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Abstract

Viscoelastic fluid flow through a semi-infinite vertical rigid plate with diffusion-thermo and thermal-diffusion has been studied.
To obtain the non-dimensional, coupled non-linear momentum, energy and concentration equations, the usual transformations
have been used. The obtained non-dimensional equations have been solved by implicit finite difference technique. The stability
and convergence analysis have been analyzed. From the above analysis, parameters restriction have been obtained to calculate
the converge results. The effects of the various parameters entering into the problem on the velocity, temperature and
concentration are shown graphically. Finally, a qualitative comparison with the published results is shown in tabular form.
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1. Introduction

The viscoelastic fluid has been received momentum in the recent past because of its numerous applications in
polymer technology, metallurgy, polymer sheet extrusion from a dye, polymer processing industry in particular in
manufacturing process of artificial film. The study of boundary layer flow of a viscoelastic fluid through a vertical
plate in the presence of Soret and Dufour’s effect has wide range of applications in the field of chemical engineering
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and production of synthetic sheets. This is consequential to the production of heavy crude oils by means of thermal
process. These oils considered as viscoelastic fluid which has both viscous and elastic property.

Diffusion occurs in a mixture under the presence of temperature gradients even when there are no concentration
differences. This process is defined as the thermal-diffusion. In other words it can be said that the thermal-diffusion
occurs when mass flux can be generated by a temperature gradient. This effect is also known as Soret effect.

Rajagopal et al. | 1] studied the boundary layer flow of a viscoelastic fluid over a stretching sheet. However, Eckert
and Drake [2] have showed many cases where Dufour effect cannot be neglected. In this regards, Tsai and Huang
[3] investigated the heat and mass transfer for Soret and Dufour’s effects on Hiemenz flow through porous medium
onto a stretching surface. Recently Damseh and Shannak [4] analyzed that the Viscoelastic fluid flow past an infinite
vertical porous plate in the presence of first-order chemical reaction. Sreekanth et al. [5] studied about
hydromagnetic natural convection flow of an incompressible viscoelastic fluid between two infinite vertical moving
and oscillating plates. Very recent Gbadeyan et al. [6], examined heat and mass transfer for Soret and Dufour’s
effect on mixed convection boundary layer flow over a stretching vertical surface in a porous medium filled with a
viscoelastic fluid in the presence of magnetic field.

Our aim is to extend the work of Gbadeyan et al. [6] for unsteady case and to solve the problem by implicit finite
difference method. In this paper, the work has been done with the effects of both thermal and mass diffusion on two
dimensional unsteady flow of an incompressible viscoelastic fluid through a vertical plate.

2. Mathematical formulation

Consider the unsteady two-dimensional laminar flow of an
incompressible viscoelastic fluid (obeying second grade model)
through a vertical rigid plate with thermal-diffusion and
diffusion thermo effects. The positive x coordinate is measured
along the plate in the direction of fluid motion and the positive
y coordinate is measured normal to the plate. The variable
temperature 7, and variable concentration C,, at wall of the
plate occupied with viscoelastic fluid of uniform ambient
temperature 7,, and uniform ambient concentration C also
the uniform velocity U, . The physical configuration of the

above problem is given in Fig. 1.

Plate

The following dimensionless variables that are used to obtained
dimensionless governing equations (1)- (4) ;
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Using these above dimensionless variables, the following dimensionless equations have been obtained as;
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The corresponding non-dimensional boundary conditions are as;
>0, U=1, V=0, 6=1, ¢=1,at Y=0 (5)
U=0, V=0, 650, ¢—>0, as Y 5o

The non-dimensional parameters are; Grashof number G Modified Grashof number G

parameter K , Prandtl number B, , Dufour number D,, , Schmidt number § . and Soret number S, .

S m » Viscoelastic

3. Shear Stress, Nusselt and Sherwood Number

From the velocity, the effects of various parameters on the local and average shear stress have been calculated.
The following equations represent the local and average shear stress at the plate. Local shear stress

T, =M ou and average shear stress 7, :/JJ‘ ou dx which are proportional to L2} and
), oy ). oY )y_
y=0 y=0 ¥=0
10 7 0
j {6)’) dX respectively. From the temperature field, the effects of various parameters on the local and average
0 ot
heat transfer coefficients have been investigated. The following equations represent the local and average heat

oT
oy

transfer rate that is well known Nusselt number. Local Nusselt number, N,, = /,t{

number, N,; = ,uj‘( a—TJ
dy

concentration field, the effects of various parameters on the local and average mass transfer coefficients have been
analyzed. The following equations represent the local and average mass transfer rate that is well known Sherwood

number. Local Sherwood number, §,, = ,u[—a—c} and Average Sherwood number,
y=0

oy
oc
Sy = Hj[— ay

j and Average Nusselt
y=0

100

dx which are proportional to [— %J and j [— 69) dX respectively. From the
¥=0 Y Jy= Y=0

100
j dx which are proportional to ( 8(1)) and j [ %j dX respectively.
=0 Y Jyo ¥=0

4. Numerical Analysis

To solve the non-dimension system by implicit finite difference i=m
technique, it is required a set of finite difference equations. In this  i+2

case, the region within the boundary layer is divided by some mash  i+1 (+Lj1)  @L) L+
of lines parallel to X and Y axes where X — axis is taken along the

plate and Y — axis is normal to the plate as shown in Fig. 2. Here, the ;_, Gi-D |G |G+

plate of height X . =(100) i.e. X varies from 0 to 100 and it is

assumed that the maximum length of boundary layer isY,  =(35) i1 (-Lji-) @-Lj) [i-Lj+])

as corresponding to ¥ —> o i.e. Y varies from 0 to 35 have been
considered. Consider m=125 and n=125 in X and Y directions. It -2
is assumed that AX , AY are constant mesh sizes along X and ¥
directions respectively and taken as follows, i=0
j=0 j-2 j-1 j Jj+l Jj+2  j=n

Fig. 2. Implicit finite difference system grid.
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AX =0.8(0 < x <100); AY = 0.28(0 < y <35) with the smaller time-step, A7 = 0.005 .
Let U',V',0"and ¢' denote the values of U ,V ,fand ¢ at the end of a time-step respectively. An appropriate

set of finite difference equations have been obtained as;
U . -u' v . —v!

i,j i-1,j 4 i,j i,j-1 _ O (6)
AX AY
Uu' .-U. . Uu..-U._, . Uu..,-U.. 2U +U
i,j i,] i,j -1, i, j+1 i, ' ' 11+1
+U; ; +Vi; =G0, ;+G,¢; ; +
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LU Uijn=2U,; ;+U,; j 1 =Ui g jn +2U, ;Ui o LV Ui jpo =3U; 1 +3U; ; =U,;
b AX (AY)? o (AY)?
N Uij=Ui; Ui ju—2U; ;+U; ;4 Ui,j+1 Ui j Vijuu =2V j+Vi 0 7
AX (aY ) AY (Ary
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iJ AX iJ A - 2 r 2
At Y S. (ar) (Ar)

with initial and boundary conditions;

U'nozl’ l."O:()’ ‘no:]a¢ino:1 (10)
U, =0,V =0,0", =0,4", =0wWhere L —> .

Here the subscripts i and j designate the grid points with X and Y coordinates respectively and the subscript n

represents a value of time,7 = nAt wheren=0,1,2,3,............. The new velocity U’ , the new temperature 8 and

the new concentration ¢’ at all interior nodal points may be obtained by successive applications of above finite

difference equations. The numerical values of the local Shear Stress, Nusselt number and Sherwood number are
evaluated by five-point approximate formula for the derivatives and then the average Shear Stress, Current density,

Nusselt number and Sherwood number are calculated by the use of the Simpson’s % integration formula.

The stability conditions of the problem are as furnished below as;

AT 2 AT 2 At
HAY P (Ay)°‘ U_+| ‘AY S. (ary

When A7 and AY approach to zero then the problem Wlll be converged. The convergence criteria of the problem are
P >0.13and S, >0.13.

5.RESULTS AND DISCUSSION

To obtain the steady-state solutions, the computations have been carried out up to dimensionless timer =80 . The
results of the computations, however, show little changes in the above mentioned quantities after dimensionless
time7 = 60. Thus the solutions for dimensionless time 7 =60 are essentially steady-state solutions. To observe the
physical situation of the problem, the steady-state solutions have been illustrated in Figs. 3-7.
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Figs.3 (a) Velocity distributions and (b) Temperature distributions for different values of
Dufour number.

The velocity and temperature distributions have been shown in Figs. 3(a) and 3(b) for different values of Dufour
number D, . Both the velocity and temperature distributions increase with the increase of Dufour number D, . The

temperature distributions have been shown in Figs. 4(a) and 4(b) for different values of Viscoelastic
parameter K and Prandtl number P, respectively. In both cases the thermal boundary layers have been decreased

with the increase of Viscoelastic parameter K and Prandtl number P, .

1 1+
0.8 - =20 =1.0.D, =0.10 08— \
Gy .G =1.0,D,, ) : G, =2.0,G,, =1.0,D, =0.10,
F, =1.00,5, =0.78,5, =1.50 o K =0.004,5, =0.78,5, =1.50
A os A
0.4 -
0.2 —
0 T

12
(a) (b)

Figs.4 (a) Temperature distributions of for different values of Viscoelastic parameter and (b) Temperature distributions for different values of
Prandtl number.

The Concentration distributions have been shown in Figs. 5(a) and 5(b) for different values of Dufour
number D, and Soret number S, respectively. The concentration distributions decreases with the increase of Dufour

number D, while increases with the increase of Soret number S, .
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Figs.5 (a) Concentration distributions of for different values of Dufour number and (b) Concentration distributions for different values of

Soret number.

The Shear stress for different values of Prandtl number P, have been plotted graphically in Figs. 6(a). The Shear

stress decreases with the rise of Prandtl number P, . The Nusselt number for different values of Soret number

S, have been plotted in Fig. 6(b) and the Nusselt number increases with the increase of Soret number S, .
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Figs.6 (a) Shear stress for different values of Prandtl number and (b) Nusselt number for different values of
Soret number.

The Sherwood number has been shown in Figs. 7(a) and 7(b) for different values of Grashof number G, and Schmidt
number S, . The Sherwood number increases with the increase of Grashof number G, while decreases with the

increase of Schmidt number S, .
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Figs.7 (a) Sherwood number for different values of Grashof number and (b) Sherwood number for different values of
Schmidt number.

Finally, a qualitative comparison of the present steady-state results with the published results (Gbadeyan et al.[6]) is
presented in table 1. The accuracy of the present results is qualitatively as well as quantitatively good in case of all
the flow parameters.

Table 1.Qualalitive comparison of the present results with the previous results

Increased Pervious results given by Present results
Parameter Gbadeyan et al.[6]
F'ln) 6ln) ¢l) U 0 9
Du Inc. Inc. Dec Inc. Ine. Dec
K Dec. Dec
Pr Dec. Dec
S Inc. Ine.

~

6. Conclusion

In this research work, the implicit finite difference solution of unsteady two-dimensional laminar flow of an
incompressible viscoelastic fluid through a vertical plate with Soret and Dufour’s effects has been studied. The
physical properties are discussed for different values of various parameters and the accuracy of our results is
qualitatively good in case of all the flow parameters. Some important findings of this study are given below;

1.
2.

N kW

For the increase of Dufour number D, , the velocity, temperature distributions have been increased.

Temperature distributions have been decreased with the increase of Viscoelastic parameter K and Prandtl
number P, .

Concentration distributions have been decreased with the increase of Dufour number D,, .

Concentration distributions have been increased with Soret number S, .

Shear stress has been decreased with the increase of Prandtl number P, .

Nusselt number has been increased with the increase of Soret number S, .

Sherwood number has been increased with the increase of Grashof number G, while decreased for the

increase of Schmidt number S, .
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