
 

PSO-based Secondary Frequency Control and Active 

Power Sharing 
Mahmuda Begum, Li Li and Jianguo Zhu 

Faculty of Engineering and Information Technology, University of Technology Sydney, Australia  

Email: Mahmuda.Begum@student.uts.edu.au 

 

Abstract—A novel secondary control for restoring the system 

frequency in a distributed manner with incremental cost based 
droop-controlled microgrids (MGs) is presented in this paper. The 
proposed control ensures the frequency restoration and accurately 
share the active power in an optimal way simultaneously. Stability 
analysis with state space modelling is completed with the proposed 
distributed secondary frequency controller (DSFC). The DSFC 
parameters are designed with particle swarm optimization (PSO) 
technique where the selection of DSFC parameters are considered 
as an optimisation problem for enhancing overall stability of the 
system. A test MG model in the MATLAB based simcsape 
platform is taken for modelling and simulation. The outcomes 
from the simulation confirms  that the proposed DSFC can 
simultaneously restore the frequencies and optimal active power 
sharing while the optimal DSFC parameters reduce the overshoot 
and maintain the better stability for the system. 

Index Terms— Distributed Control, State Space Model, Consensus 
Control, Particle Swarm Optimisation. 

I. INTRODUCTION 

The main idea for designing a Microgrid (MG) is rapidly 
transforming from centralized to distributed ones where the 
generation and loads are structured as a whole part of multiple 
distributed MGs, or only distributed quantities in the future. 
Recent advancement in the MG control enhances the potential 
of MGs to be used in a greater level. The control system of 
autonomous MG is one of the crucial empowering technologies, 
which need to be designed accurately. Researchers are much 
more concerned in this area over the last few years. Hierarchical 
control structure for islanded MG systems has been 
recommended for the operational functionality of standard MG 
systems [1]. This hierarchical control consists of three level 
control, explicitly, primary, secondary and tertiary control 
level.  

Primary control has the fastest response where droop 
control method is widely accepted as a practical solution for the 
primary control since it removes the communication 
requirement and considered as decentralized control. However, 
several limitations like frequency and voltage deviations (both 
steady-state and load-dependent), inaccurate reactive power 
sharing using droop control introduce the level of control 
hierarchy named secondary control. In traditional power 
system, centralised secondary controller is considered for the 
frequency and voltage restoration to their reference values. 
Control structures in distributed manner have been introduced 
to reduce the shortcomings of traditional integrated/central 
control systems. Secondary control structures in a distributed 
way have been initiated for the control of MGs mainly to reduce 
the system’s cost and complexity while contribute more in 

dynamic performance of the system. Typically distributed 
control methods are based on multi-agent system or consensus 
protocols [2, 3]. Distributed control based on consensus 
algorithm exhibits a good performance utilising a sparse 
communication system. 

However, dynamic behavior of MG with DSC is responsible 
for introducing the unwanted characteristics related to the 
system damping, response time, and stability region. Transfer 
function [4] based approach, state-space modeling and small-
signal analysis with initial condition and estimating the 
eigenvalues in time domain, and the impedance-based method 
in frequency domain [5] are the most common techniques for 
the stability analysis in detail. The main advantages of 
impedance analysis and the eigenvalue analysis methods are 
reducing the computation time while controller dynamics and 
the grid impedance are taken into account. The latter two 
methods are therefore more appropriate for the stability analysis 
with power electronics interfaced power systems. In this paper, 
detail stability analysis with state-space modelling based on the 
eigenvalue-analysis approach is chosen to see the effect of 
proposed Distributed Secondary Frequency Control (DSFC) on 
the overall system stability.   

Furthermore, another key concern need to be further 
researched which is based on cost minimisation. The MG 
control system should be designed to get the economic benefit 
and stability of the MG while regulating the active power 
balance. Most of the prior works only considered the case that 
power outputs(both active and reactive) from inverters can 
proportionally share the total load in accordance with their 
power ratings [6]. An optimal amount of output power, 
combination of all generators is a suitable solution for lowering 
the operational cost and at the same time retaining system 
generation demand steadiness constraints. There are some 
active power control systems for cost minimisation have been 
proposed in last few decades. In [7], using equal increment cost 
theory based droop control approach is suggested to reduce the 
overall generation budget. However, the optimal control 
parameters are not taken into account. The work in [8] offered 
an active power sharing control arrangement both in distributed 
and optimal way based on equal incremental cost condition 
where they utilise the distributed approach for minimising the 
total generation costs of the system while the he detail stability 
analysis is not taken into consideration. The key impacts of this 
paper are: 

i. Restoring the system frequency at the nominal value 
𝜔𝑟𝑒𝑓  within finite time. 

ii. Minimising the operation cost by applying the optimal 
active power sharing using the equal cost increment values of 
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Distributed Generation (DG) units, i.e., 𝜂1(𝑃1) = 𝜂2(𝑃2) =
⋯ = 𝜂𝑁(𝑃𝑁) where 𝜂𝑖(𝑃𝑖)denotes the cost incremental value 

function of 𝑖𝑡ℎ DG unit. 
iii. The stability analysis represents the effect of DSFC 

parameters on system stability. 
iv. Utilising optimisation technique Particle Swarm 

Optimisation (PSO), the proposed DSFC shows better 
convergence and stability performance through the optimal 
control parameters. 

The paper is organised as follows: In Section II, the design 
of proposed DSFC is represented. In Section III, the state space 
model of a test MG considering DSFC is explained. Modeling 
of the network and load is also given in this section. In Section 
IV, the stability analysis considering state space model with the 
help of eigenvalue analysis is shown. Section V describes the 
optimisation technique with PSO and lastly, the conclusion is 
presented in Section VI. 

II. DISTRIBUTED SECONDARY CONTROL 

This section familiarises the conception of distributed 
control algorithm in the controller design for MG based on the 
proposed secondary frequency restoration scheme. The 
secondary control selects the accurate primary control reference 
for frequency synchronisation. In relation to the distributed 
control theory, the secondary control objectives are proposed 
and then a DSFC law is designed for the MG to restore the 
deviated frequencies to the reference values. In the distributed 
control environment [2], a consensus problem is considered as 
one of the most vital and difficult problems. From a general 
point of view, the MG acts as a multi-agent system where every 
DG works as an agent in the consensus control. Agents are able 
to exchange the required data/information with their neighbours 
by simple and less expensive communication network to 
achieve the consensus. In this section, some basics of graph 
theory and consensus based recommended DSFC are discussed. 

A. Preliminaries 

1) Graph Theory 

A directed graph (digraph) 𝐺 = (𝑁𝐺 , 𝐸𝐺)  with a set of 𝑁 
nodes,  𝑁𝐺 = {1,2,3,4 … … . 𝑁}, a set of edges  𝐸𝐺 ⊂ 𝑁𝐺 × 𝑁𝐺  

and an adjacency matrix 𝐴𝐺 = (𝑎𝑖𝑗 ≥ 0) ∈ 𝑅𝑁×𝑁 (where 𝑎𝑖𝑗 =

1  if there is a path from the 𝑖𝑡ℎ node to the 𝑗𝑡ℎ node and 
otherwise 𝑎𝑖𝑗 = 0) is considered here. An agent is represented 

by each node, and each edge (𝑖, 𝑗)  (pointing from 𝑗  to 𝑖 ) 
indicates that the information flows from 𝑗 to 𝑖 related with 𝑎𝑖𝑗 . 

The neighbors of node 𝑖  is represented as  𝑁𝑖 = {𝑗 ∈
 𝑁𝐺 : (𝑖, 𝑗) ∈ 𝐸𝐺}. According to this, an agent/node 𝑖  only has 
access to the data from its neighbors in 𝑁𝑖. If every agent (node) 
can be represented as a single-state system defined by 𝑥�̇� = 𝑢𝑖 

where 𝑢𝑖  is the input as a function of the 𝑖𝑡ℎ agent’s 
neighboring state  𝑥𝑗 , 𝑗 ∈ 𝑁𝑖 , the common form of consensus 

protocol is as below: 

𝑥�̇� = 𝑢𝑖 = − ∑ 𝑎𝑖𝑗(𝑥𝑖 − 𝑥𝑗)𝑗∈𝑁𝑖
  

B. Droop Based DG unit   

Generally in an MG system, every inverter interfaced DG 
comprises a primary constant dc power source, a voltage source 

inverter (VSI), an LCL filter (combining the LC filter with 
coupling inductor) and output connector as shown in Fig. 1. A 
test MG model of three DG units is considered here which are 
connected in parallel. Every DG is associated with the load and 
linked with neighboring DG through feeder lines. The power 
controller (Fig. 1) permits DG units to share the active and 
reactive power requirement according to their maximum ratings 
based on the droop gain, i.e., 

𝜔𝑖=𝜔𝑟𝑒𝑓-𝑚𝑝𝑖𝑃𝑖……………………………………….. (1) 

  vi=vref-nqiQi
…………………………………………. (2) 

where, Pi and Q
i
 are the measured active and reactive power at 

the output of ith   DG units, respectively; mpi  and nqi  are the 

droop coefficient for frequency and voltage control of ith  DG 

units, respectively; ωref  and vref  are the reference angular 

frequency and reference voltage, respectively.  

C. Formulation of Control Algorithm in a Distributed 
and Optimal way 

Distributed optimal control algorithm is untaken in this 
section as a resolution of economic dispatch (ED) problem 
which suggests a technique to minimise operation costs of the 
system. In general, if there are n DGs, an ED problem is well-
defined as follows: 

                                 Min  𝐹 = ∑ 𝐹𝐶𝑖(𝑃𝑖)𝑛
𝑖=1 ………….. (3) 

                                   s.t.  ∑ 𝑃𝑖 = 𝑃𝑙𝑜𝑎𝑑
𝑛
𝑖=1 ,  

where 𝑃𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖

𝑚𝑎𝑥; 𝑃𝑙𝑜𝑎𝑑  is the entire load demand  

satisfying ∑ 𝑃𝑖
𝑚𝑖𝑛𝑛

𝑖=1 < 𝑃𝑙𝑜𝑎𝑑 < ∑ 𝑃𝑖
𝑚𝑎𝑥𝑛

𝑖=1 ; 𝑃𝑖
𝑚𝑖𝑛  and 𝑃𝑖

𝑚𝑎𝑥 

are the minimum and maximum output of 𝑖𝑡ℎ DG, respectively. 
For traditional diesel generators, the cost function 𝐹𝐶𝑖(𝑃𝑖) is 

expressed as a convex quadratic function of the outputs of 
active power as, 

𝐹𝐶𝑖(𝑃𝑖) = 𝑞𝑖𝑃𝑖
2 +  𝑟𝑖𝑃𝑖 + 𝑠𝑖…………………………... (4) 

where 𝑞𝑖 ≥ 0, 𝑟𝑖 > 0 and 𝑠𝑖  > 0, and they are all the cost 
parameters of 𝐷𝐺𝑖 .  

The cost parameters used in the generation cost function 
𝐹𝐶𝑖(𝑃𝑖) ($/kW) of each DG unit are given in [9]. References [7-
9] suggest a droop-based control to offer the optimal active 
power sharing for DG units which is based on the equal 
increment cost principle (ECP) to minimise the total generation 
costs (𝐹𝐶𝑖(𝑃𝑖)) of the MG, as specified by 

𝜔𝑖 = 𝜔𝑟𝑒𝑓 − 𝑒𝜂𝑖(𝑃𝑖)………………………………….. (5) 

𝜂𝑖(𝑃𝑖) =
𝑑(𝐺𝐶𝑖(𝑃𝑖))

𝑑𝑃𝑖
= 2𝑞𝑖𝑃𝑖 + 𝑟𝑖…………….................. (6) 

In (5), 𝑒 is a scalar positive quantity. The frequency 𝜔𝑖 of 
all DG units must be same at the steady-state condition. 
Therefore,𝜂𝑖(𝑃𝑖)’s are also same for all the DG units, which 
fulfils the ECP of the ED. In this paper, to get the optimal active 
power, (5) instead of (1) for the active power sharing is used.  

 

 
Fig. 1. Simplified structure of an inverter-based DG (primary and DSFC)  

 



 

 

The secondary control is accomplished by selecting the  
frequency magnitude ωi  to the reference ωref  synchronously 

with all the agents performing as a group. Hence, the consensus 

based DSFC signal for the ith DG can be written as follows: 

𝑔𝑖 = −𝐶𝜔 ∫[∑ 𝑎𝑖𝑗(𝜔𝑖 − 𝜔𝑗) + 𝑏𝑖(𝜔𝑖 − 𝜔𝑟𝑒𝑓)𝑗∈𝑁𝑖
] −

𝐶𝑝 ∑ 𝑎𝑖𝑗(𝑒𝜂𝑖(𝑃𝑖) − 𝑒𝜂𝑗(𝑃𝑗))𝑗∈𝑁𝑖
………………………... (7) 

where 𝑔𝑖  is the secondary control signal both for frequency 
restoration and optimal active power sharing. It should be noted 

that, in (7), 𝑏𝑖=1 if the 𝑖𝑡ℎ  DG is directly connected with the 
controller at the point of common coupling and otherwise 𝑏𝑖 =
0. Adding the control signals in (5), we get the final inverter 
frequency shown below: 

𝜔𝑖 = 𝜔𝑟𝑒𝑓 − 𝑒𝜂𝑖(𝑃𝑖) + g
i
………………………….... (8) 

III. STATE SPACE MODELLING OF TEST MICROGRID 

The entire test MG model is considered for state-space 
modelling where inverter, network and load are modelled as 3 
main sub-groups as in [6]. 

A. Modelling of Single Inverter 

Rotational frequency of an inverter is determined by its 
local controller and every inverter has its own reference frame. 
In this paper, dynamics are considered for modelling an inverter 
comprises the power controller, output filter (combining LC 
filter and coupling inductor) and voltage and current controller 
(Fig.1). Small-signal modeling of inverters connected in 
parallel is done while the network and load dynamics are in 
consideration as well. Here, state equations of the lines and 
loads are represented on the common reference frame. All the 
inverters, lines and loads are transformed to this common 
reference frame via the park transformation [6]. Here, the axis 
set (D-Q) is the common reference frame rotating at a frequency 
𝑤𝑐𝑜𝑚, whereas the axis (𝑑 − 𝑞)𝑖 is the reference frame of the 

𝑖𝑡ℎ inverter rotating at 𝜔𝑖.  

Now, [𝑓𝐷𝑄𝑖] = [𝑇𝑖][𝑓𝑑𝑞𝑖] … … (9), [𝑇𝑖] = [
𝑐𝑜𝑠(𝛿𝑖) −𝑠𝑖𝑛(𝛿𝑖)

𝑠𝑖𝑛(𝛿𝑖) 𝑐𝑜𝑠(𝛿𝑖)
] … (10) 

where 𝛿𝑖 is the angle between the common reference frame and 

the reference frame of 𝑖𝑡ℎ  inverter. The detailed equations of 
modelling of all these sub-groups can be found in [6] 
considering the primary droop control. In the following 
sections, only 3-phase voltages and currents are considered as 
vector quantity in D-Q reference frame and other parameters are 
consider as scalar quantity. 

B. Modelling of Single Inverter considering DSFC 

According to [6], the resulting small-signal linearized state-
space model of an individual inverter unit in the common 
reference frame considering the primary control (droop control) 
only can be written as below (the detail specifications can be 
found in [7]): 

[∆𝑥𝑖
̇ ] = [𝐴𝑖][∆𝑥𝑖] + [𝐵𝑖][∆𝑣𝑏𝐷𝑄𝑖] + [𝐶𝑖][∆𝜔𝑐𝑜𝑚] 

[
∆𝜔𝑖

∆𝑖0𝐷𝑄𝑖
] = [

𝐷𝜔𝑖

𝐷𝑐𝑖
] [∆𝑥𝑖] 

here , ∆𝑥𝑖 = [∆𝛿𝑖 , ∆𝑃𝑖 , ∆𝑄𝑖 , ∆∅𝑑𝑞𝑖 , ∆𝛾𝑑𝑞𝑖 , ∆𝑖𝑙𝑑𝑞𝑖 , ∆𝑣0𝑑𝑞𝑖 , ∆𝑖0𝑑𝑞𝑖]
𝑇

; 

∅𝑑𝑞𝑖  and 𝛾𝑑𝑞𝑖  are the state variables related to voltage and 

current controller respectively; 𝑖𝑙𝑑𝑞𝑖  represents the state  

variables of filter current; 𝑣0𝑑𝑞𝑖  and 𝑖0𝑑𝑞𝑖  represent the state 

variables of inverter output voltage and current respectively. 

In accordance with this, the proposed DSFC can be added 
with primary control and forms the following small signal 
linearised state-space equation for an inverter considering 
control (from (1)-(8)) in the common reference frame: 

[∆𝑥𝑖
̇ ] = [𝐴𝑖][∆𝑥𝑖] + [𝐵𝑖][∆𝑣𝑏𝐷𝑄𝑖] + [𝐶𝑖𝑤][∆𝑤𝑐𝑜𝑚]+∑ [𝐹𝑖𝑗]𝑗∈𝑁𝑖

[∆𝑥𝑗]…. (11) 

[
∆𝜔𝑖

∆𝑖0𝐷𝑄𝑖
] = [

𝐷𝜔𝑖

𝐷𝑐𝑖
] [∆𝑥𝑖]…………………………………………….... (12) 

In (11), the state variables of each 𝐷𝐺 unit are considered 
as  ∆𝑥𝑖 = [∆𝛿𝑖 , ∆𝑃𝑖, ∆𝑄𝑖 , 𝛥𝑔𝑖 , ∆∅𝑑𝑞𝑖 , ∆𝛾𝑑𝑞𝑖 , ∆𝑖𝑙𝑑𝑞𝑖 , ∆𝑣0𝑑𝑞𝑖 , ∆𝑖0𝑑𝑞𝑖]𝑇. 

In (11) & (12), [𝐴𝑖], [𝐵𝑖], [𝐶𝑖𝑤], [𝐹𝑖𝑗], [𝐷𝜔𝑖] and [𝐷𝑐𝑖] are the 

parameter matrices. [𝐹𝑖𝑗] indicates the correlation between 𝐷𝐺𝑖 

and 𝐷𝐺𝑗 . [∆𝑣𝑏𝐷𝑄𝑖] denotes the deviation of bus voltages.[∆𝑖0𝐷𝑄𝑖] 

shows the deviations of inverter output currents. The equation 
for new states of secondary controller can be written as 

𝛥𝑔𝑖 =− 𝐶𝑤 ∫[∑ 𝑎𝑖𝑗(𝛥𝜔𝑖 − ∆𝜔𝑗)𝑗∈𝑁𝑖
+ 𝑏𝑖𝛥𝜔𝑖] − 𝐶𝑝[∑ 𝑎𝑖𝑗𝑒(2𝑞𝑖∆𝑃𝑖 −𝑗∈𝑁𝑖

2𝑞𝑗∆𝑃𝑗)])…………….......................................... ……………………….(13) 

C. Combined State-Space Model of all the Inverters 

Three DGs connected in parallel are considered in the 
proposed model. Now, by combining (9)-(13) for 3 inverters, 
the resulting small-signal model of all the inverter units is 
obtained, as shown below: 

[∆�̇�] = [𝐴][∆𝑥] + [𝐵][∆𝑣𝑏𝐷𝑄] … … … … ..………………………...... (14) 

[
∆𝜔

∆𝑖0𝐷𝑄
] = [

𝐷𝜔

𝐷𝑐
] [∆𝑥]………………………………………………... (15) 

To get the combined model for the system, the sub-model of 
all the individual DG inverters along with the network and 
individual load models need to be combined in the common 
reference frame. 

D. Network Modelling 

Small-signal linearized state space model of the network 
sub-module including two RL type lines can be given in the 
common reference frame [6] as shown below: 

[∆𝑖𝑙𝑐𝐷𝑄
̇ ] = [𝐴𝑛𝑐][∆𝑖𝑙𝑐𝐷𝑄] + [𝐵𝑛𝑐][∆𝑣𝑏𝐷𝑄] + [𝐶𝑛𝑐][∆𝜔𝑐𝑜𝑚]……….... (16)               

[∆𝑖𝑙𝑐𝐷𝑄] denotes the deviations of line current in the network. 

𝐴𝑛𝑐 = 𝑑𝑖𝑎𝑔(𝐴𝑛𝑐1, 𝐴𝑛𝑐2);   𝐵𝑛𝑐 = [
𝐵𝑛𝑐1 −𝐵𝑛𝑐1 0

0 𝐵𝑛𝑐2 −𝐵𝑛𝑐2
], 

𝐵𝑛𝑐𝑖 = 𝑑𝑖𝑎𝑔(𝐿𝑙𝑐𝑖
−1, 𝐿𝑙𝑐𝑖

−1); 𝐶𝑛𝑐=[𝐶𝑛𝑐1, 𝐶𝑛𝑐2]𝑇;  𝐶𝑛𝑐𝑖 = [𝐼𝑙𝑐𝑄𝑖 , −𝐼𝑙𝑐𝐷𝑖]𝑇; 

E. Load Modelling 

Small-signal linearized state-space model of the RL type 
load sub-module can be written [6] as in (17). ∆𝑖𝑙𝑜𝑎𝑑𝑐𝐷𝑄 denotes 

the deviations of load current.  

[∆𝑖𝑙𝑜𝑎𝑑𝑐𝐷𝑄
̇ ] = [𝐴𝑙𝑜][∆𝑖𝑙𝑜𝑎𝑑𝑐𝐷𝑄] + [𝐵𝑙𝑜𝑎𝑑𝑐][∆𝑣𝑏𝐷𝑄] + [𝐶𝑙𝑜𝑎𝑑𝑐][∆𝜔𝑐𝑜𝑚]. . (17) 

 𝐴𝑙𝑜𝑎𝑑𝑐 = 𝑑𝑖𝑎𝑔(𝐴𝑙𝑜𝑎𝑑𝑐1, 𝐴𝑙𝑜𝑎𝑑𝑐2); 
𝐵𝑙𝑜𝑎𝑑𝑐 = 𝑑𝑖𝑎𝑔(𝐵𝑙𝑜𝑎𝑑𝑐1, 𝐵𝑙𝑜𝑎𝑑𝑐2); 

 𝐶𝑙𝑜𝑎𝑑𝑐 = [𝐶𝑙𝑜𝑎𝑑𝑐1, 𝐶𝑙𝑜𝑎𝑑𝑐2]𝑇 , 𝐵𝑙𝑜𝑎𝑑𝑐𝑖 = 𝑑𝑖𝑎𝑔(𝐿𝑙𝑜𝑎𝑑𝑐𝑖
−1, 𝐿𝑙𝑜𝑎𝑑𝑐𝑖

−1) 

        𝐶𝑙𝑜𝑎𝑑𝑐𝑖 = [𝐼𝑙𝑜𝑎𝑑𝑐𝑄𝑖 , −𝐼𝑙𝑜𝑎𝑑𝑐𝐷𝑖]𝑇 

Denote the deviation of 𝑖𝑜𝑖 , of all the DG units as [∆𝑖𝑜𝐷𝑄]. 
Then the bus voltage, ∆𝑣𝑏𝐷𝑄 is represented by 

[∆𝑣𝑏𝐷𝑄] = 𝑅𝑁(𝑀𝐼[∆𝑖𝑜𝐷𝑄] + 𝑀𝑁[∆𝑖𝑙𝑐𝐷𝑄] + 𝑀𝐿[∆𝑖𝑙𝑜𝑎𝑑𝑐𝐷𝑄])……….... (18) 



 

 

The detailed specifications of (18) can be found in [7]. The 
complete MG state-space model and the resulting system 
matrix is achieved by utilising the individual sub-group models 
given by (14)-(18) as in (19). The assessment of complete 
system dynamics and stability performance considering the 
eigen-analysis of system matrix is given in the following 
sections. 

                        [
∆𝑥

∆𝑖𝑙𝑐𝑖

∆𝑖𝑙𝑜𝑎𝑑𝑐

̇

] = 𝐴𝑀𝐺 [
∆𝑥

∆𝑖𝑙𝑐𝑖

∆𝑖𝑙𝑜𝑎𝑑𝑐

]……………………….. (19) 

IV. STABILITY ANALYSIS 

A. Test Microgrid Model 

A test MG of three inverter-based DG units including the 
local loads as in Fig. 2, is considered here for analysis through 
several case studies. The microgrid presented here is a 311 V 

and 50 Hz system, operated in islanded mode and is simulated 
in MATLAB. The initial conditions around an operating point 
are found from the time-domain simulation of test MG model. 
DG1 and DG3 are connected to Load1 and Load2 respectively 
through the coupling inductance Lc (0.1 mh) as in Fig. 2. The 
load is chosen as a 3-phase series RL load and each feeder is 
designed as a series RL branch in every phase. Tables I, II and 
IV provide the specifications of the system, DG primary and 
secondary controller, respectively. 

A directed graph as in Fig. 2 (blue dashed line) is considered 
for the communication among DG units. For the frequency 
restoration problem, DG2 output is taken as the reference one. 
Fig. 2 also indicates that (i) all the DGs like can be considered 
as root nodes, and (ii) DG2 is the leader node which provides 
the reference value and the pinning gain b2=1. The results can 
be divided into two parts. One is eigenvalue analysis, and 

another is time domain simulation; the results from both are 
analysed with and without optimisation implementation.  

B. Eigenvalue Analysis 

This subsection presents the system dynamic behaviour and 
small-signal stability analysis along with the proposed DSFC. 
The eigenvalues of the system matrix 𝐴𝑀𝐺   can be used to 
assess the system stability around the equilibrium. According to 
the established small-signal model in the previous section, the 
resulting eigenvalues considering DSFC are shown in Fig. 3 for 
stable operation. The main emphasis for stability analysis is on 
the low-frequency modes as the eigenvalues of high and  
 

 

Fig. 2. MG test model for simulation and the communication diagraph. 

intermediate frequency modes have weak influence on the 
system stability [6]. The leading less damped modes are shown 
in Fig. 6(a) which indicates that the DSFC significantly 
participate for creating the shape of the eigenvalues on the 
complex plane which introduces a new pair of oscillatory 
modes making less damping responses as compared with the 
primary responses [10]. Therefore, the secondary control needs 
to be designed accurately for getting the stable system 
operation. 

1) Participation Factors: Δδi and ΔPi are major participants 
states when considering only primary droop control for the low-
frequency modes according to the participation factor analysis 
[6]. The details of participation factor analysis can be found in 
[7]. From Fig. 6(a), it is clear that modes 1-6 are affected by the 
proposed DSFC state ∆𝑔𝑖 along with Δδi and ΔPi. 

2) Eigenvalue Sensitivity to Secondary Control Parameters 
on System Stability: In this paper, the sensitivity analysis is 
done considering the secondary control parameters  𝐶𝜔, and 𝐶𝑝. 
The effects of the secondary control parameters  on the system 
stability are shown in Fig. 4. Figs. 4(a-b) show the traces of the 
system’s low-frequency modes (modes 1-6) as functions of  𝐶𝜔 
and 𝐶𝑝. Fig. 4(a) and Fig. 4(b) present variations in the damping 

of the oscillatory modes when 𝐶𝜔  and 𝐶𝑝 both vary from 0 to 

100 and 0 to 1000 respectively. These variations occurs in  
modes 1-6. Fig. 4(a) and Fig. 4(b) show that, (i) for a given 
value of 𝐶𝑝, the stability is increased when 𝐶𝜔  increases, and 

(ii) for a particular value of  𝐶𝜔, the oscillation increases when 
𝐶𝑝  increases. DSFC parametrs can be chosen based on the 

above analysis which gives a general idea about designing 
DSFC parametrs as well. 

 
  

Fig. 3. Eigenvalues of system matrix considering DSFC for stable operation 

TABLE I. INVERTERS PARAMETERS USED IN THE TEST MG 

Description Parameter Value Unit 

Parameters for Microgrid Modelling 

DC Bus Voltage 𝑉𝑑𝑐 700 V 

Nominal Voltage 𝑣𝑟𝑒𝑓 311 V 

Nominal Frequency 𝑓𝑟𝑒𝑓 50 Hz 

Filter Resistance 𝑅𝑓 0.1 Ω 

Filter Inductance 𝐿𝑓 1.35 mH 

Filter Capacitance 𝐶𝑓 50 µF 

Coupling Inductor 

Resistance 
𝑅𝑐 0.03 Ω 

Coupling Inductor 

Inductance 
𝐿𝐶 0.1 mH 

 Parameters for Voltage Control 

Proportional Voltage Gain 𝐾𝑃𝑣 0.05  

Integral Voltage Gain 𝐾𝐼𝑣 390  

Feed Forward Gain F 0.75  

 Parameters for Current Control 

Proportional Current Gain 𝐾𝑃𝑐 10.2  

Integral Current Gain 𝐾𝐼𝑐 16e3  

 

TABLE II. SPECIFICATIONS OF FEEDER LINE AND LOAD 

Line Data  Load Data 

No. R (Ω) L (µH)  No. R (Ω) L (mH) 

Line1 0.23 318  Load1 80 55 

Line2 0.30 312  Load2 70 22 



 

 

V. DSFC OPTIMISATION USING PSO 

The stability analysis given in Section IV shows that DSFC 
parameters can greatly affect the system stability. Therefore, the 
optimal values of DSFC parameters are needed. The main goal 
of the optimisation problem chosen here is to enhance the 
system stability by choosing the accurate position of 
eigenvalues. Eigenvalues are on the left side of imaginary axis 
make the system stable and stability increases with the distance 
from imaginary axis increases. Denote the eigenvalues as, 𝜆𝑖 =
𝑅𝑒𝑖 + 𝑗𝐼𝑚𝑔𝑖 , where 𝑅𝑒𝑖  and 𝐼𝑚𝑔𝑖  are the real and imaginary 
part of the eigenvalue, respectively. So the objective function is 
Min J=maximum of (𝑅𝑒𝑖 ) such that 𝐶𝜔, 𝐶𝑝 are within the limit 

(Table III). According to the general principle of PSO, each 
particle is a real valued vector with dimension equal to the 
number of parameters to be optimized. Each particle is one 
solution to the defined optimisation problem and the size of the 
population named as P particles will be there. Firstly a random 
solution is considered which is the position in the search space 
within the parameter limit. The position of each particle is 
updated based on its inertia, personal best and group best 
consistent with the equation stated below  
𝑉𝑖

𝑘+1 = 𝑤. 𝑉𝑖
𝑘 + 𝐶1. 𝑟1[𝑋𝑝𝑏𝑒𝑠𝑡

𝑘 − 𝑋𝑖
𝑘] + 𝐶2. 𝑟2[𝑋𝑔𝑏𝑒𝑠𝑡

𝑘 − 𝑋𝑖
𝑘] 

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑉𝑖
𝑘+1…………………………….................... (20) 

where, 𝑋𝑖
𝑘 and  𝑉𝑖

𝑘are the position and velocity of 𝑖𝑡ℎ particle 

in 𝑘𝑡ℎ iteration, respectively; 𝑤 is the coefficient of inertia; 𝐶1 

and 𝐶2 are the coefficients of acceleration; 𝑋𝑝𝑏𝑒𝑠𝑡
𝑘  and  𝑋𝑔𝑏𝑒𝑠𝑡

𝑘  

are the local and global best position of 𝑖𝑡ℎ  particle in 𝑘𝑡ℎ 
iteration. 

 
 (𝑎) 𝐶𝜔 increases from 0 to 100 

 
 (𝑏) 𝐶𝑝 increases from 0 to 1000 

Fig. 4. Traces of low frequency modes (a) & (b) Modes 1-6 
 

The optimum value is obtained by performing this updating 
method for velocity and position at the end of a few iterations. 
The parameters chosen for the optimisation problem discussed 
earlier, are given in Table III. 

TABLE III. PARAMETERS USED FOR PSO 

Parameter Values 

Maximum Iteration 100 

Swarm Size 70 

Coefficient of Inertia 1 

Damping Ratio of Inertia Coefficient 0.99 

  
Coefficient of Local Acceleration  2 

Coefficient of Global Acceleration  2 

Unknown Variables [𝐶𝜔, 𝐶𝑝] 

Lower Limit of Unknown Variables [0, 100] 

Upper Limit Unknown Variables [0,1000] 

 

By utilising the optimisation discussed above for the DSFC 
parameters[𝐶𝜔, 𝐶𝑝], the optimal values are obtained as [50.459, 

620.39] and the J=-30.06. The convergence curve of objective 
function is shown in Fig. 5. The differences of dominant 
eigenvalues before and after optimisation are given in Fig. 6(a) 
and Fig. 6(b). In Fig. 6(a), the real part of extreme right 
eigenvalue is at -5.001 and it is moved to -30.06 after the 
optimization as in Fig. 6(b). Therefore, stability can be 
enhanced by selecting the optimal values of control parameters 
𝐶𝜔 , 𝐶𝑝  for the proposed DSFC. The optimal values for the 

DSFC are summarised in Table IV. 

Fig. 5. Convergence curve of objective function 

TABLE IV. SECONDARY CONTROLLER PARAMETERS 

 
Controller Parameters 

Values 

Before 
Optimisation 

After 
Optimisation 

Frequency Gain 𝐶𝜔 50 50.459 

Active Power Gain 𝐶𝑃 200 620.39 

 

 
(a)  

 
(b) 

Fig. 6. Dominant eigenvalues (a) before and (b) after optimisation in S plane  

VI. TIME-DOMAIN SIMULATION AND DISCUSSION 

The performance of the proposed DSFC are validated by the 
time-domain simulation with two case studies performed in the 
Matlab/Simpower system platform.  

A. Case 1(DSFC without PSO optimisation): The 
performance of primary control (5) is shown in Figs. 7(a) and 
(b). Fig. 7(a) indicates due to the primary control, the 
frequencies of 3 DGs deviate to 49.88 Hz. Thus, the primary 
control exhibits a clear deviation of frequencies from the 
nominal value, 50 Hz, which must be restored to their rated 
values by applying the secondary control. Fig. 8(a) shows that 
the proposed DSFC can give the fast response for restoring the 
deviated frequencies to 50 Hz. Moreover, Fig. 7(b) indicates 
that the active power sharing is based on their capacities with 

the ratio P1:P2:P3 = 2:
3

2
:1 for the primary control only. Fig. 8 

(c) shows the incremental costs, 𝜂𝑖(𝑃𝑖), converge to the same 
value $4.56/kW. That is,  proposed DSFC imposes the reference 
optimal active power sharing according to the cost function to 
be P1 = 24kW, P2=29 kW and P3=21 kW as in Fig. 8(b). 



 

 

  
                             (a)                                                         (b) 

Fig. 7. Output of DGs under only primary control (Droop Control) (a) 

Frequencies (b) Active Powers  

 
(a) 

 
(b) 

(c) 

Fig. 8. Output of DGs with applying DSFC (a) Frequencies (b) Optimal values 
for active powers (c) Incremental cost values  

(a) 

 
(b) 

 
(c) 

Fig. 9. Output of DGs with DSFC after PSO optimization (a) Frequencies (b) 

Optimal values for active powers for 10s (c) Optimal values for Active 

Powers for 2.5s  

B. Case 2 (DSFC with PSO optimal values after reaching 

nominal values):  

To show the effectiveness of DSFC after PSO optimisation, 
the outcomes from the simulation are given in Fig. 9. The 
results indicate that optimal control parameters can reduce the 
overshoot of frequencies and active power outputs compared 
with Fig. 8 while maintaining the same optimal active power 
sharing. Moreover, the corresponding convergence is increased 
(less than 1s) in Fig. 9(a) compared with Fig. 8(a) 
(approximately 1.5s ), which indicates the corresponding 
settling time is decreased.  

VII. CONCLUSION 

This paper presents a DSFC based on the cost function 
optimization along with the detail stability analysis. The 
stability analysis based on eigenvalue analysis reveals that the 
system stability may be reduced by the DSFC which adds 
oscillatory modes. An appropriate optimsation method is 
needed to get the system operate in a more stable condition. In 
this paper, the PSO algorithm is utilised for designing the 
optimal control parameters for DSFC. The proposed DSFC can 
restore the system frequencies to their nominal values. The 
resulting system can converge to the optimal reference values 
for active power sharing which are given by the cost function 
and also maintain that values in the steady state condition. The 
outcomes from the eigenvalue study and time-domain 
simulation ensure that the system stability of the test MG model 
is improved after applying the proposed optimal control 
parameter design method. As there are inadequate approaches 
for solving the problems of frequency recovery with optimal 
active power sharing in a distributed way, this research presents 
a DSFC with optimal active power sharing along with stability 
analysis and optimisation for DSFC parameters. These analysis 
can be used for designing the DSFC for frequency recovery and 
active power control in a distributed and optimal way.  
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