
Optimisation of a distribution system in the
retail industry: An Australian retail industry

Item Type Article; Meetings and Proceedings

Authors Amjad, M., Daniel, J., Garza-Reyes, J.A.

Citation Garza-Reyes, J.A., Daniel, J., and Amjad, M. (2019), ‘Optimisation
of a Distribution System in the Retail Industry: An Australian
Retail Industry’, Proceedings of the 9th International Conference
on Industrial Engineering and Operations Management (IEOM),
Bangkok, Thailand, March 5-7. Michigan: IEOM Society, pp. 1-12.

Publisher IEOM Society

Journal Proceedings of the 9th International Conference on Industrial
Engineering and Operations Management (IEOM)

Rights CC0 1.0 Universal

Download date 17/06/2020 03:13:41

Item License http://creativecommons.org/publicdomain/zero/1.0/

Link to Item http://hdl.handle.net/10545/623779

http://creativecommons.org/publicdomain/zero/1.0/
http://hdl.handle.net/10545/623779


Proceedings of the International Conference on Industrial Engineering and Operations Management 
Bangkok, Thailand, March 5-7, 2019 

© IEOM Society International 
 

Optimisation of a Distribution System in the Retail 
Industry: An Australian Retail Industry 

 
Mohammad Amjad 

Faculty of Engineering and Information Technology 
University of Technology Sydney 

NSW 2007, Australia 
 

Jay Daniel 
Derby Business School 

University of Derby,  
Derby, DE22 1GB, UK 
J.Daniel@derby.ac.uk 

 
Jose Arturo Garza-Reyes 

Centre for Supply Chain Improvement  
University of Derby,  

Derby, DE22 1GB, UK 
J.Reyes@derby.ac.uk 

 
 

Abstract 
 
This paper develops a mathematical model based on inventory routing problem that aims to minimise 
transportation cost, inventory carrying cost and optimises delivery schedules in a retail Australian industry. 
A supply chain is considered which comprises of a single distribution centre, having homogenous fleet of 
vehicles, supplying a single product to multiple retailers having deterministic demand. The mathematical 
model takes into account varying level of road congestion. 
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1. Introduction 
 
The Australian logistics industry contributes to 8.6 per cent of the GDP, adding $131.6 billion to the Australian 
economy in 2013. Productivity improvement of 1 per cent is estimated to increase the Australian GDP by $2 billion 
(Allen 2014).  However, increase in competition and reduction of profit margin has posed a significant challenge to 
the transport industry and optimisation of individual businesses no longer yields increased efficiency. Companies are 
now forced to locate efficiency improvements for entire supply chains rather than focusing on improvement at each 
successive echelon by sharing information beyond prices and tariffs (Andersson et al. 2010). Information shared 
includes consumption patterns, inventory status, sales forecast and profit margins. Thus the competition has shifted 
away from individual businesses to competition between entire supply chains, with each actors in the supply chain 
opting for profit sharing (Alaei & Setak 2015) rather than individual profit maximisation avoiding suboptimal 
solutions (Stadtler 2015). 
 
Apart from cost of transportation, another significant cost incurred in the transport industry is the cost of inventory. 
According to Brown (2011), on average a company incurs an inventory carrying cost of 10 per cent of the value of 
the inventory. 
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Modern supply chains consist of one or more actors that extend their decision making beyond their realm to account 
for transportation and inventory management for their customers. This has enabled competitive prices, service quality 
and maximum utilisation of their fleet of vehicles. Furthermore, this has allowed certain actors to focus on their core 
competency while other actors handle the transport and inventory management for the entire chain.   
 
In this paper we aim to employ research from supply chain and operations management to realise the goal of holistic 
optimisation of a supply chain in the Australian retail industry. We consider a distributor having a homogenous fleet 
of vehicles, providing a single product to multiple customers having deterministic demand. The delivery origins from 
a single distribution centre and the delivery must be made within a given time-window to cater for individual delivery 
times of each customer and to account for variation in road congestion, thus ensuring the model is as close as possible 
to real world constraints. In order to achieve the said objectives, we will employ the use of Inventory Routing Problem 
(IRP). Since all inventory problems originate from VRP, which is a NP-Hard problem itself, IRP is also a NP-Hard 
and thus finding exact solution is complex. Therefore, to solve the IRP, variable neighbourhood search (VNS) heuristic 
will be applied (Mjirda et al. 2014).  
 
This paper adds to the literature related to inventory routing by incorporating varying level of road congestion and 
how that influences delivery scheduling. Having performed literature review of over 130 articles from 2010 to 2016, 
no previous research considers traffic as a constraint in the mathematical model of IRP. 
 
The paper provides a literature review of IRP in section 2. This is followed by development of the mathematical model 
in section 3. Section 4 then evaluates the results of mathematical model. Section 5 provides a discussion and finally 
conclusion and recommendations are presented in section 6.  
 
2. Literature Review 
 
Inventory routing problem (IRP) is an integrated logistics and inventory management problem which aims to minimise 
cost of transportation, inventory handling cost and maximise fleet utilisation. IRP is an extension of vehicle routing 
problem (VRP) which was originally proposed by (Dantzig & Ramser 1959). The initial models of VRP focused 
primarily on optimum routing of the fleet. In the following years, many different variants of VRP emerged, each with 
own set of constraints and solutions, such as (Beltrami & Bodin 1974; Clarke & Wright 1964; Cooke & Halsey 1966; 
Schrage 1981). However, major breakthrough was achieved by Bell et al. (1983) as a component of inventory cost 
was incorporated into the VRP, bringing VRP closer to holistic optimisation of transportation industry. VRP was thus 
transformed into Inventory Routing Problem. Since then, extensive research has been done on IRP, each with 
incremental improvements, bringing IRP closer to real-world constraints. Table 1 highlights different variants of IRP 
available in the literature. 

 
Table 1. Variations of IRP (Adapted from Andersson et al. 2010) 

Criteria Variants 
Time Horizon Finite Infinite Instant 
    
Structure One-to-one One-to-many Many-to-many 
Routing Direct Multiple Continuous 
Inventory Policy Maximum Level (ML) Order-up-to-level (OU)  
Inventory Decisions Lost Sales Back-order Non-negative 
Fleet composition Homogenous Heterogeneous  
Fleet size Single Multiple Unconstrained 
Demand Deterministic Stochastic  

 
IRP emerges with regards to vendor managed inventory (VMI), a business strategy which aims to reduce cost of 
logistics and creates value for businesses. In VMI, the vendor or distributor take control of the inventory replenishment 
decision for its customer by monitoring the inventory levels and based on this information, taking decisions for when 
to supply, how much to supply and in what order. (Waller, Johnson & Davis 1999). This is described by Coelho, 
Cordeau & Laporte (2013) as a beneficial for all as vendors can minimise their distribution cost by coupling shipments 
made to multiple customers; while buyers benefit by saving resources which would have been allocated to inventory 
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control. However, in order to achieve the said objective, the vendor or distributor must take the following decisions 
simultaneously: When to make the delivery, what quantity to be delivered and how to combine multiple deliveries. 
(Coelho, Cordeau & Laporte 2013).  

 
In recent years, the research has shifted away from traditional IRP models into more complex, application focused 
models.  The pioneering paper by Bell et al. (1983) considered application of IRP in industrial gases. This was further 
explored by Golden, Assad & Dahl (1984) and Campbell & Savelsbergh (2004). Blumenfeld et al. (1987) and Alegre, 
Laguna & Pacheco (2007) as these papers applied IRP for automobile components; Miller (1987), Christiansen (1999), 
Persson & Göthe-Lundgren (2005) and Dauzère-Pérès et al. (2007) for the chemical industry; and Shaabani & 
Kamalabadi (2016), Park, Yoo & Park (2016) and Ketzenberg et al. (2013) in the retail industry.  

 
Notable contributions to IRP in recent years include the paper by Armentano, Shiguemoto & Løkketangen (2011) 
which developed a model that further enhanced IRP to include production planning into the model. The objective 
function defined in their paper included production cost, inventory cost at both the production plant and customer and 
distribution cost. A similar paper by Nananukul (2013) also explored the possibility of implementing IRP along with 
production planning. A limitation to this type of model, as highlighted by Coelho & Laporte (2015), is the specific 
nature of these models. Although over generalisation of an IRP model poses difficulty in formulation of the model, 
models developed specifically for an industry limits their application to that industry.  
 
IRP emerges with regards to vendor managed inventory (VMI), a business strategy which aims to reduce cost of 
logistics and creates value for businesses. In VMI, the vendor or distributor take control of the inventory replenishment 
decision for its customer by monitoring the inventory levels and based on this information, taking decisions for when 
to supply, how much to supply and in what order. (Waller, Johnson & Davis 1999). This is described by Coelho, 
Cordeau & Laporte (2013) as a beneficial for all as vendors can minimise their distribution cost by coupling shipments 
made to multiple customers; while buyers benefit by saving resources which would have been allocated to inventory 
control. However, in order to achieve the said objective, the vendor or distributor must take the following decisions 
simultaneously: When to make the delivery, what quantity to be delivered and how to combine multiple deliveries. 
(Coelho, Cordeau & Laporte 2013).  
 
Considering supply chains have multiple echelons, recent IRP models are exploring the possibility of including multi-
echelons optimisation, truly realising holistic efficiency improvements and minimisation of costs. Govindan et al. 
(2014) formulated an IRP model that not only tackled multi-echelons, but also focused on improved supply chain 
sustainability. However, due to the complexity of the problem, the solution achieved relied on multi-stage heuristic 
application, which given the underlying properties of each heuristic led to increased number of sub-optimal solutions. 
A recent paper by Alhaj, Svetinovic & Diabat (2016) addressed this problem by formulating a hybrid heuristic to 
ensure sub-optimal solutions were avoided. 

 
2.1 Use of heuristics 

 
It must be highlighted that even though IRP has been applied to various industry, the method of formulation of the 
mathematical model, assumptions, constraints and method of solution have had significant variations, each with 
increasing complexities to achieve a model as close as possible to real world constraints.  
 
The mathematical model is solved using mixed integer linear programming (MILP) and since it is a NP-Hard problem, 
obtaining an optimal solution may not be possible. Ideally a model for IRP should be solved using an exact method. 
However, development in this area has been limited due to the difficulty in formulation of an exact solution model 
(Luenberger & Ye 2008). Therefore, recent literature focuses on heuristics. Since the number of variables and 
constraints in IRP are large, finding an optimal solution may require significant amount of computing time. 
Furthermore, there are possibilities that the obtained solution does not reflect an optimal solution. Due to this, it is 
common to apply heuristics to decrease the computation time and in some cases even force the model to converge to 
a pre-defined solution.  
 
Heuristics that have been applied in IRP include, but are not limited to, simulated annealing used by BañOs et al. 
(2013); Tabu search used by Bolduc et al. (2010) and Genetic algorithms used in model by Moin, Salhi & Aziz (2011). 
Although several heuristics exist, each have certain limitations and advantages. The selection of the heuristic to be 
used depends on carefully weighing the limitations against the advantages. The model proposed in this paper employs 
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the use of VNS for solution. The reason for selection of VNS is due to the layout of Sydney city, which has distinct 
north, south, east and west ‘partitions’. This enables the model to easily identify the neighbourhoods and limits the 
optimal solution to confine a set of vehicles to a given neighbourhood, significantly reducing computation time. It 
must be highlighted at this stage that VNS is considered an inferior heuristic due to its iterative nature, which, if given 
a large set of variables, may take up to 3 hours to produce an optimal solution. Since the paper is focused primarily 
on development of the mathematical model, and not towards decreased computation time, selection of VNS is feasible. 
Furthermore, to test the models, the number of variables will be limited to no more than 20 customers and 5 vehicles. 
Nevertheless, the model may be used for as many 200 customers and 50 vehicles with a trade-off of increased 
computation time.  
 
Variable neighborhood search (VNS) heuristic was originally formulated by Mladenović & Hansen (1997). The basic 
idea of VNS revolves around formulation of ‘large search spaces’, which serve as a predefined location within which 
the optimal solution is to be found. Figure 1 shows a simplified example of how VNS functions. A set of locations are 
defined within a graph. Firstly, all locations are treated independently and the distance is noted between two closest 
locations. This process is repeated until the distance between a set of locations are determined to be within a certain 
‘radius’ and are therefore grouped together. Each group is now a neighborhood, Kw where w is a set of total 
neighborhoods. Therefore, as can be seen, locations 1, 2, 4 and 6 belong to neighborhood K1; locations 3, 5 and 7 to 
K3 and locations 8, 9, 10 and 11 belong to neighborhood K2.  
 
Having done this segregation, the IRP model will begin by first identifying optimal inventory carrying costs for the 
entire graph, and then determine the optimal route between each location within the neighborhood. Therefore, 
inventory holding cost decision will be based on the entire set of customers, ensuring holistic optimisation of inventory 
carrying cost, while the vehicle routing decisions will be localised within neighborhoods.  
 
3. Model Formulation 
 
The proposed model is an expansion of Malandraki & Daskin (1992) paper in which vehicle routing problem with 
traffic constraints was considered. A similar component of time dependent variable will be incorporated into the IRP 
to consider the effect of traffic on the IRP. The list of symbols is shown in Figure 1 as follows. 
 

N Number of Customers 
T Number of time periods 
K Number of vehicles 
M Number of intervals 
t Time at each node 
𝑏𝑏𝑘𝑘 Vehicle Capacity 
Ci Capacity at retailer i 
𝑑𝑑𝑖𝑖𝑖𝑖  Demand at retailer i during period t 
𝑐𝑐𝑖𝑖𝑗𝑗𝑡𝑡𝑡𝑡 Travel time from node (i, j) at period t during time interval m 
𝑠𝑠𝑖𝑖𝑖𝑖  Service time at node i 
𝑇𝑇𝑖𝑖𝑗𝑗𝑡𝑡𝑡𝑡 Upper bound for interval m, at time period t for link (i, j) 
ℎ𝐶𝐶𝐶𝐶  Inventory holding cost at i per unit 
ℎ𝑏𝑏𝑏𝑏 Cost of backorder at i per unit 
c Routing cost per hour 
𝑓𝑓𝑐𝑐𝑐𝑐 Fixed cost of vehicle at period t 
𝐼𝐼𝑖𝑖𝑖𝑖  Inventory level at node i at period t 
𝐵𝐵𝑖𝑖𝑖𝑖 Inventory stock-outs at node i at period t 
𝑡𝑡𝑖𝑖𝑖𝑖 Departure time of any vehicle from node i at period t 

𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 Amount transported for time interval m for link (i, j) at period t – Decision Variable 

𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 �
1
0 1 if vehicle travels from i to j during time interval m at period t, else 0 

  

Figure 1. List of symbols 
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The problem consists of a single distribution point with unlimited supply capacity, producing a single product, 
providing multiple customers with deterministic demand using homogenous set of vehicles (K). Set of customers 
located at different geographical locations are indexed(1, … ,𝑁𝑁). The problem is formulated on a graph G (V, E) where 
𝑉𝑉 = {0, 1, 2, … ,𝑁𝑁} is the set of nodes whereas E represents the links between the nodes. The direction is represented 
by (i, j) in which i is the starting point while j represents the destination. 𝑊𝑊(𝑡𝑡) = [ 𝑤𝑤𝑖𝑖𝑖𝑖(𝑡𝑡𝑖𝑖)] is an n x n time matrix 
which defines the travel time during a particular time interval, 𝑤𝑤𝑖𝑖𝑖𝑖(𝑡𝑡𝑖𝑖) is a step function for the time ti. As proposed 
by Malandraki & Daskin (1992), 𝑊𝑊𝑖𝑖𝑖𝑖  is the number of distinct time intervals considered in the step function 
𝑤𝑤𝑖𝑖𝑖𝑖(𝑡𝑡𝑖𝑖) representing the travel time for the link’. To simplify, a day is considered to have three or more time intervals, 
during which there is varying level of road congestion. For each interval, the value of 𝑊𝑊𝑖𝑖𝑖𝑖  changes to account for 
varying traffic levels. Figure 2 shows an example of travel time step function with three time intervals. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Example of step function at different time interval for link (i, j) (Adapted from Malandraki & Daskin 1992) 
 
The time intervals during a day can be as many as required, however, increasing it more than three increases the 
computation time exponentially. Therefore, it is imperative to use the following assumptions to restrict the model 
(Malandraki & Daskin 1992): 
 
1. The travel time is independent of vehicle type. It is illustrated in Figure 3. 
 

 
 

Figure 3. A simplified example of implementation of VNS 
 

2. The collection (or delivery) time for each vehicle is independent of the type of vehicle and is entirely dependent 
on the customer.  

 
Taking into account the IRP, it must be highlighted that inventory carrying cost, ℎ𝑐𝑐𝑐𝑐  , is incurred at a constant rate per 
unit of time and per unit stock. This rate is assumed to be same for all customers. Cost of transportation, c, includes 
variable cost per hour based on the distance (i, j), whereas a fixed cost per vehicle at period t, 𝑓𝑓𝑐𝑐𝑐𝑐 , is also included. 
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The objective function is to minimise the holistic costs, which include transportation cost, backordering cost and 
inventory holding cost. Therefore, the IRP is formulated as follows. 
 

𝑀𝑀𝑀𝑀𝑀𝑀 ��� � 𝑓𝑓𝑐𝑐𝑐𝑐𝑥𝑥0𝑗𝑗𝑡𝑡𝑡𝑡
𝑀𝑀

𝑚𝑚=1

+ � 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖

𝑁𝑁+𝐾𝐾

𝑖𝑖=𝑁𝑁+1

𝑁𝑁

𝑗𝑗=1

𝑇𝑇

𝑡𝑡=1

+ �(ℎ𝑐𝑐𝑐𝑐𝐼𝐼𝑖𝑖𝑖𝑖 + ℎ𝑏𝑏𝑏𝑏𝐵𝐵𝑖𝑖𝑖𝑖

𝑁𝑁

𝑖𝑖 =1

� 
(1) 

  
Subject to:  

�� 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡
𝑀𝑀

𝑚𝑚=1

= 1,
𝑁𝑁

𝑖𝑖=0

 
 

𝑖𝑖 ≠ 𝑗𝑗  
𝑗𝑗 = 1, … ,𝑁𝑁 + 𝐾𝐾; 𝑡𝑡 = 1, … ,𝑇𝑇 (2) 
  

� � 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡
𝑀𝑀

𝑚𝑚=1

= 1,
𝑁𝑁+𝐾𝐾

𝑗𝑗=1

 
 

𝑗𝑗 = 1  
𝑗𝑗 ≠ 𝑖𝑖  
𝑖𝑖 = 1, … ,𝑁𝑁; 𝑡𝑡 = 1, … ,𝑇𝑇 (3) 
  

� � 𝑥𝑥0𝑗𝑗𝑡𝑡𝑡𝑡
𝑀𝑀

𝑚𝑚=1

= 𝐾𝐾,
𝑁𝑁

𝑗𝑗= 1

 
 

𝑡𝑡 = 1, … ,𝑇𝑇 (4) 
  
𝑡𝑡0𝑡𝑡 = 𝑡𝑡, 𝑡𝑡 = 1, … ,𝑇𝑇 (5) 
  
𝑡𝑡𝑗𝑗𝑗𝑗 − 𝑡𝑡𝑖𝑖𝑖𝑖 ≥ 𝑤𝑤𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 +  𝑠𝑠𝑗𝑗𝑗𝑗 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘𝑏𝑏𝑘𝑘,  
𝑖𝑖 = 0, … ,𝑁𝑁;   𝑗𝑗 = 1, … ,𝑁𝑁 + 𝐾𝐾; 𝑖𝑖 ≠ 𝑗𝑗;  
𝑡𝑡 = 1, … ,𝑇𝑇;   𝑚𝑚 = 1, … ,𝑀𝑀 (6) 
  
𝑡𝑡 +  𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘𝑏𝑏𝑘𝑘 , 𝑖𝑖 = 0, … ,𝑁𝑁;  
𝑗𝑗 = 1, … ,𝑁𝑁 + 𝐾𝐾; 𝑖𝑖 ≠ 𝑗𝑗;  
𝑡𝑡 = 1, … ,𝑇𝑇;   𝑚𝑚 = 1, … ,𝑀𝑀 (7) 
  
𝑡𝑡 −  𝑇𝑇𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 ≥ 0, 𝑖𝑖 = 0, … ,𝑁𝑁;  
𝑗𝑗 = 1, … ,𝑁𝑁 + 𝐾𝐾; 𝑖𝑖 ≠ 𝑗𝑗  
𝑡𝑡 = 1, … ,𝑇𝑇;𝑚𝑚 = 1, … ,𝑀𝑀 (8) 
  
𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 − 𝑏𝑏𝑘𝑘𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 ≤ 0, 𝑖𝑖 = 0, … ,𝑁𝑁;  
𝑗𝑗 = 1, … ,𝑁𝑁 + 𝐾𝐾; 𝑖𝑖 ≠ 𝑗𝑗;  
𝑡𝑡 = 1, … ,𝑇𝑇;   𝑚𝑚 = 1, … ,𝑀𝑀 (9) 
  

� � 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡
𝑀𝑀

𝑚𝑚=1

−�� 𝑦𝑦𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡
𝑀𝑀

𝑚𝑚=1

𝑁𝑁

𝑙𝑙=0

𝑁𝑁+𝐾𝐾

ℎ=1

≤ 0, 
 

ℎ = 1; 𝑙𝑙 = 0; ℎ ≠ 𝑖𝑖; 𝑙𝑙 ≠ 𝑖𝑖  
𝑖𝑖 = 0, … ,𝑁𝑁; 𝑡𝑡 = 1, … ,𝑇𝑇 (10) 
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𝐼𝐼𝑖𝑖𝑖𝑖−1 − 𝐵𝐵𝑖𝑖𝑖𝑖−1 − 𝐼𝐼𝑖𝑖𝑖𝑖 + 𝐵𝐵𝑖𝑖𝑖𝑖

+ �� � 𝑦𝑦ℎ𝑖𝑖𝑡𝑡𝑡𝑡
𝑀𝑀

𝑚𝑚=1

−�� 𝑦𝑦𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡
𝑀𝑀

𝑚𝑚=1

𝑁𝑁

𝑙𝑙=1
𝑙𝑙≠𝑖𝑖

𝑁𝑁

ℎ=0
ℎ≠𝑖𝑖

� 

 

= 𝑑𝑑𝑖𝑖𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑁𝑁; 𝑡𝑡 = 1, … ,𝑇𝑇 (11) 
  
𝐼𝐼𝑖𝑖𝑖𝑖 ≤ 𝑊𝑊𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑁𝑁; 𝑡𝑡 = 1, … ,𝑇𝑇 (12) 
  
𝐼𝐼𝑖𝑖𝑖𝑖 ≥ 0, 𝑖𝑖 = 1, … ,𝑁𝑁; 𝑡𝑡 = 1, … ,𝑇𝑇 (13) 
  
𝐵𝐵𝑖𝑖𝑖𝑖 ≥ 0, 𝑖𝑖 = 1, … ,𝑁𝑁; 𝑡𝑡 = 1, … ,𝑇𝑇 (14) 
  
𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 = �01,    𝑖𝑖 = 0, … ,𝑁𝑁;  

𝑗𝑗 = 1, … ,𝑁𝑁 + 𝐾𝐾; 𝑖𝑖 ≠ 𝑗𝑗;  
𝑡𝑡 = 1, … ,𝑇𝑇;   𝑚𝑚 = 1, … ,𝑀𝑀 (15) 
  
𝑡𝑡𝑖𝑖𝑖𝑖 ≥ 0, 𝑖𝑖 = 0, … ,𝑁𝑁; 𝑡𝑡 = 1, … ,𝑇𝑇; (16) 
  
𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 ≥ 0, 𝑖𝑖 = 0, … ,𝑁𝑁;  
𝑗𝑗 = 1, … ,𝑁𝑁 + 𝐾𝐾; 𝑖𝑖 ≠ 𝑗𝑗;  
𝑡𝑡 = 1, … ,𝑇𝑇;𝑚𝑚 = 1, … ,𝑀𝑀 (17) 
  
𝐼𝐼0𝑡𝑡 = 0, 𝑡𝑡 = 1, … ,𝑇𝑇 (18) 
  
𝐵𝐵0𝑡𝑡 = 0, 𝑡𝑡 = 1, … ,𝑇𝑇 (19) 
  

 
 
In Table 2 below, details regarding the equations in the model are provided. 

 
Table 2. Details regarding the model equations 

Eq. Description 
(1) The objective function. Includes transportation 

cost (which has a component of fixed cost and 
variable cost), total delivery time (includes 
service time, travelling time), inventory 
carrying cost and cost of inventory shortage. 

(2) & 
(3) 

A constraint which ensures one customer is 
visited only once in a time period. 

(4) A constraint which ensures exactly K number 
of vehicles are utilised in a time period. 

(5) Constraint which sets the starting time to 1. 
(6) Constraint which determines the time of 

departure at every node j 
(7) & 
(8) 

A constraint which ensures selected link (i, j) 
corresponds to a specific time interval m 

(9) A constraint which ensures amount of product 
transferred does not exceed vehicle capacity 
and is not a negative value. 

(10) Eliminates sub-tour 
(11) A constraint that ensures balancing of 

inventory between customer and supplier. 
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(12) A constraint which ensures amount transported 
to customer does not exceed maximum 
capacity at customer. 

(13) to 
(19) 

A constraint which ensure non-negativity of 
variables. 

 
 
Since the number of constraints imposed on the mathematical model are large, the model was incorporated with the 
following pseudonym code for VNS heuristics, obtained from (Ali et al. 2014).  

 
Variable Neighborhood Search Algorithm (adapted from (Ali et al. 2014)) 
1: Define a set of neighbourhood structure Nk for 𝑘𝑘 = 1, … , 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 
2: Set x = x0                                                                > Generate the initial solution 
3: repeat 
4: k = 1. 
5: repeat 
6: Generate a random neighbour x’ from the kth neighbourhood Nk(x) of x. 
7: x” = local search (x’) 
8: if f(x”) ≤ f (x) then. 
9: x = x”. 
10: Continue to search in N1 
11: k = 1. 
12: else 
13: k = k + 1 
14: Move to a new neighbourhood area. 
15: end if 
16: until K = Kmax                    > e.g. Number of neighbourhood structures 
17: until (stopping criteria satisfied) return x            > Best found solution 

 
4. Experimental design 
 
The model was programmed using IBM ILOG CPLEX optimisation studio (student promotional version) on an i5—
4200U CPU running at 1.6 GHz with 4 GB of RAM. Random test problems are generated, with customers randomly 
allocated in a 15 x 15 distance units. The distribution centre is assumed to be located in the centre of the 15 x 15 grid. 
Variable transportation cost is assumed to be 1, whereas the fixed cost per vehicle is assumed to be 15. Inventory 
holding cost is assumed to be 10 percent of inventory value as has previously been assumed by various IRP models 
(Bertazzi et al. 2013; Bertazzi, Bosco & Laganà 2015; Chitsaz, Divsalar & Vansteenwegen 2016). Each retailer is 
assumed to have a storage capacity of 100 units. Cost of stock out is assumed to be 3 units. The customer demand is 
generated randomly between 5 to 50 100 units per day. The starting inventory level at customer is assumed to be 0. 
The number of homogenous vehicles is assumed to be 2 with a carrying capacity of 900 each. A total of 18 test 
problems were generated with number of customers were selected to be 5, 10, 15, 20, 25 and 30. For each customer 
level, time periods of 1, 2 and 3 were used, whereas time period 1 assumed average speed of vehicle of 60, 2 assumed 
average speed of vehicle as 45 and 3 assumed speed of vehicle as 30. Each problem will be repeated 5 times and 
average of the 5 results will be taken to avoid the impact of randomly generated data on the results obtained.  
 
To analyse the problem, we will take into account the impact on total cost by the number of customers, time periods 
and impact of different vehicle speeds as influenced by level of traffic. 
Since the version of CPLEX used to obtain the solution was a promotional version, the maximum number of customers 
that could be programmed were limited to 30. The discussion of results, therefore, will be limited to 30 customers 
only. 
 
After having obtained experimental results, the model will be applied to a real supply chain of retail industry, an 
Australian retail company with 15 customers. The results of the model will be compared to actual data obtained from 
the case study.  
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5. Results and discussion 
 
Table 3 highlights the combination of results obtained by running the model. The first two columns highlight the 
variables that were kept independent. First column denotes number of customers, whereas the second column denotes 
the time period to include the impact of traffic into the experiment. 
 

Table 3. Experimental results 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Third and fourth columns list the respective objective solutions and mean objective solutions. Column 5 lists the 
computational time and column 6 lists the number of VNS iterations required to achieve the optimal solution.  
 
Referring to the computation time required for each level of customer, the maximum time required to obtain a solution 
is 90.8 seconds which means this model can be used for tactical level supply chain decisions as intended. Comparison 
of objective solution and mean objective solution yields significant variations, therefore, the application of VNS as a 
heuristic for this model is not the optimal selection. This can further be verified based on the iterations required to 
obtain the result. However, since the purpose of this paper is to develop a model, rather than selection of heuristic, 
this limitation will be ignored 

 

 
Figure 4. Relationship of number of customers and computational time 
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Referring to Figure 4 above, there is a significant rise in computation time for 25 customers, even though for 30 
customers the computational time drops back down to 50 seconds. This can be an impact of using 2 vehicles for an 
odd number of customers, which results in higher number of iterations to determine which vehicle is better off in 
catering for higher number of customers. Since each result was repeated 5 times, any impact due to the randomly 
generated data is avoided.  
 
The interaction between number of customers and total cost is also given in Figure 4. Any increase in the number of 
customer leads to an increase in the total costs. This is due to the fact that the vehicle now has to travel more distance, 
thus increase in variable vehicle traveling cost. The increased demand and inventory capacity at increased number of 
customer also rises, resulting in higher total cost.  
 
The interaction between time interval and total cost is also presented in Figure 4. Although there is an increase in cost 
for time interval with higher traffic, hence lower average vehicle speed, the impact is minute. This can be a reflection 
of limitation of the model itself, or selection of assumed value. In order to verify the findings, the assumed values of 
average vehicle speed for each time interval 1, 2 and 3 is modified to 30, 50 and 70 respectively. Furthermore, the 
variable transportation cost is modified from 1 to 5. Figure 5, therefore, shows the results with modified average 
vehicle speeds and increased variable cost of transportation.  

 

 
 

 

 

As can be seen from Figure 5, by modifying the assumed average speed at the three time intervals and increasing the 
assumed variable cost of transportation, the impact on total cost is apparent. This shows that the model adequately 
takes into account the impact of traffic on the total cost.  
 
In Figure 6, a comparison is provided between objective solution obtained for each interval and objective solution 
obtained for the entire day, considering the day is divided into three intervals. It is evident from Figure 6 that 
incorporation of three time intervals yields an objective solution slightly less than that of m = 2 for all number of 
customers.  
 
6. Conclusions and recommendation 
 
Consideration of inventory cost along with transportation cost has led to improved supply chain efficiencies and thus 
competitive advantage. With increased utilisation of existing road networks and limitation of space for further 
development, a problem that most supply chains face is not being able to perform timely delivery due to increased 
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traffic congestion. In this paper, a model was developed that enabled division of a day into multiple intervals, each 
with different average speed of vehicle, to mimic the effect of traffic. This model was solved by incorporating the 
VNS heuristic. A computational time of under 95 seconds was achieved, allowing application of this model for tactical 
level decision making process. Impact of speed penalties was observed by comparing objective solution for each time 
interval with the objective solution for the entire day.  
 
The model performed as per its requirement, however, given the increase in computational time for increased number 
of customers, the variable neighbourhood search heuristic applied can be deemed insufficient and possibility of 
incorporation of a hybrid heuristic is felt.  
 
Application of IRP in the Australian logistics industry will have a significant impact in productivity improvements, 
while cutting down unnecessary costs. Australia already suffers increased prices of goods as compared to other 
countries due to its geographical location. By incorporating tools like IRP, local supply chains can achieve competitive 
prices of products and aim to compete in the international market. 
 
Future variants of this model can incorporate real-time traffic conditions using API provided by Google Maps. 
Average speed for each time interval can be determined by taking average speed of vehicles travelling from the route 
in real-time, which can yield real-time routing of the vehicle via global positioning system (GPS). This can further be 
enhanced via use of radio frequency identification devices (RFID) which can be used to provide real-time information 
regarding inventory levels, and by incorporating data obtained from point of sale (POS) terminals, a live tool can be 
created, which will optimise every movement of inventory from supplier to retailer.  
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