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Human activity recognition (HAR) plays an irreplaceable role in various applications and has been a prosperous research
topic for years. Recent studies show significant progress in feature extraction (i.e., data representation) using deep learning
techniques. However, they face significant challenges in capturing multi-modal spatial-temporal patterns from the sensory
data, and they commonly overlook the variants between subjects. We propose a Discriminative Adversarial MUlti-view
Network (DAMUN) to address the above issues in sensor-based HAR. We first design a multi-view feature extractor to obtain
representations of sensory data streams from temporal, spatial, and spatio-temporal views using convolutional networks.
Then, we fuse the multi-view representations into a robust joint representation through a trainable Hadamard fusion module,
and finally employ a Siamese adversarial network architecture to decrease the variants between the representations of different
subjects. We have conducted extensive experiments under an iterative left-one-subject-out setting on three real-world datasets
and demonstrated both the effectiveness and robustness of our approach.
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1 INTRODUCTION
Human Activity Recognition (HAR) has been a long-standing problem in ubiquitous computing and human-
computer interaction. Among the related techniques, sensor-based HAR plays an irreplaceable role in many
scenarios such as elderly assisted living, sports monitoring, and surgical operation recording, given its easiness of
deployment and better privacy [25]. The main tasks of sensor-based HAR involve partitioning multi-variate data
streams from one or more sensors into segments and assigning an appropriate activity label to each segment [43].
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Previous studies in the area represent segments of raw sensory streams using hand-crafted features in statistical
(e.g., mean, variance) and frequency (e.g., power spectral density) domains [6, 35] and project feature vectors to
activity labels based on traditional machine learning models such as Support Vector Machine (SVM) and Random
Forest. This way, the performance of those methods highly depends on the effectiveness of the extracted features,
which are heuristic, task-independent, and not specially designed for HAR [49]. Since crafting HAR-specific
features is labor-intensive and requires significant domain knowledge [14], recent studies leverage the exceptional
data representation ability of deep learning methods to expedite feature extraction. Such studies [14, 39, 40, 47]
typically use deep neural networks, e.g., Convolution Neural Networks (CNN) [37], Long-Short Term Memory
(LSTM) [23], as the feature extractor to learn representations of the input sensory segments automatically; then,
they map the representations to corresponding labels using another neural network (usually a fully-connected
layer). The whole process is trained and tested in an end-to-end manner.

Although deep learning models can well capture spatial and temporal correlations, they face several challenges
when handling multi-modal sensor streams from diverse subjects (i.e., users). First, unlike image data, which
inherently have 2-D or 3-D structures, segments of multiple sensor streams have limited structural information.
Current studies either regard a segment as a 2-D matrix [14, 39, 40, 47] or consider each time-step as a 1-D
vector [18, 38, 49]. Such practices cannot maximally preserve the structural information in data and thus cannot
fully capture the multi-modal spatial-temporal correlations within sensory streams. Second, current studies
overlook the discrepancies between subjects in performing activities—they usually map the input data from
all subjects indiscriminately to high-level feature representations with neural network based representation
module directly. However, users usually perform the same class of activities differently due to their varied
personal characteristics, such as habits and physical strength, which makes the corresponding sensory data
highly disparate. This requires learning a stable discriminative representation that is robust to such an intra-class
variability. Third, current studies either apply subject-dependent settings (where the testing samples may appear
in the training set [13, 50]) or select only one target user as the test case. Such evaluation protocols are prone
to biased results and inconsistent with the real-world deployment scenarios, where the HAR algorithms will
encounter users that have varying personal traits with limited training data. To ensure wide applicability of
HAR methods, it is essential to check that they have high robustness and generalization ability to achieve sound
accuracy, irrespective of the subjects.

In this work, we propose a novel adversarial multi-view network to address the above challenges. The idea is
to design a more robust feature extractor and to reduce the gap between the representation spaces of different
subjects explicitly. We first organize data segments into various structures with specific meanings by looking at the
input segments from different views and then employ CNN [37] to extract distinct multi-modal spatial-temporal
representations under each view; finally, we empirically choose three most influential views and merge their
representations into a joint representation by giving them weights adaptively via a trainable Hadamard fusion
module. Besides, we design a Siamese adversarial architecture that integrates the generative adversarial training
process with activity classification to enforce a unified representation space among subjects. Furthermore, we
analyze the shortcomings of existing protocols for evaluating HAR models and propose an Iterative Left-One-
Subject-Out (ILOSO) protocol to reduce biases in evaluating the recognition performance of an HAR model. In a
nutshell, we make the following contributions in this paper:

• We propose a Discriminative Adversarial MUlti-view Network (DAMUN) for sensor-based HAR. The
network can learn more comprehensive spatial-temporal representations from raw sensory data and
meanwhile decrease the discrepancies between subjects.

• We represent multivariate sensory streams from multiple views and extract spatial-temporal correlations
from each view with a 2-D CNN module. The view-specific representations are then combined via a
trainable Hadamard fusion module to obtain a robust joint representation of data segments.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 0, No. 0, Article 1. Publication date: January 2020.



Adversarial Multi-view Networks for Activity Recognition • 1:3

• We design a Siamese adversarial network to minimize the discrepancies between the sensory data repre-
sentations of different subjects, and thereby ensure all subjects are presented in a consistent representation
space. By explicitly decreasing the subject divergence, it improves the generalization ability of HARmethods
to new users.

• We take the ILOSO strategy to evaluate both the robustness and generalization ability of HAR models. Our
extensive experiments on three datasets demonstrate the effectiveness of our approach. The experiments
also show the existence of some “hard-to-distinguish" subjects and “hard-to-distinguish" activities, which
impact the recognition performance significantly.

The rest of this paper is organized as follows. Section 2 introduce the related work. Section 3 formulates the
multi-modal sensor-based HAR problem. Section 4 gives the details of the proposed DAMUN. Section 5 reports
our experimental settings and evaluation results. Finally, we conclude the paper in Section 6.

2 RELATED WORK
In this section, we first briefly introduce the general background of human activity recognition and then elaborate
on deep learning methods for sensor-based HAR.

2.1 Human Activity Recognition
In general, human activity recognition is divided into two lines of research. One is vision-based HAR and another
is sensor-based HAR. Vision-based solutions have been extensively studied in the past decades. For instance,
Khurana et.al [31] present a vision-based system to track exercise of multiple users in the gym environment
with a single camera. To detect movements, they extract optical flow trajectories from the video and then
convert the trajectories to 27 features for exercise classification. Ahuja et.al [1] develop a comprehensive sensing
system that detects the actions and interactions between instructors and students based on visual and audio
signals. Considering the complexity associated with labeling the sensory data, Radu and Henne [44] propose to
annotate the sensor data with video and computer vision classifiers automatically. They transfer the knowledge
between computer vision and mobile sensing data by updating the sensor-based activity recognition model
with vision generated labels. Current human activity recognition schemes are severely limited by the variability
and complexity of the activities, Heilbron et.al [9] introduce a large scale video benchmark for human activity
understanding that contains 203 simple and complex activities to ease the problem. Ke et.al [30] provide a survey
about the vision based human activity recognition.
Sensor-based human activity recognition also has a long-standing history in the ubiquitous and wearable

research community [18]. Compared with vision-based, sensor-based approaches own some unique merits in
terms of pervasiveness, low computational complexity and better privacy preserving [15]. In the meanwhile,
it makes a good complement to vision-based solutions. Most early studies in the area aim to recognize human
activities from solely accelerometer signals [6, 19, 34]. These methods generally have unreliable performance
because the single modal information cannot characterize the variability and diversity between different activities.
Recent studies move their attention to recognize human activity with more signals sources, especially, gyroscopes
and magnetometer. Extracting and fusing the useful multi-modal information are twos essential steps. These
efforts can be divided into early fusion and late fusion, depending on when the fusion is conducted. Early
fusion methods combine the raw data from different sources together and process them as an integral entity
[28, 39, 40, 43, 47]. On the contrary, late fusion methods extract information from each modality separately at
first and then merge the information with an additional ensemble layer [19, 38, 48]. On the other hand, according
to how the information is extracted, the previous work can be divided into feature-based methods and deep
learning-based methods. Feature-based methods focus on designing hand-crafted features to capture the data
distribution of each activity. Besides the most frequently used time-domain features (e.g., mean, variance, and
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skewness) and frequency domain features (e.g., power spectral density) [27], a few methods endeavor to design
new features containing temporal and structural information. For example, Hammerla et al. [21] propose the
Empirical Cumulative Density Function (ECDF) feature to preserve the spatial information of the signal frames.
Kwon et al. [35] enhance this work by adding temporal structures to ECDF and get improved results. Different
from feature-based methods, deep learning-based methods target on designing neural networks to get the robust
representation of sensory data automatically.

2.2 Deep Learning Methods for Sensor-based HAR
2.2.1 Temporal Correlations in HAR. Most deep learning-based HAR methods focus on capturing the temporal
correlations. Yang et al. [47] tackle the problem with convolutional neural networks, in which the convolution and
pooling filters are designed along the temporal dimensions to process the readings of all sensors. Their work can
capture long-term temporal correlation by stacking multiple CNN layer. Ordóñez et al. [40] further extend this
model to DeepConvLSTM by integrating LSTM [23] to CNN. The proposed DeepConvLSTM framework contains
four CNN layers and two LSTM layers to capture the short-term and long-term temporal correlations, separately.
Based on this framework, Peng et al. [42] propose to divide human activities into simple activities and complex
activities, which are closely linked. Several consecutive simple activities form one complex activity and share
the LSTM network in the DeepConvLSTM model. The model recognizes simple activities and complex activities
at the same time and is optimized under the multi-task learning paradigm. Instead of designing new models,
Hammerla et al. [20] explore the performance of basic temporal convolution network, LSTM, and Bi-directional
LSTM in capturing the temporal correlation. However, the best results vary from dataset to dataset. To advance
SOTA in HAR, Guan and Plötz [18] use the ensemble method and combine multiple LSTM networks into a
powerful model. They employ the Epoch-wise Bagging scheme in the training procedure and select the LSTM in
different training epochs as basic learners. In the testing phase, the outputs of these selected LSTM learners are
fused together through score level fusion and obtain improved performance.

The above models have one drawback in that they assume the signals in all time steps are relevant contribute
equally to the target activity, which may not always stand as the sensory data may contain activity inconsequential
components [49]. Based on this observation, Murahari and Plötz [39] extend the DeepConvLSTM [40] by adding
the temporal attention module after the LSTM layer. The attention mechanism [46] aligns the output vector at
the last time step with other vectors at earlier steps to learn a relative importance score for each previous time
step. The final representation of the segment is the sum of re-weighted representations at each time step. In
this way, the model can be trained to focus on more important parts to learn a more accurate representation.
Similarly, Zeng et al. [49] use the LSTM to extract temporal correlations and apply the attention mechanism on
the last LSTM layer to highlight the important part of time-series signals. Considering that time-series signals
are continuous, they claim that nearby signals should have consecutive significance scores and add a continuity
regularization to the attention scores.

2.2.2 Spatial-Temporal Correlations in HAR. Besides temporal correlations, there is also spatial correlations
among sensors. Some recent studies have started to capture both spatial and temporal correlations for HAR. Jiang
et al. [28] first propose to treat the sensory streams segment as an image and process it by multiple CNN layers
with 2D kernels for capturing the spatial and temporal correlations. Chen et al. [12] propose the RAAF model
to capture the spatial and temporal correlations by cascade CNN and LSTM network. In the RAAF, data from
different sensors are combined and organized to activity frame through complex permuting operation to ensure
each pair of sensors are adjacent. Then, CNN networks are applied to the frame for extracting spatial correlation
followed by a glimpse network and LSTM network to capture the temporal correlation.

Our work differs from the previous work by comprehensively capturing spatial, temporal, and spatial-temporal
correlations. Instead of solely representing the raw data as a 1D vector or 2D frame, we fuse and organize the
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Fig. 1. Discriminative Adversarial Multi-view Network.

multi-modal data into a 2D matrix and 3D matrix from multiple views, followed by employing CNN networks
with different kernels to capture spatial-temporal correlations. The learned representations contain both spatial
correlations, temporal correlations, and spatial-temporal correlations, respectively. We further design a trainable
Hadamard fusion module to merge the representations from different views considering their importance. Besides
the robust multi-view data representation module, we further consider and explicitly model the divergence
between different subjects’ representation space, which is not included in the previous work. The details will be
elaborated in the following.

3 PROBLEM DEFINITION
Recognizing human activity with multi-modal data involves multiple devices, e.g., smartphone, inertial mea-
surement unit (IMU) attached to different parts of the human body. Each device carries multiples sensors, e.g.,
an IMU normally contains 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer. To simplify the
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(a) STS (b) SST (c) MST (d) SCT (e) TCS

Fig. 2. Different views of data streams, which reflect different types of correlations. STS, SST, MST, SCT, TCS denote Single-
Time-Spatial correlation, Single-Sensor-Temporal correlation, Multiple-Sensor-Temporal correlation, Sensor-as-Channel-
Temporal correlation, and Time-as-Channel-Spatial correlation, respectively.

description, we refer to a 3-axis device as three sensors in this paper. For instance, the 3-axis accelerometer
contains x-accelerometer, y-accelerometer, and z-accelerometer. Thus, a typical inertial measurement unit con-
tains nine sensors. LetM be the total number of sensors embedded in multiple devices and si,t be the reading
of sensor i (1 ≤ i ≤ M) at time point t , then the readings of sensor i along the time axis is a time series:
si, : = [si,1, si,2, si,3..., si,t , ...]. Similarly, the readings at time point t of all sensors along the spatial axis is a vector:
s1:M,t = [s1,t , ..., si,t , ..., sM,t ]. The readings of all sensors along time axis form a multi-variate time series.

Following the standard HAR procedure [8], we divide the multi-variate sensory streams into segments
with a fixed-size sliding window. Suppose the window size is T, a segment can be both represented as Seд =
[s1,1:T , s2,1:T , ..., sM,1:T ] and Seд = [s1:M,1, s1:M,2, ..., s1:M,T ]. Let there be N potential activities to be recognized,
C = {c1, c2, ..., cN }, the purpose of HAR is to learn a function, F(Seд, •), to infer the correct activity label for the
given segment Seд, where • represents all the parameters to be learned during the training process.

4 METHODOLOGY
Our proposed Discriminative Adversarial MUlti-view Network (DAMUN) (Fig. 1) includes three components: (i)
a robust multi-view representation module (MVRM), which learns comprehensive multi-modal representations
of the input segments from different views; (ii) a classifier, which classifies the input representation and outputs
the related activity label; and (iii) a Siamese adversarial framework, which decreases the divergence between
subjects and enforces a consistent representation space over all subjects. The Siamese adversarial framework
reuses MVRM as the generator and further introduces a discriminator. At the training stage, we train MVRM,
the classifier, and the discriminator simultaneously, following the Siamese adversarial training process to obtain
robust sensor segment representations module for accurate classification. At the testing stage, we directly use
MVRM and the classifier for activity classification Fig. 1.II) without the discriminator.

In the following, we will elaborate on MVRM (Section 4.1), the Siamese Adversarial Framework (Section 4.2),
and the adversarial training and optimization process (Section 4.3). We omit details about the classifier as it
simply consists of two fully-connected layers.

4.1 Robust Multi-view Representation
We first design a multi-view representation module (a.k.a., feature extractor) for learning robust multi-modal
representations from multiple views of data streams. As introduced in Section 3, the input data to the human
activity recognition model contains multiple time series. Different from the image data, which inherently have
fixed structural information, the segment only contains limited structural information (time series). The limited
structural information character provides researchers the feasibility to organize the segment into different
structures to extract corresponding correlations with different neural networks. In the literature, Multi-Layer
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Perception (MLP), RNN (e.g., LSTM, GRU) and CNN are the three most widely used basic neural networks,
based on which more complicated methods are developed. MLP formulates the general interactions within the
input and do not specially focus on spatial or temporal correlations [49]. RNN processes the input of each time
step sequentially and are good at capturing the temporal correlation in the time-series data with “Memory”
mechanism [42]. At the same time, CNN can capture diverse spatial, temporal, or spatial-temporal correlations
according to the data manipulated by different kernels. For example, CNN networks with 2-D kernels in the
computer vision [41] and urban computing [4] area are considered to extract spatial correlations between different
pixels/regions. On the other hand, CNN networks with 2-D kernels in the multi-variate time-series domain are
considered to extract correlations between different series and different time points (spatial-temporal correlations)
[36]. Based on these observations, we propose to organize the input segment into different 2-D or 3-D matrix
and apply CNN networks with different kernels to extract distinct spatial-temporal correlations without losing
valuable information. Each pair of segment organization and kernel shape can capture correlations from one
view. Specially, we consider extracting correlations from the following five views (shown in Fig. 2, where M
denotes the number of sensors, and T denotes the size of the sliding window):

• STS View: This view represents a segment Seд by a 2D matrix (M ×T ) and applies 1D CNN kernels along
the sensors axis. As the kernels operate on the readings of different sensors at the same time point, it can
capture the spatial pattern among sensors shared by each time point.

• SST View: This view also represents a segment Seд as a 2D matrix but instead, applies 1D CNN kernels
along the time axis. The kernels operate on readings of the same sensor at different time points and thus
can model the common individual temporal correlation of one sensor shared by all sensors.

• MST View: This view applies 2D CNN kernels along both sensor and time axes to capture the spatial and
temporal correlations simultaneously.

• SCT View: This view represents a segment by a 3D matrix (1 ×T ×M) and conducts 2D CNN operations. It
focuses on extracting the temporal correlations collectively for all sensors by treating all sensors’ readings
at one time-point as a unit (channel).

• TCS View: This view represents a segment by a 3D matrix (1 ×M ×T ) and conducts 2D CNN operations. It
focuses on extracting the spatial correlations between different sensors’ data streams collectively.

We denote the CNN networks implemented based on the above five views as STSCNN, SSTCNN, MSTCNN,
SCTCNN, and TCSCNN, respectively.

4.1.1 CNN Network Architecture. Besides the kernel shapes, these CNN networks used in each view follows the
same architecture. As shown in Fig. 3, each network contains three consecutive CNN blocks, which is comprised
of a convolutional layer with rectified linear units (ReLu) activation function, a max_pooling layer and a batch
normalization layer. The convolutional layer performs the main function of pattern extraction, which employs
several kernels of the same shape to filter the input dataX and extract meaningful patterns. Formally, we formulate
a convolution layer with the ReLu activation function as follows:

X l+1
j = σ (

i=F l∑
i=1

Wi, j ∗ X l
i + b

l
j ) (1)

where X l
i is the ith channel of the input for the lth convolutional layer, F l is the feature map (channel) numbers,

Wi, j is the jth kernel, blj is the bias and σ (·) is the ReLu function defined as: σ (X l+1) =max(0,X l+1). Then, the
max pooling layer is employed as the sampling method to down-sampling the extracted representations while
keeping the most prominent patterns.
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Fig. 3. Multi-View data Representation Module (MVRM)

We further integrate the batch normalization layer [26] to the CNN blocks to achieve faster and more stable
training. The batch normalization layer normalizes the layer input with batch mean and batch variance to force
the input of every layer to have similar distributions [26]:

X = γ
X − µ
√
ϑ 2 + ϵ

+ β (2)

where µ and ϑ are the mean and variance of a batch of input for the layer, respectively, γ and β are the trainable
parameters in the batch normalization layer.

4.1.2 Trainable Hadamard Fusion Module. We empirically prove that the SST view, MST view, and TCS view
can lead to better classification accuracy than the STS view and SCT view (as shown in Section 5.3). Based on
the observation, we develop our Multi-View Representation Module (MVRM) to obtain a robust representation
of the input segments. As shown in Fig. 3, MVRM consists of three of the above CNN networks: SSTCNN,
TCSCNN, and MTSCNN, which process the input segment separately and each generates a sub-representation.
We merge the sub-representations of different views using a trainable Hadamard Fusion Module to ensure the
final representation contains the most robust and discriminative features in the signals:

R = α1 ∗ SR1 + α2 ∗ SR2 + α3 ∗ SR3 (3)

where SR1, SR2, and SR3 are three sub-representations generate from the three views shown in Fig. 3; α1, α2, and α3
are trainable importance scores for the three views, respectively. The learned representation R not only contains
different types of spatial and temporal correlations but also takes into account the importance of correlations.
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4.2 Siamese Adversarial Framework
We then design a novel Siamese adversarial framework forcing MVRM to learn a consistent representation space
for all subjects. The framework aims to overcome the varied characteristics of people in performing activities.
People tend to perform activities in different ways due to their different characteristics, such as gender, height,
weight, and strength. One example is that men usually perform activities at a larger magnitude than women.
However, existing learning techniques assume identical distributions of the training and testing data, which
does not hold for new users’ activities. Neglect of such distribution shifts could degrade a model’s generalization
ability.
Specifically, we deploy two representation modules with the same parameters in the Siamese architecture,

considering the sensory data of two arbitrary subjects (illustrated in Fig. 1), we denote by Ri and R j the learned
representations of the two input subjects. We train a Generative Adversarial Network (GAN) [17] to enforce the
identical distribution of Ri and R j . The generative adversarial training process takes the representation modules
as generators and further introduces a discriminator in the latent space: the discriminator conducts binary
classification to distinguish between Ri and R j , while the generator tries to fool the discriminator. Specifically, we
employ the Wasserstein GAN (WGAN) [3] rather than the original GAN—WGAN uses the Earth-Mover distance
(Wasserstein-1), instead of Jensen-Shannon divergence (used by GAN), to measure the divergence between Ri
and R j , and thus achieves better training stability.
Let дθ (·) be the representation module with parameter θ , Ui and Uj be the original sensory data space of

subjecti and subjectj . Then the representation spaces of subjecti and subjectj arePθ (Ui ) andPθ (Uj), respectively.
The Earth-Mover Distance between Pθ (Ui ) and Pθ (Uj) can be formulated by [3]:

W (Pθ (Ui ),Pθ (Uj)) = sup
| |d (·) | |L≤1

Er∼Pθ (Ui )[d(r )] − Er∼Pθ (Uj )[d(r )] (4)

where | | · | |L is the Lipschitz constant, and the supremum operation is over all the 1-Lipschitz functions | |d(·)| |. If
replacing | |d(·)| |L≤1 with | |d(·)| |L≤K (consider K-Lipschitz function) and have a family of functions {dw (·)}w ∈W
parameterized byw that are all K-Lipschitz for some K [3], we can get:

W (Pθ (Ui ),Pθ (Uj)) ∝ max
w ∈W

Ex∼Ui [dw (дθ (x))] − Ez∼Uj [dw (дθ (z))] (5)

where x and z and sensory data segments sampled fromUi andUj separately. The generator should minimize
the distance between Pθ (Ui ) and Pθ (Uj) to make the representation of subjecti and subjectj in the same space.
To this end, we define the loss function for the generator as follows:

Lд(θ ;x , z) = Ex∼Ui [dw (дθ (x))] − Ez∼Uj [dw (дθ (x))] (6)

Likewise, we define the loss function of the discriminator:

Ld (w ;x , z) = −Ex∼Ui [dw (дθ (x))] + Ez∼Uj [dw (дθ (x))] (7)

4.3 Training and Optimization
To ensure the learned consistent representation space can lead to accurate activity classification, we jointly
minimize the classification error and conduct adversarial training. In each iteration, we sample and feed arbitrary
two subjects’ sensory data to MVRM (shown in Fig. 1), and then train a classifier, which takes both representations,
R1 and R2, as the input. We optimize the classification error by minimizing the cross-entropy loss:

Lc (θ ,ϕ;x ,y) = −Ex∼Si∪Sj [y ∗ loд(fϕ (дθ (x)))] (8)

where y is the activity label for x ∈ (Si ∪ Sj). We then update the discriminator and generator by minimizing
Ld (w ;x ,y) and Lд(θ ;x ,y). Through repeatly approximating the representation spaces of arbitrary two subjects,
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Algorithm 1 Training and Optimization
Require: the training set L = {(X ,Y ,u)} (u is the subjects set in training), batch size B, maximum training

iteration Iter , and the number of classifier training iteration iterc .
1: {θ ,ϕ,w} = RandomInitialize()
2: for iter = 0; iter < Iter do
3: Random choose two subjects u1 and u2 from u
4: for n = 0;n < iterc do
5: Sample a batch {xi }Bi+1 fromU1 ∪U2
6: Compute Lc (θ ,ϕ;x ,y) with Equation 8
7: Backpropagate loss and update θ , ϕ
8: end for
9: Sample a batch {xi }Bi+1 fromU1
10: Sample another batch {zi }Bi+1 fromU2
11: Compute Ld (w ;x , z) with Equation 7
12: Backpropagate loss and updatew
13: Sample a batch {xi }Bi+1 fromU1
14: Sample another batch {zi }Bi+1 fromU2
15: Compute Lд(θ ;x , z) with Equation 6
16: Backpropagate loss and update θ
17: end for

MVRM obtains the ability to map all subject’s data to a consistent space. Since the objective of our work is to
classify activities, we emphasize the task by repeating updating Lc for iterc times in each iteration to force the
model reduce the classification loss and thus obtain higher training accuracy. Algorithm 1 describes the detailed
training procedure.

5 EXPERIMENTS
This section reports our experiments on three sensor-based human activity datasets. We first discuss the evaluation
protocols used in previous work and introduce our updated protocol for achieving a thorough evaluation. Then
the experimental datasets and settings are elaborated. Finally, we evaluate the performance of our proposed
method in comparison with state-of-the-art and via ablation studies.

5.1 Evaluation Protocol
The evaluation protocol is critical for creating discriminative human activity recognition methods with better
generalization ability. Inappropriate or impractical evaluation protocols may lead to biases or misunderstanding
conclusions. Considering whether new users are exploited for testing, previous evaluation protocols can be
divided into subject-dependent and subject-independent ones. The subject-dependent protocols depend on
subjects because they randomly divide the data of all subjects into a training and testing sets. Thus, the training
set and testing set contain data from the same subject set. While 10-fold cross-validation can be utilized under
such settings to evaluate the models multiple times independently, the subject-dependent setting does not
conform to the real deployment, where the HAR models normally serve new users. The work [10, 34, 50] utilizes
subject-dependent protocols and can easily achieve high recognition accuracy because of the information leakage
problem (samples in the training set and testing set may come from neighboring windows and contain extremely
similar information).
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Most recent studies [19, 35, 38–40, 43, 49] deploy subject-independent settings in the evaluation to avoid the
information leakage problem and evaluate the models’ generalization ability on new subjects. These studies
use the leave-one-subject-out evaluation protocol, which selects one subject’s data as the testing set and all
the other subjects’ data as the training set. Under the LOSO setting, the data in the testing set and training
set belong to different subjects, which makes it more difficult to achieve high recognition accuracy due to the
inconsistency between the training and testing sets. While the LOSO evaluation protocol can check both the
model’s performance in capturing spatial-temporal correlations for recognition and generalization ability for
new users, current works don’t evaluate the models completely. Specially, current works employ an impaired
LOSO setting which only test the model in one selected subject (for example, [38, 39, 43, 49] use subject six for
testing in the PAMAP2 dataset [45]). This impaired setting is biased because a model’s performance may vary
significantly from one subject to another subject [29].
Considering the shortcomings in previous evaluations, we propose to assess the model iteratively with the

LOSO protocol on each subject separately. We name the upgraded evaluation protocol by Iterative-LOSO (ILOSO).
In each iteration, we train the model from scratch and test the model with one subject’s data. Finally, we will
get subject_number results for each model. We believe ILOSO is more suitable for analyzing and comparing the
performance of HAR models because the averaged results of all subjects are less biased but more comprehensive
than the sole result of one selected subject.

5.2 Dataset Description
While several datasets are publicly available for HAR, many of them only contain a few subjects (e.g. the Ubicomp
08 dataset [24] only has one subject) or human activities (e.g. the UCI dataset [2] only contains six activities). To
demonstrate the superior ability of our method in classifying activities and dealing with subject divergence, we
select three datasets with relatively more activities and subjects:

• MHEALTH Dataset1 This dataset [5] contains body motion and vital signs recordings for ten volunteers of
diverse profiles. Each subject performed 12 activities in an out-of-lab environment with no constraints.
Three inertial measurement units (IMUs) were placed on the subject’s chest, right wrist, and left ankle to
measure a 3-axis acceleration (m/s2), a 3-axis gyroscope (deд/s), and a 3-axis magnetic field (local) of the
motion, respectively. Besides, the IMU positioned on the chest also provided 2-lead ECG measurements
(mV ). All sensing modalities were recorded at a frequency of 50Hz.

• PAMAP2 Dataset2 The original PAMAP2 dataset [45] was designed to benchmark daily physical activities.
It contains data collected from nine subjects related to 18 daily activities such as vacuum cleaning, ironing,
and rope jumping. Similar to the MHEALTH dataset, the data was collected with three IMUs placed on the
subject’s chest, dominant wrist, and dominant ankle, respectively, under the sampling frequency of 100Hz.

• UCIDSADS Dataset3 The UCIDSADS Dataset [7] was specially devised for daily and sports activities. It
comprises the motion sensor data of 19 daily and sports activities such as walking on a treadmill, exercising
on a stepper, and rowing. Each activity was performed by eight subjects for five minutes in their own style
without constraints. Five units on the torso and the four limbs are calibrated to acquire data at the sampling
frequency of 25Hz. Each unit contains nine sensors: 3-axis accelerometers, 3-axis gyroscopes, and 3-axis
magnetometers.

Table 1 provides some statistics of these three datasets. For the MHEALTH and UCIDSADS datasets, we use all
subjects’ data in our experiments. For the PAMAP2 dataset, we remove six activities (watching TV, computer
work, car driving, folding laundry, house cleaning, and playing soccer) because they are executed by only one

1http://archive.ics.uci.edu/ml/datasets/mhealth+dataset
2https://archive.ics.uci.edu/ml/datasets/pamap2+physical+activity+monitoring
3https://archive.ics.uci.edu/ml/datasets/daily+and+sports+activities
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Table 1. Statistics of datasets (# denotes the "number").

Dataset Subject# Activity# Frequency Window size Devices# Sensors# Sample#
MHEALTH 10 12 50 Hz 20 3 23 34 097
PAMAP2 8 12 100 Hz 20 3 36 191 309
UCIDSADS 8 19 25 Hz 20 5 45 113 848

(a) mhealth (b) pamap2 (c) ucidsads

Fig. 4. Activity distribution of the three datasets (best viewed in color)

subject; therefore, 12 activities from eight subjects are retained for our experiments. We divide the raw sensory
data streams into small segments with fixed-sized sliding windows and an overlap of 50% for all the three
dataset. Instead of using a large window size (5 seconds) for PAMAP2 (as in [18, 20]), we set each window to
contain 20 time points for the three datasets, resulting in window lengths of 0.4 second, 0.2 second, and 0.8
second for MHEALTH, PAMAP2, and UCIDSADS, respectively. A smaller window size implies collecting and
processing less data during each recognition, which helps reduces the latency of the recognition system and
higher-level applications. Our experimental results will show that the window size is sufficient for achieving
competitive performance. Fig. 4 shows that the class distributions of the MHEALTH and PAMAP2 datasets are
both imbalanced—the minority class “Jump front & back" has a much lower count than other classes in the
MHEALTH dataset; and the ratio of “walking" and “ironing" outnumber “rope jumping" significantly in the
PAMAP2 dataset.

5.3 Experimental Settings
We normalize the datasets using standard normalization method after dividing the streams into segments.
The normalized segments are fed into the network directly without sophisticated operations like hand-crafted
feature extraction or Fourier transformation [38]. We initialize the network parameters with Xavier Normal
initialization [16] and optimize them by Adam optimizer [32] at a learning rate of 0.0001 for all the three datasets.
We set the Batch_size to 320 to reduce the training time and the length of learned representations to 128 for
each segment. We implement the model based on Pytorch running on an NVIDIA TITAN X Pascal GPU. We use
weighted Accuracy (Acc), Precision (Pre), and F-measure (Fw ) as the performance metrics for the evaluation and
report the mean result, worst result, and best result of all subjects asmean[worst ,best], which can reflect both
the overall performance and the generalization ability of HAR models. While the widely used weight metrics can
better reflect the overall performance, they may not be effective enough on highly imbalanced datasets such as
PAMAP2 dataset (shown in Fig. 4). In this regard, we additionally report the classification confusion matrix to
investigate the performance of each class and thus gain deeper insights into the model (Section 5.8).
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Table 2. Evaluation on different views

MHEALTH

View STS SST MST SCT
Acc 93.67 [84.72, 98.34] 94.01 [87.17, 99.35] 95.45 [90.40, 99.24] 92.89 [82.08, 98.94]
View TCS SST+MST+TCS SST+MST+TCS+SCT ALL
Acc 94.20 [87.14, 98.87] 96.07 [92.29, 99.50] 95.73 [88.53, 99.67] 96.59 [92.29, 99.73]

PAMAP2

View STS SST MST SCT
Acc 72.30 [47.87, 87.61] 81.76 [58.70, 94.14] 77.58 [52.77, 92.83] 74.17 [40.16, 91.70]
View TCS SST+MST+TCS SST+MST+TCS+SCT ALL
Acc 75.77 [52.09, 92.77] 83.21 [62.64, 93.96] 81.79 [58.10, 94.23] 80.32 [53.11, 93.57]

UCIDSADS

View STS SST MST SCT
Acc 85.03 [81.63, 90.66] 90.68 [85.97, 94.82] 88.07 [84.34, 94.53] 85.49 [77.98, 89.29]
View TCS SST+MST+TCS SST+MST+TCS+SCT ALL
Acc 85.60 [78.09, 89.63] 92.14 [87.40, 96.21] 90.44 [84.31, 95.27] 88.61 [75.01, 94.22]

5.4 Evaluation on Different Views
We first conduct an experiment to explore the performance of each view and some of their combinations with
the Siamese adversarial training process. The results (Table 2) show the SST view consistently achieves a high
classification accuracy on all the three datasets, showing the importance of the single-sensor temporal correlation
for human activity recognition. This is reasonable as each sensor’s data is a time-series. However, the performance
of the SCT view is poor, which means the collectively temporal correlation is fragile when regrading all sensors
as a unit. On the other hand, the performance of the STS view is among the worst, showing the weakness of
the spatial correlations among different sensors at each time point. However, the MST and TCS view performs
moderately, inditing the existence of spatial correlations among different sensors. The results of the three views
(SCT view, MST view, and TCS view) also imply that a better way to organize all the sensors together (e.g., graph
structure) is necessary for extracting the spatial correlation and collectively temporal correlation.

Based on these observations, we form MVRM by the SST view, MST view, and TCS view and find that MVRM
outperforms single-view models by a large margin on all three datasets. Besides, due to the weakness of the STC
view and the STS view, adding them to MVRM additionally will decrease the performance.

5.5 Comparison with State-of-the-art
To verify the overall performance of the proposed DAMUN model, we compare our model with the following
baseline and state-of-the-arts:

• SVM [22]: the traditional support vector machine (SVM) with the radial basis function (RBF) kernel.
• MC-CNN [47]: a state-of-the-art CNN-based model formed of 3 convolutional layers with kernels along
the time axis to capture temporal correlations.

• b-LSTM-S [20]: a bi-directional LSTM variant to capture both forward and backward information.
• DeepConvLSTM [40]: a hybrid model with four convolutional layers and 2 LSTM layers to capture both
the spatial and temporal correlations.

• Ensemble-LSTM [18]: an LSTM-based method that combines multiple individual LSTM learners with
epoch-wise bagging.

• AttConvLSTM [39]: an SOTA hybrid model integrating an attention-based output module to DeepConvL-
STM for capturing temporal dynamics.
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Table 3. Performance of compared methods. Each cell consists of the mean score of a method in one evaluation metric,
followed by the corresponding minimum and maximum scores in brackets. The best performance values are in bold.

MHEALTH

SVM MC-CNN Bi-LSTM-S DeepConvLSTM
Acc 78.49 [60.93, 93.45] 92.72 [87.96, 97.97] 89.94 [83.39, 96.28] 91.34 [86.83, 99.21]
Pre 79.53 [65.29, 94.47] 93.51 [84.11, 98.18] 87.16 [76.51, 95.41] 89.37 [81.48, 99.21]
Fw 76.73 [59.33, 92.80] 92.17 [85.34, 97.98] 87.90 [79.01, 94.85] 89.89 [81.49, 99.22]

Ensemble_LSTM AttDeepConvLSTM Multi-Agent DAMUN
Acc 86.03 [78.34, 98.56] 92.19 [84.02, 98.18] 91.57 [84.04, 98.01] 96.07 [92.29, 99.44]
Pre 84.81 [74.57, 98.59] 89.96 [78.30, 98.21] 91.87 [80.51, 98.06] 96.52 [92.38, 99.52]
Fw 84.64 [70.32, 98.55] 90.75 [80.36, 98.17] 91.20 [81.12, 98.01] 96.07 [92.23, 99.50]

PAMAP2

SVM MC-CNN Bi-LSTM-S DeepConvLSTM
Acc 69.47 [38.72, 86.41] 80.27 [58.29, 93.40] 71.51 [36.06, 92.02] 75.69 [50.55, 92.67]
Pre 70.77 [41.69, 88.76] 80.64 [57.65, 93.82] 71.12 [29.01, 92.21] 73.04 [36.42, 92.95]
Fw 68.11 [36.72, 86.68] 78.05 [52.09, 93.37] 68.65 [32.34, 91.94] 72.36 [41.67, 92.65]

Ensemble_LSTM AttDeepConvLSTM Multi-Agent DAMUN
Acc 73.36 [47.79, 89.66] 74.13 [46.58, 88.62] 72.48 [35.16, 88.02] 83.21 [62.64, 93.96]
Pre 73.90 [36.88, 90.93] 73.92 [50.40, 85.02] 73.35 [36.22, 89.88] 83.57 [55.69, 94.63]
Fw 71.98 [42.09, 88.84] 71.83 [44.79, 86.58] 71.39 [31.70, 87.14] 82.13 [57.31, 93.91]

UCIDSADS

SVM MC-CNN Bi-LSTM-S DeepConvLSTM
Acc 71.95 [65.21, 80.66] 87.93 [72.69, 94.62] 88.98 [79.67,93.71 ] 89.66 [80.54, 94.17]
Pre 70.60 [63.19, 78.84] 87.18 [64.01, 95.42] 89.72 [74.29, 95.25] 89.58 [79.88, 95.27]
Fw 67.74 [60.25, 78.33] 85.52 [66.57, 94.53] 87.73 [75.36, 93.28] 88.42 [77.95, 94.08]

Ensemble_LSTM AttDeepConvLSTM Multi-Agent DAMUN
Acc 83.13 [76.13, 90.92] 88.73 [79.03, 94.22] 85.98 [76.48, 91.21] 92.14 [87.40, 96.21]
Pre 84.06 [72.65, 93.51] 88.24 [74.57, 94.78] 87.45 [79.48, 92.91] 92.99 [86.84, 96.18]
Fw 81.09 [71.48, 90.19] 86.75 [74.64, 94.22] 84.26 [73.03, 90.70] 91.59 [86.79, 95.36]

• Multi-Agent [14]: a spatial-temporal attention method based on multi-agent collaboration to select infor-
mative modalities and their active periods.

For the state-of-the-art methods, we replicated each method with the same settings as introduced in the original
papers, except the data pre-processing steps, where we use the same window size and overlap as ours. We
evaluate them with the ILOSO evaluation protocol to achieve a fair and thorough comparison. Table 3 shows the
experimental results.

The results show that all the methods achieve higher performance on the MHEALTH and UCIDSADS datasets
than on the PAMAP2 dataset. The reason could be the data quality or the hard-recognizing activities in the
PAMAP2 dataset. Besides, the performance variance of the PAMAP2 dataset is also the largest, reflecting the
diversity between different subjects in PAMAP2.

All the deep learning methods perform better than the baseline model, showing the promising ability of deep
learning in capture the nonlinear spatial-temporal correlations. Moreover, the MC-CNN model fits pretty good in
the MHEALTH and PAMAP2 datasets but poor in the UCIDSADS dataset. This could own to the fact that the
MC-CNN model only considers the single-sensor temporal correlation, which ignores spatial correlations and
limits the performance when data contain more features. In addition, we notice that the complex reinforcement
learning-based Multi-agent model does not work very well as reported in [14], indicating the difficulty of selecting
important modalities for numerous andmore complex activities compared to their background activity recognition
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Effect of the Siamese adversarial training. (a)-(c): Performance of MC-CNNwith (w/ ad) or without (w/o ad) adversarial
training; (d)-(f): Performance of MVRM with (w/ ad) or without (w/o ad) adversarial training (best viewed in color).

setting (only category six activities [19]). Our method consistently outperforms all the state-of-the-art methods on
the three datasets. It’s mean recognition accuracy achieves 3.35%, 2.94%, and 2.48% absolute improvements over
the best SOTA in the MHEALTH, PAMAP2 and UCIDSADS datasets, respectively. The comparison demonstrates
the effectiveness of our proposed DAMUN model.

5.6 Effect of the Siamese Adversarial Training
To further evaluate the effect of our Siamese adversarial training framework, we conduct an ablation study to
check the performance of feature extractors with or without the adversarial training process. We analyze two
feature extractors: MVRM and an SOTA MC-CNN model. Fig. 5 reports the classification accuracy for each
subject and the mean accuracy on the three datasets. We have three observations. First, the performance of all
models varies significantly among subjects—A model that works positively for one subject may not generalize
well to other subjects and achieve consistent performance. This observation demonstrates that testing HAR
models only on one selected subjected (as previous work does) is insufficient and could lead to wrong conclusions.
Take the UCIDSADS dataset as an example: if we only select subject 3 as the testing subject, researchers may
conclude that the Siamese adversarial training process will decrease the recognition performance. However,
more thorough evaluations with ILOSO protocol show that the Siamese adversarial training framework can
indeed improve the recognition accuracy (i.e., from 87.93% to 90.69% with MC-CNN model and from 89.44% to
92.14% with our MVRM). Second, although the average performances among all subject are pretty good for the
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Table 4. Evaluation results of different fusion methods

Method Average Concatenate Self-Attention Hadamard
MHEALTH 94.86 [91.93, 99.44] 94.81 [84.52, 99.82] 94.12 [87.17, 99.41] 96.07 [92.29, 99.44]
PAMAP2 81.86 [62.17, 93.73] 80.98 [59.09, 93.86] 80.75 [58.95, 94.01] 83.21 [62.64, 93.96]
UCIDSADS 92.05 [84.42, 95.37] 91.00 [86.27, 96.50] 90.09 [80.18, 94.20] 92.14 [87.40, 96.21]

three datasets, there exist some hard-to-distinguish subjects (e.g., subject 8 in PAMAP2 dataset and UCIDSADS
dataset). The main reason could be the subject-divergence—these hard-to-distinguish subjects conduct activities
in a different manner from other subjects in the training set; as a result, the models trained on other subjects
cannot be generalized to these “hard-to-distinguish" subjects. Third, while the performance of a few subjects
declines, more subjects see improvements with the Siamese adversarial training framework. Overall, MVRM
and MC-CNN with the Siamese adversarial training process consistently boost the performance on all datasets.
These results demonstrate the effectiveness and necessity of our adversarial training framework in improving
human activity recognition performance and reducing subject divergence. To interpret the results, we consider
the adversarial training process as a regularizer that enforces the feature extractor to focus on subject-irrelevant
common patterns when learning segment representations and thus learn a consistent representation space for all
subjects. In contrast, traditional deep learning models (e.g. MC-CNNwithout adversarial training) can easily suffer
overfitting, which leads to poor generalization ability and low recognition accuracy on the “hard-to-distinguish"
testing subjects.

5.7 Effect of the Fusion Method
Finally, we also evaluate the influence of the fusion method by comparing our trainable Hadamard fusion method
with other three fusion strategies: 1) average-based fusion, which sums and averages the representation of each
view directly to get the final joint representation of the input segment; 2) concatenate-based fusion, which gets
the final representation by concatenating representations of all views; 3) self-attention based fusion, which
uses the self-attention mechanism [46] to calculate the importance of each view and merges the re-weighted
sub-representations by summing. Our experimental results (Table 4) show simple average-based fusion performs
better than concatenate-based fusion and self-attention based fusion. Besides, our Hadamard fusion achieves the
best performance, confirming the importance of considering the significance of each view. In contrast, considering
more complex interactions between representations with self-attention mechanism is not helpful.

5.8 Confusion Matrix Analysis
To better understand the activity recognition performance for each class, we further conduct a deeper analysis
based on the confusion matrix. As described in the evaluation protocol part (Section 5.1), we iteratively evaluate
the performance of our method on each subject separately, resulting in subject_number confusion matrices for
each dataset. Due to the space limitation, we only report the best classified subjects (the subject that achieves the
highest classification accuracy within the dataset) and the worst classified subjects of the three datasets in Fig. 6.
The class labels in confusion matrices are corresponding to the activity name in Fig. 4 in the same order. We can
observe that: 1) our method can work perfectly in the MHEALTH and UCIDSADS datasets for most activities
with an accuracy of nearly 100%, which shows the exceptional classification performance of the proposed model;
2) the classification accuracy for the minority classes are still accurate, as observed from Fig. 6.(a) and Fig. 6.(d) for
“Jump front & back" activity (class 12) in the MHEALTH dataset and from Fig. 6.(b) for “rope jumping" activity
(class 12) in the PAMAP2 dataset; 3) the classification performance varies significantly between different classes.
Take the worst classified subject in the UCIDSADS dataset (subject 7, Fig. 6.(f)) as an example, the classification
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(a) (b) (c)

(d) (e) (f)

Fig. 6. (a)-(c): Confusion Matrices of the best-classified subject in the (a) MHEALTH, (b) PAMAP2, and (c) UCIDSADS
datasets; (d)-(f): confusion matrix of the worst-classified subject in the (d) MHEALTH, (e) PAMAP2, and (f) UCIDSADS
datasets (best viewed in color).

accuracy for most classes is very high except for class 9 and class 11. Besides, the classification performance also
varies dramatically between different subjects for the same activity, as can be observed from the red rectangle
area in Fig. 6); 4) Last but not the least, the poor performance on the worst classified subjects (hard-to-distinguish
subjects) is mainly caused by a few “hard-to-distinguish" activities (e.g., class 10 and 11 in the MHEALTH dataset,
class 2 and 3 in the PAMAP2 dataset). This suggest that we should pay more attention to “hard-to-distinguish"
activities for the “hard-to-distinguish" subjects to achieve accurate and widely applicable HAR.

5.9 Case Study
To verify the overall performance of the proposed DAMUN out of the existing public datasets, we further conduct
a case study in our laboratory environment. Specifically, we collect an activity dataset containing five activities
(sitting, standing, walking, ascending stairs, and descending stairs) from eight participants (six male and two
female). Three Phidget Spatial IMU sensors working at the frequency of 70Hz are attached to the dominant
wrist, the waist, and the dominant side’s ankle to record the acceleration, angular velocity, and magnetism. The
same evaluation protocol (ILOSO) and experimental settings as introduced in section 5.3 are employed for the
evaluation. As shown in Fig. 7, our proposed DAMUN can still achieve positive recognition performance, and it
consistently outperforms the SOTA MC-CNN model.
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Fig. 7. Classification accuracy of SVM, MC-CNN and the
proposed DAMUN in the self-collected dataset

Fig. 8. Classification results in the Opportunity dataset

5.10 Discussion
In this section, we provide a brief discussion on potential of DAMUN in the recognition of sporadic activities,
and shed light on the relationship between the proposed model with Siamese networks. Some future works in
the area are also discussed.

5.10.1 Performance on the Sporadic Activities. We have evaluated the performance of our proposed DAMUN
thoroughly on both public datasets and local deployment. The results demonstrate the superior performance of
DAMUN. While these datasets cover a variety of activities in different application scenarios, they mainly are
repetitive or recurring activities. To examine the efficacy of DAMUN on sporadic activities, we further carry out
the experiments with the Opportunity dataset [11] containing three subjects. Fig. 8 presents the performance
of DAMUN against the other three comparison methods following the introduced ILOSO evaluation protocol
and experimental settings. It can be observed that the performance of all methods degrade at different levels,
among which MC-CNN achieves the best performance. The performance of Bi-LSTM is similar to MC-CNN for
subject 3 but worse than MC-CNN and DAMUN on average under the subject-independent ILOSO evaluation
protocol. This finding reveals that CNN-based models still work better in recognizing non-repetitive activities
with designated architectures, and that the previous work may be biased due to the compromised evaluation
protocols. DAMUN achieves reasonable performance even though it is a bit lower than MC-CNN, which might be
attributed to the small number of subjects in the Opportunity dataset. When there are only two subjects available
in the training dataset, the effect of the adversarial training component is compromised as the model would
only capture the patterns shared by the two training subjects instead of more general common patterns. This
limitation could be improved in real-world deployment, where more training subjects are available.

5.10.2 Relation to the Siamese Network. In this section, we compare our Siamese adversarial framework with the
Siamese network [33], which is a metric learning-based method in the computer vision area. Siamese network
takes two samples as the inputs: one is the query; the other is the baseline. The two samples are operated by
the same network to get their representations. Then, the distance between the two representations is compared
by a predefined metric function to determine whether the query input belongs to the same class with the
baseline. While our Siamese adversarial framework also organizes two samples, it is not a metric learning-method.
Our method organizes the two samples from different subjects and uses a discriminator to impose the learned
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representations only contain subject-irrelevant patterns. The framework is designed for cross-subject training
during the training process to decrease the subject divergence and does not influence the classification and testing
phase (as shown in Fig. 1). In summary, our Siamese adversarial framework only shares a similar appearance
with the Siamese network but works differently and for a different purpose. The performance gain of our Siamese
adversarial comes from the adversarial training instead of the Siamese inputs.

5.10.3 Future Works. In the previous sections, we have analysed our proposed model from different perspectives
thoroughly and demonstrated the robustness and effectiveness of our design in capturing multi-modal spatial-
temporal correlations and reducing subject divergence, which can facilitate the deployment of HAR algorithms
into real-world applications broadly, In order to better understand the spatial-temporal correlations among the
multi-modal sensors and the subject divergence, there are also some future works we would to like to highlight
and explore in the next stage:

• By iteratively testing the model on each subjects without their data, our ILOSO evaluation protocol can
reflect the model’s generalization ability to new users and is closer to the real deployment scenario. However,
it would still be overfitted as we use data from many more users for training than in the real scenario.
Evaluating the performance of HAR models with different number of training subjects thoroughly is better
for assessing the model’s generalization performance.

• Accurate recognition of human activities and reducing subject divergence require large scale dataset from
more subjects. However, collecting and labeling sensor-based human activity dataset is still a challenge. On
the other hand, we observed that there are some overlaps in different sensory datasets. For instance, both
the MHEALTH dataset and the UCIDSADS dataset place the IMU devices in subjects’ arm and leg. How to
transfer the information across datasets to lessen the data collection is a promising topic.

• Among the datasets we have tested, we found they employed different number of sensors in distinct parts
of body. While deep learning methods can capture the complex spatial-correlations among these sensors
automatically, the importances/benefits of each sensors are not clear. Thus, exploring the minimum number
and best locations of the sensors would be an interesting and practical direction.

• Our experiments have demonstrate that there exist “hard-to-distinguish" subjects and “hard-to-distinguish"
activities in all the three datasets (shown in Fig. 5 and Fig. 6). Our current approach can boost the recog-
nition performance on some of them (e.g., subject 8 in the UCIDSADS dataset) but cannot fully solve
the problem. Developing more robust and discriminative HAR models to improve the performance on
“hard-to-distinguish" subjects and “hard-to-distinguish" activities is essential.

6 CONCLUSION
The main focus of this work is developing discriminative human activity recognition method that is powerful
and robust to different sensor streams and generalizes well to new subjects, both of which are prerequisites for
wider adoption of HAR models/algorithms in real-world applications. As such, we proposed a discriminative
adversarial multi-view network for sensor-based human activity recognition. We first design a novel multi-view
representation module (MVRM) to capture multi-modal spatial-temporal correlations and to obtain high-level
representations of the raw sensory data. Compared with previous representation modules, MVRM can capture
both the spatial, temporal and spatial-temporal correlations with multi-modal sensory streams and thus is more
powerful and robust. Then, we present a Siamese adversarial training framework to ensure that MVRM can
map all subjects’ data to the same space, thus reducing subject discrepancies. To evaluate the HAR models more
thoroughly, we introduced ILOSO evaluation protocol based on the traditional LOSO protocol and conducted
extensive experiments on three public datasets and a new dataset collected in our laboratory environment. The
results validate the superior performance and generalization ability of our approach to state-of-the-art. We
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also discuss the performance of our model on the non-repetitive activities and give some future directions for
wide-scale adoption of sensor-based HAR models in pervasive systems and applications.
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