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Preface

We are proud to present the proceedings of the 18th International Symposium on
Intelligent Data Analysis (IDA 2020), which was held during April 27-29, 2020, in
Konstanz, Germany. The first symposium of this series was organized in 1995 and held
biannually until 2009, when the conference switched to being held annually. Following
demand expressed by the IDA community in a survey held in 2018, IDA 2020 was the
first of the series to take place in spring rather than fall, as was common before.

The switch to April, and a more organized outreach to the community, coincided
with an increase in the number of submissions from 65 in 2018, to 114 in 2020. After a
rigorous review process, 45 of these 114 submissions were accepted for presentation.
Almost all submissions were reviewed by at least three Program Committee
(PC) members (only two papers had two reviews) and a substantial number of sub-
missions received more than three reviews. In addition to the PC, the review process
also involved program chair advisors — a select set of senior researchers with a
multi-year involvement in the IDA symposium series. Whenever a program chair
advisor flagged a paper with an informed, thoughtful, positive review due to the paper
presenting a particularly interesting and novel idea, the paper was accepted irrespective
of the other reviews. Each accepted paper was offered a slot for either oral presentation
(15 papers) or poster presentation (30 papers).

We wish to express our gratitude to the authors of all submitted papers for their
high-quality contributions; to the PC members and additional reviewers for their efforts
in reviewing, discussing, and commenting on all submitted papers; to the program chair
advisors for their active involvement; and to the IDA council for their ongoing guid-
ance and support. Many people have helped behind the scenes to make IDA 2020
possible, but this year we are particularly grateful to our publicity chairs who helped
spread the word: Daniela Gawehns and Hugo Manuel Proenga!

February 2020 Georg Krempl
Ad Feelders
Michael R. Berthold
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Multivariate Time Series as Images:
Imputation Using Convolutional
Denoising Autoencoder

Abdullah Al Safi, Christian Beyer®™, Vishnu Unnikrishnan,
and Myra Spiliopoulou

Fakultat fiir Informatik, Otto-von-Guericke-Universitat,
Postfach 4120, 39106 Magdeburg, Germany
abdullah.safi@st.ovgu.de,
{christian.beyer,vishnu.unnikrishnan,myra}@ovgu.de

Abstract. Missing data is a common occurrence in the time series
domain, for instance due to faulty sensors, server downtime or patients
not attending their scheduled appointments. One of the best methods to
impute these missing values is Multiple Imputations by Chained Equa-
tions (MICE) which has the drawback that it can only model linear rela-
tionships among the variables in a multivariate time series. The advance-
ment of deep learning and its ability to model non-linear relationships
among variables make it a promising candidate for time series imputa-
tion. This work proposes a modified Convolutional Denoising Autoen-
coder (CDA) based approach to impute multivariate time series data
in combination with a preprocessing step that encodes time series data
into 2D images using Gramian Angular Summation Field (GASF). We
compare our approach against a standard feed-forward Multi Layer Per-
ceptron (MLP) and MICE. All our experiments were performed on 5
UEA MTSC multivariate time series datasets, where 20 to 50% of the
data was simulated to be missing completely at random. The CDA model
outperforms all the other models in 4 out of 5 datasets and is tied for
the best algorithm in the remaining case.

Keywords: Convolutional Denoising Autoencoder - Gramian Angular
Summation Field + MICE - MLP. - Imputation *+ Time series

1 Introduction

Time series data resides in various domains of industries and research fields
and is often corrupted with missing data. For further use or analysis, the data
often needs to be complete, which gives the rise to the need for imputation
techniques with enhanced capabilities of introducing least possible error into
the data. One of the most prominent imputation methods is MICE which uses
iterative regression and value replacement to achieve state-of-the-art imputation
quality but has the drawback that it can only model linear relationships among
variables (dimensions).

© The Author(s) 2020

M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 1-13, 2020.
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In past few years, different deep learning architectures were able to break into
different problem domains, often exceeding previously achieved performances by
other algorithms [7]. Areas like speech recognition, natural language process-
ing, computer vision, etc. were greatly impacted and improved by deep learning
architectures. Deep learning models have a robust capability of modelling latent
representation of the data and non-linear patterns, given enough training data.
Hence, this work presents a deep learning based imputation model called Con-
volutional Denoising Autoencoder (CDA) with altered convolution and pooling
operations in Encoder and Decoder segments. Instead of using the traditional
steps of convolution and pooling, we use deconvolution and upsampling which
was inspired by [5]. The time series to image transformation mechanisms pro-
posed in [12] and [13] were inherited as a preprocessing step as CDA models
are typically designed for images. As rival imputation models, Multiple Imputa-
tion by Chained Equations (MICE) and a Multi Layer Perceptron (MLP) based
imputation were incorporated.

2 Related Work

Three distinct types of missingness in data were identified in [8]. The first one
is Missing Completely At Random (MCAR), where the missingness of the data
does not depend on itself or any other variables. In Missing At Random (MAR)
the missing value depends on other variables but not on the variable where the
data is actually missing and in Missing Not At Random (MNAR) the missingness
of an observation depends on the concerned variable itself. All the experiments
in this study were carried out on MCAR missingness as reproducing MAR and
MNAR missingness can be challenging and hard to distinguish [5].

Multiple Imputation by Chained Equations (MICE) has secured its place as
a principal method for imputing missing data [1]. Costa et al. in [3] experimented
and showed that MICE offered the better imputation quality than a Denoising
Autoencoder based model for several missing percentages and missing types.

A novel approach was proposed in [14], incorporating General Adversarial
Networks (GAN) to perform imputations, thus authors named it Generative
Adversarial Imputation Nets (GAIN). The approach imputed significantly well
against some state-of-the-art imputation methods including MICE. An Autoen-
coder based approach was proposed in [4], which was compared against an Arti-
ficial Neural Network (NN) model on MCAR missing type and several missing
percentages. The proposed model performed well against NN. A novel Denoising
Autoencoder based imputation using partial loss (DAPL) approach was pre-
sented in [9], where different missing data percentages and MCAR missing type
were simulated in a breast cancer dataset. The comparisons incorporated sta-
tistical, machine learning based approaches and standard Denoising Autoen-
coder (DAE) model where DAPL outperformed DAE and all the other models.
An MLP based imputation approach was presented for MCAR missingness in
[10] and also outperformed other statistical models. A Convolutional Denois-
ing Autoencoder model which did not impute missing data but denoised audio
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signals was presented in [15]. A Denoising Autoencoder with more units in the
encoder layer than input layer was presented in [5] and achieved good impu-
tation results against MICE. Our work was inspired from both of these works
which is why we combined the two approaches into a Convolutional Denoising
Autoencoder which maps input data into a higher subspace in the Encoder.

3 Methodology

In this section we first describe how we introduce missing data in our datasets,
then we show the process used to turn multivariate time series into images
which is required by one of our imputation methods and finally we introduce the
imputation methods which were compared in this study.

3.1 Simulating Missing Data

Simulating missing data is a mechanism of artificially introducing unobserved
data into a complete time series dataset. Our experiment incorporated 20%,
30%, 40% and 50% of missing data and the missing type was MCAR. Introducing
MCAR missingness is quite a simple approach as it does not depend on observed
or unobserved data. Many studies assume MCAR missing type quite often when
there is no concrete evidence of missingness type [6]. In this experimental frame-
work, values at randomly selected indices were erased from randomly selected
variables which simulated MCAR missingness of different percentages.

3.2 Translating Time Series into Images

A novel approach of encoding time series data into various types of images using
Gramian Angular Field (GAF) was presented in [12] to improve classification
and imputation. One of the variants of GAF was Gramian Angular Summation
Field (GASF), which comprised of multiple steps to perform the encoding. First,
the time series is scaled within [—1, 1] range.

, (zi— Max(X)) + (z; — Min(X))

= Maz(X) — Min(X) M

Here, x; is a specific value at timepoint ¢ where z is derived by scaling and
X is the time series. The time series is scaled within [—1, 1] range in order to be
represented as polar coordinates achieved by applying angular cosine.

0; = arccos(x)){—-1 <=z <=1,z € X} (2)

The polar encoded time series vector is then transformed into a matrix. If
the length of the time series vector is n, then the transformed matrix is of shape
(n xn).

GASFL'J' = 608(91‘ + 9]) (3)
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The GASF represents the temporal features in the form of an image where
the timestamps move along top-left to bottom-right, thereby preserving the time
factor in the data. Figurel shows the different steps of time series to image
transformation.

) TimeSeries Polar Cqgrdinates Gramian Angular Summation Field (GASF)
200] — T
- /' \
0504 | f
e\ = Lo

| [ =& o 7
200 / \\ \:> o < 7,‘\\_“ . E>
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\ J \
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Fig. 1. Time series to image transformation

The methods of encoding time series into images described in [12] were only
applicable for univariate time series. The GASF transformation generates one
image for one time series dimension and thus it is possible to generate multiple
images for multivariate time series. An approach which vertically stacked images
transformed from different variables was presented in [13], see Fig. 2. The images
were grayscaled and the different orders of vertical stacking (ascending, descend-
ing and random) were examined by performing a statistical test. The stacking
order did not impact classification accuracy.

variable
1

variable
2

variable Vertical Classification

Stacking or

Imputation
Model

ariable
4

ariable

variable
6

Fig. 2. Vertical stacking of images transformed from different variables
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3.3 Convolutional Denoising Autoencoder

Autoencoder is a very popular unsupervised deep learning model frequently
found in different application areas. Autoencoder is unsupervised in fashion and
reconstructs the original input by discovering robust features in the hidden layer
representation. The latent representation of high dimensional data in the hid-
den layer contributes in reconstructing the original data. The architecture of
Autoencoder consists of two principal segments named Encoder and Decoder.
The Encoder usually compresses the original representation of the data into
lower dimension. The Decoder decodes the low dimensional representation of
the input back into its original dimensional representation.

Encoder(z") = s(z"Wpg + bg) = 2 (4)

Decoder(z?) = s(z?Wp + bp) = 2" (5)

Here, x™ is the original input with n dimensions. s is any non-linear activation
function, W is weight and b is bias.

Denoising Autoencoder model is an extension of Autoencoder where the input
is reconstructed from a corrupted version of it. There are different ways of adding
corruption, such as Gaussian noise, setting some values to zero etc. The noisy
input is fed as input and the model minimizes the loss between the clean input
and corrupted reconstructed input. The objective function looks as follows

1
RMSE(X7 Xl) ﬁ \/'Xclean - X;“econstructed |2 (6)

Convolutional Denoising Autoencoder (CDA) incorporates convolution oper-
ation which is ideally performed in Convolutional Neural Networks (CNN). CNN
is a methodology, where the layers of perceptrons are replaced by convolution
layers and convolution operation is performed on the data. Convolution is defined
as multiplication of two function within a finite or infinite range, where two func-
tions refer to input data (e.g. Image) and a fixed size kernel consecutively. The
kernel traverses through the input space to generate feature maps. The feature
maps consist of important features of the data. The multiple features are pooled,
preserving important features.

The combination of convoluted feature maps generation and pooling is per-
formed in the Encoder layer of CDA where the corrupted version of the input is
fed into the input layer of the network. The Decoder layer performs Deconvolu-
tiont and Upsampling which decompresses the output coming from Encoder layer
back into the shape of input data. The loss between reconstructed data and clean
data is minimized. In this work, the default architecture of CDA is tweaked in
the favor of imputing multivariate time series data. Deconvolution and Upsam-
pling were performed in the Encoder layer and Convolution and Maxpooling
was performed in Decoder layer. The motivation behind this specific tweaking
came from [5], where a Denoising Autoencoder was designed with more hidden
units in the Encoder layer than input layer. The high dimensional representation
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in Encoder layer created additional feature which was the contributor of data
recovery.

3.4 Competitor Models

Multiple Imputation by Chained Equations (MICE): MICE, which is sometimes
addressed as fully conditional specification or sequential regression multiple
imputation, has emerged in the statistical literature as the principal method
of addressing missing data [1]. MICE creates multiple versions of the imputed
datasets through multiple imputation technique.

The steps for performing MICE are the following:

— A simple imputation method is performed across the time series (mean, mode
or median). The missing time points are referred as “placeholders”.

— If there are total m variables having missing points, then one of the vari-
ables are set back to missing state. The variable with “missing state” label
is considered as dependent variable and other variables are considered as
predictors.

— A regression is performed over these settings and “missing state” variable is
imputed. Different regressions are supported in this architecture but since the
dataset only contains continuous values, linear, ridge or lasso regression are
chosen.

— The remaining m — 1 “missing state” are regressed and imputed by the same
way. Once all the m variables are imputed, one iteration is completed. More
iterations are performed and the imputations are placed in the time series in
each iteration.

— The number of iterations can be determined by observing whether coefficients
of the regression model are converged or not.

According to the experimental setup of our work, MICE had three different
regression supports, namely Linear, Ridge and Lasso regression.

Multi Layer Perceptron (MLP) Based Imputation: The imputation mechanism
of MLP is inspired by the MICE algorithm. Nevertheless, MLP based impu-
tation models do not perform the chained or multiple imputations like MICE
but improve the quality of imputation over several epochs as stochastic gradient
descent optimizes the weights and biases per epoch. A concrete MLP architec-
ture was described in literature [10] which was a three layered MLP with the
hyperbolic tangent activation function in the hidden layer and the identity func-
tion (linear) as the activation function for the output layer. The train and test
split were slightly different, where training set and test set consisted of both
observed and unobserved data.

The imputation process of MLP model in our work is similar to MICE but
the non-linear activation function of MLP facilitates finding complex non-linear
patterns. However, the imputation of a variable is performed only once, in con-
trast to the multiple iterations in MICE.
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4 Experiments

In this section we present the used datasets, the preprocessing steps that
were conducted before training, the chosen hyperparameters and our evalua-
tion method. Our complete imputation process for the CDA model is depicted
in Fig. 3. The process for the competitors is the same except that corrupting the
training data and turning the time series into images is not being done.

Simulating . Transforming .
Artificial _’Pre Eaiteassin —>Tr(;?[:ir:ptgga—>alltimeseries—> g/t:'z;gﬁl —> Training —> Imputaton — Evaluation
Missingness P 9 9 into images 9

Fig. 3. Experiment steps for the CDA model

4.1 Datasets and Data Preprocessing

Our experiments were conducted on 5 time series datasets from the UEA MTSC
repository [2]. Each dataset in UEA time series archive has training and test
splits and specific number of dimensions. Each training or test split represents a
time series. The table below presents all the relevant structural details (Table 1).

Table 1. A structural summary of the 5 UEA MTSC dataset

Dataset name Number of series | Dimensions | Length | Classes
ArticularyWordRecognition | 275 9 144 25
Cricket 108 6 1197 12
Handwriting 150 3 152 26
StandWalkJump 12 4 2500
UWaveGestureLibrary 120 3 315

The Length column of the table denotes the length of each time series. In our
framework, each time series was transformed into images. The number of time
series for any of the datasets was not very high in number. As we had selected
a deep learning model for imputation, such low number of samples could cause
overfitting. Experiments showed us that the default number of time series could
not perform well. Therefore, the main idea was to increase the number of time
series by splitting them into multiple parts and reducing their corresponding
lengths. This modification facilitated us by introducing more patterns for learn-
ing which aided in imputation. The final lengths chosen were those that yielded
the best results. The table below presents the modified number of time series
and lengths for each dataset (Table2).
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Table 2. Modified number of time series and lengths

Dataset name Number of series | Dimension | Length
ArticularyWordRecognition | 6600 9 6
Cricket 6804 6 19
Handwriting 1200 3 19
StandWalkJump 3000 4 10
UWaveGestureLibrary 1800 3 21

The evaluation of the imputation models require a complete dataset and the
corresponding incomplete dataset. Therefore, artificial missingness was intro-
duced at different percentages (20%, 30%, 40% and 50%) into all the datasets.
After simulating artificial missingness, each dataset has an observed part, which
contains all the time series segments where no variables are missing and an
unobserved part, where at least one variable is missing. After simulating arti-
ficial missingness, each dataset had an observed and unobserved split and the
observed data was further processed for training. As CDA models learn denois-
ing from a corrupted version of the input, we introduced noise by discarding
a certain amount of values for each observed case from specific variables and
replacing them by the mean of the corresponding variables. A higher amount
of noise has seen to be contributing more in learning dependencies of different
variables, which leads to denoising of good quality [11]. The variables selected for
adding noise were the same variables having missing data in unobserved data.
Different amount of noise was examined but 90% noise lead to good results.
Unobserved data was also mean imputed as the CDA model would apply the
denoising technique on the “mean-noise” for imputation. So the CDA learns
to deal with “mean-noise” on the observed part and is then applied on mean
imputed unobserved part to create the final imputation.

The next step was to perform time series to image transformation where, all
the observed and unobserved chunks were rescaled between —1 to 1 using min-
max scaling. Rescaled data was further transformed into polar coordinates and
then GASF encoded image was achieved for each dimension. Multiple images
referring to multiple variables were vertically aggregated. Finally, both observed
and unobserved splits consisted their own set of images.

Note that, the following data preprocessing was performed only for CDA
based imputation models. The competitor models imputed using the raw format
of the data.

4.2 Model Architecture and Hyperparameters

Our Model architecture was different from a general CDA, where the Encoder
layer incorporates Deconvolution and Upsampling operations and the Decoder
layer incorporates Convolution and Maxpooling operations. The Encoder and
Decoder both have 3 layers. The table below demonstrates the structure of the
imputation model (Table 3).
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Table 3. The architecture of CDA based imputation model

Operation Layer name | Kernel size | Number of feature maps
Encoder | Upsampling | up_0 (2, 2) —
Deconvolution | deconv_0 (5, 5) 64
Upsampling | up_1 (2, 2) -
Deconvolution | deconv_1 (7,7) 64
Upsampling | up-2 (2, 2) -
Deconvolution | deconv_2 (5, 6) 128
Decoder | Convolution | conv_0 (5, 6) 128
Maxpool pool.0 (2,2) —
Convolution | conv_1 (7,7) 64
Maxpool pool_1 (2, 2) —
Convolution | conv_2 (5, 5) 64
Maxpool pool_2 (2, 2) -

Hyperparameter specification was achieved by performing random search on
different random combinations of hyperparameter values and the root mean
square error (RMSE) was used to decide on the best combination. The random
search allowed us to avoid the exhaustive searching unlike grid search. Apply-
ing random search, we selected stochastic gradient descent (SGD) as optimizer,
which backpropagates the error to optimize the weights and biases. The number
of epochs was 100 and the batch size was 16.

4.3 Competitor Model’s Architecture and Hyperparameters

As competitor models, MICE and MLP based imputation models were selected.
MLP based model had 3 hidden layers and number of hidden units were 2/3 of
the number of input units in each layer. The hyperparameters for both of the
models were tuned by using random search.

Hyperbolic Tangent Function was selected as activation function with a
dropout of 0.3. Stochastic Gradient Descent operated as optimizer for 150 epochs
and with a batch size of 20.

MICE based imputation was demonstrated using Linear, Ridge and Lasso
regression and 10 iterations were performed for each of them.

4.4 Training

Based on the preprocessed data and model architecture described above, the
training is started. L2 regularization was used with weight of 0.01 and stochas-
tic gradient descent was used as the optimizer which outperformed Adam and
Adagrad optimizers. The whole training process was about learning to mini-
mize loss between the clean and corrupted data so that it can be applied on
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the unobserved data (noisy data after mean imputation) to perform imputation.
The training and validation split was 70% and 30%. Experiments show that, the
training and validation loss was saturated approximately after 10-15 epochs,
which was observed for most of the cases.

The training was conducted on a machine with Nvidia RTX 2060 with RAM
memory of 16 GB. The programming language for the training and all the steps

A. A. Safi et al.

above was Python 3.7 and the operating system was Ubuntu 16.04 LTS.

4.5 Evaluation Criteria

As all the time series dataset contain continuous numeric values, Root Mean
Square Error (RMSE) was selected for evaluation. In out experimental setup,
RMSE is not calculated on overall time series but only missing data points are
taken into account to be compared with ground truth while calculating RMSE

RMSE = \/%Z?;I(xz —z;)%2. Where m is the total number of missing time
points and I represents all the indices of missing values across the time series.

5 Results

Our proposed CDA based imputation model was compared with MLP and three
different versions of MICE, each using a different type of regression. Figure4

presents the RMSE values for 20%, 30% 40% and 50% missingness.
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The RMSE values for the CDA based model are the lowest at every percent-
age of missingness on the Handwriting, ArticularyWordRecognition, UWaveG-
estureLibrary and Cricket dataset. The depiction of the results on the Cricket
dataset is omitted due to space limitations. Unexpectedly, in Stand WalkJump
dataset the performance of MLP and CDA model are very similar, and MLP is
even better at 30% missingness. MICE (Linear) and MICE (Ridge) are identi-
cal in imputation for all the datasets. MICE (Lasso) performed worst of all the
models, which implies that changing the regression type could potentially cause
an impact on the imputation quality. The MLP model beat all the MICE models
but was outperformed by the CDA model in at least for 80% of the cases.

6 Conclusion

In this work, we introduce an architecture of a Convolutional Denoising Autoen-
coder (CDA) adapted for multivariate time series imputation which inflates the
size of the hidden layers in the Encoder instead of reducing them. We also
employ a preprocessing step that turns the time series into 2D images based
on Gramian Angular Summation Fields in order to make the data more suitable
for our CDA. We compare our method against a standard Multi Layer Percep-
tron (MLP) and the state-of-the-art imputation method Multiple Imputations
by Chained Equations (MICE) with three different types of regression (Linear,
Ridge and Lasso). Our experiments were conducted on five different multivariate
time series datasets, for which we simulated 20%, 30%, 40% and 50% missingness
with data missing completely at random. Our results show that the CDA based
imputation outperforms MICE on all five datasets and also beats the MLP on
four datasets. On the fifth dataset CDA and MLP perform very similarly, but
CDA is still better on four out of the five degrees of missingness. Additionally we
present a preprocessing step on the datasets which manipulates the time series
lengths to generate more training samples for our model which led to a better
performance. The results show that the CDA model performs strongly against
both linear and non-linear regression based imputation models. Deep Learning
Networks are usually computationally more intensive than MICE but the impu-
tation quality of CDA was convincing enough to be chosen over MICE or MLP
based imputation.

In the future we plan to investigate also other types of missing data apart
from Missing Completely At Random (MCAR) and want to incorporate more
datasets as well as other deep learning based approaches for imputation.
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dation, project OSCAR “Opinion Stream Classification with Ensembles and Active
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Abstract. Fraud detection is an important research area where machine
learning has a significant role to play. An important task in that context,
on which the quality of the results obtained depends, is feature engineer-
ing. Unfortunately, this is very time and human consuming. Thus, in this
article, we present the DuSVAE model that consists of a generative model
that takes into account the sequential nature of the data. It combines two
variational autoencoders that can generate a condensed representation
of the input sequential data that can then be processed by a classifier to
label each new sequence as fraudulent or genuine. The experiments we
carried out on a large real-word dataset, from the Worldline company,
demonstrate the ability of our system to better detect frauds in credit
card transactions without any feature engineering effort.

Keywords: Anomaly detection + Fraud detection + Sequential data -
Variational autoencoder

1 Introduction

An anomaly (also called outlier, change, deviation, surprise, peculiarity, intru-
sion, etc.) is a pattern, in a dataset, that does not conform to an expected behav-
ior. Thus, anomaly detection is the process of finding anomalies in a dataset [4].
Fraud detection, a subdomain of anomaly detection, is a research area where the
use of machine learning can have a significant financial impact for companies
suffering from large frauds and it is not surprising that a very large amount of
research has been conducted over many years in that field [1].

At the Wordline company, we process billions of electronic transactions per
year in our highly secured data centers. It is obvious that detecting frauds in
that context is a very difficult task. For many years, the detection of credit card
frauds within Wordline has been based on a set of rules manually designed by
experts. Nevertheless such rules are difficult to maintain, difficult to transfer to
other business lines, and dependent on experts who need a very long training
© The Author(s) 2020
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period. The contribution of machine learning in this context seems obvious and
Wordline has decided for several years to develop research in this field.

Firstly, Worldline has put a lot of effort in feature engineering [3,9,12] to
develop discriminative handcrafted features. This improved drastically super-
vised learning of classifiers that aim to label card transactions as genuine or
fraudulent. Nevertheless, designing such features requires a huge amount of time
and human resources which is very costly. Thus developing automatic feature
engineering methods becomes a critical issue to improve the efficiency of our
models. However, in our industrial setting, we have to face with many issues
among which the presence of highly imbalanced data where the fraud ratio is
about 0.3%. For this reason, we first focused on classic unsupervised approaches
in anomaly detection where the objective is to learn a model from normal
data and then isolate non-compliant samples and consider them as anoma-
lies [5,17,19,21,22].

In this context, Deep autoencoder [7] is considered as a powerful data mod-
eling tool in the unsupervised setting. An autoencoder (AE) is made up of two
parts: an encoder designed to generate a compressed coding from the training
input data and a decoder that reconstructs the original input from the com-
pressed coding. In the context of anomaly detection [6,20,22], an autoencoder is
generally trained by minimizing the reconstruction error only on normal data.
Afterwards, the reconstruction error is applied as an anomaly score. This assumes
that the reconstruction error for a normal data should be small as it is close to
the learning data, while the reconstruction error for an abnormal data should
be high.

However, this assumption is not always valid. Indeed, it has been observed
that sometimes the autoencoder generalizes so well that it can also reconstruct
anomalies, which leads to view some anomalies as normal data. This can also
be the case when some abnormal data share some characteristics of normal data
in the training set or when the decoder is “too powerful” to properly decode
abnormal codings. To solve the shortcomings of autoencoders, [13,18] proposed
the negative learning technique that aims to control the compressing capacity
of an autoencoder by optimizing conflicting objectives of normal and abnormal
data. Thus, this approach looks for a solution in the gradient direction for the
desired normal input and in the opposite direction for the undesired input.

This approach could be very appealing to deal with fraud detection prob-
lems but we found that it is sometimes not sufficient in the context of our data.
Indeed, it is generally almost impossible to obtain in advance a dataset contain-
ing all representative frauds, especially in the context where unknown fraudulent
transactions occur on new terminals or via new fraudulent behaviors. This has
led us to consider more complex models with variational autoencoders (VAE), a
probabilistic generative extension of AE, able to model complex generative dis-
tributions that we found more adapted to efficiently model new possible frauds.

Another important point for credit card fraud detection is the sequential
aspect of the data. Indeed, to test a card for example, a fraudster may try to
make several (small) transactions in a short time interval, or directly perform
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an abnormally high transaction with respect to existing transactions of the true
card holder. In fact this sequential aspect has been addressed either indirectly
via aggregated features [3], that we would like to avoid designing, or directly
by sequential models such as LSTM, but [9] report nevertheless that the LSTM
did not improve much the detection performance for e-commerce transactions.
One of the main contribution of this paper is to propose a method to identify
fraudulent sequences of credit transactions in the context of highly imbalanced
data. For this purpose, we propose a model called DuSVAE, for Dual Sequen-
tial Variational Autoencoders, that consists of a combination of two variational
autoencoders. The first one is trained from fraudulent sequences of transactions
in order to be able to project the input data into another feature space and to
assign a fraud score to each sequence thanks to the reconstruction error informa-
tion. Once this model is trained, we plug a second VAE at the output of the first
one. This second VAE is then trained with a negative learning approach with
the objective to maximize the reconstruction error of the fraudulent sequences
and minimize the reconstruction error of the genuine ones.

Our method has been evaluated on a Wordline dataset for credit card fraud
detection. The obtained results show that DuSVAE can extract hidden represen-
tations able to provide results close to those obtained after a significant work of
feature engineering, therefore saving time and human effort. It is even possible
to improve the results when combining engineered features with DuSVAE.

The article is organized as follows: some preliminaries about the techniques
used in this work are given in Sect. 2. Then we describe the architecture and the
training strategy of the DusVAE method in Sect. 3. Experiments are presented
in Sect. 4 after a presentation of the dataset and useful metrics. Finally Sect. 5
concludes this article.

2 Preliminaries

In this section, we briefly describe the main techniques that are used in DuSVAE:
vanilla and variational autoencoders, negative learning and mixture of experts.

2.1 Autoencoder (AE)

An AE is a neural network [7], which is optimized in an unsupervised manner,
usually used to reduce the dimensionality of the input data. It is made up of
two parts linked together: an encoder E(x) and a decoder D(z). Given an input
sample x, the encoder generates z, a condensed representation of x. The decoder
is then tuned to reconstruct the original input x from the encoded representation
z. The objective function used during the training of the AE is given by:

Lap(z) = |z —D(E())| (1)

where || - || denotes an arbitrary distance function. The ¢; norm is typically
applied here. The AE can be optimized for example using stochastic gradient
descent (SGD) [10].
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2.2 Variational Autoencoder (VAE)

A VAE [11,16] is an attractive probabilistic generative version of the standard
autoencoder. It can learn a complex distribution and then use it as a generative
model defined by a prior p(z) and conditional distribution pg(z|z). Due to the
fact that the true likelihood of the data is generally intractable, a VAE is trained
through maximizing the evidence lower bound (ELBO):

L(z;0,9) = Bq, (|2) [log po(2|2)] — Dk (¢4(2|2)[[p(2)) (2)

where the first term E,, (.|, [log pg(z[2)] is a negative reconstruction loss that
enforces gy (z|z) (the encoder) to generate a meaningful latent vector z, so that
po(z|z) (the decoder) can reconstruct the input z from z. The second term
Dx1, (g4 (2|z)||p(2)) is a KL regularization loss that minimizes the KL divergence
between the approximate posterior g4(z|z) and the prior p(z) = N(0,I).

2.3 Negative Learning

Negative learning is a technique used for regularizing the training of the AE in
the presence of labelled data by limiting reconstruction capability (LRC) [13].
The basic idea is to maximize the reconstruction error for abnormal instances,
while minimizing the reconstruction error for normal ones in order to improve the
discriminative ability of the AE. Given an input instance € R™ and y € {0,1}
denotes its associated label where y = 1 stands for a fraudulent instance and
y = 0 for a genuine one. The objective function of LRC to be minimized is:

(1 =y)Lap(x) — (y)Lar(v) (3)

Training LRC-based models has the major disadvantage to be generally
unstable due to the fact that the anomaly reconstruction error is not upper
bounded. The LRC approach tends then to maximize the reconstruction error
for known anomalies rather than minimizing the reconstruction error for normal
points leading to a bad reconstruction of normal data points. To overcome this
problem, [18] has proposed Autoencoding Binary Classifiers (ABC) for super-
vised anomaly detection that improves LRC by using an objective function based
on a bounded reconstruction loss for anomalies, leading to a better training sta-
bility. The objective function of the ABC to be minimized is:

(1—y)Lap(z) — ylogy(1 — e £4r () (4)

2.4 Mixture-of-Experts Layer (MoE)

In addition to the previous methods, we now present the notion of MoE layer [§]
that will be used in our model.

The MoE layer aims to combine the outputs of a group of n neural networks
called experts EXq, FXo,...., EX,,. The experts have their specific parameters
but work on the same input, their n output are combined linearly with the
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MoE layer
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Fig. 1. An illustration of the MoE layer architecture

outputs of the gating network G which weights the experts according to the
input z. See Fig.1 for an illustration. Let F;(z) be the output of expert FX;,
and G(z); be the i attribute of G(x), then the output y of the MoE is defined

as follows: N

y=>Y Gx);EX;(). (5)
i=1

The intuition behind MoE layers is to train different network experts that
can focus on specific peculiarities of the data and then choose an appropriate
combination of experts with respect to the input x. In our industrial context,
such a layer would help us to take into account different behaviors from millions
of cardholders, which results in a variety of data distributions. The different
expert networks can thus model various behaviors observed in the dataset and

be combined adequately in function of the input data.

3 The DuSVAE Model

In this section, we present our approach to extract a hidden representation of
input sequences to be used for anomaly/fraud detection. We first introduce the
model architecture with the loss functions used, then we describe the learning
procedure used to train the model.

3.1 Model Architecture

We assume in the following that we are given as input a set of sequences X =
{z | = (t',#%,....,t™) with ' € R?}, every sequence being composed of m
transactions encoded by numerical vectors. Each sequence is associated to a
label y € {0,1} such that y = 1 indicates a fraudulent sequence and y = 0 a
genuine one. We label a sequence as fraudulent if its last transaction is a fraud.

As illustrated in Fig.2, our approach consists of two sequential variational
autoencoders. The first one is trained only on fraudulent sequences of the training
data. We use the generative capacity of this autoencoder to generate diverse and
representative instances of fraudulent instances with respect to the sequences
given as input. This autoencoder has the objective to prepare the data for the



Dual Sequential Variational Autoencoders for Fraud Detection 19

Auto-encoder 1 (AE4) Auto-encoder 2 (AEp)

Reconstructed

—/ 5} L= = ‘::%'> Input
Bz,

Input
data

Code1
Code2

MoE layer GRU Fc > Sampling > sequence  —> Vector

Fig. 2. The DuSVAE model architecture

second autoencoder and to provide also a first anomaly/fraud score with the
reconstruction error.

The first layers of the autoencoders are bi-directional GRU layers allowing us to
handle sequential data. The remaining parts of the encoder and the decoder contain
GRU and fully connected (FC) layers, as shown in Fig. 2. The loss function used
to optimize the reconstruction error of the first autoencoder is defined as follows:

Lrec(w, ¢1,601) = mse(z, Dy, (Eg, (2))) + Dxw (46, (2]2)[Ip(2)) , (6)

where mse is the mean square error function and p(z) = A(0,I). The encoder
Ey, (z) generates a latent representation z according to g, (z|z) = N (u1,01).
The decoder Dy, tries to reconstruct the input sequence from z. In order to
avoid mode collapse between the reconstructed transactions of the sequence,
we add the following loss function to control the reconstruction of individual
transactions with respect to relative distances from an input sequence x:

Liraap(x, ¢1,01) = Z Z

labs(t' — t7) — abs( — F)|1 (7)

&M—‘

where t" is the reconstruction obtained by the AE for the i*" transaction of the
sequence and abs(t) returns a vector where the features are the absolute values
of the original input vector t¢.

So, we train the parameters (¢1, 61 ) of the first autoencoder by minimizing the
following loss function over all the fraudulent sequences of the training samples:

‘Cl(x7¢1701) - ‘CTeC(x7¢1791) + )\Et'f‘x(xvgb1701)a (8)

where A is a tradeoff parameter.

The second autoencoder is then trained over all the training sequences by
negative learning. It takes as input both a sequence x and its reconstructed
version from the first autoencoder AFE;(x) that corresponds to the output of its
last layer. The loss function considered to optimize the parameters (¢, 60s) of
the second autoencoder is then defined as follows:
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‘62(1:7 AEl(x)a ¢2a 92) = (1 - y)£1(x, ¢27 92)
—y(L1(z, ¢1,01) + €) logy (1 — e~ 179202y - (9)

where L;(z,¢1,01) denotes the reconstruction loss £1 rescaled in the [0,1]-
interval with respect to all fraudulent sequences and e is a small value used
to smooth very low anomaly scores. The architecture of this second autoencoder
is similar to that of the first one, except that we use a MoE layer to compute the
mean of the normal distribution N (2, 02) defined by the encoder. As said pre-
viously, the objective is to take into account the variety of the different behavior
patterns found in our genuine data. The experts used in that layer are simple
one-layer feed-forward neural networks.

3.2 The Training Strategy

The global learning algorithm is presented in Algorithm 1. We have two training
phases, the first one focuses on training the first autoencoder AFE; as a backing
model for the second phase. It is trained only on fraudulent sequences by mini-
mizing Eq. 8. Once the model has converged, we freeze its weights and start the
second phase. For training the second autoencoder AFE5, we use both genuine
and fraudulent sequences and their reconstructed versions given by AFE;. We
then optimize the weights of AFE5 by minimizing Eq. 9. To control the imbalance
ratio, the training is done at each iteration by sampling n examples from fraudu-
lent sequences and n from genuine sequences. We repeat this step iteratively by
increasing the number n of sampled transactions for each novel iteration until
the model converges.

Algorithm 1. Dual sequential variational autoencoder (DuSVAE)

Input: X, genuine data, A’y fraudulent data.
Parameters: n number of sampled examples; h increment step.
Output: AE; Autoencoder, AFE> Autoencoder.
repeat

Train AE; on Ay by minimizing Equation 8
until convergence
Freeze the weights of AE;
repeat

X1 «— Sample(Xy,n) U Sample(Xy,n)

Xo — AFE1(Xy)

Train AE> on (X1, X2) by minimizing Equation 9

if n <|X¢| then

n<—n-+h

end if

: until convergence

= s
AL el S
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Table 1. Properties of the Worldline dataset used in the experiments.

Train (01/01-21/03) | Validation (22/03-31/03)| Test (01/04-30,/04)
# of genuine 25,120,194 3,019,078 9,287,673
# of fraud 88,878 9,631 29,614
Total 25,209,072 3,028,709 9,317,287
Imbalance ratio|0.003526 0.00318 0.003178

4 Experiments

In this section, we provide an experimental evaluation of our approach on a
real-world dataset of credit card e-payment transactions provided by Worldline.
First, we present the dataset, then we present the metrics used to evaluate the
models learned by our system and finally, we compare DuSVAE with other state-
of-the-art approaches.

4.1 Dataset

The dataset provided by Wordline covers 4 months of credit card e-payment
transactions made by European cardholders in e-commerce mode that has been
splitted into Train, Validation and Test sets used respectively to train, tune
and test the learned models. Its main challenges have been studied in [2], one of
them being the imbalance ratio as we can see on Table 1 that presents the main
characteristics of this dataset.

Each transaction is described by 12 features. A Boolean value is assigned
to each transaction to specify whether it corresponds to a fraud or not. This
labeling is handled by a team of human experts.

Since most features have a large number of values, using brute one-hot encod-
ing would generate a huge number of features. For example the “Merchant Cate-
gory Code” feature has 283 possible values and one-hot encoding would produce
283 new features. That would make our approach inefficient. Thus, before using
one-hot encoding, we transform each categorical value of each feature by a score
which is its risk to be associated with a fraudulent transaction. Let’s consider
for example a categorical feature f. We can compute the probability of the j**
value of feature f to Pe associated with a fraudulent transaction, denoted as
B;, as follows: B; = xﬁ : , where N;r: ;s the number of fraudulent transactions
where the value of feature f is equal to j and Ny—; is the total number of trans-
actions where the value of feature f is equal to j. In order to take into account
the number of transactions related to a particular value of a given feature, we
follow [14]. For each value j of a given feature, the fraud score S; for this value
is defined as follows:

S; = &85+ (1 - aj) AFP (10)

This score computes a weighted value of 3; and the probability of having a fraud
in a day (Average Fraud Probability: AFP). The weight o is a normalized value
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of aj in the range [0, 1], where «; is defined as the proportion of the number of
transactions for that value on the total number N of transactions: o; = N]fV: L,

Having replaced each value for each feature by its score, we can then run
one-hot encoding and thus significantly reduce the number of features generated.
For example, the “Merchant Category Code” feature has 283 possible values and
instead of generating 283 features, this technique produces only 29 features.

Finally, to generate sequences from transactions, we grouped all the transac-
tions by cardholder ID and we ordered each cardholder’s transactions by time.
Then, with a sliding window over the transactions we obtained a time-ordered
sequence of transactions for each cardholder. For each sequence, we have assigned
the label fraudulent or genuine of its last transaction.

4.2 Metrics

In the context of fraud detection, fortunately, the number of fraudulent transac-
tions is significantly lower than the number of normal transactions. This leads to
a very imbalanced dataset. In this situation, the traditional performance mea-
sures are not appropriate. Indeed, with an overall fraud rate of 0.3%, classifying
each transaction as normal leads to an accuracy of 99.7%, despite the fact that
the model is absolutely naive. That means we have to choose appropriate per-
formance measures that are robust in the case of imbalanced data. In this work
we rely on the area under the precision-recall curve (AUC-PR) as a robust and
clear measure of the accuracy of the classifier in an imbalanced setting. Each
point of the precision-recall curve corresponds to the precision of the classifier
at a specific recall level.

Once an alert is raised after a fraud has been detected, fraud experts can con-
tact the card-holder to check the validity of suspicious transactions. So, within
a single day, the fraud experts have to check a large number of transactions pro-
vided by the fraud detection system. Consequently, the precision of the transac-
tions highlighted as fraud is an important metric because that can help human
experts at Worldline to focus on the most important frauds and leave aside minor
frauds due to lack of time to process them. For this purpose, we rely on the Pag
as a global metric to compare models. It is the average of the precision of the
first K transactions which are calculated according to the following equation.

K
1
AveragePag = 7 Z Pa; (11)
i=1

4.3 Comparison with the State of the Art

We compare our approach with the following methods: variational autoencoder
[11,16] trained on fraudulent or genuine data only (VAE(F) or VAE(G) respec-
tively); limiting reconstruction capability (LRC) [13] and autoencoding binary
classifiers for supervised anomaly detection (ABC) [18]. It is important to note
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Table 2. AUC-PR achieved by CatBoost using various autoencoder models

Models Raw Reconstructed | Reconstruction error | Codel | Code2
Trx |Seq | Trx | Seq

VAE (F) |0.19/0.40|0.36 | 0.38 0.29 0.30 |0.27

VAE (G) 0.42 | 0.43 0.31 0.32 0.33

LRC 0.46 | 0.46 0.17 0.28 0.13

ABC 0.48 | 0.50 0.37 0.32 0.3

DuSVAE 0.51 0.53 0.36 0.50 |0.49

that ABC and LRC are not sequential models by nature. So, to make our com-
parison more fair, we adapted their implementation to allow them to process
sequential data. As a classifier, we used CatBoost [15] which is robust in the
context of imbalanced data and efficient on GPUs.

First, as we can observe in Table 2, the AUC-PR values obtained by running
CatBoost directly on transactions and sequences of transactions are respectively
equal to 0.19 and 0.40. If we look at the AUC-PR values obtained by running
CatBoost on the reconstructed transactions and sequences of transactions, we
can observe that the results are always greater than those obtained by running
CatBoost on raw data. Moreover it is interesting to note that DuSVAE achieved
the best results (0.51 and 0.53) compared to other state-of-the-art systems.

Now, if we look at the performance obtained by CatBoost on the hidden
representation vectors Codel and Code2, we observe that DuSVAE outperforms
the results obtained by other state-of-the-art systems and those results are quite
similar to the ones obtained on the reconstructed sequences of transactions. This
is interesting because it means that using DuSVAE a condensed representation
of the input data can be obtained, which still gives approximately the same
results as on the reconstructed sequences of transactions but that are of higher
dimensionality (about 10 times more) and can be less efficiently processed by
the classifier. Finally, when using the reconstruction error as a score to classify
fraudulent data, as done usually in anomaly detection, we can observe that
DuSVAE is competitive with the best method. However, the performance level
of Codel and Code2 with CatBoost being significantly better makes the use of
the hidden representations a better strategy than using the reconstruction error.

We then evaluated the impact of handcrafted features built by Worldline on
the classifier performance. As we can see on the first two lines of Table 3, adding
handcrafted features to the original sequential raw dataset leads to much better
results both from the point of view of AUC-PR measure and PQK measure.

Now if we consider using DuSVAE (rows 3 and 4 of Table3), we can also
notice a significant improvement of the results obtained on the raw dataset of
sequences augmented by handcrafted features compared to the results obtained
on the original one without these additional features. This is observed for both
the AUC-PR measure and the PQK measure. We see that, for the moment,
by using a classifier on the sequences reconstructed by DuSVAE on just the
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Table 3. AUC-PR and PQK achieved by CatBoost for sequence classification.

Input AUC-PR | P@Q100 | P@500
Raw data 0,40 0.43 0.11
Raw data + Handcrafted features 0,60 0.62 0.938
DuSVAE 0,53 0.88 0.72
(The input:raw data)

DuSVAE 0,65 0.85 0.941
(The input: raw data + Handcrafted features)

raw dataset (AUC-PR =0.53), we cannot reach the results obtained when we
use this classifier on the raw dataset augmented by handcrafted features (AUC-
PR =0.60). This can be explained by the fact that those features are based
on history and profiling techniques that embed information covering a period
of time larger than the one used for our dataset. Nevertheless we are not so
far and the fact that using DuSVAE on the dataset augmented by handcrafted
features (AUC-PR = 0.65) leads to better results than using the classifier without
DuSVAE (AUC-PR =0.60) is promising.

Table 3 also shows that the very good PQK values obtained when running the
classifier on the sequences of transactions reconstructed by DuSVAE mean that
DuSVAE can be a very significant help for experts to focus on real fraudulent
transactions and not waste time on fake ones.

5 Conclusion

In this paper, we presented the DuSVAE model which is a new fraud detection
technique. Our model combines two sequential variational autoencoders to pro-
duce a condensed representation vector of the input sequential data that can
then be used by a classifier to label new sequences of transactions as genuine or
fraudulent. Our experiments have shown that the DuSVAE model produces much
better results, in terms of AUC-PR and Pgg measures, than state-of-the-art sys-
tems. Moreover, the DuSVAE model produces a condensed representation of the
input data which can replace very favorably the handcrafted features. Indeed,
running a classifier on the condensed representation of the input data built by
the DuSVAE model leads to outperform the results obtained on the raw data,
with or without handcrafted features.

We believe that a first interesting way to further improve our results will be
to focus on attention mechanisms to better take into account the history of past
transactions in the detection of present frauds. A second approach will be to
better take into account the temporal aspects in the sequential representation
of our data and to reflect it in the core algorithm.
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Abstract. Graph neural networks (GNNs) have known an increasing
success recently, with many GNN variants achieving state-of-the-art
results on node and graph classification tasks. The proposed GNNs,
however, often implement complex node and graph embedding schemes,
which makes it challenging to explain their performance. In this paper,
we investigate the link between a GNN'’s ezpressiveness, that is, its abil-
ity to map different graphs to different representations, and its gener-
alization performance in a graph classification setting. In particular, we
propose a principled experimental procedure where we (i) define a prac-
tical measure for expressiveness, (ii) introduce an expressiveness-based
loss function that we use to train a simple yet practical GNN that is
permutation-invariant, (iii) illustrate our procedure on benchmark graph
classification problems and on an original real-world application. Our
results reveal that expressiveness alone does not guarantee a better per-
formance, and that a powerful GNN should be able to produce graph
representations that are well separated with respect to the class of the
corresponding graphs.

Keywords: Graph neural networks - Classification - Expressiveness

1 Introduction

Many real-world data present an inherent structure and can be modelled as
sequences, graphs, or hypergraphs [2,5,9,15]. Graph-structured data, in partic-
ular, are very common in practice and are at the heart of this work.

We consider the problem of graph classification. That is, given a set
G = {G;}", of arbitrary graphs and their respective labels {y;}7,, where
y; € {1,...,C} and C is the number of classes, we aim at finding a mapping
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fo: G — {1,...,C} that minimizes the classification error, where 6 denotes the
parameters to optimize.

Graph neural networks (GNNs) and their deep learning variants, the graph
convolutional networks (GCNs) [1,7,9,10,13,17,20,27], have gained consider-
able interest recently. GNNs learn latent node representations by recursively
aggregating the neighboring node features for each node, thereby capturing the
structural information of a node’s neighborhood.

Despite the profusion of GNN variants, some of which achieve state-of-the-art
results on tasks like node classification, graph classification, and link prediction,
GNNs remain very little studied. In particular, it is often unclear what a GNN
learns and how the learned graph (or node) mapping influences its generalization
performance. In a recent work, [25] present a theoretical framework to analyze
the expressive power of GNNs, where a GNN’s expressiveness is defined as its
ability to compute different graph representations for different graphs. Theoreti-
cal conditions under which a GNN is maximally expressive are derived. Although
it is reasonable to assume that a higher expressiveness would result in a higher
accuracy on classification tasks, this link has not been explicitly studied so far.

In this paper, we design a principled experimental procedure to analyze the
link between expressiveness and the test accuracy of GNNs. In particular:

— We define a practical measure to estimate the expressiveness of GNN;
— We use this measure to define a new penalized loss function that allows train-
ing GNNs with varying expressive power.

To illustrate our experimental framework, we introduce a simple yet practical
architecture, the Simple Permutation-Invariant Graph Convolutional Network
(SPI-GCN). We also present an original graph data set of metal hydrides that
we use along with benchmark graph data sets to evaluate SPI-GCN.

This paper is organized as follows. Section2 discusses the related work.
Section 3 introduces preliminary notations and concepts related to graphs and
GNNs. In Sect. 4, we introduce our graph neural network, SPI-GCN. In Sect. 5,
we present a practical expressiveness estimator and a new expressiveness-based
loss function as part of our experimental framework. Section6 presents our
results and Sect. 7 concludes the paper.

2 Related Work

Graph neural networks (GNNs) were first introduced in [11,19]. They learn latent
node representations by iteratively aggregating neighborhood information for
each node. Their more recent deep learning variants, the graph convolutional
networks (GCNs), generalize conventional convolutional neural networks to irreg-
ular graph domains. In [13], the authors present a GCN for node classification
where the computed node representations can be interpreted as the graph col-
oring returned by the 1-dimensional Weisfeiler-Lehman (WL) algorithm [24]. A
related GON that is invariant to node permutation is presented in [27]. The graph
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convolution operator is closely related to the one in [13], and the authors intro-
duce a permutation-invariant pooling operator that sorts the convolved nodes
before feeding them to a 1-dimensional classical convolution layer for graph-level
classification. A popular GCN is PATCHY-SAN [17]. Its graph convolution oper-
ator extracts normalized local “patches” (neighborhood representations) of the
graph which are then sorted and fed to a 1-dimensional traditional convolution
layer for graph-level classification. The method, however, requires the definition
of a node ordering and running the WL algorithm in a preprocessing step. On
the other hand, the normalization of the extracted patches implies sorting the
nodes again and using the external graph software NAUTY [14].

Despite the success of GNNs, there are relatively few papers that analyze
their properties, either mathematically or empirically. A notable exception is the
recent work by [25] that studies the expressive power of GNNs. The authors prove
that (i) GNNs are at most as powerful as the WL test in distinguishing graph
structures and that (ii) if the graph function of a GNN—i.e. its graph embedding
scheme—is injective, then the GNN is as powerful as the WL test. The authors
also present the Graph Isomorphism Network (GIN), which approximates the
theoretical maximally expressive GNN. In another study [4], the authors present
a simple neural network defined on a set of graph augmented features and show
that their architecture can be obtained by linearizing graph convolutions in
GNNs.

Our work is related to [25] in that we adopt the same definition of expres-
siveness, that is, the ability of a GNN to compute distinct graph representations
for distinct input graphs. However, we go one step further and investigate how
the graph function learned by GNNs affects their generalization performance.
On the other hand, our SPI-GCN extends the GCN in [13] to graph-level clas-
sification. Our SPI-GCN is also related to [27] in that we use a similar graph
convolution operator inspired by [13]. Unlike [27], however, our architecture does
not require any node ordering, and we only use a simple multilayer perceptron
(MLP) to perform classification.

3 Some Graph Concepts

A graph G is a pair (V, E) of aset V = {v1,...,v,} of vertices (or nodes) v;, and
aset E CV xV of edges (v;,v;). In this work, we represent a graph G by two
matrices: (i) an adjacency matriz A € R™*™ such that a,; = 1 if there is an edge
between nodes v; and v; and a;; = 0 otherwise,' and (ii) a node feature matriz
X € R™*4 with d being the number of node features. Each row x; € R? of X
contains the feature representation of a node v;, where d is the dimension of the
feature space. Since we only consider node features in this paper (as opposed to
edge features for instance), we will refer to the node feature matrix X simply as
the feature matrix in the rest of this paper.

1 Given a matrix M, m; denotes its ¢th row and m;; denotes the entry at its ¢th row
and jth column. More generally, we denote matrices by capital letters and vectors
by small letters. Scalars, on the other hand, are denoted by small italic letters.
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An important notion in graph theory is graph isomorphism. Two graphs
Gy = (V1,Fy) and Gy = (Va, Fs) are isomorphic if there exists a bijection
g : Vi — V such that every edge (u,v) is in Ej if and only if the edge (g(u), g(v))
is in Fs. Informally, this definition states that two graphs are isomorphic if there
exists a vertex permutation such that when applied to one graph, we recover the
vertex and edge sets of the other graph.

3.1 Graph Neural Networks

Consider a graph G with adjacency matrix A and feature matrix X. GNNs
use the graph structure (A) and the node features (X) to learn a node-level or
a graph-level representation—or embedding—of G. GNNs iteratively update a
node representation by aggregating its neighbors’ representations. At iteration [,
a node representation captures its [-hop neighborhood’s structural information.
Formally, the lth layer of a general GNN can be defined as follows:

alt! — AGGREGATE! ({2, : j € N(i)}) (1)
/1 — COMBINE! (2, al*!) (2)

(20’

where zé“ is the feature vector of node v; at layer [ and where z{ = x;. While

COMBINE usually consists in concatenating node representations from different
layers, different—and often complex—architectures for AGGREGATE have been
proposed. In [13], the presented GCN merges the AGGREGATE and COMBINE
functions as follows:

Z+1 = ReLU (mean({z; Lj e N@) UL} -Wl) , (3)

where ReLU is a rectified linear unit and W' is a trainable weight matrix. GNNs
for graph classification have an additional module that aggregates the node-level
representations to produce a graph-level one as follows:

zg = READOUT({zF : v; € V}) , (4)

for a GNN with L layers. In [25], the authors discuss the impact that the choice
of AGGREGATE', COMBINE', and READOUT has on the so-called ezpres-
siveness of the GNN, that is, its ability to map different graphs to different
embeddings. They present theoretical conditions under which a GNN is maxi-
mally expressive.

We now present a simple yet practical GNN architecture on which we illus-
trate our experimental framework.

4 Simple Permutation-Invariant Graph Convolutional
Network (SPI-GCN)

Our Simple Permutation-Invariant Graph Convolutional Network (SPI-GCN)
consists of the following sequential modules: (1) a graph convolution module
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that encodes local graph structure and node features in a substructure feature
matrix whose rows represent the nodes of the graph, (2) a sum-pooling layer as
a READOUT function to produce a single-vector representation of the input
graph, and (3) a prediction module consisting of dense layers that reads the
vector representation of the graph and outputs predictions.

Let G be a graph represented by the adjacency matrix A € R™ ™ and the
feature matrix X € R"*¢, where n and d represent the number of nodes and
the dimension of the feature space respectively. Without loss of generality, we
consider graphs without self-loops.

4.1 Graph Convolution Module

Given a graph G with its adjacency and feature matrices, A and X, we define
the first convolution layer as follows:

Z=f(D AXW) (5)

where A = A +1,, is the adjacency matrix of G with added self-loops, D is the
diagonal node degree matrix of A2 W e R¥ ig a trainable weight matrix, f is
a nonlinear activation function, and Z € R"*?" is the convolved graph. To stack
multiple convolution layers, we generalize the propagation rule in (5) as follows:

Z+ = (D AZW | (6)

where 2° = X, 7! is the output of the lth convolution layer, W! is a trainable
weight matrix, and f' is the nonlinear activation function applied at layer [.
Similarly to the GCN presented in [13] from which we draw inspiration, our
graph convolution module merges the AGGREGATE and COMBINE functions
(see (1) and (2)), and we can rewrite (6) as:

A+ = f1 (mean({z} < j € N(i) U {i}}) - W') (7)

where Z§+1 is the ith row of Z!™.
We return the result of the last convolution layer, that is, for a network with
L convolution layers, the result of the convolution is the last substructure feature

matrix Z%. Note that (6) is able to process graphs with varying node numbers.

4.2 Sum-Pooling Layer

The sum-pooling layer produces a graph-level representation zg by summing the
rows of Z%, previously returned by the convolution module. Formally:

7 = ZZzL . (8)
i=1

2 If G is a directed graph, D corresponds to the outdegree diagonal matrix of A.



32 A. Atamna et al.

The resulting vector zg € R% contains the final vector representation (or embed-
ding) of the input graph G in a dy-dimensional space. This vector representation
is then used for prediction—graph classification in our case.

Using a sum pooling operator is a simple idea that has been used in GNNs
such as [1,21]. Additionally, it results in the invariance of our architecture to
node permutation, as stated in Theorem 1.

Theorem 1. Let G and G be two arbitrary isomorphic graphs. The sum-pooling
layer of SPI-GCN produces the same vector representation for G and G..

This invariance property is crucial for GNNs as it ensures that two isomorphic—
and hence equivalent—graphs will result in the same output. The proof of The-
orem 1 is straightforward and omitted for space limitations.

4.3 Prediction Module

The prediction module of SPI-GCN is a simple MLP that takes as input the
graph-level representation zg returned by the sum-pooling layer and returns
either: (i) a probability p in case of binary classification or (i) a vector p of
probabilities such that ), p; =1 in case of multi-class classification.

Note that SPI-GCN can be trained in an end-to-end fashion through back-
propagation. Additionally, since only one graph is treated in a forward pass, the
training complexity of SPI-GCN is linear in the number of graphs.

In the next section, we describe a practical methodology for studying the
expressiveness of SPI-GCN and its connection to the generalization performance
of the algorithm.

5 Investigating Expressiveness of SPI-GCN

We start here by introducing a practical definition of expressiveness. We then
show how the defined measure can be used to train SPI-GCN and help under-
stand the impact expressiveness has on its generalization performance.

5.1 Practical Measure of Expressiveness

The expressiveness of a GNN, as defined in [25], is its ability to map different
graph structures to different embeddings and, therefore, reflects the injectivity
of its graph embedding function. Since studying injectivity can be tedious, we
characterize expressiveness—and hence injectivity—as a function of the pairwise
distance between graph embeddings.
Let {zg,}™, be the set of graph embeddings computed by a GNN A for
a given input graph data set {G;}7,. We define A’s expressiveness, £(A), as
follows:
E(A) = mean({||zq, —zg,ll2:4,7=1,....,m, i # j}) , (9)

that is, £(A) is the average pairwise Euclidean distance between graph embed-
dings produced by A. While not strictly equivalent to injectivity, £ is a reasonable
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indicator thereof, as the average pairwise distance reflects the diversity within
graph representations which, in turn, is expected to be higher for more diverse
input graph data sets. For permutation-invariant GNNs like SPI-GCN,? £ is zero
when all graphs {G;}", are isomorphic.

5.2 Penalized Cross Entropy Loss

We train SPI-GCN using a penalized cross entropy loss, L,, that consists of a
classical cross entropy augmented with a penalty term defined as a function of
the expressiveness of SPI-GCN. Formally:

L, = cross-entropy ({y; }ieq, {Ui}izq) — o - E(SPI-GCN) (10)
where {y;}7, (resp. {§;}7~,) is the set of real (resp. predicted) graph labels, «

K3
is a non-negative penalty factor, and £ is defined in (9) with {zg, }; being the
graph embeddings computed by SPI-GCN.

By adding the penalty term —a - £(SPI-GCN) in £,, the expressiveness is
maximized while the cross entropy is minimized during the training process.
The penalty factor « controls the importance attributed to £(SPI-GCN) when
L, is minimized. Consequently, higher values of a allow to train more expressive
variants of SPI-GCN whereas for a = 0, only the cross entropy is minimized.

In the next section, we assess the performance of SPI-GCN for different values
of a. We also compare SPI-GCN with other more complex GNN architectures,
including the state-of-the-art method.

6 Experiments

We carry out a first set of experiments where we compare our approach, SPI-
GCN, with two recent GCNs. In a second set of experiments, we train different
instances of SPI-GCN with increasing values of the penalty factor a (see (10))
in an attempt to understand how the expressiveness of SPI-GCN affects its test
accuracy, and whether it is the determining factor of its generalization perfor-
mance, as implicitly suggested in [25]. Our code and data are available at https://
github.com/asmaatamna/SPI-GCN.

6.1 Data Sets

We use nine public benchmark data sets including five bioinformatics data sets
(MUTAG [6], PTC [22], ENZYMES [3], NCI1 [23], PROTEINS [8]), two social
network data sets (IMDB-BINARY, IMDB-MULTI [26]), one image data set
where images are represented as region adjacency graphs (COIL-RAG [18]), and
one synthetic data set (SYNTHIE [16]). We also evaluate SPI-GCN on an original
real-world data set collected at the ICMPE,* HYDRIDES, that contains metal
hydrides in graph format, labelled as stable or unstable according to specific
energetic properties that determine their ability to store hydrogen efficiently.

3 As mentioned previously, we state that permutation-invariance is a minimal require-
ment for any practical GNN.
4 East Paris Institute of Chemistry and Materials Science, France.
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6.2 Architecture of SPI-GCN

The instance of SPI-GCN that we use for experiments has two graph convolution
layers of 128 and 32 hidden units respectively, followed by a hyperbolic tangent
function and a softmax function (per node) respectively. The sum-pooling layer
is a classical sum applied row-wise; it is followed by a prediction module con-
sisting of a MLP with one hidden layer of 256 hidden units followed by a batch
normalization layer and a ReLU. We choose this architecture by trial and error
and keep it unchanged throughout the experiments.

6.3 Comparison with Other Methods

In these experiments, we consider the simplest variant of SPI-GCN where the
penalty term in (10) is discarded by setting o = 0. That is, the algorithm is
trained using only the cross entropy loss.

Baselines. We compare SPI-GCN with the well-known GCN, PATCHY-SAN
(PSCN) [17], the Deep Graph Convolutional Neural Network (DGCNN) [27] that
uses a similar convolution module to ours, and the recent state-of-the-art Graph
Isomorphism Network (GIN) [25].

Experimental Procedure. We train SPI-GCN using full batch ADAM opti-
mizer [12], with cross entropy as the loss function to minimize (o = 0 in (10)).
Upon experimentation, we set ADAM’s hyperparameters as follows. The algo-
rithm is trained for 200 epochs on all data sets and the learning rate is set
to 1073. To estimate the accuracy, we perform 10-fold cross validation using 9
folds for training and one fold for testing each time. We report the average (test)
accuracy and the corresponding standard deviation in Table 1. Note that we only
use node attributes in our experiments. In particular, SPI-GCN does not exploit
node or edge labels of the data sets. When node attributes are not available, we
use the identity matrix as the feature matrix for each graph.

We follow the same procedure for DGCNN. We use the authors’ implemen-
tation® and perform 10-fold cross validation with the recommended values for
training epochs, learning rate, and SortPooling parameter k, for each data set.

For PSCN, we report the results from the original paper [17] (for receptive
field size k = 10) as we could not find an authors’ public implementation of the
algorithm. The experiments were conducted using a similar procedure as ours.

For GIN, we also report the published results [25] (GIN-0 in the paper), as
it was not straightforward to use the authors’ implementation.

Results. Table 1 shows the results for our algorithm (SPI-GCN), DGCNN [27],
PSCN [17], and the state-of-the-art GIN [25]. We observe that SPI-GCN is highly
competitive with other algorithms despite using the same architecture for all
data sets. The only noticeable exceptions are on the NCI1 and IMDB-BINARY
data sets, where the best approach (GIN) is up to 1.28 times better. On the
other hand, SPI-GCN appears to be highly competitive on classification tasks

5 https://github.com/muhanzhang/pytorch DGCNN.
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with more than 3 classes (ENZYMES, COIL-RAG, SYNTHIE). The difference in
accuracy is particularly significant on COIL-RAG (100 classes), where SPI-GCN
is around 34 times better than DCGCNN, suggesting that the features extracted
by SPI-GCN are more suitable to characterize the graphs at hand. SPI-GCN
also achieves a very reasonable accuracy on the HYDRIDES data set and is 1.06
times better than DGCNN on ENZYMES.

The results in Table1 show that despite its simplicity, SPI-GCN is com-
petitive with other practical graph algorithms and, hence, it is a reasonable
architecture to consider for our next set of experiments involving expressiveness.

Table 1. Accuracy results for SPI-GCN and three other deep learning methods
(Dcenn, PSCN, GIN).

Algorithm SPI-GCN DGenN PSCN GIN
MUTAG 84.40 +£8.14 |86.11 +7.14 | 88.95+4.37 | 89.4 + 5.6
PTC 56.41 £5.71 |55.00 +£5.10 | 62.29 + 5.68 | 64.6 £+ 7.0
NCI1 64.11 +£2.37 |72.73+1.56 | 76.34 +1.68 | 82.7 + 1.7
PROTEINS 72.06 £3.18 |72.79 4+ 3.58 | 75.00 £ 2.51 | 76.2 & 2.8
ENZYMES 50.17 £+ 5.60 | 47.00 + 8.36 | — -
IMDB-BINARY | 60.40 +4.15 | 68.60 +5.66 | 71.00 £2.29 | 75.1 £+ 5.1
IMDB-MULTI 44.13 £4.61 |45.20 +3.75|45.23 +2.84 | 52.3 &+ 2.8
COIL-RAG 74.38 +2.42| 2.21+£0.33| — -
SYNTHIE 71.00 + 6.44 | 54.25 £4.34 | — -
HYDRIDES 82.75 £2.67 | — - -

6.4 Expressiveness Experiments
Through these experiments, we try to answer the following questions:

— Do more expressive GNNs perform better on graph classification tasks? That
is, is the injectivity of a GNN’s graph function the determining factor of its
performance?

— Can the performance be explained by another factor? If yes, what is it?

To this end, we train increasingly injective instances of SPI-GCN on the penal-
ized cross entropy loss £, (10) by setting the penalty factor « to increasingly
large values. Then, for each trained instance, we investigate (i) its test accu-
racy, (ii) its expressiveness £(SPI-GCN) (9), and (iii) the average normalized
Inter-class Graph Embedding Distance (IGED), defined as the average pairwise
Euclidean distance between mean graph embeddings taken class-wise divided by
E(SPI-GCN). Formally:

mean({||z; —z%|l2: ¢, =1,...,C, c#'})
E(SPI-GCN) ’

IGED = (11)
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Table 2. Expressiveness experiments results. SPI-GCN is trained on the penalized
cross entropy loss, £,, with increasing values of the penalty factor a.. For each data set,
and for each value of «, we report the test accuracy (a), the expressiveness £(SPI-GCN)

(b), and the IGED (c). Highlighted are the maximal values for each quantity.

a 0 10-3 10-1 1 10
MUTAG 84.40 & 8.14 | 84.40 4 8.14 |86.07 4= 9.03| 82.56 + 7.33 | 81.45 £ 6.68 |(a)
0.0940.01 | 0.09£0.01 | 0.1240.01 | 596+1.08  6.32+0.76|(b)
0.68+0.16 | 0.68+0.16 | 0.82+0.18 | 1.214+0.23 1.20 %+ 0.22|(c)
PTC 56.41 4+ 5.71 | 54.97 +6.05 | 54.64 4+ 6.33 | 57.88 +8.65 |58.70 & 7.40|(a)
0.09+£0.01 | 0.09+0.01 | 0.11+0.01 | 841+3.13 | 9.03+2.94|(b)
0.26 £0.05 | 0.26+0.05 | 0.26+0.06 | 0.4140.22  0.42=+0.22/(c)
NCI1 64.11 4+ 2.37 64.21 +2.36 | 64.01 +-2.87 | 63.48 +1.36 | 63.19 £ 1.72 |(a)
0.09 +0.004| 0.09+0.005| 1.07+0.19 | 16.83 +0.49 16.91 4 0.52|(b)
0.184£0.02 | 0.1940.03 | 0.59+0.05 | 0.6240.05 0.62=+0.05|(c)
PROTEINS |72.06 4= 3.18 | 71.78 £ 3.55 | 71.51 4+ 3.26 | 70.97 +3.49 | 71.42 +3.23 |(a)
5.89 +1.34 | 13.07 +3.21 |35.88 4+ 4.89 35.88 + 4.89 35.88 4+ 4.89|(b)
0.74+0.09 | 0.744+0.09 | 0.744+0.09| 0.74 4 0.09| 0.74 4 0.09 (c)
ENZYMES |50.17 4 5.60 |50.17 4 5.60 | 29.33 4 5.93 | 29.33 + 5.54 | 29.33 £ 5.88 |(a)
0.794£0.21 | 1.85+0.64 | 23.22+£2.99 | 23.33 & 3.02 |23.35 4+ 3.01|(b)
0.444+0.06 | 04240.10 | 04240.10 | 0.42+0.10| 0.4240.10 (c)
IMDB-BIN. | 60.40 & 4.15 {61.70 4 4.96 | 61.10 & 3.75 | 54.40 + 3.10 | 54.20 £ 5.15 |(a)
0.1240.01 | 0.1240.01 | 0.16+0.01 {12.43 4+ 2.37 11.70 +2.89 |(b)
0.15+0.03 | 0.15+0.03 | 0.15+0.03| 0.12+0.08 | 0.1240.08 |(c)
IMDB-MUL.| 44.13 +4.61 | 44.60 &+ 5.41 |44.80 4-4.51| 39.73 +4.34 | 38.87 £ 4.42 |(a)
0.084+0.01 | 0.08+0.01 | 0.64+0.14 {10.38 £1.05 9.91+1.15 |(b)
0.16 £0.02 | 0.16 £0.02 | 0.16 £0.09| 0.15+0.09 | 0.1540.09 |(c)
COIL-RAG |74.38 4-2.42 |74.38 - 2.45 | 72.49 4 3.21 | 52.08 +4.89 | 28.72 £ 3.62 |(a)
0.08 4 0.002| 0.081 £0.002| 0.134+0.01 | 2.00+0.18 | 2.33 £0.14/(b)
0.95+0.01 | 0.95+0.01 | 0.96+0.01 | 0.984+0.02 0.98+0.02|(c)
SYNTHIE | 71.00+6.44 | 71.00 4 6.04 |74.00 & 6.44| 73.00 + 7.57 | 73.75 £ 7.52 |(a)
1.604+0.20 | 1.8640.24 [29.97 +2.16| 29.50 +2.18 | 29.37 & 2.18 |(b)
0.73+£0.07 | 0.7240.08 | 0.614+0.11 | 0.59+0.12 | 0.5840.12 (c)
HYDRIDES | 82.75 4 2.67 | 82.65 4 2.44 |83.92 4 4.30| 77.45 +3.25 | 76.37 £ 2.57 |(a)
0.13+£0.01 | 0.13+£0.01 | 1.68+0.87 | 4.75+0.41  5.0340.75|(b)
0.504+0.11 | 0.5040.11 0.8+0.19 | 0.854+0.21| 0.72+0.22 |(c)

where zj, is the mean graph embedding for class k. The IGED can be interpreted
as an estimate of how well the graph embeddings computed by SPI-GCN are
separated with respect to their respective class.

Experimental Procedure. We train SPI-GCN on the penalized cross entropy
loss £, (10) where we sequentially choose o from {0,1073,1071,1,10}. We do
so using full batch ADAM optimizer that we run for 200 epochs with a learning
rate of 1073, on all the graph data sets introduced previously. For each data set
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and for each value of a, we perform 10-fold cross validation using 9 folds for
training and one fold for testing. We report in Table 2 the average and standard
deviation of: (a) the test accuracy, (b) the expressiveness £(SPI-GCN), and (c)
the IGED (11), for each value of a and for each data set.

Results. We observe from Table2 that using a penalty term in £, to maxi-
mize the expressiveness—or injectivity—of SPI-GCN helps to improve the test
accuracy on some data sets, notably on MUTAG, PTC, and SYNTHIE. How-
ever, larger values of £(SPI-GCN) do not correspond to a higher test accu-
racy except for two cases (PTC, SYNTHIE). Overall, £(SPI-GCN) increases
when « increases, as expected, since the expressiveness is maximized during
training when « > 0. The IGED, on the other hand, is correlated to the best
performance in four out of ten cases (ENZYMES, IMDB-BINARY, and IMDB-
MULTT), where the test accuracy is maximal when the IGED is maximal. On
HYDRIDES, the difference in IGED for a = 10~! (highest accuracy) and a = 1
(highest IGED value) is negligible.

Our empirical results indicate that while optimizing the expressiveness of
SPI-GCN may result in a higher test accuracy in some cases, more expressive
GNNs do not systematically perform better in practice. The IGED, however,
which reflects a GNN’s ability to compute graph representations that are cor-
rectly clustered according to their effective class, better explains the generaliza-
tion performance of the GNN.

7 Conclusion

In this paper, we challenged the common belief that more expressive GNNs
achieve a better performance. We introduced a principled experimental pro-
cedure to analyze the link between the expressiveness of a GNN and its test
accuracy in a graph classification setting. To the best of our knowledge, our
work is the first that explicitly studies the generalization performance of GNNs
by trying to uncover the factors that control it, and paves the way for more
theoretical analyses. Interesting directions for future work include the design of
better expressiveness estimators, as well as different (possibly more complex)
penalized loss functions.
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Abstract. Learning from potentially infinite and high-dimensional
data streams poses significant challenges in the classification task. For
instance, k-Nearest Neighbors (kNN) is one of the most often used algo-
rithms in the data stream mining area that proved to be very resource-
intensive when dealing with high-dimensional spaces. Uniform Manifold
Approximation and Projection (UMAP) is a novel manifold technique
and one of the most promising dimension reduction and visualization
techniques in the non-streaming setting because of its high performance
in comparison with competitors. However, there is no version of UMAP
that copes with the challenging context of streams. To overcome these
restrictions, we propose a batch-incremental approach that pre-processes
data streams using UMAP, by producing successive embeddings on a
stream of disjoint batches in order to support an incremental kNN classi-
fication. Experiments conducted on publicly available synthetic and real-
world datasets demonstrate the substantial gains that can be achieved
with our proposal compared to state-of-the-art techniques.

Keywords: Data stream - k-Nearest Neighbors - Dimension
reduction - UMAP

1 Introduction

With the evolution of technology, several kinds of devices and applications are
continuously generating large amounts of data in a fast-paced way as streams.
Hence, the data stream mining area has become indispensable and ubiquitous
in many real-world applications that require real-time — or near real-time —
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processing, e.g., social networks, weather forecast, spam filters, and more. Unlike
traditional datasets, the dynamic environment and the tremendous volume of
data streams make them impossible to store or to scan multiple times [12].

Classification is an active area of research in data stream mining field where
several researchers are paying attention to develop new — or improve existing
— algorithms [14]. However, the dynamic nature of data streams has outpaced
the capability of traditional classification algorithms to process data streams.
In this context, a multitude of supervised algorithms for static datasets that
have been widely studied in the offline processing, and proved to be of lim-
ited effectiveness on large data, have been extended to work within a stream-
ing framework [3,5,11,18]. Data stream mining approaches can be divided into
two main types [23]: (i) instance-incremental approaches which update the
model with each instance as soon as it arrives, such as Self-Adjusting Memory
ENN (samkNN) [18], and Hoeffding Adaptive Tree (HAT) [4]; and (ii) batch-
incremental approaches which make no change/increment to their model until
a batch is completed, e.g., support vector machines [10], and batch-incremental
ensemble of decision trees [15]. Nevertheless, the high dimensionality of data
complicates the classification task for some algorithms and increases their com-
putational resources, most notably the k-Nearest Neighbors (KNN) because it
needs the entire dataset to predict the labels for test instances [23]. To cope with
this issue, a promising approach is feature transformation which transforms the
input features into a new set of features, containing the most relevant compo-
nents, in some lower-dimensional space.

In attempt to improve the performance of kNN, we incorporate a
batch-incremental feature transformation strategy to tackle potentially high-
dimensional and possibly infinite batches of evolving data streams while ensur-
ing effectiveness and quality of learning (e.g. accuracy). This is achieved via
a new manifold technique that has attracted a lot of attention recently: Uni-
form Manifold Approximation and Projection (UMAP) [21], built upon rigorous
mathematical foundations, namely Riemannian geometry. To the best of our
knowledge, no incremental version of UMAP exists which makes it not applica-
ble on large datasets. The main contributions are summarized as follows:

— Batch-Incremental UMAP: a new batch-incremental novel manifold learning
technique, based on extending the UMAP algorithm to data streams.

— UMAP-kNearest Neighbors (UMAP-kNN): a new batch-incremental kNN
algorithm for data streams classification using UMAP.

— Empirical experiments: we provide an experimental study, on various
datasets, that discusses the implication of parameters on the algorithms per-
formance;

The paper is organized as follows. Section 2 reviews the prominent related
work. Section 3 provides the background of UMAP, followed by the description
of our approach. In Sect. 4 we present and discuss the results of experiments on
diverse datasets. Finally, we draw our conclusions and present future directions.



42 M. Bahri et al.

2 Related Work

Dimensionality reduction (DR) is a powerful tool in data science to look for
hidden structure in data and reduce the resources usage of learning algorithms.
The problem of dimensionality has been widely studied [25] and used throughout
different domains, such as image processing and face recognition. Dimensionality
reduction techniques facilitate the classification task, by removing redundancies
and extracting the most relevant features in the data, and permits a better data
visualization. A common taxonomy divides these approaches into two major
groups: matriz factorization and graph-based approaches.

Matrix factorization algorithms require matrix computation tools, such as
Principal Components Analysis (PCA) [16]. It is a well-known linear technique
that uses singular value decomposition and aims to find a lower-dimensional basis
by converting the data into features called principal components by computing
the eigenvalues and eigenvectors of a covariance matrix. This straightforward
technique is computationally cheap but ineffective with data streams since it
relies on the whole dataset. Therefore, some incremental versions of PCA have
been developed to handle streams of data [13,24,26].

Graph/Neighborhood-based techniques are leveraged in the context of dimen-
sion reduction and visualization by using the insight that similar instances in a
large space should be represented by close instances in a low-dimensional space,
whereas dissimilar instances should be well separated. t-distributed Stochastic
Neighbor Embedding (tSNE) [20] is one of the most prominent DR techniques in
the literature. It has been proposed to visualize high-dimensional data embed-
ded in a lower space (typically 2 or 3 dimensions). In addition to the fact that
it is computationally expensive, tSNE does not preserve distances between all
instances and can affect any density—or distance—based algorithm and hence con-
serves more of the local structure than the global structure.

3 Batch-Incremental Classification

In the following, we assume a data stream S is a sequence of instances
X1,..., Xy, where N denotes the number of available observations so far. Each
instance X; is composed of a vector of d attributes X; = (x},...,2¢). The
dimensionality reduction of S comprises the process of finding a low-dimensional
presentation S’ =Yi,..., Yy, where Y; = (y},...,y") and p < d.

3.1 Prior Work

Unlike tSNE [20], UMAP has no restriction on the projected space size making it
useful not only for visualization but also as a general dimension reduction tech-
nique for machine learning algorithms. It starts by constructing open balls over
all instances and building simplicial complexes. Dimension reduction is obtained
by finding a representation, in a lower space, that closely resembles the topo-
logical structure in the original space. Given the new dimension, an equivalent
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Fig. 1. Projection of CNAE dataset in 2-dimensional space. Offline: (a) UMAP, (b)
tSNE, and (c) PCA. Batch-incremental: (d) UMAP, (e) tSNE, and (f) PCA. (Color
figure online)

fuzzy topological representation is then constructed [21]. Then, UMAP optimizes
it by minimizing the cross-entropy between these two fuzzy topological represen-
tations. UMAP offers better visualization quality than tSNE by preserving more
of the global structure in a shorter running time. To the best of our knowledge,
none of these techniques has a streaming version. Ultimately, both techniques
are essentially transductive! and do not learn a mapping function from the input
space. Hence, they need to process all the data for each new unseen instance,
which prevents them from being usable in data streams classification models.
Figurel shows the projection of CNAE dataset (see Tablel) into 2-
dimensions in an offline/online fashions where each color represents a label. In
Fig. la, we note that UMAP offers the most interesting visualization while sep-
arating classes (9 classes). The overlap in the new space, for instance with tSNE
in Fig. 1b, can potentially affect later classification task, notably distance-based
algorithms, since properties like global distances and density may be lost. On the
other hand, linear transformation, such as PCA, cannot discriminate between
instances which prevents them from being represented in the form of clusters
(Fig. 1c). To motivate our choice, we project the same dataset using our batch-

! Transductive learning consists on learning on a full given dataset (including unknown
label), but prediction is only made on the known set of unlabeled instances from the
same dataset. This is achieved by clustering data instances.
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incremental strategy (more details in Sect. 3.2). Figure 1d illustrates the change
from the offline UMAP representation; this is not as drastic as the ones engen-
dered by tSNE and PCA (Figs. le and f, respectively) showing their limits on
capturing information from data that arrives in a batch-incremental manner.

3.2 Algorithm Description

A very efficient and simple scheme in supervised learning is lazy learning [1].
Since lazy learning approaches are based on distances between every pair of
instances, they unfortunately have a low performance in terms of execution time.
The k-Nearest Neighbors (ENN) is a well-known lazy algorithm that does not
require any work during training, so it uses the entire dataset to predict labels for
test instances. However, it is impossible to store an evolving data stream which
is potentially infinite — nor to scan it multiple times — due to its tremendous
volume. To tackle this challenge, a basic incremental version of kNN has been
proposed which uses a fixed-length window that slides through the stream and
merges new arriving instances with the closest ones already in the window [23].

To predict the class label for an incoming instance, we take the majority class
labels of its nearest neighbors inside the window using a defined distance metric
(Eq. 2). Since we keep the recent arrived instances inside the sliding window for
prediction, the search for the nearest neighbors is still costly in terms of memory
and time [3,7] and high-dimensional streams require further resources.

Given a window w, the distance between X; and X is defined as follows:

Dx, (X;) = /1 X3 = X;|>. (1)
Similarly, the k-Nearest Neighbors distance is defined as follows:

Dy (X;) = D 2
#l m)gIEwZJ 1 x, (X 2)

where (’:) denotes the subset of the kNN to X; in w.

When dealing with high-dimensional data, a pre-processing phase before
applying a learning algorithm is imperative to avoid the curse of dimension-
ality from a computational point of view. The latter may increase the resources
usage and decrease the performance of some algorithms, such as kNN. The main
idea to mitigate this curse consists of using an efficient strategy with consistent
and promising results such as UMAP.

Since UMAP is a transductive technique, an instance-incremental learning
approach that includes UMAP does not work because the entire stream needs to
be processed for each new incoming instance. By doing it this way, the process
will be costly and will not respond to the streaming requirements. To alleviate the
processing cost considering the framework within which several challenges shall
be respected, including the memory constraint and the incremental behavior of
data, we adopt a batch-incremental strategy. In the following, we introduce the
procedure of our novel approach, batch-incremental UMAP-ANN.
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Fig. 2. Batch-incremental UMAP-AKNN scheme

Step 1: Partition of the Stream. During this step, we assume that data
arrive in batches — or chunks — by dividing the stream into disjoint partitions
S1,52,... of size s. The first part of Fig. 2 shows a stream of instances divided
into batches, so instead of having instances available one at a time, they will
arrive as a group of instances simultaneously, Si,...,5,, where S; is the gth
chunk. A simple example of data stream is a video sequence where at each
instant we have a succession of images.

Step 2: Data Pre-processing. We aim to construct a low-dimensional Y; € p,
from an infinite stream of high-dimensional data X; € d, where p < d. As men-
tioned before, UMAP is unable to compress data incrementally and needs to
transform more than one observation at a time because it builds a neighborhood-
graph on a set of instances and then lays it out in a lower dimensional space [21].
Thus, our proposed approach operates on batches of the stream where a single
batch S; of data is processed at a time T;. The two first steps in Fig. 2 depict the
application of UMAP on the disjoint batches. Once a batch is complete, through-
out the second step, we apply UMAP on it independently from the chunks that
have been already processed, so each S; € R? will be transformed and repre-
sented by S, € RP. This new representation is very likely devoid of redundan-
cies, irrelevant attributes, and is obtained by finding potentially useful non-linear
combinations of existing attributes, i.e. by repacking relevant information of the
larger feature space and encoding it more compactly.

For UMAP to learn when moving from a batch to another, we seed each
chunk’s embedding with the outcome of the previous one, i.e., match the prior
initial coordinates for instances in the current embedding to the final coordinates
in the preceding one. This will help to avoid losing the topological information of
the stream and to keep stability in successive embeddings as we transition from
one batch to its successor. Afterwards, we use the compressed representation
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of the high-dimensional chunk for the next step that consists in supporting the
incremental kNN classification algorithm.

Step 3: kNN Classification. UMAP-ENN aims to decrease the computational
costs of kNN on high-dimensional data stream by reducing the input space size
using the dimension reducing UMAP, in a batch-incremental way. In addition to
the prediction phase of the kNN algorithm that, based on the neighborhood?,
UMAP operates on a k-nearest graph (topological representation) as well and
optimizes the low-dimensional representation of the data using gradient descent.
One nice takeaway is that UMAP, because of its solid theoretical backing as
a manifold technique, keeps properties such as density and pairwise distances.
Thus, it does not bias the neighborhood-based kNN performance.

This step consists of classifying the evolving data stream, where the learn-
ing task occurs on consecutive batches, i.e. we train incrementally KNN with
instances becoming successively available in chunk buffers after pre-processing.
Figure 2 shows the underlying batch-incremental learning scheme used which
is built upon the divide-and-conquer strategy. Since UMAP is independently
applied to batches, so once a chunk is complete and has been transformed in RP,
we feed the half of the batch to the sliding window and we predict incrementally
the class label for the second half (the rest of instances).

Given that kNN is adaptive, the main novelty of UMAP-ENN is in how it
merges the current batch to previous ones. This is done by adding it to the
instances from previous chunks inside the kNN window. Even if past chunks
have been discarded, only some of them have been stored and maintained while
the adaptive window scrolls. Thereafter, instances kept temporarily inside the
window are going to be used to define the neighborhood and predict the class
labels for later incoming instances. As presented in Fig. 2, the intuitive idea to
combine results from different batches is to use the half of each batch for training
and the second half for prediction. In general, due to the possibility of having
often very different successive embeddings, one would expect that this may affect
the global performance of our approach. Thus, we adopt this scheme to maintain
a stability over an adaptive batch-incremental manifold classification approach.

4 Experiments

In this section, we present a series of experiments carried out on various datasets
based on three main results: the accuracy, the memory (MB), and the time (Sec).
4.1 Datasets

We use 3 synthetic and 6 real-world datasets from different scenarios that have
been thoroughly used in the literature to evaluate the performance of data

2 The distances between the new incoming instance and the instances already available
inside the adaptive window are computed in order to assign it to a particular class.
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streams classifiers. Table 1 presents a short description of each dataset, and fur-
ther details are provided in what follows.

Tweets. The dataset was created using the tweets text data generator provided
by MOA [6] that simulates sentiment analysis on tweets, where messages can
be classified depending on whether they convey positive or negative feelings.
Tweets; 2,3 produce instances of 500, 1,000 and 1,500 attributes respectively.

Har. Human Activity Recognition dataset [2] built from several subjects per-
forming daily living activities, such as walking, sitting, standing and laying, while
wearing a waist-mounted smartphone equipped with sensors. The sensor signals
were pre-processed using noise filters and attributes were normalized.

CNAE. CNAE is the national classification of economic activities dataset [9].
Instances represent descriptions of Brazilian companies categorized into 9 classes.
The original texts were pre-processed to obtain the current highly sparse data.

Enron. The Enron corpus dataset is a large set of email messages that was made
public during the legal investigation concerning the Enron corporation [17]. This
cleaned version of Enron consists of 1,702 instances and 1,000 attributes.

Table 1. Overview of the datasets

Dataset | #Instances | #Attributes | #Classes | Type
Tweets; | 1,000,000 500 2 Synthetic
Tweetsz | 1,000,000 1,000 2 Synthetic
Tweetss | 1,000,000 1,500 2 Synthetic
Har 10,299 561 6 Real
CNAE 1,080 856 9 Real
Enron 1,702 1,000 2 Real
IMDB 120,919 1,001 2 Real
Nomao 34,465 119 2 Real
Covt 581,012 54 7 Real

IMDB. IMDB movie reviews dataset was proposed for sentiment analysis [19],
where each review is encoded as a sequence of word indexes (integers).

Nomao. Nomao dataset [8] was provided by Nomao Labs where data come from
several sources on the web about places (name, address, localization, etc.).

Couvt. The forest covertype dataset obtained from US forest service resource
information system data where each class label presents a different cover type.
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Fig. 3. (a) Varying the chunk size. (b) Varying the neighborhood size for UMAP.

4.2 Results and Discussions

We compare our proposed classifier, UMAP-ENN, to various commonly-used
baseline methods in dimensionality reduction and machine learning areas.
PCA [24], tSNE (fixing the perplexity to 30, which is the best value as reported
in [20]), SAM-ENN (SkNN) [18]. We use HAT, a classifier with a different struc-
ture based on trees [4], to assess its performance with the neighborhood-based
UMAP. For fair comparison, we compare the performance of UMAP-kKNN app-
roach with a competitor using UMAP as well in the same batch-incremental
manner. Actually, incremental kNN has two crucial parameters: (i) the num-
ber of neighbors k fixed to 5; and (ii) the window size w, that maintains the
low-dimensional data, fixed to 1000. According to previous studies such as [7], a
bigger window will increase the resources usage and smaller size will impact the
accuracy.

The experiments were conducted on a machine equipped with an Intel Core
i5 CPU and 4 GB of RAM. All experiments were implemented and evaluated in
Python by extending the Scikit-multiflow framework® [22].

Figure3a depicts the influence of the chunk size on the accuracy using
UMAP-ENN with some datasets. Generally, fixing the chunk size imposes the
following dilemma: choosing a small size so that we obtain an accurate reflection
of the current data or choosing a large size that may increase the accuracy since
more data are available. The ideal would be to use a batch with the maximum of
instances to represent as possible the whole stream. In practice, the chunk size
needs to be small enough to fit in the main memory otherwise the running time
of the approach will increase. Since UMAP is relatively slow, we choose small
chunk sizes to overcome this issue with UMAP-ENN. Based on the obtained
results, we fix the chunk size to 400 for the best trade-off accuracy-memory.

We investigate the behavior of a crucial parameter that controls UMAP,
number of neighbors, via the classification performance of our approach. Based

3 https://scikit-multiflow.github.io/.
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Fig. 4. Comparison of UMAP-kNN, tSNE-kNN, PCA-kNN, and kNN (with the entire
datasets) while projecting into 3-dimensions: (a) Accuracy. (b) Memory.

on the size of the neighborhood, UMAP constructs the manifold and focuses on
preserving local and global structures. Figure 3b shows the accuracy when the
number of neighbors is varied on diverse datasets. We notice that for all datasets,
the accuracy is consistently the same with no large differences, e.g. Har. Since
a large neighborhood leads to a slower learning process, in the following we fix
the neighborhood size to 15.

tSNE is a visualization technique, so we are limited to project high-
dimensional data into 2 or 3 dimensions. In order to evaluate the performance
of our proposal in a fair comparison against each of tSNE-ANN and PCA-kENN,
we project data into 3-dimensional space. We illustrate in Fig. 4a that UMAP-
kNN makes significantly more accurate predictions beating consistently the best
performing baselines (tSNE-ANN and PCA-kNN) notably with CNAE and the
tweets datasets. Figure4b depicts the quantity of memory needed by the three
algorithms which is practically the same for some datasets. Compared to kNN
that uses the whole data without projection, we notice that UMAP-ANN con-
sumes much less memory whilst sacrificing a bit in accuracy because we are
removing many attributes. Figure4c shows that our approach is consistently
faster than tSNE-ENN because tSNE computes the distances between every pair
of instances to project. But PCA-kENN is a bit faster thanks to the simplicity of
PCA. But with this trade-off our approach performs good on almost all datasets.

In addition to its good classification performance in comparison with com-
petitors, the batch-incremental UMAP-ENN did a better job of preserving den-
sity by capturing both of global and local structures, as shown in Fig. 1d. The
fact that UMAP and kNN are both neighborhood-based methods arises as a
key element in achieving a good accuracy. UMAP has not only the power of
visualization but also the ability to reduce the dimensionality of data efficiently
which makes it useful as pre-processing technique for machine learning.

Table 2 reports the comparison of UMAP-kNN against state-of-the-art clas-
sifiers. We highlight that our approach performs better on almost all datasets. It
achieves similar accuracies to UMAP-SENN on several datasets but in terms
of resources, the latter is slower because of its drift detection mechanism.
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Table 2. Comparison of UMAP-kKNN, PCA-kNN, UMAP-SENN, and UMAP-HAT.

Dataset | UMAP-kNN | PCA-kNN | UMAP-SENN | UMAP-HAT
Accuracy (%)

Tweets; | 75.71 69.89 75.37 66.47
Tweetss 75.16 69.21 74.40 61.27
Tweetss 71.01 70.81 70.47 66.98
Har 75.30 70.50 64.09 84.89
CNAE 76.67 67.41 75.18 40.18
Enron 92.24 93.41 91.89 91.77
IMDB 67.38 67.28 67.43 64.52
Nomao 91.92 91.13 91.63 83.75
Covt 61.29 66.73 53.08 55.43
Memory (MB)

Tweets; | 1366.71 1354.24 1373.15 2738.32
Tweetsz | 2530.30 2518.76 2532.95 4891.23
Tweetss | 3706.99 3706.55 3722.68 7144.77
Har 311.58 310.48 312.84 381.49
CNAE 254.17 246.94 260.29 262.52
Enron 269.00 267.31 271.56 288.74
IMDB |3012.85 3013.28 3018.04 7471.64
Nomao | 289.81 285.50 290.60 508.50
Covt 700.69 689.97 704.46 3788.54
Time (Sec)

Tweets1 | 558.56 217.44 1396.32 2163.14
Tweetss | 616.50 350.63 908.59 3453.21
Tweetss | 667.43 400.62 1066.98 6273.19
Har 75.20 24.37 77.99 82.47
CNAE 8.89 4.81 13.17 19.78
Enron 12.80 9.52 17.26 32.84
IMDB 715.68 407.60 1038.77 4691.07
Nomao 248.79 20.46 327.36 228.00
Covt 2311.21 137.62 3756.41 2297.01

UMAP-ENN has a better performance than PCA-kNN, e.g. the Tweets datasets
at the cost of being slower. We also observe the UMAP-HAT failed to overcome
our approach (in terms of accuracy, memory, and time) due to the integration
of a neighborhood-based technique (UMAP) to a tree structure (HAT).
Figure 5 reports detailed results for Tweet; dataset with five output dimen-
sions. Figure 5a exhibits the accuracy of our approach which is consistently above
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Fig. 5. Comparison of UMAP-kNN, PCA-kKNN, UMAP-SKNN, and UMAP-HAT over
different output dimensions on Tweet:: (a) Accuracy. (b) Memory. (¢) Time.

competitors whilst ensuring stability for different manifolds. Figures5b and c
show that kNN-based classifiers use much less resources than the tree-based
UMAP-HAT. We see that UMAP-ANN requires less time than UMAP-HAT and
UMAP-SENN to execute the stream but PCA-kNN is fastest thanks to its sim-
plicity. Still, the gain in accuracy with UMAP-kNN is more significant.

5 Concluding Remarks and Future Work

In this paper, we presented a novel batch-incremental approach for mining data
streams using the kNN algorithm. UMAP-ENN combines the simplicity of kNN
and the high performance of UMAP which is used as an internal pre-processing
step to reduce the feature space of data streams. We showed that UMAP is
capable of embedding efficiently data streams within a batch-incremental strat-
egy in an extensive evaluation with well-known state-of-the-art algorithms using
various datasets. We further demonstrated that the batch-incremental approach
is just as effective as the offline approach in visualization and its accuracy out-
performs reputed baselines while using reasonable resources.

We would like to pursue our promising approach further to enhance its run-
time performance by applying a fast dimension reduction before using of UMAP.
Another area for future work could be the use of a different mechanism, such
as the application of UMAP for each incoming data inside a sliding window.
We believe that this may be slow but will be suited for instance-incremental
learning.
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Abstract. Many graph pattern mining algorithms have been designed
to identify recurring structures in graphs. The main drawback of these
approaches is that they often extract too many patterns for human anal-
ysis. Recently, pattern mining methods using the Minimum Description
Length (MDL) principle have been proposed to select a characteristic
subset of patterns from transactional, sequential and relational data. In
this paper, we propose an MDL-based approach for selecting a character-
istic subset of patterns on labeled graphs. A key notion in this paper is
the introduction of ports to encode connections between pattern occur-
rences without any loss of information. Experiments show that the num-
ber of patterns is drastically reduced. The selected patterns have complex
shapes and are representative of the data.

Keywords: Pattern mining - Graph mining + Minimum Description
Length

1 Introduction

Many fields have complex data that need labeled graphs, i.e. graphs where ver-
tices and edges have labels, for an accurate representation. For instance, in chem-
istry and biology, molecules are represented as atoms and bonds; in linguistics,
sentences are represented as words and dependency links; in the semantic web,
knowledge graphs are represented as entities and relationships. Depending on
the domain, graph datasets can be made of large graphs or large collections
of graphs. Graphs are complex to analyze in order to extract knowledge, for
instance to identify frequent structures in order to make them more intelligible.

In the field of pattern mining, there has been a number of proposals, namely
graph mining approaches, to extract frequent subgraphs. Classical approaches
to graph mining, e.g. gSpan [12] and Gaston [7], work on collections of graphs,
and generate all patterns w.r.t. a frequency threshold. The major drawback of
this kind of approach is the huge amount of generated patterns, which ren-
ders them difficult to analyze. Some approaches such as CloseGraph [13] reduce
the number of patterns by only generating closed patterns. However, the set of
closed patterns generally remains too large, with a lot of redundancy between
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patterns. Constraint-based approaches, such as gPrune [14], reduce the num-
ber of extracted patterns by extracting only the patterns following a certain
acceptance rule. These algorithms generally manage to reduce the number of
patterns, however they also limit their type. Additionally, if the acceptance rule
is user-provided, the user needs some background knowledge on the data.

More effective approaches to reduce the number of patterns are those based
on the Minimum Description Length (MDL) principle [3]. The MDL principle
comes from information theory, and states that the model that describes the
data the best is the one that compresses the data the best. It has been shown
on sets of items [10], sequences [9] and relations [4] that an MDL-based app-
roach can select a small and descriptive subset of patterns. Few MDL-based
approaches have been proposed for graphs. SUBDUE [1] iteratively compresses
a graph by replacing each occurrence of a pattern by a single vertex. At each
step, the chosen pattern is the one that compresses the most. The drawback of
SUBDUE is that the replacement of pattern occurrences by vertices entails a loss
of information. VoG [5] summarizes graphs as a composition of predefined fam-
ilies of patterns (e.g., paths, stars). Like SUBDUE, VoG aims to only extract
“interesting” patterns, but instead of evaluating each pattern individually like
SUBDUE, it evaluates the set of extracted patterns as a whole. This allows the
algorithm to find a “good set of patterns” instead of a “set of good patterns”.
One limitation of VoG is that the type of patterns is restricted to predefined
ones. Another limitation is that VoG works on unlabeled graphs, (e.g. network
graphs), while we are interested in labeled graphs.

The contribution of this paper (Sect.3) is a novel approach called GRAPH-
MDL, leveraging the MDL principle to select graph patterns from labeled
graphs. Contrary to SUBDUE, GRAPHMDL ensures that there is no loss of
information thanks to the introduction of the notion of ports associated to graph
patterns. Ports represent how adjacent occurrences of patterns are connected.
We evaluate our approach experimentally (Sect.4) on two datasets with differ-
ent kinds of graphs: one on AIDS-related molecules (few labels, many cycles),
and the other one on dependency trees (many labels, no cycles). Experiments
validate our approach by showing that the data can be significantly compressed,
and that the number of selected patterns is drastically reduced compared to the
number of candidate patterns. More so, we observe that the patterns can have
complex and varied shapes, and are representative of the data.

2 Background Knowledge

2.1 The MDL Principle

The Minimum Description Length (MDL) principle [3] is a technique from the
domain of information theory that allows to select the model, from a family of
models, that best describes some data. The MDL principle states that the best
model M for describing some data D is the one that minimizes the description
length L(M, D) = L(M) + L(D|M), where L(M) is the length of the model and
L(D|M) the length of the data encoded with the model. The MDL principle does
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not define how to compute every possible description length. However, common
primitives exist for data and distributions [6]:

— An element x € X with uniform distribution has a code of log(|X|) bits.
— An element x € X, appearing usage(x, D) times in some data D has a code

of LY. ...(x,D) = —log (Z“m%) bits. This encoding is optimal.

usage o, ex usage(z;,D)
— An integer n € N without a known upper bound can be encoded with a
universal integer encoding, whose size in bits is noted Ly(n)!.

Description lengths of elements that are common to all models are usually
ignored, since they do not affect their comparison.

Krimp [10] is a pattern mining algorithm using the MDL principle to select a
“characteristic” set of itemset patterns from a transactional database. Because of
its good performances, Krimp has been adapted to other types of data, such as
sequences [9] and relational databases [4]. In our approach we redefine Krimp’s
key concepts on graphs, in order to apply a Krimp-like approach to graph mining.

2.2 Graphs and Graph Patterns

Definition 1. A labeled graph G = (V, E,ly,lg) over two label sets Ly and Lk
is a data structure composed of a set of vertices V', a set of edges E CV x V,
and two labeling functions Iy € V. — 28V and lp € E — Lg that associate a
set of labels to vertices, and one label to edges.

G is said undirected if E is symmetric, and simple if E is irreflezive.

Although our approach applies to all labeled graphs, in the following we
only consider undirected simple graphs, so as to compare ourselves with existing
tools and benchmarks. Figure 1 shows an example of graph, with 8 vertices and
7 edges, defined over vertex label set {W, XY, Z} and edge label set {a,b}. In
our definition vertices can have several or no labels, unlike usual definitions in
graph mining, because it makes it applicable to more datasets.

! In our implementation we use Elias gamma encoding [2], shifted by 1 so that it can
encode 0. Therefore Ly(n) = 2[log(n+ 1) ] + 1.
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Fig. 4. Example of a GRAPHMDL code table over the graph of Fig.1. Pattern and
port usages, and code lengths have been added as illustration and are not part of the
table definition. Unused singleton patterns are omitted.

Definition 2. Let GP and GP be graphs. An embedding (or occurrence) of G¥
in GP is an injective function ¢ € VE — VP such that: (1) 1F(v) C 2 (e(v)) for
allv e VE; (2) (e(u),e(v)) € EP for all (u,v) € EY; and (3) 15(e) = 12 (e(e))
for all e € ET.

We define graph patterns as graphs G¥ having some occurrences in the data
graph GP. Figure 2 shows the three embeddings ¢, €3, €3 of a two-vertices graph
pattern into the graph of Fig. 1. We define singleton patterns as the elementary
patterns. A vertex singleton pattern is a graph with one vertex having one label.
An edge singleton pattern is a graph with two unlabeled vertices, connected by
a single labeled edge. Figure 3 shows examples of singleton patterns.

3 GRrAPHMDL: MDL for Graphs

In this section we present our contribution: the GRAPHMDL approach. This
approach takes as input a graph—the original graph G°—and a set of pat-
terns extracted from that graph—the candidate patterns—and outputs the most
descriptive subset of candidate patterns according to the MDL principle. The
candidates can be generated with any graph mining algorithm, e.g. gSpan [12].

The intuition behind GRAPHMDL is that since data and patterns are both
graphs, the data can be seen as a composition of pattern embeddings. Informally,
we want a user analyzing the output of GRAPHMDL to be able to say “the data
is composed of one occurrence of pattern A, connected to one occurrence of
pattern B, which is itself connected to one occurrence of pattern C”. More so,
we want the user to be able to tell how these structures are connected together:
which vertices of each pattern are used to connect it to other patterns.

3.1 Model: A Code Table for Graph Patterns

Similarly to Krimp [10], we define our model as a Code Table (CT), i.e. a set P of
patterns with associated coding information. A first difference with Krimp is that
the patterns are graph patterns. A second difference is the need for additional
coding information: a single code would not suffice since all the information
related to connectivity between pattern occurrences would be lost.
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Fig.5. How the data graph of Fig.1 is encoded with the code table of Fig.4.
(a) Retained occurrences of CT patterns. (b) The rewritten graph. Blue squares are
pattern embeddings (their label indicates the pattern), white circles are port vertices.
Edge labels represent which pattern port correspond to each port vertex. (Color figure
online)

We therefore introduce the notion of ports in order to represent how pattern
embeddings connect to each other to form the original graph. The set of ports of
a pattern is a subset of the vertices of the pattern. Intuitively, a pattern vertex
is a port if at least one pattern embedding maps this vertex to a vertex in the
original graph that is also used by another embedding (be it of the same pattern
or a different one). For example, in Fig. 5a the three occurrences of pattern P1
are inter-connected through their middle vertex: this vertex is a port. Since port
information increases the description length, we expect our approach to select
patterns with few ports.

Figure4 shows an example of CT associated to the graph of Fig.1. Every
row of the CT is composed of three parts, and contains information about a
pattern P € P (e.g. the first row contains information about pattern P1). The
first part of a row is the graph G, which represents the structure of the pattern
(e.g. P1 is a pattern with three labeled vertices and two labeled edges). The
second part of a row is the code cp, associated to the pattern. The third part
of a row is the description of the port set of the pattern, ITp, (e.g. P1 has two
ports, its first two vertices, with codes of 2 and 0.42 bits?). We note IT the set of
all ports of all patterns. Like Krimp, the length of the code of a pattern or port
depends on its usage in the encoding of the data, i.e. how many times it is used
to describe the original graph G° (e.g. P1 has a code of 1 bit because it is used
3 times and the sum of pattern usages in the CT is 6, see Sects. 3.2 and 3.3).

3.2 Encoding the Data with a Code Table

The intuition behind GRAPHMDUL is that we can represent the original graph G°
(i.e. the data) as a set of pattern occurrences, connected via ports. Encoding the
data with a CT consists in creating a structure that explicits which occurrences
are used and how they interconnect to form the original graph. We call this
structure the rewritten graph G".

2 MDL approaches deal with theoretical code lengths, which may not be integers.
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Definition 3. A rewritten graph G" = (V", E",I},,1}) is a graph where the set
of vertices is V" =V UV .. VI . is the set of pattern embedding vertices

em port -
and V., is the set of port vertices. E" C V] , x V7., is the set of edges from
embeddings to ports, Iy, € V., — P and l; € E" — II are the labelings.

In order to compute the encoding of the data graph with a given CT, we start
with an empty rewritten graph. One after another, we select patterns from the
CT. For each pattern, we compute the occurrences of its graph G¥. Similarly to
Krimp, we limit embeddings overlaps: we admit overlap on vertices (since it is
the key notion behind ports), but we forbid edge overlaps.

Each retained embedding is represented in the rewritten graph by a pat-
tern embedding vertex: a vertex v, € V. , with a label P € P indicating
which pattern it instantiates. Vertices that are shared by several embeddings
are represented in the rewritten graph by a port vertex v, € V.. We add an
edge (ve,vp) € E” between the pattern embedding vertex v, of a pattern P and
the port vertex v,, when the embedding associated to v, maps the pattern’s
port vr € IIp to v,. We label this edge v.

We make sure that code tables always include all singleton patterns, so that
they can always encode any vertex and edge of the original graph.

Figure 5 shows the graph of Fig. 1 encoded with the CT of Fig. 4. Embeddings
of CT patterns become pattern embedding vertices in the rewritten graph (blue
squares). Vertices that are at the boundary between multiple embeddings become
port vertices in the rewritten graph (white circles). When an embedding has a
port, its pattern embedding vertex in the rewritten graph is connected to the
corresponding port vertex and the edge label indicates which pattern’s port it
is. For instance, the three retained occurrences of pattern P1 all share the same
vertex labeled Y (middle of the original graph), thus in the rewritten graph the
three corresponding pattern embedding vertices are connected to the same port
vertex via port vs.

3.3 Description Lengths

In this section we define how to compute the description length of the CT and
the rewritten graph. Description lengths are used to compare CTs. Formulas are
explained below and grouped in Fig. 6.

Code Table. The description length L(M) = L(CT) of a CT is the sum of the
description lengths of its rows (skipping rows with unused patterns), and every
row is composed of three parts: the pattern graph structure, the pattern code,
and the pattern port description.

To describe the structure G = G of a pattern (L(G)) we start by encoding
the number of vertices of the pattern. Then we encode the vertices one after
the other. For each vertex v, we encode its labels then its adjacent edges. To
encode the vertex labels (Ly (v, G)) we specify their number first, then the labels
themselves. To encode the adjacent edges (Lg(v,G)) we specify their number
(between 0 and |V| — 1 in a simple graph), then for each edge, its destination
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L(cp) = Lruge(P,G7)  where usage(P,, G") = |{ve € Vimy | 1y (ve) = P}
L(cx, P) = L2, .(7,G") where usage(r;,G") = |{e € EL | lp(e) = mi}|
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\%4
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— veVl o
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Fig. 6. Formulas used for computing description lengths. The structure GF =
(VP,ET 18 1E) is shortened to G = (V, E, ly,lg) for ease of reading.

vertex and its label. To avoid encoding twice the same edge, we decide—in
undirected graphs—to encode edges with the vertex with the smallest identifier.
Vertex and edge labels are encoded based on their relative usage in the original
graph G° (Lﬁs"agE (I,G°) and Lﬁﬁzge (Ig(v,w),G?)). Since this encoding does not
change between CTs, it is a meaningful way to compare them.

The second element of a CT row is the code cp associated to the pattern
(L(cp)). This code is based on the usage of the pattern in the rewritten graph.

The last element of a CT row is the description of the pattern’s ports
(L(ITp)). First, we encode the number of pattern’s ports (between 0 and |V]).
Then we specify which vertices are ports: if there are k ports, then there are (‘zl)
possibilities. Finally, we encode the port codes (L(cy, P)): their code is based on
the usage of the port in the rewritten graph w.r.t. other ports of the pattern.

Rewritten Graph. The rewritten graph has two types of vertices: port ver-
tices and pattern embedding vertices. Port vertices do not have any associ-
ated information, so we just need to encode their number. The description
length L(D|M) = L(G") of the rewritten graph is the length needed for encoding
the number of vertex ports plus the sum of the description lengths Lep,, (v, P, G")
of the pattern embedding vertices v. Every pattern embedding vertex has a
label Ij,(v) specifying its pattern P, encoded with the code cp of the pattern.
We then encode the number of edges of the vertex i.e. the number of ports of this



GraphMDL 61

embedding in particular (between 0 and |I1p|). Then for each edge we encode
the port vertex to which it is connected and to which port it corresponds (using
the port code ¢;).

Table 1. Characteristics of the datasets used in the experiments

Dataset Graph count | |V/| |E| |Lv]||LE|
AIDS-CA 423 16714 | 17854 | 21 3
AIDS-CM 1082 34387 | 37033 | 26 3
UD-PUD-En | 1000 21176 | 20176 | 17 46

3.4 The GRAPHMDL Algorithm

In previous subsections we presented the different MDL definitions that GRAPH-
MDL uses to evaluate pattern sets (CT). A naive algorithm for finding the most
descriptive pattern set (in the MDL sense) could be to create a CT for every
possible subset of candidates and retain the one yielding the smallest descrip-
tion length. However, such an approach is often infeasible because of the large
amount of possible subsets. That is why GRAPHMDL applies a greedy heuristic
algorithm, adapting Krimp algorithm [10] to our MDL definitions.

Like Krimp, our algorithm starts with a CT composed of all singletons, which
we call CTj. One after the other, candidates are added to the CT if they allow to
lower the description length. Two heuristics guide GRAPHMDL: the candidate
order and the order of patterns in the CT. We use the same heuristics as Krimp,
with the difference that we define the size of a pattern as its total number of
labels (vertices and edges). We also implement Krimp’s “post-acceptance prun-
ing”: after a pattern is accepted in the CT, GRAPHMDL verifies if the removal
of some patterns from the CT allows to lower the description length L(M, D).

4 Experimental Evaluation

In order to evaluate our proposal, we developed a prototype of GRAPHMDL.
The prototype was developed in Java 1.8 and is available as a git repository?.

4.1 Datasets

The first two datasets that we use, AIDS-CA and AIDS-CM, are part of the
National Cancer Institute AIDS antiviral screen data*. They are collections of
graphs often used to compare graph mining algorithms [11]. Graphs of this col-
lection represent molecules: vertices are atoms and edges are bonds. We stripped
all hydrogen atoms from the molecules, since their positions can be inferred.
We took our third dataset, UD-PUD-En, from the Universal Dependen-
cies project®. This project curates a collection of trees describing dependency

3 https://gitlab.inria.fr/fbariatt /graphmdl.
4 https://wiki.nci.nih.gov/display/NCIDTPdata/ATDS+ Antiviral + Screen | Data.
5 https:/ /universaldependencies.org/.
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Table 2. Experimental results for different candidate sets

Dataset gSpan |Candidate|Runtime||CT| % Median Median
support |count label count |port count
AIDS-CA 20% 2194 19m|115 |24.42% 9 3
AIDS-CA  |15% 7867 | 1h47m|123 [21.64% |10 4
AIDS-CA  |10% 20596 | 3h36m|148 [19.03% |11 3
AIDS-CM  |20% 433 22m|111 |28.91% 7 4
AIDS-CM  |15% 779 32m|131 |27.44% 9 4
AIDS-CM 10% 2054 1h10m|163 |24.94% 9 4
AIDS-CM 5% 9943 | 5h02m|225 |20.43% 9 4
UD-PUD-En|10% 164 1m|162 [39.55% 5 2
UD-PUD-En| 5% 458 3m|249 |34.45% 5 2
UD-PUD-En| 1% 6021 19m|523 |28.14% 7 2
UD-PUD-En| 0% 233434 | 9h57m|773 |26.25% 7 2

relationships between words of sentences of multiple corpora in multiple lan-
guages. We used the trees corresponding to the English version of the PUD
corpus.

Table 1 presents the main characteristics of the three datasets that we use:
the number of elementary graphs in the dataset, the total amount of vertices,
the total amount of edges, the number of different vertex labels, and the number
of different edge labels. Since GRAPHMDL works on a single graph instead of a
collection, we aggregate collections into a single graph with multiple connected
components when needed. We generate candidate patterns by using a gSpan
implementation available on its author’s websiteS.

4.2 Quantitative Evaluation

Table 2 presents the results of the first experiment. For instance the first line
tells that we ran GRAPHMDL on the AIDS-CA dataset, with as candidates the
2194 patterns generated by gSpan for a support threshold of 20%. It took 19 min
for our approach to select a CT composed of 115 patterns, yielding a description
length that is 24% of the description length obtained by the singleton-only C'Tj.
Selected patterns have a median of 9 labels and 3 ports.

We observe that the number of patterns of a CT is often significantly smaller
than the number of candidates. This is particularly remarkable for experiments
ran with small support thresholds, where GRAPHMDL reduces the number of
patterns up to 300 times: patterns generated for these support thresholds prob-
ably contain a lot of redundancy, that GRAPHMDL avoids.

We also note that the description lengths of the CTs found by GRAPHMDL
are between 20% and 40% of the lengths of the baseline code tables C'Tj, which
shows that our algorithm succeeds in finding regularities in the data. Description

5 https://sites.cs.ucsb.edu/~xyan/software/gSpan.htm.
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lengths are smaller when the number of candidates is higher: this may be because
with more candidates, there are more chances of finding “good” candidates that
allow to better reduce description lengths.

P1 P1
Pe T oo T
o o
P1:7 labels i s s
P2: 16 labels S
P3:1 label (singleton) /. o
With GraphMDL With SUBDUE

Fig. 7. How GRAPHMDL (left) and SUBDUE (right) encode one of AIDS-CM graphs.

We observe that GRAPHMDL can find patterns of non-trivial size, as shown
by the median label count in Table 2. Also, most patterns have few ports, which
shows that GRAPHMDL manages to find models in which the original graph is
described as a set of components without many connections between them. We
think that a human will interpret such a model with more ease, as opposed to a
model composed of “entangled” components.

4.3 Qualitative Evaluations

Interpretation of Rewritten Graphs. Figure7 shows how GRAPHMDL uses pat-
terns selected on the AIDS-CM dataset to encode one of the graphs of the
dataset (more results are available in our git repository). It illustrates the key
idea behind our approach: find a set of patterns so that each one describes part
of the data, and connect their occurrences via ports to describe the whole data.

We observe that GRAPHMDL selects bigger patterns (such as P2), describ-
ing big chunks of data, as well as smaller patterns (such as P3, edge singleton),
that can form bridges between pattern occurrences. Big patterns increase the
description length of the CT, but describe more of the data in a single occur-
rence, whereas small patterns do the opposite. Following the MDL principle,
GRAPHMDL finds a good balance between the two types of patterns.

It is interesting to note that pattern P1 in Fig. 7 corresponds to the carboxylic
acid functional group, common in organic chemistry. GRAPHMDL selected this
pattern without any prior knowledge of chemistry, solely by using MDL.
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Comparison with SUBDUE. On the right of Fig. 7 we can observe the encoding
found by SUBDUE on the same graph. The main disadvantage of SUBDUE is
information loss: we can see that the data is composed of two occurrences of
pattern P1, but not how these two occurrences are connected. Thanks to the
notion of ports, GRAPHMDL does not suffer from this problem: the user can
exactly know which atoms lie at the boundary of each pattern occurrence.

Table 3. Classification accuracies. Results of methods marked with * are from [8].

Algorithm AIDS-CA/CI | Mutag PTC-MR PTC-FR

Baseline-Largest | 50.01 = 0.03 | 66.50 = 0.00 | 55.80 £ 0.00 | 65.50 = 0.00
GraPHMDL 71.614+0.96 | 80.79+ 1.51|57.38 £1.68 |62.70 + 1.86
WL* N/A 87.26 +1.42 | 63.12 £ 1.44 | 67.64 +0.74
P-WL-C* N/A 90.51 £ 1.34 | 64.02 + 0.82 | 67.15 £ 1.09
RetGK* N/A 90.30 +1.10 | 62.15 £ 1.60 | 67.80 + 1.10

Assessing Patterns Through Classification. We showed in the previous experi-
ments that GRAPHM DL manages to reduce the amount of patterns, and that the
introduction of ports allows for a precise analysis of graphs. We now ask ourselves
if the extracted patterns are characteristic of the data. To evaluate this aspect, we
adopt the classification approach used by Krimp [10]. We apply GRAPHM DL inde-
pendently on each class of a multi-class dataset, and then use the resulting CTs to
classify each graph: we encode it with each of the CTs, and classify it in the class
whose CT yields the smallest description length L(D|M). Since GRAPHM DL is not
designed with the goal of classification in mind, we would expect existing classifiers
to outperform GRAPHMDL. In particular, note that patterns are selected on each
class independently of other classes. Indeed, GRAPHMDL follows a descriptive
approach whereas classifiers generally follow a discriminative approach. Table 3
presents the results of this new experiment. We compare GRAPHMDL with graph
classification algorithms found in the literature [8], and a baseline that classifies
all graphs as belonging to the largest class. The AIDS-CA /CI dataset is composed
of the CA class of the AIDS dataset and a same-size same-labels random sample
from the CI class (corresponding to negative examples). The other datasets” are
from [8]. We performed a 10-fold validation repeated 10 times and report average
accuracies and standard deviations.

GRAPHMDL clearly outperforms the baseline on two datasets, AIDS and
Mutag, but is only comparable to the baseline for the PTC datasets. On Mutag,
GRAPHMDL is less accurate than other classifiers but closer to them than to
the baseline. On the PTC datasets, we hypothesize that the learned descriptions
are not discriminative w.r.t. the chosen classes, although they are characteristic
enough to reduce description length. Nonetheless results are still better than
random guessing (accuracy would be 50%). An interesting point of GRAPHMDL

7 For concision, we do not report on PTC-{MM,FM}, they yield similar results.
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classification is that it is explainable: the user can look at how the patterns of
the two classes encode a graph (similarly to Fig. 7) and understand why one class
is chosen over another.

5 Conclusion

In this paper, we have proposed GRAPHMDL, an MDL-based pattern mining
approach to select a representative set of graph patterns on labeled graphs. We
proposed MDL definitions allowing to compute description lengths necessary to
apply the MDL principle. The originality of our approach lies in the notion of
ports, which guarantee that the original graph can be perfectly reconstructed,
i.e., without any loss of information. Our experiments show that GRAPHMDL
significantly reduces the amount of patterns w.r.t. complete approaches. Further,
the selected patterns can have complex shapes with simple connections. The
introduction of the notion of ports facilitates interpretation w.r.t. to SUBDUE.
We plan to apply our approach to more complex graphs, e.g. knowledge graphs.
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Abstract. With the availability of user-generated content in the Web,
malicious users dispose of huge repositories of private (and often sensi-
tive) information regarding a large part of the world’s population. The
self-disclosure of personal information, in the form of text, pictures and
videos, exposes the authors of such contents (and not only them) to many
criminal acts such as identity thefts, stalking, burglary, frauds, and so
on. In this paper, we propose a way to evaluate the harmfulness of any
form of content by defining a new data mining task called content sensi-
tivity analysis. According to our definition, a score can be assigned to any
object (text, picture, video...) according to its degree of sensitivity. Even
though the task is similar to sentiment analysis, we show that it has its
own peculiarities and may lead to a new branch of research. Thanks to
some preliminary experiments, we show that content sensitivity analysis
can not be addressed as a simple binary classification task.

Keywords: Privacy - Text mining - Text categorization

1 Introduction

Internet privacy has gained much attention in the last decade due to the suc-
cess of online social networks and other social media services that expose our
lives to the wide public. In addition to personal and behavioral data collected
more or less legitimately by companies and organizations, many websites and
mobile/web applications store and publish tons of user-generated content in the
form of text posts and comments, pictures and videos which, very often, capture
and represent private moments of our life. The availability of user-generated con-
tent is a huge source of relatively easy-to-access private (and often very sensitive)
information concerning habits, preferences, families and friends, hobbies, health
and philosophy of life, which expose the authors of such contents (or any other
individual referenced by them) to many (cyber)criminal risks, including iden-
tity theft, stalking, burglary, frauds, cyberbullying or “simply” discrimination
in workplace or in life in general. Sometimes users are not aware of the dan-
gers due to the uncontrolled diffusion of their sensitive information and would
probably avoid publishing it if only someone told them how harmful it could be.

In this paper, we address exactly this problem by proposing a way to measure
the degree of sensitivity of any type of user-generated content. To this purpose,
© The Author(s) 2020
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we define a new data mining task that we call content sensitivity analysis (CSA),
inspired by sentiment analysis [13]. The goal of CSA is to assign a score to any
object (text, picture, video...) according to the amount of sensitive information it
potentially discloses. The problem of private content analysis has already been
investigated as a way to characterize anonymous vs. non anonymous content
posting in specific social media [5,15,16] or question-and-answer platforms [14].
However, the link between anonymity and sensitive contents is not that obvious:
users may post anonymously because, for instance, they are referring to illegal
matters (e.g., software/steaming piracy, black market and so on); conversely,
fully identifiable persons may post very sensitive contents simply because they
are underestimating the visibility of their action [18,19]. Although CSA has
some points in common with anonymous content analysis and the well-known
sentiment analysis task, we show that it has its own peculiarities and may lead
to a brand new branch of research, opening many intriguing challenges in several
computer science and linguistics fields.

Through some preliminary but extensive experiments on a large annotated
corpus of social media posts, we show that content sensitivity analysis can not
be addressed straightforwardly. In particular, we design a simplified CSA task
leveraging binary classification to distinguish between sensitive and non sensitive
posts by testing several bag-of-words and word embedding models. According to
our experiments, the classification performances achieved by the most accurate
models are far from being satisfactory. This suggests that content sensitivity
analysis should consider more complex linguistic and semantic aspects, as well
as more sophisticated machine learning models.

The remainder of the paper is organized as follows: we report a short analysis
of the related scientific literature in Sect. 2 and Sect. 3 provides the definition of
content sensitivity analysis and presents some challenging aspects of this new
task together with some hints for possible solutions; the preliminary experiments
are reported and discussed in Sect. 4; finally, Sect. 5 concludes by also presenting
some open problems and suggestions for future research.

2 Related Work

With the success of online social networks and content sharing platforms, under-
standing and measuring the exposure of user privacy in the Web has become
crucial [11,12]. Thus, many different metrics and methods have been proposed
with the goal of assessing the risk of privacy leakage in posting activities [1,23].
Most research efforts, however, focus on measuring the overall exposure of users
according to their privacy settings [8,19] or position within the network [18].
Very few research works address the problem of measuring the amount of
sensitivity of user-generated content, and yet different definitions of sensitivity
are adopted. In [5], for instance, the authors define sensitivity of a social media
post as the extent to which users think the post should be anonymous. Then,
they try to understand the nature of content posted anonymously and analyze
the differences between content posted on anonymous (e.g., Whisper) and non-
anonymous (e.g., Twitter) social media sites. They also find significant linguistic
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differences between anonymous and non-anonymous content. A similar approach
has been applied on posts collected from a famous question-and-answer website
[14]. The authors of this work identify categories of questions for which users are
more likely to exercise anonymity and analyze different machine learning model
to predict whether a particular answer will be written anonymously. They also
show that post sensitivity should be viewed as a nuanced measure rather than as
a binary concept. In [2], the authors propose a ranking-based method for assess-
ing the privacy risk emerging from textual contents related to sensitive topics,
such as depression. They use latent topic models to capture the background
knowledge of an hypothetical rational adversary who aims at targeting the most
exposed users. Additionally, the results are exploited to inform and alert users
about their risk of being targeting.

Similarly to sentiment analysis [13], valuable linguistic resources are needed
to identify sensitive content in texts. To the best of our knowledge, the only
works addressing this issue are [6,22], where the authors leverage prototype the-
ory and traditional theoretical approaches to describe and evaluate a dictionary
of privacy designed for content analysis. Dictionary categories are evaluated
according to privacy-related categories from an existing content analysis tool,
using a variety of text corpora.

The problem of sensitive content detection has been investigated as a pattern
recognition problem in images as well. In [25], the authors leverage massive
social images and their privacy settings to learn the object-privacy correlation
and identify categories of privacy-sensitive object automatically. To increase the
accuracy and speed of the classifier, they propose a deep multi-task learning
architecture that learn more representative deep convolutional neural networks
and more discriminative tree classifier. Additionally, they use the outcomes of
such model to identify the most suitable privacy settings and/or blur sensitive
objects automatically. This framework is further improved in [24], where the
authors add a clustering-based approach to also incorporate trustworthiness of
users being granted to see the images in the prediction model.

Contrary to the above-mentioned works, in this paper we formally define
the general task of content sensitivity analysis independently from the type of
data to be analyzed. Additionally, we provide some suggestions for improving
the accuracy of the results and show experimentally that the task is challenging,
and deserves further investigation and greater research efforts.

3 Content Sensitivity Analysis

In this section, we introduce the new data mining task that we call content
sensitivity analysis (CSA), aimed at determining the amount of privacy-sensitive
content expressed in any user-generated content. We first distinguish two cases,
namely basic CSA and continuous CSA, according to the outcome of the analysis
(binary or continuous). Then, we identify a set of subtasks and discuss their
theoretical and technical details. Before introducing the technical details of CSA,
we briefly provide the intuition behind CSA by describing a motivating example.
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3.1 Motivating Example

To explain the main objectives of CSA and the scientific challenges associated to
them, we consider the example in Fig. 1. To decide whether (and to what extent)
the sentence is sensitive, an inference algorithm should be able to answer the
following questions:

1. Subjects: whose information is going to be disclosed?

2. Information types: does the post refer to any potentially sensitive infor-
mation type?

Terms: does the post mention any sensitive term?

Topics: does the post mention any sensitive topic?

5. Relations: is sensitive information referred to any of the subjects?

Ll

# Create Post (8 Photo/Video = @ Live Video ¥ Life Event

Now at the General Hospital with my
friend Alice Green for our first course
of chemo!
0 10007000806 =

@ feeling hopeful.

B3 Photolvideo X Tag Friends W Feeling/Activ...
@ B NewsFeed & Friends v

O ié Your Story & Friends v

Fig. 1. An example of a potentially privacy-sensitive post.

By observing the post in Fig. 1, it is clear that: the post discloses information
about the author and his friend Alice Green (1); the post contains spatiotempo-
ral references (“now” and “General Hospital”), which are generally considered
intrinsically sensitive; the post mentions “chemo”, a potentially sensitive term
(3); the sentence is related to “cancer”, a potentially sensitive topic (4); the
sentence structure suggests that the two subjects of disclosure have cancer and
they are both about to start their first course of chemotherapy (5).

It is clear that, reducing sensitivity to anonymity, as done in previous research
work [5,14], is only one side of the coin. Instead, CSA has much more in common
with the famous sentiment analysis (SA) task, where the objective is to measure
the “polarity” or “sentiment” of a given text [7,13]. However, while SA has
already a well-established theory and may count on a set of easy-to-access and
easy-to-use tools, CSA has never been defined before. Therefore, apart from the
known open problems in SA (such as sarcasm detection), CSA involves three
new scientific challenges:
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1. Definition of sensitivity. A clear definition of sensitivity is required. Sen-
sitivity is often defined in the legal systems, such as in the EU General Data
Protection Regulation (GDPR), as a characteristic of some personal data
(e.g., criminal or medical records), but a cognitive and perceptive explana-
tion of what can be defined as “sensitive” is still missing [22].

2. Sensitivity-annotated corpora. Large text corpora need to be annotated
according to sensitivity and at multiple levels: at the sentence level (“I got
cancer” is more sensitive than “I got some nice volleyball shorts”), at the
topic level (“health” is more sensitive than “sports”) and at the term level
(“cancer” is more sensitive than “shorts”).

3. Context-aware sensitivity. Due to its subjectivity, a clear evaluation of
the context is needed. The fact that a medical doctor talks about cancer is
not sensitive per se, but if she talks about some of her patients having cancer,
she could disclose very sensitive information.

In the following, we will provide the formal definitions concerning CSA and
provide some preliminary ideas on how to address the problem.

3.2 Definitions

Here, we provide the details regarding the formal framework of content sensitivity
analysis. To this purpose, we consider generic user-generated contents, without
specifying their nature (whether textual, visual or audiovisual). We will propose
a definition of “sensitivity” further in this section. The simplest way to define
CSA is as follows:

Definition 1 (basic content sensitivity analysis). Given a user-generated
object 0; € O, with O being the domain of all user-generated contents, the
basic content sensitivity analysis task consists in designing a function fs: O —
{sens,na,ns}, such that fs(o;) = sens iff 0; is privacy-sensitive, fs(0;) = ns iff
0; is not sensitive, otherwise fs(0;) = na.

The na value is required since the assignment of a correct sensitivity value
could be problematic when dealing with controversial contents or borderline
topics. In some cases, assessing the sensitivity of a content object is simply
impossible without some additional knowledge, i.e., the conversation a post is
part of, the identity of the author of a post, and so on. In addition, sensitivity is
not the same for all sensitive objects: a post dealing with health is certainly more
sensitive than a post dealing with vacations, although both can be considered
as sensitive. This suggests that, instead of considering sensitivity as a binary
feature of a text, a more appropriate definition of CSA should take into account
different degrees of sensitivity, as follows:

Definition 2 (continuous content sensitivity analysis). Let o, € O be a
user-generated object, with O being the domain of all user-generated contents.
The continuous content sensitivity analysis task consists in designing a function
fs + O = [=1,1], such that fs(o;) = 1 iff o; is mazimally privacy-sensitive,
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fs(0;) = =1 iff 0; is minimally privacy-sensitive, fs(0;) = 0 iff 0; has unknown
sensitivity. The value o; = fs(0;) is the sensitivity score of object o;.

According to this definition, sensitive objects have 0 < ¢ < 1, while non sen-
sitive posts have —1 < ¢ < 0. In general, when o = 0 the sensitivity of an object
cannot be assessed confidently. Of course, by setting appropriate thresholds, a
continuous CSA can be easily turned into a basic CSA task.

At this point, a congruent definition of “sensitivity” is required to set up the
task correctly. Although different characterizations of privacy-sensitivity exist,
there is no consistent and uniform theory [22]; so, in this work, we consider a more
generic, flexible and application-driven definition of privacy-sensitive content.

Definition 3 (privacy-sensitive content). A generic user-generated content
object is privacy-sensitive if it makes the magority of users feel uncomfortable
in writing or reading it because it may reveal some aspects of their own or others’
private life to unintended people.

Notice that “uncomfortableness” should not be guided by some moral or eth-
ical judgement about the disclosed fact, but uniquely by its harmfulness towards
privacy. Such a definition allows the adoption of the “wisdom of the crowd” prin-
ciple in contexts where providing an objective definition of what is sensitive (and
what is not sensitive) is particularly hard. Moreover, it has also an intuitive jus-
tification. Different social media may have different meaning of sensitivity. For
instance, in a professional social networking site, revealing details about one’s
own job is not only tolerated, but also encouraged, while one may want to hide
detailed information about her professional life in a generic photo-video sharing
platform. Similarly, in a closed message board (or group), one may decide to
disclose more private information than in open ones. Sensitivity towards certain
topics also varies from country to country. As a consequence, function fs can be
learnt according to an annotated corpus of content objects as follows.

Definition 4 (sensitivity function learning). Let O = {(0;,0)}}; be a set
of N annotated objects o; € O with the related sensitivity score o; € [—1,1].
The goal of a sensitivity function learning algorithm is to search for a function
fs : O — [-1,1], such that Zf\il (fs(0:) — 04)* is minimum.

The simplest way to address this problem is by setting a regression (or clas-
sification, in the case of basic CSA) task. However, we will show in Sect. 4 that
such an approach is unable to capture the actual manifold of sensitivity accu-
rately. Hence, in the following sections, we present a fine-grained definition of
CSA together with a list of open subproblems related to CSA and provide some
hints on how to address them.

3.3 Fine-Grained Content Sensitivity Analysis

In the previous section, we have considered contents as monolithic objects with
a sensitivity score associated to them. However, in general, any user-generated
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content object (text, video, picture) may contain both privacy-sensitive and
privacy-unsensitive elements. For instance, a long text post (or video) may deal
with some unsensitive topic but the author may insert some references to her or
his private life. Similarly, a user may post a picture of her own desk deemed to
be anonymous but some elements may disclose very private information (e.g.,
the presence of train tickets, drug paraphernalia, someone else’s photo and so
on). Moreover, the same object (or some of its elements) may violate the privacy
of multiple subjects, including the author and other people mentioned in the
corpus, in a different way. For all these reasons, here we propose a fine-grained
definition of content sensitivity analysis. The definition is as follows:

Definition 5 (fine-grained content sensitivity analysis). Let o; € O be a
user-generated content object. Let E; = {62‘ }ity C & be a set of m; > 1 elements
(or components) that constitutes the object o;, with £ being the domain of all
possible elements. Let P; = {p };2, C P be the set of n; > 1 persons (or subjects)
mentioned in o;, with P being the domain of all subjects. The fine-grained content
sensitivity analysis task consists in designing a function fs : € x P — [—1,1],
such that fs(eé,p};) =1 iff eé is mazimally privacy-sensitive for subject pt,
fs (ej-,p};) = —1 iff e} is minimally privacy-sensitive for subject p5., fs (ej-,p};) =0
iff e§- has unknown sensitivity for subject pi.. The value U;k = fs(eﬁ,p};) 18 the
sensitivity score of element e; towards subject p.

Notice that |F;| > 1 since each object contains at least one element (when
|E;| = 1, the only element e corresponds the object o; itself). Similarly |P;| > 1
because each object has at least the author as subject. In the example reported
in Fig. 1, the post contains only one element (there is only one sentence) and
concerns two subjects (the author and Alice Green). According to Definition 5
(and to what we said in Sect. 3.1), the sensitivity score of the post towards both
the author and Alice Green will be high.

3.4 Challenges and Possible Solutions

Fine-grained content sensitivity analysis presents many scientific and technical
challenges, and may benefit of the cross-fertilization of computational linguistics,
machine learning and semantic analysis. Addressing the problem of connecting
sensitivity to specific subjects in texts requires the solution of many NLP tasks
such as named entity recognition, relation extraction [21], and coreference res-
olution [4]. Additionally, concept extraction and topic modeling are important
to understand whether a given text deals with sensitive content. To this pur-
pose, privacy dictionaries [22] could provide a valid support for tagging certain
topics/terms as sensitive or non-sensitive. Sentiment analysis and emotion detec-
tion could also reveal private personality traits if related to contents associated
to certain topics, persons or categories of persons. Furthermore, elements in a
sentence cannot be simply considered as separated entities, but the connection
between different parts of a text play an important role in determining the cor-
rect fine-grained sensitivity. It is clear that such a complex problem requires the
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availability of massive annotated text corpora and the design of robust machine
learning algorithms to cope with the sparsity of the feature space. All these con-
siderations apply to the case of visual and audiovisual content as well, but, in
addition, the intrinsic difficulty of handling multimedia data makes the above
mentioned challenge even harder and more computationally expensive.

In the next section, we will show how the basic content sensitivity analysis
settings can be modeled as a binary classification problem on text data using
different approaches with scarce or moderate success, thus showing the necessity
of a more systematic and in-depth investigation of the problem.

4 Preliminary Experiments

In this section, we report the results of some preliminary experiments aimed at
showing the feasibility of content sensitivity analysis together with its difficulties.
The experiments are conducted under the basic CSA framework (see Definition 1
in Sect.3) with the only difference that we do not consider the “na” class. We
set up a binary classification task to distinguish whether a given input text is
privacy-sensitive or not. Before presenting the results, in the following, we first
introduce the data, then we provide the details of our experimental protocol.

4.1 Annotated Corpus

Since all previous attempts of identifying sensitive text have leveraged user
anonymity as a discriminant for sensitive content [5,14], there is no reliable
annotated corpus that we can use as benchmark. Hence, we construct our own
dataset by leveraging a crowdsourcing experiment. We use one of the datasets
described in [3], consisting of 9917 anonymized social media posts, mostly writ-
ten in English, with a minimum length of 2 characters and a maximum length
of 435 (the average length is 80). Thus, they well represent typical social media
short posts. On the other hand, they are not annotated for the specific purpose
of our experiment and, because of their shortness, they are also very difficult to
analyze. Consequently, after discarding all useless posts (mostly uncomprehen-
sible ones) we have set up a crowdsourcing experiment by using a Telegram bot
that, for each post, asks whether it is sensitive or not. As third option, it was
also possible to select “unable to decide”. We collected the annotations of 829
posts from 14 distinct annotators. For each annotated post, we retain the most
frequently chosen annotation. Overall, 449 posts where tagged as non sensitive,
230 as sensitive, 150 as undecidable. Thus, the final dataset consists of 679 posts
of the first two categories (we discarded all 150 undecidable posts).

4.2 Datasets

We consider two distinct document representations for the dataset, a bag-of-
words and four word vector models. To obtain the bag-of-word representation we
perform the following steps. First, we remove all punctuation characters of terms



Towards Content Sensitivity Analysis 75

contained in the input posts as well as short terms (less than two characters) and
terms containing digits. Then, we build the bag-of-words model with all remain-
ing 2584 terms weighted by their tfidf score. Differently from classic text mining
approaches, we deliberately exclude lemmatization, stemming and stop word
removal from text preprocessing, since those common steps would affect content
sensitivity analysis negatively. Indeed, inflections (removed by lemmatization
and stemming) and stop words (like “me”, “myself”) are important to decide
whether a sentence reproduces some personal thoughts or private action/status.
Hereinafter, the bag-of-words representation is referred to as BW2584.

The word vector representation, instead, is built using word vectors pre-
trained with two billion tweets (corresponding to 42 billion tokens) using the
GloVe (Global Vector) model [17]. We use this word embedding method as it
consistently outperforms both continuous bag-of-words and skip-gram model
architectures of word2vec [10]. In detail, we use three representation, here called
WV25, WV50 and WV100 with, respectively, 25, 50 and 100 dimensions'. Addi-
tionally, we build an ensemble by considering the concatenation of the three
vector spaces. The latter representation is named WVEns.

Finally, from all five datasets we removed all posts having an empty bag-
of-words or word vector representation. Such preprocessing step further reduces
the size of the dataset down to 611 posts (221 sensitive and 390 non sensitive),
but allows for a fair performance comparison.

4.3 Experimental Settings

Each dataset obtained as described beforehand is given in input to a set of six
classifiers. In details, we use k-NN, decision tree (DT), Multi-layer Perceptron
(MLP), SVM, Random Forest (RF), and Gradient Boosted trees (GBT). We do
not execute any systematic parameter selection procedure since our main goal is
not to compare the performances of classifiers, but, rather, to show the overall
level of accuracy that can be achieved in a basic content sensitivity analysis task.
Hence, we use the following default parameter for each classifier:

— kKNN: we set k = 3 in all experiments;

— DT: for all datasets, we use C4.5 with Gini Index as split criterion, allowing a
minimum of two records per node and minimum description length as pruning
strategy;

— MLP: we train a shallow neural network with one hidden layer; the number
of neurons of the hidden layer is 30 for the bag-of-words representation and
20 for all word vector representations;

— SVM: for all datasets, we use the polynomial kernel with default parameters;

— RF: we train 100 models with Gini index as splitting criterion in all experi-
ments;

— GBT: for all datasets, we use 100 models with 0.1 as learning rate and 4 as
maximum tree depth.

! Pre-trained vectors are available at https://nlp.stanford.edu/projects/glove/.
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All experiments are conducted by performing ten-fold cross-validation, using,
for each iteration, nine folds as training set and the remaining fold as test set.

4.4 Results and Discussion

The summary of the results, in terms of average F1-score, are reported in Table 1.
It is worth noting that the scores are, in general, very low (between 0.5826,
obtained by the neural network on the bag-of-words model, and 0.6858, obtained
by Random Forest on the word vector representation with 50 dimensions). Of
course, these results are biased by the fact that data are moderately unbalanced
(64% of posts fall in the non-sensible class). However they are not completely
negative, meaning that there is space for improvement. We observe that the win-
ning model-classifier pair (50-dimensional word vector processed with Random
Forest) exhibits high recall on the non-sensitive class (0.928) and rather similar
results in terms of precision for the two classes (0.671 and 0.688 for the sensitive
and non-sensitive classes respectively). The real negative result is the low recall
on the sensitive class (only 0.258), due to the high number of false negatives?. We
recall that the number of annotated sensitive posts is only 221, i.e., the number
of examples is not sufficiently large for training a prediction model accurately.

Table 1. Classification in terms of average F1-score for different post representations.

Dataset | Type kKNN |DT MLP |SVM |RF GBT
BW2584 | bag-of-words || 0.6579 | 0.6743 | 0.5826 | 0.6481 | 0.6776 | 0.6678
WV25 | word vector || 0.6203 |0.6317|0.6497|0.6383 | 0.6628 | 0.6268
WV50 | word vector || 0.6121|0.6105 | 0.6530 | 0.6448 | 0.6858 | 0.6399
WV100 | word vector || 0.6367 | 0.6088|0.6497 |0.6563 | 0.6694 |0.6497
WVEns | word vector || 0.6432|0.5859 | 0.6481 | 0.6547 | 0.6628 | 0.6416

These results highlight the following issues and perspectives. First, nega-
tive (or not-so-positive) results are certainly due to the lack of annotated data
(especially for the sensitive class). Sparsity is certainly a problem in our set-
tings. Hence, a larger annotated corpus is needed, although this objective is not
trivial. In fact, private posts are often difficult to obtain, because social media
platforms (luckily, somehow) do not allow users to get them using their API.
As a consequence, all previous attempts to guess the sensitivity of text or con-
struct privacy dictionaries strongly leverage user anonymity in public post shar-
ing activities [5,14], or rely on focus groups and surveys [22]. Moreover, without
a sufficiently large corpus, not even the application of otherwise successful deep
learning techniques (e.g., RNNs for sentiment analysis [9]) would produce valid
results. Second, simple classifiers, even when applied to rather complex and rich
representations, can not capture the manifold of privacy sensitivity accurately.

2 Due to space limitations, we do not report detailed precision/recall results.



Towards Content Sensitivity Analysis 7

So, more complex and heterogenous models should be considered. Probably, an
accurate sensitivity content analysis tool should consider lexical, semantic as
well as grammatical features. Topics are certainly important, but sentence con-
struction and lexical choices are also fundamental. Therefore, reliable solutions
would consist of a combination of computational linguistic techniques, machine
learning algorithms and semantic analysis. Third, the success of picture and
video sharing platforms (such as Instagram and TikTok), implies that any suc-
cessful sensitivity content analysis tool should be able to cope with audiovisual
contents and, in general, with multimodal /multimedia objects (an open problem
in sentiment analysis as well [20]). Finally, provided that a taxonomy of privacy
categories in everyday life exists (e.g., health, location, politics, religious belief,
family, relationships, and so on) a more complex CSA setting might consider,
for a given content object, the privacy sensitivity degree in each category.

5 Conclusions

In this paper, we have addressed the problem of determining whether a given
content object is privacy-sensitive or not by defining the generic task of content
sensitivity analysis (CSA). Then, we have declined it according to increasing
complexity of the problem settings. Although the task promises to be challeng-
ing, we have shown that it is not unfeasible by presenting a simplified formulation
of CSA based on text categorization. With some preliminary but extensive exper-
iments, we have showed that, no matter the data representation, the accuracy of
such classifiers can not be considered satisfactory. Thus, it is worth investigat-
ing more complex techniques borrowed from machine learning, computational
linguistics and semantic analysis. Moreover, without a strong effort in building
massive and reliable annotated corpora, the performances of any CSA tool would
be barely sufficient, no matter the complexity of the learning model.

Acknowledgments. The authors would like to thank Daniele Scanu for implementing
the Telegram bot used by the annotators. This work is supported by Fondazione CRT
(grant number 2019-0450).
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Abstract. The local pattern mining literature has long struggled with
the so-called pattern explosion problem: the size of the set of patterns
found exceeds the size of the original data. This causes computational
problems (enumerating a large set of patterns will inevitably take a sub-
stantial amount of time) as well as problems for interpretation and usabil-
ity (trawling through a large set of patterns is often impractical).

Two complementary research lines aim to address this problem. The
first aims to develop better measures of interestingness, in order to reduce
the number of uninteresting patterns that are returned [6,10]. The sec-
ond aims to avoid an exhaustive enumeration of all ‘interesting’ patterns
(where interestingness is quantified in a more traditional way, e.g. fre-
quency), by directly sampling from this set in a way that more ‘interest-
ing’ patterns are sampled with higher probability [2].

Unfortunately, the first research line does not reduce computational
cost, while the second may miss out on the most interesting patterns.
In this paper, we combine the best of both worlds for mining inter-
esting tiles [8] from binary databases. Specifically, we propose a new
pattern sampling approach based on Gibbs sampling, where the proba-
bility of sampling a pattern is proportional to their subjective interest-
ingness [6]—an interestingness measure reported to better represent true
interestingness.

The experimental evaluation confirms the theory, but also reveals an
important weakness of the proposed approach which we speculate is
shared with any other pattern sampling approach. We thus conclude
with a broader discussion of this issue, and a forward look.

Keywords: Pattern mining - Subjective interestingness + Pattern
sampling - Gibbs sampling

1 Introduction

Pattern mining methods aim to select elements from a given language that bring
to the user “implicit, previously unknown, and potentially useful information
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from data” [7]. To meet the challenge of selecting the appropriate patterns for
a user, several lines of work have been explored: (1) Many constraints on some
measures that assess the quality of a pattern using exclusively the data have
been designed [4,12,13]; (2) Preference measures have been considered to only
retrieve patterns that are non dominated in the dataset; (3) Active learning
systems have been proposed that interact with the user to explicit her interest
on the patterns and guide the exploration toward those she is interested in; (4)
Subjective interestingness measures [6,10] have been introduced that aim to take
into account the implicit knowledge of a user by modeling her prior knowledge
and retrieving the patterns that are unlikely according to the background model.

The shift from threshold-constraints on objective measures toward the use of
subjective measures provides an elegant solution to the so-called pattern explo-
sion problem by considerably reducing the output to only truly interesting pat-
terns. Unfortunately, the discovery of subjectively interesting patterns with exact
algorithms remains computationally challenging.

In this paper we explore another strategy that is pattern sampling. The
aim is to reduce the computational cost while identifying the most important
patterns, and allowing for distributed computations. There are two families of
local pattern sampling techniques.

The first family uses Metropolis Hastings [9], a Markov Chain Monte Carlo
(MCMC) method. It performs a random walk over a transition graph represent-
ing the probability of reaching a pattern given the current one. This can be done
with the guarantee that the distribution of the considered quality measure is
proportional on the sample set to the one of the whole pattern set [1]. However,
each iteration of the random walk is accepted only with a probability equal to the
acceptance rate a. This can be very small, which may result in a prohibitively
slow convergence rate. Moreover, in each iteration the part of the transition
graph representing the probability of reaching patterns given the current one,
has to be materialized in both directions, further raising the computational cost.
Other approaches [5,11] relax this constraint but lose the guarantee.

Methods in the second family are referred to as direct pattern sampling
approaches [2,3]. A notable example is [2], where a two-step procedure is pro-
posed that samples frequent itemsets without simulating stochastic processes. In
a first step, it randomly selects a row according to a first distribution, and from
this row, draws a subset of items according to another distribution. The combi-
nation of both steps follows the desired distribution. Generalizing this approach
to other pattern domains and quality measures appeared to be difficult.

In this paper, we propose a new pattern sampling approach based on Gibbs
sampling, where the probability of sampling a pattern is proportional to their
Subjective Interestingness (SI) [6]. Gibbs sampling — described in Sect.3 — is
a special case of Metropolis Hastings where the acceptance rate « is always
equal to 1. In Sect. 4, we show how the random walk can be simulated with-
out materializing any part of the transition graph, except the currently sampled
pattern. While we present this approach particularly for mining tiles in rectan-
gular databases, applying it for other pattern languages can be relatively easily
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achieved. The experimental evaluation (Sect. 5) confirms the theory, but also
reveals a weakness of the proposed approach which we speculate is shared by
other direct pattern sampling approaches. We thus conclude with a broader dis-
cussion of this issue (Sect. 6), and a forward look (Sect. 7).

2 Problem Formulation

2.1 Notation

Input Dataset. A dataset D is a Boolean matrix with
m rows and n columns. For ¢ € [1,m] and j € [1,n],
D(i,5) € {0,1} denotes the value of the cell corre-
sponding to the i-th row and the j-th column. For a

Table 1. Example of a
binary dataset D.

given set of rows I C [1,m], we define the support #|112]3]4]5
function suppc(I) that gives all the columns having 1/0/110/1)0
a value of 1 in all the rows of I, ie., suppc(I) = 210)1/110/0
{j € [Lin] | ¥i € I : D(i,j) = 1}. Similarly, for 3 1]0]1]0)1
a set of columns J C [1,n], we define the function 410/1)1)1]0
suppr(J) = {i € [1,m] | Vj € J : D(4,j) = 1}. Table1 5 [11j1j1]1
shows a toy example of a Boolean matrix, where for 6 10/1/1]1)0
I ={4,5,6} we have that suppc(I) = {2,3,4}. 7101111

Pattern Language. This paper is concerned with a particular kind of pattern
known as a tile [8], denoted 7 = (I, J) and defined as an ordered pair of a set
of rows I C {1,...,m} and a set of columns J C {1,...n}. A tile 7 is said to be
contained (or present) in D, denoted as 7 € D, iff D(¢,j) = 1 for all ¢ € I and
j € J. The set of all tiles present in the dataset is denoted as T" and is defined
as: T={(I,J) | I C{1,...m}AJ C{l,..n} A(I,J) € D}. In Table1, the tile
71 = ({4,5,6,7},{2,3,4}) is present in D (71 € T'), because each of its cells has
a value of 1, but 7 = ({1,2}, {2,3}) is not present (m2 ¢ T') since D(1,3) = 0.

2.2 The Interestingness of a Tile

In order to assess the quality of a tile 7, we use the framework of subjective
interestingness SI proposed in [6]. We briefly recapitulate the definition of this
measure for tiles, denoted SI(7) for a tile 7, and refer the reader to [6] for
more details. SI(7) measures the quality of a tile 7 as the ratio of its subjective
information content IC(7) and its description length DL(7):

B IC(7)
- DL(1)’

SI(7)

Tiles with large SI(7) thus compress subjective information in a short descrip-
tion. Before introducing IC and DL, we first describe the background model—an
important component required to define the subjective information content IC.

Background Model. The SI is subjective in a sense that it accounts for prior
knowledge of the current data miner. A tile 7 is informative for a particular
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user if this tile is somehow surprising for her, otherwise, it does not bring new
information. The most natural way for formalizing this is to use a background
distribution representing the data miner’s prior expectations, and to compute the
probability Pr(7 € D) of this tile under this distribution. The smaller Pr(7 € D),
the more information this pattern contains. Concretely, the background model
consists of a value Pr(D(i,j) = 1) associated to each cell D(i, j) of the dataset,
and denoted p;;. More precisely, p;; is the probability that D(¢,j) = 1 under
user prior beliefs. In [6], it is shown how to compute the background model and
derive all the values p;; corresponding to a given set of considered user priors.
Based on this model, the probability of having a tile 7 = (I, J) in D is:

PrreD)=Pr| A D@Gj)=1|= [ pi

i€l jed i€l jed

Information Content IC. This measure aims to quantify the amount of infor-
mation conveyed to a data miner when she is told about the presence of a tile
in the dataset. It is defined for a tile 7 = (I, .J) as follows:

IC(T) = —log(Pr(r € D)) = > —log(pi;).

i€l jed
Thus, the smaller Pr(r € D), the higher IC(7), and the more informative 7.
Note that for 71,72 € D : IC(11 U ) = IC(71) + IC(72) — IC(71 N 72).

Description Length DL. This function should quantify how difficult it is for a
user to assimilate the pattern. The description length of a tile 7 = (I, J) should
thus depend on how many rows and columns it refers to: the larger are |I| and
|.7], the larger is the description length. Thus, DL(7) can be defined as:

DL(r)=a+0b-(|I| +|J]),

where a and b are two constants that can be handled to give more or less impor-
tance to the contributions of |I| and |J| in the description length.

2.3 Problem Statement

Given a Boolean dataset D, the goal is to sample a tile 7 from the set of all the
tiles T present in D, with a probability of sampling Ps proportional to SI(7),

that is: Pg(7) = I ) Si(é)l( o
e T

A naive approach to sample a tile pattern according to this distribution is
to generate the list {7,...,7x} of all the tiles present in D, sample = € [0, 1]

uniformly at random, and return the tile 7 with S STy = S—ST(m) -
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However, the goal behind using sampling approaches is to avoid materializing the
pattern space which is generally huge. We want to sample without exhaustively
enumerating the set of tiles. In [2], an efficient procedure is proposed to directly
sample patterns according to some measures such as the frequency and the area.
However, this procedure is limited to only some specific measures. Furthermore,
it is proposed for pattern languages defined on only the column dimension, for
example, itemset patterns. In such language, the rows related to an itemset
pattern F' C {1,...,n} are uniquely identified and they correspond to all the
rows containing the itemset, that are suppr(F'). In our work, we are interested
in tiles which are defined by both columns and rows indices. In this case, it is
not clear how the direct procedure proposed in [2] can be applied.

For more complex pattern languages, a generic procedure based on Metropo-
lis Hasting algorithm has been proposed in [9], and illustrated for subgraph
patterns with some quality measures. While this approach is generic and can be
extended relatively easily to different mining tasks, a major drawback of using
Metropolis Hasting algorithm is that the random walk procedure contains the
acceptance test that needs to be processed in each iteration, and the accep-
tance rate o can be very small, which makes the convergence rate practically
extremely slow. Furthermore, Metropolis Hasting can be computationally expen-
sive, as the part of the transition graph representing the probability of reaching
patterns given the current one, has to be materialized.

Interestingly, a very useful MCMC technique is Gibbs sampling, which is a
special case of Metropolis-Hasting algorithm. A significant benefit of this app-
roach is that the acceptante rate « is always equal to 1, i.e., the proposal of
each sampling iteration is always accepted. In this work, we use Gibbs sampling
to draw patterns with a probability distribution that converges to Ps. In what
follows, we will first generically present the Gibbs sampling approach, and then
we show how we efficiently exploit it for our problem. Unlike Metropolis Hast-
ing, the proposed procedure performs a random walk by materializing in each
iteration only the currently sampled pattern.

3 Gibbs Sampling

Suppose we have a random variable X = (X1, X, ..., X;) taking values in some
domain Dom. We want to sample a value € Dom following the joint distri-
bution P(X = z). Gibbs sampling is suitable when it is hard to sample directly
from P but known how to sample just one dimension zp (k € [1,{]) from
the conditional probability P(Xy = zx | X1 = x1, ..., Xk—1 = xp—1, Xgt1 =
ZTk+t1, -, X; = x1). The idea of Gibbs sampling is to generate samples by sweep-
ing through each variable (or block of variables) to sample from its conditional
distribution with the remaining variables fixed to their current values. Algo-
rithm 1 depicts a generic Gibbs Sampler. At the beginning, = is set to its ini-
tial values (often values sampled from a prior distribution ¢). Then, the algo-
rithm performs a random walk of p iterations. In each iteration, we sample
x1 ~ P(X; = mgll) | Xo = xé“)7...7Xl = a;l(“)) (while fixing the other dimen-
sions), then we follow the same procedure to sample xa, ..., until z;.
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Algorithm 1: Gibbs sampler

1 Initialize z(© ~ g(x)

2 for k € [1,p] do

3 draw m(k) ~ P (Xl =z | X2 = :c2k D , X3 gk_l), e X1 = axl(k 1))
4 draw x (XQ =z | X1 = -’51 M X xékil), e X1 = xgkfl))

5 ..
6 drawz NP(X[ =z | Xi :xgk),XQ:xék),...,Xl,l —xl(k>1)

7 return z®

The random walk needs to satisfy some constraints to guarantee that the
Gibbs sampling procedure converges to the stationary distribution P. In the
case of a finite number of states (a finite space Dom in which X takes values),
sufficient conditions for the convergence are irreducibility and aperiodicity:

Irreducibility. A random walk is irreducible if, for any two states z,y € Dom s.t.
P(z) > 0 and P(y) > 0, we can get from x to y with a probability > 0 in a
finite number of steps. L.e. the entire state space is reachable.

Aperiodicity. A random walk is aperiodic if we can return to any state x € Dom
at any time. L.e. revisiting « is not conditioned to some periodicity constraint.

One can also use blocked Gibbs sampling. This consists in growing many
variables together and sample from their joint distribution conditioned to the
remaining variables, rather than sampling each variable z; individually. Blocked
Gibbs sampling can reduce the problem of slow mixing that can be due to the
high number of dimensions used to sample from.

4 Gibbs Sampling of Tiles with Respect to SI

In order to sample a tile 7 = (I, J) with a probability proportional to SI(7), we
propose to use Gibbs sampling. The simplest solution is to consider a tile 7 as
m + n binary random variables (21, ..., Zm, ..., Tm+n), €ach of them corresponds
to a row or a column, and then apply the procedure described in Algorithm 1. In
this case, an iteration of Gibbs sampling requires to sample from each column and
row separately while fixing all the remaining rows and columns. The drawback
of this approach is the high number of variables (m + n) which may lead to a
slow mixing time. In order to reduce the number of variables, we propose to
split 7 = (I, J) into only two separated blocks of random variables I and J, we
then directly sample from each block while fixing the value of the other block.
This means that an iteration of the random walk contains only two sampling
operations instead of m+n ones. We will explain in more details how this Blocked
Gibbs sampling approach can be applied, and how to compute the distributions
used to directly sample a block of rows or columns.
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Algorithm 2: Gibbs-SI
1 Initialize (1,.J)© ~ ¢(z)
2 for k € [1,p] do
L draw I® ~ P (I —1|J= J(’“*”)7 draw J® ~ P (J —J|I= I(’“>)

4 return (I,.J)®

Algorithm 2 depicts the main steps of Blocked Gibbs sampling for tiles. We
start by initializing (I, .J)(®) with a distribution ¢ proportional to the area (|I] x
|J]) following the approach proposed in [2]. This choice is mainly motivated by
its linear time complexity of sampling. Then, we need to efficiently sample from
PI=1I|J=J)and P(J=J|I=1I). In the following, we will explain how
to sample I with P(I = I|J = J), and since the SI is symmetric w.r.t. rows
and columns, the same strategy can be used symmetrically to sample a set of
columns with P(J =J |I=1).

Sampling a Set of Rows I Conditioned to Columns J. For a specific J C
{1,...,n}, the number of tiles (I, J) present in the dataset can be huge, and can
go up to 2. This means that naively generating all these candidate tiles and then
sampling from them is not a solution. Thus, to sample a set of rows I conditioned to
a fixed set of columns J, we propose an iterative algorithm that builds the sampled
I by drawing each i € I separately, while ensuring that the joint distribution of
all the drawings is equal to P(I = I|J = J). I is built using two variables: Ry C
{1, ...,m} made of rows that belong to I, and Ry C {1,...,m} \ Ry that contains
candidate rows that can possibly be sampled and added to R;. Initially, we have
R; = () and Ry = suppgr(J). At each step, we take i € Ry, do a random draw to
determine whether 7 is added to R; or not, and remove it from Ry. When Ry = 0,
the sampled set of rows I is set equal to R;. To apply this strategy, all we need
isto compute P (i € I | Ry CIC R; U Ry AJ = J), the probability of sampling i
considering the current sets Ry, R and J:

PRiU{i}CICRIUR AT =)

P(RRUCICRIUR AT =)

. 1C(ryu{i},HN+IC(F,J)
_ 2rcr\(a TBV{GUFR ) 3 pcro\(i) “arb([ma I FIF1HID

SI(R{UF,J - 1C(r,,D,)+1C(F, D,
Zren; SHRLUE) S rcr, "t iR

Ro|— .
EL;OI 1 m ZFCT?‘Q:\I;{I-}(IC(Rl U{i}, J) +IC(F, J))
Z\kRzo WZFQE2(IC(R1’J)+IC(F’ J))

T gy (7)) ICR U L 9+ (F2172) SIC(Re \ {3, )

S srmamrer () 100+ (F217) - 10(Rs, 1))

_ IC(R1U{i},J) - f(|R2] — 1,|R1| + 1) + IC(R2 \ {i},J) - f(|R2] —2,|R1| + 1)
IC(R1, J) - f(|R2l, | Ra|) +IC(R2, J) - f(|R2| — 1,|Ra) '

PGET|RMCICRIURANI=J)=

x

with f(z,y) = > 1_, m
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Complexity. Let’s compute the complexity of sampling I with a probability
P(I =1|J =J). Before starting the sampling of rows from R, we first compute
the value of IC({i}, J) for each ¢ € Ry (in O(n -m)). This will allow to compute
in O(1) the values of IC that appear in P(i € I| Ry CIC RiUR; AT =J),
based on the relation IC(I3 U Iy, J) = IC(Iy, J) + IC(I3, J) for I, Is C [1,m].
In addition to that, sampling each element i € Ry requires to compute the
corresponding values of f(z,y). These values are computed once for the first
sampled row i € Ry with a cost of O(m), and then they can be updated directly
when sampling the next rows, using the following relation:

1
a+b-(x4+y+|J])

This means that the overall cost of sampling the whole set of rows I with a
probability P(I = I|J = J) is O(n - m). Following the same approach, sampling
J conditionned to I is done in O(n - m). As we have p sampling iterations,
the worst case complexity of the whole Gibbs sampling procedure of a tile 7 is

O(p-n-m).

Convergence Guarantee. In order to guarantee the convergence to the station-
ary distribution proportional to the SI measure, the Gibbs sampling procedure
needs to satisfy some constraints. In our case, the sampling space is finite, as
the number of tiles is limited to at most 2™*". Then, the sampling procedure
converges if it satisfies the aperiodicity and the irreducibility constraints. The
Gibbs sampling for tiles is indeed aperiodic, as in each iteration it is possible
to remain in exactly the same state. We only have to verify if the irreducibil-
ity property is satisfied. We can show that, in some cases, the random walk is
reducible, we will show how to make Gibbs sampling irreducible in those cases.

Theorem 1. Let us consider the bipartite graph G = (U, V, E) derived from the
dataset D, s.t., U ={1,..,m}, V={1,...,n}, and E={(i,5) | i € [Il,m] A j €
[1,n] A D(i,j) = 1}. A tile 7 = (I,J) present in D corresponds to a complete
bipartite subgraph G, = (I,J, E;) of G. If the bipartite graph G is connected,
then the Gibbs sampling procedure on tiles of D is irreducible.

Proof. We need to prove that for all pair of tiles 7 = (I1,J1),72 = (I2,J2)
present in D, the Gibbs sampling procedure can go from 71 to 7. Let G-, G,
be the complete bipartite graphs corresponding to 71 and 75. As G is connected,
there is a path from any vertex of G, to any vertex of G,,. The probability that
the sampling procedure walks through one of these paths is not 0, as each step of
these paths constitutes a tile present in D. After walking on one of these paths,
the procedure will find itself on a tile 7/ C 75. Reaching 75 from 7’ is probable
after one iteration by sampling the right rows and then the right columns.

Thus, if the bipartite graph G is connected, the Gibbs sampling procedure
converges to a stationary distribution. To make the random walk converge when
(G is not connected, we can compute the connected components of G, and then
apply Gibbs sampling separately in each corresponding subset of the dataset.



88 A. Bendimerad et al.

Table 2. Dataset characteristics.

Dataset # rows | # columns | Avg. |row|

mushrooms | 8124 120 24

chess 3196 76 38

kdd 843 6159 65.3

100k sampled patterns 100k sampled patterns 100k sampled patterns
w10 100 "
o o o
i = =
= . 5 = .
3 3 .. 2500 0
§ § 50 4 ‘,.:;"'_ E .
#* #* ks #*
04 05 6.0 0.2 0.4 B.O 0.2 0.4
Sl Sl

Fig. 1. Distribution of sampled patterns in synthetic data with 10 rows and 10 columns.

5 Experiments

We report our experimental study to evaluate the effectiveness of Gibbs-SI. Java
source code is made available!. We consider three datasets whose characteris-
tics are given in Table2. mushrooms and chess from the UCI repository? are
commonly used for evaluation purposes. kdd contains a set of SIGKDD paper
abstracts between 2001 and 2008 downloaded from the ACM website. Each
abstract is represented by a row and words correspond to columns, after stop
word removal and stemming. For each dataset, the user priors that we represent
in the SI background model are the row and column margins. In other terms, we
consider that user knows (or, is already informed about) the following statistics:
> D(i,j) for alli € I, and 3, D(i, j) for all j € J.

Empirical Sampling Distribution. First, we want to experimentally evaluate
how the Gibbs sampling distribution matches with the desired distribution. We
need to run Gibbs-SI in small datasets where the size of T" is not huge. Then, we
take a sufficiently large number of samples so that the sampling distribution can
be created. To this aim, we have synthetically generated a dataset containing 10
rows, 10 columns, and 855 tiles. We run Gibbs-SI with three different numbers
of iterations p: 1k, 10k, and 100k, for each case, we keep all the visited tiles, and
we study their distribution w.r.t. their SI values. Figurel reports the results.
For 1k sampled patterns, the proportionality between the number of sampling
and SI is not clearly established yet. For higher numbers of sampled patterns,
a linear relation between the two axis is evident, especially for the case of 100k
sampled patterns, which represents around 100 times the total number of all the
tiles in the dataset. The two tiles with the highest SI are sampled the most, and
the number of sampling clearly decreases with the SI value.

! http://tiny.cc/ghzmgz.
2 https://archive.ics.uci.edu/ml/.
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Fig. 2. Distributions of the sampled patterns w.r.t. # rows, # columns and SI.

Characteristics of Sampled Tiles. To investigate which kind of patterns are
sampled by Gibbs-SI, we show in Fig.2 the distribution of sampled tiles w.r.t
their number of rows, columns, and their SI, for each of the three datasets given
in Table 2. For mushrooms and chess, Gibbs-SI is able to return patterns with a
diverse number of rows and columns. It samples much more patterns with low SI
than patterns with high SI values. In fact, even if we are sampling proportionally
to SI, the number of tiles in T" with poor quality are significantly higher than
the ones with high quality values. Thus, the probability of sampling one of low
quality patterns is higher than sampling one of the few high quality patterns.
For kdd, although the number of columns in sampled tiles varies, all the sampled
tiles unfortunately cover only one row. In fact, the particularity of this dataset
is the existence of some very large transactions (max = 180).

Quality of the Sampled Tiles. In this part of the experiment, we want to
study whether the quality of the top sampled tiles is sufficient. As mining exhaus-
tively the best tiles w.r.t. SI is not feasible, we need to find some strategy
that identifies high quality tiles. We propose to use LCM [14] to retrieve the
closed tiles corresponding to the top 10k frequent closed itemsets. A closed tile
T = (I,J) is a tile that is present in D and whose I and J cannot be extended
anymore. Although closed tiles are not necessarily the ones with the highest SI,
we make the hypothesis that at least some of them have high SI values as they
maximize the value of IC function. For each of the three real world datasets, we
compare between the SI of the top closed tiles identified with LCM and the ones
identified with Gibbs-SI. In Table 3, we show the SI of the top-1 tile, and the
average SI of the top-10 tiles, for each of LCM and Gibbs-SI.

Unfortunately, the scores of tiles retrieved with LCM are substantially larger
than the ones of Gibbs-SI, especially for mushrooms and chess. Importantly,
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Table 3. The SI of the top-1 tile, and the average SI of the top-10 tiles, found by
LCM and Gibbs-SI in the studied datasets.

Mushrooms Chess KDD

Top 1 SIAvg(top 10 SI)Top 1 SIAvg(top 10 SI)Top 1 SIAvg(top 10 SI)
Gibbs sampling0.12 0.11 0.015 0.014 0.54 0.54
LCM 3.89 3.20 0.40 0.40 0.83 0.70

there may exist tiles that are even better than the ones found by LCM. This
means that Gibbs-SI fails to identify the top tiles in the dataset. We believe
that this is due to the very large number of low quality tiles which trumps the
number of high quality tiles. The probability of sampling a high-quality tile is
exceedingly small, necessitating a practically too large sample to identify any.

6 Discussion

Our results show that efficiently sampling from the set of tiles with a sampling
probability proportional to the tiles’ subjective interestingness is possible. Yet,
they also show that if the purpose is to identify some of the most interesting
patterns, direct pattern sampling may not be a good strategy. The reason is that
the number of tiles with low subjective interestingness is vastly larger that those
with high subjective interestingness. This imbalance is not sufficiently offset
by the relative differences in their interestingness and thus in their sampling
probability. As a result, the number of tiles that need to be sampled in order
to sample one of the few top interesting ones is of the same order as the total
number of tiles.

To mitigate this, one could attempt to sample from alternative distributions
that attribute an even higher probability to the most interesting patterns, e.g.
with probabilities proportional to the square or other high powers of the sub-
jective interestingness. We speculate, however, that the computational cost of
sampling from such more highly peaked distributions will also be larger, undoing
the benefit of needing to sample fewer of them. This intuition is supported by
the fact that direct sampling schemes according to itemset support are compu-
tationally cheaper than according to the square of their support [2].

That said, the use of sampled patterns as features for downstream machine
learning tasks, even if these samples do not include the most interesting ones,
may still be effective as an alternative to exhaustive pattern mining.

7 Conclusions

Pattern sampling has been proposed as a computationally efficient alternative to
exhaustive pattern mining. Yet, existing techniques have been limited in terms
of which interestingness measures they could handle efficiently.
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In this paper, we introduced an approach based on Gibbs sampling, which is
capable of sampling from the set of tiles proportional to their subjective inter-
estingness. Although we present this approach for a specific type of pattern
language and quality measure, we can relatively easily follow the same scheme
to apply Gibbs sampling for other pattern mining settings. The empirical evalua-
tion demonstrates effectiveness, yet, it also reveals a potential weakness inherent
to pattern sampling: when the number of interesting patterns is vastly outnum-
bered by the number of non-interesting ones, a large number of samples may
be required, even if the samples are drawn with a probability proportional to
the interestingness. Investigating our conjecture that this problem affects all
approaches for sampling interesting patterns (for sensible measures of interest-
ingness) seems a fruitful avenue for further research.
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Abstract. A naive implementation of k-means clustering requires com-
puting for each of the n data points the distance to each of the k cluster
centers, which can result in fairly slow execution. However, by storing
distance information obtained by earlier computations as well as informa-
tion about distances between cluster centers, the triangle inequality can
be exploited in different ways to reduce the number of needed distance
computations, e.g. [3-5,7,11]. In this paper I present an improvement of
the Exponion method [11] that generally accelerates the computations.
Furthermore, by evaluating several methods on a fairly wide range of
artificial data sets, I derive a kind of map, for which data set parameters
which method (often) yields the lowest execution times.

Keywords: Exact k-means - Triangle inequality - Exponion

1 Introduction

The k-means algorithm [9] is, without doubt, the best known and (among) the
most popular clustering algorithm(s), mainly because of its simplicity. However,
a naive implementation of the k-means algorithm requires O(nk) distance com-
putations in each update step, where n is the number of data points and k is the
number of clusters. This can be a severe obstacle if clustering is to be carried
out on truly large data sets with hundreds of thousands or even millions of data
points and hundreds to thousands of clusters, especially in high dimensions.

Hence, in our “big data” age, considerable effort was spent on trying to
accelerate the computations, mainly by reducing the number of needed distance
computations. This led to several very clever approaches, including [3-5,7,11].
These methods exploit that for assigning data points to cluster centers knowing
actual distances is not essential (in contrast to e.g. fuzzy c-means clustering [2]).
All one really needs to know is which center is closest. This, however, can some-
times be determined without actually computing (all) distances.

A core idea is to maintain, for each data point, bounds on its distance to
different centers, especially to the closest center. These bounds are updated by
© The Author(s) 2020
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exploiting the triangle inequality, and can enable us to ascertain that the center
that was closest before the most recent update step is still closest. Furthermore,
by maintaining additional information, tightening these bounds can sometimes
be done by looking at only a subset of the cluster centers.

In this paper I present an improvement of one of the most sophisticated of
such schemes: the Exponion method [11]. In addition, by comparing my new
approach to other methods on several (artificial) data sets with a wide range of
number of dimensions and number of clusters, I derive a kind of map, for which
data set parameters which method (often) yields the lowest execution times.

2 k-Means Clustering

The k-means algorithm is a very simple, yet effective clustering scheme that
finds a user-specified number k of clusters in a given data set. This data set is
commonly required to consist of points in a metric space. The algorithm starts
by choosing an initial set of k& cluster centers, which may naively be obtained
by sampling uniformly at random from the given data points. In the subsequent
cluster center optimization phase, two steps are executed alternatingly: (1) each
data point is assigned to the cluster center that is closest to it (that is, closer
than any other cluster center) and (2) the cluster centers are recomputed as
the vector means of the data points assigned to them (to enable these mean
computations, the data points are supposed to live in a metric space).

Using vy, (x) to denote the cluster center m-th closest to a point z in the
data space, this update scheme can be written (for n data points x1,...,x,) as

Vil <i<k: it =

where the indices ¢ and ¢ 4 1 indicate the update step and the function 1(¢)
yields 1 if ¢ is true and 0 otherwise. Here v} (z;) represents the assignment step
and the fraction computes the mean of the data points assigned to center c;.

It can be shown that this update scheme must converge, that is, must reach a
state in which another execution of the update step does not change the cluster
centers anymore [14]. However, there is no guarantee that the obtained result is
optimal in the sense that it yields the smallest sum of squared distances between
the data points and the cluster centers they are assigned to. Rather, it is very
likely that the optimization gets stuck in a local optimum. It has even been
shown that k-means clustering is NP-hard for 2-dimensional data [10].

Furthermore, the quality of the obtained result can depend heavily on the
choice of the initial centers. A poor choice can lead to inferior results due to a
local optimum. However, improvements of naively sampling uniformly at random
from the data points are easily found, for example the Maximin method [8] and
the k-means++ procedure [1], which has become the de facto standard.
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3 Bounds-Based Exact k-Means Clustering

Some approaches to accelerate the k-means algorithm rely on approximations,
which may lead to different results, e.g. [6,12,13]. Here, however, I focus on
methods to accelerate exact k-means clustering, that is, methods that, starting
from the same initialization, produce the same result as a naive implementation.

Fig. 1. Using the triangle inequality to update the distance bounds for a data point z;.

The core idea of these methods is to compute for each update step the dis-
tance each center moved, that is, the distance between the new and the old
location of the center. Applying the triangle inequality one can then derive how
close or how far away an updated center can be from a data point in the worst
possible case. For this we distinguish between the center closest (before the
update) to a data point z; on the one hand and all other centers on the other.

k Distance Bounds. The first approach along these lines was developed in [5]
and maintains one distance bound for each of the k cluster centers.

For the center closest to a data point x; an upper bound u§ on its distance
is updated as shown in Fig. 1(a): If we know before the update that the distance
between x; and its closest center ¢}, = 1/1 {(z;) is (at most) uf, and the update
moved the center c}; to the new locatlon c%1, then the distance d(w], 1) between
the data pomt and the new location of this center! cannot be greater than

EH = u + d(ct Ci1s Jl) This bound is actually reached if before the update the
bound was tight and the center cj1 moves away from the data point x; on the
straight line through x; and c%; (that is, if the triangle is “flat”).

For all other centers, that is, centers that are not closest to the point z;,
lower bounds ¢;;, i = 2,...,k, are updated as shown in Fig. 1(b): If we know
before the update that the distance between xj and a center c =vl(xj), is (at
least) E; and the update moved the center cj to the new 1ocat10n cﬁ* then the
distance d(z;,c JZ) between the data point and the new location of this center

cannot be less than €t+1 = Et —d(ct Sio ﬂ) This bound is actually reached if

before the update the bound was tlght and the center cji moves towards the
data point z; on the straight line through x; and cf; (“fat” triangle).

! Note that it may be c 1# c"'*'1 (although equality is not ruled out either), because
the update may have changed which cluster center is closest to the data point z;.
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These bounds are easily exploited to avoid distance computations for a data
point z;: If we find that u?'l < O = rnin’;“=2 éﬁl, that is, if the upper bound
on the distance to the center that was closest before the update (in step t) is less
than the smallest lower bound on the distances to any other center, the center
that was closest before the update must still be closest after the update (that is,
in step ¢t + 1). Intuitively: even if the worst possible case happens, namely if the
formerly closest center moves straight away from the data point and the other
centers move straight towards it, no other center can have been brought closer
than the one that was already closest before the update.

And even if this test fails, one first computes the actual distance between
the data point x; and cz’j That is, one tightens the bound u§-+1 to the actual
distance and then reevaluates the test. If it succeeds now, the center that was
closest before the update must still be closest. Only if the test fails also with
the tightened bound, the distances between the data point and the remaining
cluster centers have to be computed in order to find the closest center and to
reinitialize the bounds (all of which are tight after such a computation).

This scheme leads to considerable acceleration, because the cost of computing
the distances between the new and the old locations of the cluster centers as
well as the cost of updating the bounds is usually outweighed by the distance
computations that are saved in those cases in which the test succeeds.

2 Distance Bounds. A disadvantage of the scheme just described is that
k bound updates are needed for each data point. In order to reduce this cost,
in [7] only two bounds are kept per data point: u} and ¢4, that is, all non-closest
centers are captured by a single lower bound. This bound is updated according to
E;H =1 — max?_, d(c%;, ¢%). Even though this leads to worse lower bounds for
the non-closest centers (since they are all treated as if they moved by the max-
imum of the distances any one of them moved), the fact that only two bounds

have to be updated leads to faster execution, at least in many cases.

YinYang Algorithm. Instead of having either one distance bound for each cen-
ter (k bounds) or capturing all non-closest centers by a single bound (2 bounds),
one may consider a hybrid approach that maintains lower bounds for subsets of
the non-closest centers. This improves the quality of bounds over the 2 bounds
approach, because bounds are updated only by the maximum distance a center
in the corresponding group moved (instead of the global maximum). On the
other hand, (considerably) fewer than k& bounds have to be updated.

This is the idea of the YinYang algorithm [4], which forms the groups of
centers by clustering the initial centers with k-means clustering. The number of
groups is chosen as k/10 in [4], but other factors may be tried. The groups found
initially are maintained, that is, there is no re-clustering after an update.

However, apart from fewer bounds (compared to k bounds) and better bounds
(compared to 2 bounds), grouping the centers has yet another advantage: If the
bounds test fails, even with a tightened bound uz, the groups and their bounds
may be used to limit the centers for which a distance recomputation is needed.
Because if the test succeeds for some group, one can infer that the closest center
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d(cji, v2"(e))

t+1
uj

—

ch z; Z{En)

Fig.2. If 2u§-+1< d(cﬁ, I/E'H(cﬁ)), then the center cﬁ must still be closest to the data
point z;, due to the triangle inequality.

ring/(hyper-)annulus
searched for the two
centers closest to x;

0; = 2u; +6;

&; = d(cji, va(csD))

Fig. 3. Annular algorithm [3]: If even after the upper bound w; for the distance from
data point z; to its (updated) formerly closest center ¢4} has been made tight, the lower
bound ¢; for distances to other centers is still lower, it is necessary to recompute the
two closest centers. Exploiting information about the distance between cﬁ and another
center va(chh) closest to it, these two centers are searched in a (hyper-)annulus around
the origin (dot in the bottom left corner) with ¢4 in the middle and thickness 26;,
where 6; = 2u; + 6; and &; = d(c};,v2(c}1)). (Color figure online)

cannot be in that group. Only centers in groups, for which the group-specific
test fails, need to be considered for recomputation.

Cluster to Cluster Distances. The described bounds test can be improved
by not only computing the distance each center moved, but also the distances
between (updated) centers, to find for each center another center that is closest to

it [5]. With my notation I can denote such a center as v&* (cf1), that is, the center

that is second closest? to the point ¢}j. Knowing the distances d(cki, 5™ (c1)),
one can test whether 2uf+1 < d(cg*l, 1/5“(03.*{)). If this is the case, the center that
was closest to the data point x; before the update must still be closest after, as

2 Note that Vf“(c?) = ¢}, because a center is certainly the center closest to itself.
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t*
]Z
lie on a straight line with ¢f; and v (c}}) on opposite sides of ;).

Note that this second test can be used with k as well as with 2 bounds.
However, it should also be noted that, although it can lead to an acceleration,
if used in isolation it may also make an algorithm slower, because of the O(k?)

distance computations needed to find the k£ distances d(c?rl Vé“( E“)).

and v4T(

is illustrated in Fig. 2 for the worst possible case (namely z;, ¢
t+1 (

cjl)

Annular Algorithm. With the YinYang algorithm an idea appeared on the
scene that is at the focus of all following methods: try to limit the centers that
need to be considered in the recomputations if the tests fail even with a tightened
bound ut+1 Especially, if one uses the 2 bounds approach, significant gains may

be obtamed all we need to achieve in this case is to find /' = uf“(xj) and
iyt = Vit (x;), that is, the two centers closest to z;, because these are all that
is needed for the assignment step as well as for the (tight) bounds u‘*! and f;“.

One such approach is the Annular algorithm [3]. For its description, as gen-
erally in the following, I drop the time step indices ¢t + 1 in order to simplify
the notation. The Annular algorithm relies on the following idea: if the tests
described above fail with a tightened bound u;, we cannot infer that cg’: is still
the center closest to x;. But we know that the closest center must lie in (hyper-)
ball with radius u; around z; (darkest circle in Fig. 3). Any center outside this
(hyper-)ball cannot be closest to z;, because ¢t is closer. Furthermore, if we
know the distance to another center closest to cﬂ, that is, va(ck}), we know that
even in the worst possible case (which is depicted in Fig.3: z;, ¢ff and v(ch))
lie on a straight line), the two closest centers must lie in a (hyper-)ball with
radius u; + d; around z;, where d; = d(cf}, va(c}})) (medium circle in Fig.3),
because we already know two centers that are this close, namely CE*Z‘ and vo (cé*i)
Therefore, if we know the distances of the centers from the origin, we can easily
restrict the recomputations to those centers that lie in a (hyper-)annulus (hence
the name of this algorithm) around the origin with ¢f} in the middle and thick-
ness 26, where 0; = 2u; 4 8; with §; = d(cf7, va(c5})) (see Fig. 3, light gray ring
section, origin in the bottom left corner; note that the green line is perpendicular
to the red/blue lines only by accident/for drawing convenience).

Exponion Algorithm. The Exponion algorithm [11] improves over the Annular
algorithm by switching from annuli around the origin to (hyper-)balls around
the (updated) formerly closest center cj. Again we know that the center closest
to z; must lie in a (hyper-)ball with radius u; around z; (darkest circle in Fig. 4)
and that the two closest centers must lie in a (hyper-)ball with radius u; + ¢;
around x;, where §; = d(c;,va(c})) (medium circle in Fig.4). Therefore, if
we know the pairwise distances between the (updated) centers, we can easily
restrict the recomputations to those centers that lie in the (hyper-)ball with
radius 7; = 2u; + J; around ¢4} (lightest circle in Fig.4).

The Exponion algorithm also relies on a scheme with which it is avoided
having to sort, for each cluster center, the lists of the other centers by their
distance. For this concentric annuli, one set centered at a each center, are created,
with each annulus further out containing twice as many centers as the preceding
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circle/(hyper-)ball
searched for the two
centers closest to x;

Fig. 4. Exponion algorithm [11]: If even after the upper bound u; for the distance from
a data point z; to its (updated) formerly closest center cﬁ has been made tight, the
lower bound /¢; for distance to other centers is still lower, it is necessary to recompute
the two closest centers. Exploiting information about the distance between cﬁ and
another center I/Q(C?i) closest to it, these two centers are searched in a (hyper-)sphere
around center c}; with radius r; = 2u; + §; where §; = d(c}}, v2(ct})). (Color figure
online)

one. Clearly this creates an onion-like structure, with an exponentially increasing
number of centers in each layer (hence the name of the algorithm).

However, avoiding the sorting comes at a price, namely that more centers may
have to be checked (although at most twice as many [11]) for finding the two
closest centers and thus additional distance computations ensue. In my imple-
mentation I avoided this complication and simply relied on sorting the distances,
since the gains achievable by concentric annuli over sorting are somewhat unclear
(in [11] no comparisons of sorting versus concentric annuli are provided).

Shallot Algorithm. The Shallot algorithm is the main contribution of this
paper. It starts with the same considerations as the Exponion algorithm, but
adds two improvements. In the first place, not only the closest center cj; and
the two bounds u; and ¢; are maintained for each data point (as for Exponion),
but also the second closest center c;o. This comes at practically no cost (apart
from having to store an additional integer per data point), because the second
closest center has to be determined anyway in order to set the bound /;.

If a recomputation is necessary, because the tests fail even for a tightened u;,
it is not automatically assumed that cf} is the best center z for a (hyper-)ball

to search. As it is plausible that the formerly second closest center ¢t} may now

J
be closer to x; than ¢}, the center ¢l is processed first among the centers %,
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1t =2,...,k. If it turns out that it is actually closer to x; than cz-’;, then c§’§ is
chosen as the center z of the (hyper-)ball to check. In this case the (hyper-)ball
will be smaller (since we found that d(z;,cf) < d(zj,c}i)). For the following,
let p denote the other (updated) center that was not chosen as the center z.

The second improvement may be understood best by viewing the chosen
center z of the (hyper-)ball as the initial candidate ¢f; for the closest center in
step ¢ + 1. Hence we initialize u; = d(z;, z). For the initial candidate c}, for the
second closest center in step ¢ + 1 we have two choices, namely p and v5(z). We
choose ¢}y = p if uj+d(z;,p) < 2w +0; and ¢}, = v2(2) otherwise, and initialize
¢; = uj+d(z;,p) or £; = 2u;j+0; accordingly, thus minimizing the radius, which
then can be written, regardless of the choice taken, as r; = u; + ;.

While traversing the centers in the constructed (hyper-)ball, better candi-
dates may be obtained. If this happens, the radius of the (hyper-)ball may be
reduced, thus potentially reducing the number of centers to be processed. This
idea is illustrated in Fig.5. Let uj be the initial value of u; when the (hyper-)
ball center was chosen, but before the search is started, that is u$ = d(z;, 2).
If a new closest center (candidate) c}; is found (see Fig.5(a)), we can update
u; = d(wj,cj;) and £; = d(xj,cj) = uj. Hence we can shrink the radius to
rj = 2uj = uj + ¢;. If then an even closer center is found (see Fig.5(b)), the
radius may be shrunk further as u; and ¢; are updated again. As should be clear
from these examples, the radius is always r; = uj + ¢;.

circle/(hyper-)ball
searched for the two
centers closest to z;

circle/(hyper-)ball
searched for the two
centers closest to x;

Fig. 5. Shallot algorithm: If a center closer to the data point than the two currently
closest centers is found, the radius of the (hyper-)ball to be searched can be shrunk.

A shallot is a type of onion, smaller than, for example, a bulb onion. I chose
this name to indicate that the (hyper-)ball that is searched for the two closest
centers tends to be smaller than for the Exponion algorithm. The reference to an
onion may appear misguided, because I rely on sorting the list of other centers
by their distance for each cluster center, rather than using concentric annuli.
However, an onion reference may also be justified by the fact that my algorithm
may shrink the (hyper-)ball radius during the traversal of centers in the (hyper-)
ball, as this also creates a layered structure of (hyper-)balls.
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4 Experiments

In order to evaluate the performance of the different exact k-means algorithms
I generated a large number of artificial data sets. Standard benchmark data sets
proved to be too small to measure performance differences reliably and would also
not have permitted drawing “performance maps” (see below). I fixed the number
of data points in these data sets at » = 100 000. Anything smaller renders the
time measurements too unreliable, anything larger requires an unpleasantly long
time to run all benchmarks. Thus I varied only the dimensionality m of the
data space, namely as m € {2,3,4,5,6,8,10, 15,20, 25, 30, 35,40, 45,50}, and
the number k of clusters, from 20 to 300 in steps of 20. For each parameter
combination I generated 10 data sets, with clusters that are (roughly, due to
random deviations) equally populated with data points and that may vary in
size by a factor of at most ten per dimension. All clusters were modeled as
isotropic normal (or Gaussian) distributions. Each data set was then processed
10 times with different initializations. All optimization algorithms started from
the same initializations, thus making the comparison as fair as possible.

The clustering program is written in C (however, there is also a Python ver-
sion, see the link to the source code below). All implementations of the different
algorithms are entirely my own and use the same code to read the data and to
write the clustering results. This adds to the fairness of the comparison, as in
this way any differences in execution time can only result from differences of
the actual algorithms. The test systems was an Intel Core 2 Quad Q9650@3GHz
with 8 GB of RAM running Ubuntu Linux 18.04 64bit.

300
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Fig. 6. Map of the algorithms that produced the best execution times over number of
dimensions (horizontal) and number of clusters (vertical), showing fairly clear regions
of algorithm superiority. Enjoyably, the Shallot algorithm that was developed in this
paper yields the best results for the largest number of parameter combinations.
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Fig. 7. Relative comparison between the Shallot algorithm and the Exponion algo-
rithm. The left diagram refers to the number of distance computations, the right dia-
gram to execution time. Blue means that Shallot is better, red that Exponion is better.
(Color figure online)

The results of these experiments are visualized in Figs.6, 7 and 8. Figure6
shows on a grid spanned by the number of dimensions (horizontal axis) and the
number of clusters inducted into the data set (vertical axis) which algorithm
performed best (in terms of execution time) for each combination. Clearly, the
Shallot algorithm wins most parameter combinations. Only for larger numbers
of dimensions and larger numbers of clusters the YinYang algorithm is superior.

In order to get deeper insights, Fig. 7 shows on the same grid a comparison
of the number of distance computations (left) and the execution times (right)
of the Shallot algorithm and the Exponion algorithm. The relative performance

2 3 4 5 6 8 101520253035404550 2 345 6 8101520253035404550 0.0

Fig. 8. Variation of the execution times over number of dimensions (horizontal) and
number of clusters (vertical). The left diagram refers to the Shallot algorithm, the right
diagram to the Exponion algorithm. The larger variation for fewer clusters and fewer
dimensions may explain the speckled look of Figs.6 and 7.
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Fig. 9. Relative comparison between the Shallot algorithm and the YinYang algorithm
using the cluster to cluster distance test (pure YinYang is very similar, though). The left
diagram refers to the number of distance computations, the right diagram to execution
time. Blue means that Shallot is better, red that YinYang is better. (Color figure
online)

is color-coded: saturated blue means that the Shallot algorithm needed only
half the distance computations or half the execution time of the Exponion algo-
rithm, saturated red means that it needed 1.5 times the distance computations
or execution time compared to the Exponion algorithm.

W.r.t. distance computations there is no question who is the winner: the
Shallot algorithm wins all parameter combinations, some with a considerable
margin. W.r.t. execution times, there is also a clear region towards more dimen-
sions and more clusters, but for fewer clusters and fewer dimensions the diagram
looks a bit speckled. This is a somewhat strange result, as a smaller number of
distance computations should lead to lower execution times, because the effort
spent on organizing the search, which is also carried out in exactly the same
situations, is hardly different between the Shallot and the Exponion algorithm.

The reason for this speckled look could be that the benchmarks were carried
out with heavy parallelization (in order to minimize the total time), which may
have distorted the measurements. As a test of this hypothesis, Fig. 8 shows the
standard deviation of the execution times relative to their mean. White means
no variation, fully saturated blue indicates a standard deviation half as large as
the mean value. The left diagram refers to the Shallot, the right diagram to the
Exponion algorithm. Clearly, for a smaller number of dimensions and especially
for a smaller number of clusters the execution times vary more (this may be,
at least in part, due to the generally lower execution times for these parameter
combinations). It is plausible to assume that this variability is the explanation
for the speckled look of the diagrams in Fig.6 and in Fig. 7 on the right.

Finally, Fig.9 shows, again on the same grid, a comparison of the number
of distance computations (left) and the execution times (right) of the Shallot
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algorithm and the YinYang algorithm (using the test based on cluster to cluster
distances, although a pure YinYang algorithm performs very similarly). The
relative performance is color-coded in the same way as in Fig.7. Clearly, the
smaller number of distance computations explains why the YinYang algorithm
is superior for more clusters and more dimensions.

The reason is likely that grouping the centers leads to better bounds. This
hypothesis is confirmed by the fact that the Elkan algorithm (k distance bounds)
always needs the fewest distance computations (not shown as a grid) and loses
on execution time only due to having to update so many distance bounds.

5 Conclusion

In this paper I introduced the Shallot algorithm, which adds two improvements
to the Exponion algorithm [11], both of which can potentially shrink the (hyper-)
ball that has to be searched for the two closest centers if recomputation becomes
necessary. This leads to a measurable, sometimes even fairly large speedup com-
pared to the Exponion algorithm due to fewer distance computations. How-
ever, for high-dimensional data and large numbers of clusters the YinYang algo-
rithm [4] (with or without the cluster to cluster distance test) is superior to both
algorithms. Yet, since clustering in high dimensions is problematic anyway due
to the curse of dimensionality, it may be claimed reasonably confidently that the
Shallot algorithm is the best choice for standard clustering tasks.

Software. My implementation of the described methods (C and Python), with
which I conducted the experiments, can be obtained under the MIT License at
http://www.borgelt.net/cluster.html.

Complete Results. A table with the complete experimental results I obtained
can be retrieved as a simple text table at
http://www.borgelt.net /docs/clsbench.txt.

More maps comparing the performance of the algorithms can be found at
http://www.borgelt.net/docs/clsbench.pdf.

References

1. Arthur, D., Vassilvitskii, S.: k-Means++: the advantages of careful seeding. In: Pro-
ceedings of 18th Annual STAM Symposium on Discrete Algorithms, SODA 2007,
New Orleans, LA, pp. 1027-1035. Society for Industrial and Applied Mathematics,
Philadelphia (2007)

2. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum Press, New York (1981)

3. Drake, J.: Faster k-means clustering, Master’s thesis, Baylor University, Waco, TX,
USA (2013)

4. Ding, Y., Zhao, Y., Shen, Y., Musuvathi, M., Mytkowicz, T.: YinYang k-means: a
drop-in replacement of the classic k-means with consistent speedup. In: Proceedings
of 32nd International Conference on Machine Learning, ICML 2015, Lille, France,
JMLR Workshop and Conference Proceedings, vol. 37, pp. 579-587 (2015)


http://www.borgelt.net/cluster.html
http://www.borgelt.net/docs/clsbench.txt
http://www.borgelt.net/docs/clsbench.pdf

10.

11.

12.

13.

14.

Even Faster Exact k-Means Clustering 105

Elkan, C.: Using the triangle inequality to accelerate k-means. In: Proceedings 20th
International Conference on Machine Learning, ICML 2003, Washington, DC, pp.
147-153. AAAI Press, Menlo Park (2003)

Frahling, G., Sohler, C.: A fast k-means implementation using coresets. In: Pro-
ceedings of 22nd Annual Symposium on Computational Geometry, SCG 2006,
Sedona, AZ, pp. 135-143. ACM Press, New York (2006)

Hamerly, G.: Making k-means even faster. In: Proceedings of SIAM International
Conference on Data Mining, SDM 2010, Columbus, OH, pp. 130-140. Society for
Industrial and Applied Mathematics, Philadelphia (2010)

Hathaway, R.J., Bezdek, J.C., Huband, J.M.: Maximin initialization for clus-
ter analysis. In: Martinez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.)
CIARP 2006. LNCS, vol. 4225, pp. 14-26. Springer, Heidelberg (2006). https://
doi.org/10.1007/11892755_2

Lloyd, S.P.: Least square quantization in PCM. IEEE Trans. Inf. Theory 28, 129-
137 (1982)

Mahajan, M., Nimbhorkar, P., Varadarajan, K.: The planar k-means problem is
NP-hard. Theor. Comput. Sci. 442, 13-21 (2009)

Newling, J., Fleuret, F.: Fast k-means with accurate bounds. In: Proceedings of
33rd International Conference on Machine Learning, ICML 2016, New York, NY,
JMLR Workshop and Conference Proceedings, vol. 48, pp. 936-944 (2016)
Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large
vocabularies and fast spatial matching. In: Proceedings of IEEE International Con-
ference on Computer Vision and Pattern Recognition, CVPR 2007, Minneapolis,
MN. IEEE Press, Piscataway (2007)

Sculley, D.: Web-scale k-means clustering. In: Proceedings of 19th International
Conference on World Wide Web, WWW 2010, Raleigh, NC, pp. 1177-1178. ACM
Press, New York (2010)

Selim, S.Z., Ismail, M.A.: k-means-type algorithms: a generalized convergence the-
orem and characterization of local optimality. IEEE Trans. Pattern Anal. Mach.
Intell. 1(6), 81-87 (1984)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.


https://doi.org/10.1007/11892755_2
https://doi.org/10.1007/11892755_2
http://creativecommons.org/licenses/by/4.0/

l‘)

Check for
updates

Ising-Based Consensus Clustering
on Specialized Hardware

Eldan Cohen'®) Avradip Mandal?, Hayato Ushijima-Mwesigwa?,
and Arnab Roy?

L University of Toronto, Toronto, Canada
ecohen@mie.utoronto.ca
2 Fujitsu Laboratories of America, Inc., Sunnyvale, USA
{amandal,hayato,aroy}@us.fujitsu.com

Abstract. The emergence of specialized optimization hardware such as
CMOS annealers and adiabatic quantum computers carries the promise
of solving hard combinatorial optimization problems more efficiently in
hardware. Recent work has focused on formulating different combina-
torial optimization problems as Ising models, the core mathematical
abstraction used by a large number of these hardware platforms, and
evaluating the performance of these models when solved on specialized
hardware. An interesting area of application is data mining, where com-
binatorial optimization problems underlie many core tasks. In this work,
we focus on consensus clustering (clustering aggregation), an important
combinatorial problem that has received much attention over the last two
decades. We present two Ising models for consensus clustering and evalu-
ate them using the Fujitsu Digital Annealer, a quantum-inspired CMOS
annealer. Our empirical evaluation shows that our approach outperforms
existing techniques and is a promising direction for future research.

1 Introduction

The increasingly challenging task of scaling the traditional Central Processing
Unit (CPU) has lead to the exploration of new computational platforms such
as quantum computers, CMOS annealers, neuromorphic computers, and so on
(see [3] for a detailed exposition). Although their physical implementations dif-
fer significantly, adiabatic quantum computers, CMOS annealers, memristive
circuits, and optical parametric oscillators all share Ising models as their core
mathematical abstraction [3]. This has lead to a growing interest in the formula-
tion of computational problems as Ising models and in the empirical evaluation
of these models on such novel computational platforms. This body of literature
includes clustering and community detection [14,19,23], graph partitioning [26],
and many NP-Complete problems such as covering, packing, and coloring [17].

Consensus clustering is the problem of combining multiple ‘base clusterings’
of the same set of data points into a single consolidated clustering [9]. Consen-
sus clustering is used to generate robust, stable, and more accurate clustering
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results compared to a single clustering approach [9]. The problem of consensus
clustering has received significant attention over the last two decades [9], and
was previously considered under different names (clustering aggregation, clus-
ter ensembles, clustering combination) [10]. It has applications in different fields
including data mining, pattern recognition, and bioinformatics [10] and a number
of algorithmic approaches have been used to solve this problem. The consensus
clustering is, in essence, a combinatorial optimization problem [28] and different
instances of the problem have been proven to be NP-hard (e.g., [6,25]).

In this work, we investigate the use of special purpose hardware to solve the
problem of consensus clustering. To this end, we formulate the problem of con-
sensus clustering using Ising models and evaluate our approach on a specialized
CMOS annealer. We make the following contributions:

1. We present and study two Ising models for consensus clustering that can be
solved on a variety of special purpose hardware platforms.

2. We demonstrate how our models are embedded on the Fujitsu Digital
Annealer (DA), a quantum-inspired specialized CMOS hardware.

3. We present an empirical evaluation based on seven benchmark datasets and
show our approach outperforms existing techniques for consensus clustering.

2 Background

2.1 Problem Definition

Let X = {x1,...,x, } be a set of n data points. A clustering of X is a process that
partitions X into subsets, referred to as clusters, that together cover X. A clus-
tering is represented by the mapping 7 : X — {1,..., k;} where k, is the number
of clusters produced by clustering 7. Given X and a set IT = {m,..., 7} of
m clusterings of the points in X, the Consensus Clustering Problem is to find
a new clustering, 7*, of the data X that best summarizes the set of clusterings
II. The new clustering 7* is referred to as the consensus clustering.

Due to the ambiguity in the definition of an optimal consensus clustering, sev-
eral approaches have been proposed to measure the solution quality of consensus
clustering algorithms [9]. In this work, we focus on the approach of determin-
ing a consensus clustering that agrees the most with the original clusterings. As
an objective measure to determine this agreement, we use the mean Adjusted
Rand Index (ARI) metric (Eq. 14). However, we also consider clustering quality
measured by mean Silhouette Coefficient [22] and clustering accuracy based on
true labels. In Sect. 4 these evaluation criteria are discussed in more details.

2.2 Existing Criteria and Methods

Various criteria or objectives have been proposed for the Consensus Clustering
Problem. In this work we mainly focus on two well-studied criteria, one based on
the pairwise similarity of the data points, and the other based on the different
assignments of the base clusterings. Other well-known criteria and objectives
for the Consensus Clustering Problem can be found in the excellent surveys of
[9,27], with most defining NP-Hard optimization problems.
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Pairwise Similarity Approaches: In this approach, a similarity matrix S is con-
structed such that each entry in S represents the fraction of clusterings in which
two data points belong to the same cluster [20]. In particular,

m

D L(mi(u) = mi(v)), (1)

i=1

Suv = i
m
with 1 being the indicator function. The value S, lies between 0 and 1, and is
equal to 1 if all the base clusterings assign points u and v to the same cluster.
Once the pairwise similarity matrix is constructed, one can use any similarity-
based clustering algorithm on S to find a consensus clustering with a fixed num-

ber of clusters, K. For example, [16] proposed to find a consensus clustering 7*
with exactly K clusters that minimizes the within-cluster dissimilarity:

min E (1= Sup). (2)
u,veX:
7 (u)=n"(v)

Partition Difference Approaches: An alternative formulation is based on the
different assignments between clustering. Consider two data points u,v € X,
and two clusterings m;, 7; € II. The following binary indicator tests if m; and 7;
disagree on the clustering of v and wv:

—_

, if mi(u) = m(v) and 7;(u) # 75 (v)
;i mi(u) # mi(v) and 7;(u) = m;(v) 3)
0, otherwise.

[t

du,v (7T1‘7 71—j) =

The distance between two clusterings is then defined based on the number of
pairwise disagreements:

d(m;, mj) Z o (T3, 75) (4)
u,veX

with the = factor to take care of double counting and can be ignored. This
measure is deﬁned as the number of pairs of points that are in the same cluster
in one clustering and in different clusters in the other, essentially considering the
(unadjusted) Rand index [9]. Given this measure, a common objective is to find
a consensus clustering 7* with respect to the following optimization problem:

minZd(ﬂ'i,Tr*). (5)

Methods and Algorithms: The two different criteria given above define funda-
mentally different optimization problems, thus different algorithms have been
proposed. One key difference between the two approaches inherently lies in deter-
mining the number of clusters k.« in 7*. The pairwise similarity approaches (e.g.,
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Eq. (2)) require an input parameter K that fixes the number of clusters in 7*,
whereas the partition difference approaches such as Eq.(5) do not have this
requirement and determining k.« is part of the objective of the problem. There-
fore, for example, Eq. (2) will have a minimum value in the case when k.- = n,
however this does not hold for Eq. (5).

The Cluster-based Similarity Partitioning Algorithm (CSPA) is proposed in
[24] for solving the pairwise similarity based approach. The CSPA constructs a
similarity-based graph with each edge having a weight proportional to the simi-
larity given by S. Determining the consensus clustering with exactly K clusters
is treated as a K-way graph partitioning problem, which is solved by methods
such as METIS [12]. In [20], the authors experiment with different clustering
algorithms including hierarchical agglomerative clustering (HAC) and iterative
techniques that start from an initial partition and iteratively reassign points to
clusters based on their pairwise similarities. For the partition difference app-
roach, Li et al. [15] proposed to solve Eq. (5) using nonnegative matrix factor-
ization (NMF). Gionis et al. [10] proposed several algorithms that make use of
the connection between Eq. (5) and the problem of correlation clustering. CSPA,
HAC, NMF: these three approaches are considered as baseline in our empirical
evaluation section (Sect.4).

2.3 Ising Models

Ising models are graphical models that include a set of nodes representing spin
variables and a set of edges corresponding to the interactions between the spins.
The energy level of an Ising model which we aim to minimize is given by:

E(0o) = Z Jijoio; + Z hioi, (6)

(i,9)€E ieN

where the variables o; € {—1,1} are the spin variables and the couplers, J; ;,
represent the interaction between the spins.

A Quadratic Unconstrained Binary Optimization (QUBO) model includes
binary variables ¢; € {0,1} and couplers, ¢; ;. The objective to minimize is:

E(q) = Z cig; + Z Ci,jqiq;- (7)
i=1

i<j

QUBO models can be transformed to Ising models by setting o; = 2¢; —1 [2].

3 Ising Approach for Consensus Clustering on Specialized
Hardware

In this section, we present our approach for solving consensus clustering on
specialized hardware using Ising models. We present two Ising models that cor-
respond to the two approaches in Sect.2.2. We then demonstrate how they can
be solved on the Fujitsu Digital Annealer (DA), a specialized CMOS hardware.
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3.1 Pairwise Similarity-Based Ising Model

For each data point u € X, let ¢,. € {0,1} be the binary variable such that
Gue = 1 if ™ assigns u to cluster ¢, and 0 otherwise. Then the constraints

K
unc =1, foreachue X (8)

ensure 7* assigns each point to exactly one cluster. Subject to the constraints
(8), the sum of quadratic terms Ziil GueQue 18 1 if T assigns both u,v € X to
the same cluster, and is 0 if assigned to different clusters. Therefore the value

K
Yo 08w = > (1= 5u) Y ductue (9)

u,veEX: u,veX
7 (u)=n"(v)

represents the sum of within-cluster dissimilarities in 7*: (1— .Sy, ) is the fraction
of clusterings in II that assign u and v to different clusters while 7* assigns them
to the same cluster. We therefore reformulate Eq. (2) as QUBO:

mln Z 1 — uv unCQUc + Z A ZQuc - . (10)

u,veX ueX c=1

where the term ) (Zle que — 1)? is added to the objective function to
ensure that the constraints (8) are satisfied. A is positive constant that penalizes
the objective for violations of constraints (8). One can show that if A > n, the
optimal solution of the QUBO in Eq. (10) does not violate the constraints (8).
The proof is very similar to proof of Theorem 1 and a similar result in [14].

3.2 Partition Difference Ising Model

The partition difference approach essentially considers the (unadjusted) Rand
Index [9] and therefore can be expected to perform better. The Correlation
Clustering Problem is another important problem in data mining. Gionis et
al. [10] showed that Eq.(5) is a restricted case of the Correlation Clustering
Problem, and that Eq. (5) can be expressed as the following equivalent form of
the Correlation Clustering Problem

min Y (1=Sw)+ Y. S (11)

i u,veX: u,veEX:
7 (u)=r" (v) 7 () (v)

We take advantage of this equivalence to model Eq. (5) as a QUBO. In a similar
fashion to the QUBO formulated in the preceding subsection, the terms

Z Suv: Z Suv Z Qucqul (12)

u,EX: u,veX 1<c#I<K
7 (u) " ()
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measure the similarity between points in different clusters, where K represents
an upper bound for the number of clusters in 7*. This then leads to the mini-
mizing the following QUBO:

K K

Z (]- - Su'u) ZQuCQvC + Z Suv Z qucqm + Z B(Z quc - 1)2

u,veX c=1 u,veX 1<c#I<K ueX c=1
(13)

Intuitively, Eq. (13) measures the disagreement between the consensus clus-
tering and the clusterings in II. This disagreement is due to points that are
clustered together in the consensus clustering but not in the clusterings in 17,
however it is also due to points that are assigned to different clusters in the
consensus partition but in the same cluster in some of the partitions in II.

Formally, we can show that Eq. (13) is equivalent to the correlation clustering
formulation in Eq. (11) when setting B > n. Consistent with other methods that
optimize Eq. (5) (e.g., [15]), our approach takes as an input K, an upper bound
on the number of clusters in 7*, however the obtained solution can use smaller
number of clusters. In our proof, we assume K is large enough to represent the
optimal solution, i.e., greater than the number of clusters in optimal solutions
to the correlation clustering problem in Eq. (11).

Theorem 1. Let q be the optimal solution to the QUBO given by Eq. (13).
If B > n, for a large enough K < n, an optimal solution to the Correlation
Clustering Problem in Eq. (11), &, can be efficiently evaluated from g.

Proof. First we show the optimal solution to the QUBO in Eq.(13) satisfies
the one-hot encoding (3, qur = 1). This would imply given q we can create a
valid clustering 7. Note, the optimal solution will never have ) gy, > 1 as it
can only increase the cost. The only case in which an optimal solution will have
ZC Gue < 1 is when the cost of assigning a point to a cluster is higher than the
cost of not assigning it to a cluster (i.e., the penalty B). Assigning a point u to
a cluster will incur a cost of (1 — S,,,) for each point v in the same cluster and
Suv for each point v that is not in the cluster. As there is additional n — 1 points
in total, and both (1 — Sy,) and Sy, are less or equal to one (Eq. (1)), setting
B > n guarantees the optimal solution satisfies the one-hot encoding.

Now we assume that 7 is not optimal, i.e., there exists an optimal solution
7 to Eq. (11) that has a strictly lower cost than 7. Let q be the corresponding
QUBO solution to 7, such that 7(u) = k if and only if G, = 1. This is possible
because K is large enough to accomodate all clusters in 7. As both q and q
satisfy that one-hot encoding (penalty terms are zero), their cost is identical to
the cost of 7 and 7 . Since the cost of 7 is strictly lower than 7, and the cost of
q is lower or equal to q, we have a contradiction. O

3.3 Solving Consensus Clustering on the Fujitsu Digital Annealer

The Fujitsu Digital Annealer (DA) is a recent CMOS hardware for solving com-
binatorial optimization problems formulated as QUBO [1,8]. We use the second
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generation of the DA that is capable of representing problems with up to 8192
variables with up to 64 bits of precision. The DA has previously been used to
solve problems in areas such as communication [18] and signal processing [21].
The DA algorithm [1] is based on simulated annealing (SA) [13], while taking
advantage of the massive parallelization provided by the CMOS hardware [1]. It
has several key differences compared to SA, most notably a parallel-trial scheme
in which each MC step considers all possible one-bit flips in parallel and dynamic
offset mechanism that increase the energy of a state to escape local minima [1].

Encoding Consensus Clustering on the DA. When embedding our Ising
models on the DA, we need to consider the hardware specification and adapt the
representation of our model accordingly. Due to hardware precision limit, we need
to embed the couplers and biases on an integer scale with limited granularity.
In our experiments, we normalize the pairwise costs Sy, in the discrete range
[0,100], D;; =[Sy - 100], and accordingly (1 — Sy ) is replaced by (100 — D).
Note that the theoretical bound B = n is adjusted accordingly to be B = 100-n.

The theoretical bound guarantees that all constraints are satisfied if problems
are solved to optimality. In practice, the DA does not necessarily solve problems
to optimality and due to the nature of annealing-based algorithms, using very
high weights for constraints is likely to create deep local minima and result
in solutions that may satisfy the constraints but are often of low-quality. This
is especially relevant to our pairwise similarity model where the bound tends
to become loose as the number of clusters grows. In our experiments, we use
constant, reasonably high, weights that were empirically found to perform well
across datasets. For the pairwise similarity-based model (Eq. (10)) we use A =
214 and for the partition difference model (Eq. (13)) we use B = 21°. While we
expect to get better performance by tuning the weights per-dataset, our goal is
to demonstrate the performance of our approach in a general setting. Automatic
tuning of the weight values for the DA is a direction for future work.

Unlike many of the existing consensus clustering algorithms that run until
convergence, our method runs for a given time limit (defined by the number of
runs and iterations) and returns the best solution encountered. In our experi-
ments, we arbitrarily choose three seconds as a (reasonably short) time limit to
solve our Ising models. As with the weights, we employ a single temperature
schedule across all datasets, and do not tune it per dataset.

4 Empirical Evaluation

We perform an extensive empirical evaluation of our approach using a set of seven
benchmark datasets. We first describe how we generate the set of clusterings,
II. Next, we describe the baselines, the evaluation metrics, and the datasets.

Generating Partitions. We follow [7] and generate a set of clusterings by
randomizing the parameters of the K-Means algorithm, namely the number of
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clusters K and the initial cluster centers. In this work, we only use labelled
datasets for which we know the number of clusters, K, based on the true labels.
To generate the base clusterings we run the K-Means algorithm with random
cluster centers and we randomly choose K from the range [2,3K]. For each
dataset, we generate 100 clusterings to serve as the clustering set I1.

Baseline Algorithms. We compare our pairwise similarity-based Ising model,
referred to as DA-Sm, and our correlation clustering Ising model, referred to as
DA-Cr, to three popular algorithms for consensus clustering;:

1. The cluster-based similarity partitioning algorithm (CSPA) [24] solved as a
K-way graph partitioning problem using METIS [12].

2. The nonnegative matrix factorization (NMF) formulation in [15].

3. Hierarchical agglomerative clustering (HAC) starts with all points in single-
ton clusters and repeatedly merges the two clusters with the largest average
similarity based on S, until reaching the desired number of clusters [20].

Evaluation. We evaluate the different methods using three measures. Our main
concern in this work is the level of agreement between the consensus clustering
and the set of input clusterings. To this end, one requires a metric measuring the
similarity of two clusterings that can be used to measure how close the consensus
clustering 7* to each base clustering 7; € IT is. One of popularly used metrics
to measure the similarity between two clusterings is the Rand Index (RI) and
Adjusted Rand Index (ARI) [11]. The Rand Index of two clustering lies between 0
and 1, obtaining the value 1 when both clusterings perfectly agree. Likewise, the
maximum score of ARI, which is corrected-for-chance version of RI, is achieved
when both clusterings perfectly agree. ARI(m;, 7*) can be viewed as measure
of agreement between the consensus clustering 7* and some base clusterings
m; € IT. We use the mean ARI as the main evaluation criteria:

e > ARI(m;, ) (14)
m i=1

We also evaluate 7* based on clustering quality and accuracy. For clustering
quality, we use the mean Silhouette Coefficient [22] of all data points (computed
using the Euclidean distance between the data points). For clustering accuracy,
we compute the ARI between the consensus partition 7* and the true labels.

Benchmark Datasets. We run experiments on seven datasets with differ-
ent characteristics: Iris, Optdigits, Pendigits, Seeds, Wine from the UCI reposi-
tory [5] as well as Protein [29] and MNIST.! Optdigits-389 is a randomly sampled
subset of Optdigits containing only the digits {3,8,9}. Similarly, MNIST-3689
and Pendigits-149 are subsets of the MNIST and Pendigits datasets.

! http://yann.lecun.com/exdb/mnist/ .
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Table 1 provides statistics on each of the data set, with the coefficient of vari-
ation (CV) [4] describing the degree of class imbalance: zero indicates perfectly
balanced classes, while higher values indicate higher degree of class imbalance.

Table 1. Datasets

Dataset # Instances | # Features | # Clusters | CV

Iris 150 4 3 0.000
MNIST-3689 | 389 784 4 0.015
Optdigits-389 | 537 64 3 0.021
Pendigits-149 | 532 16 3 0.059
Protein 116 20 6 0.301
Seeds 210 7 3 0.000
Wine 178 13 3 0.158

4.1 Results

We compare the baseline algorithms to the two Ising models in Sect. 3 solved
using the Fujitsu Digital Annealer described in Sect. 3.3.

Clustering is typically an unsupervised task and the number of clusters is
unknown. The number of clusters in the true labels, K, is not available in real
scenarios. Furthermore, K is not necessarily the best value for clustering tasks
(e.g., in many cases it is better to have smaller clusters that are more pure). We
therefore test the algorithms in two configurations: when the number of clusters
is set to K, as in the true labels, and when the number of clusters is set to 2K.

Table 2. Consensus performance measured by mean ARI across partitions

Dataset K clusters 2K clusters
CSPA | NMF |HAC |DA-Sm|DA-Cr|CSPA NMF |HAC DA-Sm | DA-Cr
Iris 0.555 |0.618/0.618|0.619 |0.621 |0.536 |0.614 0.627 |0.608 |0.642
MNIST [0.459 0.449 [0.469 |0.474 |0.474 |0.456 |0.511 |0.517 |0.490 |0.521
Optdig. |0.528 |0.550/0.541 |0.550 |0.551 [0.492 |0.596 |0.608 |0.576 |0.612
Pendig. |0.546 [0.546 [0.507 |0.555 |0.555 |0.531 |0.629 |0.642|0.605 |0.644
Protein [0.344 |0.393 [0.379 10.390 |0.405 |0.324 |0.419 |0.423/0.378 |0.415

Seeds |0.558 |0.577/0.534 |0.575 |0.577 |0.484 |0.602 0.602 |0.580 |0.612
Wine [0.481 {0.536|0.535 |{0.537 | 0.538 |0.502 |0.641/0.641/0.641 |0.643
# Best |0 4 1 6 7 0 1 3 1 6




Ising-Based Consensus Clustering on Specialized Hardware 115

Consensus Criteria. Table2 shows the mean ARI between 7* and the clus-
terings in II. To avoid bias due to very minor differences, we consider all the
methods that achieved Mean ARI that is within a threshold of 0.0025 from the
best method to be equivalent and highlight them in bold. We also summarize the
number of times each method was considered best across the different datasets.
The results show that DA-Cr is the best performing method for both K and
2K clusters. The results of DA-Sm are not consistent: DA-Sm and NMF are
performing well for K clusters and HAC is performing better for 2K clusters.

Clustering Quality. Table 3 report the mean Silhouette Coefficient of all data
points. Again, DA-Cr is the best performing method across datasets, followed
by HAC. NMF seems to be equivalent to HAC for 2K.

Table 3. Clustering quality measured by Silhouette

Dataset K clusters 2K clusters
CSPA | NMF |HAC |DA-Sm|DA-Cr|CSPA NMF |[HAC DA-Sm | DA-Cr
Iris 0.519 /0.555/0.555/0.551 |0.553 |0.289 |0.366 |0.371/0.343 |0.373
MNIST |0.075 |0.072 |0.078/0.079 |0.078 0.069 |0.082/0.074 0.074 |0.082
Optdig. |0.127 |0.120 |0.120 |0.130 |0.130 [0.088 [0.119/0.119|0.112 |0.121
Pendig. |0.307 {0.307 |0.315/0.310 |0.310 |0.305 |0.332 |0.375/0.368 |0.364

Protein [0.074 [0.106/0.095 [0.094 |0.104 |0.068 |0.111 |0.115 |0.119 |0.118
Seeds |0.461 [0.468 |0.410 |{0.469 |0.472 |0.275 |0.343 0.304 |0.344 |0.302

Wine [0.453 0.542 |0.571/0.547 |0.545 |0.452 |0.543|0.541 0.539 |0.542
# Best |0 2 4 2 5 0 4 4 2 5

Clustering Accuracy. Table4 shows the clustering accuracy measured by the
ARI between 7* and the true labels. For K, we find DA-Sm to be best-performing
solution (followed by DA-Cr). For 2K, DA-Cr outperforms the other methods.
Interestingly, there is no clear winner between CSPA, NMF, and HAC.

Experiments with Higher K. In partition difference approaches, increasing
K does not necessarily lead to a 7* that has more clusters. Instead, K serves as
an upper bound and new clusters will be used in case they reduce the objective.

To demonstrate how different algorithms handle different K values, Table 5
shows the consensus criteria and the actual number of clusters in 7 for different
values of K (note that K = 3 in Iris). The results show that the performance of
the pairwise similarity methods (CSPA, HAC, DA-Sm) degrades as we increase
K. This is associated with the fact the actual number of clusters in 7* is equal to
K which is significantly higher compared to the clusterings in IT. Methods based
on partition difference (NMF and DA-Cr) do not exhibit significant degradation
and the actual number of clusters does not grow beyond 5 for DA-Cr and 6 for
NMF. Note that the average number of clusters in IT is 5.26.
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Table 4. Clustering accuracy measured by ARI compared to true labels

Dataset K clusters 2K clusters

CSPA|NMF |HAC |DA-Sm|DA-Cr| CSPA|NMF |HAC |DA-Sm | DA-Cr
Iris 0.868/0.746 |0.746/0.716 |0.730 |0.438 0.463/0.447 [0.433 |0.521
MNIST |0.684 {0.518 |0.704]/0.730 |0.720 |0.412 |0.484|0.545/0.440 |0.484
Optdig. |0.712 |0.642 |0.675/0.734 |0.738 0.380 |0.513/0.630/0.481 |0.623
Pendig. |0.674 |0.679/0.499/0.668 |0.668 |0.398 |0.614|0.625 [0.490 |0.639
Protein [0.365 |0.298 [0.363/0.349 0.376 |0.237 |0.332/0.301 [0.308 |0.345
Seeds |0.705 |0.710 |0.704|0.764 |0.717 0.424 |0.583|0.573 |0.500 |0.619
Wine [0.324 0.395 |0.371/0.402 |0.398 |0.231 |0.245 0.240 |0.248 |0.238
# Best |1 1 0 3 2 0 0 2 1 4

Table 5. Results for Iris dataset with different number of clusters

K | Consensus Criteria # of clusters in consensus clustering
CSPA | NMF |HAC | DA-Sm | DA-Cr|CSPA | NMF | HAC | DA-Sm | DA-Cr

3 /0.555 |0.618 0.618 0.619 0.621 | 3 3 3 3 3
0.536 |0.614 |0.627 |0.608 0.642 | 6 6 6 6 5

9 10.447 |0.614 |0.591 1 0.497 0.642 | 9 6 9 9 5

12 10.370 |0.614 | 0.507 | 0.414 | 0.642 |12 6 12 12 5

5 Conclusion

Motivated by the recent emergence of specialized hardware platforms, we present
a new approach to the consensus clustering problem that is based on Ising models
and solved on the Fujitsu Digital Annealer, a specialized CMOS hardware. We
perform an extensive empirical evaluation and show that our approach outper-
forms existing methods on a set of seven datasets. These results shows that using
specialized hardware in core data mining tasks can be a promising research direc-

tion. As future work, we plan to investigate additional problems in data mining
that can benefit from the use of specialized optimization hardware as well as

experimenting with different types of specialized hardware platforms.
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Abstract. Using transfer learning to help in solving a new classification
task where labeled data is scarce is becoming popular. Numerous exper-
iments with deep neural networks, where the representation learned on
a source task is transferred to learn a target neural network, have shown
the benefits of the approach. This paper, similarly, deals with hypothesis
transfer learning. However, it presents a new approach where, instead of
transferring a representation, the source hypothesis is kept and this is a
translation from the target domain to the source domain that is learned.
In a way, a change of representation is learned. We show how this method
performs very well on a classification of time series task where the space
of time series is changed between source and target.

Keywords: Transfer learning - Boosting

1 Introduction

While transfer learning has a long history, dating back at least to the study of
analogy reasoning, it has enjoyed a spectacular rise of interest in recent years,
thanks largely to its use and effectiveness in learning new tasks with deep neural
networks using an architecture learned on a source task. This approach is called
Hypothesis Transfer Learning [6]. The justification for this strategy is that, in the
absence of enough data in the target domain to learn anew a good hypothesis,
it might be effective to transfer the intermediate representations learned on the
source task. This is indeed the case, for instance, in face analysis when the
source task is to guess the age of the person, and the target task is to recognize
the gender. Technically, with neural networks, this amounts to keeping the first
layers of the source neural network in the target network and learning only the
last layers, the ones that combine intermediate representations of the examples
in order to make a prediction.

Let X, Y and Z be the input, output and feature spaces respectively. Let F'
be a class of representation functions, where f € F: X — Z. Let G be a class
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of decision functions that use descriptions of the examples in the feature space:
g € G: Z — Y. Then, in the context of deep neural networks, the hypothesis
class is H := {h : 3f € F,g € G st. h = go f} and while f is kept (at least
approximately) from the source problem to the target one, only g remains to be
learned to solve the target problem.

In this paper, we adopt a dual perspective: we propose to keep the decision
function g fixed, and learn translation functions from the target input space to
the source input space, m : X7 — Xg, such that the target hypothesis space
becomes Hy :={hy :Ir € I, f € F,g € G st. hy = go for}, which, given that
hs = g o f might be considered as the source hypothesis, may be re-expressed
as: Hr :={hy:Inell,f € F,g € G st. hy =hgom}.

Indeed, for some problems, it might be much more easy to learn a translation
(also called projections in this paper) from the target input space X7 to the
source input space Xs than to learn a new target decision function. Furthermore,
this allows one to tackle problems with different input spaces Xs and X7.

In the following, Sect.2 presents TransBoost a new algorithm for trans-
fer learning. The theoretical analysis of Sect.3 provides a PAC-learning bound
on the generalization error on the target domain. Controlled experiments are
described in Sect. 4 together with an analysis of the results. The new approach
is put in perspective in Sect. 5 before we conclude in Sect. 6.

2 A New Algorithm for Transfer Learning

Suppose that we have a system that is able to recognize poppy fields in satellite
images. We might imagine that knowing how to translate a biopsy image into
a satellite image, we could, using the recognition function defined on satellite
image, decide if there is cancerous cells in the biopsy.

Ideally then, one could translate a target query: “what is the label of x7 €
X7” into a source query “what is the label of m(x7) € Xs” where hs is the
source hypothesis which, applied to 7(x?) € Xs, provides the answer we are
looking for. Notice here that we suppose that Vs = Y7, but not Xs = Xr.

The goal is then to learn a good translation 7 : X7 — Xs. However, defining
a proper space of candidate projections IT might be problematic, not to mention
the risk of overfitting if the space of functions hg o II has too high a capacity.
It might be more easy and manageable to discover “weak projections” from Xz
to X's using a boosting learning scheme.

Definition 1. A weak projection w.r.t. source decision function hs is a func-
tion T : X7 — Xs such that the decision function hs(m(x”)) has better than
random classification performance on the target training set S .

In this setting, the training set ST = {(x7,y7)}1<i<m is used to learn weak
projections (Fig. 1).

Once the concept of weak projection is assumed, it is natural to use a boost-
ing algorithm in order to learn a set of such weak projections and to combine
them to get a final good classification on elements of 7. This is what does the
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Target Domain Source Domain

Fig. 1. The principle of prediction using TransBoost. A given target example x? is
projected in the source domain using a set of identified weak projections m; and the

prediction for x7 is computed as: Hr(x? ) = sign{Z;\’:1 ajhs (m; (x7))

TransBoost algorithm (see Algorithm 1). It does rely on the property of the
boosting algorithm to find and combine weak rules to get a strong(er) rule.

3 Theoretical Analysis

Here, we study the question: can we get guarantees about the performance of
the learned decision function Hy in the target space using TransBoost?

We tackle this question in two steps. First, we suppose that we learn a single
projection function w € IT : X — Xg so that hy = hgs o 7, and we find bounds
on the generalization error on the target domain given the generalization error
on the source domain. Second, we turn to the TransBoost algorithm in order to
justify the use of a boosting approach.

3.1 Generalization Error Bounds When Using a Single Projection

For this analysis, we suppose the existence of a source input distribution Py, in
addition to the target input distribution Py, . We consider the binary classifica-
tion setting Y = {—1,+1}, and we note hs and ht respectively the source and
the target labelling functions. We note Rgs(h) (resp. Rr(h)) the risk of a hypoth-
esis h on the source (resp. target) domain: Rs(h) = Exgp g [hs(x5) # hs(x%)]
(resp. Ry (h) = Exs~py, [h7(xT) # hr(x7)]). Let Rs(h) and Rr(h) be the
corresponding empirical risks, with mg training points for S and mg training
points for 7. Let dy be the VC dimension of the hypothesis space H.

In the following, what is learned is a projection w € II : X7 — X in order to
get a target hypothesis of the form hr = hsom, where hs = ArgMin,,,, Rs(h)

is the source hypothesis. Our aim is to upper-bound RT(ETL the risk of the
learned hypothesis on the target domain in terms of:
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Algorithm 1. Transfer learning by boosting

Input: hs : Xs — Vs the source hypothesis
Sr = {(x},y7 Yi<i<m: the target training set

Initialization of the distribution on the training set: D1 (i) = 1/m for
i=1,...,m;

forn=1,...,N do

Find a projection 7; : X7 — Xs st. hs(m;(-)) performs better than random
on D, (S1) ;

Let €5, be the error rate of hs(m;(-)) on Dn(S7t) :

en = Piup, [hs(mn(xi)) # yi] (with e, < 0.5) ;

Computes a; = %logQ(l;E") ;

Update, fori =1...,m:

Dn(i)  Je o if hs (mn(x7)) = y7
e if hs(ma(x])) # i

_ Dali) exp(—an ™ hs(m (")

Zn
where Z,, is a normalization factor chosen so that D,t1 be a distribution on
St
end

Output: the final target hypothesis Hr : X7 — Yr:

o) = snd ks (ra6) ) 1)

n=1

— the empirical risk Rs (Eg) of the source hypothesis,

— the generalization error of a hypothesis iz\s in Hs learned from mg examples,
which depends on d,

— the generalization error of a hypothesis ET = hs om in H7 learned from my

examples, which depends on dy, = dhrgon,
— a term that expresses the “proximity” between the source and the target

problems.

For the latter term, we adapt the theoretical study of McNamara and Balcan
[9] on the transfer of representation in deep neural networks. We suppose that

Ps, Pr, hs, hy = }Azg orm (m € ), }\LS and IT have the property:
V hs € Hs : MEi}%RT(ﬁS om) < w(Rs(hs)) ()

where w : IR — IR is a non-decreasing function.

Equation (2) means that the best target hypothesis expressed using the
learned source hypothesis has a true risk bounded by a non-decreasing func-
tion of the true risk on the source domain of the learned source hypothesis.

We are now in position to get the desired theorem.
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Theorem 1. Let w : R — IR be a non-decreasing function. Suppose that Ps,
Pr, hs, hy = hg O7T(7T e ), hg and IT have the property given by Eq. (2). Let
7= ArgMin_c RT(hS o), be the best apparent projection.

Then, with probability at least 1 — & (5 € (0,1)) over pairs of training sets
for tasks S and T :

2ems/dng) + 21og(8/9)
ms

RT(ET) < W(Es(ﬁs)) + 2\/2dHS log(

N 4\/2dh50n log(2emy /dhg. ;) + 2log(8/9)
mr

Proof. Let m* = ArgMin, c;; Ry (hs om). With probability at least 1 — §:

2dns.n log(2emy/dns, ;) + 210g(8/0)
mr

Rr(hso7) < Rr(hso®) + 2\/

2dpg. 5 log(2emy/dps. ) + 21og(8/6)

Rr(hson™) + 2\/
mr

IN

2dpg.p log(2emys/dpg. ;) + 21og(8/9)
mr

IN

RT(hS orm™* —‘r 4

2dpg.,; log(2ems/dhg, ;) + 21og(8/9)

I,
/

IN

W(RS hg + 4

2dys log(2ems/dy) + 21og(8/0)
ms

IN

w( +2

o \/2dh5m log(2emr /dng, ;) + 2log(8/0)
mr

This follows from the fact that [10] (p. 48) using m training points and
a hypothesis class of VC dimension d, with probability at least 1 — ¢, for all
hypotheses h simultaneously, the true risk R(h) and empirical risk R(h) satisfy
|(R(h) — R(h)| < 2 \/2dlog(2€m/:l)+21°g(4/6). For hgs o II, this yields the first and
third inequalities with probabilities at least 1 —§/2. For Hg, this yields the fifth
inequality with probability at least 1 — §/2. Applying the union bound archives
the desired results. The second inequality follows from the definition of 7, and
the fourth inequality is where we inject our assumption about the transferability
(or proximity) between the source and the target problem. O

We can thus control the generalization error on the transfer domain by con-
trolling dp,;, ms and w which measures the link between the domain and the
target domain. The number of target training data my is typically supposed to
be small in transfer learning and thus cannot be employed to control the error.
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3.2 Boosting Projections from Target to Source

The above analysis bounds the generalization error of the learned target hypoth-
esis hs o 7 in terms, among others, of the VC dimension of the space hs o II.
The problem of controlling the capacity of such a space of functions in order to
prevent under or over-fitting is the same as in the traditional supervised learning
setting. The difficulty lies in choosing the right space IT of projection functions
from X7 to Xs.

The space of hypothesis functions considered is:

N
L(hSOHB) = {x — sign {Z ay, (hSOWn(XT)) :Vn,a, € R, and 7, € HB}

n=1

where T is a space of weak projections satisfying definition (1).
Now, from [11] (p. 109), the VC dimension of the space hgs o Il satisfies:

dL(hSOHB) < N(thOHB + 1) (3 log(N(thOHB + 1)) + 2)

If dhsorry < dnsom, then dppgomr,) can also be much less than dj g0, and
theorem (1) provides tighter bounds.

Using the TransBoost method, we can thus gain both on the theoretical
bounds on the generalization error and on the ease of finding an appropriate
space of projections X7 — Xg.

4 Design of the Experiments

4.1 The Main Dimensions of Experiments in Transfer Learning

There are two dimensions that can be expected to govern the efficiency of transfer
learning:

1. The level of signal in the target data.
2. The relatedness between the source and the target domains.

Regarding the first dimension, one can expect that if there is no signal in the
target data (i.e. the examples are labelled randomly), then no regularity can be
extracted, directly or using transfer. In fact, only overfitting of the training data
can potentially occur. If, on the contrary, the target learning task is easy, then
there cannot be much advantage in using transfer learning. A question therefore
arises as to whether there might be an optimal level of signal in the target data
so as to maximally benefit from transfer learning.

The second dimension is tricky. Here, we intuitively expect that the closer the
source and target domains (and problems), the more profitable transfer learning
should be. However, how should we measure the “relatedness” of the source and
target problems? In the domain adaptation setting, closeness can be measured
through a measure of the divergence between the source distribution and the
target one, since they are defined on the same input space. In transfer learning,
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the input spaces can be different, so that it is much more difficult to define a
divergence between distributions. This is why we resorted to the function w in
our theoretical analysis. In our experiments, we control relatedness through the
information shared between source and target (see below).

4.2 Experimental Setup

In our study, we devised an experimental setup that would allow us to control
the two dimensions above.

In the target domain, the learning task is to classify time series of length
t7 into two classes: hr : R'” — {—1,+1}. By controlling the level of noise and
the difference between the distributions governing the two classes, we can control
the signal level, that is the difficulty of extracting information from the target
training data. We control the amount of information by varying the size ms of
the target training set.

Likewise, the source input space is the space of sequences of real measure-
ments of length ts. Therefore, we have hs : R's — {—1,+1}.

Varying |ts — t7]| is a way of controlling the information potentially shared
in the two domains. With ts = t7, the two input domains are the same.

Note that learning to classify times series is not a trivial task. It has many
applications, some of them involving to classify time series of length different
from the length for which exists a classifier.

4.3 Description of the Experiments

Time series were generated according to the following equation:

x; = t xslope x class + Xpae sin(w; Xt + @;) + (1) (4)
~—
information gain sub shape within class noise factor

The fact that the noise factor is generated according to a Gaussian distribution
induces a distribution over the data (class € {—1,+1}).
The level of signal in the training data is governed by:

1. the slope factor: the higher the value of the slope factor, the easier the dis-
crimination between the two classes at each additional time step

2. the number of different shapes in each class of sequences, each shape controlled
by w; and ¢;, and the importance of this factor in the equation being weighted
by Xmazx

3. the noise factor n(t)

4. the length of the time series, that is the number of measurements

5. the size of the training set

In our experiments, the noise factor is generated according to a Gaussian distri-
bution of mean = 0 and standard deviation in {0.001,0.002,0.02,0.2,1}.

Figure 2 illustrates what can be obtained with slope = 0.01 with 3 subclasses
in the +1 class, and 2 subclasses in the —1 class.
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Fig. 2. A synthetic data set S with 5 times series where 7 is Gaussian (u = 0,0 = 0.2).

In the experiments reported here, we kept the size of the training set constant.
In each experiment, 900 times series of length 200 were generated according to
the equation described above: 450 times series in each class —1 or +1. We varied
the difficulty of learning by varying the slope from almost non existent: 0.001 to
significant: 0.01. Similarly, we varied the length ¢7 of the target training set in
{20, 50, 70,100} thus providing increasing levels of signal.

A target training data set of 300 time series was drawn equally balanced
between the two classes. Note that this relatively small number corresponds
to transfer learning scenarios where the training data is limited in the target
domain. The remaining 600 time series were used as a test set. The source
hypothesis was learned using the complete time series generated as explained
above.

In these experiments, the set of projections II was chosen as a set of “hinge
functions”, defined by three parameters, the slope of the first linear part, the
time ¢ where the hinge takes place, and the slope of the second linear part. The
set is explored randomly by the algorithm and a projection is retained if its
error rate on the current weighted data is lower than 0.45. We explored other,
richer, spaces of projections without gaining superior performances. This simple
set seems to be sufficient for this learning task.

In order to better assess the value of TransBoost, its performance was com-
pared (1) to a classifier (Gaussian SVM as implemented in Scikit Learn) acting
directly on the target training data, (2) to a boosting algorithm operating in
the target domain with base classifiers being Gaussian SVMs, and (3) to a base-
line transfer learning method that consists in finding a regression from the target
input space to the source input space using a SVR regression. In this last method
the regression acts as a translation from X7 to Xs and the class of an example
x7 is given by hs(regression(x7)).

Table 1 provides representative examples of the results obtained. Each cell of
the table shows the average performance (and the standard deviations) computed
from 100 experiments repeated under the same conditions. The experimental
conditions are organized according to the level of signal in the training data. In
the experiments corresponding to this table, the source hypotheses were learned
according to the first protocol defined above.

Several lessons can be drawn. First of all, in most situations, TransBoost
brings wvery significant gains over learning without transfer or using transfer
learning with regression. Figures 3 and 4 that sum up a larger set of experimental
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Table 1. Comparison of the error rate (lower is better) between: learning directly in
the target domain (columns h7 (train) and hz (test)), using TransBoost (columns Hr
(train) and Hr (test)), learning in the source domain (column hs (test)) and, finally,
mapping the time series with a SVR regression and using hs (naive transfer, column
H’-(test)). Test errors are highlighted in the orange columns. Bold numbers indicate
where TransBoost significantly dominates both learning without transfer and learning
with naive transfer.

slope, noise, t7 |h7 (train) hg (test) |Hg (train) |H7 (test) |hs (test) H/ (test)
0.001, 0.001, 20 |0.46 £ 0.02/0.50 £ 0.08/0.08 £ 0.03/0.08 £ 0.02/0.05 0.49 £+ 0.01

0.005, 0.001, 20 |0.46 + 0.02/0.49 +£ 0.01/0.01 £ 0.01]/0.01 + 0.01/0.01 0.45 £ 0.01
0.005, 0.002, 20 |0.46 £ 0.02/0.49 £ 0.03|0.03 £ 0.02/0.04 + 0.02/0.02 0.43 £ 0.01
0.005, 0.02, 20 |0.44 £ 0.02/0.48 £ 0.03|0.09 £ 0.01/0.10 £ 0.01/0.01 0.47 £ 0.01
0.001, 0.2, 20 0.46 £ 0.02/0.50 £ 0.01]0.46 + 0.02/0.51 £ 0.02 |0.11 0.49 £ 0.01

0.01, 0.2, 20 0.42 £ 0.03/0.47 £ 0.03|0.34 + 0.02/0.35 £ 0.02 |0.02 0.35 £ 0.01
0.001, 0.001, 50 |0.46 + 0.02/0.50 £ 0.01|0.08 £ 0.03/0.08 + 0.02/0.06 0.41 £ 0.01
0.005, 0.001, 50 |0.25 4+ 0.07/0.28 £ 0.09/0.01 £ 0.01]/0.01 & 0.01/0.01 0.28 £ 0.01
0.005, 0.002, 50 |0.27 4 0.07/0.30 £ 0.08/0.02 £ 0.01/0.02 + 0.01/0.02 0.28 +£ 0.01
0.005, 0.02, 50 |0.26 % 0.07/0.30 £ 0.08/0.04 £+ 0.01]/0.04 + 0.01/0.01 0.31 £ 0.01
0.001, 0.2, 50 0.44 £ 0.02/0.50 £ 0.01{0.38 + 0.03/0.44 £ 0.02 |0.15 0.43 £ 0.01
0.01, 0.2, 50 0.10 &+ 0.03|0.12 £ 0.04|0.10 £ 0.02/0.11 £ 0.02 |0.03 0.15 £ 0.02
0.001, 0.001, 100/0.43 £ 0.03/0.47 £ 0.03|0.07 £ 0.02/0.07 £ 0.02/0.02 0.23 £ 0.01
0.005, 0.001, 100/0.06 + 0.03/0.07 £ 0.03|0.01 £ 0.01/0.01 + 0.01/0.01 0.07 £ 0.02
0.005, 0.002, 100/0.08 £ 0.03/0.10 £ 0.04|0.02 £+ 0.01/0.02 + 0.01/0.02 0.07 £ 0.01
0.005, 0.02, 100 |0.08 £ 0.03/0.09 £ 0.03|0.02 £ 0.01/0.03 £ 0.01/0.01 0.07 £ 0.01
0.001, 0.2, 100 |0.04 & 0.03/0.46 £ 0.02|0.28 £ 0.02/0.31 £ 0.01 |0.16 0.31 £ 0.01
0.01, 0.2, 100 0.03 £ 0.01/0.05 £ 0.02|0.04 + 0.01/0.05 £ 0.01 |0.02 0.05 £ 0.01

conditions make this even more striking. In both tables, the x-axis reports the
error rate obtained using TransBoost, while the y-axis reports the error rate of
the competing algorithm: either the hypothesis h learnt on the target training
data alone (Fig. 3), or the hypothesis H/- learned on the target data projected on
the source input space using a SVR regression (Fig. 4). The remarkable efficiency
of TransBoost in a large spectrum of situations is readily apparent.

Secondly, as expected, Transboost is less dominant when either the data is so
noisy that no method can learn from the data (high level of noise or low slope):
this is apparent on the right part of the graphs 3 and 4 (near the diagonal),
or when the task is so easy (large slope and/or low noise) that nothing can be
gained from transfer learning (left part of the two graphs).

We did not report here the results obtained with boosting directly in the
target input space X7 since the learning performance was almost the same as
the performance as the one of the SVM classifier. This shows that this is not
boosting in itself that brings a gain.
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Fig. 3. Comparison of error rates. y- Fig. 4. Comparison of error rates. y-
axis: test error of the SVM classifier axis: test error of the “naive” transfer
(without transfer). z-axis: test error of method. z-axis: test error of the Trans-
the TransBoost classifier with 10 boost- Boost classifier with 10 boosting steps.
ing steps. The results of 75 experi- The results of 75 experiments (each one
ments (each one repeated 100 times) repeated 100 times) are summed up in
are summed up in this graph. this graph.

4.4 Additional Experiments

We show here, in Figs.5, 6 and 7 qualitative results obtained on the classical
half-moon problem. It is apparent that Transboost brings satisfying results.

-2 [} 1 2

(a) kNN source model trained on (b) kNN source model trained on (¢) kNN source model trained on
the data source : it fits to the data the data source : it does not fit to the data source transBoosted to the
source the data target data target

Fig. 5. Experiments on the half-moon problem.

5 Comparison to Previous Works

In the theoretical analysis of Ben-David et al. [1,2], one central idea is that
a common representation space should be found in which the projections of
the source data {(x5)}1<i<m and of the target data {(x7)}1<i<m should be as
undistinguishable as possible using discriminative functions from the hypothesis
space H. The intuition is that if the domains become indistinguishable, a classi-
fier constructed for the source domain should work also for the target domain.
It has been at the core of many proposed methods so far [3,5,7,12].

In [8] a scenario in which multiple sources are available for a single target
domain is studied. For each source ¢ € {1,...,k}, the input distribution D; is
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2 A 0 1 2 2 0 1 2

Fig. 6. A KNN model trained on the Fig. 7. A KNN model transboosted on
few target data points (in yellow). the few target data points.
(Color figure online)

known as well as a hypothesis h; with loss bounded by € on D;. It is further
assumed that the target input distribution is a mixture of the & source distribu-
tions D;. The adaptation problem is thus seen as finding a combination of the
hypotheses h;. It is shown that guarantees on the loss of the combined target
hypothesis can be given for some forms of combinations. However, the authors do
not show how to learn the parameters of these combinations. In [4], the authors
present a system called TrAdaboost, which uses a boosting scheme to eliminate
data points that seem irrelevant for the new task defined over the same space
X. Despite the use of boosting, the scope is quite different from ours.

Finally, the authors in [6] study a scheme seemingly very close to ours. They
define Hypothesis Transfer Learning algorithms as algorithms taking as input a
training set in the target domain and a source hypothesis in the source domain,
and producing a target hypothesis:

A (X x V)™ x Hs — Hr C YV

One goal of the paper is to identify the effect of the source hypothesis on the
generalization properties of AM!. However, the scope of the analysis is limited in
several ways. First, it focusses on linear regression with the Regularized Least
Square algorithm. Second, the formal framework necessitates that in fact X7 =
Xs and Y5 = Vs. It is thus more an analysis of domain adaptation than of
transfer learning. Third, the transfer learning algorithm in effect tries to find a
weight vector w7 as close as possible to the source weight vector w® while fitting
the target data set. There is therefore a parameter A to set. More importantly,
the consequence is that the analysis singles out the performance of the source
hypothesis on the target domain as the most significant factor controlling the
expected error on the target problem. Again, therefore, the target hypothesis
cannot be much different from the source one, which seems to defeat the whole
purpose of transfer learning.

6 Conclusion

This paper has presented a new transfer learning algorithm, TransBoost, that
uses the boosting mechanism in an original way by selecting and combining weak
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projections from the target domain to the source domain. The algorithm inherits
some nice features from boosting. There is only one parameter to set: the number
of boosting steps, and guarantees on the training error an on the test error are
easily derived from the ones obtained in the theory of boosting.
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Abstract. A current challenge in graph clustering is to tackle the issue
of complex networks, i.e, graphs with attributed vertices and/or edges. In
this paper, we present GraphTrees, a novel method that relies on random
decision trees to compute pairwise dissimilarities between vertices in a
graph. We show that using different types of trees, it is possible to extend
this framework to graphs where the vertices have attributes. While many
existing methods that tackle the problem of clustering vertices in an
attributed graph are limited to categorical attributes, GraphTrees can
handle heterogeneous types of vertex attributes. Moreover, unlike other
approaches, the attributes do not need to be preprocessed. We also show
that our approach is competitive with well-known methods in the case
of non-attributed graphs in terms of quality of clustering, and provides
promising results in the case of vertex-attributed graphs. By extending
the use of an already well established approach — the random trees — to
graphs, our proposed approach opens new research directions, by lever-
aging decades of research on this topic.

Keywords: Graph clustering - Attributed graph - Random tree -
Dissimilarity - Heterogeneous data

1 Introduction

Identifying community structure in graphs is a challenging task in many appli-
cations: computer networks, social networks, etc. Graphs have an expressive
power that enables an efficient representation of relations between objects as
well as their properties. Attributed graphs where vertices or edges are endowed
with a set of attributes are now widely available, many of them being created
and curated by the semantic web community. While these so-called knowledge
graphs® contain a lot of information, their exploration can be challenging in
practice. In particular, common approaches to find communities in such graphs
rely on rather complex transformations of the input graph.

! Although many definitions can be found in the literature [9].
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In this paper, we propose a decision tree based method that we call Graph-
Trees (GT) to compute dissimilarities between vertices in a straightforward man-
ner. The paper is organized as follows. In Sect. 2, we briefly survey related work.
We present our method in Sect.3, and we discuss its performance in Sect. 4
through an empirical study on real and synthetic datasets. In the last section of
the paper, we present a brief discussion of our results and state some perspectives
for future research.

Main Contributions of the Paper:

1. We propose a first step to bridge the gap between random decision trees and
graph clustering and extend it to vertex attributed graphs (Subsect.4.1).

2. We show that the vertex-vertex dissimilarity is meaningful and can be used
for clustering in graphs (Subsect. 4.2).

3. Our method GT applies directly on the input graph without any preprocess-
ing, unlike the many community detection in vertex-attributed graphs that
rely on the transformation of the input graph.

2 Related Work

Community detection aims to find highly connected groups of vertices in a graph.
Numerous methods have been proposed to tackle this problem [1,8,24]. In the
case of vertex-attributed? graph, clustering aims at finding homogeneous groups
of vertices sharing (i) common neighbourhoods and structural properties, and (ii)
common attributes. A vertez-attributed graph is thought of as a finite structure
G = (V,E, A), where

-V ={v1,va,...,v,} is the set of vertices of G,
— E CV xV is the set of edges between the vertices of V', and
— A={x1,29,...,2,} is the set of feature tuples, where each z; represents the

attribute value of the vertex v;.

In the case of vertex-attributed graphs, the problem of clustering refers to
finding communities (i.e., clusters), where vertices in the same cluster are densely
connected, whereas vertices that do not belong to the same cluster are sparsely
connected. Moreover, as attributes are also taken into account, the vertices in
the same cluster should be similar w.r.t. attributes.

In this section, we briefly recall existing approaches to tackle this problem.

Weight-Based Approaches. The weight-based approach consists in trans-
forming the attributed graphs in weighted graphs. Standard clustering algo-
rithms that focus on structural properties can then be applied.

The problem of mapping attribute information into edge weight have been
considered by several authors. Neville et al. define a matching coefficient [20] as

2 To avoid terminology-related issues, we will exclusively use the terms vertex for
graphs and node for random trees throughout the paper.
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a similarity measure S between two vertices v; and v; based on the number of
attribute values the two vertices have in common. The value S, ,,; is used as the
edges weight between v; and v;. Although this approach leads to good results
using Min-Cut [15], MajorClust [26] and spectral clustering [25], only nominal
attributes can be handled. An extended matching coefficient was proposed in [27]
to overcome this limitation, based on a combination of normalized dissimilarities
between continuous attributes and increments of the resulting weight per pair
of common categorical attributes.

Optimization of Quality Functions. A second type of methods aim at finding
an optimal clustering of the vertices by optimizing a quality function over the
partitions (clusters).

A commonly used quality function is modularity [21], that measures the den-
sity differences between vertices within the same cluster and vertices in different
clusters. However, modularity is only based on the structural properties of the
graph. In [6], the authors use entropy as the quality metric to optimize between
attributes, combined with a modularity-based optimization. Another method,
recently proposed by Combe et al. [5], groups similar vertices by maximizing
both modularity and inertia.

However, these methods suffer from the same drawbacks as any other mod-
ularity optimization based methods in simple graphs. Indeed, it was shown by
[17] that these methods are biased, and do not always lead to the best clustering.
For instance, such methods fail to detect small clusters in graphs with clusters
of different sizes.

Aggregated Distance Measures. Another type of methods used to find
communities in vertex-attributed graphs is to define an aggregated vertex-
vertex distance between the topological distance and the symbolic distance.
All these methods express a distance dy, v; between two vertices v; and v; as
dy, v, = adr(vi,v;) + (1 — a)ds(v;,v;) where dr is a structural distance and
dg is a distance in the attribute space. These structural and attribute distances
represent the two different aspects of the data. These distances can be chosen
from the vast number of available ones in the literature. For instance, in [4] a
combination of geodesic distance and cosine similarities are used by the authors.
The parameter « is useful to control the importance of each aspect of the over-
all similarity in each use case. These methods are appealing because once the
distances between vertices are obtained, many clustering algorithms that cannot
be applied to structures such as graphs can be used to find communities.

Miscellaneous. There is yet another family of methods that enable the use of
common clustering methods on attributed graphs. SA-cluster [3,32] is a method
performing the clustering task by adding new vertices. The virtual vertices rep-
resent possible values of the attributes. This approach, although appealing by its
simplicity, has some drawbacks. First, continuous attributes cannot be taken into
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account. Second, the complexity can increase rapidly as the number of added
vertices depends on the number of attributes and values for each attribute. How-
ever, the authors proposed an improvement of their method named Inc-Cluster
in [33], where they reduce its complexity.

Some authors have worked on model-based approaches for clustering in
vertex-attributed settings. In [29], the authors proposed a method based on
a bayesian probabilistic model that is used to perform the clustering of vertex-
attributed graphs, by transforming the clustering problem into a probabilistic
inference problem. Also, graph embeddings can be used for this task of vertex-
attributed graph clustering. Examples of these techniques include node2vec [13]
or deepwalk [23], and aim to efficiently learn a low dimensional vector represen-
tation of each vertex. Some authors focused on extending vertex embeddings to
vertex-attributed networks [11,14,30].

In this paper, we take a different approach and present a tree-based method
enabling the computation of vertex-vertex dissimilarities. This method is pre-
sented in the next section.

3 Method

Previous works [7,28] have shown that random partitions of data can be used
to compute a similarity between the instances. In particular, in Unsupervised
Extremely Randomized Trees (UET), the idea is that all instances ending up
in the same leaves are more similar to each other than to other instances. The
pairwise similarities s(i, j) are obtained by increasing s(i, j) for each leaf where
both i and j appear. A normalisation is finally performed when all trees have
been constructed, so that values lie in the interval [0, 1]. Leaves, and, more
generally, nodes of the trees can be viewed as partitions of the original space.
Enumerating the number of co-occurrences in the leaves is then the same as
enumerating the number of co-occurrence of instances in the smallest regions of
a specific partition.

So far, this type of approach has not been applied to graphs. The intuition
behind our proposed method, GT, is to leverage a similar partition in the ver-
tices of a graph. Instead of using the similarity computation that we described
previously, we chose to use the mass-based approach introduced by Ting et al.
[28] instead. The key property of their measure is that the dissimilarity between
two instances in a dense region is higher than the same interpoint dissimilarity
between two instances in a sparse region of the same space. One of the inter-
esting aspects of this approach is that a dissimilarity is obtained without any
post-processing.

Let H € H(D) be a hierarchical partitioning of the original space of a dataset
D into non-overlapping and non-empty regions, and let R(z, y|H) be the smallest
local region covering x and y with respect to H. The mass-based dissimilarity
me estimated by a finite number ¢ of models — here, random trees — is given by
the following equation:
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where P(R) = |—é| > .ep L(z € R). Figure 1 presents an example of a hierarchical
partition H of a dataset D containing 8 instances. These instances are vertices
in our case. For the sake of the example, let us compute m.(1,4) and m.(1,8).
We have m.(1,4) = £(2) = 0.25, as the smallest region where instances 1 and 4
co-appear contains 2 instances. However, m(1,8) = §(8) = 1, since instances 1
and 8 only appear in one region of size 8, the original space. The same approach

can be applied to graphs.

|1,2,3,4,5,6,7,8|

Fig. 1. Example of partitioning of 8 instances in non-overlapping non-empty regions
using a random tree structure. The blue and red circles denote the smallest nodes (i.e.,
regions) containing vertices 1 and 4 and vertices 1 and 8, respectively. (Color figure
online)

Our proposed method is based on two steps: (i) obtain several partitions of
the vertices using random trees, (ii) use the trees to obtain a relevant dissimilarity
measure between the vertices. The Algorithm 1 describes how to build one tree,
describing one possible partition of the vertices. Each tree corresponds to a model
of (1). Finally, the dissimilarity can be obtained using Eq. 1.

The computation of pairwise vertex-vertex dissimilarities using Graph Trees
and the mass-based dissimilarity we just described has a time complexity of
O(t - Wlog(¥) + n?tlog(¥)) [28], where t is the number of trees, ¥ the maximum
height of the trees, and n is the number of vertices. When ¥ << n, this time
complexity becomes O(n?).

To extend this approach to vertex-attributed graphs, we propose to build a
forest containing trees obtained by GT over the vertices and trees obtained by
UET on the vertex attributes. We can then compute the dissimilarity between
vertices by averaging the dissimilarities obtained by both types of trees.

In the next section, we evaluate GT on both real-world and synthetic
datasets.

4 FEvaluation

This section is divided into 2 subsections. First, we assess GT’s perfor-
mance on graphs without vertex attributes (Subsect.4.1). Then we present
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Algorithm 1. Algorithm describing how to build a random tree partition-
ing the vertices of a graph.

Data: A graph G(V, E), an uninitialized stack S
root_node = V; // The root node contains all the vertices of G

vs = a vertex sampled without replacement from V;

‘/left = N(Us) U {Us} 5
Vright = V\‘/left ;

//N (v) returns the set of neighbours of v

Push Vieyr and Viigne to S ;
leaves = [|; //leaves is an empty list
while S is not empty do

node
end

else

end
end
return leaves;

Vinode = pop the last element of S;
if [Viode| < Nmin then
Append V,,p4e to leaves;

//node size in lower than Nmin, it is a leaf

vs = a vertex sampled without replacement from Vi oqe;
‘/left = (Vnode mN('Us)) U {'Us};
‘Zright = Vhode \ ‘/left 5

Push Vies: to S
Push Viigne to S

the performance of our proposed method in the case of vertex-attributed graphs
(Subsect. 4.2). An implementation of GT, as well as these benchmarks are avail-
able on https://github.com/jdalleau/gt.

4.1 Graph Trees on Simple Graphs

We first evaluate our approach on simple graphs with no attributes, in order to
assess if our proposed method is able to discriminate clusters in such graphs.
This evaluation is performed on both synthetic and real-world graphs, presented

Table 1.

Table 1. Datasets used for the evaluation of clustering on simple graphs using

graph-trees

Dataset # vertices | # edges | Average degree | # clusters
Football 115 1226 10.66 10
Email-Eu-Core | 1005 25571 33.24 42
Polbooks 105 441 8.40 3
SBM 450 65994 | 293.307 3
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The graphs we call SBM are synthetic graphs generated using stochastic
block models composed of k blocks of a user-defined size, that are connected by
edges depending on a specific probability which is a parameter. The Football
graph represents a network of American football games during a given season
[12]. The Email-Eu-Core graph [18,31] represents relations between members
of a research institution, where edges represents communication between those
members. We also use a random graph in our first experiment. This graph is
an Erdos-Renyi graph [10] generated with the parameters n = 300 and p = 0.2.
Finally, the PolBooks data [16] is a graph where nodes represent books about
US politics sold by an online merchant and edges books that were frequently
purchased by the same buyers.

Our first empirical setting aims to compare the differences between the mean
intracluster and the mean intercluster dissimilarities. These metrics enable a
comparison that is agnostic to a subsequent clustering method.

The mean difference is computed as follows. First, the arithmetic mean of
the pairwise similarities between all vertices with the same label is computed,
corresponding to the mean intracluster dissimilarity p;ntrq. The same process
is performed for vertices with a different label, giving the mean intercluster
similarity finter. We finally compute the difference A = |fintra — Minter|- In
our experiments, this difference A is computed 20 times. A denotes the mean of
differences between runs, and o its standard deviation. The results are presented
Table 2. We observe that in the case of the random graph, A is close to 0, unlike
the graphs where a cluster structure exists. A projection of the vertices based
on their pairwise dissimilarity obtained using GT is presented Fig. 2.

Table 2. Mean difference between intercluster and intracluster similarities in different
settings.

Dataset A o
Random graph | 0.0003 | 0.0002
SBM 0.29 |0.005
Football 0.25 0.002

We then compare the Normalized Mutual Information (NMI) obtained using
GT with the NMI obtained using two well-known clustering methods on simple
graphs, namely MCL [8] and Louvain [1]. NMT is a clustering quality metric
when a ground truth is available. Its values lie in the range [0, 1], with a value
of 1 being a perfect matching between the computed clusters and the reference
one. The empirical protocol is the following:

1. Compute the dissimilarity matrices using GT, with a total number of trees
Ntrees = 200.

2. Obtain a 2D projection of the points using t-SNE [19] (k = 2).

3. Apply k-means on the points of the projection and compute the NMI.
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Random graph sBM Football

Fig. 2. Projection of the vertices obtained using GT on (left) a random graph, (mid-
dle) an SBM generated graph (middle) and (right) the football graph. Each cluster
membership is denoted by a different color. Note how in the case of the random graph,
no clear cluster can be observed. (Color figure online)

We repeated this procedure 20 times and computed means and standard devia-
tions of the NMI.

The results are presented Table3. We compared the mean NMI using the
t-test, and checked that the differences between the obtained values are statisti-
cally significant.

We observe that our approach is competitive with the two well-known meth-
ods we chose in the case of non-attributed graphs on the benchmark datasets.
In one specific case, we even observe that Graph trees significantly outperforms
state of the art results, on the graphs generated by the SBM model. Since the
dissimilarity computation is based on the method proposed by [28] to find clus-
ters in regions of varying densities, this may indicate that our approach performs
particularly well in the case of clusters of different size.

Table 3. Comparison of NMI on benchmark graph datasets. Best results are in bold-
face.

Dataset Graph-trees Louvain MCL

Football 0.923 (0.007) | 0.924 (0.000) | 0.879 (0.015)
Email-Eu-Core | 0.649 (0.008) | 0.428 (0.000) | 0.589 (0.012)
Polbooks 0.524 (0.012) |0.521 (0.000) |0.544 (0.02)
SBM 0.998 (0.005) | 0.684 (0.000) | 0.846 (0.000)

4.2 Graph Trees on Attributed Graphs

Now that we have tested GT on simple graphs, we can assess its performance
on vertex-attributed graphs. The datasets that we used in this subsection are
presented Table 4.

WebKB represents relations between web pages of four universities, where
each vertex label corresponds to the university and the attributes represent the
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words that appear in the page. The Parliament dataset is a graph where the
vertices represent french parliament members, linked by an edge if they cosigned
a bill. The vertex attributes indicate their constituency, and each vertex has a
label that corresponds to their political party.

Table 4. Datasets used for the evaluation of clustering on attributed graphs using GT

Dataset 7 vertices | # edges | # attributes | # clusters
WebKB 877 1480 | 1703 4
Parliament | 451 11646 108 7
HVR 307 6526 6 2

The empirical setup is the following. We first compute the vertex-vertex dis-
similarities using GT, and the vertex-vertex dissimilarities using UET. In this
first step, a forest of trees on the structures and a forest of trees on the attributes
of each vertex are constructed. We then compute the average of the pairwise dis-
similarities. Finally, we then apply t-SNE and use the k-means algorithm on the
points in the embedded space. We set k to the number of clusters, since we have
the ground truths. We repeat these steps 20 times and report the means and
standard deviations. During our experiments, we found out that preprocessing
the dissimilarities prior to the clustering phase may lead to better results, in par-
ticular with Scikit learn’s [22] Quantile Transformer. This transformation tends
to spread out the most frequent values and to reduce the impact of outliers.
In our evaluations, we performed this quantile transformation prior to every
clustering, with nguantie = 10.

The NMI obtained after the clustering step are presented in Table 5.

Table 5. NMI using GT on the structure only, UET on the attributes only and
GT+UET. Best results are indicated in boldface.

Dataset GT UET GT+UET

WebKB | 0.64 (0.07) |0.73 (0.08) | 0.98 (0.01)
HVR 0.58 (0.06) | 0.58 (0.00) | 0.89 (0.06)
Parliament | 0.65 (0.02) | 0.03 (0.00) | 0.66 (0.02)

We observe that for two datasets, namely WebKB and HVR, considering
both structural and attribute information leads to a significant improvement in
NMI. For the other dataset considered in this evaluation, while the attribute
information does not improve the NMI, we observe that is does not decrease it
either. Here, we give the same weight to structural and attribute information.
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Fig. 3. Projection of the WebKB data based on the dissimilarities computed (left)
using GT on structural data, (middle) using UET on the attributes data and (right)
using the aggregated dissimilarity. Each cluster membership is denoted by a different
color. (Color figure online)

In Fig. 3 we present the projection of the WebKB dataset, where we observe
that the structure and attribute information both bring a different view of the
data, each with a strong cluster structure.

HVR and Parliament datasets are extracted from [2]. Using their proposed
approach, they obtain an NMI of 0.89 and 0.78, respectively. Although the NMI
we obtained using our approach are not consistently better in this first assess-
ment, the methods still seems to give similar results without any fine tuning.

5 Discussion and Future Work

In this paper, we presented a method based on the construction of random
trees to compute dissimilarities between graph vertices, called GT. For vertex
clustering purposes, our proposed approach is plug-and-play, since any clustering
algorithm that can work on a dissimilarity matrix can then be used. Moreover,
it could find application beyond graphs, for instance in relational structures in
general.

Although the goal of our empirical study was not to show a clear superior-
ity in terms of clustering but rather to assess the vertex-vertex dissimilarities
obtained by GT, we showed that our proposed approach is competitive with well-
known clustering methods, Louvain and MCL. We also showed that by comput-
ing forests of graph trees and other trees that specialize in other types of input
data, e.g, feature vectors, it is then possible to compute pairwise dissimilarities
between vertices in attributed graphs.

Some aspects are still to be considered. First, the importance of the vertex
attributes is dataset dependent and, in some cases, considering the attributes can
add noise. Moreover, the aggregation method between the graph trees and the
attribute trees can play an essential role. Indeed, in all our experiments, we gave
the same importance to the attribute and structural dissimilarities. This choice
implies that both the graph trees and the attribute trees have the same weight,
which may not always be the case. Finally, we chose here a specific algorithm to
compute the dissimilarity in the attribute space, namely, UET. The poor results
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we obtained for some datasets may be caused by some limitations of UET in
these cases.

It should be noted that our empirical results depend on the choice of a
specific clustering algorithm. Indeed, GT is not a clustering method per se,
but a method to compute pairwise dissimilarities between vertices. Like other
dissimilarity-based methods, this is a strength of the method we propose in this
paper. Indeed, the clustering task can be performed using many algorithms,
leveraging their respective strengths and weaknesses.

As a future work, we will explore an approach where the choice of whether
to consider the attribute space in the case of vertex-attributed graphs is guided
by the distribution of the variables or the visualization of the embedding. We
also plan to apply our methods on bigger graphs than the ones we used in this
paper.
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Abstract. We examine deep neural network (DNN) performance and
behavior using contrasting explanations generated from a semantically
relevant latent space. We develop a semantically relevant latent space by
training a variational autoencoder (VAE) augmented by a metric learning
loss on the latent space. The properties of the VAE provide for a smooth
latent space supported by a simple density and the metric learning term
organizes the space in a semantically relevant way with respect to the
target classes. In this space we can both linearly separate the classes
and generate meaningful interpolation of contrasting data points across
decision boundaries. This allows us to examine the DNN model beyond
its performance on a test set for potential biases and its sensitivity to
perturbations of individual factors disentangled in the latent space.

Keywords: Deep learning + VAE - Metric learning - Interpretability -
Explanation

1 Introduction

Advances in machine learning and deep learning have had a profound impact
on many tasks involving high dimensional data such as object recognition and
behavior monitoring. The domain of Computer Vision especially has been wit-
nessing a great growth in bridging the gap between the capabilities of humans
and machines. This field tries to enable machines to view the world as humans
do, perceive it similar and even use the knowledge for a multitude of tasks such
as Image & Video Recognition, Image Analysis and Classification, Media Recre-
ation, recommender systems, etc. And, has since been implemented in high-level
domains like COMPAS [8], healthcare [3] and politics [17]. However, as black-
box models inner workings are still hardly understood, can lead to dangerous
situations [3], such as racial bias [8], gender inequality [1].

The need for confidence, certainty, trust and explanations when using super-
vised black-box models is substantial in domains with high responsibility. This
paper provides an approach towards better understanding of a model’s predic-
tions by investigating its behavior on semantically relevant (contrastive) expla-
nations. The build a semantically relevant latent space we need a smooth space
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that corresponds well with the generating factors of the data (i.e. regions well-
supported by the associated density should correspond to realistic data points)
and with a distance metric that conveys semantic information about the target
task. The vanilla VAE without any extra constraints is insufficient as is does not
necessarily deliver a distance metric that corresponds to the semantics of the tar-
get class assignment (in our task). Our target is to develop semantically relevant
decision boundaries in the latent space, which we can use to examine our tar-
get classification model. Therefore, we propose to use a weakly-supervised VAE
that uses a combination of metric learning and VAE disentanglement to create a
semantically relevant, smooth and well separated space. And, we show that we
can use this VAE and semantically relevant latent space can be used for various
interpretability /explainability tasks, such as validate predictions made by the
CNN, generate (contrastive) explanations when predictions are odd and being
able to detect bias. The approach we propose for these tasks is more specifically
explained using Fig. 1.

X Y
| |
________________________ S
() CNN
| cX) J
Encoder b t
o ) @

Z-space

Decoder Z"-space @
G(Z) traversal

Fig. 1. The diagnostics approach to validate and understand the behavior of the CNN.
(1) extra constraints, loss functions are applied during training of the VAE in order to
create semantically relevant latent spaces. The generative model captures the essential
semantics within the data and is used by (2) A linear Support Vector Machine. The
linear SVM is trained on top of the latent space to classify input on semantics rather
than the direct mapping from input data X and labels Y. If the SVM and CNN do
not agree on a prediction then (3) we traverse the latent space in order to generate
and capture semantically relevant synthetic images, tested against the CNN, in order
to check what elements have to change in order to change its prediction from a to b,
where a and b are different classes.

In this paper, the key contributions are: (1) an approach that can be used in
order to validate and check predictions made by a CNN by utilizing a weakly-
supervised generative model that is trained to create semantically relevant latent
spaces. (2) The semantically relevant latent spaces are then used in order to
train a linear support vector machine to capture decision rules that define a
class assignment. The SVM is then used to check predictions based on semantics
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rather than the direct mapping of the CNN. (3) if there is a misalignment in
the predictions (i.e. the CNN and SVM do not agree) then we posit the top k
best candidates (classes) and for these candidates traverse the latent spaces in
order to generate semantically relevant (contrastive) explanations by utilizing
the decision boundaries of the SVM.

To conclude, This paper posits a method that allows for the validation of
CNN performance by comparing it against the linear classifier that is based
on semantics and provides a framework that generates explanations when the
classifiers do not agree. The explanations are provided qualitatively to an expert
within the field. This explanation encompasses the original image, reconstructed
images and the path towards its most probable answers. Additionally, it shows
the minimal difference that makes the classifiers change its prediction to one of
the most probable answers. The expert can then check these results to make a
quick assessment to which class the image actually belongs to. Additionally, the
framework provides the ability to further investigate the model mathematically
using the linear classifier as a proxy model.

2 Related Work

Interest in interpretability and explainability studies has significantly grown
since the inception of “Right to Explanation” [20] and ethicality studies into
the behavior of machine learning models [1,3,8,17]. As a result, developers of Al
are promoted and required, amongst others, to create algorithms that are trans-
parent, non-discriminatory, robust and safe. Interpretability is most commonly
used as an umbrella term and stands for providing insight into the behavior and
thought processes behind machine-learning algorithms and many other terms
are used for this phenomenon, such as, Interpretable AI, Explainable machine
learning, causality, safe AI, computational social science, etc. [5]. We posit our
research as an interpretability study, but it does not necessarily mean that other
interpretability studies are directly closely related to this work.

There have been many approaches that all work towards the goal of under-
standing black-box models: Linear Proxy Models: Lime [18] are approaches that
locally approximate complex models using linear fits, Decision trees and Rule
extraction methods, such as deepred [21] are also considered highly explainable,
but quickly become intractable as complexity increases and salience mapping
[19] that provide visual information as to which part of an image is most likely
used in its prediction, however, it has been demonstrated to be unreliable if not
strongly conditioned [10]. Additionally, another approach to interpretability is
explaining the role of each part within a black-box models such as the role of
a layer or individual neurons [2] or representation vectors within the activation
space [9)].

Most of the approaches stated above assume that there has to be a trade-
off between model performance and explainability. Additionally, as the current
interpretable methods for black-box models are still insufficient and approxi-
mated can cause more harm than good when communicated as a method that
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solves all problems. A lot of the interpretability methods do not take into account
the actual needs that stakeholders require [13]. Or, fail to take into account the
vast research into explanations or interpretability of the field of psychology [14]
and social sciences [15]. The “Explanation in Artificial Intelligence” study by
Miller [15] describes the current state of interpretable and explainable algo-
rithms, how most of the techniques currently fail to capture the essence of an
explanation and how to improve: an interpretability or explainability method
should at least include, but is not limited to, a non-disputable textual- and/or
mathematical- and/or visual explanation that is selective, social and depending
on the proof, contrastive.

For this reason, our approach focuses on providing selective (contrastive)
explanations that combines visual aspects as well as the ability to further inves-
tigate the model mathematically using a proxy model that does not impact the
CNN directly. Usually, generative models such as the Variational Autoencoders
(VAE) [11] and Generative Adversarial Networks (GAN)s are unsupervised and
used in order to sample and generate images from a latent space, provided by
training the generative network. However, we posit to use a weakly-supervised
generative network in order to impose (discriminative) structure in addition to
variational inference to the latent space of said model using metric learning [6].

This approach and method is therefore most related to the interpretabil-
ity area of sub-sampling proxy generative models to answer questions about a
discriminative black box model. The two closest studies that attempt similar
research is a preprint of CDeepEx [4] by Amir Feghahati et al. and xGEMs [7]
by Joshi et al. Both cDeepEx and xGEMS propose the use of a proxy generative
model in order to explain the behavior of a black-box model, primarily using
generative adversarial networks (GANs). The xGems paper presents a frame-
work to characterize and explaining binary classification models by generating
manifold guided examples using a generative model. The behavior of the black
box model is summarized by quantitatively perturbing data samples along the
manifold. And, xGEMS detects and quantifies bias during model training to
understand how bias affects black box models. The xGEMS approach is similar
to our approach as in using a generative model in order to explain a black box
model. Similarly, the cDeepEx paper posits their work as generating contrastive
explanations using a proxy generative model. The generated explanations focus
on answering the question “why a and not b7” with GANs, where a is the class
of an input example I and b is a chosen class to which to capture the differences.

However, both of these papers do not state that in a multi-class (discrimina-
tive) classification problem if the generative models’ latent space is not smooth,
well separated and semantically relevant then unexpected behavior can happen.
For instance, when traversing the latent space it is possible to can pass from a
to any number of classes before reaching class b because the space is not well
separated and smooth. This will create ineffective explanations, as depending on
how they generate explanations will give information on ‘why class a and not b
using properties of ¢’. An exact geodesic path along the manifold would require
great effort, especially in high dimensions. Also, our approach is different in the
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fact that we utilize a weakly-supervised generative model as well as an extra
linear classifier on top of the latent space to provide us with extra information
on the data and the latent space. Some approaches we take, however, are very
similar, such as using a generative model as a proxy to explain a black-box model
as well as sub-sampling the latent space to probe the behavior of a black-box
model and generate explanations using the predictions.

3 Methodology

This paper posits its methodology as a way to explain and validate decisions
made by a CNN. The predictions made by the CNN are validated and explained
utilizing the properties of a weakly-supervised proxy generative model, more
specifically, a triplet-vae. There are three main factors that contribute to the
validation and explanation of the CNN. First, a triplet-vae is trained in order
to provide a semantically relevant and well separated latent space. Second, this
latent space is then used to train an interpretable linear support vector machine
and is used to validate decisions by the CNN by comparison. Third, when a
CNN decision is misaligned with the decision boundaries in the latent space, we
generate explanations through stating the K most probable answers as well as
provide a qualitative explanation to validate the top K most probable answers.
Each of these factors respectively refer to the number stated in Fig.1 as well
as link to each section: (1) triplet-vae Sect.3.1, (2) CNN Decision Validation,
Sect. 3.2, (3) Generating (contrastive) Explanations, Sect. 3.3.

3.1 Semantically Relevant Latent Space

Typically, a triplet network consists of three instances of a neural network that
share parameters. These three instances are separately fed differences types of
input: an anchor, positive sample and negative sample. These are then used to
learn useful representations by distance comparisons. We propose to incorporate
this notion of a triplet network to semantically structure and separate the latent
space of the VAE using the available input and labels. A triplet VAE consists
of three instances of the encoder with shared parameters that are each fed pre-
computed triplets: an anchor, positive sample and negative sample; z,, =, and
Zp. The anchor z, and positive sample x,, are of the same class but not the same
image, whereas negative sample z,, is from a different class. In each iteration
of training, the input triplet is fed to the encoder network to get their mean
latent embedding: F(z,)" = 24, F(zp)" = 25, F(zn)" = 2. These are then
used to compute a similarity loss function as to induce loss when a negative

sample 2/, is closer to z§ than 2zl distance-wise. i.e. dqp(2k, 28) = |24 — 24|
and Ogn (24, 28) = ||zt — z/|| and, provides us with three possible situations:

Sap > Oan, dap < Ogn and 0gp = Ogr [6].

We wish to find an embedding where samples of a certain class lie close to
each other in the latent space of the VAE. For this reason, we wish to add loss
the algorithm when we arrive in the situation where d,, > 64y In other words,
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Fig. 2. Given an input image I we check the prediction of the CNN as well as the SVM.
If both classifiers predict the same class, we return the predicted class. In contrast, if
the classifiers do not predict the same class, we propose to return the top k& most
probable answers as well as an explanation why those classes are the most probable.

S

we wish to push z,, further away, such that we ultimately arrive in the situation
where d4p < dgn, OF dgp = dqpn With some margin ¢. As such we arrive at the triplet
loss function that we’ll use in addition to the KL divergence and reconstruction
loss within the VAE: L(2, 2}/, 2li) = o x argmax{||zl — z5|| — ||z} — 21]| + ¢ ,0}.
Where ¢ will provide leeway when 64, = d4r and push the negative sample away
even when the distances are equal.

We have an already present CNN which we would like to validate, and is
trained by input data X : x;...x, and labels Y : y;...4,, where each y; states
the true class of x;. We then use the same X and Y to train the triplet-VAE.
(1) First, we compute triplets of the form x,, zpx, from the input data X and
labels Y which are then used to train the triplet VAE. A typical VAE consists
of an F(z) = Encoder(x) ~ q(z|z) which compresses the data into a latent
space Z, a G(z) = Decoder(z) ~ p(x|z) which reconstructs the data given the
latent space Z and a prior p(z), in our case a gaussian N (0,1), imposed on
the model. In order for the VAE to train a latent space similar to its prior
and be able to reconstruct images it is trained by minimizing the Evidence
Lower Bound (ELBO). ELBO = —E.._g(.|x)[log P(z|2)] + KL[Q(z|X)||P(2)]
This can be explained as the reconstruction loss or expected negative loglikeli-
hood: —E . o(:x)[log P(x|z)] and the KL divergence loss KL[Q(z|X)||P(2)], to
which we add the triplet loss:

L(z4, 2, 2y) = ax argmax{||zf — 2]| — ||z — 2}l + ¢, 0}
This compound loss semi-forces the latent space of the VAE to be well separated
due to the triplet loss, disentangled due to the KL divergence loss combined with
0 scalar, and provides a means of (reasonably) reconstructing images by the
reconstruction loss. And, thus results in the following loss function for training
the VAE:
loss = —E..q(z|x)llog P(x|2)] + 8 % KL[Q(2| X)||P(2)] + L(2}, 24, 21)).

a’®psrn
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3.2 Decision Validation

Afterwards, given a semantically relevant latent space we can use it for step two
and three as indicated in Fig. 1. (2) Second step - CNN Decision Validation, we
train an additional classifier on top of the triplet-VAE latent space, specifically
zP. We train the linear Support Vector Machine using Z*s as input data and Y’
as labels where [Z#, Z7] = F(X). The goal of the linear support vector machine
is two-fold. It provides a means of validating each prediction made by the CNN
by using the encoder and the linear classifier. i.e. given an input example I, we
have C(I) = g¢(ry and S(F(I)*) = §s(r), and compare them against each other
Yoy = Us(r)- And, as the linear classifier is a simpler model than the highly
complex CNN it will function as the ground-truth base for the predictions that
are made. As such, we arrive at two possible cases:

Positi if (Geipy = 1)
Comparison(I) = 4 Lositive if (e = dsan) Q)
Negative if (Je(r) # 9s(r))

First, If both classifiers agree then we arrive at an optimal state, meaning
that the prediction is based on semantics and the direct mapping found by the
CNN. In this way, we can say with high confidence that the prediction is correct.
In the second case, if the classifiers do not agree, three cases can occur: the SVM
is correct and the CNN is incorrect, the SVM is incorrect and the CNN is correct,
or both the SVM and the CNN is incorrect. In each of these cases we can suggest
a most probable answer as well as a selective (contrastive) explanation indicated
as step 3 of the framework as explained in Fig. 2.

3.3 Generating (contrastive) Explanations

An explanation consists of (1) the most probable answers and (2) a qualitative
investigation of latent traversal towards the most probable answers The most
probable answer is presented by the averaged sum rule [12] over the predicted
probabilities per class for both the CNN and SVM and selecting the top K
answers, where K can be appropriately selected. Additionally, originally an SVM
does not return a probabilistic answer, however, applying Platts [16] method we
apply an additional sigmoid function to map the SVM outputs into probabilities.
These top k answers are then used in order to present and generate selected
contrastive explanations.

The top K predictions or classes will be used in order to traverse and sub-
sample the latent space from the initial representation or Z} location towards
another class. We can find a path by finding the closest point within the latent
space such that the decision boundary is crossed and the SVM predicts the tar-
get class. Alternatively we could use the closest data point in the latent space
that adheres to the training set argmin F(z;)* — Z}' for every z; € X. Traversing
and sub-sampling the latent space will change the semantics minimally to change
the class prediction. We capture the minimal change needed in order to change
both the SVM and CNN prediction to the target class. This information is then
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Fig. 3. Generating (contrastive) explanations consist of several steps: First, given an
input image I in question and the K top most probable answer. K denotes training
data X for class k labeled with y = k. We feed both I and K through the encoder
F(X) to receive their respective semantic location in the latent space. We then find
the closest training point that belongs to the target class k£ and find the vector v; the
direction of that point. Afterwards, uniformly sample € data points along this vector v,
where j iterates over 0---j---€ and is denoted as Z}'. Z{' is then used to check these
against the SVM and use them to generate images X ;1 using the decoder G(Z{'). The
generated images are then fed to the CNN to make a prediction and as the images will
semantically change along the vector the prediction will change as well. Afterwards, we
can compare the predictions from both the CNN and SVM. Subsequently, we use the
first moment where both predictions are equal to target class k, denoted as moment [
for generating an explanation - minimal semantic difference necessary to be equal to
the target class, AUj;.

presented to the domain expert for verification and answers the following ques-
tion: The most probable answer is a because the input image I is semantically
closest to the following features, where the features are presented qualitatively.
The explanations are generated as follows: see Fig. 3.

The decision boundaries around the clusters within the latent space are fitted
by the SVM and can be used to answer questions of the form ‘why a and not
b?". If ge(ry and sy do not predict the same class, then, we assume that gs(r)
is correct. We then use the find a path, indicated by v from sy to Je(r), zy
to the target class. This can be done by calculating a vector orthogonal to the
hyper-plane fitted by the SVM towards the target class. Alternatively, we can
find the closest 2# € Z" that satisfies Jg(.n) = gc(.n) that are not the same as
the initial prediction gc (). This means that v is the vector from I to the closest
data point of the target class, with respect to Euclidean distance.

We then uniformly sample points along vector v and check them against the
SVM as well as the CNN. The sampled points can directly be fed to the SVM to
get a prediction g([(v;) for every v; € V. Similarly, we can get predictions of the
CNN by transforming the images using the decoder D. The images are then fed to
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the CNN to get a prediction 4(C(D(v;)) for every v; € V. The predictions of both
classifiers will change as the images start looking more and more like the target
class as generative factors change along the vector. If we capture the changes that
make the change happen, we can show the minimal difference required in order
to change the prediction of the CNN. In this way we can generate contrastive
examples: For the top ‘close’ class that is not §; we answer the question: ‘why
yr and not the other semantically close class?’. Hence, we find the answer to the
question “why a and not b?”, as the answer is the shortest approximate changes
between the two classes that make the CNN change its prediction. As a result,
we have found a way to validate the inner workings of the CNN. If there are
doubts about a prediction it can be investigated and checked.

4 Results

In this paper we show experimental results on MNIST by generating (con-
trastive) explanations to provide extra information to predictions made by the
CNN and evaluate its performance. The creation of these explanations requires
a semantically relevant and well separated latent space. Therefore, we first show
the difference between the latent space of the vanilla VAE and the triplet-VAE
and its effects on training a linear classifier on top of the latent space. The
Figs.4 and 5 show a tSNE visualization of the separation of classes within the
latent space. Not surprisingly the triplet-VAE separated the data in a far more
semantically relevant way and this is also reflected with respect to the accuracy
of training a linear model on the data.

Fig.4. Visualization of a two- Fig.5. Visualization of a two-
dimensional latent space of a vanilla dimensional latent space of a 7-VAE
VAE on MNIST on MNIST
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Table 1. This table shows the per-
centages of agreement with respect
to all possible cases.

Second, the percentages show as to know
how much both classifiers agree by showing
the percentage per possible case, as shown in
Table 1. Not surprisingly case four happens Case_ _ Percentage
more often than case three and can mean (1) Ys = Yo =V |0.9586

. . . (2) Ys =Yo #Y 0.003
two things, our latent space is too simple 3) (Ys = Y) £ Yo 0.0086
to capture the full complexity of the class (4) Ys # (Yo = ) 0.0314
assignment and the CNN is not constraint (5) Ys #£ Yo #Y 0.0044
by extra loss functions. However, in three of
the four cases where Yg # Yo we can explain
the most probable predictions and provide a generated (contrastive) explanation.
The only case we cannot check or know about is case two, where both Yg and
Ye predict the same class but is wrong. The only way to capture this behavior
is by explaining every single decision by generating explanations for everything.
Nevertheless, as an example for generating explanations we use an example: 6783
(case 5) as shown in Fig. 6.

Generating explanations consists
of three parts: First, we propose the
top K probable answers: for this

example the true label is 1, the most . .

probable answers are 6, 8 and then 1

with averaged probabilities 0,512332, : : .
0.3382, 0.1150. Second, Then for those * I : " : I :
most probable target classes, 6, 8, 1 - : " B -

we traverse the latent space from the
initial location Z}' to the closest point

(+) changes () changes (+) + () changes

. Fig.6. Once the SVM and the CNN both
of th'at class, denotgd as v € that is predict the target class we capture the min-
predicted correctly i.e. the SVM and ;)5 changes that are necessary to change
CNN agree. Figure 7 shows the gener-  their predictions

ated images from the uniformly sam-
pled data points along vectors vy € V where k € K stand for 6, 8, 1 in this case.
The figures show which changes happen when traversing the latent space and at
which points both the SVM and the CNN agree with respect to their decision.
For the traversal from Z} to class 6 it can be seen that rather quickly both
classifiers agree and only minimal changes are required to change the predictions.
Third, for such an occurrence we can further zoom in on what is happening
and what really makes that the most probable answer. Figure6 shows these
minimal changes required to change its prediction as well as the transformed
image on which the classifiers agree. The first row shows the original image,
positive changes, negative changes and the changes combined. The second row
shows the reconstructed image and the reconstructed images with the positive
changes, negative changes and positive and negative changes respectively. In this
way, for each probable answer it shows its closest representative and the changes
required to be part of that class.
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S:8,C:6 S:8,C:6 S:6,C:6 0 S:6,C:6 o S:6,C: 6 S:6,C:6 S:6,C:6 S:6,C:6 0 5:6,C: 6 0 S5:6,C: 6

S:8,C:6 S:8,C:6 S:8,C:6 S:8,C:6 S5:8,C:6 S:8,C:8 S:8,C:8 S:8,C:8 S5:8,C:8 S:8,C:8
0 0

ﬂ ﬂﬂ

S:8,C:6 S:8,C:6 S:1,C1 S:1,C:1 S:1,C:1 S$:1,C1 S:1,C:1 S:1,C:1 S:1,C1 S:1
0

Fig. 7. Per top k probable answers we traverse and sample the latent space to generate
images that can be used to test the behavior of the CNN. The red line indicates the
moment where both the SVM and the CNN predict the target class (Color figure online)

5 Conclusion

This paper examines deep neural network’s behaviour and performance by uti-
lizing a weakly-supervised generative model as a proxy. The weakly-supervised
generative model aims to uncover the generative factors underlying the data
and separate abstract classes by applying metric learning. The proxy’s goal is
three-fold: the semantically meaningful space will be the base for a linear sup-
port vector machine; The model’s generative capabilities will be used to generate
images that can be probed against the black box in question; the latent space
is traversed and sampled from an anchor I to another class k in order to find
the minimal important difference that changes both classifier’s predictions. The
goal of the framework is to be sure of the predictions made by the black box by
better understanding the behaviour of the CNN by simulating questions of the
form ‘Why a and not b?” where a and b are different classes.

We examine deep neural network (DNN) performance and behaviour using
contrasting explanations generated from a semantically relevant latent space.
The results show that each of the above goals can be achieved and the frame-
work performs as expected. We develop a semantically relevant latent space by
training an variational autoencoder (VAE) augmented by a metric learning loss
on the latent space. The properties of the VAE provide for a smooth latent space
supported by a simple density and the metric learning term organizes the space
in a semantically relevant way with respect to the target classes. In this space we
can both linearly separate the classes and generate relevant interpolation of con-
trasting data points across decision boundaries and find the minimal important
difference that changes the classifier’s predictions. This allows us to examine the
DNN model beyond its performance on a test set for potential biases and its
sensitivity to perturbations of individual factors in the latent space.
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Abstract. We introduce geometric pattern mining, the problem of find-
ing recurring local structure in discrete, geometric matrices. It differs
from existing pattern mining problems by identifying complex spatial
relations between elements, resulting in arbitrarily shaped patterns.
After we formalise this new type of pattern mining, we propose an
approach to selecting a set of patterns using the Minimum Description
Length principle. We demonstrate the potential of our approach by intro-
ducing Vouw, a heuristic algorithm for mining exact geometric patterns.
We show that Vouw delivers high-quality results with a synthetic bench-
mark.

1 Introduction

Frequent pattern mining [1] is the well-known subfield of data mining that aims
to find and extract recurring substructures from data, as a form of knowledge
discovery. The generic concept of pattern mining has been instantiated for many
different types of patterns, e.g., for item sets (in Boolean transaction data) and
subgraphs (in graphs/networks). Little research, however, has been done on pat-
tern mining for raster-based data, i.e., geometric matrices in which the row and
column orders are fixed. The exception is geometric tiling [4,11], but that prob-
lem only considers tiles, i.e., rectangular-shaped patterns, in Boolean data.

In this paper we generalise this setting in two important ways. First, we
consider geometric patterns of any shape that are geometrically connected, i.e.,
it must be possible to reach any element from any other element in a pattern by
only traversing elements in that pattern. Second, we consider discrete geometric
data with any number of possible values (which includes the Boolean case). We
call the resulting problem geometric pattern mining.

Figure 1 illustrates an example of geometric pattern mining. Figure 1a shows
a 32 x 24 grayscale ‘geometric matrix’, with each element in [0, 255], apparently
filled with noise. If we take a closer look at all horizontal pairs of elements,
however, we find that the pair (146, 11) is, amongst others, more prevalent than
expected from ‘random noise’ (Fig. 1b). If we would continue to try all combina-~
tions of elements that ‘stand out’ from the background noise, we would eventually
find four copies of the letter ‘I’ set in 16 point Garamond Italic (Fig. 1c).
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(a) 32 x 24 ‘geometric matrix’. (b) Pair (146,11). (c) Pattern ‘I’ occurs four times.

Fig. 1. Geometric pattern mining example. Each element is in [0, 255].

The 35 elements that make up a single ‘I’ in the example form what we call
a geometric pattern. Since its four occurrences jointly cover a substantial part
of the matrix, we could use this pattern to describe the matrix more succinctly
than by 768 independent values. That is, we could describe it as the pattern ‘I’
at locations (5,4), (11,11), (20, 3), (25, 10) plus 628 independent values, hereby
separating structure from accidental (noise) data. Since the latter description
is shorter, we have compressed the data. At the same time we have learned
something about the data, namely that it contains four I’s. This suggests that
we can use compression as a criterion to find patterns that describe the data.

Approach and Contributions. Our first contribution is that we introduce and
formally define geometric pattern mining, i.e., the problem of finding recurring
local structure in geometric, discrete matrices. Although we restrict the scope
of this paper to two-dimensional data, the generic concept applies to higher
dimensions. Potential applications include the analysis of satellite imagery, tex-
ture recognition, and (pattern-based) clustering.

We distinguish three types of geometric patterns: (1) ezact patterns, which
must appear exactly identical in the data to match; (2) fault-tolerant patterns,
which may have noisy occurrences and are therefore better suited to noisy data;
and (3) transformation-equivalent patterns, which are identical after some trans-
formation (such as mirror, inverse, rotate, etc.). Each consecutive type makes
the problem more expressive and hence more complex. In this initial paper we
therefore restrict the scope to the first, exact type.

As many geometric patterns can be found in a typical matrix, it is crucial to
find a compact set of patterns that together describe the structure in the data
well. We regard this as a model selection problem, where a model is defined by
a set of patterns. Following our observation above, that geometric patterns can
be used to compress the data, our second contribution is the formalisation of
the model selection problem by using the Minimum Description Length (MDL)
principle [5,8]. Central to MDL is the notion that ‘learning’ can be thought
of as ‘finding regularity’ and that regularity itself is a property of data that
is exploited by compressing said data. This matches very well with the goals of
pattern mining, as a result of which the MDL principle has proven very successful
for MDL-based pattern mining [7,12].
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Finally, our third contribution is Vouw, a heuristic algorithm for MDL-based
geometric pattern mining that (1) finds compact yet descriptive sets of patterns,
(2) requires no parameters, and (3) is tolerant to noise in the data (but not
in the occurrences of the patterns). We empirically evaluate Vouw on synthetic
data and demonstrate that it is able to accurately recover planted patterns.

2 Related Work

As the first pattern mining approach using the MDL principle, Krimp [12] was
one of the main sources of inspiration for this paper. Many papers on pattern-
based modelling using MDL have appeared since, both improving search, e.g.,
Slim [10], and extensions to other problems, e.g., Classy [7] for rule-based clas-
sification.

The problem closest to ours is probably that of geometric tiling, as introduced
by Gionis et al. [4] and later also combined with the MDL principle by Tatti
and Vreeken [11]. Geometric tiling, however, is limited to Boolean data and
rectangularly shaped patterns (tiles); we strongly relax both these limitations
(but as of yet do not support patterns based on densities or noisy occurrences).

Campana et al. [2] also use matrix-like data (textures) in a compression-
based similarity measure. Their method, however, has less value for explanatory
analysis as it relies on generic compression algorithms that are essentially a black
box.

Geometric pattern mining is different from graph mining, although the con-
cept of a matrix can be redefined as a grid-like graph where each node has a
fixed degree. This is the approach taken by Deville et al. [3], solving a problem
similar to ours but using an approach akin to bag-of-words instead of the MDL
principle.

3 Geometric Pattern Mining Using MDL

We define geometric pattern mining on bounded, discrete and two-dimensional
raster-based data. We represent this data as an M x N matrix A whose rows
and columns are finite and in a fixed ordering (i.e., reordering rows and columns
semantically alters the matrix). Each element a; ; € S, where row i € [0; N),
column j € [0; M), and S is a finite set of symbols, i.e., the alphabet of A.
According to the MDL principle, the shortest (optimal) description of A
reveals all structure of A in the most succinct way possible. This optimal descrip-
tion is only optimal if we can unambiguously reconstruct A from it and nothing
more—the compression is both minimal and lossless. Figure 2 illustrates how an
example matrix could be succinctly described using patterns: matrix A is decom-
posed into patterns X and Y. A set of such patterns constitutes the model for
a matrix A, denoted H (or H for short when A is clear from the context). In
order to reconstruct A from this model, we also need a mapping from the H 4
back to A. This mapping represents what (two-part) MDL calls the data given
the model H 4. In this context we can think of this as a set of all instructions
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required to rebuild A from H 4, which we call the instantiation of H4 and is
denoted by I in the example. These concepts allow us to express matrix A as
a decomposition into sets of local and global spatial information, which we will
next describe in more detail.

e[t ek o)

11---1 Y

Fig. 2. Example decomposition of A into instantiation I and patterns X, Y.

3.1 Patterns and Instances

> We define a pattern as an Mx x Nx submatriz X of the original matriz
A. Elements of this submatriz may be -, the empty element, which gives us the
ability to cut-out any irregular-shaped part of A. We additionally require the
elements of X to be adjacent (horizontal, vertical or diagonal) to at least one
non-empty element and that no rows and columns are empty.

From this definition, the dimensions Mx x Nx give the smallest rectangle
around X (the bounding box). We also define the cardinality |X| of X as the
number of non-empty elements. We call a pattern X with |X| =1 a singleton
pattern, i.e., a pattern containing exactly one element of A.

Each pattern contains a special pivot element: pivot(X) is the first non-
empty element of X. A pivot can be thought of as a fixed point in X which
we can use to position its elements in relation to A. This translation, or offset,
is a tuple ¢ = (i,7) that is on the same domain as an index in A. We realise
this translation by placing all elements of X in an empty M x X size matrix
such that the pivot element is at (¢,7). We formalise this in the instantiation
operator ®:

> We define the instance X ® (i, j) as the M x N matriz containing all elements
of X such that pivot(X) is at index (i,7) and the distances between all elements
are preserved. The resulting matriz contains no additional non-empty elements.

Since this does not yield valid results for arbitrary offsets (i, j), we enforce two
constraints: (1) an instance must be well-defined: placing pivot(X) at index
(4,4) must result in an instance that contains all elements of X, and (2) elements
of instances cannot overlap, i.e., each element of A can be described only once.

> Two pattern instances X ® q and Y ® r, with ¢ # r are non-overlapping if
(X ®q)+ ¥ @r)|=I[X|+[Y]

From here on we will use the same letter in lower case to denote an arbitrary
instance of a pattern, e.g., x+ = X ® ¢ when the exact value of ¢ is unimportant.
Since instances are simply patterns projected onto an M x N matrix, we can
reverse ® by removing all completely empty rows and columns:

> Let X ® q be an instance of X, then by definition we say that @(X ® q) = X.
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We briefly introduced the instantiation I as a set of ‘instructions’ of where
instances of each pattern should be positioned in order to obtain A. As Fig. 2
suggests, this mapping has the shape of an M x N matrix.

> Given a set of patterns H, the instantiation (matriz) I is an M x N matriz
such that I; ; € H U {-} for all (i,7), where - denotes the empty element. For all
non-empty I; ; it holds that I; ; @ (i,7) is a non-overlapping instance of I, ; in A.

3.2 The Problem and Its Solution Space

Larger patterns can be naturally constructed by joining (or merging) smaller
patterns in a bottom-up fashion. To limit the considered patterns to those rele-
vant to A, instances can be used as an intermediate step. As Fig. 3 demonstrates,
we can use a simple element-wise matrix addition to sum two instances and use
@ to obtain a joined pattern. Here we start by instantiating X and Y with offsets
(1,0) and (1,1), respectively. We add the resulting = and y to obtain @z, the
union of X and Y with relative offset (1,1) — (1,0) = (0, 1).

r=X®(1,0) = [11], y=Y®(1,1) = |“1 Tty =

11
1

,Z:®<x+y>:{?i]

Fig. 3. Example of joining patterns X and Y to construct a new pattern Z.

The Sets H4 and Z4. We define the model class H as the set of all possi-
ble models for all possible inputs. Without any prior knowledge, this would be
the search space. To simplify the search, however, we only consider the more
bounded subset H 4 of all possible models for A, and Z 4, the set of all possible
instantiations for these models. To this end we first define HY to be the model
with only singleton patterns, i.e., H3 = S, and denote its corresponding instan-
tiation matrix by 9. Given that each element of I must correspond to exactly
one element of A in HY, we see that each I; ; = a; ; and so we have I = A.
Using HY and I as base cases we can now inductively define Z4:

Base case I € T4
By induction If I is in Z4 then take any pair I; ;, I ; € I such that (4, j) < (k,{)
in lexicographical order. Then the set I’ is also in Z4, providing I’ equals

except: I = 0(Li; @ (i) + Iy © (k, 1))

[
Ik,l =

This shows we can add any two instances together, in any order, as they are by
definition always non-overlapping and thus valid in A, and hereby obtain another
element of Z4. Eventually this results in just one big instance that is equal to
A. Note that when we take two elements I; ;, I, ; € I we force (i,7) < (k,1), not
only to eliminate different routes to the same instance matrix, but also so that
the pivot of the new pattern coincides with I; ;. We can then leave I ; empty.
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The construction of Z4 also implicitly defines H 4. While this may seem
odd—defining models for instantiations instead of the other way around—note
that there is no unambiguous way to find one instantiation for a given model.
Instead we find the following definition by applying the inductive construction:

Ha={{0() |z €I} |IecI4}. (1)

So for any instantiation I € 74 there is a corresponding set in H 4 of all patterns
that occur in I. This results in an interesting symbiosis between model and
instantiation: increasing the complexity of one decreases that of the other. This
construction gives a tightly connected lattice as shown in Fig. 4.

3.3 Encoding Models and Instances

From all models in H4 we want to select the model that describes A best.
Two-part MDL [5] tells us to choose that model that minimises the sum of
Li(Ha) + Lo(A|Ha), where Ly and Lo are two functions that give the length
of the model and the length of ‘the data given the model’, respectively. In this
context, the data given the model is given by I 4, which represents the accidental
information needed to reconstruct the data A from H 4.

] (5] 2] )
/[" hia ] ]
] [VX] k41 b s
o1 ] XY FRE R [26] [7]
Hmm]i[l - Bl
(8] Y] ][
[o1] [¥4] o] [

Fig. 4. Model space lattice for a 2 x 2 Boolean matrix. The V, W, and Z columns show
which pattern is added in each step, while I depicts the current instantiation.

In order to compute their lengths, we need to decide how to encode H 4 and
1. As this encoding is of great influence on the outcome, we should adhere to
the conditions that follow from MDL theory: (1) the model and data must be
encoded losslessly; and (2) the encoding should be as concise as possible, i.e., it
should be optimal. Note that for the purpose of model selection we only need
the length functions; we do not need to actually encode the patterns or data.

Code Length Functions. Although the patterns in A and instantiation matrix
I are all matrices, they have different characteristics and thus require different
encodings. For example, the size of I is constant and can be ignored, while the



164 M. Faas and M. van Leeuwen

Table 1. Code length definitions. Each row specifies the code length given by the first
column as the sum of the remaining terms.

Matrix Bounds | # Elements ‘ Positions | Symbols
L,(X) | Pattern log(MN) | L (*%%) |X | log(]S])
L,(H) | Model N/A Ln(|H]) N/A > oxen Lp(X)
L>(I) |Instantiation | Constant | log(MN) Implicit | Lpp(I)

sizes of the patterns vary and should be encoded. Hence we construct different
length functions® for the different components of H and I, as listed in Table 1.

When encoding I, we observe that it contains each pattern X € H multiple
times, given by the usage of X. Using the prequential plug-in code [5] to
encode I enables us to omit encoding these usages separately, which would cre-
ate unwanted bias. The prequential plug-in code gives us the following length
function for I. We use € = 0.5 and elaborate on its derivation in the Appendix?.

1] () 6
Lpp(I'| Porugin) = — Z [log F(ubagﬁggz) +¢€) +log IW @)
Xieh

Each length function has four terms. First we encode the total size of the
matrix. Since we assume M N to be known/constant, we can use this constant to
define the uniform distribution ﬁ, so that log M N encodes an arbitrary index
of A. Next we encode the number of elements that are non-empty. For patterns
this value is encoded together with the third term, namely the positions of the
non-empty elements. We use the previously encoded Mx Nx in the binominal
function to enumerate the ways we can place the | X| elements onto a grid of
Mx Nx. This gives us both how many non-empties there are as well as where
they are. Finally the fourth term is the length of the actual symbols that encode
the elements of the matrix. In case we encode single elements of A, we assume
that each unique value in A occurs with equal probability; without other prior
knowledge, using the uniform distribution has minimax regret and is therefore
optimal. For the instance matrix, which encodes symbols to patterns, the pre-
quential code is used as demonstrated before. Note that Ly is the universal prior
for the integers [9], which can be used for arbitrary integers and penalises larger
integers.

4 The Vouw Algorithm

Pattern mining often yields vast search spaces and geometric pattern mining is
no exception. We therefore use a heuristic approach, as is common in MDL-based
approaches [7,10,12]. We devise a greedy algorithm that exploits the inductive

1 'We calculate code lengths in bits and therefore all logarithms have base 2.
2 The appendix is available on https://arxiv.org/abs/1911.09587.
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definition of the search space as shown by the lattice in Fig. 4. We start with a
completely underfit model (leftmost in the lattice), where there is one instance for
each matrix element. Next, in each iteration we combine two patterns, resulting
in one or more pairs of instances to be merged (i.e., we move one step right in the
lattice). In each step we merge the pair of patterns that improves compression
most, and we repeat this until no improvement is possible.

4.1 Finding Candidates

The first step is to find the ‘best’ candidate pair of patterns for merging
(Algorithm 1). A candidate is denoted as a tuple (X, Y, d), where X and Y are pat-
terns and J is the relative offset of X and Y as they occur in the data. Since we only
need to consider pairs of patterns and offsets that actually occur in the instance
matrix, we can directly enumerate candidates from the instantiation matrix and
never even need to consider the original data.

Algorithm 1 FindCandidates Algorithm 2 Vouw

Input: [ Input: H, I

Output: C 1: C « FindCandidates(I)

1: for all z € I do 2: (X,Y,0) € C:Veec AL((X,Y,6)) < AL(c)
2 for all y € POST(z) do 3: ALpest = AL((X,Y,0))

3 X — o), Y — oy 4: if ALpest > 0 then

4 § — dist(X,Y) 5. Z— o(X®(0,0)+ (Y ®90))

5: if X =Y then 6: H—HU{Z}

6: if V(z)[e] =1 continue T7: for all z; € I | @(z;) = X do

7 V(y)le] — 1 8: for all y € POST(z;) | @(y) =Y do
8: end if 9: Ti— L,y — -

9: C—C U (X,Y,0) 10: end for

10: sup(X,Y,d) +=1 11: end for

11: end for 12: end if

12: end for 13: repeat until ALpest < 0

The support of a candidate, written sup(X,Y,¢), tells how often it is found
in the instance matrix. Computing support is not completely trivial, as one can-
didate occurs multiple times in ‘mirrored’ configurations, such as (X,Y,d) and
(Y, X, —6), which are equivalent but can still be found separately. Furthermore,
due to the definition of a pattern, many potential candidates cannot be consid-
ered by the simple fact that their elements are not adjacent.

Peripheries. For each instance z we define its periphery: the set of instances
which are positioned such that their union with x produces a valid pattern. This
set is split into anterior ANT(X) and posterior POST(X) peripheries, contain-
ing instances that come before and after = in lexicographical order, respectively.
This enables us to scan the instance matrix once, in lexicographical order. For
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each instance x, we only consider the instances POST(x) as candidates, thereby
eliminating any (mirrored) duplicates.

Self-overlap. Self-overlap happens for candidates of the form (X, X, ¢). In this
case, too many or too few copies may be counted. Take for example a straight
line of five instances of X. There are four unique pairs of two X’s, but only two
can be merged at a time, in three different ways. Therefore, when considering
candidates of the form (X, X, ), we also compute an overlap coefficient. This
coefficient e is given by e = (2Nx +1)d; + 9, + Nx, which essentially transforms
¢ into a one-dimensional coordinate space of all possible ways that X could be
arranged after and adjacent to itself. For each instance z1 a vector of bits V()
is used to remember if we have already encountered a combination x1,zs with
coefficient e, such that we do not count a combination zs, 3 with an equal e.
This eliminates the problem of incorrect counting due to self-overlap.

4.2 Gain Computation

After candidate search we have a set of candidates C and their respective sup-
ports. The next step is to select the candidate that gives the best gain: the
improvement in compression by merging the candidate pair of patterns. For
each candidate ¢ = (X,Y,6) the gain AL(A’,¢) is comprised of two parts: (1)
the negative gain of adding the union pattern Z to the model H, resulting in
H', and (2) the gain of replacing all instances x,y with relative offset 6 by Z in
I, resulting in I'. We use length functions L;, Ly to derive an equation for gain:

AL(A' ¢) = (Li(H) + Lo(1)) = (L1(H) + Lo(D)) o
= Ln(1HD) = In(1H| +1) = Ly(2) + (L2(I') = Lo(D))

As we can see, the terms with L; are simplified to —L,(Z) and the model’s
length because L; is simply a summation of individual pattern lengths. The
equation of Ly requires the recomputation of the entire instance matrix’ length,
which is expensive considering we need to perform it for every candidate, every
iteration. However, we can rework the function L,, in Eq. (2) by observing that
we can isolate the logarithms and generalise them into

I'(a + be)
I'(be)

which can be used to rework the second part of Eq. (3) in such way that the gain
equation can be computed in constant time complexity.

logs(a,b) = log = log I'(a + be) — log I"(be), (4)

Ly(I') — La(I) =log(U(X),1) + logg(U(Y), 1)
—logg(U(X) —U(Z),1) = logg(U(Y) - U(Z),1) (5)
—loge(U(2),1) +logg (1], |H|) — logg (1], | H'|)

Notice that in some cases the usages of X and Y are equal to that of Z, which
means additional gain is created by removing X and Y from the model.
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4.3 Mining a Set of Patterns

In the second part of the algorithm, listed in Algorithm 2, we select the candi-
date (X,Y, ) with the largest gain and merge X and Y to form Z, as explained
in Sect. 3.2. We linearly traverse I to replace all instances z and y with relative
offset § by instances of Z. (X,Y, ) was constructed by looking in the posterior
periphery of all x to find Y and §, which means that Y always comes after X in
lexicographical order. The pivot of a pattern is the first element in lexicograph-
ical order, therefore pivot(Z) = pivot(X). This means that we can replace all
matching = with an instance of Z and all matching y with -.

4.4 Improvements

Local Search. To improve the efficiency of finding large patterns without sac-
rificing the underlying idea of the original heuristics, we add an optional local
search. Observe that without local search, Vouw generates a large pattern X

(a) Generated matrix (b) Ground truth (c) Found patterns (d) Difference

Fig.5. Synthetic patterns are added to a matrix filled with noise. The difference
between the ground truth and the matrix reconstructed by the algorithm is used to
compute precision and recall.
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Fig. 6. The influence of SNR in the ground truth (left) and prevalence on recall (right)



168 M. Faas and M. van Leeuwen

by adding small elements to an incrementally growing pattern, resulting in a
behaviour that requires up to |X| — 1 steps. To speed this up, we can try to
‘predict’ which elements will be added to X and add them immediately. After
selecting candidate (X,Y,0) and merging X and Y into Z, for all m resulting
instances z; € zg, ..., 2m—1 we try to find pattern W and offset § such that

Vico..m3w € ANT(z;) UPOST(z;) - @(w) = W Adist(z;,w) =4.  (6)

This yields zero or more candidates (Z,W,d), which are then treated as any
set of candidates: candidates with the highest gain are iteratively merged until
no candidates with positive gain exist. This essentially means that we run the
baseline algorithm only on the peripheries of all z;, with the condition that the
support of the candidates is equal to that of Z.

Reusing Candidates. We can improve performance by reusing the candidate
set and slightly changing the search heuristic of the algorithm. The Best-*
heuristic selects multiple candidates on each iteration, as opposed to the baseline
Best-1 heuristic that only selects a single candidate with the highest gain. Best-*
selects candidates in descending order of gain until no candidates with positive
gain are left. Furthermore we only consider candidates that are all disjoint,
because when we merge candidate (X, Y, d), remaining candidates with X and/or
Y have unknown support and therefore unknown gain.

5 Experiments

To asses Vouw’s practical performance we primarily use Ril, a synthetic dataset
generator developed for this purpose. Ril utilises random walks to populate a
matrix with patterns of a given size and prevalence, up to a specified density,
while filling the remainder of the matrix with noise. Both the pattern elements
and the noise are picked from the same uniform random distribution on the
interval [0,255]. The signal-to-noise ratio (SNR) of the data is defined as the
number of pattern elements over the matrix size M N. The objective of the
experiment is to assess whether Vouw recovers all of the signal (the patterns)
and none of the noise. Figure 5 gives an example of the generated data and how
it is evaluated. A more extensive description can be found in the Appendix (see
footnote 2).

Implementation. The implementation® used consists of the Vouw algorithm
(written in vanilla C/C+4+), a GUI, and the synthetic benchmark Ril. Experi-
ments were performed on an Intel Xeon-E2630v3 with 512 GB RAM.

Evaluation. Completely random data (noise) is unlikely to be compressed. The
SNR tells us how much of the data is noise and thus conveniently gives us an
upper bound of how much compression could be achieved. We use the ground
truth SNR versus the resulting compression ratio as a benchmark to tell us how
close we are to finding all the structure in the ground truth.

3 https://github.com/mickymuis/libvouw.
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In addition, we also compare the ground truth matrix to the obtained model
and instantiation. As singleton patterns do not yield any compression over the
baseline model, we reconstruct the matrix omitting any singleton patterns. Ignor-
ing the actual values, this gives us a Boolean matrix with ‘positives’ (pattern
occurrence = signal) and ‘negatives’ (no pattern = noise). By comparing each ele-
ment in this matrix with the corresponding element in the ground truth matrix,
precision and recall can be calculated and evaluated.

Figure 6 (left) shows the influence of ground truth SNR on compression ratio
for different matrix sizes. Compression ratio and SNR are clearly strongly cor-
related. Figure 6 (right) shows that patterns with a low prevalence (i.e., number
of planted occurrences) have a lower probability of being ‘detected’ by the algo-
rithm as they are more likely to be accidental /noise. Increasing the matrix size
also increases this threshold. In Table2 we look at the influence of the two
improvements upon the baseline algorithm as described in Sect.4.4. In terms
of quality, local search can improve the results quite substantially while Best-*
notably lowers precision. Both improve speed by an order of magnitude.

Table 2. Performance measurements for the baseline algorithm and its optimisations.

Size SNR Precision/Recall Average time
None Local Best-* Both None Local Best-*  Both
256 .05 .98/.98 .99/.99 .93/.98 .95/.99 29s 1s 2s 1s
3 99/.8 .99/.88 .96/.82 .99/.89  2m 32s 9s 5s 55
512 .05 .98/.97 .99/.99 .87/.97 .93/.98  5m 26s 8s 20 6s
3 97/.93 .99/.99 .94/.91 .97/.90 26m 52s 2m 32s  24s  65s
1024 .05  .97/.98 .99/.99 .84/.98 92/.96 21m 34s  44s  37s  3ds
3 .98/.98 .99/.99 .93/.96 .98/.97 116m 4s 7m 31s 1m 49s 3m 31s

6 Conclusions

We introduced geometric pattern mining, the problem of finding recurring struc-
tures in discrete, geometric matrices, or raster-based data. Further, we presented
Vouw, a heuristic algorithm for finding sets of geometric patterns that are good
descriptions according to the MDL principle. It is capable of accurately recover-
ing patterns from synthetic data, and the resulting compression ratios are on par
with the expectations based on the density of the data. For the future, we think
that extensions to fault-tolerant patterns and clustering have large potential.
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Abstract. Nonnegative Matrix Factorization (NMF) which was origi-
nally designed for dimensionality reduction has received throughout the
years a tremendous amount of attention for clustering purposes in several
fields such as image processing or text mining. However, despite its math-
ematical elegance and simplicity, NMF has exposed a main issue which
is its strong sensitivity to starting points, resulting in NMF struggling
to converge toward an optimal solution. On another hand, we came to
explore and discovered that even after providing a meaningful initializa-
tion, selecting the solution with the best local minimum was not always
leading to the one having the best clustering quality, but somehow a bet-
ter clustering could be obtained with a solution slightly off in terms of
criterion. Therefore in this paper, we undertake to study the clustering
characteristics and quality of a set of NMF best solutions and provide a
method delivering a better partition using a consensus made of the best
NMF solutions.

Keywords: NMF - Clustering - Clustering ensemble + Consensus

1 Introduction

When dealing with text data, document clustering techniques allow to divide
a set of documents into groups so that documents assigned to the same group
are more similar to each other than to documents assigned to other groups
[12,18,21,22]. In information retrieval, the use of clustering relies on the assump-
tion that if a document is relevant to a query, then other documents in the same
cluster can also be relevant. This hypothesis can be used at different stages
in the information retrieval process, the two most notable being: cluster-based
retrieval to speed up search, and search result clustering to help users navigate
and understand what is in the search results. The document clustering which
still remains a hot topic can be tackled under different approaches. In our con-
tribution we rely on the non-negative matrix factorization for its simplicity and
popularity. We will not propose a new variant of NMF but rather a consensus
approach that will boost its performance.

Unlike supervised learning, the evaluation of clustering algorithms - unsuper-
vised learning - remains a difficult problem. When relying on generative models,
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it is easier to evaluate the performance of a given clustering algorithm based
on the simulated partition. On real data already labeled, many papers evaluate
the performance of clustering algorithms by relying on indices such as Accuracy
(ACC), Normalized Mutual Information (NMI) [25] and Adjusted Rand Index
(ARI) [14]. However, the algorithms commonly used which are of type k-means,
EM [8], Classification EM [6], NMF [15] etc. are iterative and require several ini-
tializations; the resulting partition is the one optimizing the objective function.
Sometimes in these works, we observe comparative studies between methods on
the basis of maximum ACC/NMI/ARI measures obtained after several initializa-
tions and not optimizing the criterion used in the algorithm. Such a comparison
is thereby not accurate, because in fact these measures cannot be calculated in
practice and cannot be used in this way to evaluate the quality of a clustering
algorithm.

A fair comparison can only be made on the basis of objective functions con-
sidered in a clustering purpose; for example, within-cluster inertia, likelihood,
classification likelihood for mixture models, factorization, etc. Nonetheless, in
our experiences, we realized that while the clustering results become better in
terms of ACC/NMI/ARI when the objective function value increases, the best
value is not necessarily associated with the best results. However, by ranking
the objective values, the best partition tends to be among those leading to the
first best scores. We illustrate this behavior in Fig.4. This remark leads us to
consider an ensemble method that is widely used in supervised learning [11,24]
but a little less in unsupervised learning [25]. If this approach, referred to as con-
sensus clustering, is often used in the context of comparing partitions obtained
with different algorithms, it is less studied considering the same algorithm.

The paper is organized as follows. In Sect.2, we review the nonnegative
matrix factorization with the Frobenius norm and the Kullback—Leibler diver-
gence. Section 3 is devoted to describe the ensemble method and the popular
used algorithms. In Sect. 4, we perform comparisons on document-term matrices
and propose a strategy to improve document clustering with NMF'.

2 Nonnegative Matrix Factorization

Nonnegative Matrix Factorization (NMF) [15], aiming to deliver a lower rank
decomposition of a nonnegative data matrix X has highlighted clustering prop-
erties for which strong connections with K-means or Spectral clustering can be
drawn [16]. However, while several variants arise in order to accommodate its
clustering property [10,29-31], its premier model formulation does not involve a
clustering objective and was originally presented as a dimension reduction algo-
rithm with exclusive nonnegative factors. More specifically in text mining where
NMF produces a meaningful interpretation for document-term matrices in com-
parison with methods like Singular Value Decomposition (SVD) components or
Latent Semantic Analysis (LSA) [7] arising factors with possible negative values.
NMF seeks to approximate a matrix X € RiXd by the product of two lower rank
matrices Z € R} and W € Rixg with g(n + d) < ng. This problem can be
formulated as a constrained optimization problem
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. T
F(Z,W)= ZZTSL,%LZOD(X’ ZW ') (1)
where D is a fitting error allowing to measure the quality of the approximation
of X by ZW' T, the most popular ones being the Frobenius norm and Kullback-
Leibler (KL) divergence. For a clustering setup, Z will be referred to as the
soft classification matrix while W will be the centers matrix. Despite its mul-
tiple applications benefits, NMF has a recurrent downside which takes place at
its initialization. NMF provides a different solution for every different initial-
isation making it substantially sensitive to starting points as its convergence
directly relies on the characteristics of the given entries. Several publications
have shown interest in finding the best way to start a NMF algorithm by provid-
ing a structured initialization, in some cases obtained from results of clustering
algorithms such as k-means or Spherical K-means [27,28] (especially for applying
NMF on document-term matrices), Nonnegative Singular Value decomposition
(NNDSVD) [4] or SVD based strategies [17]. The optimization procedures for
D respectively equal to the Frobenius norm and the KL divergence, based on
multiplicative update rules are given in Algorithms 1 and 2.

Algorithm 1. (NMF-F). Algorithm 2. (NMF-KL).
Input: X, g, zO., wO, Input: X, g, zZO. wO,
Output: Z and W. Output: Z and W.
repeat repeat
1.292@%; 1.Z<—Z®(Zv’f,—TTW)/Zjok;
xTz . X .
until convergence until convergence
5. Normalize Z so as it has unit-length 5. Normalize Z so as it has unit-length
column vectors. column vectors.

3 Cluster Ensembles (CE)

In machine learning, the idea of utilizing multiple sources of data partitions
firstly occurred with multi-learner systems where the output of several classifier
algorithms where used together in order to improve the accuracy and robustness
of a classification or regression, for which strong performances were acknowl-
edged [24,25]. At this stage, very few approaches have worked toward applying
a similar concept to unsupervised learning algorithms. In this sense, we denote
the work of [5] who tried to combine several clustering partitions according to
the combination of the cluster centers. In the early 2000, [25] were the first to
consider an idea of combining several data partitions however, without accessing
any original sources of information (features) or led computed centers. This app-
roach is referred to as cluster ensembles. At the time, their idea was motivated
by the possibilities of taking advantage of existing information such as a prior
clustering partitions or an expert categorization (all regrouped under the terms
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Knowledge Reuse), which may still be relevant or substantial for a user to con-
sider in a new analysis on the same objects, whether or not the data associated
with these objects may also be different than the ones used to define the prior
partitions. Another motivation was Distributed computing, referring to analyz-
ing different sources of data (which might be complicated to merge together for
instance for privacy reasons) stored in different locations. In our concept, we will
use cluster ensembles to improve the quality of the final partition (as opposed to
selecting a unique one) and therefore extract all the possibilities offered by the
miscellaneous best solutions created by NMF.

In [25], the authors introduced three consensus methods that can produce a
partition. All of them consider the consensus problem on a hypergraph represen-
tation H of the set of partitions H". More specifically, each partition H" equals
a binary classification matrix (with objects in rows and clusters in columns)
where the concatenation of all the set defines the hypergraph H.

— The first one is called Cluster-based Similarity Partitioning Algorithm
(CSPA) and consists in performing a clustering on the hypergraph according
to a similarity measure.

— The second is referred to as HyperGraph Partitioning Algorithm (HGPA)
and aims at optimizing a minimum cut objective.

— The third one is called Meta-CLustering Algorithm (MCLA) and looks for-
ward to identifying and constructing groups of clusters.

Furthermore, in [25] the authors proposed an objective function to charac-
terize the cluster ensembles problem and therefore allowing a selection of the
best consensus algorithm among the three to deliver its ensemble partition. Let
A={\@D|ge {1,...,r}} be a given set of r partitions A\(9) represented as labels
vectors. The ensemble criterion denoted as A(*~°P%) is called the optimal combine
clustering and aims at maximizing the Average Normalized Mutual Information
(ANMI). It is defined as follows:

A(k—opt) — argmaz Z NMI(X, A(@) (2)
A q=1

The ANMI is simply the average of the normalized mutual information of a
labels vector A with all labels vectors A(@ in A:

ANMI(A, X) = % Z NMI(X, (D) (3)

q=1

To cast with cases where the vector labels A9 have missing values, the authors
have proposed a generalized expression of (2) not substantially different that
viewers can refer to in the original paper [25].
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4 Experiments

We conduct several experiences leading to emphasise the behavior of NMF
regarding a clustering task compared to a dedicated clustering algorithm such
as Spherical K-means referred to as S-Kmeans [9] which was introduced for clus-
tering large sets of sparse text data (or directional data) and remains appealing
for its low computational cost beside its good performances. It was also retained
along side the random starting points (generated according to an uniform distri-
bution U(0, 1) x mean(X)) as initialization for NMF. We use two error measures
frequently employed for NMF: the Frobenius norm (which will be referred to as
NMF-F) and the Kullback-Leibler divergence (NMF-KL). Eventually, we compute
the consensus partition by using the Cluster Ensemble Python package! which
utilizes the consensus methods defined earlier [25].

4.1 Datasets

We apply NMF on 5 bench-marking document-term matrices for which the
detailed characteristics are available in Table 1 where nz indicates the percentage
of values other than 0 and the balance coefficient is defined as the ratio of the
number of documents in the smallest class to the number of documents in the
largest class. These datasets highlight several varieties of challenging situations
such as the amount of clusters, the dimensions, the clusters balance, the degree
of mixture of the different groups and the sparsity. We normalized each data
matrix with TF-IDF and their respective documents-vectors to unit Ls-norm to
remove the bias introduced by their length.

Table 1. Datasets description: # denotes the cardinality

Datasets Characteristics

#Documents | #Words | #Clusters | nz(%) | Balance
CSTR 475 1000 4 3.40 ]0.399
CLASSIC4| 7095 5896 4 0.59 0.323
RCV1 6387 16921 4 0.25 |0.080
NG5 4905 10167 5 0.92 ]0.943
NG20 18846 14390 20 0.59 0.628

4.2 NMF Raw Performances and Initialization

The results obtained by NMF-F and NMF-KL according to S-Kmeans and the
random starting points are available in Table2. The clustering quality of the

! https://pypi.org/project/Cluster_Ensembles/.
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S-Kmeans partitions given as entry to both algorithms are also displayed. We
make use of two relevant measures to quantify and assess the clustering qual-
ity of each algorithm. The first one is the NMI [25] which quantifies how much
information the clustering partition shares with the true partition, the second
is the ARI [14], sensitive to the clusters proportions and measures the degree of
agreement between the clustering and the true partition. To replicate a relevant
user experience achieving an unsupervised task, we refer to the criterion of each
algorithm in order to select the 10 first best solutions (out of 30 runs) and report
their average NMI and ARI with the true partition.

One can clearly see that NMF-F and NMF-KL do not react similarly to the
different initializations. While NMF-F substantially benefits from the S-kmeans
initialization on every datasets compared to the random initialization, NMF-KL
does not seem to accommodate S-kmeans entries. In fact, S-Kmeans as starting
values seems to worsen NMF-KL solutions, especially on CLASSIC4 and NG5.
For this reason, we will avoid this initialization strategy for NMF-KL in the future
although it improves on RCV1. Also, NMF-KL with a random initialization pro-
vides much better results than the other algorithms on almost all datasets.

Table 2. Mean and standard deviation of NMI and ARI computed over the 10 best
solutions.

Datasets Metrics | Skmeans NMF-F (Random) |NMF-F (Skmeans) | NMF-KL (Random) | NMF-KL (Skmeans)
CSTR NMI 0.76 £0.007 |0.65 =+ 0.002 0.73 +0.04 0.73 +0.03 0.76 £ 0.006
ARI 0.80 4+ 0.007 | 0.55 £ 0.002 0.75+0.10 0.774+0.04 0.80 £ 0.006
CLASSIC4 | NMI 0.60 £ 0.001 |0.53 £ 0.003 0.59 + 0.002 0.71 4+ 0.02 0.61 4+ 0.03
ARI 0.47 £ 0.0009 | 0.45 £ 0.003 0.47 +0.002 0.65 + 0.06 0.47 £ 0.004
RCV1 NMI 0.38 +0.0003 | 0.35 £ 0.0005 | 0.38 £ 0.0002 0.47 +0.02 0.53 +0.002
ARI 0.18 +0.0004 | 0.13 £ 0.0008 |0.18 £0.0003 |0.42+0.02 0.46 +0.02
NG5 NMI 0.724£0.02 0.56 +1.0e—05|0.72 + 0.02 0.80 4+ 0.03 0.79 £ 0.003
ARI 0.60 +0.01 0.33+2.5e—05|0.60 +0.01 0.82 4 0.04 0.76 4+ 0.005
NG20 NMI 0.49 £ 0.02 0.41 +£0.01 0.49 + 0.02 0.48 +0.02 0.514+0.01
ARI 0.30 £0.02 0.23 +£0.01 0.30+0.02 0.34 4+ 0.02 0.3240.02

We reported in Figs. 1, 2, 3 and 4 the clustering quality of the algorithm’s
solutions ranked from the best one in terms of criterion to the poorest one. The
respective criterion of each algorithm is normalized to belong to [0, 1].

When one does have the real partition, a common practice to evaluate the

clustering result, one relies on the best solution obtained by optimizing the
objective function. Figures 1 and 3 highlight a critical behavior of NMF-F which
tends to produce solutions with the lowest minima that do not fulfil the best
clustering partitions, sometimes with a substantial gap (see CSTR, RCV1, NG5
in Fig. 1). Moreover, a surprising lesser but still similar behavior is delivered by
S-Kmeans which compared to NMF, optimizes a clustering objective by definition.
The results are displayed in Fig. 2. In reality, this behavior can be observed with
several types of what we refer to clustering algorithms hosting an optimization
procedure. Initializing NMF-F randomly as shown in Fig. 3 seems to lighten this
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Fig. 1. NMF-F: NMI/ARI behaviour according to the objective function F (initializa-
tions by S-Kmeans)

effect (on CSTR, Classic4 and RCV1). On another hand, NMF-KL which to this
day remains recognized as a relevant method for document clustering [13] seems
to consistently deliver solutions with the lowest criteria aligned with the goodness
of their clustering, sustaining the use of NMF for clustering purposes. Further-
more, compared to all, NMF-KL is the only method emphasizing a wide variety
of solutions and therefore seems to explore way more possibilities than NMF-F
or S-Kmeans. Its better behavior might almost comfort the idea of selecting the
best partition in terms of criterion as the one to keep. However, it still fails on
RCV1 which is the toughest dataset to partition mainly because of its scant
density. Eventually, it remains concerning to select the best partition just based
on the fact that, even with NMF-KL, the solution among the best ones providing
the best clustering, is not necessarily the first one (see on CSTR, CLASSIC4
and NG5).

In addition, while the best solutions possibly share a similar amount of infor-
mation with the true partition, they could be fairly distinct from each other,
making their use appealing to deduce an even more exhaustive solution. Figure 5
shows results of pairwise NMI and ARI between the top 10 partitions (criterion-
wise) of each algorithm. NMF-KL’s best solutions appear to be fairly different
among each other.
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initializations)

o |8 NMI—=- ARl —+=- F ‘ .| e/=8 NMI—=— ARI+=- F oo | o] NMI-=— ARl -=- F
2 sl 2 2 o8
@ © @
2 3 4 3 |
o |
© © J @ |
g | 2
000G 000 Ty |
- | < i LN }‘f “oooo | o |
S | . oo ©0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-8-0-0
| ¥ b-ooo o
o o o o
| 00000 agEDt
| / o
g { oonoo -ooaasseeattt g ooooooooooooooonoaans 2 oo
0 5 10 20 25 30 0 5 10 20 25 30 0 5 10 20 25 30

15 15 15
#runs #runs #runs

CSTR CLASSIC4 RCV1

o —8- NMI—&- ARl & F o o |8 NMI-&- ARl = F
@ ) @ p
° p-o-0o-0-0- < od
0-00-00-0-004 ol
© | b-o-0-0-00.,00 © -0-0-0-0f
° soooosoonoedogoooaay s o
\ - T
3 o-0-000-0, 3 | 0900000800000 0.0, O 0000000000
ooo-oooooo
o | oo Y00 o000 Oy B0 oy 800
| /

S - oooo 0-0-0-0-0 Sq{o”
3 3

4 5 10 20 2 30 0 5 10 20 2 30

15
#runs

NG5 NG20

Fig. 3. NMF-F: NMI/ARI behaviour according to the objective function F (Random
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4.3 Consensus Clustering

Following the previous statement, we went ahead and computed a cluster ensem-
ble (CE) for NMF-F and NMF-KL according to their best initialization strategy as
well as for S-Kmeans due to its pertinence for initializing NMF-F and the method
being widely known as relevant for document clustering. The results are reported
in Table 3. It appears that the consensus obtained with the top 10 results of each
method generally outperforms the best solution. This result is even stronger for
NMF-KL where the ensemble clustering increases the NMI and ARI by respec-
tively 11 and 13 points on NG20. Note that NG20 is the dataset where the
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average pairwise NMI and ARI between the 10 top partitions are the lowest,
meaning the most different (see Fig.5). Furthermore, it is interesting to note
that these performances are obtained from solutions giving an average NMI and
ARI smaller than the best solution itself.

Table 3. Mean and standard deviation, first best result and CE consensus computed
over the 10 best solutions.

Datasets Metrics | NMF-F (Skmeans) Skmeans NMF-KL (Random)
Mean £SD | (best) |CE Mean £ SD | (best) |CE Mean £ SD | (best) | CE
CSTR NMI  [0.73+£0.04 |(0.65)|(0.76)|0.76 £ 0.007 |(0.77) | (0.77)|0.73 £ 0.03 | (0.76) | (0.80)

ARI 0.7540.10 | (0.56) | (0.80) |0.80 4 0.007 | (0.80) |(0.80) |0.77 4 0.04 | (0.81) | (0.83)
CLASSIC4 | NMI  |0.59+0.002 |(0.59) | (0.59)|0.60 4 0.001 | (0.59) |(0.60)|0.7140.02 | (0.72) | (0.74)
ARI 0.47 4 0.002 | (0.47) | (0.47) |0.47 4 0.0009 | (0.47) | (0.47) |0.65 4 0.06 | (0.65) | (0.72)

RCV1 NMI  |0.38 +0.0002 | (0.38) | (0.35) | 0.38 + 0.0003 | (0.38) | (0.35) | 0.47 + 0.02 | (0.47) | (0.52)
ARI 0.18 +0.0003 | (0.18) | (0.26) | 0.18 4 0.0004 | (0.18) | (0.26) | 0.42 4 0.02 | (0.43) | (0.46)
NG5 NMI  |0.7240.02 |(0.74) | (0.76) |0.72+£0.02 | (0.73) | (0.75) |0.80 £ 0.03 | (0.83) | (0.86)
ARI 0.60+0.01 | (0.61)|(0.60) 0.60+0.01 |(0.60)|(0.64)|0.82+0.04 |(0.85) | (0.88)
NG20 NMI  |0.4940.02 |(0.51)|(0.50)|0.49+£0.02 |(0.51) (0.50)|0.48 £0.02 |(0.50) | (0.61)

ARI 0.30£0.02 | (0.32)|(0.34) |0.304£0.02 | (0.32)|(0.34) |0.3440.02 | (0.36) | (0.49)

4.4 Consensus Multinomial

Following the cluster-based consensus approach which implies a similarity-
based clustering algorithm, we decided to make use of a model-based cluster-
ing to go and try to obtain a better final partition than the one delivered by
cluster ensembles. In [26], the authors have used the Multinomial mixture app-
roach to propose a consensus function. In model-based clustering, it is assumed
that the data are generated by a mixture of underlying probability distributions,
where each component %k of the mixture represents a cluster.

Let A € N{*" be the data matrix of labels vectors from the top r solutions.
Our data being categorical, we used a Multinomial Mixture Model (MMM) in
order to partition the elements \;. Categorical data being a generalization of
binary data; assuming a perfect scenario where there is no partition with an
empty cluster, a disjunctive matrix M € {0,1}"*"9 is usually used instead of A
with value mEZ) where h € {1,..., g} is a cluster label. Therefore, the data values

mgh) are assumed to be generated from a Multinomial distribution of parameter

M(mgg);ag;)) where a,(!;) is the probability that an element m; in the group
k takes the category h for the partition/variable A,. The density probability
function of the model can be stated as:
n g 7.9 ()
F(M;0) = T[> e [Jar) ™ (4)

i=1k=1  qh

where 6 = (7, &) are the parameters of the model with = = (m1,...,7) being
the proportions and « the vector of the components parameters.
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Table 4. MMM consensus results over the 10 best solutions

Datasets Metrics | NMF-KL (Random)
Mean=+SD | (best) | CE MMM
CSTR NMI 0.73+0.03 | (0.76) | (0.80) | (0.77)
ARI 0.77+0.04 | (0.81) | (0.83) | (0.82)
CLASSIC4 | NMI 0.714+0.02 | (0.72) | (0.74) | (0.77)
ARI 0.65+0.06 | (0.65) | (0.72) | (0.75)
RCV1 NMI 0.47+0.02|(0.47) | (0.52) | (0.52)
ARI 0.424+0.02|(0.43) | (0.46) | (0.46)
NG5 NMI 0.80+0.03 | (0.83) | (0.86) | (0.86)
ARI 0.824+0.04 | (0.85) | (0.88) | (0.89)
NG20 NMI 0.48 +0.02 | (0.50) | (0.61) | (0.63)
ARI 0.34+0.02 | (0.36) | (0.49) | (0.50)

The Rmixmod package? is used to achieve our analysis. We employ the
default settings to compute the clustering, allowing the selection between 10 par-
simonious models according to the Bayesian information Criterion (BIC) [23].
With CSTR, the model mainly selected is the one keeping the proportions 7
free with the model also independent from the variables (labels vectors), mean-
ing M(m. Zq , ag). CSTR is the dataset with the highest pairwise NMI and ARI
therefore with the most similar best solutions. On CLASSIC4 and RCV1 where
the pairwise NMI & ARI are a little bit lower, it is the model with free propor-
tions and parameters o depending on distinct components and labels vectors
(M(mggb), oz,(gq))) which is mainly chosen. On NG5 where the best solutions are
fairly similar (high pairwise NMI & ARI), it is the model depending on the
components and the labels vectors which has been retained. However, the pro-
portions here were kept equal. For NG20 where the best solutions were fairly
distinct, the model selected is the one depending on the components and the
variables. As previously, the proportions 7 are kept equal. Following the char-
acteristics in Table 1, it is notable to see that the datasets where the proportions
are kept equal are actually those with the more balanced real clusters propor-
tions. The results of the obtained consensus are displayed in Table 4 which only
retains prior results of NMF-KL top 10 solutions and CE consensus, as they were
the best overall. Apart from CSTR, we can see that MMM does a better job at
computing a better partition from the top 10 solutions than CE.

5 Conclusion

In this paper, by using cluster ensembles, we have proposed a simple method to
obtain a better clustering for the scope of NMF algorithms on text data. From its

2 https:/ /cran.r-project.org/web /packages /Rmixmod /Rmixmod.pdf.
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gathering nature, this process should also alleviate the uncertainty based around
the overall quality of the final partition compared to other selection practices
such as keeping an unique solution according to the best criterion. Furthermore,
we have shown that it was possible to improve the consensus quality through the
use of finite mixture models, allowing more powerful underlying settings than
cluster-based consensus involving plain similarities or distances. A future work
will be to investigate the use of cluster ensembles for other recent clustering
algorithms [1-3,19,20].
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Abstract. Methods that learn the structure of Probabilistic Senten-
tial Decision Diagrams (PSDD) from data have achieved state-of-the-art
performance in tractable learning tasks. These methods learn PSDDs
incrementally by optimizing the likelihood of the induced probability
distribution given available data and are thus robust against missing val-
ues, a relevant trait to address the challenges of embedded applications,
such as failing sensors and resource constraints. However PSDDs are out-
performed by discriminatively trained models in classification tasks. In
this work, we introduce D-LEARNPSDD, a learner that improves the
classification performance of the LEARNPSDD algorithm by introducing
a discriminative bias that encodes the conditional relation between the
class and feature variables.

Keywords: Probabilistic models + Tractable inference - PSDD

1 Introduction

Probabilistic machine learning models have shown to be a well suited approach
to address the challenges inherent to embedded applications, such as the need
to handle uncertainty and missing data [11]. Moreover, current efforts in the
field of Tractable Probabilistic Modeling have been making great strides towards
successfully balancing the trade-offs between model performance and inference
efficiency: probabilistic circuits, such as Probabilistic Sentential Decision Dia-
grams (PSDDs), Sum-Product Networks (SPNs), Arithmetic Circuits (ACs)
and Cutset Networks, posses myriad desirable properties [4] that make them
amenable to application scenarios where strict resource budget constraints must
be met [12]. But these models’ robustness against missing data—{rom learn-
ing them generatively—is often at odds with their discriminative capabilities.
© The Author(s) 2020
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We address such a conflict by proposing a discriminative-generative probabilis-
tic circuit learning strategy, which aims to improve the models’ discriminative
capabilities, while maintaining their robustness against missing features.

We focus in particular on the PSDD [17], a state-of-the-art tractable rep-
resentation that encodes a joint probability distribution over a set of random
variables. Previous work [12] has shown how to learn hardware-efficient PSDDs
that remain robust to missing data and noise. This approach relies largely on the
LEARNPSDD algorithm [20], a generative algorithm that incrementally learns
the structure of a PSDD from data. Moreover, it has been shown how to exploit
such robustness to trade off resource usage with accuracy. And while the achieved
accuracy is competitive when compared to Bayesian Network classifiers, dis-
criminatively learned models perform consistently better than purely generative
models [21] since the latter remain agnostic to the discriminative task they ought
to perform. This begs the question of whether the discriminative performance of
the PSDD could be improved while remaining robust and tractable.

In this work, we propose a hybrid discriminative-generative PSDD learning
strategy, D-LEARNPSDD, that enforces the discriminative relationship between
class and feature variables by capitalizing on the model’s ability to encode
domain knowledge as a logic formula. We show that this approach consistently
outperforms the purely generative PSDD and is competitive compared to other
classifiers, while remaining robust to missing values at test time.

2 Background

Notation. Variables are denoted by upper case letters X and their instantiations
by lower case letters x. Sets of variables are denoted in bold upper case X and
their joint instantiations in bold lower case x. For the classification task, the
feature set is denoted by F while the class variable is denoted by C.

/\
1 ‘l‘
I\
/ \
Pr(Rain) = 0.2, [ \
. Ram / Rain Rain \\
Pr(Sun | Rain) — 0.1if Rain AN ‘\2
. ~ 10.7if ~Rain “: /N
3 r(Rbow | R, S) = 1if Rain A Sun ( /A
ow . / \
0 otherwise l—,—rL \Td \
Sun  Rbow —Sun 7:Sun —Rbow Sun Rbow
(a) Bayes net (b) Conditional probabilities (c) Equivalent PSDD circuit (d) PSDD’s vtree

Fig. 1. A Bayesian network and its equivalent PSDD (taken from [20]).
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PSDD. Probabilistic Sentential Decision Diagrams (PSDDs) are circuit repre-
sentations of joint probability distributions over binary random variables [17].
They were introduced as probabilistic extensions to Sentential Decision Dia-
grams (SDDs) [7], which represent Boolean functions as logical circuits. The
inner nodes of a PSDD alternate between AND gates with two inputs and OR
gates with arbitrary number of inputs; the root must be an OR node; and each
leaf node encodes a distribution over a variable X (see Fig. 1c). The combination
of an OR gate with its AND gate inputs is referred to as decision node, where
the left input of the AND gate is called prime (p), and the right is called sub
(s). Each of the n edges of a decision node are annotated with a normalized
probability distribution 64, ...,0,.

PSDDs possess two important syntactic restrictions: (1) Each AND node
must be decomposable, meaning that its input variables must be disjoint. This
property is enforced by a viree, a binary tree whose leaves are the random vari-
ables and which determines how will variables be arranged in primes and subs
in the PSDD (see Fig. 1d): each internal vtree node is associated with the PSDD
nodes at the same level, variables appearing in the left subtree X are the primes
and the ones appearing in the right subtree Y are the subs. (2) Each decision
node must be deterministic, thus only one of its inputs can be true.

Each PSDD node ¢ represents a probability distribution. Terminal nodes
encode a univariate distributions. Decision nodes, when normalized for a vtree
node with X in its left subtree and Y in its right subtree, encode the following
distribution over XY (see also Fig. la and c¢):

Pry(XY) =Y 0;Pry, (X)Pr,(Y) (1)

Thus, each decision node decomposes the distribution into independent distri-
butions over X and Y. In general, prime and sub variables are independent at
PSDD node ¢ given the prime base [g] [17]. This base is the support of the node’s
distribution, over which it defines a non-zero probability and it is written as a
logical sentence using the recursion [q] = \/;[p;] A [s;]. Kisa et al. [17] show that
prime and sub variables are independent in PSDD node ¢ given a prime base:

Pro(XY|[pil) = Prp,(X|[p:]) Prs, (Yl[pi]) (2)
= Pry, (X)Prs,(Y)

This equation encodes context specific independence [2], where variables (or sets
of variables) are independent given a logical sentence. The structural constraints
of the PSDD are meant to exploit such independencies, leading to a represen-
tation that can answer a number of complex queries in polynomial time [1],
which is not guaranteed when performing inference on Bayesian Networks, as
they don’t encode and therefore can’t exploit such local structures.

LearnPSDD. The LEARNPSDD algorithm [20] generatively learns a PSDD by
maximizing log-likelihood given available data. The algorithm starts by learn-
ing a wvtree that minimizes the mutual information among all possible sets of
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variables. This vtree is then used to guide the PSDD structure learning stage,
which relies on the iterative application of the Split and Clone operations [20].
These operations keep the PSDD syntactically sound while improving likelihood
of the distribution represented by the PSDD. A problem with LEARNPSDD
when using the resulting model for classification is that when the class variable
is only weakly dependent on the features, the learner may choose to ignore that
dependency, potentially rendering the model unfit for classification tasks.

3 A Discriminative Bias for PSDD Learning

Generative learners such as LEARNPSDD optimize the likelihood of the distribu-
tion given available data rather than the conditional likelihood of the class vari-
able C given a full set of feature variables F. As a result, their accuracy is often
worse than that of simple models such as Naive Bayes (NB), and its close relative
Tree Augmented Naive Bayes (TANB) [12], which perform surprisingly well on
classification tasks even though they encode a simple—or naive—structure [10].
One of the main reasons for their performance, despite being generative, is that
(TA)NB models have a discriminative bias that directly encodes the conditional
dependence of all the features on the class variable.

We introduce D-LEARNPSDD, an extension to LEARNPSDD based on the
insight that the learned model should satisfy the “class conditional constraint”
present in Bayesian Network classifiers. That is, all feature variables must be
conditioned on the class variable. This enforces a structure that is beneficial for
classification while still allowing to generatively learn a PSDD that encodes the
distribution over all variables using a state-of-the-art learning strategy [20].

3.1 Discriminative Bias
The classification task can be stated as a probabilistic query:
Pr(C|F) ~ Pr(F|C) - Pr(C). (3)

Our goal is to learn a PSDD whose root decision node directly represents the
conditional probability distribution Pr(F|C). This can be achieved by forcing
the primes of the first line in Eq.2 to be [pg] = [~¢] and [p1] = [¢], where [¢]
states that the propositional variable ¢ representing the class variable is true
(i.e. C = 1), and similarly [—c] represents C' = 0. For now we assume the class is
binary and will show later how to generalize to a multi-valued class variable. For
the feature variables we can assume they are binary without loss of generality
since a multi-valued variable can be converted to a set of binary variables via a
one-hot encoding (see, for example [20]). To achieve our goal we first need the
following proposition:

Proposition 1. Given (i) a vtree with a single variable C as the prime and
variables F as the sub of the root node, and (ii) an initial PSDD where the
root decision node decomposes the distribution as [root] = ([po] A [so0]) V ([p1] A
[s1]); applying the Split and Clone operators will never change the root decision
decomposition [root] = ([po] A [so]) V ([p1] A [$1])-
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Proof. The D-LEARNPSDD algorithm iteratively applies two operations: Clone
and Split (following the algorithm in [20]). First, the Clone operator requires a
parent node, which is not available for the root node. Since the initial PSDD
follows the logical formula described above, whose only restriction is on the root
node, there is no parent available to clone and the root’s base thus remains intact
when applying the Clone operator. Second, the Split operator splits one of the
subs to extend the sentence that is used to mutually exclusively and exhaustively
define all children. Since the given vtree has only one variable, C', as the prime
of the root node, there are no other variables available to add to the sub. The
Split operator cant thus not be applied anymore and the root’s base stays intact
(see Figs. 1c and d).

We can now show that the resulting PSDD contains nodes that directly
represent the distribution Pr(F|C).

Proposition 2. A PSDD of the form [root] = ([-c] A [so]) V ([¢] A [s1]) with ¢
the propositional variable stating that the class variable is true, and sy and si
any formula with propositional feature variables fy, ..., fn, directly expresses the
distribution Pr(F|C).

Proof. Applying this to Eq. 1 results in:

Pr,(CF) = Pr_.(C)Prs, (F) + Pr.(C)Prs, (F)
= Pr_(Cl[~€]) - Pry (F|[~e]) + Pr(Clle]) - Pro, (FI[c)
=Pr..(C=0)Pr, (F|C =0)+Pr.(C=1) Pry,(FIC=1)

The learned PSDD thus contains a node sp with distribution Prg, that
directly represents Pr(F|C' = 0) and a node s; with distribution Pr,, that rep-
resents Pr(F|C = 1). The PSDD thus encodes Pr(F|C) directly because the two
possible value assignments of C' are C =0 and C' = 1.

The following examples illustrate why both the specific vtree and initial
PSDD are required.

Ezxample 1. Figure 2b shows a PSDD that encodes a fully factorized probability
distribution normalized for the vtree in Fig. 2a. The PSDD shown in this example
initializes the incremental learning procedure of LEARNPSDD [20]. Note that
the vtree does not connect the class variable C' to all feature variables (e.g.
F1). Therefore, when initializing the algorithm on this vtree-PSDD combination,
there are no guarantees that the conditional relations between certain features
and the class will be learned.

Ezample 2. Figure 2e shows a PSDD that explicitly conditions the feature vari-
ables on the class variables by normalizing for the vtree in Fig.2c¢ and by fol-
lowing the logical formula from Proposition 2. This biased PSDD is then used to
initialize the D-LEARNPSDD learner. Note that the vtree in Fig. 2c forces the
prime of the root node to be the class variable C.
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Example 3. Figure 2d shows, however, that only setting the vtree in Fig.2c is
not sufficient for the learner to condition the features on the class. When initial-
izing on a PSDD that encodes a fully factorized formula, and then applying the
Split and Clone operators, the relationship between the class variable and the
features are not guaranteed to be learned. In this worst case scenario, the learned
model could have an even worse performance than the case from Example 1. By
applying Eq. 1 on the top split, we can give intuition why this is the case:

Pry(CF) = Pryy (Cl[e v ~cl) - Proy (Fl[e v —c])
= (Prp, (Clle]) 4 Prp, (C[[c])) - Pry, (Flle V —])
= (Prpl (C = 1) + PrPZ (C = 0)) - Pry, (F)

The PSDD thus encodes a distribution that assumes that the class variable is
independent from all feature variables. While this model might still have a high
likelihood, its classification accuracy will be low.

We have so far introduced the D-LEARNPSDD for a binary classification
task. However, it can be easily generalized to an n-valued classification scenario:
(1) The class variable C' will be represented by multiple propositional variables
co,C1, - -+, Cn that represent the set C = 0,C = 1,...,C = n, of which exactly
one will be true at all times. (2) The vtree in Proposition1 now starts as a
right-linear tree over cg,...,c,. The F variables are the sub of the node that
has ¢, as prime. (3) The initial PSDD in Proposition2 now has a root the
form [root] = V.o ,.(lci Ao, nniz; i) A [si]), which remains the same after
applying Split and Clone. The root decision node now represents the distribution
Pry(CF) =3, , Pre Ay -, (C =) - Pry,(F|C = i) and therefore has nodes
at the top of the tree that directly represent the discriminative bias.

3.2 Generative Bias

Learning the distribution over the feature variables is a generative learning pro-
cess and we can achieve this by applying the Split and Clone operators in the
same way as the original LEARNPSDD algorithm. In the previous section we had
not yet defined how should Pr(F|C) from Proposition 2 be represented in the ini-
tial PSDD, we only explained how our constraint enforces it. So the question is
how do we exactly define the nodes corresponding to sy and s; with distribu-
tions Pr(F|C = 0) and Pr(F|C = 1)? We follow the intuition behind (TA)NB
and start with a PSDD that encodes a distribution where all feature variables
are independent given the class variable (see Fig.2e). Next, the LEARNPSDD
algorithm will incrementally learn the relations between the feature variables by
applying the Split and Clone operations following the approach in [20].

3.3 Obtaining the Vtree

In LEARNPSDD, the decision nodes decompose the distribution into independent
distributions. Thus, the vtree is learned from data by maximizing the approxi-
mate pairwise mutual information, as this metric quantifies the level of indepen-
dence between two sets of variables. For D-LEARNPSDD we are interested in
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the level of conditional independence between sets of feature variables given the
class variable. We thus obtain the vtree by optimizing for Conditional Mutual
Information instead and replace mutual information in the approach in [20] with:

Pr(z) Pr(xyz
CMI(X7 Y|Z) = Zx Zy Zz PI‘(Xy) log Prgx)z) P(r(;[z; :

Fig. 2. Examples of vtrees and initial PSDDs.

4 Experiments

We compare the performance of D-LEARNPSDD, Table 1. Datasets

. . . Dataset [F| [|C]||N]

LEARNPSDD, two generatlYe ].Ba?fesn’fm class1ﬁers Australiont 4012 T 690
(NB and TANB) and a discriminative classifier Breast 28 (2 | 683
(logistic regression). In particular, we discuss the Chess 3912|3196
gist g - mp ) W ) Cleve 25 |2 | 303
following research queries: (1) Sect.4.2 examines Corral 6|2 | 160
whether the introduced discriminative bias improves Credit 4212 1 653
. . Diabetes 11 |2 768
classification performance on PSDDs. (2) Sect.4.3 German | 54 |2 [1000
: . Glass 17 |6 214

analyzes the 1mpa.ct of the vtree and the.l.mposed Hoart ola | 270
structural constraints on model tractability and Tris 123 | 150
. Mofn 10 (2 [1324

performance. (3) Ij’mally, Sect. 4.4 compares ‘Fhe Pioe e | es
robustness to missing values for all classification Vehicle 57 |2 | 846
approaches. Waveform [109 |3 |5000
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4.1 Setup

We ran our experiments on the suite of 15 standard machine learning bench-
marks listed in Table 1. All of the datasets come from the UCI machine learning
repository [8], with exception of “Mofn” and “Corral” [18]. As pre-processing
steps, we applied the discretization method described in [9], and we binarized all
variables using a one-hot encoding. Moreover, we removed instances with miss-
ing values and features whose value was always equal to 0. Table 1 summarizes
the number of binary features |F|, the number of classes |C| and the available
number of training samples |N| per dataset.

4.2 Evaluation of DG-LearnPSDD

Table 2 compares D-LEARNPSDD, LEARNPSDD, Naive Bayes (NB), Tree Aug-
mented Naive Bayes (TANB) and logistic regression (LogReg)® in terms of accu-
racy via five fold cross validation?. For LEARNPSDD, we incrementally learned a
model on each fold until convergence on validation-data log-likelihood, following
the methodology in [20].

For D-LEARNPSDD, we incrementally learned a model on each fold until
likelihood converged but then selected the incremental model with the highest
training set accuracy. For NB and TANB, we learned a model per fold and
compiled them to Arithmetic Circuits®, a more general form of PSDDs [6], which
allows us to compare the size of these Bayes net classifiers and the PSDDs.
Finally, we compare all probabilistic models with a discriminative classifier, a
multinomial logistic regression model with a ridge estimator.

Table 2 shows that the proposed D-LEARNPSDD clearly benefits from the
introduced discriminative bias, outperforming LEARNPSDD in all but two
datasets, as the latter method is not guaranteed to learn significant relations
between feature and class variables. Moreover, it outperforms Bayesian classi-
fiers in most benchmarks, as the learned PSDDs are more expressive and allow
to encode complex relationships among sets of variables or local dependencies
such as context specific independence, while remaining tractable. Finally, note
that the D-LEARNPSDD is competitive in terms of accuracy with respect to
logistic regression (LogReg) a purely discriminative classification approach.

4.3 Impact of the Vtree on Discriminative Performance

The structure and size of the learned PSDD is largely determined by the vtree it
is normalized for. Naturally, the vtree also has an important role in determining
the quality (in terms of log-likelihood) of the probability distribution encoded
by the learned PSDD [20]. In this section, we study the impact that the choice
of vtree and learning strategy has on the trade-offs between model tractability,
quality and discriminative performance.

! NB, TANB and LogReg are learned using Weka with default settings.
2 In each fold, we hold 10% of the data for validation.
3 Using the ACE tool Available at http://reasoning.cs.ucla.edu/ace/.
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Table 2. Five cross fold accuracy and size in number of parameters

Dataset D-LearnPSDD LearnPSDD NB TANB LogReg

Accuracy |Size |Accuracy |Size |Accuracy |Size | Accuracy |Size |Accuracy
Australian | 86.2 + 3.6 | 367 |84.9 £ 2.7 386 |85.1+3.1 |161 |85.8 3.4 | 312 |84.1+ 3.4
Breast 97.1£0.9 | 291 |94.9+0.5 | 491 |97.7+1.2 114 97.7+1.2 | 219 |96.5+ 1.6

Chess 97.3+1.4/2178 |94.9+ 1.6 |2186 87.7+ 1.4 |158 [91.7+2.2 | 309 |[96.9 +0.7
Cleve 82.2+2.5 | 292 |81.9+3.2 184 184.9+3.3|102 |79.9+£2.2 196 |81.5£2.9
Corral 6 |99.4+1.4 39 |98.1+2.38 58 189.4+5.2 26 198.8 +1.7 45 [86.3 +£6.7
Credit 85.6 £3.1 | 693 |86.1 3.6 | 611 |86.8+4.4 170 86.1 £3.9 | 326 |84.7+ 4.9

Diabetes |78.7+2.9| 124 |77.2 4 3.3 144 |77.4+£2.56| 46 |75.8 £ 3.5 86 |78.4£2.6
German 72.3£3.2 1185 |69.9£2.3 | 645 |73.5£2.7 |218 |74.5+1.9| 429 T4.4+2.3

Glass 79.1+1.9| 214 |72.4+£6.2 321 |70.0£4.9 |203 |69.5£5.2 | 318 |[73.0%£5.7
Heart 84.1+4.3 51 |78.5+5.3 75 |84.0£3.8 | 38 183.0+5.1 70 |84.0 4.7
Iris 90.0 £ 0.1 76 |94.0 £3.7 158 |94.7+1.8| 75 |94.7+1.8 | 131 |94.7£2.9
Mofn 98.9+0.9 | 260 |97.1 2.4 260 [85.0£5.7 | 42 |92.8 2.6 78 1100.0£0
Pima 80.2+0.3| 108 |74.7+3.2 110 |77.6 £3.0 | 46 |76.3£2.9 86 |77.7+2.9

Vehicle 95.0+1.7|1186 [93.9 £ 1.69|1560 |86.3 £ 2.00/228 193.0+ 0.8 | 442 |94.5+2.4
Waveform |85.0 £ 1.0 |3441 |78.7+£5.6 |2585 |[80.7+1.9 657 83.1+1.1 |[1296 |85.5+0.7

Figure 3a shows test-set log-likelihood and Fig. 3b classification accuracy as a
function of model size (in number of parameters) for the “Chess” dataset. We dis-
play average log-likelihood and accuracy over logarithmically distributed ranges
of model size. This figure contrasts the results of three learning approaches: D-
LEARNPSDD when the vtree learning stage optimizes mutual information (MI,
shown in light blue); when it optimizes conditional mutual information (CMI,
shown in dark blue); and the traditional LEARNPSDD (in orange).

Figure 3a shows that likelihood improves at a faster rate during the first
iterations of LEARNPSDD, but eventually settles to the same values as D-
LEARNPSDD because both optimize for log-likelihood. However, the discrimi-
native bias guarantees that classification accuracy on the initial model will be
at least as high as that of a Naive Bayes classifier (see Fig.3b). Moreover, this
results in consistently superior accuracy (for the CMI case) compared to the
purely generative LEARNPSDD approach as shown also in Table 2. The dip in
accuracy during the second and third intervals are a consequence of the genera-
tive learning, which optimizes for log-likelihood and can therefore initially yield
feature-value correlations that decrease the model’s performance as a classifier.

Finally, Fig. 3b demonstrates that optimizing the vtree for conditional mutual
information results in an overall better performance vs. accuracy trade-off when
compared to optimizing for mutual information. Such a conditional mutual infor-
mation objective function is consistent with the conditional independence con-
straint we impose on the structure of the PSDD and allows the model to consider
the special status of the class variable in the discriminative task.



Discriminative Bias for Learning PSDDs 193

Log-likelihood on Chess
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Fig. 3. Log-likelihood and accuracy vs. model size trade-off of the incremental PSDD
learning approaches. MI and CMI denote mutual information and conditional mutual
information vtree learning, respectively. (Color figure online)

4.4 Robustness to Missing Features

The generative models in this paper encode a joint probability distribution over
all variables and therefore tend to be more robust against missing features than
discriminative models, which only learn relations relevant to their discriminative
task. In this experiment, we assessed this robustness aspect by simulating the
random failure of 10% of the original feature set per benchmark and per fold
in five-fold cross-validation. Figure4 shows the average accuracy over 10 such
feature failure trials in each of the 5 folds (flat markers) in relation to their full
feature set accuracy reported in Table 2 (shaped markers). As expected, the per-
formance of the discriminative classifier (LogReg) suffers the most during feature
failure, while D-LEARNPSDD and LEARNPSDD are notably more robust than
any other approach, with accuracy losses of no more than 8%. Note from the
flat markers that the performance of D-LEARNPSDD under feature failure is
the best in all datasets but one.

% 1
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* 1f ;
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Australian Breast Chess Cleve Corral Credit Diabetes German  Heart Mofn Pima Vehicle
Dataset

Fig. 4. Classification robustness per method.
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5 Related Work

A number of works have dealt with the conflict between generative and dis-
criminative model learning, some dating back decades [14]. There are multiple
techniques that support learning of parameters [13,23] and structure [21,24]
of probabilistic circuits. Typically, different approaches are followed to either
learn generative or discriminative tasks, but some methods exploit discrimina-
tive models’ properties to deal with missing variables [22]. Other works that also
constraint the structure of PSDDs have been proposed before, such as Choi et
al. [3]. However, they only do parameter learning, not structure learning: their
approach to improve accuracy is to learn separate structured PSDDs for each
distribution of features given the class and feed them to a NB classifier. In [5],
Correira and de Campos propose a constrained SPN architecture that shows both
computational efficiency and classification performance improvements. However,
it focuses on decision robustness rather than robustness against missing values,
essential to the application range discussed in this paper. There are also a num-
ber of methods that focus specifically on the interaction between discriminative
and generative learning. In [15], Khosravi et al. provide a method to compute
expected predictions of a discriminative model with respect to a probability dis-
tribution defined by an arbitrary generative model in a tractable manner. This
combination allows to handle missing values using discriminative couterparts of
generative classifiers [16]. More distant to this work is the line of hybrid discrim-
inative and generative models [19], their focus is on semisupervised learning and
deals with missing labels.

6 Conclusion

This paper introduces a PSDD learning technique that improves classification
performance by introducing a discriminative bias. Meanwhile, robustness against
missing data is kept by exploiting generative learning. The method capitalizes
on PSDDs’ domain knowledge encoding capabilities to enforce the conditional
relation between the class and the features. We prove that this constraint is
guaranteed to be enforced throughout the learning process and we show how not
encoding such a relation might lead to poor classification performance. Evalu-
ation on a suite of benchmarking datasets shows that the proposed technique
outperforms purely generative PSDDs in terms of classification accuracy and the
other baseline classifiers in terms of robustness.
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Abstract. Signature patterns have been introduced to model repetitive
behavior, e.g., of customers repeatedly buying the same set of products
in consecutive time periods. A disadvantage of existing approaches to
signature discovery, however, is that the required number of occurrences
of a signature needs to be manually chosen. To address this limitation, we
formalize the problem of selecting the best signature using the minimum
description length (MDL) principle. To this end, we propose an encoding
for signature models and for any data stream given such a signature
model. As finding the MDL-optimal solution is unfeasible, we propose a
novel algorithm that is an instance of widening, i.e., a diversified beam
search that heuristically explores promising parts of the search space.
Finally, we demonstrate the effectiveness of the problem formalization
and the algorithm on a real-world retail dataset, and show that our
approach yields relevant signatures.

Keywords: Signature discovery - Minimum description length -
Widening

1 Introduction

When analyzing (human) activity logs, it is especially important to discover
recurrent behavior. Recurrent behavior can indicate, for example, personal pref-
erences or habits, and can be useful in contexts such as personalized market-
ing. Some types of behavior are elusive to traditional data mining methods: for
example, behavior that has some temporal regularity but not strong enough to
be periodic, and which does not form simple itemsets or sequences in the log. A
prime example is the set of products that is essential to a retail customer: all of
these products are bought regularly, but often not periodically due to different
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depletion rates, and they are typically bought over several transactions—in any
arbitrary order—rather than all at the same time.

To model and detect such behavior, we have proposed signature patterns [3]:
patterns that identify irregular recurrences in an event sequence by segmenting
the sequence (see Fig.1). We have shown the relevance of signature patterns in
the retail context, and demonstrated that they are general enough to be used in
other domains, such as political speeches [2]. As a disadvantage, however, signa-
ture patterns require the analyst to provide the number of recurrences, i.e., the
number of segments in the segmentation. This number of segments influences the
signature: fewer segments give a more detailed signature, while more segments
result in a simpler signature. Although in some cases domain experts may have
some intuition on how to choose the number of segments, it is often difficult to
decide on a good trade-off between the number of segments and the complexity of
the signature. The main problem that we study in this paper is therefore how to
automatically set this parameter in a principled way, based on the data.

Our first main contribution is a problem formalization that defines the best
signature for a given dataset, so that the analyst no longer needs to choose the
number of segments. By considering the signature corresponding to each possible
number of segments as a model, we can naturally formulate the problem of select-
ing the best signature as a model selection problem. We formalize this problem
using the minimum description length (MDL) principle [4], which, informally,
states that the best model is the one that compresses the data best. The MDL
principle perfectly fits our purposes because (1) it allows to select the simplest
model that adequately explains the data, and (2) it has been previously shown
to be very effective for the selection of pattern-based models (e.g., [7,11]).

After defining the problem using the MDL principle, the remaining question
is how to solve it. As the search space of signatures is extremely large and the
MDL-based problem formulation does not offer any properties that could be used
to substantially prune the search space, we resort to heuristic search. Also here,
the properties of signature patterns lead to technical challenges. In particular,
we empirically show that a naive beam search often gets stuck in suboptimal
solutions. Our second main contribution is therefore to propose a diverse beam
search algorithm, i.e., an instance of widening [9], that ensures that a diverse set
of candidate solutions is maintained on each level of the beam search. For this,
we define a distance measure for signatures based on their segmentations.

2 Preliminaries

Sequence o« a ¢ a,b,d b a a,b a,b,ce
TransactionsT1 T2 T3 T4 Ts5 Ts T~

— T
Segments 51 | s & B

Fig. 1. A sequence of transactions and a 4-segmentation. We have the signature items
R = {a, b}, the remaining items & = {c,d, e}, the set of items Z = {a,b,c,d, e}, the
segmentation S = ([T, 1%, T3], [T4, Ts], [T6], [T%])-
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Signatures. Let us first recall the definition of a signature as presented in [3].
Let Z be the set of all items, and let a = (T ...Ty,), T; € Z be a sequence of
itemsets. A k-segmentation of o, denoted S(o, k) = (Sy ... Sk), is a sequence of k
non-overlapping consecutive sub-sequences of «, denoted 5; and called segments,
each consisting of consecutive transactions. An example of a 4-segmentation is
given in Fig.1. Given S(a,k) = (S7...Sk), a k-segmentation of «, we have
Rec(S(a, k)) = mSiES(a,k:)(UTjESi T;): the set of all recurrent items that are
present in each segment of S(«, k). For example in Fig.1, the segmentation
S(a,4) = (S1,952,855,54) gives Rec(S(a,4)) = {a,b}. Given k and «, one
can compute Spaz(a, k), the set of k-segmentation of « yielding the largest
sets of recurrent items: Syaz(, k) = argmaxg, ) [Rec(S(a, k))|. For exam-
ple, in Fig.4, (S1,52,53,54) is the only 4-segmentation yielding two recurrent
items. As all other 4-segmentations either yield zero or one recurrent item,
Smaz(a,4) = {(S1,52,53,54)}. A k-signature (also named signature when k
is clear from context) is then defined as a maximal set of recurrent items in a k-
segmentation S, with S € Sp,40(a, k). As Spaz (@, k) can contain several segmen-
tations, we define the k-signature set Sig(a, k), which contains all k-signatures:
Sig(a, k) = {Rec(Sm(a, k) | Sm € Smaz(a, k)}. k gives the number of recur-
rences of the recurrent items in sequence a. Given a number of recurrences k,
finding a k-signature relies on finding a k-segmentation that maximizes the size
of the itemset that occurs in each segment of that segmentation. For example, in
Fig. 1, given segmentation S = (S, Sa, S3, S4) and given that Sy, (o, 4) = {S},
we have Sig(a,4) = {Rec(S)} = {{a,b}}. For simplicity, the segmentation asso-
ciated with a k-signature in Sig(a, k) is denoted S = (S; ...Sk), and the signa-
ture items are denoted R C Z. The remaining items are denoted £, i.e., £ = Z\R.

Minimum Description Length (MDL). Let us now briefly introduce the basic
notions of the minimum description length (MDL) principle [4] as it is commonly
used in compression-based pattern mining [7]. Given a set of models M and
a dataset D, the best model M € M is the one that minimizes L(D, M) =
L(M) + L(D|M), with L(M) the length, in bits, of the encoding of M, and
L(D|M) the length, in bits, of the encoding of the data given M. This is called
two-part MDL because it separately encodes the model and the data given the
model, which results in a natural trade-off between model complexity and data
complexity. To fairly compare all models, the encoding has to be lossless. To use
the MDL principle for model selection, the model class M has to be defined (in
our case, the set of all signatures), as well as how to compute the length of the
model and the length of the data given the model. It should be noted that only
the encoded length of the data is of interest, not the encoded data itself.

3 Problem Definition

To extract recurrent items from a sequence using signatures, one must define the
number of segments k. Providing meaningful values for &k usually requires expert
knowledge and/or many tryouts, as there is no general rule to automatically set



200 C. Gautrais et al.

k. Our problem is therefore to devise a method that adjusts k, depending on the
data at hand. As this is a typical model selection problem, our approach relies
on the minimum description length principle (MDL) to find the best model from
a set of candidate models. However, the signature model must be refined into a
probabilistic model to use the MDL principle for model selection. Especially, the
occurrences of items in « should be defined according to a probability distribu-
tion. With no information about these occurrences, the uniform distribution is
the most natural choice. Indeed, without information on the transaction in which
an item occurs, the best is to assume it can occur uniformly at random in any
transaction of the sequence a. Moreover, the choice of the uniform distribution
has been shown to minimize the worst case description length [4].

To make the signature model probabilistic, we assume that it generates three
different types of occurrences independently and uniformly. As the signature
gives the information that there is at least one occurrence of every signature
item in every segment, the first type of occurrences correspond to this one occur-
rence of signature items in every segment. These are generated uniformly over
all the transactions of every segment. The second type of occurrences are the
remaining signature items occurrences. Here, the information is that these items
already have occurrences generated by the previous type of occurrences. As « is
a sequence of itemsets, an item can occur at most once in a transaction. Hence,
for a given signature item, the second type of occurrences for this item are dis-
tributed uniformly over the transactions where this item does not already occur
for the first type of occurrences. Finally, the third type are the occurrences of the
remaining items: the items that are not part of the signature. There is no infor-
mation about these items occurrences, hence we assume them to be generated
uniformly over all transactions of «.

With these three types of occurrences, the signature model is probabilistic: all
occurrences in « are generated according to a probability distribution that takes
into account the information provided by the signature specification. Hence, we
can now define the problem we are tackling:

Problem 1. Let S denote the set of signatures for all values of k, S =

‘ka:ll Sig(a, k). Given a sequence «, it follows from the MDL principle that
the best signature S € S is the one that minimizes the two-part encoded length
of S and q, i.e.,

Supr = argmingg L(a, S),

where L(a, S) is the two-part encoded length that we present in the next section.

4 An Encoding for Signatures

As typically done in compression-based pattern mining [7], we use a two-part
MDL code that leads to decomposing the total encoded length L(«, S) into two
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parts: L(S) and L(«|S), with the relation L(a,S) = L(S) + L(«|S). In the
upcoming subsection we define L(S), i.e., the encoded length of a signature,
after which Subsect.4.2 introduces L(«|S), i.e., the length of the sequence «
given a signature S. In the remainder of this paper, all logarithms are in base 2.

4.1 Model Encoding: L(S)

A signature is composed of two parts: (1) the signature items, and (2) the sig-
nature segmentation. The two parts are detailed below.

Signature Items Encoding. The encoding of the signature items consists of
three parts. The signature items are a subset of Z, hence we first encode the
number of items in Z. A common way to encode non-negative integer numbers
is to use the universal code for integers [4,8], denoted Ly'. This yields a code
of size Ln(]Z]). Next, we encode the number of items in the signature, using
again the universal code for integers, with length Ly(|R]). Finally, we encode
the items of the signature. As the order of signature items is irrelevant, we can
use an |R|-combination of |Z| elements without replacement. This yields a length

of log((llg‘)). From R and Z, we can deduce £.

Segmentation Encoding. We now present the encoding of the second part
of the signature: the signature segmentation. To encode the segmentation, we
encode the segment boundaries. These boundaries are indexed on the size of the
sequence, hence we first need to encode the number of transactions n. This can be
done using again the universal code for integers, which is of size Ly(n). Then, we
need to encode the number of segments |S|, which is of length Ly(]S|). To encode
the segments, we only have to encode the boundaries between two consecutive
segments. As there are | S| —1 such boundaries, a naive encoded length would be
(|S]—1)*log(n). An improved encoding takes into account the previous segments.
For example, when encoding the second boundary, we know that its value will
not be higher than n — |S1|. Hence, we can encode it in log(n — |S1|) instead of
log(n) bits. This principle can be applied to encode all boundaries. Another way
to further reduce the encoded length is to use the fact that we know that each
signature segment contains at least one transaction. We can therefore subtract
the number of remaining segments to encode the boundary of the segment we are
encoding. This yields an encoded length of Zli‘fl log(n—(|S|—14) — 23;11 [S;])-

Putting Fverything Together. The total encoded length of a signature .S is

L(S) = In((Z0) + Lu(IR) + () )) +

[S]—1

Li(n) + L) + 3. logtrn — (18] =) — 3 1)

! Ly = log*(n) 4 log(2.865064), with log* (n) = log(n) + log(log(n)) + .. ..
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Fig. 2. A sequence of transactions and its encoding scheme. We have R = {a,b},
& ={c¢,d,e} and Z = {a, b, c,d,e}. The first occurrence of each signature item in each
segment is encoded in the red stream, the remaining signature items occurrences in the
orange stream, and the items from £ in the blue stream. (Color figure online)

4.2 Data Encoding: L(«|S)

We now present the encoding of the sequence given the model: L(«|S). This
encoding relies on the refinement of the signature model into a probabilistic
model presented in Sect.3. To summarize, we have three separate encoding
streams that encode the three different types of occurrences presented in Sect. 3:
(1) one that encodes one occurrence of every signature item in every segment,
(2) one that encodes the rest of the signature items occurrences, and (3) one
that encodes the remaining items occurrences. An example illustrating the three
different encoding streams is presented in Fig. 2.

Encoding One Occurrence of Each Signature Item in Each Segment.
As stated in Sect. 3, the signature says that in each segment, there is at least
one occurrence of each signature item. The size of each segment is known (from
the encoding of the model, in Subsect. 4.1), hence we encode one occurrence of
each signature item in segment S; by encoding the index of the transaction,
within segment S;, that contains this occurrence. From Sect. 3, this occurrence
is uniformly distributed over the transactions in S;. As encoding an index over
|Si| equiprobable possibilities costs log(]S;|) bits and as in each segment, |R|
occurrences are encoded this way, we encode each segment in |R| *log(|S;]) bits.

Encoding the Remaining Signature Items’ Occurrences. As presented
in Fig.2, we now encode remaining signature items occurrences to guarantee
a lossless encoding. Again, this encoding relies on encoding transactions where
signature items occur. For each item a, we encode its occurrences occ(a) =
ZTiea ZpGTi 1,—, by encoding to which transaction it belongs. As S occur-
rences have already been encoded using the previous stream, there are occ(a)—|S|
remaining occurrences to encode. These occurrences can be in any of the n — | S|
remaining transactions. From Sect. 3, we use a uniform distribution to encode
them. More precisely, the first occurrence of item a can belong to any of the n—|S|
transactions where a does not already occur. For the second occurrence of a, there
are now only n—|S|—1 transactions where a can occur. By applying this principle,

we encode all the remaining occurrences of a as Zfico(a)*‘slfl log(n—|S|—1). For
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each item, we also use Ly(oce(a)—|S|) bits to encode the number of occurrences.
This yields a total length of ° % Ln(occ(a)— |S|)—|—Z?ico(a)_|sl_1 log(n—|S|—1).

Remaining Items Occurrences Encoding. Finally, we encode the remaining
items occurrences, i.e., the occurrences of items in £. The encoding technique
is identical to the one used to encode additional signature items occurrences,
with the exception that the remaining items occurrences can initially be present
in any of the n transactions. This yields a total code of ) . Ln(occ(a)) +

A log(n — ).

Putting Fverything Together. The total encoded length of the data given the
model is given by: L(a|S) = > g cgIR| * log(|Si|) + >-,cr Ln(occ(a) — [S]) +

Sy og(n — IS| = i) + e Inloce(a)) + 75 log(n — ).

5 Algorithms

The previous section presented how a sequence is encoded, completing our prob-
lem formalization. The remaining problem is to find the signature minimizing
the code length, that is, finding Sy/pr, such that Sypr = argmingcg L(a, S).

Naive Algorithm. A naive approach would be to directly mine the whole set
of signatures S and find the signature that minimizes the code length. However,
mining a signature with k segments has time complexity O(n?k). Mining the
whole set of signatures requires k to vary from 1 to n, resulting in a total com-
plexity of O(n*). The quartic complexity does not allow us to quickly mine the
complete set of possible signatures on large datasets, hence we have to rely on
heuristic approaches.

To quickly search for the signature in S that minimizes the code length, we
initially rely on a top-down greedy algorithm. We start with one segment con-
taining the whole sequence, and then search for the segment boundary that min-
imizes the encoded length. Then, we recursively search for a new single segment
boundary that minimizes the encoded length. We stop when no segment can
be added, i.e., when the number of segments is equal to the number of transac-
tions. During this process, we record the signature with the best encoded length.
However, this algorithm can perform early segment splits that seem promising
initially, but that eventually impair the search for the best signature.

5.1 Widening for Signatures

To solve this issue, a solution is to keep the w signatures with the lowest code
length at each step instead of keeping only the best one. This technique is called
beam search and has been used to tackle optimization problems in pattern mining
[6]. The beam width w is the number of solutions to keep at each step of the
algorithm. However, the beam search technique suffers from having many of the
best w signatures that tend to be similar and correspond to slight variations
of one signature. Here, this means that most signatures in the beam would
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Algorithm 1. Widening algorithm for signature code length minimization.
1: function SIGNATURE MINING(a = (Th,...,Th), B, w)
2: BestKSign = (), BestSign = ()
3 for k=1—ndo
4: AllKSign = Split1Segment(BestKSign)
5: Sopt = argminge 4y siqn L, 5)
6.
7
8

BestSign = BestSign (J{Sopt }
BestKSign = {Sopt }
: 0 = threshold(83, w,AllIKSign)
9: while S, # 0 and |BestKSign| < w do

10: Sopt = argminge 41 sign L(ev, S), BSi € BestK Sign,d(S;,S) < 6
11: BestKSign = BestKSign |J{Sopt }
12: return argming g ss5ign L(@, S)

Algorithm 2. Distance threshold computation.

1: function THRESHOLD(3, w, AllSign)

2: KBest = 3 * |AllSign|

3: BestS = GetBestSign(AllSign, KBest)

4: return argmin,{N(0), N(0) = |{S € BestS,d(S, BestS[0]) < 0}|,N(0) >
| BestS|/w}

have segmentations that are very similar. The widening technique [9] solves this
issue by adding a diversity constraint into the beam. Different constraints exist
[5,6,9], but a common solution is to add a distance constraint between each pair
of elements in the beam: all pairwise distances between the signatures in the
beam have to be larger than a given threshold 6. As this threshold is dependent
on the data and the beam width, we propose a method to automatically set its
value.

Algorithm 1 presents the proposed widening algorithm. Line 3 iterates over
the number of segments. Line 4 computes all signatures having k segments that
are considered to enter the beam. More specifically, function Split1Segment com-
putes the direct refinements of each of all signatures in BestK Sign. A direct
refinement of a signature corresponds to splitting one segment in the segmen-
tation associated with that signature. Line 5 selects the refinement having the
smallest code length. If several refinements yield the smallest code length, one
of these refinements is chosen at random. Lines 8 to 11 perform the widening
step by adding new signatures to the beam while respecting the pairwise dis-
tance constraint. Line 8 computes the distance threshold (#) depending on the
diversity parameter (3), the beam width (w), and the current refinements. Algo-
rithm 2 presents the details of the threshold computation. With this threshold,
we recursively add a new element in the beam, until either the beam is full or no
new element can be added (line 9). Lines 10 and 11 add the signature having the
smallest code length and being at a distance of at least 6 to any current element
of the beam. Line 12 returns the best overall signature we have encountered.
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Distance Between Signatures. We now define the distance measure for signa-
tures (used in line 10 of Algorithm 1). As the purpose of the signature distance
is to ensure diversity in the beam, we will use the segmentation to define the dis-
tance between two elements of the beam, i.e., between two signatures. Terzi et al.
[10] presented several distance measures for segmentations. The disagreement dis-
tance is particularly appealing for our purposes as it compares how transactions
belonging to the same segment in one segmentation are allocated to the other seg-
mentation. Let S, = (Sq1 ... Sqk) and Sy = (Sp1 . .. Spr) be two k-segmentations
of a sequence . We denote by d(S,, Sp) the disagreement distance between seg-
mentation a and segmentation b. The disagreement distance corresponds to the
number of transaction pairs that belong to the same segment in one segmentation,
but that are not in the same segment in the other segmentation. Techniques on
how to efficiently compute this distance are presented in [10].

Defining a Distance Threshold. Algorithm 1 uses a distance threshold 6
between two signatures, that controls the diversity constraint in the beam. If
0 is equal to 0, there is no diversity constraint, as any distance between two
different signatures is greater than 0. Higher values of 6 enforce more diversity
in the beam: good signatures will not be included in the beam if they are too
close to signatures already in the beam. However, setting the 8 threshold is not
easy. For example # depends on the beam width w. Indeed, with large beam
widths, 6 should be low enough to allow many good signatures to enter the
beam.

To this end, we introduce a method that automatically sets the 6 parame-
ter, depending on the beam width and on a new parameter 3 that is easier to
interpret. The § parameter ranges from 0 to 1 and controls the strength of the
diversity constraint. The intuition behind g is that its value will approximately
correspond to the relative rank of the worst signature in the beam. For example,
if 8 is set to 0.2, it means that signatures in the beam are in the top-20% in
ascending order of code length. Algorithm 2 details how 6 is derived from 3 and
w; this algorithm is called by the threshold function in line 8 of Algorithm 1.

Knowing the set of all candidate signatures that are considered to enter
the beam, we retain only the proportion § of the best signatures (line 3 of
Algorithm 2). Then, in line 4 we extract the best signature. Finally, we look for
the distance threshold 6 such that the number of signatures within a distance of
0 from the best signature is equal to the number of considered signatures divided
by the beam width w (line 5). The rationale behind this threshold is that since
we are adding w signatures to the beam and we want to use the proportion 3 of
the best signatures, the distance threshold should approximately discard 1/w of
the proportion 3 of the best signatures around each signature of the beam.
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6 Experiments

This section, analyzes runtimes and code lengths of variants of our algorithm on
a real retail dataset?. We show that our method runs significantly faster than
the naive baseline, and give advice on how to choose the w and (§ parameters.
Next, we illustrate the usefulness of the encoding to analyze retail customers.

Naive method
“onmne
Naive method

Naive method
3
B3 |
<onmxe
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w=20
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00 Naive method

1.000 1.0051.0101.015 1.020 1.025 0123456717 9101112
Relative MDL code length Runtime (seconds)

Fig. 3. Left: Mean relative code length for different instances of the widening algo-
rithm. For each customer, the relative code length is computed with regard to the
smallest code length found for this customer. Averaging these lengths across all cus-
tomers gives the mean relative code length. The 3 parameter sets the diversity con-
straint and w the beam width. The solid black line shows the mean code length of
the naive algorithm. Bootstrapped 95% confidence intervals [1] are displayed. Right:
Mean runtime in seconds for different instances of the widening algorithm. The dotted
black lines shows a bootstrapped 95% confidence interval of the naive algorithm’s mean
runtime.

6.1 Algorithm Runtime and Code Length Analysis

We here analyze the runtimes and code lengths obtained by variants of Algo-
rithm 1. 3000 customers having more than 40 baskets in the Instacart 2017
dataset are randomly selected?. Customers having few purchases are less rel-
evant, as we are looking for purchase regularities. These 3000 customers are
analyzed individually, hence the algorithm is evaluated on different sequences.

2 Code is available at https://bitbucket.org/clement_gautrais/mdl_signature_ida
2020/.

3 The Instacart Online Grocery Shopping Dataset 2017, Accessed from https://www.
instacart.com/datasets/grocery-shopping-20170on05/04/2018.
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Code Length Analysis. To assess the performance of the different algorithms,
we analyze the code length yielded by each algorithm on each of these 3000
customers. We evaluate different instances of the widening algorithm with dif-
ferent beam widths w and diversity constraints 5. The resulting relative mean
code lengths per algorithm instance are presented in Fig. 3 left. When increasing
the beam width, the code length always decreases for a fixed 3 value. This is
expected, as increasing the beam size allows the widening algorithm to explore
more solutions. As increasing the beam size improves the search, we recommend
setting it as high as your computational budget allows you to do.

Increasing the 0 parameter usually leads to better code lengths. However, for
w = 5, higher 3 values give slightly worse results. Indeed, if § is too high, good
signatures might not be included in the beam, if they are too close to existing
solutions. Therefore, we recommend setting the 3 value to a moderate value,
for example between 0.3 and 0.5. A strong point of our method is that it is not
too sensitive to different 0 values. Hence, setting this parameter to its optimal
value is not critical. The enforced diversity is highly relevant, as a fixed beam
size with some diversity finds code lengths that are similar to the ones found by
a larger beam size with no diversity. For example, with w = 5 and 8 = 0.3, the
code lengths are better than with w = 10 and § = 0. As using a beam size of
5 with § = 0.3 is faster than using a beam size of 10 with 8 = 0, it shows that
using diversity is highly suited to decrease runtime while yielding smaller code
lengths.

Runtime Analysis. We now present runtimes of different widening instances in
Fig. 3 right. The beam width mostly influences the runtime, whereas the 3 value
has a smaller influence. Overall, increasing 3 slightly increases computation time,
while yielding a noticeable improvement in the resulting code length, especially
for small beam sizes. Our method also runs 5 to 10 times faster than the naive
method. In this experiment, customers have a limited number of baskets (at
most 100), thus the O(n*) complexity of the naive approach exhibits reasonable
runtimes. However in settings with more transactions (retail data over a longer
period for example), the naive approach will require hours to run, and the per-
formance gain of our widening approach will be a necessity. Another important
thing is that the naive method has a high variability in runtimes. Confidence
intervals are narrow for the widening algorithm (they are barely noticeable on
the plot), whereas it spans over 5s for the naive algorithm.

6.2 Qualitative Analysis

Figure 4 presents two signatures of a customer, to illustrate that signatures are
of practical use to analyze retail customers, and that finding signatures with
smaller code lengths is of interest. We use the widening algorithm to get a
variety of good signatures according to our MDL encoding. The top signature in
Fig. 4 is the best signature found: it has the smallest code length. This signature
seems to correctly capture the regular behavior of this customer, as it contains
7 products that are regularly bought throughout the whole purchase sequence.
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Fig. 4. Example of two signatures found by our algorithms. Gray vertical lines are seg-
ments boundaries and each dot represents an item occurrence in a purchase sequence.
Top: best signature (code length of 5221.33 bits) found by the widening algorithm,
with w = 20 and 8 = 0.5. Bottom: signature found by the beam search algorithm:
w =1 and 8 = 0, with a code length of 5338.46 bits (the worst code length).

Knowing these 7 favorite products, a retailer could target its offers. The segments
also give some information regarding the temporal behavior of this customer. For
example, because segments tend to be smaller and more frequent towards the
end of the sequence, one could guess that this customer is becoming a regular.

On the other hand, the bottom signature is significantly worse than the top
one. It is clear that it mostly contains products that are bought only at the
end of the purchase sequence of this customer. This phenomenon occurs because
the beam search algorithm, with w = 1, only picks the best solution at each
step of the algorithm. Hence, it can quickly get stuck in a local minimum. This
example shows that considering larger beams and adding diversity is an effective
approach to optimize code length. Indeed, having a large and diverse beam is
necessary to have the algorithm explore different segmentations, yielding better
signatures.

7 Conclusions

We tackled the problem of automatically finding the best number of segments for
signature patterns. To this end, we defined a model selection problem for signa-
tures based on the minimum description length principle. Then, we introduced
a novel algorithm that is an instance of widening. We evaluated the relevance
and effectiveness of both the problem formalization and the algorithm on a
retail dataset. We have shown that the widening-based algorithm outperforms
the beam search approach as well as a naive baseline. Finally, we illustrated
the practical usefulness of the signature on a retail use case. As part of future
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work, we would like to study our optimization techniques on larger databases
(thousands of transactions), like online news feeds. We would also like to work on
model selection for sets of interesting signatures, to highlight diverse recurrences.
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Abstract. We introduce a novel efficient approach for community detec-
tion based on a formal definition of the notion of community. We name
the links that run between communities weak links and links being inside
communities strong links. We put forward a new objective function,
called SIWO (Strong Inside, Weak Outside) which encourages adding
strong links to the communities while avoiding weak links. This process
allows us to effectively discover communities in social networks without
the resolution and field of view limit problems some popular approaches
suffer from. The time complexity of this new method is linear in the
number of edges. We demonstrate the effectiveness of our approach on
various real and artificial datasets with large and small communities.

Keywords: Community detection - Social network analysis

1 Introduction

Community detection is an important task in social network analysis and can
be used in different domains where entities and their relations are presented
as graphs. It allows us to find linked nodes that we call communities inside
graphs. There are community detection methods that partition the graph into
subgroups of nodes such as the spectral bisection method [4] or the Kernighan-
Lin algorithm [27]. There are also hierarchical methods such as the divisive
algorithms based on edge betweenness of Girwan et al. [18] or agglomerative
algorithms based on dynamical process such as Walktrap [20], Infomap [24] or
Label propagation [22]. We do not detail them and refer the interested reader to
[7,10,12], but we come back on another class of hierarchical algorithms that aim
at maximizing Q-modularity introduced by Newman et al. [18]. After the greedy
agglomerative algorithm initially introduced by Newman [19], Blondel et al. [5]
proposed Louvain, one of the fastest algorithms to optimize Q-modularity and
to solve the community detection task. However, Fortunato et al. [11] showed
that Q-Modularity suffers from the resolution limit which means by optimizing

© The Author(s) 2020
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Q-modularity, communities that are smaller than a scale cannot be resolved.
The field of view limit [25] is in contrast to the resolution limit leads to overpar-
titioning the communities with a large diameter.

To overcome the resolution limit of Q-modularity, several proposals have been
made, notably by [2,17,23], who introduced variants of this criterion allowing
the detection of community structures at different levels of granularity. However,
these revised criteria make the method time-consuming since they require to
tune a parameter. Therefore, we retain the greedy approach of Louvain for its
efficiency and ability to handle very large networks, but we introduce STWO
because it relies on the notions of strong and weak links defined in Sect. 2.

We consider that a community corresponds to a subgraph sparsely connected
to the rest of the graph. Contrary to the majority of methods which do not for-
mally define what is a community and simply consider that it corresponds to a
subset of nodes densely connected internally, we define the conditions a subgraph
should meet to be considered as a community in Sect.2. In Sect. 3, we present
the generic community detection algorithm. We can apply this general process
regardless of the objective function to improve other community detection meth-
ods as our experiments show.

Finally, the extensive experiments described in Sects.4 and 5, confirm that
our objective function is less sensitive to the resolution and the field of view limit
compared to the objective functions mentioned earlier. Also, our algorithm has
consistently good performance regardless of the size of communities in a network
and is efficient on large size networks having up to a million edges.

2 Notations and Definitions

2.1 Strong and Weak Links

A community is oftentimes defined as a subgraph in which nodes are densely
connected while sparsely connected to the rest of the graph. One way to find
such subgraphs is to divide the network into parts so that the number of links
lying inside that part is maximized. However, if there is no prior information
about the number of communities or their sizes, one can maximize the number
of links within communities by putting all the nodes in one community, but the
final result will not be the true communities. To avoid this approach, we penalize
the missing links within the communities and we introduce the notions of strong
and weak links.

o~
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Fig. 1. A network with two communi- Fig. 2. A network with 2 communities

ties; each consists of a clique of size 5. and 4 dangling nodes (1, 2, 3, and 4).
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Weak links lie between communities, while strong links are inside them. We
develop our criterion so that it encourages adding strong links to the communi-
ties while avoiding weak ones instead of penalizing the missing links. As these
different types of links play different roles in graph connectivity; removing a
weak link may divide the graph into disconnected subgraphs, whereas removing
a random link would not. Let us focus on the link between nodes 7 and j in Fig. 1
and also the link between nodes j and k in this graph. Node j is connected to
all the neighbors of node k, whereas node ¢ and j have no common neighbors.
As generally, nodes in the same community are more likely to have common
neighbors, (i, j) can be considered as a weak link whereas (j, k) as a strong link
and it is exactly what we want to capture through weights assigned to the links.

2.2 Edge Strength

Given a graph G = (V, E) where V is the set of nodes and E the set of edges, we
propose to assign a weight in the range of (—1, 1) to each edge; such that strong
links have larger weights. As nodes in the same community tend to have more
common neighbors compared to nodes in different communities, if Sy, > Syy
then e,y is more likely to be a strong link compared to ey, with S, defined by:

Sey =k €V : (x,k) € E, (y,k) € B} (1)

We can compare two links according to S only if they share a node. Thus, if
we consider nodes x and y that have 5 and 20 links incident to them, then S
can be in range of [0,4] and [0,19] for z and y respectively. Consequently, for
comparisons, we have to scale down S values to (—1,1). If S, has the maximum
value of SJ"** (S = max,.(y,)ep Sey) for a particular node z. We divide the
range [—1,1] into S7*** 4+ 1 equal length segments. Each S value in the range of
[0, S™a%] is then mapped to the center of (n + 1) segment using equation:

2 1
T =3, -1 2
Yy vGpar £ 1 Sper 41 @)

where wy,, is the scaled value of S, from the viewpoint of node x (min-max

normalization could also work). We can also scale Sy, from the viewpoint of
node y: w¥, = — 1 where S)"*" = max,.(y z)ep Szy- TO

zy S"“”+1 + Sm“+1
decide Whether we should trust x or y, we need to look at the importance of
each one in the network. Local clustering coefficient (CC') [28], given below, is a
measure that reflects the importance of nodes and it can be computed even on
large graphs, for instance with Mapreduce [15].

|{8ij 11,7 € Nw,eij S E}|
dy
(%)

where d, and N, are respectively the degree and the set of neighbors of node x.

CC is in the range of [0,1] with 1 for nodes whose neighbors form cliques, and
0 for nodes whose neighbors are not connected to each other directly. Here, we

CC(x) =

3)
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scale each edge from the viewpoint of the endpoint that is more likely to be in
a dense neighborhood characterized by a large C'C"
r, ifCC(x) >CC
wy {w if CC(x) > CC(y) @

Y .
wY,, otherwise

2.3 SIWO Measure

The new measure that we propose encourages adding strong links into the com-
munities while keeping the weak links outside of the communities (Strong Inside,
Weak Outside). This measure is defined as follows:

w;;6(ci, ¢j)

SIWO =Y 5

i,jEV

()

where ¢; is the community of node i and 6(z,y) is 1 if z = y and 0 otherwise.
SIWO is the sum of weights of the edges that reside in the communities. This
objective function provides a way to partition the set of nodes but it does not
specify the conditions required by a subset of nodes to be a community. These
conditions are defined in the following.

2.4 Community Definition

Following [21] we consider that a subgraph C' is a community in a weak sense if
the following condition is satisfied:

LS ING > SN, - NE| (6)
2

velC veC

where N, is the set of the neighbors of node v and N is the set of the neighbors
of node v that are also in community C'. This condition means that the collective
of the nodes in a community have more neighbors within the community than
outside. In this paper, we expand this definition by adding one more condition.
Given a partition p = {C1, (s, ...,Ci} of a network, subgraph C; is considered
as a qualified community if it satisfies the following conditions:

1. C; is a community in a weak sense (Eq.6).
2. The number of links within C; exceeds the number of links towards any other
subgraph C; (j # i) in the partition p taken separately, such that:

S ING > Y NG| e L], i (7)

veC; veC;
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3 The SIWO Method

This method has four steps: pre-processing, optimizing SIWO, qualified commu-
nity identification, and post-processing. They are discussed in detail below.

Step 1. Pre-processing

The first step calculates the edge strength weights (w;;) needed during the SIWO
optimization. Moreover, to reduce the computational time, we remove the dan-
gling nodes temporally. Node x is a dangling node if there exists node y such that
by removing e, the network would be divided into two disconnected parts with
part, (the part containing node x) being a tree. Since part, has a tree structure,
it cannot form a community on its own. So all the nodes in part, belong to the
same community as node y. In Fig. 2, nodes 1, 2, 3 and 4 are dangling nodes and
they belong to the same community as node 5, unless we consider them outliers.
Even though such tree-structured subgraphs attached to the network are very
sparse and cannot be considered as communities, they satisfy Eqs. (6) and (7)
defined for qualified communities. So we do not need to consider them during the
community detection process. To remove them (and the links incident to them),
we need to investigate every node of the network in the first time to identify
nodes with degree of 1. However, after the first visit, we only need to check the
list of the neighbors of the nodes that are removed in the previous time.

Step 2. Optimizing SIWO

We use Louvain’s optimization process to maximize SIWO since it has been
proven to be very efficient but we replace the modularity by our criterion. This
greedy optimization process has two main phases, iteratively performed until a
local maximum of the objective function (STWO measure) is reached. The first
phase starts by placing each node of graph G in its community. Then each node
is moved to the neighbor community which results in the maximum gain of the
SIWO value. If no gain can be achieved, the node stays in its community. In the
second phase, a new weighted graph G’ is created in which each node corresponds
to a community in G. Two nodes in G’ are connected if there exists at least one
edge lying between their corresponding communities in G. Finally, we assign
each edge ey, in G’ a weight equal to the sum of the weights of edges between
the communities that match with = and y. These two phases are repeated until
no further improvement in the SIWO objective function can be achieved.

Step 3. Qualified Community Identification

This step determines qualified communities complying with Eqs. (6) and (7) for
the dense subgraphs discovered in the previous step. However, there may exist
communities consisting of one node weakly connected to all of its neighbors
(S7e* = 0) and that have links with non-positive weight incident to it, we
call them Lone communities. Since the decision about the communities of such
nodes can not be made on edge strength, we let the majority of their neighbors
decide about their communities but, to reduce the computational time, like for
dangling nodes, we temporarily remove these nodes in this step and bring them
back in the final step. Then, we identify the unqualified communities which do
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not satisfy Egs. (6) or (7). We keep merging each unqualified community with
one of its neighboring communities (qualified or not) until no more unqualified
community exists. For that, first, we assign a weight equal to 1 to each edge.
Then, we repeat the two phases of Louvain. In phase 1, we create a new graph
G™ in which each node corresponds to a community identified in step 3 for the
first iteration of in phase 2 for the next ones and where each edge e, is assigned
a weight equal to the sum of the weights of edges between the communities that
correspond to x and y. We also add a self-loop to each node that has a weight
equal to the sum of the weights of the edges that reside in its corresponding
community. In phase 2, we visit all nodes in G*. If a node x has a self-loop with
a weight that is larger than (1) half of sum of the weights of the edges incident
to it and (2) weight of any edge connecting x to another node in G*, it means
the community assigned to = satisfies both the conditions in Eqs. (6) and (7),
we let x stay in its community. Otherwise, we move node z to the neighboring
community that results in the maximum decrease in the sum of the weights of
the edges that lie between communities of G*.

Step 4. Post-processing

Finally, each lone community that was temporarily removed is sequentially added
back to the network and merged with the community in which it has the most
neighbors. If two or more communities tie and they have more than one con-
nection to the node, then one is chosen at random. Otherwise, we choose the
community of the most important neighbor, based on the largest degree of cen-
trality within its community. Since we add lone nodes one after the other, the
community that a former node is assigned to, might not be the best for that
node. To resolve this issue, once all lone nodes are added to the network, we
repeat moving each one of them to the community of the majority of its neigh-
bors until no further movement can be made. Dangling nodes are also added to
the network in the reverse order that they were removed and they are assigned
to the community of their unique neighbor.

4 The Resolution Limit of SIWO

Fortunato and Barthélemy [11] used two sample networks, shown in Fig.3, to
demonstrate how Q-modularity is affected by the resolution limit. The first exam-
ple is a ring of cliques where each clique is connected to its adjacent cliques
through a single link. If the number of cliques is larger than about \/m with m
being the total number of edges in the network, then optimizing Q-modularity
results in merging the adjacent cliques into groups of two or more, despite that
each clique corresponds to a community. The second example is a network con-
taining 4 cliques: 2 of size k and 2 of size p. If £ >> p, Q-modularity similarly
fails to find the correct communities and the cliques of size p will be merged.
To prove how SIWO resolves the resolution limit of Q-modularity, the exact
structure of the network should be known; which is not possible. So, we analyze
whether SIWO is affected by the resolution limit on these networks Given the
definition of SIWO, let us consider the edge e;, between two adjacent cliques
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Fig. 3. Schematic examples (a) a ring of cliques; adjacent cliques are connected through
a single link (b) a network with 2 cliques of size k and 2 cliques of size p.

in the first network. Since z and y do not have any common neighbors, the
edge between them has a non-positive weight. Therefore, by maximizing STWO
measure in our algorithm, the adjacent cliques will not be merged. For the edge
exy between the cliques of size p in the second network, since x and y have at
most one common neighbor, the edge between them has a non-positive weight.
Therefore, the cliques in the second network will not be merged either.

5 Experimental Results

We compared the performance of our method with the most widely used and
efficient algorithms, as pointed out in several recent state of art studies [8,29],
on both real and synthetic networks. The algorithms are: 1- Fastgreedy [6]; 2-
Infomap; 3- Infomap+ which is Infomap to which we added the third step of
our algorithm (to relieve its sensitivity to the field of view limit and demon-
strate that our framework can be used to improve other algorithms); 4- Label
Propagation [22]; 5- Louvain! [5]; 6- Walktrap? [20]. It should be noted that
Infomap is the only algorithm that suffers from the filed of view limit among
these algorithms.

The results are evaluated according to the Adjusted Rand Index (ARI) [14]
and Normalized Mutual Information (NMI) [26]. As both ARI and NMI show
similar results, we only present ARI results for lack of space. We also compared
the results of different methods according to the ratio of the number of detected
communities over the true number of communities in the ground-truth to observe
how a method is affected by the resolution and the field of view limits.

5.1 Real Networks

We used 5 real networks and the ground-truth communities are available for 4
of them. Table 1 presents the properties of these networks.

We compared SIWO and Louvain on Eurosis network [9] which represents
scientific web pages from 12 Furopean countries and the hyperlinks between
them without known ground-truth communities. However, since each European
country has its own language, web pages in different countries are sparsely con-
nected to each other. Moreover, as reported in [9], some of the countries can be

! https://github.com/taynaud/python-louvain.
2 https://www-complexnetworks.lip6.fr/~latapy /PP /walktrap.html.
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Table 1. Properties of real networks

Network #nodes | #edges | #C | Network #nodes | #edges | #C
Karate [30] | 34 78 2 | Eurosis [9] |1218 5999
Polbooks® | 105 441 3 | Polblogs [1] | 1222 16717 |2

Football [13]| 115|613 |12
“http://www.orgnet.com

divided into smaller components e.g. Montenegro network includes three com-
ponents: 1- Telecom and Engineering, 2- Faculties and 3- High Schools. Louvain
detects 13 communities whereas SIWO detects 16 communities in this network.
Louvain assigns all nodes in Montenegro network to one giant community. How-
ever, SIWO puts Faculties and High Schools in one community and Telecom
and Engineering web pages in another community. These two communities are
connected to each other with only 7 links. However, Louvain cannot separate
them due to its resolution limit.

Table 2. Comparison of 7 algorithms according to ARI and the ratio of the number
of detected communities over the true number of communities in the ground-truth on
real networks. Tables shows the average results and standard deviation computed on
10 iterations of the algorithms on each network.

Karate Polbooks | Football | Polblogs
SIWO ARI |[1+0 0.67+0 0.79+0 (07740
C/C.|1£0 1.3+40 |[1+0 1.5+0
Fastgreedy | ARI [0.68+0 [0.63+0 [0.47+0 |0.7840
C/C {1540 [1.3+£0 [05+0 |5+£0
Infomap |ARI [0.74+0 [0.64+0 [0.84+0 |0.6840
C/C|1.5£0 [1.6£0 |0.9+0 |17.5+0
Infomap4+ |ARI [0.70+£0 [0.66+0 [0.84+0/0.7640
C/Cr-|1.54£0 |13+£0 (0940 [1.5+0
Label_prop | ARI [0.66+£0.3/0.66+0 [0.73+0 |0.8+0
C/C, 124035 1.14+0.1/0.8+0.1 21+0
Louvain ARI [046+0 |055+0 [0.8+0 |0.77+0

C/C. 240 1.3+£0 |08+0 |45+0
Walktrap |ARI [0.32+£0 (065+0 [0.81+0 [0.76%0
C/C.|34+0 1.3+£0 [08+0 [5540

Table 2 presents the comparison with respect to ARI and C/C,., the ratio
of the number of detected communities over the true number of communities
(both ARI and C/C,. should be as close to 1 as possible) in the ground-truth,
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on real networks with ground-truth communities. It shows that SIWO performs
better on Karate and Polbooks based on ARI. It also outperforms the others
methods on Karate, Football, and Polblogs networks according to C'/C,. measure
(SIWO could detect the exact communities with respect to the ground-truth on
these networks). Infomap detects a considerably larger number of communities
in Polblogs network which indicates this algorithm is sensitive to the field of view
limit [25]. However, Infomap+ is much less sensitive to this limit which implies
the third step of SIWO, added to Infomap+, is effective in resolving the field
of view limit. Considering results for all networks, SIWO is the top performer
among these algorithms on a variety of networks.

5.2 Synthetic Networks

To analyze the effect of the resolution and field of view limit, it is important to
test how community detection algorithms perform on networks with small/large
communities. Therefore, in this work we generated two sets of networks using
LFR [16] to test the different algorithms: one with large communities and one
with small communities. The first set is in favor of algorithms that suffer from
resolution limit such as Louvain and the second set is in favor of algorithms with
field of view limit such as Infomap. Each set includes networks with a varying
number of nodes and mixing parameter. The mixing parameter controls the frac-
tion of edges that lie between communities. We do not generate networks with
mixing parameter >0.5 since beyond this point and including 0.5, the communi-
ties in the ground truth no longer satisfy the definition of community. The input
parameters used to generate these two sets are presented in Table 3. Figures4
and 5 present respectively ARI or the ratio of the number of detected com-
munities over the true number of communities (C/C,.). Panels correspond to
networks with a specific number of nodes (1000 to 100000) and they are divided
into two parts; the lower (respectively upper) part illustrates the average ARI
(or C/C,.) (respectively standard deviation) computed over 20 graphs (10 small
and 10 large communities) as a function of the mixing parameter.

Table 3. Input parameters of LFR benchmark: Set 1 contains networks with large com-
munities and Set 2 contains networks with small communities. For each combination
of parameters we generated 10 networks.

Set 1 Set 2
#nodes (N) [1,10,50,100] x 10® | [1, 10,50, 100] x 10°
Average and max degrees 20 - N/10 20 -V N
Mixing parameter [1,...,7] x0.1 [1,...,7] x0.1
Min and max community sizes | N/20 - N/10 Default - by defaultv/N

Figure 4 shows the performance of Fastgreedy decreases as the mixing param-
eter increases. Louvain and Walktrap perform well on the smallest networks in
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the set; however, its performance drops when we apply it to the networks with
sizes 50000 and larger. Label propagation, Infomap and Infomap+ perform well
up to when the mixing parameter reaches 0.3. However, a larger mixing param-
eter causes a rapid decrease in the ARI value when applying these algorithms to
the two largest networks in the set. These three algorithms have a large standard
deviation and their outputs are not stable on these networks. SIWO correctly
detects the communities when the mixing parameter is less than or equal to 0.3
(ARI ~ 1) regardless of size of the network and has the best performance overall.
Figure 5 clearly shows the resolution limit of Louvain and Fastgreedy as they
underestimate the number of communities. SIWO is the best performer in terms
of the number of communities and it has a very small standard deviation whereas,
Infomap+ and Label propagation have a large standard deviation and fail to find
the correct number of communities when the mixing parameter exceeds 0.3.
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Fig. 4. Evaluation according to ARI Fig. 5. Evaluation of SIWO, Label

on synthetic networks generated with propagation, Infomap+, Louvain and

LFR. Fastgreedy according to C'/C, on syn-
thetic networks generated with LFR.

6 Scalability

We analyze how the computational cost of SIWO varies with the size of the
network. The pre-processing step has two phases: removing dangling nodes which
requires a time of the order of n where n is the number of nodes, and calculating
the edge strength weights which requires a time of the order of nd? = 2md where
m is the number of edges and d is the average degree. In many real networks d is
much smaller than n and it does not grow with n [10]. The second and third step
follows the same greedy process as Louvain does. Louvain is theoretically cubic
but was demonstrated experimentally to be quasi-linear [3] and has been applied
with success to handle large size networks having several million nodes, and 100
million links. The time complexity of the post-processing step depends on the
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number of Lone communities and if all the nodes are in Lone communities, it
requires a time O(nd?). Overall, the time complexity of SIWO is O(n + md),
which is similar to Louvain due to the fact that d is small and n = 2m/d.
SIWO can detect communities in a networks with 100000 nodes and 1 million
edges, in about 1min on a commodity i7 and 8GB RAM laptop. The current
implementation of SIWO is in Python?, derived from python-louvain.

7 Conclusion

This paper introduces SIWO, a novel objective function based on edge strength
for community detection, and a formal definition of community, that we use to
lead the community detection process after optimizing the objective function.
This framework can also be applied to other community detection methods to
remedy their inability that causes the resolution or the field of view limit. Our
extensive experiments using both small and large networks confirm that our algo-
rithm is consistent, effective and scalable for networks with either large or small
communities demonstrating less sensitivity to the resolution limit and field of
view limit that most community mining algorithms suffer from. As a future direc-
tion, we will generalize the proposed algorithm for weighted/directed networks.
Notably, SIWO algorithm can be easily generalized to handle weighted graphs. It
requires only to adjust the pre-processing step by combining the weights from the
input graph and the weights computed by SIWO to evaluate the edge strength.
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