from Eq. (3.1) by simply setting
the parameter λ to 1 or -0.5, respectively. For details refer to Eberlein and Keller (1995) and
Barndorff-Nielsen and Stelzer (2005).

For the non-symmetric Student-t distribution (γ 6= 0) the density results from Eq. (3.1)
when setting ψ = 0, χ = ν− 2 and ν = −2λ and assuming λ < 05:

fX(x) =
(ν− 2)

ν
2 (γTΣ−1γ)

ν+d
2

(2π)
d
2 |Σ| 12 Γ( ν

2 )2
ν
2−1

×
K ν+d

2
(
√
(ν− 2 + Q(x))γTΣ−1γ

(
√
(ν− 2 + Q(x))γTΣ−1γ)

ν+d
2

e(x−µ)TΣ−1γ. (3.2)

For the case when γ = 0 an asymptotic expansion of Kλ(x) reduces the density in Eq. (3.2)
to a classical form of non-skewed Student-t distribution, refer to Ignatieva and Landsman
(2015) for further details. The Variance Gamma (VG) density can be obtained by setting χ = 0,
ψ = 2λ and assuming λ > 0 in Eq. (3.1):

5For simplicity of notation we omit parameters in the notion of f (x, ·).
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fX(x) =
2λλ(2λ + γTΣ−1γ)

d
2−λ

(2π)
d
2 |Σ| 12 Γ(λ)

×
Kλ− d

2
(
√

Q(x)(2λ + γTΣ−1γ))

(
√

Q(x)(2λ + γTΣ−1γ))
d
2−λ

e(x−µ)TΣ−1γ. (3.3)

4. Empirical analysis

In this section we demonstrate how the methodology outlined above can be applied for
modelling dependence between insurance losses using copulas with (skewed) generalised
hyperbolic marginals. First, we describe the data used in our empirical analysis, then pro-
ceed with the estimation of the marginals and estimation of the copula functions.

4.1. Data

We use Danish fire data collected and used in McNeil (1997) to estimate the tails of loss
severity distributions using extreme value theory. The data are obtained from Copenhagen
reinsurance and comprise a set of fire losses that result from building (1990 non-zero ob-
servations), contents (1679 non-zero observations) and profit (616 non-zero observations)
claims for the period from 1980 to 1990. In order to model dependency, we have selected
only those observations for which all three entries (building, contents and profit losses) are
non-zero. This results in a total of 517 observations. The data are in units of one million
Danish Krone and represent large losses, where an aggregate loss (i.e. the sum of building,
profit and fire losses) typically exceeds one million Danish Krone. Similarly to McNeil (1997)
we use the log-transformation.6 Figure 2 shows the empirical cdf of the total log-loss data
evaluated at each of the data points. The empirical cdf for a sample of size n is defined as
Fn(x) = 1

n ∑n
i=1 1{Xi≤x}, where 1{·} is an indicator function taking the value of one if Xi ≤ x

and zero otherwise. The vertical lines represent the 95%, 99% and 99.5% quantiles of the em-
pirical distribution. The x-axis is shown in log-scale and includes losses occurring beyond
these extreme, which are chosen to show extreme behaviour in the tail. While these extreme
observations will be used in estimating in- and out-of-sample Value-at-Risk and Expected
Shortfall of an aggregate portfolio in Section 5, in our next section, Section 4.2, we discuss
the fit of the univariate GH family of distributions to the data on building, contents, profits
and total losses.

6In the following, where we say “losses" or “claims" we refer to logarithmic losses.
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Figure 2: Empirical cdf for the (total) Danish fire losses (x-axis is in log-scale). Vertical lines represent the 95%, 99% and 99.5% quantiles of
the empirical distribution, respectively.

4.2. Estimation of the marginals

In order to fit skewed GH distributions to the univariate data, i.e. to estimate model
parameters for individual data on building, contents or profit losses, we use the maximum
likelihood technique. For different special cases of GH family we fix those parameter values
that correspond to the Student-t, VG, NIG and HYP distributions, respectively, and maximise
the log-likelihood function with respect to the remaining parameters.7 We fit univariate
GH distribution and its special cases to the logarithmic losses resulting from buildings,
contents and profit claims, in order to identify the best performing distribution from the
GH family. For comparison, we also fit normal distribution to the logarithmic losses, which
can serve as a benchmark used in Solvency II to calculate the SCR as the 99.5% Value-
at-Risk (VaR) of the insurer’s one year loss distribution (refer to EIOPA, 2014). Table 2
reports estimated parameters for buildings, contents and profit losses in Panels A, B and C
respectively. The results for the general form GH distribution are reported in the second
column. Additionally, columns three to six contain estimated parameters for each of the
considered special cases (Student-t, VG, NIG and HYP), and column seven reports the results

7We use R package on generalised hyperbolic distributions (ghyp) by David Luethi and Wolfgang Breymann
from the Institute of Data Analysis and Process Design at Zurich University of Applied Sciences.
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for the normal distribution.8 One observes that the skewness parameter γ for for the general
form GH distribution as well as its special cases is positive (if transformed from log-scale to
a standard scale), indicating that the loss data is right skewed. The average loss resulting
from building line in case of the GH distribution corresponds to exp(0.2255) = 1.2529, which
is above one million Danish Krone. The average contents and profit losses are substantively
smaller, and correspond to exp(−1.7050) = 0.1817 and exp(−1.9031) = 0.1491 (i.e. 181
thousand and 149 thousand), respectively. The number of degrees of freedom ν in case of
the Student-t distribution can be computed as ν = −2λ.

In order to assess the quality of fit of each of the distributions we apply three goodness-
of-fit tests proposed in Stephens (1974) and D’Agostino and Stephens (1986). We test the
null hypothesis that the sample comes from a distribution F(x), which is one of the distri-
butions from the family of skewed GH distributions, that is, H0 : F̂n(x) = F(x), where F̂n(x)
represents the empirical cumulative density function (cdf) and F(x) is the theoretical cdf of
GH, Student-t, VG, NIG or HYP distribution. The required test statistics calculated from
the z-values zi = Fn(xi), i = 1, ..., n where F̂n(x) contains estimated parameters, have the
following form:9

1. The Anderson-Darling statistic A2 is obtained as

A2 = −n− 1/n
n

∑
i=1

(2i− 1)(log(zi) + log(1− zn+1−i)). (4.1)

2. The Kolmogorov statistic D is obtained as D = max(D+, D−) where D+ = max1≤i≤n[(i/n)−
zi] and D− = max1≤i≤n[zi − (i − 1)/n]. The modified form statistics which is pro-
posed in Stephens (1974) together with the critical values corresponds to D(

√
n+ 0.12+

0.11/
√

n).

3. The Carmér-von Mises statistic W2 is given by

W2 = 1/12n +
n

∑
i=1

(zi − (2i− 1)/2n)2. (4.2)

The modified form statistic reported in Stephens (1974) is given by (W2 − 0.4/n +

0.6/n2)(1 + 1/n).

8We compared our results with those obtained using pseudo data for estimating copula parameters. Our
estimation procedure leads to the parameter estimates that are close to those specified in the simulations.
Details are available from the authors upon request.

9Note, that observations are sorted in ascending order: x1 ≤ x2 ≤ ... ≤ xn.
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In addition to the above tests for the performance of each model fitted, we use the Akaike
information criterion (AIC), introduced by Akaike (1974), to judge the quality of fit for each
of the distributions:

AIC = −2l̂ + 2k. (4.3)

In Eq. (4.3), l̂ denotes the maximised value of the log-likelihood and k is the number of
parameters for the distribution fitted. Since AIC is defined as minus twice the log-likelihood
plus the penalty term which accounts for the effective number of estimated parameters,
smaller values of AIC indicate a better fit.

Table 2: Parameter estimates (and fixed parameter values) from the univariate fit of GH family of distributions and normal distribution
to the building, contents and profits losses. For the GH family, parameters are computed using maximum likelihood estimation and refer
to X ∼ GH(λ, χ, ψ, µ, σ, γ) with the pdf characterised by Eq. (3.1). In case of normal distribution, µ and σ denote mean and standard
deviation, respectively.

Param. GH Student-t VG NIG HYP Normal
Panel A: Building

λ 0.695969 -1.679011 1.088627 -0.500000 1.000000 -
χ 0.096606 1.358022 0.000000 0.654990 0.015613 -
ψ 1.702319 0.000000 2.177253 0.654990 2.062127 -
µ 0.225508 0.274102 0.238307 0.258622 0.215621 0.264184
σ 0.919386 0.991112 0.915322 0.929960 0.917694 0.916806
γ 0.038933 -0.010576 0.025916 0.005662 0.048738 -

Panel B: Contents

λ 5.036248 -24.43728 5.046387 -0.500000 1.000000-
χ 0.009183 46.87456 0.000000 8.437966 1.594113 -
ψ 10.08395 0.000000 10.09277 8.437966 4.191727 -
µ -1.705063 -5.035216 -1.703853 -2.511307 -1.166411 -0.351062
σ 1.252766 4.684146 1.252835 1.174368 1.389138 1.387794
γ 1.353993 4.684146 1.352802 2.160381 0.824639 -

Panel C: Profits

λ 6.132114 -10.33926 6.300678 -0.500000 1.000000 -
χ 0.133929 18.67852 0.000000 6.994209 4.716896 -
ψ 12.42330 0.000000 12.601360 6.994209 7.503495 -
µ -1.903191 -2.073762 -1.906130 -1.953652 -1.857375 -1.354839
σ 1.441250 1.434851 1.441199 1.439395 1.457313 1.455903
γ 0.548302 0.719008 0.551495 0.599140 0.503120 -

The results for the test statistics and the AIC are reported in Table 3 for the univariate
data on building, contents and profit losses in Panels A, B and C, respectively. The 5% and
1% critical values reported in the last two columns are obtained from Stephens (1974). We
observe that normal distribution provides the poorest fit to the data; it is rejected at 1% sig-
nificance level by all three statistics in case of building losses, and at 5% significance level
by the Carmér-von Mises statistic in case of contents losses. Although normal distribution
is not rejected in case of profit losses, it results in significantly larger values of all three test
statistics and thus, the poorest fit to the data. We conclude that although normal distribution
is extensively used in practice to describe distribution of log-losses, it fails to appropriately
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Figure 3: Left panels: Empirical vs. theoretical cdf; middle panels: histogram representing the empirical distribution (black) vs. GH pdf
(red); right panels: QQ plots. Top, middle and low panels correspond to the building, contents and profit losses, respectively.

capture underlying characteristics of the data. At the same time, none of the theoretical
GH distributions under assessment could be rejected for building, contents and profit losses,
indicating a very good fit of the data with the distributions we selected. The smallest val-
ues of the test statistics are typically achieved for the general form GH distribution (second
column). Figure 3 shows in the (i) left panels: empirical (blue) vs. theoretical GH (red)
cdf, (ii) middle panels: histogram of losses (black) and the best performing fitted pdf of GH
distribution (red); (iii) right panels: the quantile-to-quantile (QQ) which contrasts empirical
quantiles against quantiles from the best performing GH distribution. One observes an ex-
cellent fit of the GH distribution to the building, contents and profit claims data, whereby
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Table 3: Distributional tests based on Anderson-Darling, Kolmogorov and Carmér-von Mises statistics (D and W2 are the modified form
statistics), with critical values for the Danish fire losses data. * and ** indicate rejections of the hypothesised distribution at the 5% and
1% significance levels, respectively. Akaike information criterion (AIC) is also reported. None of the skewed GH distributions could
be rejected while the two smallest values of the test statistics (indicating the best fit) are shown in bold numerals. General form GH
distribution provides the best fit to the data.

Stat. GH Student-t VG NIG HYP Normal Crit.5% Crit.1%
Panel A: Building

A2 0.364672 0.437590 0.368478 0.349796 0.394148 5.165004∗∗ 2.492 3.857
D 0.685501 0.751948 0.683768 0.653612 0.736907 1.891970∗∗ 1.358 1.628
W2 0.141017 0.158344 0.142800 0.143113 0.143985 0.977103∗∗ 0.461 0.743
AIC =1318.231 1323.964 1318.349 1319.461 1318.286 1381.371 — —

Panel B: Contents

A2 0.272998 0.392018 0.273097 0.332737 0.400620 2.374551 2.492 3.857
D 0.508442 0.573274 0.507646 0.545062 0.561523 1.341274 1.358 1.628
W2 0.124142 0.146454 0.124151 0.135361 0.142049 0.502741∗ 0.461 0.743
AIC 1792.133 1792.528 1792.133 1792.262 1796.088 1810.040 — —

Panel C: Profit

A2 0.471268 0.515215 0.470944 0.490424 0.490329 0.867412 2.492 3.857
D 0.755952 0.826130 0.755254 0.789400 0.808248 0.932532 1.358 1.628
W2 0.152217 0.155600 0.152144 0.153686 0.156071 0.212967 0.461 0.743
AIC 1859.318 1859.850 1859.307 1859.609 1859.653 1869.580 — —

even the tails of the losses are captured fairly well. The result obtained using the values
of the AIC statistics are consistent with those reported for the A2, D and W2 test statistics,
indicating that the GH distribution results in the best fit to the data in the majority of the
cases, with an exception of the VG for contents and building data, where it leads to a com-
parable fit. Overall, since all data are fit best by means of the GH distribution, we will use
this distribution for all marginals entering the copula function, which will be discussed in
the next section.

4.3. Copula analysis

In this section we fit various parametric copulas, assuming that marginals follow GH
distribution (general form). As emphasised above, we use the IFM method which suggests
that once marginals have been estimated, they are plugged-into the copula function, and the
pseudo-likelihood function is maximised with respect to the dependence parameter. We con-
sider various Archimedean and elliptical copula, which include Clayton, survival Clayton,
Gaussian, Gumbel, survival Gumbel and Student-t; as well as mixture copula models, which
include Clayton & survival Clayton, Clayton & Gumbel, survival Clayton & survival Gum-
bel and Gumbel & survival Gumbel copulas. Copula parameters estimates with standard
errors, together with the coefficients of lower and upper tail dependence, the Akaike Infor-
mation Criterion (AIC) for model performance, and model ranking are reported in Table 4.
We notice that in case of the mixture models, θ1 and θ2 are the dependence parameters for
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the first and second terms of the mixture, respectively, while θ3 is the parameter which gives
the proportion of the first term in the mixture. For Student-t copula θ1 is the dependence
parameter and θ2 is the number of degrees of freedom. The standard errors are reported in
parentheses.

Table 4: Estimated copula dependence parameters with standard errors, coefficients of lower and upper tail dependence, AIC and model
ranking for the two-dimensional portfolio consisting of content and profit losses, and a three-dimensional portfolio consisting of building,
content and profit losses. In the case of Student-t copula θ2 is the number of degrees of freedom. In case of the mixture models, θ1 and
θ2 are the dependence parameters for the first and second terms of the mixture, respectively, while θ3 is the parameter which gives the
proportion of the first term in the mixture.

Copula model θ̂1(s.e.) θ̂2(s.e.) θ̂3(s.e.) λl λu AIC Rank
Panel A: Portfolio of Content and Profit Losses

Clayton 0.7126(0.0662) - - 0.3780 0.0000 -112.2661 (10)
Surv. Clayton 1.5723(0.1083) - - 0.0000 0.6435 -342.8681 (3)
Gaussian 0.6405(0.0218) - - 0.0000 0.0000 -271.0229 (8)
Gumbel 1.8604(0.0777) - - 0.0000 0.5485 -329.8440 (4)
Surv. Gumbel 1.6056(0.0535) - - 0.4601 0.0000 -183.1137 (9)
Student-t 0.6447(0.0233) 14.988(10.927) - 0.0816 0.0816 -271.2900 (7)
Clayton and surv. Clayton 3.8904(2.0044) 1.6788(0.1295) 0.0775(0.0350) 0.0648 0.6104 -349.3858 (1)
Clayton and Gumbel 6.3754(7.6484) 1.8588(0.0674) 0.0094(0.0323) 0.0084 0.5429 -325.9332 (5)
Surv. Clayton and surv. Gumbel 1.7499(0.1531) 1.8811(0.4398) 0.8924(0.0525) 0.0596 0.6005 -347.9786 (2)
Gumbel and surv. Gumbel 1.8635(0.0724) 1.8550(2.6991) 0.9900(0.0592) 0.0054 0.5439 -325.5352 (6)

Panel B: Portfolio of Building, Content and Profit Losses

Clayton 0.2128(0.0299) - - 0.0385 0.0000 -34.20380 (10)
Surv. Clayton 0.8377(0.0774) - - 0.0000 0.4371 -373.8009 (1)
Gaussian 0.3877(0.0334) - - 0.0000 0.0000 -208.4459 (8)
Gumbel 1.3124(0.0426) - - 0.0000 0.3042 -281.0174 (4)
Surv. Gumbel 1.2825(0.0269) - - 0.2831 0.0000 -108.9461 (9)
Student-t 0.3908(0.0261) 15.423(6.9814) - 0.0161 0.0161 -212.3526 (7)
Clayton and surv. Clayton 0.0001(0.0001) 0.8377(0.0544) 0.0001(0.0007) 0.0000 0.4371 -369.7963 (2)
Clayton and Gumbel 0.0001(0.0001) 1.3124(0.0284) 0.0001(0.0008) 0.0000 0.3042 -277.0168 (5)
Surv. Clayton and surv. Gumbel 0.8467(0.0559) 1.0001(0.0001) 0.9900(0.0165) 0.0000 0.4366 -369.3233 (3)
Gumbel and surv. Gumbel 1.3169(0.0294) 1.0001(0.0001) 0.9900(0.0216) 0.0000 0.3042 -276.9506 (6)

We observe large values for the copula dependence parameters for the two-dimensional
portfolio (Panel A of Table 4) consisting of content and profit losses, indicating strong de-
pendence between content and profit losses. We notice that in the cases of mixture models,
the mixture parameter θ3 suggests allocating higher weight to either Gumbel or survival
Clayton part in the mixture, suggesting the importance of modelling upper tail in the joint
distribution of content and profit losses. This is also confirmed by examining tail depen-
dence coefficients: Copulas that are able to generate upper tail dependence exhibit high
values for the upper tail dependence coefficient λu. Copula dependence parameters θ1 and
θ2 are typically lower for the three-dimensional portfolio consisting of building, content and
profit losses (Panel B). However, we still observe that the entire weight in the mixture copula
models is assigned to the Gumbel or survival Clayton parts, and coefficients of upper tail
dependence are high for those copulas that are capable of generating upper tail dependence.

In order to quantify the performance of the considered copula models, we compute the
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Akaike Information Criterion (AIC) introduced in Akaike (1974):

AIC = −2 ln(L̂) + 2q, (4.4)

where L̂ is the maximum value of the likelihood function, and q is the number of parameters
for the distribution fitted. From the definition of the AIC it is obvious that smaller values of
AIC indicate better fit. The last two columns of Table 4 report the AIC and relative ranking
of the models.

For the two-dimensional portfolio we observe that the best two models ranked based
on AIC are Clayton & survival Clayton and survival Clayton & survival Gumbel mixtures,
followed by the one-parameter survival Clayton and Gumbel copulas. Notice that both
survival Clayton and Gumbel copulas are capable of generating upper tail dependence and
appear in one-parameter copulas as well as in the mixture models. When these two copulas
form parts of the mixture model, the survival Clayton and Gumbel parts are weighted with
the highest weight. Note that the best performing mixture models allow for asymmetric
tail dependence and the estimated models provide clearly higher estimates for the upper
tail of λu of above 0.6, while the dependence in the lower tail (captured by λl) is much
smaller, corresponding to around 0.06 for both mixtures. This confirms our findings that
extreme losses in the upper tail of the distribution often occur jointly in both LoBs. On the
other hand, there seems to be nearly no dependence across LoBs for losses in the left tail of
the distribution. It is also worth noting that both elliptical copulas (Gaussian and Student-
t) result in poor fit to the data. While it is not surprising that Gaussian copula cannot
reliably capture the dependence structure due to its inability to control tail dependence,
Student-t copula generates symmetric dependence in the upper and the lower tail, with
λ = λu = λl = 0.08, while the number of degrees of freedom (ν = θ2) is close to 15. Note
that the degrees of freedom parameter of the Student-t copula has a significant impact on the
fatness of the tails of the distribution. Therefore, with a decrease in ν, the tail dependence
coefficient λ increases. On the other hand, when the degrees of freedom parameter increases,
the multivariate distribution becomes more normal with less tail dependence, which is what
we observe in our results. This explains why all results (dependence and tail dependence
parameters and model ranking) reported for the Student-t copula are consistent with those
for the Gaussian copula. The results for the three-dimensional portfolio reported in Panel
B of Table 4 are generally in line with those for the two-dimensional case, with the only
difference in the order of ranking for the four best models: the survival Clayton copula is
ranked first, followed by the two mixture models and the Gumbel copula. We conclude
that the best fitting copulas for the insurance losses are those capable of capturing upper
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tail dependence in the joint distribution of portfolio losses. Our results about the nature of
dependence, and particularly, the strong tendency of several LoBs to jointly exhibit extreme
losses are important for insurance companies that are interested in the dependence between
losses for the purpose of risk management. We detail some of its applications in our next
section.

5. Risk management applications

The dependence structure between insurance losses is of a great importance for risk man-
agement decisions of insurance providers who are interested in modelling extreme losses
occurring simultaneously in several LoB. Risks from extreme losses can be quantified using
appropriate risk measures. In this section we apply the techniques discussed earlier and es-
timate the in-sample and prediction of the out-of sample Value-at-Risk (VaR) and expected
shortfall (ES) for the two- and three-dimensional portfolio examples constituting (a) content
and building losses and (b) building, content and profit losses.

5.1. Backtesting procedure

In order to assess how different models compare with each other in terms of their risk
management performance, we explore a set of complimentary measures. The first measure
compares the percentage of exception observations (i.e., observations of realised portfolio
values that are greater than the estimated VaR1−α) to the specified quantile level α. To
formally define exception observation, we use a binary loss function proposed by Lopez
(1998):

L =

1, if Vreal > VaR1−α

0, if Vreal ≤ VaR1−α,
(5.1)

where Vreal represents the realised portfolio values, and VaR1−α is the estimated VaR at
level 1− α with α = {0.10, 0.05, 0.025, 0.01, 0.005}. To express exception in percentages, we
divide the total number of exception observations by the total number of observations. For
the model that provides a reliable risk quantification, one would expect the percentage of
exceptions under the estimated VaR1−α to be exactly 100× α%.

For our second measure we use size-adjusted loss function, which, contrary to the per-
centage of exception observations, takes the magnitude of the loss in the tail into account
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(refer to Blanco and Ihle, 1999):

L =

(Vreal −VaR1−α)/VaR1−α, if Vreal > VaR1−α

0, if Vreal ≤ VaR1−α.
(5.2)

In contrast to Eq. (5.1), in Eq. (5.2) each VaR exception is given a weight proportional to the
realised loss relative to the estimated VaR. Note that due to the VaR being in the denom-
inator of the loss function, Eq. (5.2) is only defined when the VaR is non-zero. Given our
applications to the portfolios of insurance losses and the estimated models this condition is
satisfied for all of our VaR estimates. We refer to the obtained measure as Blanco score.

In addition to calculating the percentage of exceptions and the Blanco score, we conduct
statistical tests to evaluate the quality of the VaR forecasts by (i) comparing the nominal
number of exceptions of the models to the true number of exceptions in a statistical test,
and, (ii) testing for independence or clustering of the observed VaR exceptions. Both tests
are documented in Christoffersen (1998). The first test (referred to in Christoffersen (1998) as
the likelihood test of unconditional coverage) examines whether the percentage of exception
observations is significantly higher than the expected percentage of exceptions given by the
VaR quantile levels, α. The null hypothesis is that the model provides the same number of
exceptions as expected, and its rejection indicates that the VaR estimate at a specified level
1− α is significantly miss-specified. The second test (referred to in Christoffersen (1998) as
the test on independence) assesses whether there are patterns or clustering in the exceptions
values, with the null hypothesis that VaR exceptions should be independent.10 Thus, the
probability that the next observation is an exception should be independent of whether any
previous observation was an exception or not. A model might pass the test for unconditional
coverage, but may still be inadequate because it produces clusters of exceptions that should
not arise when the model is appropriately specified.

5.2. In-sample performance

In the following we analyse in-sample VaR exceptions for a two-dimensional portfolio
constructed from content and profit losses and a three-dimensional portfolio based on build-
ing, content and profit losses. We use the following four models identified in Section 4.3 as
the best performing: two mixtures, namely, Clayton & survival Clayton and survival Clay-

10Both likelihood ratio test statistics, LRunc for the number of exceptions/unconditional coverage and LRind
for the independence of VaR exceptions, follow χ2(1) distribution with critical values corresponding to 2.706,
3.841 and 6.635 at 10%, 5% and 1% significance level, respectively.

20



Table 5: In-sample results for the percentage of exceptions, Blanco scores and likelihood ratio test statistics, LRunc for the number of
exceptions/unconditional coverage and LRind for the independence of VaR exceptions for the portfolio of content and profit losses (Panel
A) and the portfolio of building, content and profit losses (Panel B). *, ** and *** indicate rejections of an appropriate model specification
at the 10%, 5% and 1% significance levels, respectively. The results for the best model with respect to each of the considered criteria are
emphasised using bold numerals.

Copula Measure 0.9 0.95 0.975 0.99 0.995
Panel A: Portfolio of Content and Profit Losses

Surv. Clayton Exceptions 0.1121 0.0754 0.0541 0.0212 0.0096
Blanco 77.7236 27.1024 10.0420 2.8072 1.6165
LRunc 1.7678 9.0071*** 16.9570*** 5.0171** 7.3026***
LRind 0.1805 0.8632 5.0754** 1.6395 0.2206

Gumbel Exceptions 0.1063 0.0657 0.0290 0.0058 0.0019
Blanco 56.1553 13.7605 2.9531 0.6161 0.3372
LRunc 0.2297 2.4713 0.0695 1.0836 1.2754
LRind 0.3728 3.2067* 1.3373 0.0234 0.0000

Clayton and surv. Clayton Exceptions 0.1063 0.0715 0.0541 0.0154 0.0077
Blanco 57.1157 20.9469 8.3607 2.5572 1.3025
LRunc 0.2297 4.4920** 13.5957*** 1.3407 1.7784
LRind 0.3728 2.1296 3.4787* 0.2206 0.0783

Surv. Clayton and surv. Gumbel Exceptions 0.1121 0.0754 0.0541 0.0174 0.0096
Blanco 64.7827 22.9837 10.1405 2.5620 1.2839
LRunc 0.5862 6.1328** 16.9570*** 2.3470 1.7784
LRind 0.1653 1.5482 5.0754** 0.2843 0.0783

Panel B: Portfolio of Building, Content and Profit Losses

Surv. Clayton Exceptions 0.1199 0.0870 0.0676 0.0406 0.0232
Blanco 71.2910 31.3779 16.1705 5.9246 2.9786
LRunc 2.1576 12.3482*** 26.5640*** 27.7040*** 18.1877***
LRind 0.0488 0.8451 2.4603 2.3089 0.6609

Gumbel Exceptions 0.1179 0.0735 0.0406 0.0096 0.0019
Blanco 68.4416 21.6251 6.0874 1.1050 0.5468
LRunc 2.1576 6.1328** 4.3651** 0.0057 1.2754
LRind 0.1041 1.5482 1.3678 0.0783 0.0000

Clayton and surv. Clayton Exceptions 0.1276 0.0986 0.0754 0.0580 0.0290
Blanco 89.5201 41.3032 23.3093 8.7417 4.7746
LRunc 4.0780** 20.3209*** 37.7083*** 57.0640*** 43.4985***
LRind 0.0066 0.9472 1.2957 5.0754 1.9473

Surv. Clayton and surv. Gumbel Exceptions 0.1199 0.0812 0.0638 0.0406 0.0232
Blanco 61.7935 27.2201 13.6933 4.9977 3.5147
LRunc 1.4153 9.0071*** 22.5250*** 27.7040*** 28.2218***
LRind 0.0108 0.8632 3.6247* 1.3678 0.6609

ton & survival Gumbel mixtures, as well as one-parameter models, namely, survival Clayton
and Gumbel copulas. Table 5 reports the results for the proportion of exceptions, the Blanco
score, the likelihood ratio test statistics LRunc for the number of exceptions/unconditional
coverage and LRind for the independence of VaR exceptions for the portfolio of content and
profit losses (Panel A) and the portfolio of building, content and profit losses (Panel B). To
compute VaR we generate 100,000 loss trajectories from each of the considered copula mod-
els, assuming general form GH marginals. The results for the best model with respect to
each of the considered criteria are indicated in bold numerals.
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Let us first examine the models with respect to the empirically observed fraction of VaR
exceptions and the size-adjusted loss function (Blanco score). Overall, we notice that all
models, in both, the two- and three-dimensional examples, tend to underestimate the VaR,
resulting in a larger number of exceptions than expected. This result can be explained by
a large number of extreme losses occurring in the tail of the loss distribution. Our results
in Table 5 Panel A for the two-dimensional portfolio indicate that Gumbel copula provides
the best fit in terms of the fraction of the observed VaR exceptions at 90%, 95% and 97.5%
level, while the Clayton & survival Clayton mixture performs best for the higher quantiles
of 99% and 99.5%. Gumbel copula also leads to the smallest Blanco scores, and the tests
of independence and unconditional coverage are generally not rejected (with an exception
of independence of VaR0.95 exceptions at 10% significance level). Survival Clayton model is
the worst performing model leading to the largest underestimation of the VaR, the largest
Blanco scores, and a large number of rejections for both tests. Overall, we favour Gumbel
across all considered models for the two-dimensional portfolio case consisting of content
and profit losses. Our selection is reconfirmed when we consider a three-dimensional port-
folio (Panel B): Gumbel copula leads to the closest percentage of VaR exceptions to the target
values, the smallest Blanco score and the smallest value of the LRunc statistic (with an ex-
ception of VaR0.95). It also leads to the best results for LRinc in case of VaR0.99 and VaR0.995.
Furthermore, we document the smallest number of rejections of the test results for the Gum-
bel copula: LRunc rejects unconditional coverage for VaR0.95 and VaR0.975 at 5% significance
level (although it is not rejected at 1%). Nevertheless, under the Gumbel copula, the consid-
ered test statistics have the smallest values across all considered models. We conclude that
Gumbel copula in conjunction with GH marginals leads to the most reliable in-sample VaR
estimates.

In addition to analysing VaR exceptions, we show in Figure 4 a bivariate sample with
100,000 observations generated from Gumbel copula (left) and corresponding K-plot (right).
We set the dependence parameter to be 1.6056 (refer to Table 4). The generated sample
clearly shows the ability of the Gumbel copula to generate upper tail dependence. The K-
plot in the right panel can be seen as the bivariate copula equivalent to QQ-plots. If the
points of a K-plot lie approximately on the diagonal then two variables are approximately
independent. In our case we observe a clear deviation from the diagonal line, which points
towards dependence. Since the points of the K-plot are located above the diagonal line,
the dependence is positive. Finally, in Figure 5, for a range of quantile levels from 0.8 to
1.00, we plot (i) in the top panel: 2-dimensional VaR (left) and expected shortfall (right);
(ii) in the middle panel: 3-dimensional VaR (left) and expected shortfall (right); (iii) in the
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bottom panel: VaR and ES comparison for the 2-dimensional case (left) and 3-dimensional
case (right) using Gumbel copula. From the top and middle panel we observe that Gumbel
copula (red line) leads to the largest values for the VaR and ES in the tail of the distribution,
which is consistent with the smallest misspecification and selection of Gumbel copula as
a preferred model in Table 5. The survival Clayton copula (black line) and the mixture
survival Clayton - survival Gumbel model (green line) result in almost identical VaR and ES
estimates, which is, again, consistent with the results in Table 5 (same number of exceptions
for both models). Since VaR is defined as the quantile of the loss distribution, while the ES
represents the expected loss which will occur in an unfavourable scenario (thus, providing a
more reliable risk quantification), ES is always larger than the VaR, which is evident from the
comparison of VaR estimates (left panel) and ES estimates (right panel). This discrepancy
is particularly evident when plotting VaR and ES for the best performing Gumbel copula
model in the bottom panel.
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Figure 4: Bivariate sample with 100,000 observations generated from Gumbel copula (left) and corresponding K-plot (right).

5.3. Out-of-sample performance

In this section we assess VaR exceptions for the two- and three-dimensional portfolios in
out-of-sample. We split our sample into in-sample set (350 observations) and out-of-sample
set (the remaining 167 observations).11 We use in-sample observations and re-estimate pa-

11Since we only have 517 observations, we inevitably face a tradeoff by splitting the data sample into in-
sample and out-of-sample periods. On the one hand, having a large number of in-sample data points is
required for reliable estimation of the marginals and the copula. On the other hand, a larger number the out-of
sample data points is desired to establish exception observations at higher quantiles. We have only considered
quantiles up to 99% to ensure adequate estimation of exceptions at this extreme quantile.

23



0.80 0.85 0.90 0.95 1.00

0
2

4
6

8

surv.Clayton
Gumbel
Clayton-surv.Clayton
surv.Clayton-surv.Gumbel

quantile

V
aR

Value-at-Risk, 2-dim

0.80 0.85 0.90 0.95 1.00

2
3

4
5

6
7

8

surv.Clayton
Gumbel
Clayton-surv.Clayton
surv.Clayton-surv.Gumbel

quantile

E
S

Expected Shortfall, 2-dim

0.80 0.85 0.90 0.95 1.00

2
4

6
8

surv.Clayton
Gumbel
Clayton-surv.Clayton
surv.Clayton-surv.Gumbel

quantile

V
aR

Value-at-Risk, 3-dim

0.80 0.85 0.90 0.95 1.00

2
3

4
5

6
7

8
9

surv.Clayton
Gumbel
Clayton-surv.Clayton
surv.Clayton-surv.Gumbel

quantile

E
S

Expected Shortfall, 3-dim

0.80 0.85 0.90 0.95 1.00

0
2

4
6

8
10

VaR Gumbel
ES Gumbel

quantile

V
aR

 &
 E

S

Value-at-Risk and Expected Shortfall for Gumbel copula (2-dim)

0.80 0.85 0.90 0.95 1.00

0
2

4
6

8
10

12
14

VaR Gumbel
ES Gumbel

quantile

V
aR

 &
 E

S

Value-at-Risk and Expected Shortfall for Gumbel copula (3-dim)
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rameters for the marginals and the copula functions, and then generate 100,000 loss trajecto-
ries to estimate the out-of-sample VaR at different quantiles.

Table 6: Out-of-sample results for the percentage of exceptions, Blanco score and likelihood ratio test statistics, LRunc for the number of
exceptions/unconditional coverage and LRind for the independence of VaR exceptions for the portfolio of content and profit losses (Panel
A) and the portfolio of building, content and profit losses (Panel B). *,** and *** indicate rejection of an appropriate model specification
at the 10%, 5% and 1% significance levels, respectively. The results for the best model with respect to each of the considered criteria are
emphasised using bold numerals.

Copula Measure 0.9 0.95 0.975 0.99
Panel A: Portfolio of Content and Profit Losses

Surv. Clayton Exceptions 0.1078 0.0719 0.0539 0.0180
Blanco 18.5663 6.4898 2.3447 0.3004
LRunc 0.1099 1.4881 4.3204** 0.8655
LRind 2.5111 1.5557 3.6317 5.6388

Gumbel Exceptions 0.1018 0.0599 0.0180 0.0000
Blanco 14.6332 3.3542 0.3037 0.0000
LRunc 0.0060 0.3237 0.3754 3.3568*
LRind 3.2180* 2.8046* 5.6388** 0.0000

Clayton and surv. Clayton Exceptions 0.1086 0.0714 0.0457 0.0171
Blanco 37.4213 12.8705 4.8828 1.8121
LRunc 0.2788 3.0042* 4.9683** 1.4860
LRind 0.2971 0.9228 1.4441 0.1752

Surv. Clayton and surv. Gumbel Exceptions 0.1078 0.0719 0.0539 0.0120
Blanco 18.1883 6.2731 2.2908 0.2448
LRunc 0.1099 1.4881 4.3204** 0.0620
LRind 2.5111 1.5557 3.6317* 0.0245

Panel B: Portfolio of Building, Content and Profit Losses

Surv. Clayton Exceptions 0.1198 0.0778 0.0539 0.0419
Blanco 18.9085 7.7555 3.7356 1.2009
LRunc 0.6859 2.3475 4.3204** 9.5769***
LRind 1.3918 1.0948 3.6317* 1.4361

Gumbel Exceptions 0.1198 0.0659 0.0419 0.0000
Blanco 18.8496 5.1637 1.1870 0.0000
LRunc 0.6859 0.8085 1.6344 3.3568*
LRind 1.3918 2.1203 1.4361 0.0000

Clayton and surv. Clayton Exceptions 0.1286 0.0971 0.0771 0.0571
Blanco 65.0122 28.6300 14.9927 6.2098
LRunc 2.9392* 12.9955*** 25.3402*** 37.5173***
LRind 0.6221 0.0194 0.4990 2.6698

Surv. Clayton and surv. Gumbel Exceptions 0.1198 0.0838 0.0539 0.0419
Blanco 19.1258 7.9832 3.7438 1.3229
LRunc 0.6859 3.3739* 4.3204** 9.5769***
LRind 1.3918 2.8489* 3.6317* 1.4361

The results are summarised in Table 6. We first notice similarly to the in-sample back-
testing procedure, all models (for two- or three-dimensional portfolio) tend to generally
underestimate the VaR, resulting in a larger number of exceptions than expected. We ob-
serve that the out-of-sample results for the empirically observed fraction of VaR exceptions
and the size-adjusted loss function (Blanco score) are consistent with the in-sample results:
Gumbel copula results in the smallest number of exceptions (the closest percentage of VaR
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exceptions to the target values) for the two- and three-dimensional portfolios, with an excep-
tion of the two-dimensional 99%-VaR, which is outperformed by the survival Clayton and
survival Gumbel copula model. Furthermore, the Gumbel copula passes the test for uncon-
ditional coverage for the two- and three-dimensional case, resulting in the smallest LRunc

statistics for the majority of the cases (with an exception of the two-dimensional portfolio
and 99% quantile). We notice that the null of independence of exceptions is not rejected by
the Gumbel copula models for the three-dimensional portfolio; it is rejected at 10% signif-
icance (but not rejected at 5% significance) for the two-dimensional portfolio. Overall, we
conclude that Gumbel copula leads to the best performance across all considered models,
leading to the most reliable out-of-sample VaR forecasts.

6. Conclusion

In this paper we modelled the dependence between insurance claims arising from dif-
ferent LoBs using copula functions in conjunction with skewed generalised hyperbolic (GH)
marginals. Using the loss data arising from building, contents and profit claims we consid-
ered a number of distributions from the class of skewed generalised hyperbolic distributions
to investigate which distribution provides the best possible fit to losses arising from the indi-
vidual LoB. We compared the fit of skewed GH distributions to normal distribution, which
is an underlying distribution for log-losses used within Solvency II framework to determine
solvency capital requirement for non-life insurance companies. We found that normal dis-
tribution provides the worst fit to the logarithmic losses data while none of the considered
special cases (Student-t, variance gamma, normal inverse gaussian and hyperbolic) could be
rejected by conventional distributional tests (Anderson-Darling, Kolmogorov and Carmér-
von Mises). Among the cases considered, the general form generalised hyperbolic distribu-
tion provided the best fit to each of our data sets (individual losses from building, contents
and profit claims). Conceivably, this is due to its flexibility achieved through the number of
estimated parameters. We considered a number of copula models, including one-parameter
and mixture copula models, and compared their ability to capture the dependence structure
within the bivariate portfolio consisting of profit and content losses, as well as in the three-
dimensional case constituting building, content and profit losses. Our results indicate that
Clayton and survival Clayton mixture, survival Clayton and survival Gumbel mixture, as
well as one-parameter models survival Clayton copula and Gumbel copula provide the best
fit to the data based on the Akaike Information Criterion. All these models are capable of
generating upper tail dependence in the joint distribution of portfolio losses. We assessed
and compared the ability of selected copula models to quantify risk of portfolios of losses by
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performing extensive analyses of in-sample estimates and out-of-sample Value-at-Risk fore-
casts, focusing on analysing the number of exceptions (i.e., observations of realised portfolio
value that are greater than the estimated VaR), the size-adjusted loss function, and consider-
ing tests for unconditional coverage and independence of VaR exceptions. We document that
for both, in- and out-of-sample analysis, the one-parameter Gumbel copula in conjunction
with skewed generalised hyperbolic marginals leads to the best performance across all con-
sidered models, resulting in the most reliable VaR forecasts. We demonstrate that computing
VaR and ES risk measures using multivariate copulas (capturing the dependence structure)
in conjunction with skewed generalised hyperbolic marginals (capturing extreme tail and
kurtosis in each of the loss distributions) allows to reliably quantify portfolio risk.

Our paper provides valuable insights with regards to the nature of dependence, and
particularly, the strong tendency of several LoBs to jointly exhibit extreme losses. It fulfils
one of the primary objectives of the general insurance providers, namely, assessing total
risk of an aggregate portfolio of losses, assuming that LoBs are correlated. The proposed
framework allows to determine a risk capital within a risk management framework that
is needed to cover a series of simultaneous claims arising from losses in an unfavourable
case scenario under the realistic assumption on the marginals and the dependence structure.
It would be interesting to investigate other copula models, including pair-copula models
based on vines, which allow to select pairs of assets to define vines prior to considering pair
- copula decomposition, and analyse how the proposed structures affect VaR estimates, see
e.g., Bolancé and Padilla-Barreto (2018). We leave this investigation of dependence between
insurance losses using vine copulas for future research.
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7. Appendix: Copula estimation

Generally, the maximum likelihood technique is applied to estimate parametric copulas.
From (2.1), the density of the random vector X = (X1, . . . , Xd)

> is given by

f (x1, . . . , xd; δ1, . . . , δd, θ) = c{FX1(x1; δ1), . . . , FXd(xd; δd); θ}
d

∏
j=1

f j(xj; δj), (7.1)

where

c(u1, . . . , ud) =
∂dC(u1, . . . , ud)

∂u1 . . .∂ud
(7.2)

denotes a copula density. Denoting a vector of parameters α = (δ1, . . . , δd, θ)> ∈ Rd+1, the
likelihood function is given by

L(α; x1, . . . , xT) =
T

∏
t=1

f (x1,t, . . . , xd,t; δ1, . . . , δd, θ). (7.3)

Combining (7.1) and (7.3), the corresponding log-likelihood function is given by

`(α; x1, . . . , xT) =
T

∑
t=1

ln [c{FX1(x1,t; δ1), . . . , FXd(xd,t; δd); θ}] +
T

∑
t=1

d

∑
j=1

ln
[

f j(xj,t; δj)
]

. (7.4)

To maximize this log-likelihood numerically, we perform the inference for marginals (IFM)
method, which is a sequential two-step maximum likelihood method, see e.g. McLeish and
Small (1988) and Joe (1997). Parameters from the marginals are estimated in the first step as

δ̂j = arg max
δ

`j(δj), (7.5)

where

`j(δj) =
T

∑
t=1

ln f j
[
xj,t; δj

]
(7.6)
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denotes the log-likelihood function for each of the marginal distribution j = 1, . . . , d. Their
estimates are then substituted into the copula to obtain the pseudo log-likelihood function

`(θ, δ̂1, . . . , δ̂d) =
T

∑
t=1

ln
[
c{FX1(x1,t; δ̂1), . . . , FXd(xd,t; δ̂d); θ}

]
, (7.7)

which is then maximised with respect to θ to obtain the estimator θ̂. The estimates α̂IFM =

(δ̂1, . . . , δ̂d, θ̂)> solve the first order condition

(∂`1/∂δ1, . . . , ∂`d/∂δd, ∂`/∂θ) = 0. (7.8)
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