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ABSTRACT
Internet of Things (IoT) has been increasingly developed to 

provide essential IoT services ranging from personal health, smart 

homes to smart cities, and critical infrastructures. Sensor/IoT 

devices are indispensable elements in these systems/services. 

However, they are too rigid to permit reconfiguration for changes 

after their implementation. This makes it difficult to provision IoT 

services on demand and causes inefficient utilization of resources. 

Software-defined networking (SDN) and Network function 

virtualization (NFV) are emerging solutions to the 

programmability of network functions. Provisioning IoT services 

on demand is a natural utilization of programmability. Inspired by 

the benefits of SDN-NFV programmability, this paper proposes a 

software-defined virtual sensor (SDVS) that enables the 

programmability of IoT devices in accordance with IoT 

applications on demand. The paper presents the design and 

implementation of the proposed SDVS and demonstrates its use in 

an on-demand IoT services scenario.   

CCS Concepts
• Software and its engineering →  Software as a service

orchestration system
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1. INTRODUCTION
The most important element in an Internet of Things (IoT) system 

is the underlying resource that provides necessary data for IoT 

applications. An effective IoT architecture must allow the control 

plane to orchestrate, control, and manage the underlying resources 

to provide services for the application requests on demand. 

Deployment of various IoT applications faces many challenges 

due to its large scale, resource limitation, and heterogeneous 

environment that accommodates a huge number of 

devices/sensors with various capabilities of sensing, actuating, 

computing, and communicating. In many existing IoT 

applications, overlaid deployment of IoT devices leads to 

difficulties in the interaction and sharing information between the 

devices and the applications. The key challenge is the 

programmability of various sensor nodes in response to diverse 

IoT application demands. 

Among programmable solutions to the programmability of 

wireless sensor networks and Internet of Things (WSN/IoT) 

systems, an emerging Software-Defined Networking (SDN) 

technique has been proposed. 

However, applying the SDN paradigm to sensor/IoT networks 

faces serious challenges due to the limitations on the capability of 

these devices and their interconnecting protocols [1]. The 

complementary Network Functions Virtualization (NFV) can 

partially address these challenges. NFV technology is utilized to 

virtualize networking functions as well as enhance the 

functionality of underlying sensors/IoT devices. This technology 

can be applied readily to the WSN/IoT environment for creating a 

virtual representation of sensors/IoT devices that can serve 

multiple IoT applications simultaneously. This virtual 

representation offers a solution to enrich the features of limited 

sensors/IoT devices. This paper focuses on the design and 

application of a software-defined virtual sensor (SDVS). 

It goes without saying that an “intelligent entity” has the ability to 

sense and interact with its environment in a meaningful way in 

order to achieve the entity’s end goal. A sensor in its simplest 

form is just a physical element or device that transforms some 

features of the environment into a quantifiable measure for 

decision making by higher functional levels. 

In the Internet of Things, a “thing” is basically defined as an 

object that can perform a function (or a sensing service), has the 

ability to connect to a network for collaboration and an identity 

(address, names, etc.) so that the device can be called upon to 

perform its intended service. 

A “smart object” is somewhat a glorified term for an intelligent 

IoT thing, but the term is rather vague without further 

qualifications as the word “smart” implies a continuum of degrees 

of intelligence. 

In the Industrial Internet of Things (IIoT), the term cyber physical 

system (CPS) is defined to mean a system that possesses the 

capability for sensing and interaction with its environment, the 

capability for doing the computation, and the capability for 

communicating with other cyber physical systems. 

In its simplest form, a simple sensor is limited in its functionality 

(simple wires for sensing the temperature), does not have the 

capability to perform data preprocessing, or make its output 

available for further deployment and hence very limited in its 

application. 

Attempts have been made to create more useful/intelligent 

sensors. One may surround the basic sensing function with 

computing and communicating capabilities by embedding in the 
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hardware components such as operating systems and 

wire/wireless intelligent interfaces. 

Other attempts rely on a bare minimum hardware platform and 

implement all additional intelligent features in software. In other 

words, with a layer of software over the basic hardware sensor, 

the composite device acquires intelligence and is able to perform 

desired functions and to provide services as envisaged. 

In many situations, a sensor is purely a software entity (algorithm, 

object, middleware layer) that either emulates a physical sensor or 

a software object that provides higher level services to the user, 

relying on logical information available within a system. 

On computing, additional functionality may include various 

preprocessing functions that preprocess data (noise removal or 

compressing) before making it available. On communication, 

additional functionality may include transmitting and receiving 

components that can interface with different communication 

wired or wireless protocols depending on the application. On 

storage, raw data collected by a sensor may need to be stored 

locally and temporarily for local preprocessing before transporting 

to a data collector, depending on the availability of the 

connectivity at the time. 

With the advance of digital transformation, Industry 4.0 

specifically, every element of a manufacturing factory has its 

digital twin as an essential component of the overall smart 

manufacturing industry. A digital twin of a component is a 

purpose-built software entity that mirrors the essential features of 

the component. A digital twin can range from a cyber physical 

system (smart sensor, smart conveyor belt, a production line) to a 

production process or a complete factory. These are emulated 

software components that an intelligent controller, orchestrator, or 

an enterprise can use to simulate, test out the operation and the 

intended product before committing them to an actual production 

and manufacturing process. 

Many emerging services can now be implemented as cloud 

services, where a cloud can provide necessary virtual resources on 

demand (based on a pool of physical resources) and provision 

services as requested. In this infrastructure of virtualised 

resources, all computing, storage, and networking resources are 

implemented in software. Cloud can thus provide services with 5 

defined features: on-demand self-service, rapid elasticity, 

broadband network access, measured service, and resource 

pooling. 

Clearly, a cloud-based IoT service can be provisioned once 

elements of the service can be virtualised and orchestrated. 

In this paper, we propose, design, and implement a software- 

defined virtual sensor (SDVS) that embraces basic features of the 

above discussed devices. 

The rest paper is organised as follows. Section II discusses related 

work on the development of virtual sensors. Section III provides a 

detailed description of the proposed SDVS. Section IV describes 

the SDVS architecture and software implementation. Section V 

describes the use case scenario and performance evaluation. 

Section VI concludes the paper with directions for future research. 

2. RELATED WORK 
IoT applications are increasing rapidly in number, and they all 

demand increasingly sophisticated and capable IoT devices 

(sensors/actuators, sensor nodes, or IoT things). However, most of 

IoT devices possess limited capabilities such as power supply, 

computation capability, communication protocol, and 

memory/storage capacity. To mitigate, remove these difficulties 

or enhance physical capabilities for responding to emerging IoT 

demands, many attempts have been made for operation and 

resource efficiency, real-time response, autonomous device 

configuration, programmable control, flexible management, and 

on-demand provision of services. 

Many attempts exploit virtual sensors/objects to deal with the 

above requirements. Examples of virtual objects have been 

discussed in [2]. A virtual sensor can play various roles. It can act 

as an IoT gateway to communicate with other components. It can 

represent one or multiple physical sensors to provide a sensing 

data type or aggregated data that may be collected from one or 

multiple physical sensors from one or several WSN platforms 

over a large-scale area [3]. In addition, a virtual sensor may share 

complex tasks with physical sensor/IoT devices by enhancing and 

supplementing itself with additional software functions [4]. It may 

also be a communication interface between an application and 

physical sensors, for example, SenseWrap [5] that enables an 

application to communicate with any kind of physical sensors 

without knowing device-specific details. Without providing a 

specific solution to the above issues, but [6] contributes to 

providing an overall picture where middleware solutions can fit in 

and proposing a Sensor Web Enablement framework where 

sensors need to be treated in a uniform, interoperable, and 

platform-independent manner. 

Nevertheless, there remain many challenging issues  [2] that need 

to be considered for future development of the IoT world 

regarding virtual sensors and their applications: i) a lack of 

common association between a virtual and real objects; ii) the 

balanced tradeoff between the number of replicas of the same 

information and their reusability; iii) the interoperability concern 

that is the consequence of virtual objects of different IoT systems 

having different APIs; iv) the scalability issue relating to the 

management of virtual object life cycle; v) the future creation of 

virtual objects that may autonomously and adaptive interact with 

the surrounding environment in order to support dynamic 

deployment of IoT applications. 

Recently, a number of  pieces of research have attempted to 

leverage SDN and NFV paradigm to introduce new approaches to 

not only existing but also upcoming IoT issues such as 

architecture, security, management, programmability and 

management of IoT infrastructure [7]; or provision of advanced 

services regarding network virtualization, data distribution, 

quality of services/experience. However, only a few works 

consider the benefits of SDN/NFV-based mechanism in 

programmability, control, and management of IoT devices in 

order to provide a complete SDN/NFV-based solution to IoT 

service provision. [8] has proposed a software-defined device 

provisioning framework for improving the scalability of IoT 

platforms, but it fails to consider how to deal with limitations of 

physical devices in the provision of IoT devices to respond to IoT 

applications on demand. [9] has proposed an SDN&NFV-based 

paradigm, that using virtual images to replace physical devices, 

for effectively providing collected data to users. 

3. SOFTWARE-DEFINED VIRTUAL 

SENSOR (SDVS) 
Typically, a physical sensor node is composed of four key units 

responsible for computing, communicating, sensing functions, and 

power. The computing subsystem controls the other units and 

computes demanding tasks. It includes a processor and a storage 



unit. The processor unit may operate in various energy-saving 

modes as Sleep or Off-Duty, Active or On-Duty, sensing unit on 

duty, and transceiver on-duty mode. The storage unit comprises a 

flash memory, containing the program code for a node, and a 

RAM, storing sensing data and necessary data for computing 

tasks. The communicating subsystem allows a sensor node to 

communicate with other nodes or with the base station by using a 

short-range radio. The power subsystem includes a battery. The 

sensing subsystem translates physical phenomena into electrical 

signals. 

However, depending on their application, IoT devices may have 

different functionalities and may deploy different underlying 

technologies. In terms of communication, they may use different 

wireless technologies that entail different routing protocols, 

addressing schemes, data encodings, and data formats. Regarding 

the IoT platform, they may rely on different development 

environments, programming languages, processors, memories, 

and communication networks [10]. IoT devices can be of various 

types, but they typically include common elements such as i) 

identification, ii) sensing and actuating, iii) computation, iv) 

communication interfaces, and v) management. They may consist 

of several communication interfaces such as audio/video, memory 

and storage, Internet connections, and I/O interfaces for sensors. 

To shield an IoT device from the above-mentioned dependencies, 

to overcome the limitations of physical sensors/devices, to allow 

autonomous device configuration and management, and to allow 

services programmability, in accordance with the SDN and NFV 

principles, we propose a virtual sensor as a software 

representation of an IoT device with the following definition and 

properties. 

3.1 SDVS - Capability 
SDVS is a software entity that functions as a virtual sensor that 

addresses the above-mentioned limitations of physical 

sensors/actuators and possesses capabilities for adapting itself in 

interacting with the surrounding environment and its controller for 

providing desired services. Importantly, an SDVS is flexible in 

communicating with its attached end devices (sensors/actuators) 

regardless of their specific communication protocols. 

Specifically, an SDVS can be considered as an enriched version 

of a physical sensor or a group of physical sensors by virtue of the 

additional software layer on top and flexible sets of plug-in sensor 

interfaces. 

An SDVS can provide value-add functions over that available 

from its underlying sensors through its software implementation. 

An SDVS may be also able to provide some local processing and 

management such as data pre-processing and local configuration. 

An SDVS may also include some storage to deal with other local 

issues rather than sending them to remote handlers. An SDVS can 

emulate a sensor, actuator, or provide a digital twin of a device for 

designing and testing preproduction of service in an Industrial IoT 

application. By software-defined, we mean that an SDVS can be 

flexibly designed, programmed, configured, and managed 

autonomously according to its intended application. 

Essentially, an SDVS is defined by its representation type and an 

interface to its underlying resources. 

3.2 SDVS – Representation Types 
In accordance with the definition of an SDVS, representations of 

an SDVS are classified into two main groups: i) sensing and ii) 

functioning services. Regarding the first category, an SDVS may 

represent a single sensing service that is accumulated from one or 

multiple physical/virtual sensors. The second category represents 

a functional counterpart or an advanced functional element of a 

physical/virtual sensor. 

3.2.1 Representing a Physical Sensor 
A constrained physical sensor may need the additional support of 

a virtual sensor to become a programmable entity in an IoT 

system. Particularly, sensing and functioning services of the 

physical sensor can be i) programmed to provide IoT services to 

multiple applications. 

3.2.2 Representing a Sensing Service of Multiple 

Physical/Virtual Sensors 
That provides the same sensing service type. A virtual sensor can 

collect a kind of sensing reading from multiple physical/virtual 

sensors. The reading can be used for two purposes: aggregating 

the reading values to produce new average value and deriving a 

data type that cannot be produced by a single sensing type. For the 

first purpose, the temperature of small towns is collected for 

further production of an average temperature of a city. For the 

second purpose, a proximity sensor value is produced by 

interpolating light reading and variance in the light intensity [3]. 

3.2.3 Representing a Subset of Services of 

One/Multiple Physical Sensors 
An IoT application may require several sensing services that need 

to be exposed to the application as a single service. For example, 

an SDVS may have to abstract different data types from a 

physical sensor and provide aggregated data to the application 

[11]. 

3.2.4 Representing a Subset of Services of 

One/Multiple Virtual Sensors 
For example, a heat index is derived from moisturizer and 

temperature reading. Thus, to evaluate the heat index of a campus 

including many buildings, to the SDVS necessarily to provide 

average heat indexes collected from multiple virtual sensors that 

represent heat indexes of buildings within the campus. 

3.2.5 Representing a Functional Counterpart of a 

Constrained Physical Sensor 
The SDVS can enhance limited functionalities of a physical 

sensor, for instance, i) addressing and naming; ii) search and 

discovery, iii) mobility management, and iv) accounting and 

authentication. Examples of these cases are discussed in [1]. 

3.2.6 Representing an Advanced Functioning Service 

of a Physical Sensor 
The SDVS enables an advanced function to be deployed on a 

physical sensor. The additional element enhances the physical 

sensor’s capabilities according to application demands. For 

instance, an application-specific sensor is used for another 

application that has a different communication protocol. Thus, the 

SDVS allows the physical sensor to communicate with the 

application via the required communication protocol. 

3.3 SDVS - Features 
To embrace the SDN and the NFV principles and to fulfil the 

defined representations discussed above, the SDVS is composed 

of the following features. 



3.3.1 Fundamental Properties 
It has all the characteristics of a represented sensor/IoT device. 

When representing a service, it provides collected results 

regarding the service. When representing a physical sensor, it has 

all the characteristics and functions of the sensor/device. When 

representing a group of physical sensors, it has not only the 

information of the represented sensors but also additional 

functions that enable it to handle communication with the physical 

sensors and high-level tasks. It is also the same as the case of an 

SDVS representing a group of virtual sensors. 

3.3.2 Initiation 
It is initiated by the SD-IoT controller when i) an IoT device or a 

sensor node joins an SD-IoT cluster, or ii) there is a call for a new 

IoT service. 

3.3.3 Location 
An SDVS can be placed at the controller or at the physical device 

according to the resource orchestration approach of the controller. 

3.3.4 Activation Period 
An SDVS is activated according to application demands, so it 

would be in idle or deleted when it is not involved in any IoT 

service provision or its represented sensor is no longer existed. 

3.3.5 Identification  
Each SDVS is identified by a name, ID, and an IP address. A 

name and ID enable it to locally communicate with each other. An 

IP address allows it to globally communicate with the controller 

or applications on the cloud/the Internet. 

3.3.6 Configuration and Management 
An SDVS is managed and configured by the SD-IoT controller 

via a manage protocol. The configuration is deployed by the 

controller and represented by instructions in forwarding and 

configuring tables. The SDVS follows the instructions to know 

how to process an incoming packet as well as program underlying 

sensors, respectively. 

3.3.7 Association Between the SDVS and 

Physical/Virtual Sensor(s) 
Regardless of many representation types, there are four main 

kinds of association between an SDVS and physical/virtual 

sensors: i) one-to-one, ii) one-to-many, iii) many-to-one, and iv) 

many-to-many. As for one-to-one association, an SDVS 

represents a physical/virtual sensor or a service belong to the 

device. Regarding one-to-many association, there are three cases 

such as i) the SDVS may represent a set of physical/virtual 

sensors; ii) the SDVS collects information of a homogeneous 

service from a variety of physical/virtual sensors; or iii) the SDVS 

represents a subset of services of a physical sensor. In the case 

one physical/virtual sensor has many services and each of them is 

represented by one SDVS, so it results in the many-to-one 

association. The many-to-many association is a combined method 

of other associations. 

3.3.8 Stored Data 
An SDVS needs to store information about itself and its 

represented sensors. The information of the represented sensor 

includes identification; computing and communicating 

characteristics; current, past, and future status related to handling 

tasks and duty cycle modes. The statuses are stores in the list of 

attributes of the virtual sensor. In addition, it has its own 

identification, configuration information, including forwarding 

and configuring tables and statuses. 

3.3.9 Communication Interfaces 
There are four communication types that can be with i) its 

underlying sensors, ii) other SDVSs, iii) the controller, and iv) 

other cloud services/applications. It needs protocols to 

communicate with the controller or other SDVSs, IoT 

applications, and its represented sensors, respectively. 

3.3.10 Security  
An SDVS is managed by a controller that is responsible for 

managing its life-cycle. The SDVS can be created, modified, 

transferred, deactivated, activated, or deleted by the controller. 

However, the controller can delegate the control to an 

application/user, another SD-IoT controller, or other SDVSs with 

limited permission. 

3.3.11 Mobility 
An SDVS can be moved between SD-IoT systems or within an 

SDN domain, or to the cloud. 

3.3.12 Service Advertisement 
An SDVS informs and updates its available services to the 

controller. 

3.3.13 Service Provision 
SDVS stores temporary sensor services collected from its 

represented sensors and reuses them to quickly respond to 

application requests. 

3.3.14 Programmability  
An SDVS can be programmed to operate according to its 

configuration set up by the controller. It is responsible for 

communicating with represented sensors via their specific 

protocol. 

3.3.15 IoT Interface 
An SDVS is an interface between underlying IoT resources and 

the controller, applications/users, or the cloud. 

4. SDVS ARCHITECTURE AND 

IMPLEMENTATION 

4.1 Overall Architecture 
To fulfil this design, the SDVS requires three main elements 

organized in the architecture, as depicted in Figure 1. 

4.1.1 Represented Entity 
Includes attributes and functions of the represented underlying 

entity, for example, battery level, driver communication protocol, 

attached sensors, processing capability, memory. 

4.1.2 Software-Defined Function (SDF) 
Are communicating or computing functions which can be 

programmable via a manage protocol. 

4.1.3 Data Storage 
Stores metadata of the represented entities, sensing data, and 

instructions for configuration of represented entries or for 

forwarding results to desired destinations. Particularly, it 

temporarily stores actual data collected from its represented 

entities. 

4.2 Software Implementation 
In software implementation, an SDVS is composed of four 

elements (as illustrated in Figure 2): i) identification and address 

for communicating with both SD-IoT controller and represented 



IoT devices, ii) sensing/actuating services of represented IoT 

device, iii) storage data element storing information about 

sensing/actuating services, and iv) advanced functions that can be 

flexibly installed such as communicating and computing 

functions. 

 

 

Figure 1. SDVS Architecture. Figure 2. SDVS In Software. 

5. USE CASE SCENARIO AND 

IMPLEMENTATION EVALUATION 

5.1 Use Case Scenario 
For the practical realization of the proposed SDVS, we develop a 

use case scenario in which SDVSs represent physical IoT devices 

to provide IoT services on demand. In the scenario, there are a 

number of IoT devices along a street. Sensing readings from the 

devices may be used for providing traffic load along the street, 

weather condition of an area, or to adjust traffic light according to 

traffic load over the street. IoT devices are under the control and 

management of a controller. Each IoT device is attached with 

sensors such as light, camera, proximity, temperature, and 

movement. Sensing readings and actuators from the device can be 

achieved and executed on demand, respectively. 

 

Figure 3. SD-IoT Model. 

5.2 Implementation of the Overall SD-IoT 

Model 
To demonstrate the above scenario, we implement a software-

defined internet of things (SD-IoT) system that is introduced in 

our previous work [12] (as depicted in Figure 3). The system 

represents a cluster of IoT devices. It is composed of three main 

components: i) an SD-IoT controller, ii) a number of SDVSs, and 

iii) an S-MANAGE protocol that is a communication protocol 

between the controller and SDVSs. The SDVSs are 

representations of physical IoT devices. The SD-IoT controller 

controls and manages the SDVSs using the S-MANAGE protocol. 

Detailed implementation of the SD-IoT model, S-MANAGE’s 

design and performance evaluation can be found in our previous 

work [13]. All components of the model are written in Java, using 

NetBeans 8.2. 

5.3 Performance Evaluation 

5.3.1 Programmability of SDVS 

An SDVS is expected to have the following features (as presented 

in Figure 4). It is assumed that the SDVS possesses software 

divers and plug-in interfaces for various types of underlying 

physical sensors. We are in the process of deploying a Raspberry 

Pi for housing SDVSs and physical sensors’ plug-ins. 

 

Figure 4. Programmable Features of the SDVS. 

5.3.1.1 Handling Multiple IoT requests at a time 
As shown in Figure 4a, the SDVS23 currently handles two IoT 

requests that have Req_ID “0” and “1”. 

5.3.1.2 Configuring Represented Sensors in 

Accordance with IoT Demands 
As displayed in Figure 4b, the SDVS23 currently represents five 

sensor types. It can configure the represented sensors to achieve 

required services such as sensing and actuating. For example, the 

sensor service SID05 is configured to be OFF (Status is “0”), 

while other services are ON (Status is “1”). 

5.3.1.3 Configuring and Updating Status of 

Represented Sensors According to Required 

Parameters Associated with IoT Requests 
As presented in Figure 4a, the SDVS allows the IoT requests to 

specify metrics related to required services. Take the Req_ID “1” 

for example, the request requires service SID05 in location 

LOC01, for 10 minutes. Achieved results need to be sent to a 

desired destination (as Dst “121”) every 10s. The SDVS also 

records the time (StartTime) when it starts handling (Executed is 

“Y”) the request, the remaining time for handling the request 

(TTL). Moreover, it counts the number of requests interested in a 

specific service (Counter value). 

5.3.1.4 Updating the SD-IoT Controller  
The SDVS can update the controller about changes in its 

environment and status of its represented sensors, so the controller 



can resolve conflicts among IoT requests. Thanks to the updated 

relevant information, the controller can muster availability of 

underlying resources, and hence orchestrate them for incoming 

requests. 

5.3.2 Efficiency of SDVS 
The following results demonstrate the efficient utilization of the 

proposed SDVS in provisioning IoT services on demand.  

 

Figure 5. The controller’s processing time for one per multiple 

concurrent requests. 

Figure 5 presents the processing time of the SD-IoT model in 

response to one or multiple simultaneous application requests. 

The number of IoT services per request may vary from one to 

five. We try to send a number of requests to the SD-IoT model, 

and the number is increased by 20 from 10 to 90.  The system 

needs more time to process a higher number of requests as well as 

requests demanding for a higher number of services. However, 

while the number of requests increases 9 times (10 to 90), the total 

processing time rises about 3 times regardless of the number of 

required services per request. The system can enable SDVSs to be 

shared between applications with similar interests, so it can reduce 

the time for reconfiguring physical devices. 

 

Figure 6. SDVS’ s average response time for one request per 

multiple requests. 

Response time of an SDVS to various requests: Figure 6 shows 

that response time of an SDVS to a request increases when there 

is a growth in the number of required sensor services per request. 

Moreover, it needs more time to reply to a rising number of 

incoming requests at a time. However, in comparison to an 

increase in the number of simultaneous incoming requests, the rise 

in response time of an SDVS is much lower. For example, to 

respond to 10 concurrent requests, regardless of the number of 

required services per request, an SDVS needs about 379.3ms on 

average. The amount is grown to about 1.8 times, while the 

number of concurrent requests increases by 9 times. 

6. CONCLUSION 
In this paper, we introduce a software-defined virtual sensor 

(SDVS) with new concepts to reshape the SDN and NFV 

technologies and support the provision of IoT services on demand. 

SDVS is designed to enable IoT devices to be programmable on 

demand in response to IoT application requests. A detailed design 

is provided. The implementation results demonstrate the 

feasibility and application of the proposed SDVS. For the next 

step, we will complete the integration of physical sensors into the 

SDVS and explore various applications. We will also investigate 

the integration of SDVSs into a large-scale software-defined IoT 

infrastructure for provisioning IoT services on demand. 
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