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Abstract: Renewable energy technologies are receiving much attention to replacing power plants 
operated by fossil and nuclear fuels. Of all the renewable technologies, wind power has been 
successfully implemented in several countries. There are several parameters in the aerodynamic 
characteristics and design of the horizontal wind turbine. This paper highlights the key sensitive 
parameters that affect the aerodynamic performance of the horizontal wind turbine, such as 
environmental conditions, blade shape, airfoil configuration and tip speed ratio. Different turbulence 
models applied to predict the flow around the horizontal wind turbine using Computational Fluid 
Dynamics modeling are reviewed. Finally, the challenges and concluding remarks for future research 
directions in wind turbine design are discussed. 
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1. Introduction  

Energy demands are increasing as the world’s population and industrial growth continue to 
expand [1]. The world’s consumption of energy is predicted to increase by 56% from 524 quadrillion 
BTUs in 2010 to 820 quadrillion BTUs in 2040 [2]. The extensive consumption of fossil fuels is the 
primary source of carbon dioxide emissions in the atmosphere. The CO2 released from fossil fuel 
burning is estimated to increase from 1,000 million metric tons in 2010 to 36,000 million metric tons 
in 2020 and may reach 45 billion metric tons by the end of 2040 [3]. 



494 

AIMS Energy  Volume 8, Issue 3, 493–524. 

The demands for clean energy sources have risen dramatically and rapidly due to environmental 
awareness, decreasing reliance on traditional fuel sources, and strict environmental policies [4]. 
Amongst all renewable energy sources, wind energy seems to be one of the more popular rising 
technologies due to its low price and speedy global development [5]. The world’s total installed power 
from wind energy increased from 296,581 MW in 2013 to 597,000 MW at the end of 2018, and it is 
predicted to reach 817,000 MW by 2021 [3]. 

The World Wind Energy Association updated its statistics regarding added wind capacity 
during 2018 to around 50.1 GW, which is slightly less than the installed wind energy capacity in 2017, 
as shown in Figure 1(a). The installed wind capacity in 2017 achieved the third largest installation 
level during one year after record numbers in 2015 and 2014. On the other hand, 2018 exhibited the 
lowest market growth rate, about 9.1%, since the growth of wind turbine technology at the beginning 
of the twentieth century, as shown in Figure 1(b). In 2018, the countries making the most 
contribution to wind turbine energy were China (34.81%), the USA (16.48%), and Germany (10.41%), 
as shown in Figure 2 [3]. 

           

Figure 1. (a) New Installed capacity of wind energy and (b) Growth rates of wind energy. 

 

Figure 2. The percentage share of countries in the worldwide wind energy market at the end of 2018. 
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There are a few review studies on wind turbine technology. Lydia et al. [6] reviewed the 
modelling of wind turbine power curves using different methodologies. Tchakoua et al. [7] presented 
a general review and classification of wind turbine monitoring methods with focus on trends and 
future challenges. Infield and Freris [8] discussed a study of wake effects on downstream turbines 
using different fluid dynamics techniques. The study aims to highlight the sensitive parameters that 
affect the aerodynamic performance of horizontal wind turbines. Understanding the key operating 
parameters of the wind turbine has significant impacts on the amount of energy output. Optimizing 
the operating parameters of wind turbine design has significant impacts on the amount of energy 
output. Atmospheric conditions (wind data models), the shape of the wind turbine blade, wind power 
curve and tip speed ratio, and airfoil configuration are discussed. Furthermore, this paper examines 
Computational Fluid Dynamics (CFD) models that are used for solving flow problems around wind 
turbines. 

The paper started with sensitive parameters that affected the performance of horizontal wind 
turbines and examined the associated aerodynamic characteristics. Furthermore, it highlighted the 
various turbulence models and their applications in Computation Fluid Dynamic modelling to 
analyze the aerodynamic characteristic of the horizontal wind turbine. 

2. Sensitive parameters of the aerodynamic performance of the horizontal wind turbine 

Several parameters are influencing the aerodynamic characteristic of HAWT, such as 
atmospheric conditions and shape of the wind blade. Scaling up the capacity of the wind turbine 
requires an increase in blade length to maximize the energy output. Therefore, understanding the 
critical operating parameters on the performance of the wind turbine should be considered in the 
design of the expected power output. This section discusses the key design and operating parameters 
in the wind turbine. 

2.1. Atmospheric conditions (wind data models) 

Wind speed plays a vital role in the performance of the wind turbine since it is the primary source 
of energy. The wind speeds at a specific site are varying with annual, seasonal, and daily changes. It is 
crucial, therefore, to describe these variations by different mathematical distribution models [9]. A 
highly accurate analysis of wind data is essential to encourage stakeholders increasing or at least 
considering their investment in wind energy technology. Statistical analysis methods such as 
probability distribution function were proposed for studying the potential of wind resources in a 
specific location.  

The probability density distribution describes the occurrence frequency of wind speed using 
common functions. Nonparametric and parametric models had been used for wind speed probability 
distribution. Nonparametric kernel density estimation is an important technique in wind data analysis. 
Kernel density estimators directly take benefit of sample data without using parameter estimation of a 
theoretical distribution. The following equation is used to express the distribution:  

                                                          𝑓 ෡
௛ሺ𝑥ሻ ൌ 𝑇ିଵ ∑ ଵ
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Parametric models such as Rayleigh and Weibull has been popularly used for wind speed 
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analysis [10]. Rayleigh probability distribution function requires only the mean wind speed; thus, it 
is a simplistic probability distribution function f(v) as described by Eq 1: 
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where 𝑣 is the wind speed (m/s) and 𝑣̅ is the average wind speed (m/s). The Weibull distribution 
function is considered to be one of the common probability functions used in wind speed probability 
analysis. The Weibull probability function, as shown in Eq 2, depends on two factors, scale and 
shape factor [11,12]: 
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where 𝒌 is the shape factor (dimensionless), and 𝒄 is the scale factor (m/s). The curvature of the 
probability distribution function is decided by the shape parameter; any variation in the shape 
parameter is affected by the estimated wind potential. The Rayleigh distribution is employed when the 
mean wind speed is only available for the location. Rayleigh distribution is a special type of Weibull 
distribution when the shape factor is equal to 2, and the scale parameter depends on the mean wind 
speed. More spread of wind speed probability functions is related to a lower shape factor [13]. 

Determination of the Weibull function requires defining the shape and scale parameters, using 
different estimation methods. Using the maximum likelihood method, which is a widely accepted 
formula for defining shape and scale parameters is articulated in the following equations [14,15]:          
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where 𝑣௜ is the wind speed at time and n is the number of readings of wind speed data. To define the 
annual energy production of a wind turbine (AEP), probability density distribution 𝑓ሺ𝑣ሻ is combined 
with the power curve of wind turbine 𝑃ሺ𝑣ሻ as shown in the following equation:  

                     𝐴𝐸𝑃 ൌ ׬ 𝑃ሺ𝑣ሻ 𝑓ሺ𝑣ሻ𝑑𝑣 
௩೎ೠ೟ష೚ೠ೟

௩೎ೠ೟ష೔೙
                          (6) 

where 𝑣௖௨௧ି௜௡ is the cut-in wind speed (m/s), and 𝑣௖௨௧ି௢௨௧ is the cut-out wind speed (m/s). 
In the energy market, the values of wind speed at different hub heights of the wind turbine are 

very desirable, according to unavailable recorded data from wind station measurements. To calculate 
the wind speed v(h) at different altitude values (h) which depend on the measured wind speeds at 
reference value using power exponent law, the following equation [16] is proposed:          

                         𝑣ሺℎሻ ൌ 𝑣௢ ൬
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where 𝑣௢ is the wind speed at reference height ሺℎ௥௘௙ሻ, and 𝛼 is a power-law exponent (dimensionless) 
which varies with time of the day, terrain nature, temperatures, and season of the year [17]. The 
power-law exponent varies from 0.1 in smooth terrains to 0.40 in very rough terrains where a value 
of 1/7 could be used when no information about specific site formation. 
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Different studies have analyzed wind data using Weibull and Rayleigh probability distributions 
functions. For example, Islam et al. [18] assessed the potential of wind energy at Kudat and Labuan, 
Malaysia using Weibull distribution; their results confirmed the unsuitability of these sites for 
commercial wind energy generation. Krenn et al. [19] studied wind data in Austria over a ten-year 
period, depending on station data combined with a hybrid geostatistical model. The result indicated 
the feasibility of Weibull distribution in capturing the average annual wind speed with 0.8 m/s 
standard deviation of error. Celik [20] evaluated the potential of wind energy on Turkey’s 
Mediterranean coast based on Rayleigh and Weibull models. The results showed that the Weibull 
model gives better accuracy of the power density distribution compared to the Rayleigh model. 

In contrast, the Weibull model gives an annual average error of around 4.9% compared with 36.5% 
for the Rayleigh model when compared to wind speed measured reading. Mentis et al. [21] used the 
daily wind speed at different sites in Africa for one year by Weibull and Rayleigh distributions. 
Results showed 5% differences along with the findings between Rayleigh and Weibull distribution, 
but the variation exceeded 100% at specific locations. As such, the Rayleigh model is not valid at 
those sites, especially on the country level, and it can be used for estimating wind energy probability 
on a continental level only. 

2.2. The shape of the wind turbine blade 

The number of blades in wind turbines varies depending on the design [22–24]. Currently, the 
3-bladed upwind horizontal wind turbine is the most popular modern wind turbine design due to its 
system efficiency, stability, and the economic feasibility of the wind turbine system. A horizontal 
wind turbine consists of majors major components. The foundation component of the wind turbine is 
the tower, which holds the nacelle, while the nacelle contains the transmission system, generator, and 
control systems. The transmission system transmits the mechanical torque from the rotor to the 
generator, which includes the gearbox and mechanical brake system [25]. The generator uses 
electromagnetic components to convert mechanical power into electrical power [26–29]. 

Meanwhile, the rotor component captures the wind power and converts it into mechanical 
torque. The rotor contains the blade component attached to the nacelle by the hub. Different materials 
are used in the manufacturing of wind turbine blades such as carbon-hybrid and S-glass [30,31]. 
Various studies demonstrated that decreasing the rotor and nacelle weight will reduce manufacturing 
costs. It should be noted that this decrease has a dynamic aero-structural limitation, and balancing 
issues need to be considered in the design [32,33]. 

One of the most design parameters of the shape of the wind turbine is the determination of the 
airfoil chord length and twist angle distribution along the blade, as seen in Figure 3(a). Discrete 
radial stations along the blade have been used to describe the shape of the blade, as shown in Figure 3(b). 
The chord, c(r), and twist angle β(r), which is the angle between tip airfoil and the local airfoil, have 
been used to define the shape of the blade. 
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Figure 3. (a) Schematic of wind blade and (b) Sketch showing twist angle, chord length 
and pitch angle on a blade. 

One of the most critical design parameters of the wind turbine is the determination of the airfoil 
chord length distribution along the wind turbine blade. There are different methods for determining 
the chord length, where the Betz optimization theory is deemed the most straightforward method and 
offers reasonable approximation values of the airfoil section’s chord length [34]. This method 
approximates a good optimum value of blade chord length, which has a 6–8 tip speed ratio when 
neglecting losses from the tip and drag. Consequently, this method is inaccurate in some cases with 
low tip speeds, blade sections near the hub, and high drag airfoil sections [35–37]. The blade of the 
wind turbine is divided into three essential parts; root, mid-span, and tip based on the structural and 
aerodynamic roles. The larger chord length should be in the root area due to structural loads, while 
the slender airfoil sections will be in the tip region area. Consequently, the area near the hub is 
responsible for the required starting torque, while most of the production torque is initiated from the 
tip region [38–42]. Research has focused on aerodynamic optimization of the shape of the wind 
turbine design.  

Research has focused on aerodynamic optimization of the shape of the wind turbine design by 
changing the twist angle and chord length distribution along the blade. The objective of the 
optimization is maximizing the annual energy output for a specific site, where the wind data model is 
used to define the wind potential in a particular location. Liu et al. [43] studied the novel 
optimization of fixed speed wind turbines using linearization of twist angle and chord profiles 
method. They concluded that there is a good increment in annual energy production when designing 
an optimal blade using novel linearization for wind speed ranging from 4–7 m/s. Blade element 
momentum theory (BEM) helped in the design the rotor of a 300 kW HAWT based on wind speed 
data in Semnan, Iran [44]. The results defined the optimal shape of the wind turbine, which related to 
the maximum power coefficient by taking into consideration easy manufacturing. Darwish et al. [45] 
improved the AEP for low wind speed regions by selecting, laying out, and matching the most 
suitable wind turbine design for a case study conducted in Iraq. Al-Abadi et al. [34] optimized the 
shape of a wind turbine using Blade Element Momentum (BEM) with a gradient-based optimization 
algorithm. Derakhshan et al. [46] tested the effectiveness of the shape optimization in their numerical 
study of a wind turbine. Their study found that the optimization of chords distribution increased 
by 3.7% the power of wind turbines at rated speed (10 m/s) while the average amount of power 
increased by 1.2% for all wind speed. Optimization of the wind turbine blade shape was undertaken 
at Gökçeada in Turkey using different blade design parameters, i.e., twist angle and chord length. 
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Results showed the highest annual energy production (AEP) of 92,972 kWhr was comparable to the 
original design [47].  

2.3. Wind power curve and tip speed ratio 

The power curve gives the power output of the wind turbine at each wind speed. This curve is 
essential for forecasting the performance of wind speed, which improves grid planning and 
connecting wind energy to the power systems [48]. The least wind speed required to deliver a useful 
power is called the cut-in speed while the turbine is shut down at the cut-out wind speed for 
engineering safety reasons to prevent damage caused by massive wind loads [49,50]. Some methods 
used to enhance the aerodynamic performance of the HAWT over different wind speeds include 
decreasing the cut-in wind speed. For example, Singh et al. [51] designed a wind turbine with a 
better start-up performance at low wind speed using a numerical method, which served to: firstly, 
reduce the cut-in wind speed; and secondly, achieve a better combination of lift to drag ratios. This 
was validated against the experimental data. 

The tip speed ratio is a key design factor, which affects the calculation of different design 
parameters of the optimum rotor dimensions. The definition of the tip speed ratio is the ratio between 
the velocity of the rotor blade and relative wind speed. The aerodynamic design of the wind turbine 
is sensitive to any changes in the tip speed ratio. Thus, a rotor blade design operated at a relatively 
high wind speed will generate a lower torque at minimum wind speed. Also, this rotor operating at 
high wind speed will increase the cut-in speed and self-starting difficulties [24].  

As shown in Table 1, selecting an appropriate tip speed ratio should take into account the design of 
different parameters such as output torque, mechanical stress and efficiency, aerodynamic 
characteristic, and noise [52]. Practically, raising the tip speed ratio will increase the noise pollution 
to the sixth power [53]. The tip speed ratio should be six to nine for a modern three-blade wind 
turbine and nine to ten for a two-blade wind turbine, to yield an efficient mechanical to electrical 
conversion [54].  

Table 1. Design consideration of tip speed ratio [52]. 

Tip speed ratio Low (𝜆 about 1, 2) High (𝜆 > 10) 

Application  Traditional windmills  Single or two-bladed prototypes 

Torque  Increases  Decreases  

Aerodynamic stress   Decreases  Increases proportionally with a 

rotational velocity  

Efficiency  Decreases significantly below 

five due to rotational wake 

created by high torque    

Insignificant increases after eight   

Aerodynamics  Simple Critical  

Blade profile  Large Significantly narrow 

Noise Increases to the sixth power approximately 

The main controlled performance parameters in the HAWT are pitch angle and the generator 
torque. The rotor speed will vary accordingly to undergo maximum power point tracking in the 
generator torque control system. Conversely, in the pitch-regulated system, the smooth output power 



500 

AIMS Energy  Volume 8, Issue 3, 493–524. 

will result from controlling the wind input torque. Controlling the optimum blade pitch angle and 
optimum tip speed ratio will achieve the optimum power coefficient in pitch regulated variable speed 
horizontal wind speed, especially since there is an optimum power coefficient related to specific 
wind speed [55]. 

2.4. Airfoil configuration 

2.4.1. Conventional airfoil  

Efficient blade design is formed from different airfoil profiles with a blending at an angle of 
twist for each airfoil terminating at a circular blade root. Different simplification is used to facilitate 
industrial production and cut down the manufacturing costs, such as minimizing the number of 
varying airfoil profiles, linearization of chord width, and decreasing the twist angle [56]. The 
decision to select airfoils plays a critical role in the output torque from a wind turbine. The direct 
impact of airfoil design defines the aerodynamic performance of wind turbines. The lift to drag ratio 
is an essential aspect of the aerodynamic characteristics of the airfoil. Over the past decade, several 
experimental studies tested the lift and drag coefficients of airfoils with different Reynolds number 
and angles of attack [57,58]. The angle of attack is a very sensitive parameter for calculating the drag 
and lift coefficient of the airfoil. This angle is evaluated as the difference between the flow angle and 
the rotor plane angle. Therefore, the most important factor in designing the wind turbine is to 
maximize the lift to drag ratio [58,59]. 

The power output in a horizontal wind turbine is affected mainly by the lift to drag ratio of the 
airfoil, which is usually designed to operate at a low angle of attack where the lift coefficient is often 
much higher than the drag coefficient [57]. Different airfoil families have been used in the design of 
modern wind turbines such as NACA sub-families four and five-digit, for example, NACA 65–415, 
NACA 63–215 [60]. NACA is developed by the National Advisory Committee for Aeronautics 
predecessor of NASA, USA. The NACA airfoils are usually appropriate for situations where the 
angle of attack is relatively small, and the Reynolds number is high [61]. NACA 63 and 44 series are 
known for their characteristics of stall delay and less sensitivity to roughness in leading-edge than 
other families [62]. Yılmaz et al. [63] investigated the aerodynamic efficiency of the wind turbine 
blade by experiment, and results were compared with a numerical simulation. The study selected 
NACA 4420 airfoil for analysis and showed that the HAWT’s efficiency depended on the blade 
profile. 

RISØ-A-XX is another family used in the design of the wind turbine blade and has been 
developed and optimized by RISØ National Laboratory in Denmark [64–66]. Direct numerical 
optimization is used to describe the airfoil shape that is optimized with a B-spline representation. The 
family has contained seven airfoils that varied in relative thickness to chord from 12% to −30%. The 
DU series airfoil family is another airfoil family, which was developed by the Delft University of 
Technology, Netherlands. The relative thickness to the chord of DU series airfoil varies from 15% 
to 40%, for example, DU 91-W2-250 and DU 93-W-210, which has an airfoil thickness of 25% 
and 21%, respectively [67]. 

There are many airfoils used for wind turbine design; for example, the Aeronautical Research 
Institute of Sweden has developed the FFA airfoil family [60]. Elsewhere, the S airfoil family is 
developed by the National Renewable Energy Laboratory (NREL) [68,69]. Some considerations 
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should be taken in determining the type of airfoil used in wind turbines such as achieving a 
maximum lift to drag ratio, dynamic and structural requirements, and the sensitivity of airfoil to 
environmental conditions. Using a single airfoil profile along the whole wind turbine blade results in 
poorer efficiency of the blade design. In some applications, different airfoil shapes can be used in the 
design of a wind blade, but blending between these airfoils in the design process would increase the 
efficiency. 

The sections of an airfoil with high thickness to chord length ratio are usually used in the root 
region according to structural load requirements [65]. However, airfoils of high thickness have a 
lower value of lift to drag ratio. Therefore, significant research has been conducted to increase the lift 
coefficient of the thick airfoil used in wind turbine design. In the tip regions, the aerodynamic 
characteristic is critical to maximizing the lift to drag ratio, which explains using a thin airfoil in the 
tip region.  

In large modern wind turbine blades, the inboard and mid-span regions utilize airfoils that had a 
relative thickness of 25% or above. For example, FFA- W3-241 and FFA-W3-301 airfoils are used 
for inboard and mid-span regions due to relatively high thickness [70]. S809 and S814 airfoils are 
recommended for the tip region of the wind turbine, which has a blade length that varies from 10 
to 15 m [71]. Different studies are investigating different airfoils in wind turbine design; for 
example, Van Rooij et al. [72] used Risø, DU, NACA, FFA, and S8xx airfoil families to investigate 
the performance of those airfoils to meet the aerodynamic and structural requirements. For airfoils of 
relative thickness to chord ranging between 25% and 30%, the best performing airfoils are S814 (24%), 
DU 91-W2-250 (25%), and Risø-A1-24 (24%) where the performance differences between those 
airfoils are relatively small. Meanwhile, for airfoil thickness of 30%, the DU 97-W-300 has the best 
performance according to restricted requirements. 

Recently, a lot of work concentrated on designing blades for wind turbine rotors depending on 
maximizing the aerodynamic performance [73–75]. The generated power of a wind turbine varies 
with the speed and turbulence of the wind. Many countries have low wind speed in some locations. 
There is a lot of research in the development of small wind turbines to meet the energy needs of such 
countries. Ahmed et al. [76] studied lift, drag coefficient, and flow behavior of SG6043 at low 
Reynolds number to assess the airfoil aerodynamic characteristics used in wind turbines for regions 
having wind speeds of 4–6 m/s. The results showed that increasing the freestream turbulence level 
from 1% up to 10% will not significantly change the lift coefficient. However, with an increasing 
angle of attack, the separation was delayed from the upper surface, which reflects on increasing the 
lift coefficient and reducing the drag coefficient. When the angle of attack increases, the lift to drag 
ratio also increases from 8% to 15% because the turbulence level rises. Sayed et al. [77] simulated 
the aerodynamic performance of different S-series in low wind velocities. The study found that S825, 
S826, S830, and S831 airfoils are the most efficient in S-series for low and high wind velocities 
because they give a maximum lift to drag ratio, which achieves maximum power. 

Airfoil characteristics such as flow separation vary with the level of wind turbulence [78–80]. 
Thus, many models combine the lift coefficient of the airfoil with delay flow separation [81]. 
Hoffmann [82] investigated the impact of changing the wind turbulence intensity of NACA 0015 
from 0.25% to 9% at Re = 250,000. The analysis found that the effect of delayed flow separation on 
increasing the maximum lift coefficient increased the angle of attack. It also discovered that the 
impact on delayed flow separation and increasing the peak lift coefficient was due to changing 
turbulent intensity. Kamada et al. [83] discussed the dynamic and static characteristics at Re = 350,000 
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for DU93-W-210 at two different turbulent intensity levels. This airfoil had 21% relative thickness, 
which was tested in a wind tunnel with a turbulence grid that helped to obtain a high turbulent flow. 
They observed a delay in flow separation when increasing the level of freestream intensity, which 
reflected an increase in the stall angle of attack. 

2.4.2. Flatback airfoil 

Several attempts have been made to improve annual energy production (AEP) by increasing the 
blade length [84]. Manufacturers have also researched reducing the aerodynamic and structural load, 
which causes a long blade [85]. Researchers have proposed flatback airfoils at the inboard section of 
the blade due to the high lift coefficient and larger sectional area to overcome the disadvantages of 
the structural load caused by increased blade length [86,87]. Kim et al. [88] studied the sufficient 
structural stiffness and safety consideration effect for flatback airfoil that have 20% cross-section 
areas larger than the non-flatback airfoil. As well, the rigidity of the cross-section area has increased 
due to a decrease in blade weight [89,90]. 

The wealth of research in wind turbine applications using a flatback airfoil includes 
aerodynamic characteristics, design process, and simulation methods [91–95]. Murcia and Pinilla [96] 
investigated the adding thickness and cutting method in the design of a flatback airfoil. Both methods 
showed an increase in maximum lift coefficient and drag coefficient, where the stall angle is delayed. 
However, adding thickness method gives a higher maximum lift coefficient when compared with 
cutting techniques. Standish and Van Dam [97] examined the design process used in the flatback 
airfoil. The study concluded that adding asymmetrical thickness to the baseline of the airfoil 
improved the aerodynamic characteristics of the flatback airfoil. As such, combined adding 
asymmetrical thickness design process decreases the negative effect of increasing thickness, which 
contributed to the cutting method and will improve the aerodynamic characteristics of the airfoil. 

Law and Gregorek [98] studied a flatback airfoil for a large capacity wind turbine. They found 
that a higher lift coefficient and the lower drag coefficient is achievable in a flatback airfoil 
compared to the conventional airfoil. Homsrivaranon found that using flatback airfoils enhanced 
aerodynamic performance by increasing the lift-to-drag ratio. Chen et al. [99] used a genetic 
algorithm for two desired optimization objectives (maximum lift coefficient and maximum lift to 
drag coefficient) to produce optimal flatback airfoil that have excellent aerodynamic properties. 
Zhang et al. [100] compared the different numerical parameterization methods used for optimizing 
the airfoil; the results showed an improvement in the lift-to-drag ratio. Yet there was no improvement 
in the stall characteristics. Baker et al. [101] experimentally verified that insensitivity of trailing edge 
flatback airfoil to contaminations on the leading edge was evident; the base drag in the wake caused 
drag to increase. Furthermore, the method of adding asymmetrical thickness on the baseline of airfoil 
improved the lift coefficient when compared with the conventional airfoil, but the drag coefficient 
rose. 

Some of the drawbacks of the flatback airfoil compared with conventional airfoil are increasing 
drag at a high angle of attacks due to separation vortex [102]. A flatback blade generates separation 
vortex around the hub in the spanwise direction, so some of the essential research areas in the 
development of wind turbine blade are adding devices that suppress separation vortex, for example, 
vortex generator [103–105]. Ceyhan et al. [106] looked at the problem of the higher drag coefficient 
of flatback airfoils, which limits their structural application to inboard parts of the wind turbine’s 
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blade. They suggested the swallowtail concept as a non-conventional flatback airfoil. They analyzed 
the modified DU 97–300 flatback airfoil experimentally with 10% trailing edge thickness and 
without the sallow tail. They found that the drag fell by 40%, and hence the output power of the wind 
blade could increase without any modification done to operating conditions. Therefore, the 
non-conventional flatback is a promising technology that could be used for the inboard part of the 
wind turbine. The other drawback of the flatback airfoil is increasing vortex shedding noise and 
aero-elastic problems [107,108]. However, the inboard region in the blade which used flatback airfoil 
operates at speed lower than tip speed, generated a slight increase in rotor noise.   

3. Computational Fluid Dynamic techniques 

In the early 1990s, Computational Fluid Dynamics techniques (CFD) were used for solving 
flow problems around wind turbines by available commercial software, for example, EllipSys3D and 
Fluent [109–111]. The environmental conditions, e.g., wind speed and direction, exert a real 
influence on the lifetime of the wind turbine. Understanding the turbulence model, which simulates 
the aerodynamics of wind flow around a wind turbine, is essential for obtaining reliable results. In 
this section, different turbulence models for all flow Navier-Stokes equations will be discussed. In 
CFD techniques, the method of the finite volume is used for solving the momentum and mass 
equations in addition to equations of turbulence for each control volume cell. 

3.1. Turbulence models 

Until now, there is no one model that can predict all physical characteristics of turbulent flow. 
Various models are employed in the turbulent flow of wind turbines such as Direct Numerical 
Simulation (DNS), Reynolds Averaged Navier-Stroke (RANS), and Large Eddy Simulation (LES). 
DNS has the best accuracy in turbulence solution. However, the required computational time and 
cost are relatively high [112,113]. The most common model used for solving Navier-Stokes 
equations is RANS [114,115]. The mathematical principle concept is based on the calculation 
method of the Navier–Stokes equation, which divides the flow into a fluctuating part and average 
part where the average equation is called the Reynolds decomposition. Various turbulence models 
are used to solve the RANS equation. 

Firstly, the k-ε turbulence model series calculates the eddy viscosity by solving two parameters: 
firstly, the turbulent dissipation rate (ε) parameter; and secondly, a turbulence kinetic energy (k) 
parameter. Standard k-ε was specified by Launder and Sharma [116], which is very popular and 
widely used; it gives poor results for flow simulation that had a separation phenomenon such as 
separation at flow around the wind turbine at high wind speed. Another improvement and 
modification on standard k-ε have been done to attain the Renormalization Group (RNG) k-ε and 
Realizable k-ε turbulence models [117,118]. Both models share the same transport equation as 
standard k-ε for turbulent kinetic energy (k) and dissipation rate (ε). However, the turbulent viscosity 
generation and calculation method mark the differences between these models. The renormalization 
group theory was used as a statistical method for solving the RNG k –ε turbulence model. The RNG 
k-ε turbulence has different modifications than standard k-ε, for example, considering the impact of 
rotation in eddy viscosity. The RNG k–ε is more accurate and better able to predict separations flows 
than standard k-ε [119]. The realizable k-ε model is recommended for rotating bodies as the results 
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could be improved when compared with standard k-ε for swirling flow problems under specific 
Reynolds number [120]. 

The k-ω turbulence model is another RANS that is widely used for simulation flow around the 
wind turbine. Kolmogorov proposed the first form of the k-ω model [121]. The Imperial College 
group has done a new improvement on this model, but the most distinguished development was 
undertaken by Wilcox [122]. In some applications, the k-ω model has greater accuracy than standard 
k-ε due to boundary layers with an adverse pressure gradient, and the sublayer could be integrated 
without the need for any extra damping functions. However, k-ω is still sensitive for some flow with 
free stream boundaries condition that restricts its implementation. k-ω Shear Stress Transport (SST) 
is an advanced turbulence model devised by Menter [123], and it combines the advantages of the k-ω 
and k-ε turbulence models. Therefore, the inner part of the boundary layer where is used in the k-ω 
models and then converted gradually to k-ε in the free shear layer and wake region’s outer layers. 
The translation between the two models is related to blending functions. The other advantage of this 
model is the modification of eddy viscosity, which considers the effect of turbulent shear stress 
transportation. Different modifications of k-ω Shear Stress Transport (SST) had been done to 
enhance rotation and streamline curvature [124]. 

Another RANS model is the transition SST (γ-Reθ) model, which was extended based on the 
k-ω SST [125]. It has four-transport equations; the first two equations are identical to k-ω (SST) 
equations, where the third and fourth equations are intermittency (γ) and transition momentum 
thickness Reynolds number (Reθ). The transition SST model is more precise than classical turbulence 
models due to its ability to deal with the laminar-turbulent transition flow model where the 
separation of flow and stall phenomena occurs. 

The Spalart-Allmaras (SA) is the simplest RANS turbulence model, which uses one transport 
equation. Here the computational of turbulence quantity is formulated by one transport equation, in 
which the kinematic eddy turbulent viscosity is the equation’s variable [126]. This model was 
designed and optimized for a compressible flow over airfoils and wings for aerospace applications. It 
may simply suggest a different type of grid for practical situations with include adverse pressure 
gradients where it becomes easily stable and converges with the solution [127]. In the meantime, the 
model could enable significant diffusion, especially in regions of 3D vortices flow [128]. Different 
improvement work has been done by Spalart and Shur [129], and Rahman et al. [130] to take into 
consideration the effects of rotation, near the wall and reduction of the diffusion effect. The 
advantage of the fast convergence of this model is the low computation time when compared to other 
turbulence models [127]. 

Large Eddy Simulation (LES) is another model developed to have less computational demand than 
the Direct Navier-Stokes model. The first trial of LES in engineering was done by Deardorff [131–134]. 
Unlike the RANS model, the LES turbulence model has wider applicability and more accurate 
results. Another advantage is decreasing the length of scales in the LES approaches in which 
turbulence is divided into two parts in the computational domain. The first part concerns the 
important large scales which was fully resolved, while the second part is the small sub-grid scales are 
modelled. The superiority of LES models is evident in high Reynolds number turbulence models 
investigations, and they provide an adequate prediction of complex flow when compared to other 
turbulence models [135,136]. Unfortunately, the required computational time for the LES model is 
higher than the RANS model. 
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The Detached-Eddy Simulation (DES) was developed in 1997 [137] and applied for high 
Reynolds number with a massively separated flow [138]. The latter method is a model that blends 
the LES and RANS approaches. Hence, LES is applied with external flow regions with massive 
separations, whereas the boundary layer is solved by RANS [139]. Travin et al. [140] described the 
DES as a single turbulence model that uses unsteady three-dimensional numerical methods. Johansen 
et al. [141] found that using DES approaches does not improve the characteristics of the wind turbine 
when using the DES method due to the required long computational time. 

3.2. Application of turbulence models used for aerodynamic simulation of the wind turbine 

The numerical simulation of flow around the wind turbine is sensitive to the numerical models 
used for wind turbine design under operating conditions. The literature is abundant with various 
turbulence models that were used to validate different numerical methods against experimental 
works. For example, Li et al. [142] used CFD Ship-lowa with a sliding mesh for NREL Phase VI to 
examine the unsteady RANS and DES models. The study found that the results of thrust forces and 
moments were different from the experimental work. However, using DES did considerably improve 
the unsteady flow of the wind turbine. 

Lanzafame et al. [143], Potsdam and Mavriplis [144], and Rajvanshi et al. [145] studied the 
numerical simulation of NREL Phase VI using k-ω SST and transition SST. The results demonstrated 
the better capabilities of transition SST compared to k-ω SST with experimental work. In another study, 
Moshfeghi et al. [146] looked at the effects of near-wall grid treatment on the aerodynamic 
performance of the wind turbine. NREL Phase VI model with eight cases was examined for a 
near-wall grid that used k-ω SST and transition SST turbulence models. Different wind speeds are used 
for predicting thrust forces and pressure coefficients. The thrust force results of k-ω SST did not agree 
well with the thrust values in test results. In general, the k-ω SST model over-predicts the performance 
of the wind turbine. However, transition SST behavior is different from the k-ω SST model, 
particularly in the inboard regions, but the outcomes are close to the experimental work. k-ε turbulence 
models are used in studying the flow around the wind turbine and wake dynamic behavior. Kasmi and 
Masson [147] and Abelsalam et al. [148] performed a full-scale study of three wind turbines based on 
different k-ε turbulence models and compared results. These showed that the modified k-ε agrees 
better with previous experimental measurements than standard k-ε. Different studies evaluated the 
reliability of predicting wind turbine performance using various turbulence models. Rutten et al. [149] 
computed the NREL Phase VI using two RANS models: k-ω, k-ω SST. It emerged that the k-ω SST 
turbulence model is better at estimating the turbulent kinetic energy value when compared to k-ω. 
Abdulqadir et al. [150] investigated the reliability based on RANS and 12 turbulence models for 
predicting the NREL Phase VI wind turbine. All RANS numerical key performance coefficients at low 
tip speed ratios revealed a good value when validated against experimental results. However, during 
high tip speed ratios, the poorest simulation results were achieved by k-ω SST, whereas realizable k-ε 
highlighted relatively good results. 

You et al. [151] investigated the effect of different RANS turbulence models (Spalart-Allmaras, 
k-ω SST, and transition SST) on estimating the aerodynamic characteristics around the NREL Phase 
VI blade rotor. Their results demonstrated the ability of transition SST to capture the laminar 
separation bubbles around the airfoil surface and rotor blade. Thus, the results of the k-ω Transition 
model agrees well with experimental data due to a good prediction of the boundary layer’s transition 
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area. An investigation into predicting the numerical performance of a New Mexico wind turbine 
looked at the effect of RANS turbulence models using two different near-wall methods of high and 
low Reynolds number [152]. The RANS models used in the high Reynolds model were the 
Spalart-Allmaras and k-ε RNG, while the models employed for low Reynolds number were k-ω SST 
and k-ω transition. All four models, under low wind speeds range, could predict well the wind 
turbine’s aerodynamic performance. When the wind speeds increased, more differences between the 
models appeared, and the high Reynolds model had better results compared with the low Reynolds 
model. A swirl effect was considered with wall function corrections, where the RNG k-ε turbulence 
model is recommended when wind speed increases [152]. 

The advantages and disadvantages of each turbulence approach are summarised as the 
following. DNS and LES have higher accuracy for turbulence solutions when compared with RANS. 
However, the required computational resources and time are relatively high. Thus RANS becomes 
the most popular due to the balance between accuracy and computational cost. Standard k-ε is very 
popular and widely used, but it gives poor simulation results for flows with separation phenomenon 
such as wind turbine at high wind speed. The RNG k–ε is more accurate to predict separation flows 
than standard k-ε. The realizable k-ε model has improved results for swirling flow problems under 
specific Reynolds number when compared with standard k-ε, and is thus recommended for rotating 
bodies. Although k-ω is a simple model used for wind turbine, it is still sensitive for flows with free 
stream boundaries condition that restricts its implementation. k-ω Shear Stress Transport (SST) had 
been applied to wind turbine flow problems to enhance rotation and streamline curvature. The 
transition SST model is more precise than classical RANS turbulence models due to its ability to deal 
with the laminar-turbulent transition where the separation and stall phenomena occur. The following 
table summarizes the previous studies on the CFD summary for HAWT.
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Table 2. The previous studies on the CFD summary for HAWT. 

Authors  Year  Turbine Type  Method/Tool Transient 

/steady 

Reynolds 

number  

Numerical 

Turbulence 

model 

Mesh (full or 

periodic) 

Key investigated 

parameters 

Comments 

Sørensen et al. 

[153] 

2002 NREL Phase 

VI 

2 bladed 

turbine 

EllipSys3D CFD 

code 

Transient At the root 

and tip, the 

Reynolds 

number 

varies 

between 

(0.7–1.4)106 

and 

(1.0–1.1)106

,respectively

k-ω SST  Using 90
ᵒ 

Section with 

the periodic 

plane. 

3.1, 4.2 million 

cells for free 

and tunnel 

configuration 

Validate computed value 

of flap and edge 

moments, aerodynamic 

coefficient, and pressure 

distribution during wind 

speed variation against 

the experimental results. 

Airfoil type is S809. 

Diammeter 10.068 m 

In the study of 

aerodynamics, the influence 

of Tower and nacelle will 

be ignored. 0ᵒ yaw angle 

and 3ᵒ pitch angle. 

Johansen et al. 

[154] 

2002 NREL Phase 

VI, 2 bladed 

turbine 

EllipSys3D CFD 

code 

Transient Free Flow 

velocity  

V = 20 m/s 

DES, 

k-ω SST 

Using 90
ᵒ 

Section with 

the periodic 

plane. 

8.9 million 

cells  

 

Validate predicting values 

of the normal and 

tangential force 

coefficient distribution 

that focuses on static and 

dynamic stall regions with 

experimental NREL data.

Airfoil type is S809. 

Diammeter 10.068 m 

In the study of 

aerodynamics, the influence 

of Tower and nacelle will 

be ignored. 

Duque et al. 

[155] 

2003 NREL Phase 

VI, 2 bladed 

turbine 

OVERFLOW-D2

CAMRAD II 

code 

Transient Velocity = 

13, 15, 20, 

25 m/s  

  OVERFLOW-2D 

predicted good results 

against experimental work 

in non-stall conditions.  

Yaw angle at 13ᵒ,30ᵒ,60
ᵒ. 

Continued on next page 
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Authors  Year  Turbine Type  Method/Tool Transient 

/steady 

Reynolds 

number  

Numerical 

Turbulence 

model 

Mesh (full or 

periodic) 

Key investigated 

parameters 

Comments 

Johansen and 

Sørensen [156]

2004 NREL Phase 

VI, Danish 95 

kW Tellus 

and Danish 

500 kW. 

3-bladed wind 

turbine 

BLADE 

ELEMENT 

MOMENTUM 

METHOD (BEM) 

& EllipSys3D 

CFD code 

Transient Re = 1*106 DES, 

k-ω SST 

 Computed mechanical 

power using CFD has a 

good alignment with 

BEM.  

Stall-regulated wind turbine 

0ᵒ yaw angle. 

Derived new correction 

models from extracted 

aerofoil characteristics. 

Mandas et al. 

[157] 

 

2006 Nordtank 

41/500 

turbine, 500 

kW  

3-bladed 

turbine  

Fluent  Steady  Free Flow 

velocity 

range 

6.8–12 m/s 

Spalart-Allmar

as, 

k-ω SST 

 

1.5 million 

cells. 120 

periodicity 

used for the 

rotor  

Study how wind velocity 

variation affects shaft 

mechanical torque and tip 

speed ratio corresponding 

to functions of power 

coefficient. 

Fixed pitch, stall regulated. 

NACA 63-4xx 

Tower and nacelle will be 

ignored.  

Rotor diameter of 41 m. 

Good agreement of 

aerodynamic performance 

from CFD when compared 

with BEM. 

Sezer-Uzol, 

and Long [158]

2006 NREL Phase 

VI, 2 bladed 

turbine 

PUMA2 solver Transient Velocity at 

7,15 m/s 

Large Eddy 

Simulations, 

(LES) 

3.6 million 

rotating 

tetrahedral 

cells 

 

The flow attached at cases 

1 and 2 but in case 3 there 

is a massive separation 

with the entire blade. 

Different yaw cases: 

Case 1: 7m/s yaw angle 0
ᵒ 

Case 2: m/s yaw angle 30ᵒ 

Case 3: 15 m/s yaw angle 

0ᵒ. 

Continued on next page 
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Authors  Year  Turbine Type  Method/Tool Transient 

/steady 

Reynolds 

number  

Numerical 

Turbulence 

model 

Mesh (full or 

periodic) 

Key investigated 

parameters 

Comments 

Hu et al. [159] 

 

2006 3 bladed 

downwind 

rotor  

 

Fluent  Steady Mean 

velocity 

varies from 

0–15 m/s 

RNG k-ε 

 

352,080 cells. 

120
ᵒ
 

periodicity 

used for the 

rotor  

Using the boundary layer 

analysis method to 

develop a detailed 

understanding of the 

essential physics of stall 

delay phenomena. 

NREL S809 airfoil. 

Diameter of 1(m) 

In 3D stall delay, Coriolis 

and centrifugal forces are 

important. 

Validated against Simms et 

al. [160]. 

Wußow et al. 

[161]  

2007 3 bladed 

HAWT Type  

ENERCON 

E66 

Fluent Transient Velocity 

range 

8–12 m/s 

LES  4.05 million 

cells 

Full blade 

simulated   

Compared the local value 

of velocity magnitude 

and Turbulence intensity 

inside the wake with field 

measurement. 

Validated against data 

which was collected during 

‘Deutsche Institut für 

Bautechnik’ field project  

Tower included during 

simulation analysis.  

Thumthae and 

Chitsomboon 

[162] 

2009 NREL Phase 

II 

3-bladed wind 

turbine. 

Fluent Steady  Wind 

speeds at  

7.2, 8.0, 9.0, 

10.5 m/s 

Standard k-ε 120
ᵒ 

periodicity 

used for the 

rotor  

Find the best angle of 

attack which achieves the 

greatest power output. 

NREL S809 airfoil. 

The rotor diameter of 

10.068 m 

20 kW of constant 72 rpm 

Pitch angles are 

4.12
ᵒ
,5.28

ᵒ
,6.66

ᵒ
,8.76

ᵒ  

Validated against NREL 

Phase II. 

Continued on next page 

 

 

 



510 

AIMS Energy Volume 8, Issue 3, 493–524. 

Authors  Year  Turbine Type  Method/Tool Transient 

/steady 

Reynolds 

number  

Numerical 

Turbulence 

model 

Mesh (full or 

periodic) 

Key investigated 

parameters 

Comments 

Fletcher et al. 

[163] 

 

2009 NREL Phase 

VI, 2 bladed 

turbine 

 Steady  Wind 

speeds at 7, 

10, 25 m/s 

RANS 

equations. 

Vorticity 

Transport 

Model  

 Study normal, tangential 

force and power 

coefficient. 

Good ability of the 

Vorticity Transport Model 

for wake structure. 

Validated against NREL 

Phase VI. 

Sørensen [164] 2009 NREL Phase 

VI, 2 bladed 

turbine 

EllipSys3D  Transient Reynolds 

number of 

7.2 *106 

 

k-ω SST, 

transition SST  

 

512 128 cells 

 

Used the transition SST 

for predicting lift and 

drag of two turbines. 

 

S809, NACA63-415 

Variable turbulence 

intensity will vary from 

1.20% to 0.38%.  

0ᵒ yaw angle. 

Validated against NREL 

Phase VI. 

Gómez-Iradi et 

al. [165] 

2009 NREL Phase 

VI 

2 bladed 

turbine 

 Transient Velocity at 

7, 10, 20 

m/s 

URANS  Different mesh 

distribution 

used for each 

case  

Investigated the effect of 

the wind tunnel wall and 

blade/Tower interaction 

on aerodynamics of wind 

turbine.  

Validated against NREL 

Phase VI. 

Compressible flow. 

Tower and nacelle included 

in the study. 

Tachos et al. 

[166] 

 

2010 NREL Phase 

VI 

3 bladed 

turbine 

Fluent Steady Velocity at 

7.2 m/s 

Spalart-Allmar

as, RNG k-ε, 

standard k-ε, 

k-ω SST 

4.2 million 

cells, 120 

periodicity 

used for the 

rotor  

 

Comparison for pressure 

distribution between 

different Turbulence 

models against 

experiment work. 

Airfoil type is S809. 

Diammeter 10.068 (m) 

Incompressible 

Tower and nacelle will be 

ignored. 

Continued on next page 
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Authors  Year  Turbine Type  Method/Tool Transient 

/steady 

Reynolds 

number  

Numerical 

Turbulence 

model 

Mesh (full or 

periodic) 

Key investigated 

parameters 

Comments 

Fu and 

Farzaneh [167]

 

2010 NREL Phase 

VI 

3 bladed 

turbine 

Fluent  Steady  Velocity at 

7, 10, 13 

m/s 

k-ε  1.7 million 

cells, 120
ᵒ 

periodicity 

used for the 

rotor  

Model HAWT under the 

process of rime–ice 

accretion. 

 

Airfoil type is S809. 

The rotor diameter 10.068 

(m) 

Different rotation speeds 5, 

7.5 and 10 rad/s. 

 

Bechmann et 

al. [168] 

2011 MEXICO  

3-bladed 

turbine 

EllipSys3D 

 

Steady  Velocity at 

10, 15, 24 

m/s 

k-ω SST 120 periodicity 

used for the 

rotor  

Validating aerodynamic 

forces against experiment.

4.5 m diameter 

DU91-W2-250, Risø A21, 

NACA 64418. 

Lawson et al. 

[62] 

 

2011 550 kW  

Two bladed 

turbine 

STAR- CCM+ Transient Velocity at 

0.5 m/s to 

3.0 m/s. 

 

k-ω SST  Used different 

mesh density , 

90 periodicity  

used for the 

rotor  

Study Pressure 

distribution, blade root 

flap of the wind turbine. 

NACA 63(1)-424. 

 

Elfarra et al. 

[169] 

2014 NREL Phase 

VI 

Two bladed 

turbine 

Fine/Turbo of 

NUMECA 

 

Transient 12 different 

wind 

speeds 

between 5 

and 25 m/s 

RANS  

k-ε 

350,000 cells 

Using 90  　  

Section with 

periodic plane 

Comparison between 

optimized blade(with 

winglet) and the original 

blade(without winglet). 

The optimize blade (with 

winglet) increased the 

power production by 9% 

compared to the original 

blade. 

Validated against NREL 

Phase VI. 

Continued on next page 
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Authors  Year  Turbine Type  Method/Tool Transient 

/steady 

Reynolds 

number  

Numerical 

Turbulence 

model 

Mesh (full or 

periodic) 

Key investigated 

parameters 

Comments 

Abdelsalam et 

al. [170] 

2014 2 MW wind 

turbine  

Fluent Steady Velocity at 

8, 10 ,12, 

14 m/s 

Standard k-ε Unstructured 

mesh 

CFD ICEM 

Validated against   

El Kamsi [147]. 

The results showed that k-ε 

could give a good result if 

the blade modelled 

accurately. 

Song and Perot 

[171] 

2015 NREL Phase 

VI 

Two bladed 

turbine 

 

OpenFOAM-1.6-

ext 

 

Transient Different 

wind speed 

= 5 ,10, 21 

m/s, 

RANS 10 million 

cells  

Studied the 3D flow under 

separation conditions. 

0ᵒ yaw angle 3ᵒ tip pitch 

angle  

The rotation speed of 72 

rpm. 

Derakhshan 

and Tavaziani 

[172] 

2015 NREL Phase 

VI 

Fluent  Steady Low wind 

speed 

(5–20) m/s 

Spalart-Allmar

as  

k-ω SST 

k-ε 

2,697,136 

mesh 

 

Validated against NREL 

Phase VI.  

k-ω SST showed better 

results when compared to 

experimental values. 

Sørensen et al. 

[173] 

2016 MEXICO 

Three bladed 

turbine 

 

EllipSys3D 

 

steady Velocity at 

10, 15, 24 

m/s 

k-ω SST  span-wise 

direction  

(129 cells) 

chord-wise 

direction 

(256 cells ) 

normal 

direction (128 

cells) 

The results showed good 

agreement with 

experimental values. 

The numerical results 

investigated the pressure 

distributions and wake 

characteristics. 

Continued on next page 
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Authors  Year  Turbine Type  Method/Tool Transient 

/steady 

Reynolds 

number  

Numerical 

Turbulence 

model 

Mesh (full or 

periodic) 

Key investigated 

parameters 

Comments 

Wang et al. 

[174] 

2016 WindPACT 

1.5 MW 

 

Fluent steady Velocity at 

(8, 12, 16, 

20, 24) m/s 

k-ω SST 5,460,679 

cells  

The model is validated 

against literature data test.

 

Menegozzo et 

al. [175] 

2018 NREL 

Phase VI 

Two bladed 

wind 

turbine  

Fluent Transient Different 

wind 

velocity 

range  

k-ω SST 8.5 million 

cells 

unstructured 

moving mesh 

strategy. 

Validated against NREL 

Phase VI.  

A numerical study of the 

extreme load has been 

investigated. 
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4. Conclusion remarks and challenges 

The authors proposed a possible research future direction which is to take into account the 
environmental conditions into blade design. There is a lack of wind turbine experiment data for the 
validation of CFD models. Therefore, the future work regarding CFD simulations should look at 
realistic wind speed conditions. The authors find there is still a need for specific research on airfoil 
configuration, i.e. aerodynamic characteristics of conventional and flatback airfoils. Various 
challenges emerge when using the wind turbine technology, for instance, there is high competition 
between industries [176], wind measurement devices accuracy [177], maintenance and operational 
problems [178–183], and power/grid distribution challenges [184–186]. There are different solutions 
to improve the control system [187,188] and wind forecasting devices [189–191]. For more than two 
centuries, the aerodynamics of the wind turbine have been studied, and previous studies focused 
mostly on the challenges and solutions using experimental methods. However, 3D simulation work is 
still in its infancy with many simplifications having to be made due to cost and complexity. This 
paper reviews the key points in the aerodynamic wind turbine design. The major conclusions of this 
review are: 
 Accurate wind distribution data is essential in the design of a wind turbine depending on 

specific site. Weibull and Rayleigh are two probability distribution functions that are commonly 
used to determine the occurrence frequency of wind speed. Until now, many studies in this field 
have devised different models to compare the accuracy between these probability density 
functions. 

 Different parameters affected the design of wind turbines such as the HAWT power curve, tip 
speed ratio, and blade plane shape. Several analyses have sought to enhance the aerodynamic 
performance by decreasing cut-in speed, appropriate selection of tip speed ratio and taking into 
consideration the mechanical stress and noise. 

 There are different families used in a modern wind turbine, and the selection of these airfoils 
depends on a variety of considerations such as a lift to drag coefficient. Studies have engaged in 
certain design criteria of mixing airfoil to increase the efficiency of the wind turbine. This is an 
area requiring further research. 

 The simulation of HAWT using CFD is a very good tool in predicting aerodynamic 
performance, wherein accuracy depends on selecting suitable turbulence models. Most of the 
current numerical work focuses on increasing the accuracy of CFD models in predicting 
aerodynamic performance. They do this by attempting to solve the constraints of cost and time 
through simulation experiments. 
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