
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material

for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.

Software-Defined Virtual Sensors for Provisioning IoT
Services On Demand

Chau Nguyen, Doan Hoang
School of Electrical and Data Engineering, Faculty of Engineering and IT, University of Technology Sydney

15 Broadway, Ultimo NSW 2007, Australia

Thiminhchau.nguyen@student.uts.edu.au, doan.hoang@uts.edu.au

ABSTRACT
Internet of Things (IoT) has been increasingly developed to

provide essential IoT services ranging from personal health, smart

homes to smart cities, and critical infrastructures. Sensor/IoT

devices are indispensable elements in these systems/services.

However, they are too rigid to permit reconfiguration for changes

after their implementation. This makes it difficult to provision IoT

services on demand and causes inefficient utilization of resources.

Software-defined networking (SDN) and Network function

virtualization (NFV) are emerging solutions to the

programmability of network functions. Provisioning IoT services

on demand is a natural utilization of programmability. Inspired by

the benefits of SDN-NFV programmability, this paper proposes a

software-defined virtual sensor (SDVS) that enables the

programmability of IoT devices in accordance with IoT

applications on demand. The paper presents the design and

implementation of the proposed SDVS and demonstrates its use in

an on-demand IoT services scenario.

CCS Concepts
• Software and its engineering → Software as a service

orchestration system

Keywords
Services on-demand, IoT Services Provisioning, Software

Sensors, Software-defined Internet of Things, Software-defined

Virtual Sensor, Software-defined Internet of Things Controller.

1. INTRODUCTION
The most important element in an Internet of Things (IoT) system

is the underlying resource that provides necessary data for IoT

applications. An effective IoT architecture must allow the control

plane to orchestrate, control, and manage the underlying resources

to provide services for the application requests on demand.

Deployment of various IoT applications faces many challenges

due to its large scale, resource limitation, and heterogeneous

environment that accommodates a huge number of

devices/sensors with various capabilities of sensing, actuating,

computing, and communicating. In many existing IoT

applications, overlaid deployment of IoT devices leads to

difficulties in the interaction and sharing information between the

devices and the applications. The key challenge is the

programmability of various sensor nodes in response to diverse

IoT application demands.

Among programmable solutions to the programmability of

wireless sensor networks and Internet of Things (WSN/IoT)

systems, an emerging Software-Defined Networking (SDN)

technique has been proposed.

However, applying the SDN paradigm to sensor/IoT networks

faces serious challenges due to the limitations on the capability of

these devices and their interconnecting protocols [1]. The

complementary Network Functions Virtualization (NFV) can

partially address these challenges. NFV technology is utilized to

virtualize networking functions as well as enhance the

functionality of underlying sensors/IoT devices. This technology

can be applied readily to the WSN/IoT environment for creating a

virtual representation of sensors/IoT devices that can serve

multiple IoT applications simultaneously. This virtual

representation offers a solution to enrich the features of limited

sensors/IoT devices. This paper focuses on the design and

application of a software-defined virtual sensor (SDVS).

It goes without saying that an “intelligent entity” has the ability to

sense and interact with its environment in a meaningful way in

order to achieve the entity’s end goal. A sensor in its simplest

form is just a physical element or device that transforms some

features of the environment into a quantifiable measure for

decision making by higher functional levels.

In the Internet of Things, a “thing” is basically defined as an

object that can perform a function (or a sensing service), has the

ability to connect to a network for collaboration and an identity

(address, names, etc.) so that the device can be called upon to

perform its intended service.

A “smart object” is somewhat a glorified term for an intelligent

IoT thing, but the term is rather vague without further

qualifications as the word “smart” implies a continuum of degrees

of intelligence.

In the Industrial Internet of Things (IIoT), the term cyber physical

system (CPS) is defined to mean a system that possesses the

capability for sensing and interaction with its environment, the

capability for doing the computation, and the capability for

communicating with other cyber physical systems.

In its simplest form, a simple sensor is limited in its functionality

(simple wires for sensing the temperature), does not have the

capability to perform data preprocessing, or make its output

available for further deployment and hence very limited in its

application.

Attempts have been made to create more useful/intelligent

sensors. One may surround the basic sensing function with

computing and communicating capabilities by embedding in the

Reserved blank space for publisher

hardware components such as operating systems and

wire/wireless intelligent interfaces.

Other attempts rely on a bare minimum hardware platform and

implement all additional intelligent features in software. In other

words, with a layer of software over the basic hardware sensor,

the composite device acquires intelligence and is able to perform

desired functions and to provide services as envisaged.

In many situations, a sensor is purely a software entity (algorithm,

object, middleware layer) that either emulates a physical sensor or

a software object that provides higher level services to the user,

relying on logical information available within a system.

On computing, additional functionality may include various

preprocessing functions that preprocess data (noise removal or

compressing) before making it available. On communication,

additional functionality may include transmitting and receiving

components that can interface with different communication

wired or wireless protocols depending on the application. On

storage, raw data collected by a sensor may need to be stored

locally and temporarily for local preprocessing before transporting

to a data collector, depending on the availability of the

connectivity at the time.

With the advance of digital transformation, Industry 4.0

specifically, every element of a manufacturing factory has its

digital twin as an essential component of the overall smart

manufacturing industry. A digital twin of a component is a

purpose-built software entity that mirrors the essential features of

the component. A digital twin can range from a cyber physical

system (smart sensor, smart conveyor belt, a production line) to a

production process or a complete factory. These are emulated

software components that an intelligent controller, orchestrator, or

an enterprise can use to simulate, test out the operation and the

intended product before committing them to an actual production

and manufacturing process.

Many emerging services can now be implemented as cloud

services, where a cloud can provide necessary virtual resources on

demand (based on a pool of physical resources) and provision

services as requested. In this infrastructure of virtualised

resources, all computing, storage, and networking resources are

implemented in software. Cloud can thus provide services with 5

defined features: on-demand self-service, rapid elasticity,

broadband network access, measured service, and resource

pooling.

Clearly, a cloud-based IoT service can be provisioned once

elements of the service can be virtualised and orchestrated.

In this paper, we propose, design, and implement a software-

defined virtual sensor (SDVS) that embraces basic features of the

above discussed devices.

The rest paper is organised as follows. Section II discusses related

work on the development of virtual sensors. Section III provides a

detailed description of the proposed SDVS. Section IV describes

the SDVS architecture and software implementation. Section V

describes the use case scenario and performance evaluation.

Section VI concludes the paper with directions for future research.

2. RELATED WORK
IoT applications are increasing rapidly in number, and they all

demand increasingly sophisticated and capable IoT devices

(sensors/actuators, sensor nodes, or IoT things). However, most of

IoT devices possess limited capabilities such as power supply,

computation capability, communication protocol, and

memory/storage capacity. To mitigate, remove these difficulties

or enhance physical capabilities for responding to emerging IoT

demands, many attempts have been made for operation and

resource efficiency, real-time response, autonomous device

configuration, programmable control, flexible management, and

on-demand provision of services.

Many attempts exploit virtual sensors/objects to deal with the

above requirements. Examples of virtual objects have been

discussed in [2]. A virtual sensor can play various roles. It can act

as an IoT gateway to communicate with other components. It can

represent one or multiple physical sensors to provide a sensing

data type or aggregated data that may be collected from one or

multiple physical sensors from one or several WSN platforms

over a large-scale area [3]. In addition, a virtual sensor may share

complex tasks with physical sensor/IoT devices by enhancing and

supplementing itself with additional software functions [4]. It may

also be a communication interface between an application and

physical sensors, for example, SenseWrap [5] that enables an

application to communicate with any kind of physical sensors

without knowing device-specific details. Without providing a

specific solution to the above issues, but [6] contributes to

providing an overall picture where middleware solutions can fit in

and proposing a Sensor Web Enablement framework where

sensors need to be treated in a uniform, interoperable, and

platform-independent manner.

Nevertheless, there remain many challenging issues [2] that need

to be considered for future development of the IoT world

regarding virtual sensors and their applications: i) a lack of

common association between a virtual and real objects; ii) the

balanced tradeoff between the number of replicas of the same

information and their reusability; iii) the interoperability concern

that is the consequence of virtual objects of different IoT systems

having different APIs; iv) the scalability issue relating to the

management of virtual object life cycle; v) the future creation of

virtual objects that may autonomously and adaptive interact with

the surrounding environment in order to support dynamic

deployment of IoT applications.

Recently, a number of pieces of research have attempted to

leverage SDN and NFV paradigm to introduce new approaches to

not only existing but also upcoming IoT issues such as

architecture, security, management, programmability and

management of IoT infrastructure [7]; or provision of advanced

services regarding network virtualization, data distribution,

quality of services/experience. However, only a few works

consider the benefits of SDN/NFV-based mechanism in

programmability, control, and management of IoT devices in

order to provide a complete SDN/NFV-based solution to IoT

service provision. [8] has proposed a software-defined device

provisioning framework for improving the scalability of IoT

platforms, but it fails to consider how to deal with limitations of

physical devices in the provision of IoT devices to respond to IoT

applications on demand. [9] has proposed an SDN&NFV-based

paradigm, that using virtual images to replace physical devices,

for effectively providing collected data to users.

3. SOFTWARE-DEFINED VIRTUAL

SENSOR (SDVS)
Typically, a physical sensor node is composed of four key units

responsible for computing, communicating, sensing functions, and

power. The computing subsystem controls the other units and

computes demanding tasks. It includes a processor and a storage

unit. The processor unit may operate in various energy-saving

modes as Sleep or Off-Duty, Active or On-Duty, sensing unit on

duty, and transceiver on-duty mode. The storage unit comprises a

flash memory, containing the program code for a node, and a

RAM, storing sensing data and necessary data for computing

tasks. The communicating subsystem allows a sensor node to

communicate with other nodes or with the base station by using a

short-range radio. The power subsystem includes a battery. The

sensing subsystem translates physical phenomena into electrical

signals.

However, depending on their application, IoT devices may have

different functionalities and may deploy different underlying

technologies. In terms of communication, they may use different

wireless technologies that entail different routing protocols,

addressing schemes, data encodings, and data formats. Regarding

the IoT platform, they may rely on different development

environments, programming languages, processors, memories,

and communication networks [10]. IoT devices can be of various

types, but they typically include common elements such as i)

identification, ii) sensing and actuating, iii) computation, iv)

communication interfaces, and v) management. They may consist

of several communication interfaces such as audio/video, memory

and storage, Internet connections, and I/O interfaces for sensors.

To shield an IoT device from the above-mentioned dependencies,

to overcome the limitations of physical sensors/devices, to allow

autonomous device configuration and management, and to allow

services programmability, in accordance with the SDN and NFV

principles, we propose a virtual sensor as a software

representation of an IoT device with the following definition and

properties.

3.1 SDVS - Capability
SDVS is a software entity that functions as a virtual sensor that

addresses the above-mentioned limitations of physical

sensors/actuators and possesses capabilities for adapting itself in

interacting with the surrounding environment and its controller for

providing desired services. Importantly, an SDVS is flexible in

communicating with its attached end devices (sensors/actuators)

regardless of their specific communication protocols.

Specifically, an SDVS can be considered as an enriched version

of a physical sensor or a group of physical sensors by virtue of the

additional software layer on top and flexible sets of plug-in sensor

interfaces.

An SDVS can provide value-add functions over that available

from its underlying sensors through its software implementation.

An SDVS may be also able to provide some local processing and

management such as data pre-processing and local configuration.

An SDVS may also include some storage to deal with other local

issues rather than sending them to remote handlers. An SDVS can

emulate a sensor, actuator, or provide a digital twin of a device for

designing and testing preproduction of service in an Industrial IoT

application. By software-defined, we mean that an SDVS can be

flexibly designed, programmed, configured, and managed

autonomously according to its intended application.

Essentially, an SDVS is defined by its representation type and an

interface to its underlying resources.

3.2 SDVS – Representation Types
In accordance with the definition of an SDVS, representations of

an SDVS are classified into two main groups: i) sensing and ii)

functioning services. Regarding the first category, an SDVS may

represent a single sensing service that is accumulated from one or

multiple physical/virtual sensors. The second category represents

a functional counterpart or an advanced functional element of a

physical/virtual sensor.

3.2.1 Representing a Physical Sensor
A constrained physical sensor may need the additional support of

a virtual sensor to become a programmable entity in an IoT

system. Particularly, sensing and functioning services of the

physical sensor can be i) programmed to provide IoT services to

multiple applications.

3.2.2 Representing a Sensing Service of Multiple

Physical/Virtual Sensors
That provides the same sensing service type. A virtual sensor can

collect a kind of sensing reading from multiple physical/virtual

sensors. The reading can be used for two purposes: aggregating

the reading values to produce new average value and deriving a

data type that cannot be produced by a single sensing type. For the

first purpose, the temperature of small towns is collected for

further production of an average temperature of a city. For the

second purpose, a proximity sensor value is produced by

interpolating light reading and variance in the light intensity [3].

3.2.3 Representing a Subset of Services of

One/Multiple Physical Sensors
An IoT application may require several sensing services that need

to be exposed to the application as a single service. For example,

an SDVS may have to abstract different data types from a

physical sensor and provide aggregated data to the application

[11].

3.2.4 Representing a Subset of Services of

One/Multiple Virtual Sensors
For example, a heat index is derived from moisturizer and

temperature reading. Thus, to evaluate the heat index of a campus

including many buildings, to the SDVS necessarily to provide

average heat indexes collected from multiple virtual sensors that

represent heat indexes of buildings within the campus.

3.2.5 Representing a Functional Counterpart of a

Constrained Physical Sensor
The SDVS can enhance limited functionalities of a physical

sensor, for instance, i) addressing and naming; ii) search and

discovery, iii) mobility management, and iv) accounting and

authentication. Examples of these cases are discussed in [1].

3.2.6 Representing an Advanced Functioning Service

of a Physical Sensor
The SDVS enables an advanced function to be deployed on a

physical sensor. The additional element enhances the physical

sensor’s capabilities according to application demands. For

instance, an application-specific sensor is used for another

application that has a different communication protocol. Thus, the

SDVS allows the physical sensor to communicate with the

application via the required communication protocol.

3.3 SDVS - Features
To embrace the SDN and the NFV principles and to fulfil the

defined representations discussed above, the SDVS is composed

of the following features.

3.3.1 Fundamental Properties
It has all the characteristics of a represented sensor/IoT device.

When representing a service, it provides collected results

regarding the service. When representing a physical sensor, it has

all the characteristics and functions of the sensor/device. When

representing a group of physical sensors, it has not only the

information of the represented sensors but also additional

functions that enable it to handle communication with the physical

sensors and high-level tasks. It is also the same as the case of an

SDVS representing a group of virtual sensors.

3.3.2 Initiation
It is initiated by the SD-IoT controller when i) an IoT device or a

sensor node joins an SD-IoT cluster, or ii) there is a call for a new

IoT service.

3.3.3 Location
An SDVS can be placed at the controller or at the physical device

according to the resource orchestration approach of the controller.

3.3.4 Activation Period
An SDVS is activated according to application demands, so it

would be in idle or deleted when it is not involved in any IoT

service provision or its represented sensor is no longer existed.

3.3.5 Identification
Each SDVS is identified by a name, ID, and an IP address. A

name and ID enable it to locally communicate with each other. An

IP address allows it to globally communicate with the controller

or applications on the cloud/the Internet.

3.3.6 Configuration and Management
An SDVS is managed and configured by the SD-IoT controller

via a manage protocol. The configuration is deployed by the

controller and represented by instructions in forwarding and

configuring tables. The SDVS follows the instructions to know

how to process an incoming packet as well as program underlying

sensors, respectively.

3.3.7 Association Between the SDVS and

Physical/Virtual Sensor(s)
Regardless of many representation types, there are four main

kinds of association between an SDVS and physical/virtual

sensors: i) one-to-one, ii) one-to-many, iii) many-to-one, and iv)

many-to-many. As for one-to-one association, an SDVS

represents a physical/virtual sensor or a service belong to the

device. Regarding one-to-many association, there are three cases

such as i) the SDVS may represent a set of physical/virtual

sensors; ii) the SDVS collects information of a homogeneous

service from a variety of physical/virtual sensors; or iii) the SDVS

represents a subset of services of a physical sensor. In the case

one physical/virtual sensor has many services and each of them is

represented by one SDVS, so it results in the many-to-one

association. The many-to-many association is a combined method

of other associations.

3.3.8 Stored Data
An SDVS needs to store information about itself and its

represented sensors. The information of the represented sensor

includes identification; computing and communicating

characteristics; current, past, and future status related to handling

tasks and duty cycle modes. The statuses are stores in the list of

attributes of the virtual sensor. In addition, it has its own

identification, configuration information, including forwarding

and configuring tables and statuses.

3.3.9 Communication Interfaces
There are four communication types that can be with i) its

underlying sensors, ii) other SDVSs, iii) the controller, and iv)

other cloud services/applications. It needs protocols to

communicate with the controller or other SDVSs, IoT

applications, and its represented sensors, respectively.

3.3.10 Security
An SDVS is managed by a controller that is responsible for

managing its life-cycle. The SDVS can be created, modified,

transferred, deactivated, activated, or deleted by the controller.

However, the controller can delegate the control to an

application/user, another SD-IoT controller, or other SDVSs with

limited permission.

3.3.11 Mobility
An SDVS can be moved between SD-IoT systems or within an

SDN domain, or to the cloud.

3.3.12 Service Advertisement
An SDVS informs and updates its available services to the

controller.

3.3.13 Service Provision
SDVS stores temporary sensor services collected from its

represented sensors and reuses them to quickly respond to

application requests.

3.3.14 Programmability
An SDVS can be programmed to operate according to its

configuration set up by the controller. It is responsible for

communicating with represented sensors via their specific

protocol.

3.3.15 IoT Interface
An SDVS is an interface between underlying IoT resources and

the controller, applications/users, or the cloud.

4. SDVS ARCHITECTURE AND

IMPLEMENTATION

4.1 Overall Architecture
To fulfil this design, the SDVS requires three main elements

organized in the architecture, as depicted in Figure 1.

4.1.1 Represented Entity
Includes attributes and functions of the represented underlying

entity, for example, battery level, driver communication protocol,

attached sensors, processing capability, memory.

4.1.2 Software-Defined Function (SDF)
Are communicating or computing functions which can be

programmable via a manage protocol.

4.1.3 Data Storage
Stores metadata of the represented entities, sensing data, and

instructions for configuration of represented entries or for

forwarding results to desired destinations. Particularly, it

temporarily stores actual data collected from its represented

entities.

4.2 Software Implementation
In software implementation, an SDVS is composed of four

elements (as illustrated in Figure 2): i) identification and address

for communicating with both SD-IoT controller and represented

IoT devices, ii) sensing/actuating services of represented IoT

device, iii) storage data element storing information about

sensing/actuating services, and iv) advanced functions that can be

flexibly installed such as communicating and computing

functions.

Figure 1. SDVS Architecture. Figure 2. SDVS In Software.

5. USE CASE SCENARIO AND

IMPLEMENTATION EVALUATION

5.1 Use Case Scenario
For the practical realization of the proposed SDVS, we develop a

use case scenario in which SDVSs represent physical IoT devices

to provide IoT services on demand. In the scenario, there are a

number of IoT devices along a street. Sensing readings from the

devices may be used for providing traffic load along the street,

weather condition of an area, or to adjust traffic light according to

traffic load over the street. IoT devices are under the control and

management of a controller. Each IoT device is attached with

sensors such as light, camera, proximity, temperature, and

movement. Sensing readings and actuators from the device can be

achieved and executed on demand, respectively.

Figure 3. SD-IoT Model.

5.2 Implementation of the Overall SD-IoT

Model
To demonstrate the above scenario, we implement a software-

defined internet of things (SD-IoT) system that is introduced in

our previous work [12] (as depicted in Figure 3). The system

represents a cluster of IoT devices. It is composed of three main

components: i) an SD-IoT controller, ii) a number of SDVSs, and

iii) an S-MANAGE protocol that is a communication protocol

between the controller and SDVSs. The SDVSs are

representations of physical IoT devices. The SD-IoT controller

controls and manages the SDVSs using the S-MANAGE protocol.

Detailed implementation of the SD-IoT model, S-MANAGE’s

design and performance evaluation can be found in our previous

work [13]. All components of the model are written in Java, using

NetBeans 8.2.

5.3 Performance Evaluation

5.3.1 Programmability of SDVS

An SDVS is expected to have the following features (as presented

in Figure 4). It is assumed that the SDVS possesses software

divers and plug-in interfaces for various types of underlying

physical sensors. We are in the process of deploying a Raspberry

Pi for housing SDVSs and physical sensors’ plug-ins.

Figure 4. Programmable Features of the SDVS.

5.3.1.1 Handling Multiple IoT requests at a time
As shown in Figure 4a, the SDVS23 currently handles two IoT

requests that have Req_ID “0” and “1”.

5.3.1.2 Configuring Represented Sensors in

Accordance with IoT Demands
As displayed in Figure 4b, the SDVS23 currently represents five

sensor types. It can configure the represented sensors to achieve

required services such as sensing and actuating. For example, the

sensor service SID05 is configured to be OFF (Status is “0”),

while other services are ON (Status is “1”).

5.3.1.3 Configuring and Updating Status of

Represented Sensors According to Required

Parameters Associated with IoT Requests
As presented in Figure 4a, the SDVS allows the IoT requests to

specify metrics related to required services. Take the Req_ID “1”

for example, the request requires service SID05 in location

LOC01, for 10 minutes. Achieved results need to be sent to a

desired destination (as Dst “121”) every 10s. The SDVS also

records the time (StartTime) when it starts handling (Executed is

“Y”) the request, the remaining time for handling the request

(TTL). Moreover, it counts the number of requests interested in a

specific service (Counter value).

5.3.1.4 Updating the SD-IoT Controller
The SDVS can update the controller about changes in its

environment and status of its represented sensors, so the controller

can resolve conflicts among IoT requests. Thanks to the updated

relevant information, the controller can muster availability of

underlying resources, and hence orchestrate them for incoming

requests.

5.3.2 Efficiency of SDVS
The following results demonstrate the efficient utilization of the

proposed SDVS in provisioning IoT services on demand.

Figure 5. The controller’s processing time for one per multiple

concurrent requests.

Figure 5 presents the processing time of the SD-IoT model in

response to one or multiple simultaneous application requests.

The number of IoT services per request may vary from one to

five. We try to send a number of requests to the SD-IoT model,

and the number is increased by 20 from 10 to 90. The system

needs more time to process a higher number of requests as well as

requests demanding for a higher number of services. However,

while the number of requests increases 9 times (10 to 90), the total

processing time rises about 3 times regardless of the number of

required services per request. The system can enable SDVSs to be

shared between applications with similar interests, so it can reduce

the time for reconfiguring physical devices.

Figure 6. SDVS’ s average response time for one request per

multiple requests.

Response time of an SDVS to various requests: Figure 6 shows

that response time of an SDVS to a request increases when there

is a growth in the number of required sensor services per request.

Moreover, it needs more time to reply to a rising number of

incoming requests at a time. However, in comparison to an

increase in the number of simultaneous incoming requests, the rise

in response time of an SDVS is much lower. For example, to

respond to 10 concurrent requests, regardless of the number of

required services per request, an SDVS needs about 379.3ms on

average. The amount is grown to about 1.8 times, while the

number of concurrent requests increases by 9 times.

6. CONCLUSION
In this paper, we introduce a software-defined virtual sensor

(SDVS) with new concepts to reshape the SDN and NFV

technologies and support the provision of IoT services on demand.

SDVS is designed to enable IoT devices to be programmable on

demand in response to IoT application requests. A detailed design

is provided. The implementation results demonstrate the

feasibility and application of the proposed SDVS. For the next

step, we will complete the integration of physical sensors into the

SDVS and explore various applications. We will also investigate

the integration of SDVSs into a large-scale software-defined IoT

infrastructure for provisioning IoT services on demand.

7. REFERENCES
[1] Kobo, H.I., A.M. Abu-Mahfouz, and G.P. Hancke, A Survey on

Software-Defined Wireless Sensor Networks: Challenges and

Design Requirements. IEEE Access, 2017. 5: p. 1872-1899.

[2] Nitti, M., et al., The Virtual Object as a Major Element of the

Internet of Things: A Survey. IEEE Communications Surveys &

Tutorials, 2016. 18(2): p. 1228-1240.

[3] Madria, S., V. Kumar, and R. Dalvi, Sensor Cloud: A Cloud of

Virtual Sensors. IEEE Software, 2014. 31(2): p. 70-77.

[4] Gupta, A. and N. Mukherjee. Implementation of virtual sensors

for building a sensor-cloud environment. in 8th International

Conference on Communication Systems and Networks

(COMSNETS). 2016. IEEE.

[5] Evensen, P. and H. Meling. SenseWrap: A service oriented

middleware with sensor virtualization and self-configuration. in

2009 International Conference on Intelligent Sensors, Sensor

Networks and Information Processing (ISSNIP). 2009.

[6] Bröring, A., et al., New Generation Sensor Web Enablement.

Sensors, 2011. 11(3): p. 2652.

[7] Omnes, N., et al. A programmable and virtualized network

& IT infrastructure for the internet of things: How can NFV

& SDN help for facing the upcoming challenges. in 2015

18th International Conference on Intelligence in Next Generation

Networks. 2015.

[8] Mavromatis, A., et al. A Software Defined Device Provisioning

Framework Facilitating Scalability in Internet of Things. in 2018

IEEE 5G World Forum (5GWF). 2018.

[9] Atzori, L., et al., SDN&NFV contribution to IoT objects

virtualization. Computer Networks, 2019. 149: p. 200-212.

[10] Ray, P.P., A survey on Internet of Things architectures. Journal

of King Saud University - Computer and Information Sciences,

2016.

[11] Kabadayi, S., A. Pridgen, and C. Julien, Virtual sensors:

Abstracting data from physical sensors, in Proceedings of the

2006 International Symposium on on World of Wireless, Mobile

and Multimedia Networks. 2006, IEEE Computer Society. p.

587-592.

[12] Nguyen, T.M.C., D.B. Hoang, and T.D. Dang. A software-

defined model for IoT clusters: Enabling applications on

demand. in 2018 International Conference on Information

Networking (ICOIN). 2018.

[13] Nguyen, C. and D. Hoang, S-MANAGE Protocol for

Provisioning IoT Applications on Demand. Journal of

Telecommunications and the Digital Economy, 2019. 7(3): p.

37-57.

