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Operations scheduling of waste-to-energy plants under

uncertainty

Abstract: Waste-to-energy (WTE) technologies provide effective solutions to the com-

pelling challenges of waste management and the energy crisis globally. Many WTE plants

utilize the combined heat and power (CHP) operation mode where both electricity and

heat can be generated simultaneously. Thus, these WTE CHP plants can supply heat

to the local district heating systems and trade power in the electricity markets. As such

plants have the responsibilities of treating waste and of fulfilling the allocated district

heating demand, necessary operational tasks such as preventive maintenance actions for

the production units should be scheduled and performed periodically to ensure their con-

tinuous and reliable operations. This paper studies the scheduling of operational tasks

in WTE CHP plants that participate in electricity markets and are connected to district

heating networks. Firstly, we formulate a two-stage robust optimization model consid-

ering the uncertainty of electricity market prices, heat demand, and waste supply. The

objective is to derive the robust optimal schedule that maximizes the worst-case operat-

ing profit of a WTE CHP plant under uncertainty. Subsequently, we design a constraint

generation algorithm for the two-stage robust optimization model. Finally, a case study

of scheduling preventive maintenance tasks is conducted for the production units of a

WTE CHP plant over a 30-day horizon. The robust schedule thus derived is evaluated

by Monte Carlo simulation tests and further compared to the deterministic schedule gen-

erated without the consideration of uncertainty. The simulation results show that the

robust schedule enables an average profit of 877021.21e to be attained for the plant over

the scheduling horizon. Moreover, it improves the robustness of its deterministic coun-

terpart from 68.4% to 98.8% with an increase of only 0.3% of the operating profit of the

plant. In addition, a comprehensive sensitivity analysis is performed to investigate the

impacts of different types of uncertainty on the robust schedule for the WTE CHP plant.

Keywords: waste-to-energy, operations scheduling, robust optimization, uncertainty
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1 Introduction

Municipal solid waste (MSW) management and the energy crisis have increasingly become

two compelling challenges worldwide due to rapid urbanization, growing population, and

economic development. Waste-to-energy (WTE) technologies, which can turn waste into

various forms of energy, provide elegant and effective solutions to these challenges (Pan

et al., 2015; Yi et al., 2018). A variety of WTE options are available, which mainly

include thermo-chemical technologies (Shi et al., 2016; Lombardi et al., 2015) and bio-

chemical technologies (Pant et al., 2010; Sepehri and Sarrafzadeh, 2018; Sepehri et al.,

2019). Incineration with energy recovery is one of the most widely used technologies

for MSW treatment, especially in densely populated countries (Kumar and Samadder,

2017). To deal with substantial amounts of MSW, large-scale WTE incineration plants

have been established in many countries, such as China, Denmark, the USA, and Japan

(Cucchiella et al., 2014).

WTE plants are usually located in proximity to residential or industrial areas for ease

of access to MSW. As a result, WTE plants are able to adopt the combined heat and

power (CHP) mode to generate both electricity and heat. The electricity generated can

be sold on power markets whereas the heat produced can be supplied to local district

heating systems or adjacent heat-consuming industrial plants (Ryu and Shin, 2012). In

Denmark, a large portion of MSW is treated in WTE incineration plants, of which the

majority are CHP producers (Fruergaard et al., 2010). In Sweden, over two million

tonnes of MSW are incinerated in WTE CHP plants annually, which provide heat and

electricity corresponding respectively to the needs of 810000 and 250000 homes (Avfall

Svergie, 2007).

As MSW is an obnoxious social product generated on a daily basis, the continuous

and reliable operation of WTE CHP plants is critical. Hence, necessary operational

tasks such as preventive maintenance for their production units should be performed

periodically. This paper studies an operational task scheduling problem of WTE CHP

plants that participate in liberalized power markets and are connected to district heating

networks. The scheduling consists of determining the best timing to perform operational

tasks (preventive maintenance actions) for the production units of a WTE CHP plant

over a specific horizon. Since the revenue of a WTE CHP plant originates mainly from the

sale of energy and from gate fees, plant operators should judiciously schedule the tasks

to maximize the operating profit of the plant. Such planning, however, is challenging for

two reasons. Firstly, the concomitant responsibilities of treating the delivered MSW and

of fulfilling the allocated district heating demand complicate the scheduling. Secondly, as

a schedule typically should be determined months in advance of these operational tasks,

much information is unknown or only partly predictable during this upstream scheduling,

e.g. electricity prices, district heating demand, and MSW supply over the scheduling
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horizon. The offshoots of such uncertainty are twofold: if the tasks are scheduled on

days with high average electricity prices, the plant may make less profit; and, if they are

scheduled on days with high MSW supply or heat demand, the plant may fail to treat all

the delivered MSW or to fulfill the allocated heat demand. Thus, the robustness of a task

schedule is crucial against the various types of uncertainty. Given the importance of a

WTE CHP plant in treating the MSW or satisfying the heat demand, the undesirably low

robustness of a task schedule may lead to its occasional failure in those two roles during

the scheduling horizon under many possible realizations of the uncertainty. Thus, deriving

robust and economical task schedules for the production units of a WTE CHP plant is

a complex optimization problem subject to different types of uncertainty. Another key

characteristic of the problem is the presence of dynamics. The operation of the production

units over the scheduling horizon is linked to the capacity of MSW storage in the waste

bunker. This warrants the appropriate modeling of such dynamics to generate effective

schedules.

In view of the dynamic feature and the uncertainty in the problem, the framework

of two-stage robust optimization (Ben-Tal et al., 2004) is utilized. This framework is

a useful mathematical programming method that can effectively model the decision-

making process of the problem and appropriately represent the uncertainty. Specifically,

this paper builds a two-stage robust optimization model for scheduling operational tasks

in WTE CHP plants. Three types of uncertainty are incorporated in the model and

described by convex polyhedral sets. The model aims to ascertain the optimal schedule

for a WTE CHP plant, which can maximize its worst-case operating profit over a specific

scheduling horizon. To solve this model, a constraint generation algorithm based on the

framework of Benders’ decomposition (Geoffrion, 1972) and the column-and-constraint

generation (C&CG) method (Zeng and Zhao, 2013) is designed. The main contributions

of this work are summarized as follows:

1) A two-stage robust optimization model is formulated for scheduling operational

tasks in WTE CHP plants under different types of uncertainty.

2) A constraint generation algorithm is designed to solve the two-stage robust opti-

mization model.

3) A real-world case study is tested to show the effectiveness of the two-stage robust

optimization model and the efficiency of the constraint generation algorithm.

The rest of this work is organized as follows. In Section 2, the research related to

operations scheduling of WTE plants is reviewed. Section 3 introduces the two-stage

robust optimization model and defines the uncertainty sets. The details of the designed

algorithm for the two-stage robust model are shown in Section 4. Section 5 reports the
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computational results obtained from a case study with real-world data. A comprehen-

sive sensitivity analysis of the key parameters of the uncertainty sets is also performed.

Finally, Section 6 summarizes the paper and provides several future research directions.

2 Related literature

The literature review concerns three aspects: operations scheduling of WTE plants; power

system scheduling; and two-stage robust optimization.

2.1 Operations scheduling of WTE plants

Effective operations scheduling in WTE plants is known to improve energy efficiency,

ensure continuous operation, and augment economic benefits. However, only a little at-

tention has been paid to such operations scheduling in WTE plants. Touš et al. (2015)

studied a short-term operations scheduling problem of a WTE CHP plant in the Czech

Republic. They developed a stochastic mathematical model and adopted stochastic simu-

lation to derive effective daily production plans for power and heat under uncertainty. Liu

et al. (2017) formulated a mixed-integer linear programming (MILP) model to tackle the

mid-term scheduling of preventive maintenance for the production units of a WTE incin-

eration plant and the connected power system devices in the city of Shanghai. Abaecherli

et al. (2017b) developed a novel MILP model to optimize short-term schedules for indus-

trial waste incineration to improve both economic and environmental benefits of WTE

plants. Abaecherli et al. (2017a) further investigated the integration of planning and

scheduling in industrial waste incineration plants. Two MILP models were developed

for planning and scheduling of waste incineration. The literature review suggests that,

notwithstanding the incipient interest in solving operations scheduling problems, complex

operational schemes in WTE plants with the CHP production mode in deregulated power

markets and district heating networks are disregarded. In this regard, the uncertainty

in electricity prices and in district heating demand represents challenges in operations

scheduling of WTE CHP plants.

2.2 Power system scheduling

Generally, WTE plants are power producers since most of them are MSW incinerators

with power recovery. Although the literature on operations scheduling of WTE plants is

limited, researchers have addressed various scheduling problems in power systems. Yamin

(2004) presented a comprehensive review of methods for power generation scheduling in

centralized and decentralized power systems. Different optimization methods includ-

ing deterministic, heuristic, and hybrid approaches have been proposed to solve unit
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commitment problems (Bhardwaj et al., 2012) and economic dispatch problems (Mahor

et al., 2009) in generation scheduling of power systems. In addition to power generation

scheduling, researchers have studied maintenance scheduling in power systems over the

last several decades (Kralj and Petrović, 1988; Khalid and Ioannis, 2012). Froger et al.

(2016) reviewed various maintenance scheduling problems including generator mainte-

nance scheduling and transmission maintenance scheduling in regulated and deregulated

power markets, alongside key features such as network structures, fuel constraints, and

uncertainty management.

Despite the elucidation of scheduling problems in power systems, most research has

focused on traditional thermal power plants. Unlike these thermal counterparts, WTE

plants base their energy production on waste, which generally cannot be purchased exter-

nally and whose sourcing could be uncertain. Moreover, WTE plants house waste bunkers

with fixed storage capacities for MSW for future energy production. A parallel may thus

be drawn between operations scheduling in WTE plants and that in hydropower systems,

since hydropower plants likewise entails a resource (water) in their energy production and

have storage facilities (reservoirs). Researchers have studied scheduling problems in hy-

dropower systems over the last decade. Hongling et al. (2008) provided a comprehensive

survey on hydropower scheduling in deregulated electricity markets with the consideration

of the uncertainty in electricity prices and water inflow. Nazari-Heris et al. (2017) re-

viewed solution methods for short-term scheduling of hydro-based power systems. Only a

few papers have tackled maintenance scheduling problems in hydropower systems. Guedes

et al. (2015) proposed a differential evolution algorithm to solve a combined problem for

scheduling power generation and preventive maintenance for a cascaded hydropower sys-

tem. Helseth et al. (2018) adopted the stochastic dynamic programming approach to

address a hydropower maintenance scheduling problem in a deregulated market context

considering the uncertainty in water inflow and energy prices. Of note, however, opera-

tions scheduling in WTE CHP plants is distinctive from hydropower systems in several

manners. Firstly, the main goal of WTE CHP plants is the treatment of waste. Sec-

ondly, the plants are usually connected to district heating networks; the responsibility of

fulfilling the heat demand critically determines ideal schedules. Finally, different types

of uncertainty including MSW supply, district heating demand, and electricity prices

warrant consideration in the operations scheduling of WTE CHP plants. To the best of

our knowledge, our work represents the pioneering research into the elucidation of the

scheduling of operational tasks in WTE CHP plants that participate in deregulated power

markets under uncertainty.
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2.3 Two-stage robust optimization

Two-stage robust optimization is an optimization framework for two-stage or multi-stage

decision-making problems with uncertain data (Ben-Tal et al., 2004). It is also called

adaptable or adjustable robust optimization (Zeng and Zhao, 2013), which is an important

extension of the classic robust optimization approach (Ben-Tal and Nemirovski, 1998,

2000). In two-stage robust optimization, the uncertain data is assumed to take values

from a predefined uncertainty set. Herein, decisions are separated into two stages. The

first-stage (here-and-now) decisions need to be determined before the uncertain data is

observed. Given the first-stage decisions, the second-stage (wait-and-see) decisions can

be adjusted and determined after the uncertain data is observed. Due to its modeling

capacity for various classes of optimization problems and computational tractability for

different types of uncertainty sets, two-stage robust optimization finds utility in many

real-life applications (Yanıkoğlu et al., 2019).

However, it is very challenging to solve two-stage robust optimization models. As

discussed in Ben-Tal et al. (2004), even trivial two-stage robust optimization models

can be computationally intractable. Several solution strategies have been proposed to

address the computational tractability issue. The most popular one is to use affine

decision rules, which assume second-stage decision variables to be affinely dependent on

the uncertain data (Ben-Tal et al., 2004). Using this strategy, two-stage robust models

are able to be transformed to linear programming models. However, only sub-optimal

solutions can be obtained. Later, Thiele et al. (2009) developed a cutting-plane method

to generate the optimal solutions for two-stage robust optimization problems based on

Kelly’s algorithm (Kelley, 1960). Zeng and Zhao (2013) designed a C&CG procedure

which aims to obtain the optimal solutions of two-stage robust optimization problems

with faster speed. However, these two algorithms may not be able to address large-size

problems. Recently, Zhen et al. (2018) proposed a Fourier-Motzkin elimination procedure

to tackle two-stage robust optimization problems with fixed recourse. This procedure can

obtain the optimal solutions for small-size problems and generate good-quality feasible

solutions for large-size instances.

3 Model

3.1 Problem description

Consider a WTE plant that is owned and operated by the private sector in a specific

region. The WTE plant adopts the CHP mode to generate both power and heat. As back-

pressure and extraction units are two typical types of production units in CHP systems,

the WTE CHP plant is assumed to house both types of CHP units. The operational
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scheme of such a plant is shown in Fig. 1. The MSW generated by the local households

is transported daily by trucks to the plant, where it is then deposited in the waste bunker

for energy production. Thereafter, the MSW is first incinerated to liberate its chemical

energy, which converts water into high-pressure steam through heating in boilers. The

steam is then conveyed to the CHP units to produce electricity and heat which are

subsequently used by the local households. In a back-pressure unit, the steam turbine

utilizes only part of the high-pressure steam to generate power and leaves an output

of high-temperature steam for district heating. Thus, a fixed relationship is present

between the generation of power and that of heat in back-pressure units. Conversely,

in an extraction unit, a flexible amount of steam can be extracted before traversing the

steam turbine. The extracted steam can be used by the local district heating system and

the rest is used for power generation. Thus, the power and heat generation in extraction

units is more flexible. The power generated by the WTE CHP plant is considered to be

sold in the regional electricity market. The heat produced is assumed to be exported and

sold to the local district heating system with a fixed price set by the local regulator.
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Fig. 1. Operational scheme of the WTE CHP plant.

As the WTE CHP plant has the twofold responsibilities of treating MSW and of

fulfilling part of the district heating demand, its continuous and reliable operation is

critical. To prevent unexpected unit failures and ensure a continuous high-efficiency

operation, necessary operational tasks such as preventive maintenance for the production

units of the plant should be scheduled and performed periodically. It is noteworthy that
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WTE plants typically operate in a round-the-clock manner (24 hours a day, seven days

a week), except for scheduled downtime for maintenance of major system components

such as incineration and production units (Rogoff and Screve, 2019). As the revenue of

the WTE CHP plant originates mainly from selling energy and receiving gate fees, plant

operators need to schedule the best timing to perform these necessary operational tasks

for the CHP units over a specific horizon. The scheduling horizon is typically considered

to be one or several months subdivided into daily intervals. However, many types of key

information are uncertain when the operators plan effective schedules. For example, the

daily average electricity prices and MSW supply over the scheduling horizon are difficult

to know and hard to predict for the operators. Thus, we formulate a two-stage robust

optimization model that aims to derive the optimal schedule for the operational tasks for

the CHP production units under uncertainty. The operational tasks considered in the

problem concern the shutting down of each CHP unit for fixed time periods to conduct

preventive maintenance actions such as inspection and lubrication of steam turbines.

Three types of uncertainty are considered in the model: daily average electricity prices,

daily total heat demand, and daily total MSW supply over the scheduling horizon. The

decision-making process of the developed model is shown in Fig. 2. It is clear that the

decision-making process is divided into two stages. In the first stage (Day 0), operators

of the plant determine the optimal time periods among the scheduling horizon (Day 1-

Day T) to perform the operational task for each CHP unit (task schedule). It should

be noted that the schedule is determined without knowing the exact values of the daily

average electricity prices, daily total MSW supply, and heat demand over the scheduling

horizon. In the second stage (Day 1-Day T), the uncertain daily average electricity prices,

daily total MSW supply, and heat demand become known. The operators determine the

optimal heat and power generation and the MSW storage level in each time period of

the scheduling horizon to maximize the total operating profit of the plant based on the

task schedule established in the first stage. Herein, the stages correspond to steps in the

decision-making process and do not necessarily refer to the time periods. The two-stage

model aims to generate the optimal robust schedule for the operational tasks for the

production units determined in the first stage, which can then maximize the worst-case

profit of the plant over the scheduling horizon in the second stage.

The assumptions underlying the two-stage robust optimization model are as follows:

- The WTE CHP plant needs to fulfill part of the district heating demand in all time

periods of the scheduling horizon.

- The power generated by the plant is sold in the regional electricity market and the

heat produced is sold to the local district heating system with a fixed price.

- Each type of uncertainty is captured by a convex polyhedral set.
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- The first-stage decisions are made before the scheduling horizon begins and the

uncertain parameters are not observed.

- The second-stage decisions are made after the uncertain parameters are observed

in all time periods of the scheduling horizon.

Determine the operational 

task schedule for all 

production units 

Day 0 Day 1 Day 2  Day T-1 Day T

Stage 1 Stage 2

Determine electricity and heat production and 

MSW storage level in all time periods over the 

scheduling horizon

MSW supply, electricity prices, and 

heat demand over the scheduling 

horizon are not known

MSW supply, electricity prices and heat demand 

become known over the scheduling horizon

Time

Fig. 2. Overview of the two-stage decision-making process.

3.2 Two-stage robust optimization model

Sets:

T set of scheduling time periods (days), T = {1, · · · , |T |}
I set of all CHP units, I = {1, · · · , |I|}
Ibp set of back-pressure units, Ibp ⊆ I
Iex set of extraction units, Iex ⊆ I

Parameters:

HDmax
i daily maximum heat production capacity of unit i

HDmin
i daily minimum heat production capacity of unit i

PDmax
i daily maximum power production capacity of unit i

PDmin
i daily minimum power production capacity of unit i

MDmax
i daily maximum MSW consumption of unit i

MDmin
i daily minimum MSW consumption of unit i

ETi earliest start time of the operational task for unit i
LTi latest start time of the operational task for unit i
DTi duration of the operational task for unit i
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τi heat-to-power ratio of unit i
CVi variable operating cost of unit i
CMi daily cost to perform the operational task for unit i
Lmax maximum allowable amount of MSW in the waste bunker
Lmin minimum required amount of MSW in the waste bunker
l0 amount of MSW in the waste bunker at the beginning of the scheduling

horizon
lend minimum amount of MSW in the waste bunker at the end of the schedul-

ing horizon
πpi MSW consumption per unit of power production for unit i
πhi MSW consumption per unit of heat production for unit i
GF marginal gate fee for MSW treatment
N number of units can be shut down simultaneously
ξt average electricity price in time period t
dt total heat demand in time period t
wt total amount of MSW supplied to the WTE plant in time period t

Decision variables:

xit binary variable, ”1” if unit i is operating in time period t; ”0” otherwise
zit binary variable, ”1” if the operational task is being performed for unit i

in time period t; ”0” otherwise
hit heat production from unit i in time period t
pit power production from unit i in time period t
lt MSW storage level in the waste bunker in time period t

We formulate the two-stage robust optimization model in the following equations

(1)-(20):

max
x,z

−
∑
i∈I

∑
t∈T

CMizit + min
ξ∈Ξ,d∈D,w∈W

R(x, z, ξ,d,w) (1)

s.t. xit + zit = 1, ∀i ∈ I, t ∈ T (2)∑
t∈T

zit = DTi, ∀i ∈ I (3)

zit − zi(t−1) ≤ zi(t+DTi−1), ∀i ∈ I, t ∈ T (4)

ETi−1∑
t=1

zit = 0, ∀i ∈ I (5)

|T |∑
t=LTi+DTi

zit = 0, ∀i ∈ I (6)∑
i∈I

zit ≤ N, ∀t ∈ T (7)

xit, zit ∈ {0, 1}, ∀i ∈ I, t ∈ T (8)

where x and z denote the first-stage decisions which respectively subsume xit and zit for
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all i ∈ I and t ∈ T . Vectors ξ,d,w respectively contain uncertain vectors ξt, dt, and wt

for all t ∈ T . Note that uncertain parameters ξ, d, and w respectively assume values in

the uncertainty sets Ξ, D, andW which are defined in the subsection 3.3. In the first-stage

problem (1)-(8), the objective function (1) maximizes the worst-case profit of the WTE

CHP plant over the scheduling horizon: it equals the worst-case operating profit minus

the total cost to perform all operational tasks. Constraints (2) ensure that each CHP unit

cannot operate if the operational task is in the midst of execution. This coincides with

the fact that most WTE plants operate in a round-the-clock manner except for scheduled

downtime for maintenance of major system components. Constraints (3) guarantee that

the operational task for each CHP unit should be performed for the required time periods.

Constraints (4) ensure that, upon embarking, the operational task for each CHP unit has

to be completed. Constraints (5) and (6) respectively determine the earliest and latest

times to perform the task for each CHP unit. Constraints (7) limit the maximum number

of CHP units that can be shut down synchronously in each time period. Constraints

(8) ensure that all first-stage decision variables are binary. Function R(x, z, ξ,d,w)

in objective function (1) denotes the operating profit of the plant over the scheduling

horizon, given the determined schedule (x, z), electricity prices ξ, heat demand d, and

MSW supply w. R(x, z, ξ,d,w) can be calculated by solving the following second-stage

problem:

R(x, z, ξ,d,w) = max
∑
i∈I

∑
t∈T

pitξt +GF
∑
i∈I

∑
t∈T

(πpi pit + πhi hit)

−
∑
i∈I

∑
t∈T

CVi(π
p
i pit + πhi hit) (9)

s.t. pit = τihit, ∀i ∈ Ibp, t ∈ T (10)

pit ≥ τihit, ∀i ∈ Iex, t ∈ T (11)

xitHD
min
i ≤ hit ≤ xitHD

max
i , ∀i ∈ I, t ∈ T (12)

πpi pit + πhi hit ≥ (πpi + πhi /τi)PD
min
i xit, ∀i ∈ Iex, t ∈ T (13)

πpi pit + πhi hit ≤ πpi PD
max
i xit, ∀i ∈ Iex, t ∈ T (14)

xitMDmin
i ≤ πpi pit + πhi hit ≤ xitMDmax

i , ∀i ∈ I, t ∈ T (15)∑
i∈I

hit ≥ dt, ∀t ∈ T (16)

lt = lt−1 + wt −
∑
i∈I

(πpi pit + πhi hit), ∀t ∈ T (17)

Lmin ≤ lt ≤ Lmax, ∀t ∈ T (18)

l|T | ≥ lend (19)

hit, pit, lt ≥ 0, ∀i ∈ I, t ∈ T . (20)
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In the second-stage problem (9)-(20), the objective function (9) maximizes the operat-

ing profit of the plant, given a determined schedule and the realized uncertain parameters.

The operating profit equals the revenues from selling power and receiving gate fees minus

the total operating cost over the planning horizon. Note that the revenue from supplying

heat to the local district heating network is omitted in the objective function (9) since the

heat price is assumed to be fixed and the revenue from supplying heat does not affect the

optimal solution of the second-stage problem. Constraints (10) and (11) respectively show

the relationship between power and heat production in the back-pressure units and in the

extraction units. Constraints (12) ensure the heat production of each CHP unit is within

its capacity range. Constraints (13) and (14) determine the feasible energy production

zone of each extraction unit. Constraints (15) impose the maximum and minimum limits

of MSW consumption of each CHP unit in each time period. Constraints (16) guarantee

that the total heat generated by all CHP units can fulfill the allocated heat demand

from the local district heating network in all time periods. Constraints (17) determine

the MSW storage level in the bunker in each time period. Constraints (18) guarantee

that the stored MSW stays within the lower and upper limits of the waste bunker in

any time period. Constraint (19) guarantees that the amount of MSW should exceed a

predefined threshold in the last time period of the horizon for future operations of the

plant. Constraints (20) ensure that all second-stage decision variables are non-negative.

Next, a further discussion of the two-stage robust model (1)-(20) is provided. As

shown in constraints (3), it is necessary for the operational task (preventive mainte-

nance) to be performed for each CHP unit for fixed time periods. Thus, the heat and

power production of the WTE CHP plant will be affected during the downtime for such

maintenance of each CHP unit. Moreover, the profit of the plant over the scheduling

horizon will decline compared to normal continuous operation. However, the main goal

of the two-stage robust model (1)-(20) is to generate the optimal task schedule under

the various types of uncertainty in the first stage. In the second stage, the WTE CHP

plant can then optimize the energy production and MSW incineration to maximize its

worst-case operating profit over the scheduling horizon through the optimal schedule thus

determined. Generally, the optimal task schedule depends on many key parameters of

the proposed two-stage model, especially the uncertain parameters including the daily

average electricity prices, daily total MSW supply, and heat demand. For example, when

the MSW supply and the MSW storage is low, it might be an opportunity to perform the

maintenance tasks. However, if the heat demand is also high during these time periods,

the scheduled downtime may need to be shifted to other feasible time periods due to

the need to fulfill the allocated heat demand from the local district heating network. In

addition, if the maintenance tasks are scheduled during time periods with low average

electricity prices, the plant may make more profit because electricity can be generated
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and sold on other time periods with high average prices. Conversely, the plant may make

less profit if the tasks are scheduled during time periods with high electricity prices.

3.3 Uncertainty set definition

In the two-stage robust optimization model (1)-(20), uncertain electricity prices ξ, heat

demand d, and MSW supply w respectively assume values in the corresponding uncer-

tainty sets Ξ, D, and W . Since certain types of uncertainty sets can make two-stage

robust optimization models computationally attractive, an appropriate and practical def-

inition of the uncertainty sets is critical. Following the concept of the budget-constrained

uncertainty set proposed in Bertsimas and Sim (2004), the corresponding uncertainty sets

Ξ, D, and W can be defined in the following equations (21a)-(21c).

Ξ =

{
ξ : ξt = ξt + ηξt ξ̂t, |η

ξ
t | ≤ 1,

∑
t∈T

|ηξt | ≤ Γξ, t ∈ T

}
(21a)

D =

{
d : dt = dt + ηdt d̂t, |ηdt | ≤ 1,

∑
t∈T

|ηdt | ≤ Γd, t ∈ T

}
(21b)

W =

{
w : wt = wt + ηwt ŵt, |ηwt | ≤ 1,

∑
t∈T

|ηwt | ≤ Γw, t ∈ T

}
(21c)

In the uncertainty set Ξ, the uncertain electricity price ξt in time period t is expressed

as the sum of ξt and ηξt ξ̂t. ξt is the nominal value of ξt. ξt can be obtained by any

effective forecast technique. ξ̂t represents the maximum deviation of ξt from ξt. ξ̂t can be

inferred from the historical data or set based on the decision-makers’ experience. ηξt is an

auxiliary variable which belongs to the interval [−1, 1] for all t ∈ T . Moreover, the sum

of the absolute value of all ηξt is bounded by the uncertainty budget Γξ. Generally, Γξ

controls the level of uncertainty in set Ξ. If Γξ = 0, ξt = ξt for all t ∈ T . No uncertainty is

considered in set Ξ. If Γξ = |T |, ξt can take any value in the interval [ξt− ξ̂t, ξt+ ξ̂t] for all

t ∈ T and set Ξ has the highest level of uncertainty. The parameters in the uncertainty

set D for heat demand and the uncertainty set W for MSW supply are similar to those

discussed in set Ξ.

4 Solution algorithm

As discussed in Ben-Tal et al. (2004), a classic two-stage robust optimization model

can be hard to tackle due to the multi-level optimization structure. In this study, we

design a constraint generation algorithm for the developed robust model (1)-(20) with

the help of the C&CG method (Zeng and Zhao, 2013) and the Benders’ decomposition
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framework (Geoffrion, 1972). For the purpose of introducing the algorithm with clarity

and simplicity, we first rewrite the developed model (1)-(20) in the following generic

matrix formulation (22)-(23):

max
x,z

− c>z z + min
ξ∈Ξ,d∈D,w∈W

R(x, z, ξ,d,w) (22a)

s.t. Axx+Azz ≤ b (22b)

x, z ∈ {0, 1}|I|×|T | (22c)

where R(x, z, ξ,d,w) is expressed as

R(x, z, ξ,d,w) = max
h,p,l

ξ>p+ c>pp+ c>hh (23a)

s.t. Epp+Ehh+Ell ≥Dxx+Dzz + q (23b)

Ghh ≥ d (23c)

Fll + Fpp+ Fhh = w (23d)

h,p, l ≥ 0. (23e)

The generic matrix formulation (22) corresponds to the first-stage problem (1)-(8).

x and z represent the first-stage decisions. Objective function (22a) corresponds to the

first-stage objective function (1), where vector cz represents the corresponding coefficients

of variable z. Constraints (22b) contain first-stage constraints (2)-(7), where matrices

Ax and Az respectively denote the coefficients of variables x and z and vector b contains

the given constants. The generic matrix formulation (23) corresponds to the second-stage

problem (9)-(20). Vectors h,p, l respectively subsume second-stage decisions hit, pit, and

lt for all i ∈ I and t ∈ T . Objective function (23a) corresponds to the second-stage

objective function (9), where cp and ch respectively denote the coefficients of variables p

and h. Constraints (23b) contain constraints (10)-(15) and (18)-(19). Constraints (23c)

and (23d) correspond to constraints (16) and (17), respectively. In constraints (23b),

matrices Ep, Eh, El, Dz, and Dx represent the coefficients of variables p, h, l, z, and

x, respectively. Vector q contains the constants. Matrix Gh denotes the coefficient of

variable h in constraints (23c). In constraints (23d), matrices Fp, Fl, and Fh respectively

correspond to the coefficients of variables p, l, and h.

Since the designed algorithm adopts the framework of Benders’ decomposition (Ge-

offrion, 1972), the two-stage robust model in formulation (22)-(23) is decomposed into a

master problem and a subproblem in the algorithm. We first introduce the subproblem

(24), which is expressed as follows:

SP : R(x, z) = min
ξ∈Ξ,d∈D,w∈W

R(x, z, ξ,d,w). (24)
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In the subproblem SP,R(x, z) equals the worst-case value of the second-stage problem

R(x, z, ξ,d,w) (23) over the uncertainty sets Ξ, D, andW given any x and z. However,

the min-max optimization structure of the subproblem SP is very challenging to tackle.

To deal with this issue, we first write out the dual of the inner maximization problem

(23) and transform the subproblem SP into the following formulation (25):

SP : R(x, z) = min
ξ,d,w,αs,βs,γs

(Dxx+Dzz + q)>αs + d>βs +w>γs (25a)

s.t. E>pαs + F>p γs ≥ cp + ξ (25b)

E>hαs +G>hβs + F>h γs ≥ ch (25c)

E>l αs + F>l γs ≥ 0 (25d)

αs,βs ≤ 0, ξ ∈ Ξ,d ∈ D,w ∈ W (25e)

where αs, βs, and γs are dual variables related to constraints (23b), (23c), and (23d),

respectively. As shown in equation (25a), the objective function has a bilinear structure

due to the existence of bilinear terms (d>βs and w>γs). These bilinear terms make

formulation (25) a non-convex optimization problem. Fortunately, this issue can be

addressed based on the linearization method introduced in Thiele et al. (2009) with

the defined budget-constrained uncertainty sets Ξ, D, and W . Hence, subproblem SP is

able to be tackled after linearization.

Given any first-stage decisions x and z which satisfy constraints (22b)-(22c), the inner

maximization problem (23) of subproblem SP can be infeasible with some outcomes of

the uncertain parameters ξ, d, and w. In this situation, R(x, z) cannot be evaluated

and is conventionally set to be −∞. Therefore, the first-stage decisions that will cause

the second-stage problem infeasible have to be eliminated from the solution space using

feasibility cuts. In the developed algorithm, we derive feasibility cuts via addressing a

feasibility problem FP which is shown in the following formulation (26):

FP : F (x, z) = max
ξ∈Ξ,d∈D,w∈W

min
h,p,l,u,v,e+,e−

1>u+ 1>v + 1>(e+ + e−) (26a)

s.t.Epp+Ehh+Ell + u ≥Dxx+Dzz + q (26b)

Ghh+ v ≥ d (26c)

Fll + Fpp+ Fhh+ e+ − e− = w (26d)

h,p, l,u,v, e+, e− ≥ 0 (26e)

where u,v, e+, e− are the slack variables related to constraints (26b)-(26d), respec-

tively. Note that the second-stage maximization problem (23) is feasible under all pos-

sible outcomes of the uncertain parameters in the defined uncertainty sets if and only if

F (x, z) = 0. As shown in formulation (26), the optimization structure of the feasibility
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problem FP is similar to that of the subproblem SP. Thus, we also dualize its inner

optimization problem to transform it into the formulation (27):

FP : F (x, z) = max
ξ,d,w,αf ,βf ,γf

(Dxx+Dzz + q)>αf + d>βf +w>γf (27a)

s.t. E>pαf + F>p γf ≤ 0 (27b)

E>hαf +G>hβf + F>h γf ≤ 0 (27c)

E>l αf + F>l γf ≤ 0 (27d)

αf ≤ 1 (27e)

βf ≤ 1 (27f)

− 1 ≤ γf ≤ 1 (27g)

αf ,βf ≥ 0, ξ ∈ Ξ,d ∈ D,w ∈ W (27h)

where αf , βf , and γf are dual variables associated with constraints (26b), (26c), and

(26d), respectively. Note that the bilinear terms in objective function (27a) also can be

handled by the method proposed in Thiele et al. (2009).

Given the aforementioned subproblem SP with formulation (25) and the feasibility

problem FP with formulation (27), we finally show the details of the designed algorithm

for the two-stage robust model (1)-(20) in Algorithm 1. In the (n + 1)th iteration of

the algorithm, the optimal values of the first-stage decisions (x∗n+1, z
∗
n+1) and the auxil-

iary decisions (θ∗n+1,h
1∗, ...,hn∗,p1∗, ...,pn∗, l1∗, ..., ln∗) are first generated by solving the

master problem MP in formulation (28) (lines 3-4). (h1, ...,hn, p1, ...,pn, l1, ..., ln) are

decision variables of the master problem MP, which are created after solving the fea-

sibility problem FP and the subproblem SP in the first n iterations. θ is an auxiliary

decision variable which helps calculating the upper bound UB to the optimal value of

the objective function (22a) (line 5). After solving the master problem, the feasibility

problem FP is addressed with the obtained first-stage decisions (x∗n+1, z
∗
n+1) to generate

feasibility cuts (line 6). If F (x∗n+1, z
∗
n+1) > 0, feasibility cuts (29a)-(29c) will be included

in the master problem MP (lines 8-9). Note that d∗n+1 and w∗n+1 are the optimal re-

alizations of the corresponding uncertain parameters derived by solving F (x∗n+1, z
∗
n+1).

Otherwise, the subproblem SP in formulation (25) is solved (line 12). A lower bound LB

to the optimal value of the objective function (22a) can be obtained based on the objec-

tive value of the subproblem SP (line 13). If |UB−LB|/LB is below the optimality gap

threshold ε, the algorithm terminates and the optimal first-stage decisions (x∗n+1, z
∗
n+1)

are returned. Otherwise, optimality cuts (30a)-(30d) are generated and incorporated to

the master problem MP (lines 18-19). Then, the algorithm continues. Note that ξ∗n+1,

d∗n+1, and w∗n+1 are the optimal realizations of the uncertain parameters derived from

solving R(x∗n+1, z
∗
n+1).
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Algorithm 1 A constraint generation algorithm

1: Set upper bound UB = +∞, lower bound LB = −∞, n = 0 and M = ∅
2: while |UB − LB|/LB > ε do
3: Solve the master problem MP in formulation (28).

MP : max
x,z,θ

− c>z z + θ (28a)

s.t. Axx+Azz ≤ b (28b)

θ ≤ c>ppm + c>hh
m + ξ∗>m p

m, ∀m ∈M (28c)

Epp
m +Ehh

m +Ell
m ≥Dxx+Dzz + q, ∀m ≤ n (28d)

Ghh
m ≥ d∗m, ∀m ≤ n (28e)

Fll
m + Fpp

m + Fhh
m = w∗m, ∀m ≤ n (28f)

x, z ∈ {0, 1}|I|×|T | (28g)

hm,pm, lm ≥ 0, ∀m ≤ n (28h)

4: Get an optimal solution (x∗n+1, z
∗
n+1, θ

∗
n+1,h

1∗, ...,hn∗,p1∗, ...,pn∗, l1∗, ..., ln∗).
5: Update UB = θ∗n+1 − c>z z∗n+1.
6: Solve the feasibility problem FP in formulation (27) with (x∗n+1, z

∗
n+1).

7: if F (x∗n+1, z
∗
n+1) > 0 then

8: Create second-stage decision variables (hn+1,pn+1, ln+1).
9: Add constraints (29a)-(29c) to the master problem MP.

Epp
n+1 +Ehh

n+1 +Ell
n+1 ≥Dxx+Dzz + q (29a)

Ghh
n+1 ≥ d∗n+1 (29b)

Fll
n+1 + Fpp

n+1 + Fhh
n+1 = w∗n+1 (29c)

10: Update n = n+ 1.
11: else
12: Solve the subproblem SP in formulation (25) with (x∗n+1, z

∗
n+1).

13: Update LB = min{LB,R(x∗n+1, z
∗
n+1)− c>z z∗n+1}.

14: if |UB − LB|/LB ≤ ε then
15: Return the optimal first-stage decisions (x∗n+1, z

∗
n+1).

16: Break
17: else
18: Create second-stage decision variables (hn+1,pn+1, ln+1).
19: Add constraints (30a)-(30d) to the master problem MP.

θ ≤ c>ppn+1 + c>hh
n+1 + ξ∗>n+1p

n+1 (30a)

Epp
n+1 +Ehh

n+1 +Ell
n+1 ≥Dxx+Dzz + q (30b)

Ghh
n+1 ≥ d∗n+1 (30c)

Fll
n+1 + Fpp

n+1 + Fhh
n+1 = w∗n+1 (30d)

20: Update n = n+ 1 and M =M∪ {n+ 1}.
21: end if
22: end if
23: end while
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5 Case study

5.1 Case statement

To show the effectiveness of the developed two-stage robust optimization model and the

designed algorithm, a WTE CHP plant is chosen as a case study herein. The WTE CHP

plant is operated by the private sector in the X municipality of Northern Europe. The

municipality is covered by a well-developed district heating system. The WTE plant

houses two extraction units to generate electricity and heat. The electricity generated is

traded in the regional day-ahead power market and the heat produced is exported to the

local district heating system. The structure of the WTE CHP plant and its operational

scheme are similar to those shown in Fig. 1.

To ensure efficient operations and prevent unexpected failures, plant operators must

schedule and perform necessary operational tasks for both extraction units of the WTE

plant over a planning horizon. These tasks concern the shutting down of each extrac-

tion unit for fixed time periods to conduct maintenance actions. The planning horizon

is set to be one month (30 days), over which each time period is considered to be one

day. Of note, the maintenance tasks for both extraction units cannot be implemented

synchronously. The technical parameters and the details of the maintenance tasks as-

sociated with the extraction units of the WTE plant are presented in Table 1. These

parameters are generated based on the CHP units of the operating WTE plants as in-

troduced in Force Technology (2019). The other important parameters related to MSW

storage and treatment in the case study are presented in Table 2.

As uncertain electricity prices ξt, heat demand dt, and MSW supply wt can take

any value in the corresponding uncertainty sets in equations (21a)-(21c), real-world data

are employed to build these sets in the case study. We construct the uncertainty set

Ξ for electricity prices based on data from the Elspot day-ahead market for Eastern

Denmark in June 2016, which can be downloaded from Energinet.dk (2019). In this

set, we assume that the nominal (forecast) values ξt of the uncertain electricity price

ξt equal the calculated daily average prices in all planning periods. We also assume

that the maximum deviation ξ̂t of ξt is 20% of ξt for all t ∈ T in set Ξ. The nominal

electricity prices over the scheduling horizon are shown in Fig. 3. We construct the

uncertainty set D for heat demand based on data of the total heat consumption in the

west of Copenhagen from July 1995 to June 1996 (Madsen, 2019). Note that we rescale

and modify the original data for heat demand in the case study. The nominal values dt

of uncertain heat demand dt over the scheduling horizon are also shown in Fig. 3. In set

D, d̂t is assumed to be 0.2dt for all t ∈ T . We construct the uncertainty set W for MSW

supply by modifying the data provided in Liu et al. (2017). The nominal values wt of

uncertain MSW supply wt over the scheduling horizon are shown in Fig. 4. We assume
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ŵt = 0.2wt for all t ∈ T in set W . Finally, the uncertainty budgets Γξ, Γd, and Γw are

assumed to be the same and equal to 7. The optimality gap threshold ε in the designed

algorithm is set to be 0.01%.

Table 1. Parameters for the production units of the WTE CHP plant in the case study.

Parameters Description Extraction
Unit 1

Extraction
Unit 2

HDmax
i Daily maximum heat production, (MWh) 336 444

HDmin
i Daily minimum heat production, (MWh) 0 0

PDmax
i Daily maximum power production, (MWh) 288 360

PDmin
i Daily minimum power production, (MWh) 96 120

MDmax
i Daily maximum MSW consumption, (tonne) 288 360

MDmin
i Daily minimum MSW consumption, (tonne) 120 156

CVi Variable operating cost, (e/tonne) 53 50
CMi Daily maintenance cost, (e) 1500 1800
πpi Marginal MSW consumption for power

production, (tonne/MWh)
1 1

πhi Marginal MSW consumption for heat
production, (tonne/MWh)

0.19 0.20

τi Heat-to-power ratio 0.65 0.60
ETi Earliest maintenance start time, (day) 5 1
LTi Latest maintenance start time, (day) 27 25
DTi Maintenance duration, (day) 4 5

Table 2. Parameters related to MSW storage and treatment in the case study.

Parameters Description Value

Lmax Maximum allowable amount of MSW in the waste
bunker, (tonne)

6000

Lmin Minimum allowable amount of MSW in the waste bunker,
(tonne)

2000

l0 Amount of MSW in the waste bunker at the beginning of
the scheduling horizon, (tonne)

3000

lend Minimum required amount of MSW in the waste bunker
at the end of the scheduling horizon, (tonne)

4000

GF Marginal gate fee for MSW treatment, (e/tonne) 75
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Fig. 3. Nominal values of uncertain electricity prices and heat demand over the schedul-
ing horizon.
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Fig. 4. Nominal values of uncertain MSW supply over the scheduling horizon.

5.2 Computational results

5.2.1 Robust schedule vs. Deterministic schedule

The two-stage robust model is implemented in the GAMS software and solved by the

CPLEX 12.3 solver on a computer with a Xeon(R) 2.40GHz CPU and 32GB memory.

With the aforementioned data, we first generate the robust schedule for the maintenance

tasks for the extraction units of the WTE CHP plant, which is shown in Fig. 5(a). We

20



also obtain the deterministic schedule shown in Fig. 5(b) by solving the proposed model

with only the nominal values of the uncertain parameters. Next, we use Monte Carlo

simulation tests to evaluate the obtained robust and deterministic schedules. Monte

Carlo simulation is a popular method to investigate the impact of uncertainty in many

decision-making problems. It can help decision-makers see the performance of a decision

under the possible realizations of uncertainty. In the simulation tests, we first randomly

generate 1000 samples by assuming that each uncertain parameter ξt, dt or wt obeys a

normal distribution with a mean equal to its corresponding nominal value and a standard

deviation equal to 10% of its nominal value for all t ∈ T . For each sampled outcome of

all uncertain parameters, we solve the second-stage problem (9)-(20) with the schedule

to be evaluated. Next, based on the 1000 generated samples, we calculate the average

profit of the WTE CHP plant with the evaluated schedule. Note that penalties for failing

to fulfill the heat demand and to treat the MSW are not considered when calculating the

average profit of the plant. The robustness of a schedule is measured by a feasibility ratio:

it is determined by calculating how many sampled outcomes can make the second-stage

problem feasible with the evaluated schedule among the 1000 generated samples. The

simulation results of the robust and deterministic schedules are shown in Table 3.

Maintenance

Operation

Extraction Unit 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Time periods (day)

Maintenance

Operation

Extraction Unit 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Time periods (day)

(a) Robust schedule

Maintenance
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Extraction Unit 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Time periods (day)

Maintenance

Operation

Extraction Unit 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Time periods (day)

(b) Deterministic schedule

Fig. 5. Schedules for the production units of the WTE CHP plant: (a) robust schedule
and (b) deterministic schedule.

Table 3. Simulation results for the robust and deterministic schedules.

Maintenance schedule Average profit (e) Feasibility ratio

Robust 877021.21 98.8%
Deterministic 879931.03 68.4%

Based on the deterministic schedule in Fig. 5(b), it is evident that Extraction Unit 2

is first shut down for maintenance during time periods 5-9, followed by Extraction Unit
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1 during time periods 18-21. However, the robust schedule differs from the deterministic

one. In Fig. 5(a), Extraction Unit 1 is scheduled to shut down for maintenance during

time periods 23-26 whereas Extraction Unit 2 is scheduled to be instead during time

periods 6-10. The underlying reason is that Extraction Unit 1 may fail to fulfill the

allocated heat demand and the waste bunker may be unable to store the delivered MSW

if Extraction Unit 2 is scheduled to shut down for maintenance during time periods 5-9,

given the heat demand and MSW supply uncertainty. Based on the simulation results

in Table 3, the average operating profit of the WTE CHP plant is 879931.03e with the

deterministic schedule, which declines slightly to 877021.21e with the robust schedule.

However, the feasibility ratio of the deterministic schedule is only 68.4%, which reflects

its vulnerability. Moreover, the deterministic schedule may not enable the plant to cover

the allocated heat demand in several time periods in real operations. Compared to the

deterministic schedule, the robust schedule has a higher feasibility ratio of 98.8% which

reflects not only its reliability, but also its lower likelihood of causing loss in heat demand

or violating the upper storage limit of the waste bunker. Thus, we conclude that the

robust schedule can achieve superior robustness at the (negligibly small) expense of the

profit of the WTE CHP plant.

5.2.2 Effects of the uncertainty budgets

In this subsection, we analyze the effects of the uncertainty budgets Γξ, Γd, and Γw of the

corresponding uncertainty sets Ξ, D, and W on the robust schedule and the worst-case

operating profit of the WTE CHP plant. Specifically, we assume Γ = Γξ = Γd = Γw.

Moreover, the maximum deviation of each uncertain parameter is assumed to equal 10%

of its nominal value. The robust schedules with different uncertainty budgets are shown

in Fig. 6. In addition, the corresponding worst-case operating profit of the plant and the

CPU time are shown in Table 4.

Table 4. Results for the robust schedules with different uncertainty budgets.

Uncertainty budget Γ 7 14 21 28

Worst-case profit (e) 846933.83 810940.71 780533.49 734341.31
CPU time (s) 45.74 40.33 15.94 4.93

Concerning the uncertainty budget Γ, the robust schedules for the maintenance tasks

are shown in Figs. 6(a) - 6(b) against the background of progressively larger budgets.

A differential finding is evident: while it critically affects the scheduled shut-down time

periods for Extraction Unit 1, the uncertainty budget does not affect those for Extraction

Unit 2 (time periods 8-12). The underlying reason concerns the lower nominal values

of uncertain electricity prices during time periods 8-12, during which it is judiciously
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profitable to schedule the maintenance task for Extraction Unit 2.

Concerning the worst-case operating profit of the plant, when the values of Γ are

elevated, such profit is noted to decrease as shown in Table 4. The underlying reason is

that more possible outcomes of the uncertain parameters are considered in the defined

uncertainty sets when Γ becomes larger. The worst-case profit of the plant diminishes

since the operational task schedules have to be robust for more possible outcomes. From

Table 4, we also find that all robust schedules with different uncertainty budgets are

generated less than 60 seconds, attesting to the efficiency of the designed algorithm.
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(a) Schedule with Γ = 7
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(d) Schedule with Γ = 28

Fig. 6. Robust schedules with different uncertainty budgets: (a) schedule with Γ = 7,
(b) schedule with Γ = 14, (c) schedule with Γ = 21 and (d) schedule with Γ = 28.

5.2.3 Effects of the uncertainty ranges

In this subsection, we investigate the impacts of the maximal deviations (uncertainty

ranges) of the uncertain parameters on the robust schedule for the WTE CHP plant.

Specifically, we assume that the maximum deviations d̂t = Ur dt, ξ̂t = Ur ξt, and ŵt =

Ur wt for all t ∈ T in the uncertainty sets D, Ξ, and W , respectively. The parameter

23



Ur denotes the ratio between the maximum deviations of the uncertain parameters and

their corresponding nominal values. It is introduced to reflect the uncertainty ranges of

the uncertain parameters. In addition, all uncertainty budgets are still assumed to be

the same and equal to 7. The robust schedules with different values of the maximum

deviation ratio Ur are shown in Fig. 7. The corresponding worst-case operating profit of

the plant and the CPU time are also shown in Table 5.

Table 5. Results for the robust schedules with different maximum deviation ratios.

Maximum deviation ratio Ur 5% 10% 15% 20%

Worst-case profit (e) 869481.59 846933.83 822983.77 799634.54
CPU time (s) 1399.74 45.74 405.60 1351.58
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Fig. 7. Robust schedules with different maximum deviation ratios: (a) schedule with
Ur = 5%, (b) schedule with Ur = 10%, (c) schedule with Ur = 15% and (d) schedule with
Ur = 20%.

Concerning the maximum deviation ratio Ur, it has an obvious impact on the derived
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robust maintenance schedules for both extraction units as shown in Figs. 7(a)-7(d).

From Table 5, we see that the worst-case operating profit of the WTE CHP plant over

the scheduling horizon decreases as the maximum deviation ratio Ur increases. The

underlying reason is that the uncertain parameters can have larger deviations when Ur

elevates. The robust schedule has to compromise the worst-case operating profit of the

plant since it needs to remain feasible when the maximum deviations of the uncertain

parameters become larger.

5.2.4 Impacts of different types of uncertainty

In this subsection, we analyze the impacts of different types of uncertainty on the robust

schedule and the worst-case profit of the WTE CHP plant. Specifically, we assume that

the maximum deviation ratio Ur of all uncertain parameters is equal to 10%. Moreover,

we assume Γξ = Γd = Γw = 14. The robust schedules under different types of uncertainty

are shown in Fig. 8.
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(a) Schedule under electricity price uncertainty
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(b) Schedule under heat demand uncertainty
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(c) Schedule under MSW supply uncertainty

Fig. 8. Robust schedules under different types of uncertainty: (a) schedule under elec-
tricity price uncertainty, (b) schedule under heat demand uncertainty and (c) schedule
under MSW supply uncertainty.
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Fig. 8(a) depicts the robust schedule generated by only considering the uncertainty

in electricity prices. The worst-case operating profit of the plant is 848069.60e with

this schedule. Compared to the deterministic schedule in Fig. 5(b), it can be observed

that uncertainty in electricity prices does not have an evident impact on the maintenance

schedule but has a huge impact on the operating profit of the plant. The robust schedule

obtained by only considering the uncertainty in heat demand is shown in Fig. 8(b). This

schedule is different from the deterministic schedule. However, the operating profit of

the plant with this schedule is 876197.91e, which is close to that with the deterministic

one. Fig. 8(c) shows the robust schedule derived by only considering the uncertainty

in MSW supply. This schedule is also different from the deterministic one. Moreover,

the operating profit of the plant is 846796.50e with this schedule, which is less than

that with the deterministic schedule. Thus, uncertainty in MSW supply affects both the

maintenance schedule and the operating profit of the plant.

6 Conclusion

In this paper, we have studied the problem of scheduling operational tasks for the pro-

duction units of WTE CHP plants that participate in deregulated power markets and

are connected to district heating networks. To address the problem, we have developed a

two-stage robust optimization model that considers the uncertainty of electricity prices,

heat demand, and MSW supply. A constraint generation algorithm has also been devised

to solve the two-stage robust model to optimality. The proposed model and algorithm

have been tested on a case study which aims to schedule operational tasks (preventive

maintenance actions) for the production units of a WTE CHP plant.

The computational results suggest that the developed two-stage robust model can

derive the optimal robust schedule for maintenance tasks for the production units of

the WTE CHP plant. Furthermore, we have compared the robust schedule with the

deterministic schedule generated without the consideration of uncertainty: the robust

schedule outperforms its deterministic counterpart and yields superior robustness at the

(negligibly small) expense of operating profit of the plant. In addition, we have analyzed

the effects of the parameters defining the uncertainty sets on the optimal robust schedule

for the WTE CHP plant. The results demonstrate that the uncertainty budgets and the

maximal deviations of the uncertain parameters affect both the optimal robust schedule

and the worst-case operating profit of the plant.

Our sensitivity analysis of the three different types of uncertainty further yields several

interesting observations. Uncertainty in electricity prices exerts an evident impact on the

operating profit of the WTE CHP plant. Conversely, uncertainty in heat demand tends

to affect the robust schedule for maintenance tasks for the production units of the plant.
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Uncertainty in MSW supply critically influences both the schedule and the operating

profit of the plant. For future research, some directions deserve further pursuit. Firstly,

it is worth developing more efficient algorithms for the developed two-stage robust model

when the problem size increases. Secondly, it is interesting to extend the robust model

to address potential operations scheduling problems of WTE plants in reality.
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Yanıkoğlu, İ., Gorissen, B. L., and den Hertog, D. (2019). A survey of adjustable robust

optimization. European Journal of Operational Research, 277(3):799–813.

Yi, S., Jang, Y.-C., and An, A. K. (2018). Potential for energy recovery and greenhouse

gas reduction through waste-to-energy technologies. Journal of Cleaner Production,

176:503–511.

Zeng, B. and Zhao, L. (2013). Solving two-stage robust optimization problems using a

column-and-constraint generation method. Operations Research Letters, 41(5):457–461.

Zhen, J., Den Hertog, D., and Sim, M. (2018). Adjustable robust optimization via

fourier–motzkin elimination. Operations Research, 66(4):1086–1100.

31


	Elsevier required licence
	Correct version of accepted manuscript for operations scheduling of waste-to-energy plants under uncertainty
	Title Page


