
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Mysterious Murder -
MCTS-driven Murder Mystery Generation

Corinna Jaschek∗, Tom Beckmann†
Hasso Plattner Institute

Potsdam, Germany
corinna.jaschek@student.hpi.de∗, tom.beckmann@student.hpi.de†

Jaime A. Garcia‡, William L. Raffe§
University of Technology Sydney

Sydney, Australia
jaime.garcia@uts.edu.au‡, william.raffe@uts.edu.au§

Abstract—We present an approach to procedurally generate
the narrative of a simple murder mystery. As a basis for the
simulation, we use a rule evaluation system inspired by Ceptre,
which employs linear logic to resolve valid actions during each
step of the simulation. We extend Ceptre’s system with a concept
of believable agents to make consecutive actions appear to have
a causal connection so that players can comprehend the flow of
events. The parts of the generated narratives are then presented
to a player whose task it is to figure out who the murderer in
this story could have been. Rather than aiming to replace highly
authored narratives, this project generates puzzles, which may
contain emerging arcs of a story as perceived by the player. While
we found that even a simple rule set can create stories that are
interesting to reason about, we expect that this type of system is
flexible enough to create considerably more engaging stories if
enough time is invested in authoring more complex rule sets.

Index Terms—MCTS, Believable Agents, Ceptre, Linear Logic,
Murder Mystery

I. INTRODUCTION

Murder mysteries as a genre first became popular in the
19th century in literature. These detective stories reached their
height of popularity in the 1920s and 30s, which has since
been referred to as the Golden Age of Detective Fiction [1].
Many authors from that time are still prevalent in today’s
pop culture, as can be seen for example in the 2017 movie
adaptation of Agatha Christie’s novel Murder on the Orient
Express. Novels from that era often follow very strict rules as
defined for example by Van Dine’s Twenty Rules for Writing
Detective Stories [2] or Knox’ Ten Commandments [3].

Today, murder mysteries have found their way into many
forms of media. Television series and movies feature them
especially often, with crime shows coming in a wide variety
of sub-genres, be it the classical detective story or a more
outlandish science fiction settings. Meanwhile, in games, the
board game Cluedo is one of the longest selling well-known
games in history, letting the players compete on who can solve
the murder of Dr. Black the fastest1.

Similar to traditional literature, murder mysteries in video
games often follow a linear, pre-written path, but may also
include limited branching options. The extent to which games
divert from this mode of storytelling will be explored in
Section II. Rather than replacing authors by generating stories
automatically, this papers aims to provide a tool for authors to

1https://en.wikipedia.org/wiki/Cluedo

craft rules that inform the mechanics of a world. These me-
chanics, combined with a linear logic evaluator and procedural
simulation, then yield a generated narrative whose quality will
largely depend on the complexity of the pre-authored rules.

Using this system instead of a hand-crafted branching
narrative promises a higher degree of variability and the
possibility of emergent, perceived creativity in the stories
on each playthrough. The characters in the simulation, mod-
eled as agents using a Monte-Carlo-Tree-Search-based system
(MCTS), use the low-level rules to act in ways that the player
recognizes as intelligent, planning behavior, further aiding in
the generation of creative yet believable murder mysteries.
Additionally, the stories generated in this way lend themselves
better to be displayed in an amusing puzzle setting, rather than
a highly dramatic story that is authored to provide the best
pacing and suspense.

In Section II we will introduce related work in the fields of
murder mysteries in video games, procedural story generation,
and the story generation system Ceptre. Section III will explain
our approach to our own linear logic evaluator, our rule set,
believable agent system, and the game’s user interface. The
Section IV discusses, in particular, our opinion on linear logic
in this system and the challenges coming with the authorship
of the rules. Sections V and VI will talk about possible
next steps that would drive this project further and provide
a summary of our findings.

II. RELATED WORK

In this section, we will give an overview on existing murder
mystery video games and examine how they approach the
various challenges of the genre, survey projects that have
used procedural generation in the context of game narratives
and present the rule-specification language Ceptre created by
Martens [4], which our own system is based on.

A. Murder Mystery Video Games

While prevalent in many genres, as seen in Section I, murder
mysteries have only been explored in video games rarely, when
compared to other genres. This may be due to the complexity
involved in detective work as portrayed by literature and film.
Most murder mystery games rely on handwritten narratives
that are similar in plot to a novel or movie. The player has
the opportunity to follow the detectives along the story and

https://en.wikipedia.org/wiki/Cluedo

gather evidence, interview suspects, or follow leads. In some
cases, they may also expose lies and find holes in presented
testimonies. However, most games do not allow the players
to make connections between the evidence and testimonies
and let them come to their own conclusions. With most steps
represented as multiple choice questions, the players just have
to pick the correct choice or guess until they get it right [5].

This method is employed in games like LA Noire (Team
Bondi, 2011), where falsely accusing suspects will make them
offer less information to the player, but will never have game-
changing consequences. This ensures that players will always
be able to complete the game; they will always be led to
reach the next scripted story point in the branching or linear
narrative, even if they took wrong decisions before.

While this is a valid choice, it has been noted that the
resulting game may be less compelling. When the answers
are all given within the game, the player cannot become fully
immersed in playing the clever detective [6]. However, when
players are left on their own to collect all evidence, it can
lead to games like Murder on the Mississippi (Activision,
1986), which becomes unsolvable if players miss a piece of
information early on in the game [7].

To make sure no clues can be missed while still allowing for
more interaction than simple multiple choice options, games
often feature in-game notebooks or a collection of relevant
items and notes. For example in the game Discworld Noir
(Perfect Entertainment, 1999) or Contradiction: Spot the Liar!
(Baggy Cat Ltd, 2015). These written down clues often spoil
the puzzles they represent as they need to feature the important
aspect of the clue in order to be useful at all.

Some games have attempted to remove this step by letting
players take their own notes and offering other option to
receive more information, such as the in-game search en-
gine in Wadjet Eye Games, 2006 or the telephone book in
Sherlock Holmes: Consulting Detective (ICOM Simulations,
1991), which, only when used correctly, open up potential new
options for interaction. While this may increase the challenge
and subsequent feeling of reward, it may still convey a feeling
of just following in someone else’s footsteps. The game Her
Story (Sam Barlow, 2015) is an example of a different way
of approaching this problem. The murder mystery game does
not involve any sort of confrontation of the suspects. In fact,
there is no in-game way of determining if you have come to
the right conclusion at all. Players simply gather information
by searching a police database until they are satisfied with
their understanding of the events. We predict that reaching the
correct solutions in this manner tends to be more satisfying to
players, as it is a testament to their skills.

Yet, no matter to which of these categories a game belongs,
it has a relatively low replay value, as once the murderer is
known, the main motivation for playing the game ceases to
exist. ClueGen [8] attempts to rectify this by using procedural
generation on the plots of murder mysteries. A number of
possible motives and histories are used to create a multitude
of narratives. The addition of possible red herrings or lying
non-player characters enhances the complexity even further.

Even with a relatively small set of predefined options, the
resulting mysteries were sufficiently interesting to players.
The players recognized complex, underlying intentions, and
structures, even in cases where these were not intended by
the author of the rules informing the procedural generation
program.

B. Procedural Narrative Generation

For the game PromWeek, McCoy et al. [9], [10] created
a “model for socially-oriented gameplay” named Comme il
Faut. The model draws from a corpus of social norms that
inform the decisions of non-player characters each turn of
the game. It then generates animations to visualize to players
how characters react to their decisions. To reach this point,
PromWeek required extensive manual authoring to embed
social biases and conventions in a formalized rule system.

A similar demonstration of an engaging, fully realized
social game is Façade [11]. Here, as well, it took the authors
considerable effort to create the necessary rules. Instead of
leaning heavily on exclusively generated content, Facade chose
to define story events that may happen at any time if its
preconditions are fulfilled, dynamically influencing the story
and shaping it as much as possible based on the player’s
interaction with the game.

Rowe et al. [12] demonstrate the use of reinforcement learn-
ing to adjust stories. A narrative planning system was trained
by having a large number of students play an educative story-
based game and fill out surveys on their experience. Different
branching story options were selected for different players.
This allowed an automated analysis of the story variants that
were particularly well received and had the highest impact on
the education of the players.

Ceptre2, which is used as the basis for the work presented
in this paper, is a “rule specification language” for interactive
narratives or simulations [4]. Its intention is to allow rapid
prototyping by providing a language specific to this domain.
It uses linear logic as the foundation for the interpretation.
Linear logic is a formal logic that extends the classical logic
used in mathematics. The classical logic concerns itself only
with “stable truths”. These can, however, not always be applied
directly to real-life situations, as they lack causality [13].
While in classical logic all conditions stay the same after
an evaluation, in reality, the conditions may be modified. For
example, trading money for an object removes the possibility
of spending this money again and changes the truths “I have
money” to “I have this object”. Linear logic focuses on its
formulas as resources, rather than truths [14]. New resources
may be added to the simulation’s state or removed in the
course of rule evaluations.

Ceptre allows a game designer to specify terms, rules, and
predicates as well as an initial configuration S. The initial
configuration S consists of a set of predicates that represent
the collection of truths at this point, such as “I have money”.
The execution of a Ceptre simulation consists of a series of

2https://github.com/chrisamaphone/interactive-lp

Fig. 1. Up top the four involved actors can be seen, with the murder victim
crossed off in red. Players may now select characters and choose to ask
them questions, either about their own feelings and possessions or about their
relationship to other characters. Players may also choose to accuse a character,
which will end the game and reveal whether their solution was the correct
one. In this case, we asked James for his current mood and he answered
twice with “sadness” and once with “joy”, which may lead the player to
make conclusions on this actor’s motivations.

repeated steps. During each step, it will first be determined
which rules can be applied to the current state. A rule may
have a set of preconditions, which is the resources that will
be consumed from the state if that rule is applied, and a set of
resulting resources. This corresponds to the possible actions
an agent could take or in which a simulation may evolve.

A valid rule can either be chosen interactively by a player
or randomly assigned. The chosen rule will then be applied
to the state, creating a new instance of state S′, on which the
simulation step is then repeated until some terminal condition
is reached, for example, when no more rules are available.

III. APPROACH

In this section, we describe our system for procedural
generating compelling narratives in a bespoke murder mys-
tery game. This includes an overview of the gameplay, our
approach to a linear logic evaluator and how stories were
generated to ensure that actors made choices that appear
coherent, and finally the user interface we built to allow
players to interact with the system.

The game revolves around murder mysteries that are gen-
erated in a simulation. In this simulation, multiple artificial
actors get to take various actions, most of which involve an
interaction with another actor. The actions are structured in a
way that eventually a murder will happen, at which point the
simulation stops. Players are then presented with the involved
actors and who the victim was. Using the interface shown in 1,
the player can then attempt to solve the murder by questioning
the actors about their relationships and ask for testimonies of
the circumstances leading up to the murder.

To generate the murder mystery simulations, our system3

3https://github.com/corinnaj/mysterious-murder Latest commit at time of
writing: a2db58cefeae59b43818b35f44eb5f4c75974896

Ceptre/
Linear Logic

Evaluator and State

5. after reaching max steps,
apply most promising action to

original state

MCTS

3. report reward for action

4. report sum of rewards,
continue with 1 or 5 Character State

1. report
possible rules/actions

for character

2. copy state and
simulate action

Fig. 2. The communication between the three core elements of our system.
When tasked with deciding on an character’s next move, the MCTS component
continuously creates copies of the simulation state to explore which sequence
of actions provides the given character with the highest reward, until a
maximum number of steps has been taken.

uses Ceptre [4] as a basis. Ceptre is a system to formulate and
run interactive narratives or simulations. We extend Ceptre’s
core concept with non-deterministic outcomes and a reward
system for actions to drive artificial agents. Our simulation is
neither driven by a human player or random choices, which are
the two options Ceptre offers. Instead, we implement MCTS
agents that drive the story by evaluating the possible options
to maximize their reward. Figure 2 illustrates how Ceptre, the
MCTS system and the agents communicate.

A. Linear Logic Evaluator

Our approach on story generation is based on the approach
used by the Ceptre story generation engine. This engine comes
with a linear logic evaluator that takes rules that describe
the transformation of resources to model the development
of a story. The Ceptre engine is written in the Standard
Meta Language and compiled via MLton4, though to make
predicting the outcome of the simulation multiple steps ahead
feasible in terms of performance, we re-implemented Cep-
tre’s engine in Python. Early in the project, we used too
many constraints, modeled as resources, for Ceptre to handle.
Execution speed would quickly deteriorate, especially as the
simulation dragged on. As a consequence, we implemented our
own reduced version of Ceptre, containing only the aspects
that we were making use of. This meant that we dropped
features like Ceptre’s stages and its advanced type system with
support for inheritance. The type system, which allowed for
elegant rules like “has Character gun” for the predicate “has
character object” and the subtype “gun” of “object”, made the
evaluation considerably more complex as each type instance
would increase the possible permutations of each rule making
use of it. For our simpler use case, we were able to avoid

4http://mlton.org/

https://github.com/corinnaj/mysterious-murder
http://mlton.org/

using types other than our actors by using rules of the form
“has_gun Character”.

Our linear logic evaluator takes a set of actors, a set of
rules and a set of predicate instances that form the initial state
of the simulation. Predicates have a name and an ordered
list of placeholders that can be taken up by any actors. A
predicate instance is a predicate of which all placeholders have
been configured with concrete actors. Rules consist of a left-
hand side and a right-hand side, both containing predicates.
The predicate’s placeholders are numbered consistently so
that advanced rules that refer to the same actors across the
predicates of a rule are possible. To this extent, our evaluator
forms a strict subset of that of Ceptre.

We extended this system by introducing non-determinism.
This means that the right-hand side of a rule may list multiple
sets of predicates that are possible outcomes of activating this
rule, together with a probability of each outcome occurring.
For example, proposing marriage to another actor has a 90
percent chance of succeeding, while a rejection is less likely
with a corresponding 10 percent chance. Prior to this, we had
two rules for each possible outcome, for example, one for
stealing from another actor successfully and another for getting
caught in the act. This worked fine while randomly selecting
rules, but as soon as we started using intelligent agents to
select rules, the agents quickly learned that picking the rule
where they get caught was not a good choice, rather than
attempting to balance the potential risk-reward of a rule.

To further guide the agent in its decisions, we added a
system of rewards to each rule. For each outcome of a rule,
the agent could receive a reward or a penalty in different cat-
egories. As categories, we chose social, sanity and fulfillment,
loosely based on the top three layers of Maslow’s hierarchy
of needs belongingness and love, self-esteem and respect and
self-actualization [15]. As an example, the rule steal_debt, in
which one actor steals from another in order to pay off their
debts, results in a positive reward of 120 in fulfillment, while
also entailing a negative reward of -10 on their sanity. These
categories of rewards proved to be general enough so that
each rule we developed could have a value that felt intuitive
associated with it.

Lastly, to make the events more readable to players, we
added a built-in templating system that used knowledge
embedded in the system to formulate the rules as natural
sentences. This allowed the formulation of templates such as:

Shocked t h a t [0 : h i s | h e r] [2 : husband | w i f e]
was c h e a t i n g , {0} murdered [2 : h i s | h e r]
l o v e r { 1 } .

where the each {i} will be replaced with the name of the i-th
actor in the rule and each [i :a | b] will be replaced by a or b
depending on if i-th actor is male or female.

B. A Murder Mystery Rule Set

As a basis for the rules, we chose to introduce resources that
model the current relationships between characters and general
tendencies in their character to act in certain ways. We adapted

the Big Five Personality Traits [16], giving each character a
balance of three resources for each opposing pair of traits.
For example, a character might receive two cautious resources
and one curious resource, or three confident resources and no
insecure resources. This allowed authoring rules that require
a certain tendency towards one of the extremes of each trait
pair. To model the relationships between characters, we used
Plutchik’s Wheel of Emotion [17]. Again, we have opposing
pairs that are not necessarily exclusive in our system. Spending
time with another actor may yield trusting resources between
the two, while fighting might yield anger resources. A making
up rule would then allow removing anger resources. To model
more extreme characters, we introduced a system similar to
alignments as found in some role-playing games. We were
inspired by the simple separation into Good, Neutral and Evil
as found in Dungeons and Dragons5. Actors may follow one
alignment which will enable them to pick certain options more
easily than other characters.

In the next step, we generate relationships and attributes
relevant to our domain of murder mystery. This includes
whether a character is rich (“has_money Character”), their
current relationship to other characters using the wheel of
emotion, or whether the characters are either related or lovers
or married.

Our rule authoring system is conceptually identical to that
used in Ceptre. We, however, directly compose Python objects.
This has the disadvantage of having to adhere to Python’s
syntax rather than being able to define a domain specific
language, but the advantage that we can define functions
that group often used sets of predicates, enable domain-
specific consistency checks or toggle groups of rules with
“if”-conditions. All of this would have also been possible in
Ceptre, but would have required introducing new syntactical
elements in the Ceptre language, while we effectively work
on a meta-language level at all times.

Most of the rules pose a dramatic conflict between charac-
ters that generate resources like anger or suspicion. Typically,
there is a countering rule that resolves some of this conflict
by removing these resources again. The system is, however,
biased towards escalating the conflict quickly, to ensure that
stories do not get out of hand and become too complex to
understand for a player. All rules require a motivation as the
player would otherwise not have a means to follow the flow of
events. For example, fighting with another character requires
the preexistence of “anger” between the two. Making up would
require characters to have developed two “anger” between
each other beforehand, while there also exists a resource of
“trust” between the two. Further, almost all rules have global
preconditions, such as characters being alive or dead or not
currently being married when proposing to another character.
These preconditions are modeled in the same way that any
other resources are. We did, however, observe that we started
thinking about these conditions differently and created macros
to help us keep track of this kind of state.

5http://dnd.wizards.com/articles/features/systems-reference-document-srd

Fig. 3. An excerpt from a generated causality graph. The small nodes reflect resources that were generated or existed in the initial state. The larger boxes
reflect the actions that agents chose to take. Marked in red is the rule that ended the simulation, the murder.

In our current rule set, there are three different motives
for murder. Characters that have many “anger” resources
to another character may choose to murder them over that.
Spouses of characters that are cheating may choose to murder
their spouse’s lover. Greedy characters may choose to murder
a rich character to acquire their money. All of these rules
require the actor to first acquire a weapon, which delays
the inevitable at least for one turn, typically making reason
and consequences less obvious in the narrative. Further, we
added one rule where characters may be able to kill another
character without being in possession of a weapon if they have
particularly many “anger” resources to another character, to
make the “has_weapon” predicate slightly less of a definitive
indicator of a murder.

Other rules to add substance to the narrative include charac-
ters attempting to gamble, which may yield debt that motivates
them to acquire money. This can either be done by attempting
to steal from other characters or even by murdering them.
Characters can seduce each other, become lovers or married, or
get divorced. Further, to make the origin of “anger” resources
that play a central role in the murder motives less obvious, we
added the concept of spreading the abstract concept of a lie
about another character. In this way, a character X that does
not like another character Y can attempt to spread a lie about
Y to a character Z. If the successful outcome is chosen, Z now
also becomes angry at Y. A more sophisticated system may
allow characters to construct specific lies, which would add
another layer of interest to the game, as characters would then
be able to formulate testimonies which they believe to be true
based on information they received from another character, but
which the player can then identify as lies.

We added non determinism wherever possible, and in partic-
ular to those rules with high rewards for a positive outcome, to
ensure that the artificial agents will choose options that may
have a high pay off for it, but may also result in dramatic

tension, as for example, one character catches another in an
attempt to steal from them.

Having only a few motives for murder does, in fact, align
with the most common structure of Agatha Christie’s novels,
which we took as a major influence. Typically, the reason
for murder is one of those we listed above, with the depth
of the story coming from the elaborate reasoning and the
relationships between the characters [18]. As such, while the
stories appear very varied in their turn of events, most of
the time the final step that motivated the murder can be put
into few categories. Putting a focus on delaying the murder
for multiple steps is thus important to let agents interact and
provide variability to the otherwise few motives.

C. Believable Agents

In the first iteration of the prototype, we used agents that
took actions randomly. This resulted in stories that were varied,
but were hard to follow, as no higher level intention of the
agents became apparent in the story.

To improve the believability of the flow of actions, we added
certain rewards to each action that an agent can take. Some
actions may incur a penalty, like picking up a weapon which
decreases the agent’s sanity score, but ultimately may allow
it to commit a murder for a reward in fulfillment if the agent
has a fitting motive. The agent’s actions became a lot more
coherent in this way, as they follow the directions as given by
the authored reward structures. With an ability to plan ahead
for multiple steps, different agents may try to anger characters
about others or find different ways to fulfill the preconditions
of the rules with the highest rewards.

To enable this sort of planned behavior, we used Monte
Carlo Tree Search (MCTS) with upper confidence bounds
policy (UCB1) [19]. Since the simulation has no clear terminal
state, we let the simulation play out a fixed number of steps
every time instead. Considering a murder a terminal state

would have been an option, but this might discourage murders
from happening, as actors who do not commit a murder
get to collect rewards from more steps during playout. An
alternative to this model would have been to only determine
win/lose per playout, ending a playout with “win” if the
character commits a murder and “lose” if they fall victim to
one. This, however, would discourage actors from considering
other possibilities that would bring smaller rewards and always
steer them directly towards murder, resulting in much smaller
murder mysteries.

From experimentation, good values for the maximum num-
ber of expanded states is around 100, while the number of
playout steps is limited to 10. Most of the time, simulations
will be shorter than 30 steps, making 10 a good balance
between performance and allowing actors a good amount of
foresight. The accuracy of the MCTS agents is diminished
by the non-deterministic choices. While expanding states, the
actor will only get to know a single of those states and
assume that this is the outcome. This is because we store
the entire state after each expansion, since the computation
of valid moves is costly, so subsequent visits in the selection
of that node will not make a difference. In this way, agents
will sometimes act more pessimistic or optimistic, based on
their once observed outcome of a rule. As such, we found that
not taking another step of optimization to enable the actors
to explore all possible outcomes of actions results in a more
believable behavior.

The MCTS agents encountered significant performance
problems as they had to evaluate valid actions at the current
state 300 times more often, with 30 expansions and 10 playout
steps. Using pre-calculated hashes for all lookups into the
resource state allowed the simulation to progress reasonably
fast, at about a pace that allowed a human to follow the
event flow as decisions are made. Evaluating decisions via
MCTS is typically a fast option [20]. This is, however, based
on the assumption that calculating rewards is the expensive
action, while the random playout is negligible in terms of
performance. For our simulation, however, each step of the
simulation is costly, as the most expensive action is to find all
valid rules, which has to happen on every step of the playout.

D. User Interface

The Python library Kivy6 was used to develop our user
interface (UI). This allowed us to directly use the Python
objects that were created during the murder mystery genera-
tion, without the need for serialization when crossing language
boundaries. It was important to represent the state, so that it
could easily be understood by players. To achieve this, we
relied on images to display our characters, objects, and rules.
Specifically, we used emojis as our images. They presented
us with a large collection of portraits to pick from for our
actors and objects, as well as a simple way to display emotions
without needing to write a lot of text. Using images helped

6https://kivy.org

Fig. 4. The player is questioning one of the actors, James, on information
she has about another actor, Rebecca. In this case, James knows that Rebecca
was involved as an actor in the rule “fight” with another character, Gerald, as
the victim.

players to quickly recognize the actors in each action, even if
they did not remember the actors’ names.

Rules were considerably harder to represent unambiguously
using emojis. Some were quite simple, for example, murder,
which we represent using a weapon and the two characters
involved in the murder, as seen in Figure 4. Others were more
complicated, such as the rule “lie to A about B” which is
displayed as the “secret” emoji. Unfortunately, we were not
able to find a recognizable emoji for all rules, for example
paying a debt to someone or stealing from someone, which
are both represented using different money symbols as there
are no other, more obvious ones, to choose from.

IV. DISCUSSION

This section presents some of the advantages and limitations
of the system described earlier. While extensive user testing
is yet to be conducted, a few insights have arisen through the
development and initial player demonstrations.

A. Linear Logic

While linear logic is more suited to represent real-life
situations than classical logic, it showed shortcomings when
applied to our domain. In linear logic all rules are determin-
istic, meaning every rule has exactly one possible outcome.
There is no possibility for chance. This initially forced us to
have multiple rules to represent possible different resolutions
to some rules. One example is the rule steal , which allows
an actor to attempt to steal money from another. There were
two possibilities when using this rule: the actor could be
successful at stealing or he or she could be caught. These
possibilities should obviously have a different effect on the
state of the simulation. However, this kind of non-determinism
was not supported by Ceptre. To remedy this, we extended our
implementation of a linear logic evaluator to support multiple
outcomes with authored probability as described in Section
III-A.

Another drawback of linear logic was that it only knows
the resources that exist in the current state. There is no
possibility to test for the absence of a given resource. While
this did not pose a significant problem, it made the rule’s setup
more complex, both in terms of authorship and in terms of
computation. For many predicates, we now had to introduce
an opposite and manually ensure that the resources always
appeared mutually exclusive in the resource state.

For example, our system kept track of which characters
in the game were related to each other via the predicate
related Character Character ’. When we introduced a new
rule get_married, we wanted to check that the characters
getting married were not related to each other. As linear logic
does not allow this, we had to introduce a new predicate
not_related and make sure to assign exactly one of these two
predicated during the generation of the initial state.

B. Authorship and Rule Set

The rules we used in our test runs generated interesting steps
of events, but often lacked interest and the agents often fell
back to following the same steps of actions to maximize their
reward. We think that given more time, authors with more
experience in storytelling would be able to use this kind of
system to create a rule set that produces more compelling
and varied simulations. It may be necessary to add more
convenience to the pure linear logic system to lower the barrier
of entry and allow keeping track of an increasingly complex
system of rules. Further, the resulting outcome may be put
into a shape that appears more appealing to players by adding
additional flavoring to each rule and dynamically adapting the
rendition of sequences of events to the actor, for example by
making a more insecure actor’s testimony show this character
trait when they present the testimony.

When authoring our own rules, we became aware of a
responsibility to balance the nature of the rules and the
resulting societal norms between what we may think an
interesting society should be like and matching what may
be the players’ expectations, so that they can understand and
follow the agent’s reasoning. This includes aspects like the
preconditions for marriage, what the consequences for stealing
or lying should be or the rules for when a murder may happen.
This is further amplified by the requirement to attach rewards
or penalties to each rule, such that the agents know which
actions are desirable and which are better to avoid.

During limited usability tests, players showed excitement
about the often surprising and funny rendition of certain
actions by the emojis. At the same time, certain emotions, such
as “relaxed” and “fear”, were too ambiguous so that additional
explanations were required. Early on, it became clear that
the possession of a knife was too strong of an indicator that
someone committed a murder. When multiple characters with
knifes appeared, however, the players were most often able
to solve the mystery by investigating their relationship to the
victim and reasoning of the possible implications. As such,
the rules we authored appeared to provide strong enough ties

to the player’s own experiences for them to comprehend the
agent’s motivation.

C. Flexibility of The System

To explore the versatility of this system, we ported the rule
set to generate simple quest hooks for role-playing games,
such as Dungeons and Dragons. The outcome is a tool that
formulates the flow of events leading up to a moment where
the adventurer party should get involved. Instead of stopping
at the moment of a murder, we thus use a set of actions
that involve hiring the adventurers as stop conditions. For
example, in a dispute, a morally flexible adventuring party
might be hired to settle the issue in favor of one of the
opponents. A paranoid or threatened actor might ask the heroes
for protection. Or, a rule we inherited from the murder mystery
system, the party may simply be hired to investigate the
murder of an actor. The system’s output is kept intentionally
abstract to let the human author using the tool improvise and
fill in details about the story.

Even after investigating different reward models, involving
more domain specific characteristics such as physical power
or dexterity, we decided to keep using the existing measures,
as they proved to be on a level that could easily be mapped
to any actor’s behavior. We found the generated stories to
encourage thinking outside the box and fueling creativity when
it came to developing short plot lines. However, the range
of possible outcomes was of course limited to the ones we
authored beforehand, again only providing points of variation
in the circumstances that led to the hiring of the story’s heroes.

V. FUTURE WORK

While the status of this project currently puts it in a playable
state, the final outcome is unfinished. In this section, we will
talk about the steps that are necessary before a version of this
prototype can be tested by players to a larger extent, such
as giving the simulated characters more distinct personalities
and the ability to lie, as well as a concept of searching for
additional evidence.

A. Enhancing Characters

The decision to use emojis to represent the characters
has worked well, making recognition quick and easy. The
characters themselves are, however, still rudimentary and
lack personality. More options are need for the characters
themselves, such as age and occupation, as well as using the
already defined traits described earlier more effectively. For
example, trusting characters could reveal information more
easily, while others may try to keep secrets.

Relationships between characters might also be enhanced.
Currently, we only generate whether two characters are related,
we do not specify how. This would allow us to introduce more
complex rules and allow for more interesting stories, such as
rivaling siblings.

B. Enhancing the Investigation Stage

To make the game satisfying to players, they should have
the option to uncover hidden motives. At the moment, none of
the actors will lie to the player, or even hide information. As
such, it is only a matter of dedication for the player to finally
find the actor who admits to the murder.

To remedy this situation, we propose a gameplay mechanic,
wherein local knowledge exists and certain actors can lie.
More specifically, each actor is allowed to omit information
that they consider sensitive, but only the murderer is allowed to
also falsify statements. For any rule that is taken, uninvolved
actors have a chance to witness this action happening. The
probability that this happens would be defined per rule, to pre-
vent sensitive information from being witnessed too frequently,
such that more realistic testimonies come together. With these
mechanics in place, the game’s core objective for players
will be to identify the one actor whose testimony contains
false statements, thereby revealing themselves as the murderer.
This is challenged by the fact that actors may omit certain
interactions, or that the murderer primarily interacted with the
victim and no other actors witnessed these interactions.

With this model, it is, however, questionable if the player
will always be able to solve the mystery. It may happen
that not enough information from actors is presented to find
contradictions and identify the murderer. While this reflects
real-life murder mysteries well, it may not lead to satisfying
gameplay. As such, it would be desirable to detect how many
statements contradict to skip potentially unsolvable mysteries.

Once these points have been realized, rigorous playtesting
would be the next step. In particular, the number of characters
will provide an interesting point of balance. Having more
characters increases the load of information for the player,
but also provides them with more points of reference for
figuring out contradictions in a testimony and potentially a
richer story with more complex character relationships. Since
the interactions between actors are the only way the player gets
to know them, giving actors the option to interact more will
lead to players identifying actors in richer ways, as already
shown in ClueGen [8]. An actor may become a lover of
particularly many other actors or a family feud may arise.

VI. CONCLUSION

While the murder mystery generator presented in this paper
showed promise with regards for variability in the stories it
generated, it is clear that this system fundamentally relies on
having a well-thought-out set of rules produced by an author.
However, with the system in place, these rules were quick
and easy to establish and prototype with. As such, the system
would not take the place of authored, linear murder mystery
games, but rather provide an option to quickly generate ideas
for more elaborate plots or generate puzzles with a small scope
that a player should be able to solve within 15 minutes. The
explored approaches of combining the linear logic evaluator as
implemented by Ceptre with Monte-Carlo-Tree-Search based
artificial agents worked well to fulfill this purpose and has
opened up an assortment of future research avenues.

REFERENCES

[1] M. A. Ackershoek, “" the daughters of his manhood": Christie and the
golden age of detective fiction,” CONTRIBUTIONS TO THE STUDY OF
POPULAR CULTURE, vol. 62, pp. 119–128, 1997.

[2] S. Van Dine, “The art of the mystery story,” American Magazine, vol.
108, pp. 189–193, 1928.

[3] R. Knox, Best Detective Stories of 1928-29, 1929.
[4] C. Martens, Ceptre: A Language for Modeling Generative Interactive

Systems. Palo Alto, California: AAAI Press, 2015, pp. 51–
57. [Online]. Available: https://www.aaai.org/ocs/index.php/AIIDE/
AIIDE15/paper/view/11536

[5] M. Brown, “What makes a good detective game?” 2017. [Online].
Available: https://www.youtube.com/watch?v=gwV_mA2cv_0

[6] H. Goldstein, “L.a. noire review - ign,” 2018. [Online]. Available:
https://m.au.ign.com/articles/2011/05/16/la-noire-review

[7] C. Petit, “Building a mystery: Gaming’s crime investigation
mechanics and the beauty of being unsatisfied,” 2018.
[Online]. Available: https://www.vice.com/en_au/article/5gj9bz/
building-a-mystery-crime-investigation-mechanics-and-the-beauty-of-\
being-unsatisfied-025

[8] ClueGen: An Exploration of Procedural Storytelling in the Format of
Murder Mystery Games. Palo Alto, California: Association for the Ad-
vancement of Artificial Intelligence (AAAI), 2016. [Online]. Available:
https://aaai.org/ocs/index.php/AIIDE/AIIDE16/paper/view/14070

[9] J. McCoy, M. Treanor, B. Samuel, A. A. Reed, M. Mateas,
and N. Wardrip-Fruin, “Prom week: Designing past the game/story
dilemma,” in Proceedings of the 8th International Conference on the
Foundations of Digital Games, FDG 2013, Chania, Crete, Greece,
May 14-17, 2013., G. N. Yannakakis, E. Aarseth, K. Jørgensen,
and J. C. Lester, Eds. Society for the Advancement of the
Science of Digital Games, 2013, pp. 94–101. [Online]. Available:
http://www.fdg2013.org/program/papers/paper13_mccoy_etal.pdf

[10] J. McCoy, M. Treanor, B. Samuel, N. Wardrip-Fruin, and M. Mateas,
“Comme il faut: A system for authoring playable social models,” in
Proceedings of the Seventh AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, ser. AIIDE’11. Menlo Park,
California: AAAI Press, 2011, pp. 158–163. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3014589.3014617

[11] M. Mateas and A. Stern, “Façade: An experiment in building a fully-
realized interactive drama,” 2003.

[12] J. Rowe, B. Mott, and J. Lester, “Optimizing player experience
in interactive narrative planning: A modular reinforcement learning
approach,” in Proceedings of the Tenth AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, ser. AIIDE’14.
Palo Alto, California: AAAI Press, 2014. [Online]. Available:
https://www.aaai.org/ocs/index.php/AIIDE/AIIDE14/paper/view/9008

[13] J.-Y. Girard, Linear Logic: its syntax and semantics, ser. London
Mathematical Society Lecture Note Series. Cambridge: Cambridge
University Press, 1995, pp. 1–42.

[14] R. Di Cosmo and D. Miller, “Linear logic,” in The Stanford Encyclo-
pedia of Philosophy, winter 2016 ed., E. N. Zalta, Ed. Metaphysics
Research Lab, Stanford University, 2016.

[15] A. H. Maslow, “A theory of human motivation.” Psychological Review,
vol. 50, no. 4, pp. 370–396, 1943.

[16] S. Rothmann and E. P. Coetzer, “The big five personality dimensions
and job performance,” SA Journal of Industrial Psychology, vol. 29,
no. 1, 2003. [Online]. Available: https://sajip.co.za/index.php/sajip/
article/view/88

[17] R. Plutchik, “The nature of emotions: Human emotions have deep
evolutionary roots, a fact that may explain their complexity and provide
tools for clinical practice,” American Scientist, vol. 89, no. 4, pp. 344–
350, 2001. [Online]. Available: http://www.jstor.org/stable/27857503

[18] A. Verbogen and K. Macdonald, “Agatha christie and her murderers:
a case study of the miss marple novels,” Master’s thesis, Universiteit
Gent, 2008.

[19] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of
the multiarmed bandit problem,” Machine Learning, vol. 47, no. 2,
pp. 235–256, May 2002. [Online]. Available: https://doi.org/10.1023/A:
1013689704352

[20] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlf-
shagen, S. Tavener, D. Perez Liebana, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” vol. 4:1, pp. 1–43, 03
2012.

https://www.aaai.org/ocs/index.php/AIIDE/AIIDE15/paper/view/11536
https://www.aaai.org/ocs/index.php/AIIDE/AIIDE15/paper/view/11536
https://www.youtube.com/watch?v=gwV_mA2cv_0
https://m.au.ign.com/articles/2011/05/16/la-noire-review
https://www.vice.com/en_au/article/5gj9bz/building-a-mystery-crime-investigation-mechanics-and-the-beauty-of-\being-unsatisfied-025
https://www.vice.com/en_au/article/5gj9bz/building-a-mystery-crime-investigation-mechanics-and-the-beauty-of-\being-unsatisfied-025
https://www.vice.com/en_au/article/5gj9bz/building-a-mystery-crime-investigation-mechanics-and-the-beauty-of-\being-unsatisfied-025
https://aaai.org/ocs/index.php/AIIDE/AIIDE16/paper/view/14070
http://www.fdg2013.org/program/papers/paper13_mccoy_etal.pdf
http://dl.acm.org/citation.cfm?id=3014589.3014617
https://www.aaai.org/ocs/index.php/AIIDE/AIIDE14/paper/view/9008
https://sajip.co.za/index.php/sajip/article/view/88
https://sajip.co.za/index.php/sajip/article/view/88
http://www.jstor.org/stable/27857503
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352

	Blank Page

