
Michael R. Berthold
Ad Feelders
Georg Krempl (Eds.)

LN
CS

 1
20

80

18th International Symposium on Intelligent Data Analysis, IDA 2020
Konstanz, Germany, April 27–29, 2020
Proceedings

Advances in
Intelligent Data Analysis XVIII

Lecture Notes in Computer Science 12080

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Michael R. Berthold • Ad Feelders •

Georg Krempl (Eds.)

Advances in
Intelligent Data Analysis XVIII
18th International Symposium on Intelligent Data Analysis, IDA 2020
Konstanz, Germany, April 27–29, 2020
Proceedings

Editors
Michael R. Berthold
University of Konstanz
Konstanz, Germany

Ad Feelders
Utrecht University
Utrecht, The Netherlands

Georg Krempl
Utrecht University
Utrecht, The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-44583-6 ISBN 978-3-030-44584-3S (eBook)
https://doi.org/10.1007/978-3-030-44584-3

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© The Editor(s) (if applicable) and The Author(s) 2020. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-9095-3283
https://orcid.org/0000-0003-4525-1949
https://orcid.org/0000-0002-4153-2594
https://doi.org/10.1007/978-3-030-44584-3
http://creativecommons.org/licenses/by/4.0/

Preface

We are proud to present the proceedings of the 18th International Symposium on
Intelligent Data Analysis (IDA 2020), which was held during April 27–29, 2020, in
Konstanz, Germany. The first symposium of this series was organized in 1995 and held
biannually until 2009, when the conference switched to being held annually. Following
demand expressed by the IDA community in a survey held in 2018, IDA 2020 was the
first of the series to take place in spring rather than fall, as was common before.

The switch to April, and a more organized outreach to the community, coincided
with an increase in the number of submissions from 65 in 2018, to 114 in 2020. After a
rigorous review process, 45 of these 114 submissions were accepted for presentation.
Almost all submissions were reviewed by at least three Program Committee
(PC) members (only two papers had two reviews) and a substantial number of sub-
missions received more than three reviews. In addition to the PC, the review process
also involved program chair advisors – a select set of senior researchers with a
multi-year involvement in the IDA symposium series. Whenever a program chair
advisor flagged a paper with an informed, thoughtful, positive review due to the paper
presenting a particularly interesting and novel idea, the paper was accepted irrespective
of the other reviews. Each accepted paper was offered a slot for either oral presentation
(15 papers) or poster presentation (30 papers).

We wish to express our gratitude to the authors of all submitted papers for their
high-quality contributions; to the PC members and additional reviewers for their efforts
in reviewing, discussing, and commenting on all submitted papers; to the program chair
advisors for their active involvement; and to the IDA council for their ongoing guid-
ance and support. Many people have helped behind the scenes to make IDA 2020
possible, but this year we are particularly grateful to our publicity chairs who helped
spread the word: Daniela Gawehns and Hugo Manuel Proença!

February 2020 Georg Krempl
Ad Feelders

Michael R. Berthold

Organization

Program Chairs

Georg Krempl Utrecht University, The Netherlands
Ad Feelders Utrecht University, The Netherlands

Program Chair Advisors

Niall Adams Imperial College London, UK
Michael R. Berthold University of Konstanz, Germany
Hendrik Blockeel Katholieke Universiteit Leuven, Belgium
Elizabeth Bradley University of Colorado Boulder, USA
Tijl De Bie Ghent University, Belgium
Wouter Duivesteijn Eindhoven University of Technology, The Netherlands
Elisa Fromont Université de Rennes 1, France
Johannes Fürnkranz Johannes Kepler University Linz, Austria
Jaakko Hollmén Aalto University, Finland
Frank Höppner Ostfalia University of Applied Sciences, Germany
Frank Klawonn Ostfalia University of Applied Sciences, Germany
Arno Knobbe Leiden University, The Netherlands
Rudolf Kruse University of Magdeburg, Germany
Nada Lavrač Jozef Stefan Institute, Slovenia
Matthijs van Leeuwen Leiden University, The Netherlands
Xiaohui Liu Brunel University, UK
Panagiotis Papapetrou Stockholm University, Sweden
Arno Siebes Utrecht University, The Netherlands
Stephen Swift Brunel University, UK
Hannu Toivonen University of Helsinki, Finland
Allan Tucker Brunel University, UK
Albrecht Zimmermann Université Caen Normandie, France

Program Committee

Fabrizio Angiulli DEIS, University of Calabria, Italy
Martin Atzmueller Tilburg University, The Netherlands
José Luis Balcázar Universitat Politècnica de Catalunya, Spain
Giacomo Boracchi Politecnico di Milano, Italy
Christian Borgelt Universität Salzburg, Austria
Henrik Boström KTH Royal Institute of Technology, Sweden
Paula Brito University of Porto, Portugal
Dariusz Brzezinski Poznań University of Technology, Poland
José Del Campo-Ávila Universidad de Málaga, Spain

Cassio de Campos Eindhoven University of Technology, The Netherlands
Andre de Carvalho University of São Paulo, Brazil
Paulo Cortez University of Minho, Portugal
Bruno Cremilleux Université de Caen Normandie, France
Brett Drury LIAAD-INESC-TEC, Portugal
Saso Dzeroski Jozef Stefan Institute, Slovenia
Nuno Escudeiro Instituto Superior de Engenharia do Porto, Portugal
Douglas Fisher Vanderbilt University, USA
Joao Gama University of Porto, Portugal
Lawrence Hall University of South Florida, USA
Barbara Hammer Bielefeld University, Germany
Martin Holena Institute of Computer Science, Czech Republic
Tomas Horvath Eötvös Loránd University, Hungary
Francois Jacquenet Laboratoire Hubert Curien, France
Baptiste Jeudy Laboratoire Hubert Curien, France
Ulf Johansson Jönköping University, Sweden
Alipio M. Jorge University of Porto, Portugal
Irena Koprinska The University of Sydney, Australia
Daniel Kottke University of Kassel, Germany
Petra Kralj Novak Jozef Stefan Institute, Slovenia
Mark Last Ben-Gurion University of the Negev, Israel
Niklas Lavesson Jönköping University, Sweden
Daniel Lawson University of Bristol, UK
Jefrey Lijffijt Ghent University, Belgium
Ling Luo The University of Melbourne, Australia
George Magoulas Birkbeck University of London, UK
Vlado Menkovski Eindhoven University of Technology, The Netherlands
Vera Migueis University of Porto, Portugal
Decebal Constantin Mocanu Eindhoven University of Technology, The Netherlands
Emilie Morvant University of Saint-Etienne, LaHC, France
Mohamed Nadif Paris Descartes University, France
Siegfried Nijssen Université Catholique de Louvain, Belgium
Andreas Nuernberger Otto-von-Guericke University of Magdeburg, Germany
Kaustubh Raosaheb Patil Massachusetts Institute of Technology, USA
Mykola Pechenizkiy Eindhoven University of Technology, The Netherlands
Jose-Maria Pena Universidad Politécnica de Madrid, Spain
Ruggero G. Pensa University of Torino, Italy
Marc Plantevit LIRIS, Université Claude Bernard Lyon 1, France
Lubos Popelinsky Masaryk University, Czech Republic
Eric Postma Tilburg University, The Netherlands
Miguel A. Prada Universidad de Leon, Spain
Ronaldo Prati Universidade Federal do ABC, UFABC, Brazil
Peter van der Putten Leiden University and Pegasystems, The Netherlands
Jesse Read École Polytechnique, France
Antonio Salmeron University of Almería, Spain
Vítor Santos Costa University of Porto, Portugal

viii Organization

Christin Seifert University of Twente, The Netherlands
Roberta Siciliano University of Naples Federico II, Italy
Jerzy Stefanowski Poznań University of Technology, Poland
Frank Takes Leiden University and University of Amsterdam,

The Netherlands
Maguelonne Teisseire Irstea, UMR Tetis, France
Ljupco Todorovski University of Ljubljana, Slovenia
Melissa Turcotte LANL, USA
Cor Veenman Netherlands Forensic Institute, The Netherlands
Veronica Vinciotti Brunel University, UK
Filip Zelezny Czech Technical University, Czech Republic
Leishi Zhang Middlesex University, UK

Organization ix

Contents

Multivariate Time Series as Images: Imputation Using Convolutional
Denoising Autoencoder . 1

Abdullah Al Safi, Christian Beyer, Vishnu Unnikrishnan,
and Myra Spiliopoulou

Dual Sequential Variational Autoencoders for Fraud Detection 14
Ayman Alazizi, Amaury Habrard, François Jacquenet,
Liyun He-Guelton, and Frédéric Oblé

A Principled Approach to Analyze Expressiveness and Accuracy
of Graph Neural Networks . 27

Asma Atamna, Nataliya Sokolovska, and Jean-Claude Crivello

Efficient Batch-Incremental Classification Using UMAP for Evolving
Data Streams . 40

Maroua Bahri, Bernhard Pfahringer, Albert Bifet, and Silviu Maniu

GraphMDL: Graph Pattern Selection Based on Minimum
Description Length . 54

Francesco Bariatti, Peggy Cellier, and Sébastien Ferré

Towards Content Sensitivity Analysis . 67
Elena Battaglia, Livio Bioglio, and Ruggero G. Pensa

Gibbs Sampling Subjectively Interesting Tiles. 80
Anes Bendimerad, Jefrey Lijffijt, Marc Plantevit, Céline Robardet,
and Tijl De Bie

Even Faster Exact k-Means Clustering . 93
Christian Borgelt

Ising-Based Consensus Clustering on Specialized Hardware 106
Eldan Cohen, Avradip Mandal, Hayato Ushijima-Mwesigwa,
and Arnab Roy

Transfer Learning by Learning Projections from Target to Source 119
Antoine Cornuéjols, Pierre-Alexandre Murena, and Raphaël Olivier

Computing Vertex-Vertex Dissimilarities Using Random Trees:
Application to Clustering in Graphs. 132

Kevin Dalleau, Miguel Couceiro, and Malika Smail-Tabbone

Evaluation of CNN Performance in Semantically Relevant Latent Spaces. . . . 145
Jeroen van Doorenmalen and Vlado Menkovski

Vouw: Geometric Pattern Mining Using the MDL Principle 158
Micky Faas and Matthijs van Leeuwen

A Consensus Approach to Improve NMF Document Clustering 171
Mickael Febrissy and Mohamed Nadif

Discriminative Bias for Learning Probabilistic Sentential
Decision Diagrams . 184

Laura Isabel Galindez Olascoaga, Wannes Meert, Nimish Shah,
Guy Van den Broeck, and Marian Verhelst

Widening for MDL-Based Retail Signature Discovery 197
Clément Gautrais, Peggy Cellier, Matthijs van Leeuwen,
and Alexandre Termier

Addressing the Resolution Limit and the Field of View Limit
in Community Mining . 210

Shiva Zamani Gharaghooshi, Osmar R. Zaïane, Christine Largeron,
Mohammadmahdi Zafarmand, and Chang Liu

Estimating Uncertainty in Deep Learning for Reporting Confidence:
An Application on Cell Type Prediction in Testes Based on Proteomics 223

Biraja Ghoshal, Cecilia Lindskog, and Allan Tucker

Adversarial Attacks Hidden in Plain Sight . 235
Jan Philip Göpfert, André Artelt, Heiko Wersing, and Barbara Hammer

Enriched Weisfeiler-Lehman Kernel for Improved Graph Clustering
of Source Code. 248

Frank Höppner and Maximilian Jahnke

Overlapping Hierarchical Clustering (OHC) . 261
Ian Jeantet, Zoltán Miklós, and David Gross-Amblard

Digital Footprints of International Migration on Twitter 274
Jisu Kim, Alina Sîrbu, Fosca Giannotti, and Lorenzo Gabrielli

Percolation-Based Detection of Anomalous Subgraphs
in Complex Networks . 287

Corentin Larroche, Johan Mazel, and Stephan Clémençon

A Late-Fusion Approach to Community Detection
in Attributed Networks . 300

Chang Liu, Christine Largeron, Osmar R. Zaïane,
and Shiva Zamani Gharaghooshi

xii Contents

Reconciling Predictions in the Regression Setting: An Application
to Bus Travel Time Prediction . 313

João Mendes-Moreira and Mitra Baratchi

A Distribution Dependent and Independent Complexity Analysis
of Manifold Regularization. 326

Alexander Mey, Tom Julian Viering, and Marco Loog

Actionable Subgroup Discovery and Urban Farm Optimization 339
Alexandre Millot, Romain Mathonat, Rémy Cazabet,
and Jean-François Boulicaut

AVATAR - Machine Learning Pipeline Evaluation
Using Surrogate Model . 352

Tien-Dung Nguyen, Tomasz Maszczyk, Katarzyna Musial,
Marc-André Zöller, and Bogdan Gabrys

Detection of Derivative Discontinuities in Observational Data. 366
Dimitar Ninevski and Paul O’Leary

Improving Prediction with Causal Probabilistic Variables 379
Ana Rita Nogueira, João Gama, and Carlos Abreu Ferreira

DO-U-Net for Segmentation and Counting: Applications to Satellite
and Medical Images . 391

Toyah Overton and Allan Tucker

Enhanced Word Embeddings for Anorexia Nervosa Detection
on Social Media . 404

Diana Ramírez-Cifuentes, Christine Largeron, Julien Tissier,
Ana Freire, and Ricardo Baeza-Yates

Event Recognition Based on Classification of Generated Image Captions 418
Andrey V. Savchenko and Evgeniy V. Miasnikov

Human-to-AI Coach: Improving Human Inputs to AI Systems 431
Johannes Schneider

Aleatoric and Epistemic Uncertainty with Random Forests 444
Mohammad Hossein Shaker and Eyke Hüllermeier

Master Your Metrics with Calibration . 457
Wissam Siblini, Jordan Fréry, Liyun He-Guelton, Frédéric Oblé,
and Yi-Qing Wang

Supervised Phrase-Boundary Embeddings . 470
Manni Singh, David Weston, and Mark Levene

Contents xiii

Predicting Remaining Useful Life with Similarity-Based Priors 483
Youri Soons, Remco Dijkman, Maurice Jilderda, and Wouter Duivesteijn

Orometric Methods in Bounded Metric Data. 496
Maximilian Stubbemann, Tom Hanika, and Gerd Stumme

Interpretable Neuron Structuring with Graph Spectral Regularization 509
Alexander Tong, David van Dijk, Jay S. Stanley III, Matthew Amodio,
Kristina Yim, Rebecca Muhle, James Noonan, Guy Wolf,
and Smita Krishnaswamy

Comparing the Preservation of Network Properties by Graph Embeddings . . . 522
Rémi Vaudaine, Rémy Cazabet, and Christine Largeron

Making Learners (More) Monotone . 535
Tom Julian Viering, Alexander Mey, and Marco Loog

Combining Machine Learning and Simulation to a Hybrid Modelling
Approach: Current and Future Directions . 548

Laura von Rueden, Sebastian Mayer, Rafet Sifa, Christian Bauckhage,
and Jochen Garcke

LiBRe: Label-Wise Selection of Base Learners in Binary Relevance
for Multi-label Classification . 561

Marcel Wever, Alexander Tornede, Felix Mohr, and Eyke Hüllermeier

Angle-Based Crowding Degree Estimation
for Many-Objective Optimization . 574

Yani Xue, Miqing Li, and Xiaohui Liu

Author Index . 587

xiv Contents

Multivariate Time Series as Images:
Imputation Using Convolutional

Denoising Autoencoder

Abdullah Al Safi, Christian Beyer(B), Vishnu Unnikrishnan,
and Myra Spiliopoulou

Fakultät für Informatik, Otto-von-Guericke-Universität,
Postfach 4120, 39106 Magdeburg, Germany

abdullah.safi@st.ovgu.de,

{christian.beyer,vishnu.unnikrishnan,myra}@ovgu.de

Abstract. Missing data is a common occurrence in the time series
domain, for instance due to faulty sensors, server downtime or patients
not attending their scheduled appointments. One of the best methods to
impute these missing values is Multiple Imputations by Chained Equa-
tions (MICE) which has the drawback that it can only model linear rela-
tionships among the variables in a multivariate time series. The advance-
ment of deep learning and its ability to model non-linear relationships
among variables make it a promising candidate for time series imputa-
tion. This work proposes a modified Convolutional Denoising Autoen-
coder (CDA) based approach to impute multivariate time series data
in combination with a preprocessing step that encodes time series data
into 2D images using Gramian Angular Summation Field (GASF). We
compare our approach against a standard feed-forward Multi Layer Per-
ceptron (MLP) and MICE. All our experiments were performed on 5
UEA MTSC multivariate time series datasets, where 20 to 50% of the
data was simulated to be missing completely at random. The CDA model
outperforms all the other models in 4 out of 5 datasets and is tied for
the best algorithm in the remaining case.

Keywords: Convolutional Denoising Autoencoder · Gramian Angular
Summation Field · MICE · MLP. · Imputation · Time series

1 Introduction

Time series data resides in various domains of industries and research fields
and is often corrupted with missing data. For further use or analysis, the data
often needs to be complete, which gives the rise to the need for imputation
techniques with enhanced capabilities of introducing least possible error into
the data. One of the most prominent imputation methods is MICE which uses
iterative regression and value replacement to achieve state-of-the-art imputation
quality but has the drawback that it can only model linear relationships among
variables (dimensions).
c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 1–13, 2020.
https://doi.org/10.1007/978-3-030-44584-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_1

2 A. A. Safi et al.

In past few years, different deep learning architectures were able to break into
different problem domains, often exceeding previously achieved performances by
other algorithms [7]. Areas like speech recognition, natural language process-
ing, computer vision, etc. were greatly impacted and improved by deep learning
architectures. Deep learning models have a robust capability of modelling latent
representation of the data and non-linear patterns, given enough training data.
Hence, this work presents a deep learning based imputation model called Con-
volutional Denoising Autoencoder (CDA) with altered convolution and pooling
operations in Encoder and Decoder segments. Instead of using the traditional
steps of convolution and pooling, we use deconvolution and upsampling which
was inspired by [5]. The time series to image transformation mechanisms pro-
posed in [12] and [13] were inherited as a preprocessing step as CDA models
are typically designed for images. As rival imputation models, Multiple Imputa-
tion by Chained Equations (MICE) and a Multi Layer Perceptron (MLP) based
imputation were incorporated.

2 Related Work

Three distinct types of missingness in data were identified in [8]. The first one
is Missing Completely At Random (MCAR), where the missingness of the data
does not depend on itself or any other variables. In Missing At Random (MAR)
the missing value depends on other variables but not on the variable where the
data is actually missing and in Missing Not At Random (MNAR) the missingness
of an observation depends on the concerned variable itself. All the experiments
in this study were carried out on MCAR missingness as reproducing MAR and
MNAR missingness can be challenging and hard to distinguish [5].

Multiple Imputation by Chained Equations (MICE) has secured its place as
a principal method for imputing missing data [1]. Costa et al. in [3] experimented
and showed that MICE offered the better imputation quality than a Denoising
Autoencoder based model for several missing percentages and missing types.

A novel approach was proposed in [14], incorporating General Adversarial
Networks (GAN) to perform imputations, thus authors named it Generative
Adversarial Imputation Nets (GAIN). The approach imputed significantly well
against some state-of-the-art imputation methods including MICE. An Autoen-
coder based approach was proposed in [4], which was compared against an Arti-
ficial Neural Network (NN) model on MCAR missing type and several missing
percentages. The proposed model performed well against NN. A novel Denoising
Autoencoder based imputation using partial loss (DAPL) approach was pre-
sented in [9], where different missing data percentages and MCAR missing type
were simulated in a breast cancer dataset. The comparisons incorporated sta-
tistical, machine learning based approaches and standard Denoising Autoen-
coder (DAE) model where DAPL outperformed DAE and all the other models.
An MLP based imputation approach was presented for MCAR missingness in
[10] and also outperformed other statistical models. A Convolutional Denois-
ing Autoencoder model which did not impute missing data but denoised audio

Convolutional Denoising Autoencoder Based Imputation 3

signals was presented in [15]. A Denoising Autoencoder with more units in the
encoder layer than input layer was presented in [5] and achieved good impu-
tation results against MICE. Our work was inspired from both of these works
which is why we combined the two approaches into a Convolutional Denoising
Autoencoder which maps input data into a higher subspace in the Encoder.

3 Methodology

In this section we first describe how we introduce missing data in our datasets,
then we show the process used to turn multivariate time series into images
which is required by one of our imputation methods and finally we introduce the
imputation methods which were compared in this study.

3.1 Simulating Missing Data

Simulating missing data is a mechanism of artificially introducing unobserved
data into a complete time series dataset. Our experiment incorporated 20%,
30%, 40% and 50% of missing data and the missing type was MCAR. Introducing
MCAR missingness is quite a simple approach as it does not depend on observed
or unobserved data. Many studies assume MCAR missing type quite often when
there is no concrete evidence of missingness type [6]. In this experimental frame-
work, values at randomly selected indices were erased from randomly selected
variables which simulated MCAR missingness of different percentages.

3.2 Translating Time Series into Images

A novel approach of encoding time series data into various types of images using
Gramian Angular Field (GAF) was presented in [12] to improve classification
and imputation. One of the variants of GAF was Gramian Angular Summation
Field (GASF), which comprised of multiple steps to perform the encoding. First,
the time series is scaled within [−1, 1] range.

x′
i =

(xi − Max(X)) + (xi − Min(X))
Max(X) − Min(X)

(1)

Here, xi is a specific value at timepoint i where x′
i is derived by scaling and

X is the time series. The time series is scaled within [−1, 1] range in order to be
represented as polar coordinates achieved by applying angular cosine.

θi = arccos(x′
i){−1 <= x′

i <= 1, x′
i ∈ X} (2)

The polar encoded time series vector is then transformed into a matrix. If
the length of the time series vector is n, then the transformed matrix is of shape
(n × n).

GASFi,j = cos(θi + θj) (3)

4 A. A. Safi et al.

The GASF represents the temporal features in the form of an image where
the timestamps move along top-left to bottom-right, thereby preserving the time
factor in the data. Figure 1 shows the different steps of time series to image
transformation.

Fig. 1. Time series to image transformation

The methods of encoding time series into images described in [12] were only
applicable for univariate time series. The GASF transformation generates one
image for one time series dimension and thus it is possible to generate multiple
images for multivariate time series. An approach which vertically stacked images
transformed from different variables was presented in [13], see Fig. 2. The images
were grayscaled and the different orders of vertical stacking (ascending, descend-
ing and random) were examined by performing a statistical test. The stacking
order did not impact classification accuracy.

Fig. 2. Vertical stacking of images transformed from different variables

Convolutional Denoising Autoencoder Based Imputation 5

3.3 Convolutional Denoising Autoencoder

Autoencoder is a very popular unsupervised deep learning model frequently
found in different application areas. Autoencoder is unsupervised in fashion and
reconstructs the original input by discovering robust features in the hidden layer
representation. The latent representation of high dimensional data in the hid-
den layer contributes in reconstructing the original data. The architecture of
Autoencoder consists of two principal segments named Encoder and Decoder.
The Encoder usually compresses the original representation of the data into
lower dimension. The Decoder decodes the low dimensional representation of
the input back into its original dimensional representation.

Encoder(xn) = s(xnWE + bE) = xd (4)

Decoder(xd) = s(xdWD + bD) = xn (5)

Here, xn is the original input with n dimensions. s is any non-linear activation
function, W is weight and b is bias.

Denoising Autoencoder model is an extension of Autoencoder where the input
is reconstructed from a corrupted version of it. There are different ways of adding
corruption, such as Gaussian noise, setting some values to zero etc. The noisy
input is fed as input and the model minimizes the loss between the clean input
and corrupted reconstructed input. The objective function looks as follows

RMSE(X,X ′)
1
n

√
|Xclean − X ′

reconstructed|2 (6)

Convolutional Denoising Autoencoder (CDA) incorporates convolution oper-
ation which is ideally performed in Convolutional Neural Networks (CNN). CNN
is a methodology, where the layers of perceptrons are replaced by convolution
layers and convolution operation is performed on the data. Convolution is defined
as multiplication of two function within a finite or infinite range, where two func-
tions refer to input data (e.g. Image) and a fixed size kernel consecutively. The
kernel traverses through the input space to generate feature maps. The feature
maps consist of important features of the data. The multiple features are pooled,
preserving important features.

The combination of convoluted feature maps generation and pooling is per-
formed in the Encoder layer of CDA where the corrupted version of the input is
fed into the input layer of the network. The Decoder layer performs Deconvolu-
tiont and Upsampling which decompresses the output coming from Encoder layer
back into the shape of input data. The loss between reconstructed data and clean
data is minimized. In this work, the default architecture of CDA is tweaked in
the favor of imputing multivariate time series data. Deconvolution and Upsam-
pling were performed in the Encoder layer and Convolution and Maxpooling
was performed in Decoder layer. The motivation behind this specific tweaking
came from [5], where a Denoising Autoencoder was designed with more hidden
units in the Encoder layer than input layer. The high dimensional representation

6 A. A. Safi et al.

in Encoder layer created additional feature which was the contributor of data
recovery.

3.4 Competitor Models

Multiple Imputation by Chained Equations (MICE): MICE, which is sometimes
addressed as fully conditional specification or sequential regression multiple
imputation, has emerged in the statistical literature as the principal method
of addressing missing data [1]. MICE creates multiple versions of the imputed
datasets through multiple imputation technique.

The steps for performing MICE are the following:

– A simple imputation method is performed across the time series (mean, mode
or median). The missing time points are referred as “placeholders”.

– If there are total m variables having missing points, then one of the vari-
ables are set back to missing state. The variable with “missing state” label
is considered as dependent variable and other variables are considered as
predictors.

– A regression is performed over these settings and “missing state” variable is
imputed. Different regressions are supported in this architecture but since the
dataset only contains continuous values, linear, ridge or lasso regression are
chosen.

– The remaining m − 1 “missing state” are regressed and imputed by the same
way. Once all the m variables are imputed, one iteration is completed. More
iterations are performed and the imputations are placed in the time series in
each iteration.

– The number of iterations can be determined by observing whether coefficients
of the regression model are converged or not.

According to the experimental setup of our work, MICE had three different
regression supports, namely Linear, Ridge and Lasso regression.

Multi Layer Perceptron (MLP) Based Imputation: The imputation mechanism
of MLP is inspired by the MICE algorithm. Nevertheless, MLP based impu-
tation models do not perform the chained or multiple imputations like MICE
but improve the quality of imputation over several epochs as stochastic gradient
descent optimizes the weights and biases per epoch. A concrete MLP architec-
ture was described in literature [10] which was a three layered MLP with the
hyperbolic tangent activation function in the hidden layer and the identity func-
tion (linear) as the activation function for the output layer. The train and test
split were slightly different, where training set and test set consisted of both
observed and unobserved data.

The imputation process of MLP model in our work is similar to MICE but
the non-linear activation function of MLP facilitates finding complex non-linear
patterns. However, the imputation of a variable is performed only once, in con-
trast to the multiple iterations in MICE.

Convolutional Denoising Autoencoder Based Imputation 7

4 Experiments

In this section we present the used datasets, the preprocessing steps that
were conducted before training, the chosen hyperparameters and our evalua-
tion method. Our complete imputation process for the CDA model is depicted
in Fig. 3. The process for the competitors is the same except that corrupting the
training data and turning the time series into images is not being done.

Fig. 3. Experiment steps for the CDA model

4.1 Datasets and Data Preprocessing

Our experiments were conducted on 5 time series datasets from the UEA MTSC
repository [2]. Each dataset in UEA time series archive has training and test
splits and specific number of dimensions. Each training or test split represents a
time series. The table below presents all the relevant structural details (Table 1).

Table 1. A structural summary of the 5 UEA MTSC dataset

Dataset name Number of series Dimensions Length Classes

ArticularyWordRecognition 275 9 144 25

Cricket 108 6 1197 12

Handwriting 150 3 152 26

StandWalkJump 12 4 2500 3

UWaveGestureLibrary 120 3 315 8

The Length column of the table denotes the length of each time series. In our
framework, each time series was transformed into images. The number of time
series for any of the datasets was not very high in number. As we had selected
a deep learning model for imputation, such low number of samples could cause
overfitting. Experiments showed us that the default number of time series could
not perform well. Therefore, the main idea was to increase the number of time
series by splitting them into multiple parts and reducing their corresponding
lengths. This modification facilitated us by introducing more patterns for learn-
ing which aided in imputation. The final lengths chosen were those that yielded
the best results. The table below presents the modified number of time series
and lengths for each dataset (Table 2).

8 A. A. Safi et al.

Table 2. Modified number of time series and lengths

Dataset name Number of series Dimension Length

ArticularyWordRecognition 6600 9 6

Cricket 6804 6 19

Handwriting 1200 3 19

StandWalkJump 3000 4 10

UWaveGestureLibrary 1800 3 21

The evaluation of the imputation models require a complete dataset and the
corresponding incomplete dataset. Therefore, artificial missingness was intro-
duced at different percentages (20%, 30%, 40% and 50%) into all the datasets.
After simulating artificial missingness, each dataset has an observed part, which
contains all the time series segments where no variables are missing and an
unobserved part, where at least one variable is missing. After simulating arti-
ficial missingness, each dataset had an observed and unobserved split and the
observed data was further processed for training. As CDA models learn denois-
ing from a corrupted version of the input, we introduced noise by discarding
a certain amount of values for each observed case from specific variables and
replacing them by the mean of the corresponding variables. A higher amount
of noise has seen to be contributing more in learning dependencies of different
variables, which leads to denoising of good quality [11]. The variables selected for
adding noise were the same variables having missing data in unobserved data.
Different amount of noise was examined but 90% noise lead to good results.
Unobserved data was also mean imputed as the CDA model would apply the
denoising technique on the “mean-noise” for imputation. So the CDA learns
to deal with “mean-noise” on the observed part and is then applied on mean
imputed unobserved part to create the final imputation.

The next step was to perform time series to image transformation where, all
the observed and unobserved chunks were rescaled between −1 to 1 using min-
max scaling. Rescaled data was further transformed into polar coordinates and
then GASF encoded image was achieved for each dimension. Multiple images
referring to multiple variables were vertically aggregated. Finally, both observed
and unobserved splits consisted their own set of images.

Note that, the following data preprocessing was performed only for CDA
based imputation models. The competitor models imputed using the raw format
of the data.

4.2 Model Architecture and Hyperparameters

Our Model architecture was different from a general CDA, where the Encoder
layer incorporates Deconvolution and Upsampling operations and the Decoder
layer incorporates Convolution and Maxpooling operations. The Encoder and
Decoder both have 3 layers. The table below demonstrates the structure of the
imputation model (Table 3).

Convolutional Denoising Autoencoder Based Imputation 9

Table 3. The architecture of CDA based imputation model

Operation Layer name Kernel size Number of feature maps

Encoder Upsampling up 0 (2, 2) −
Deconvolution deconv 0 (5, 5) 64

Upsampling up 1 (2, 2) −
Deconvolution deconv 1 (7, 7) 64

Upsampling up 2 (2, 2) −
Deconvolution deconv 2 (5, 6) 128

Decoder Convolution conv 0 (5, 6) 128

Maxpool pool 0 (2, 2) −
Convolution conv 1 (7, 7) 64

Maxpool pool 1 (2, 2) −
Convolution conv 2 (5, 5) 64

Maxpool pool 2 (2, 2) −

Hyperparameter specification was achieved by performing random search on
different random combinations of hyperparameter values and the root mean
square error (RMSE) was used to decide on the best combination. The random
search allowed us to avoid the exhaustive searching unlike grid search. Apply-
ing random search, we selected stochastic gradient descent (SGD) as optimizer,
which backpropagates the error to optimize the weights and biases. The number
of epochs was 100 and the batch size was 16.

4.3 Competitor Model’s Architecture and Hyperparameters

As competitor models, MICE and MLP based imputation models were selected.
MLP based model had 3 hidden layers and number of hidden units were 2/3 of
the number of input units in each layer. The hyperparameters for both of the
models were tuned by using random search.

Hyperbolic Tangent Function was selected as activation function with a
dropout of 0.3. Stochastic Gradient Descent operated as optimizer for 150 epochs
and with a batch size of 20.

MICE based imputation was demonstrated using Linear, Ridge and Lasso
regression and 10 iterations were performed for each of them.

4.4 Training

Based on the preprocessed data and model architecture described above, the
training is started. L2 regularization was used with weight of 0.01 and stochas-
tic gradient descent was used as the optimizer which outperformed Adam and
Adagrad optimizers. The whole training process was about learning to mini-
mize loss between the clean and corrupted data so that it can be applied on

10 A. A. Safi et al.

the unobserved data (noisy data after mean imputation) to perform imputation.
The training and validation split was 70% and 30%. Experiments show that, the
training and validation loss was saturated approximately after 10–15 epochs,
which was observed for most of the cases.

The training was conducted on a machine with Nvidia RTX 2060 with RAM
memory of 16 GB. The programming language for the training and all the steps
above was Python 3.7 and the operating system was Ubuntu 16.04 LTS.

4.5 Evaluation Criteria

As all the time series dataset contain continuous numeric values, Root Mean
Square Error (RMSE) was selected for evaluation. In out experimental setup,
RMSE is not calculated on overall time series but only missing data points are
taken into account to be compared with ground truth while calculating RMSE

RMSE =
√

1
mΣm

i=1(xi − x
′
i)2. Where m is the total number of missing time

points and I represents all the indices of missing values across the time series.

5 Results

Our proposed CDA based imputation model was compared with MLP and three
different versions of MICE, each using a different type of regression. Figure 4
presents the RMSE values for 20%, 30% 40% and 50% missingness.

Fig. 4. RMSE plots for different missing proportions

Convolutional Denoising Autoencoder Based Imputation 11

The RMSE values for the CDA based model are the lowest at every percent-
age of missingness on the Handwriting, ArticularyWordRecognition, UWaveG-
estureLibrary and Cricket dataset. The depiction of the results on the Cricket
dataset is omitted due to space limitations. Unexpectedly, in StandWalkJump
dataset the performance of MLP and CDA model are very similar, and MLP is
even better at 30% missingness. MICE (Linear) and MICE (Ridge) are identi-
cal in imputation for all the datasets. MICE (Lasso) performed worst of all the
models, which implies that changing the regression type could potentially cause
an impact on the imputation quality. The MLP model beat all the MICE models
but was outperformed by the CDA model in at least for 80% of the cases.

6 Conclusion

In this work, we introduce an architecture of a Convolutional Denoising Autoen-
coder (CDA) adapted for multivariate time series imputation which inflates the
size of the hidden layers in the Encoder instead of reducing them. We also
employ a preprocessing step that turns the time series into 2D images based
on Gramian Angular Summation Fields in order to make the data more suitable
for our CDA. We compare our method against a standard Multi Layer Percep-
tron (MLP) and the state-of-the-art imputation method Multiple Imputations
by Chained Equations (MICE) with three different types of regression (Linear,
Ridge and Lasso). Our experiments were conducted on five different multivariate
time series datasets, for which we simulated 20%, 30%, 40% and 50% missingness
with data missing completely at random. Our results show that the CDA based
imputation outperforms MICE on all five datasets and also beats the MLP on
four datasets. On the fifth dataset CDA and MLP perform very similarly, but
CDA is still better on four out of the five degrees of missingness. Additionally we
present a preprocessing step on the datasets which manipulates the time series
lengths to generate more training samples for our model which led to a better
performance. The results show that the CDA model performs strongly against
both linear and non-linear regression based imputation models. Deep Learning
Networks are usually computationally more intensive than MICE but the impu-
tation quality of CDA was convincing enough to be chosen over MICE or MLP
based imputation.

In the future we plan to investigate also other types of missing data apart
from Missing Completely At Random (MCAR) and want to incorporate more
datasets as well as other deep learning based approaches for imputation.

Acknowledgments. This work is partially funded by the German Research Foun-
dation, project OSCAR “Opinion Stream Classification with Ensembles and Active
Learners”. The principal investigators of OSCAR are Myra Spiliopoulou and Eirini
Ntoutsi. Additionally, Christian Beyer is also partially funded by a PhD grant from
the federal state of Saxony-Anhalt.

12 A. A. Safi et al.

References

1. Azur, M.J., Stuart, E.A., Frangakis, C., Leaf, P.J.: Multiple imputation by chained
equations: what is it and how does it work? Int. J. Methods Psychiatr. Res. 20(1),
40–49 (2011)

2. Bagnall, A., et al.: The UEA multivariate time series classification archive, 2018.
arXiv preprint arXiv:1811.00075 (2018)

3. Costa, A.F., Santos, M.S., Soares, J.P., Abreu, P.H.: Missing data imputation via
denoising autoencoders: the untold story. In: Duivesteijn, W., Siebes, A., Ukkonen,
A. (eds.) IDA 2018. LNCS, vol. 11191, pp. 87–98. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-01768-2 8

4. Duan, Y., Lv, Y., Kang, W., Zhao, Y.: A deep learning based approach for traffic
data imputation. In: 17th International IEEE Conference on Intelligent Trans-
portation Systems (ITSC), pp. 912–917. IEEE (2014)

5. Gondara, L., Wang, K.: MIDA: multiple imputation using denoising autoencoders.
In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.)
PAKDD 2018, Part III. LNCS (LNAI), vol. 10939, pp. 260–272. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-93040-4 21

6. Kang, H.: The prevention and handling of the missing data. Korean J. Anesthesiol.
64(5), 402–406 (2013)

7. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

8. Little, R.J., Rubin, D.B.: Statistical Analysis with Missing Data, vol. 793. Wiley,
Hoboken (2019)

9. Qiu, Y.L., Zheng, H., Gevaert, O.: A deep learning framework for imputing missing
values in genomic data. bioRxiv, p. 406066 (2018)

10. Silva-Ramı́rez, E.L., Pino-Mej́ıas, R., López-Coello, M., Cubiles-de-la Vega, M.D.:
Missing value imputation on missing completely at random data using multilayer
perceptrons. Neural Netw. 24(1), 121–129 (2011)

11. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing
robust features with denoising autoencoders. In: Proceedings of the 25th Interna-
tional Conference on Machine Learning, pp. 1096–1103 (2008)

12. Wang, Z., Oates, T.: Imaging time-series to improve classification and imputation.
In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)

13. Yang, C.L., Yang, C.Y., Chen, Z.X., Lo, N.W.: Multivariate time series data trans-
formation for convolutional neural network. In: 2019 IEEE/SICE International
Symposium on System Integration (SII), pp. 188–192. IEEE (2019)

14. Yoon, J., Jordon, J., Van Der Schaar, M.: Gain: missing data imputation using
generative adversarial nets. arXiv preprint arXiv:1806.02920 (2018)

15. Zhao, M., Wang, D., Zhang, Z., Zhang, X.: Music removal by convolutional denois-
ing autoencoder in speech recognition. In: 2015 Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference (APSIPA), pp. 338–341.
IEEE (2015)

http://arxiv.org/abs/1811.00075
https://doi.org/10.1007/978-3-030-01768-2_8
https://doi.org/10.1007/978-3-030-01768-2_8
https://doi.org/10.1007/978-3-319-93040-4_21
http://arxiv.org/abs/1806.02920

Convolutional Denoising Autoencoder Based Imputation 13

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Dual Sequential Variational Autoencoders
for Fraud Detection

Ayman Alazizi1,2(B), Amaury Habrard1, François Jacquenet1,
Liyun He-Guelton2, and Frédéric Oblé2

1 Univ. Lyon, Univ. St-Etienne, UMR CNRS 5516, Laboratoire Hubert-Curien,
42000 Saint-Etienne, France

{ayman.alazizi,amaury.habrard,francois.jacquenet}@univ-st-etienne.fr
2 Worldline, 95870 Bezons, France

{ayman.alazizi,liyun.he-guelton,frederic.oble}@worldline.com

Abstract. Fraud detection is an important research area where machine
learning has a significant role to play. An important task in that context,
on which the quality of the results obtained depends, is feature engineer-
ing. Unfortunately, this is very time and human consuming. Thus, in this
article, we present the DuSVAE model that consists of a generative model
that takes into account the sequential nature of the data. It combines two
variational autoencoders that can generate a condensed representation
of the input sequential data that can then be processed by a classifier to
label each new sequence as fraudulent or genuine. The experiments we
carried out on a large real-word dataset, from the Worldline company,
demonstrate the ability of our system to better detect frauds in credit
card transactions without any feature engineering effort.

Keywords: Anomaly detection · Fraud detection · Sequential data ·
Variational autoencoder

1 Introduction

An anomaly (also called outlier, change, deviation, surprise, peculiarity, intru-
sion, etc.) is a pattern, in a dataset, that does not conform to an expected behav-
ior. Thus, anomaly detection is the process of finding anomalies in a dataset [4].
Fraud detection, a subdomain of anomaly detection, is a research area where the
use of machine learning can have a significant financial impact for companies
suffering from large frauds and it is not surprising that a very large amount of
research has been conducted over many years in that field [1].

At the Wordline company, we process billions of electronic transactions per
year in our highly secured data centers. It is obvious that detecting frauds in
that context is a very difficult task. For many years, the detection of credit card
frauds within Wordline has been based on a set of rules manually designed by
experts. Nevertheless such rules are difficult to maintain, difficult to transfer to
other business lines, and dependent on experts who need a very long training
c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 14–26, 2020.
https://doi.org/10.1007/978-3-030-44584-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_2

Dual Sequential Variational Autoencoders for Fraud Detection 15

period. The contribution of machine learning in this context seems obvious and
Wordline has decided for several years to develop research in this field.

Firstly, Worldline has put a lot of effort in feature engineering [3,9,12] to
develop discriminative handcrafted features. This improved drastically super-
vised learning of classifiers that aim to label card transactions as genuine or
fraudulent. Nevertheless, designing such features requires a huge amount of time
and human resources which is very costly. Thus developing automatic feature
engineering methods becomes a critical issue to improve the efficiency of our
models. However, in our industrial setting, we have to face with many issues
among which the presence of highly imbalanced data where the fraud ratio is
about 0.3%. For this reason, we first focused on classic unsupervised approaches
in anomaly detection where the objective is to learn a model from normal
data and then isolate non-compliant samples and consider them as anoma-
lies [5,17,19,21,22].

In this context, Deep autoencoder [7] is considered as a powerful data mod-
eling tool in the unsupervised setting. An autoencoder (AE) is made up of two
parts: an encoder designed to generate a compressed coding from the training
input data and a decoder that reconstructs the original input from the com-
pressed coding. In the context of anomaly detection [6,20,22], an autoencoder is
generally trained by minimizing the reconstruction error only on normal data.
Afterwards, the reconstruction error is applied as an anomaly score. This assumes
that the reconstruction error for a normal data should be small as it is close to
the learning data, while the reconstruction error for an abnormal data should
be high.

However, this assumption is not always valid. Indeed, it has been observed
that sometimes the autoencoder generalizes so well that it can also reconstruct
anomalies, which leads to view some anomalies as normal data. This can also
be the case when some abnormal data share some characteristics of normal data
in the training set or when the decoder is “too powerful” to properly decode
abnormal codings. To solve the shortcomings of autoencoders, [13,18] proposed
the negative learning technique that aims to control the compressing capacity
of an autoencoder by optimizing conflicting objectives of normal and abnormal
data. Thus, this approach looks for a solution in the gradient direction for the
desired normal input and in the opposite direction for the undesired input.

This approach could be very appealing to deal with fraud detection prob-
lems but we found that it is sometimes not sufficient in the context of our data.
Indeed, it is generally almost impossible to obtain in advance a dataset contain-
ing all representative frauds, especially in the context where unknown fraudulent
transactions occur on new terminals or via new fraudulent behaviors. This has
led us to consider more complex models with variational autoencoders (VAE), a
probabilistic generative extension of AE, able to model complex generative dis-
tributions that we found more adapted to efficiently model new possible frauds.

Another important point for credit card fraud detection is the sequential
aspect of the data. Indeed, to test a card for example, a fraudster may try to
make several (small) transactions in a short time interval, or directly perform

16 A. Alazizi et al.

an abnormally high transaction with respect to existing transactions of the true
card holder. In fact this sequential aspect has been addressed either indirectly
via aggregated features [3], that we would like to avoid designing, or directly
by sequential models such as LSTM, but [9] report nevertheless that the LSTM
did not improve much the detection performance for e-commerce transactions.
One of the main contribution of this paper is to propose a method to identify
fraudulent sequences of credit transactions in the context of highly imbalanced
data. For this purpose, we propose a model called DuSVAE, for Dual Sequen-
tial Variational Autoencoders, that consists of a combination of two variational
autoencoders. The first one is trained from fraudulent sequences of transactions
in order to be able to project the input data into another feature space and to
assign a fraud score to each sequence thanks to the reconstruction error informa-
tion. Once this model is trained, we plug a second VAE at the output of the first
one. This second VAE is then trained with a negative learning approach with
the objective to maximize the reconstruction error of the fraudulent sequences
and minimize the reconstruction error of the genuine ones.

Our method has been evaluated on a Wordline dataset for credit card fraud
detection. The obtained results show that DuSVAE can extract hidden represen-
tations able to provide results close to those obtained after a significant work of
feature engineering, therefore saving time and human effort. It is even possible
to improve the results when combining engineered features with DuSVAE.

The article is organized as follows: some preliminaries about the techniques
used in this work are given in Sect. 2. Then we describe the architecture and the
training strategy of the DusVAE method in Sect. 3. Experiments are presented
in Sect. 4 after a presentation of the dataset and useful metrics. Finally Sect. 5
concludes this article.

2 Preliminaries

In this section, we briefly describe the main techniques that are used in DuSVAE:
vanilla and variational autoencoders, negative learning and mixture of experts.

2.1 Autoencoder (AE)

An AE is a neural network [7], which is optimized in an unsupervised manner,
usually used to reduce the dimensionality of the input data. It is made up of
two parts linked together: an encoder E(x) and a decoder D(z). Given an input
sample x, the encoder generates z, a condensed representation of x. The decoder
is then tuned to reconstruct the original input x from the encoded representation
z. The objective function used during the training of the AE is given by:

LAE(x) = ‖x − D(E(x))‖ (1)

where ‖ · ‖ denotes an arbitrary distance function. The �2 norm is typically
applied here. The AE can be optimized for example using stochastic gradient
descent (SGD) [10].

Dual Sequential Variational Autoencoders for Fraud Detection 17

2.2 Variational Autoencoder (VAE)

A VAE [11,16] is an attractive probabilistic generative version of the standard
autoencoder. It can learn a complex distribution and then use it as a generative
model defined by a prior p(z) and conditional distribution pθ(x|z). Due to the
fact that the true likelihood of the data is generally intractable, a VAE is trained
through maximizing the evidence lower bound (ELBO):

L(x; θ, φ) = Eqφ(z|x) [log pθ(x|z)] − DKL (qφ(z|x)‖p(z)) (2)

where the first term Eqφ(z|x) [log pθ(x|z)] is a negative reconstruction loss that
enforces qφ(z|x) (the encoder) to generate a meaningful latent vector z, so that
pθ(x|z) (the decoder) can reconstruct the input x from z. The second term
DKL (qφ(z|x)‖p(z)) is a KL regularization loss that minimizes the KL divergence
between the approximate posterior qφ(z|x) and the prior p(z) = N (0, I).

2.3 Negative Learning

Negative learning is a technique used for regularizing the training of the AE in
the presence of labelled data by limiting reconstruction capability (LRC) [13].
The basic idea is to maximize the reconstruction error for abnormal instances,
while minimizing the reconstruction error for normal ones in order to improve the
discriminative ability of the AE. Given an input instance x ∈ R

n and y ∈ {0, 1}
denotes its associated label where y = 1 stands for a fraudulent instance and
y = 0 for a genuine one. The objective function of LRC to be minimized is:

(1 − y)LAE(x) − (y)LAE(x) (3)

Training LRC-based models has the major disadvantage to be generally
unstable due to the fact that the anomaly reconstruction error is not upper
bounded. The LRC approach tends then to maximize the reconstruction error
for known anomalies rather than minimizing the reconstruction error for normal
points leading to a bad reconstruction of normal data points. To overcome this
problem, [18] has proposed Autoencoding Binary Classifiers (ABC) for super-
vised anomaly detection that improves LRC by using an objective function based
on a bounded reconstruction loss for anomalies, leading to a better training sta-
bility. The objective function of the ABC to be minimized is:

(1 − y)LAE(x) − y log2(1 − e−LAE(x)) (4)

2.4 Mixture-of-Experts Layer (MoE)

In addition to the previous methods, we now present the notion of MoE layer [8]
that will be used in our model.

The MoE layer aims to combine the outputs of a group of n neural networks
called experts EX1, EX2,, EXn. The experts have their specific parameters
but work on the same input, their n output are combined linearly with the

18 A. Alazizi et al.

Fig. 1. An illustration of the MoE layer architecture

outputs of the gating network G which weights the experts according to the
input x. See Fig. 1 for an illustration. Let Ei(x) be the output of expert EXi,
and G(x)i be the ith attribute of G(x), then the output y of the MoE is defined
as follows:

y =
n∑

i=1

G(x)iEXi(x). (5)

The intuition behind MoE layers is to train different network experts that
can focus on specific peculiarities of the data and then choose an appropriate
combination of experts with respect to the input x. In our industrial context,
such a layer would help us to take into account different behaviors from millions
of cardholders, which results in a variety of data distributions. The different
expert networks can thus model various behaviors observed in the dataset and
be combined adequately in function of the input data.

3 The DuSVAE Model

In this section, we present our approach to extract a hidden representation of
input sequences to be used for anomaly/fraud detection. We first introduce the
model architecture with the loss functions used, then we describe the learning
procedure used to train the model.

3.1 Model Architecture

We assume in the following that we are given as input a set of sequences X =
{x | x = (t1, t2,, tm) with ti ∈ R

d}, every sequence being composed of m
transactions encoded by numerical vectors. Each sequence is associated to a
label y ∈ {0, 1} such that y = 1 indicates a fraudulent sequence and y = 0 a
genuine one. We label a sequence as fraudulent if its last transaction is a fraud.

As illustrated in Fig. 2, our approach consists of two sequential variational
autoencoders. The first one is trained only on fraudulent sequences of the training
data. We use the generative capacity of this autoencoder to generate diverse and
representative instances of fraudulent instances with respect to the sequences
given as input. This autoencoder has the objective to prepare the data for the

Dual Sequential Variational Autoencoders for Fraud Detection 19

Fig. 2. The DuSVAE model architecture

second autoencoder and to provide also a first anomaly/fraud score with the
reconstruction error.

The first layers of the autoencoders are bi-directional GRU layers allowing us to
handle sequential data.The remainingparts of the encoder and thedecoder contain
GRU and fully connected (FC) layers, as shown in Fig. 2. The loss function used
to optimize the reconstruction error of the first autoencoder is defined as follows:

Lrec(x, φ1, θ1) = mse(x,Dθ1(Eφ1(x))) + DKL (qφ1(z|x)‖p(z)) , (6)

where mse is the mean square error function and p(z) = N (0, I). The encoder
Eφ1(x) generates a latent representation z according to qφ1(z|x) = N (μ1, σ1).
The decoder Dθ1 tries to reconstruct the input sequence from z. In order to
avoid mode collapse between the reconstructed transactions of the sequence,
we add the following loss function to control the reconstruction of individual
transactions with respect to relative distances from an input sequence x:

LtrxAE(x, φ1, θ1) =
m∑

i=1

m∑

j=i+1

1
d
‖abs(ti − tj) − abs(ti − t

j)‖1 (7)

where t
i is the reconstruction obtained by the AE for the ith transaction of the

sequence and abs(t) returns a vector where the features are the absolute values
of the original input vector t.

So, we train the parameters (φ1, θ1) of the first autoencoder by minimizing the
following loss function over all the fraudulent sequences of the training samples:

L1(x, φ1, θ1) = Lrec(x, φ1, θ1) + λLtrx(x, φ1, θ1), (8)

where λ is a tradeoff parameter.
The second autoencoder is then trained over all the training sequences by

negative learning. It takes as input both a sequence x and its reconstructed
version from the first autoencoder AE1(x) that corresponds to the output of its
last layer. The loss function considered to optimize the parameters (φ2, θ2) of
the second autoencoder is then defined as follows:

20 A. Alazizi et al.

L2(x,AE1(x), φ2, θ2) = (1 − y)L1(x, φ2, θ2)
−y(L1(x, φ1, θ1) + ε) log2(1 − e−L1(x,φ2,θ2)), (9)

where L1(x, φ1, θ1) denotes the reconstruction loss L1 rescaled in the [0, 1]-
interval with respect to all fraudulent sequences and ε is a small value used
to smooth very low anomaly scores. The architecture of this second autoencoder
is similar to that of the first one, except that we use a MoE layer to compute the
mean of the normal distribution N (μ2, σ2) defined by the encoder. As said pre-
viously, the objective is to take into account the variety of the different behavior
patterns found in our genuine data. The experts used in that layer are simple
one-layer feed-forward neural networks.

3.2 The Training Strategy

The global learning algorithm is presented in Algorithm 1. We have two training
phases, the first one focuses on training the first autoencoder AE1 as a backing
model for the second phase. It is trained only on fraudulent sequences by mini-
mizing Eq. 8. Once the model has converged, we freeze its weights and start the
second phase. For training the second autoencoder AE2, we use both genuine
and fraudulent sequences and their reconstructed versions given by AE1. We
then optimize the weights of AE2 by minimizing Eq. 9. To control the imbalance
ratio, the training is done at each iteration by sampling n examples from fraudu-
lent sequences and n from genuine sequences. We repeat this step iteratively by
increasing the number n of sampled transactions for each novel iteration until
the model converges.

Algorithm 1. Dual sequential variational autoencoder (DuSVAE)
1: Input: Xg genuine data, Xf fraudulent data.
2: Parameters: n number of sampled examples; h increment step.
3: Output: AE1 Autoencoder, AE2 Autoencoder.
4: repeat
5: Train AE1 on Xf by minimizing Equation 8
6: until convergence
7: Freeze the weights of AE1

8: repeat
9: X1 ← Sample(Xf , n) ∪ Sample(Xg, n)

10: X2 ← AE1(X1)
11: Train AE2 on (X1,X2) by minimizing Equation 9
12: if n ≤ |Xf | then
13: n ← n + h
14: end if
15: until convergence

Dual Sequential Variational Autoencoders for Fraud Detection 21

Table 1. Properties of the Worldline dataset used in the experiments.

Train (01/01-21/03) Validation (22/03-31/03) Test (01/04-30/04)

of genuine 25,120,194 3,019,078 9,287,673

of fraud 88,878 9,631 29,614

Total 25,209,072 3,028,709 9,317,287

Imbalance ratio 0.003526 0.00318 0.003178

4 Experiments

In this section, we provide an experimental evaluation of our approach on a
real-world dataset of credit card e-payment transactions provided by Worldline.
First, we present the dataset, then we present the metrics used to evaluate the
models learned by our system and finally, we compare DuSVAE with other state-
of-the-art approaches.

4.1 Dataset

The dataset provided by Wordline covers 4 months of credit card e-payment
transactions made by European cardholders in e-commerce mode that has been
splitted into Train, Validation and Test sets used respectively to train, tune
and test the learned models. Its main challenges have been studied in [2], one of
them being the imbalance ratio as we can see on Table 1 that presents the main
characteristics of this dataset.

Each transaction is described by 12 features. A Boolean value is assigned
to each transaction to specify whether it corresponds to a fraud or not. This
labeling is handled by a team of human experts.

Since most features have a large number of values, using brute one-hot encod-
ing would generate a huge number of features. For example the “Merchant Cate-
gory Code” feature has 283 possible values and one-hot encoding would produce
283 new features. That would make our approach inefficient. Thus, before using
one-hot encoding, we transform each categorical value of each feature by a score
which is its risk to be associated with a fraudulent transaction. Let’s consider
for example a categorical feature f . We can compute the probability of the jth

value of feature f to be associated with a fraudulent transaction, denoted as

βj , as follows: βj =
N+

f=j

Nf=j
, where N+

f=j is the number of fraudulent transactions
where the value of feature f is equal to j and Nf=j is the total number of trans-
actions where the value of feature f is equal to j. In order to take into account
the number of transactions related to a particular value of a given feature, we
follow [14]. For each value j of a given feature, the fraud score Sj for this value
is defined as follows:

Sj = α′
jβj +

(
1 − α′

j

)
AFP (10)

This score computes a weighted value of βj and the probability of having a fraud
in a day (Average Fraud Probability: AFP). The weight α′

j is a normalized value

22 A. Alazizi et al.

of αj in the range [0, 1], where αj is defined as the proportion of the number of
transactions for that value on the total number N of transactions: αj = Nf=j

N .
Having replaced each value for each feature by its score, we can then run

one-hot encoding and thus significantly reduce the number of features generated.
For example, the “Merchant Category Code” feature has 283 possible values and
instead of generating 283 features, this technique produces only 29 features.

Finally, to generate sequences from transactions, we grouped all the transac-
tions by cardholder ID and we ordered each cardholder’s transactions by time.
Then, with a sliding window over the transactions we obtained a time-ordered
sequence of transactions for each cardholder. For each sequence, we have assigned
the label fraudulent or genuine of its last transaction.

4.2 Metrics

In the context of fraud detection, fortunately, the number of fraudulent transac-
tions is significantly lower than the number of normal transactions. This leads to
a very imbalanced dataset. In this situation, the traditional performance mea-
sures are not appropriate. Indeed, with an overall fraud rate of 0.3%, classifying
each transaction as normal leads to an accuracy of 99.7%, despite the fact that
the model is absolutely naive. That means we have to choose appropriate per-
formance measures that are robust in the case of imbalanced data. In this work
we rely on the area under the precision-recall curve (AUC-PR) as a robust and
clear measure of the accuracy of the classifier in an imbalanced setting. Each
point of the precision-recall curve corresponds to the precision of the classifier
at a specific recall level.

Once an alert is raised after a fraud has been detected, fraud experts can con-
tact the card-holder to check the validity of suspicious transactions. So, within
a single day, the fraud experts have to check a large number of transactions pro-
vided by the fraud detection system. Consequently, the precision of the transac-
tions highlighted as fraud is an important metric because that can help human
experts at Worldline to focus on the most important frauds and leave aside minor
frauds due to lack of time to process them. For this purpose, we rely on the P@K

as a global metric to compare models. It is the average of the precision of the
first K transactions which are calculated according to the following equation.

AverageP@K =
1
K

K∑

i=1

P@i (11)

4.3 Comparison with the State of the Art

We compare our approach with the following methods: variational autoencoder
[11,16] trained on fraudulent or genuine data only (VAE(F) or VAE(G) respec-
tively); limiting reconstruction capability (LRC) [13] and autoencoding binary
classifiers for supervised anomaly detection (ABC) [18]. It is important to note

Dual Sequential Variational Autoencoders for Fraud Detection 23

Table 2. AUC-PR achieved by CatBoost using various autoencoder models

Models Raw Reconstructed Reconstruction error Code1 Code2

Trx Seq Trx Seq

VAE (F) 0.19 0.40 0.36 0.38 0.29 0.30 0.27

VAE (G) 0.42 0.43 0.31 0.32 0.33

LRC 0.46 0.46 0.17 0.28 0.13

ABC 0.48 0.50 0.37 0.32 0.3

DuSVAE 0.51 0.53 0.36 0.50 0.49

that ABC and LRC are not sequential models by nature. So, to make our com-
parison more fair, we adapted their implementation to allow them to process
sequential data. As a classifier, we used CatBoost [15] which is robust in the
context of imbalanced data and efficient on GPUs.

First, as we can observe in Table 2, the AUC-PR values obtained by running
CatBoost directly on transactions and sequences of transactions are respectively
equal to 0.19 and 0.40. If we look at the AUC-PR values obtained by running
CatBoost on the reconstructed transactions and sequences of transactions, we
can observe that the results are always greater than those obtained by running
CatBoost on raw data. Moreover it is interesting to note that DuSVAE achieved
the best results (0.51 and 0.53) compared to other state-of-the-art systems.

Now, if we look at the performance obtained by CatBoost on the hidden
representation vectors Code1 and Code2, we observe that DuSVAE outperforms
the results obtained by other state-of-the-art systems and those results are quite
similar to the ones obtained on the reconstructed sequences of transactions. This
is interesting because it means that using DuSVAE a condensed representation
of the input data can be obtained, which still gives approximately the same
results as on the reconstructed sequences of transactions but that are of higher
dimensionality (about 10 times more) and can be less efficiently processed by
the classifier. Finally, when using the reconstruction error as a score to classify
fraudulent data, as done usually in anomaly detection, we can observe that
DuSVAE is competitive with the best method. However, the performance level
of Code1 and Code2 with CatBoost being significantly better makes the use of
the hidden representations a better strategy than using the reconstruction error.

We then evaluated the impact of handcrafted features built by Worldline on
the classifier performance. As we can see on the first two lines of Table 3, adding
handcrafted features to the original sequential raw dataset leads to much better
results both from the point of view of AUC-PR measure and P@K measure.

Now if we consider using DuSVAE (rows 3 and 4 of Table 3), we can also
notice a significant improvement of the results obtained on the raw dataset of
sequences augmented by handcrafted features compared to the results obtained
on the original one without these additional features. This is observed for both
the AUC-PR measure and the P@K measure. We see that, for the moment,
by using a classifier on the sequences reconstructed by DuSVAE on just the

24 A. Alazizi et al.

Table 3. AUC-PR and P@K achieved by CatBoost for sequence classification.

Input AUC-PR P@100 P@500

Raw data 0,40 0.43 0.11

Raw data+ Handcrafted features 0,60 0.62 0.938

DuSVAE
(The input:raw data)

0,53 0.88 0.72

DuSVAE
(The input: raw data + Handcrafted features)

0,65 0.85 0.941

raw dataset (AUC-PR = 0.53), we cannot reach the results obtained when we
use this classifier on the raw dataset augmented by handcrafted features (AUC-
PR = 0.60). This can be explained by the fact that those features are based
on history and profiling techniques that embed information covering a period
of time larger than the one used for our dataset. Nevertheless we are not so
far and the fact that using DuSVAE on the dataset augmented by handcrafted
features (AUC-PR = 0.65) leads to better results than using the classifier without
DuSVAE (AUC-PR = 0.60) is promising.

Table 3 also shows that the very good P@K values obtained when running the
classifier on the sequences of transactions reconstructed by DuSVAE mean that
DuSVAE can be a very significant help for experts to focus on real fraudulent
transactions and not waste time on fake ones.

5 Conclusion

In this paper, we presented the DuSVAE model which is a new fraud detection
technique. Our model combines two sequential variational autoencoders to pro-
duce a condensed representation vector of the input sequential data that can
then be used by a classifier to label new sequences of transactions as genuine or
fraudulent. Our experiments have shown that the DuSVAE model produces much
better results, in terms of AUC-PR and P@K measures, than state-of-the-art sys-
tems. Moreover, the DuSVAE model produces a condensed representation of the
input data which can replace very favorably the handcrafted features. Indeed,
running a classifier on the condensed representation of the input data built by
the DuSVAE model leads to outperform the results obtained on the raw data,
with or without handcrafted features.

We believe that a first interesting way to further improve our results will be
to focus on attention mechanisms to better take into account the history of past
transactions in the detection of present frauds. A second approach will be to
better take into account the temporal aspects in the sequential representation
of our data and to reflect it in the core algorithm.

Dual Sequential Variational Autoencoders for Fraud Detection 25

References

1. Abdallah, A., Maarof, M.A., Zainal, A.: Fraud detection system: a survey. J. Netw.
Comput. Appl. 68, 90–113 (2016)

2. Alazizi, A., Habrard, A., Jacquenet, F., He-Guelton, L., Oblé, F., Siblini, W.:
Anomaly detection, consider your dataset first, an illustration on fraud detection.
In: Proceedings of ICTAI 2019. IEEE (2019)

3. Bahnsen, A.C., Aouada, D., Stojanovic, A., Ottersten, B.: Feature engineering
strategies for credit card fraud detection. Expert Syst. Appl. 51, 134–142 (2016)

4. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-
put. Surv. 41(3), 15:1–15:58 (2009)

5. Golan, I., El-Yaniv, R.: Deep anomaly detection using geometric transformations.
In: Proceedings of NIPS, pp. 9758–9769 (2018)

6. Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., Davis, L.S.: Learning
temporal regularity in video sequences. In: Proceedings of CVPR, pp. 733–742
(2016)

7. Hinton, G.E.: Connectionist learning procedures. Artif. Intell. 40(1–3), 185–234
(1989)

8. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E., et al.: Adaptive mixtures
of local experts. Neural Comput. 3(1), 79–87 (1991)

9. Jurgovsky, J., et al.: Sequence classification for credit-card fraud detection. Expert
Syst. Appl. 100, 234–245 (2018)

10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980
(2014)

11. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: Proceedings of
ICLR (2014)

12. Lucas, Y., et al.: Towards automated feature engineering for credit card fraud
detection using multi-perspective HMMs. Future Gener. Comput. Syst. 102, 393–
402 (2020)

13. Munawar, A., Vinayavekhin, P., De Magistris, G.: Limiting the reconstruction
capability of generative neural network using negative learning. In: Proceedings of
the International Workshop on Machine Learning for Signal Processing, pp. 1–6
(2017)

14. Pozzolo, A.D.: Adaptive machine learning for credit card fraud detection. Ph.D.
thesis, Université libre de Bruxelles (2015)

15. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A.: Catboost:
unbiased boosting with categorical features. In: Proceedings of NIPS, pp. 6638–
6648 (2018)

16. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and
approximate inference in deep generative models. arXiv:1401.4082 (2014)

17. Sabokrou, M., Khalooei, M., Fathy, M., Adeli, E.: Adversarially learned one-class
classifier for novelty detection. In: Proceedings of CVPR, pp. 3379–3388 (2018)

18. Yamanaka, Y., Iwata, T., Takahashi, H., Yamada, M., Kanai, S.: Autoencoding
binary classifiers for supervised anomaly detection. arXiv:1903.10709 (2019)

19. Zhai, S., Cheng, Y., Lu, W., Zhang, Z.: Deep structured energy based models for
anomaly detection. arXiv:1605.07717 (2016)

20. Zhao, Y., Deng, B., Shen, C., Liu, Y., Lu, H., Hua, X.S.: Spatio-temporal autoen-
coder for video anomaly detection. In: Proceedings of the ACM International Con-
ference on Multimedia, pp. 1933–1941 (2017)

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1401.4082
http://arxiv.org/abs/1903.10709
http://arxiv.org/abs/1605.07717

26 A. Alazizi et al.

21. Zimek, A., Schubert, E., Kriegel, H.P.: A survey on unsupervised outlier detection
in high-dimensional numerical data. Stat. Anal. Data Mining: ASA Data Sci. J.
5(5), 363–387 (2012)

22. Zong, B., et al.: Deep autoencoding gaussian mixture model for unsupervised
anomaly detection. In: Proceedings of ICLR (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

A Principled Approach to Analyze
Expressiveness and Accuracy of Graph

Neural Networks

Asma Atamna1,3(B), Nataliya Sokolovska2, and Jean-Claude Crivello3

1 LTCI, Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France
asma.atamna@telecom-paris.fr

2 NutriOmics, INSERM, Sorbonne University, Paris, France
nataliya.sokolovska@sorbonne-universite.fr

3 ICMPE (UMR 7182), CNRS, University of Paris-Est, Thiais, France
crivello@icmpe.cnrs.fr

Abstract. Graph neural networks (GNNs) have known an increasing
success recently, with many GNN variants achieving state-of-the-art
results on node and graph classification tasks. The proposed GNNs,
however, often implement complex node and graph embedding schemes,
which makes it challenging to explain their performance. In this paper,
we investigate the link between a GNN’s expressiveness, that is, its abil-
ity to map different graphs to different representations, and its gener-
alization performance in a graph classification setting. In particular, we
propose a principled experimental procedure where we (i) define a prac-
tical measure for expressiveness, (ii) introduce an expressiveness-based
loss function that we use to train a simple yet practical GNN that is
permutation-invariant, (iii) illustrate our procedure on benchmark graph
classification problems and on an original real-world application. Our
results reveal that expressiveness alone does not guarantee a better per-
formance, and that a powerful GNN should be able to produce graph
representations that are well separated with respect to the class of the
corresponding graphs.

Keywords: Graph neural networks · Classification · Expressiveness

1 Introduction

Many real-world data present an inherent structure and can be modelled as
sequences, graphs, or hypergraphs [2,5,9,15]. Graph-structured data, in partic-
ular, are very common in practice and are at the heart of this work.

We consider the problem of graph classification. That is, given a set
G = {Gi}m

i=1 of arbitrary graphs and their respective labels {yi}m
i=1, where

yi ∈ {1, . . . , C} and C is the number of classes, we aim at finding a mapping

Supported by the Emergence@INC-2018 program of the French National Center for
Scientific Research (CNRS) and the DiagnoLearn ANR JCJC project.

c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 27–39, 2020.
https://doi.org/10.1007/978-3-030-44584-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_3

28 A. Atamna et al.

fθ : G → {1, . . . , C} that minimizes the classification error, where θ denotes the
parameters to optimize.

Graph neural networks (GNNs) and their deep learning variants, the graph
convolutional networks (GCNs) [1,7,9,10,13,17,20,27], have gained consider-
able interest recently. GNNs learn latent node representations by recursively
aggregating the neighboring node features for each node, thereby capturing the
structural information of a node’s neighborhood.

Despite the profusion of GNN variants, some of which achieve state-of-the-art
results on tasks like node classification, graph classification, and link prediction,
GNNs remain very little studied. In particular, it is often unclear what a GNN
learns and how the learned graph (or node) mapping influences its generalization
performance. In a recent work, [25] present a theoretical framework to analyze
the expressive power of GNNs, where a GNN’s expressiveness is defined as its
ability to compute different graph representations for different graphs. Theoreti-
cal conditions under which a GNN is maximally expressive are derived. Although
it is reasonable to assume that a higher expressiveness would result in a higher
accuracy on classification tasks, this link has not been explicitly studied so far.

In this paper, we design a principled experimental procedure to analyze the
link between expressiveness and the test accuracy of GNNs. In particular:

– We define a practical measure to estimate the expressiveness of GNNs;
– We use this measure to define a new penalized loss function that allows train-

ing GNNs with varying expressive power.

To illustrate our experimental framework, we introduce a simple yet practical
architecture, the Simple Permutation-Invariant Graph Convolutional Network
(SPI-GCN). We also present an original graph data set of metal hydrides that
we use along with benchmark graph data sets to evaluate SPI-GCN.

This paper is organized as follows. Section 2 discusses the related work.
Section 3 introduces preliminary notations and concepts related to graphs and
GNNs. In Sect. 4, we introduce our graph neural network, SPI-GCN. In Sect. 5,
we present a practical expressiveness estimator and a new expressiveness-based
loss function as part of our experimental framework. Section 6 presents our
results and Sect. 7 concludes the paper.

2 Related Work

Graph neural networks (GNNs) were first introduced in [11,19]. They learn latent
node representations by iteratively aggregating neighborhood information for
each node. Their more recent deep learning variants, the graph convolutional
networks (GCNs), generalize conventional convolutional neural networks to irreg-
ular graph domains. In [13], the authors present a GCN for node classification
where the computed node representations can be interpreted as the graph col-
oring returned by the 1-dimensional Weisfeiler-Lehman (WL) algorithm [24]. A
related GCN that is invariant to node permutation is presented in [27]. The graph

A Principled Approach to Analyze Expressiveness and Accuracy of GNNs 29

convolution operator is closely related to the one in [13], and the authors intro-
duce a permutation-invariant pooling operator that sorts the convolved nodes
before feeding them to a 1-dimensional classical convolution layer for graph-level
classification. A popular GCN is Patchy-san [17]. Its graph convolution oper-
ator extracts normalized local “patches” (neighborhood representations) of the
graph which are then sorted and fed to a 1-dimensional traditional convolution
layer for graph-level classification. The method, however, requires the definition
of a node ordering and running the WL algorithm in a preprocessing step. On
the other hand, the normalization of the extracted patches implies sorting the
nodes again and using the external graph software Nauty [14].

Despite the success of GNNs, there are relatively few papers that analyze
their properties, either mathematically or empirically. A notable exception is the
recent work by [25] that studies the expressive power of GNNs. The authors prove
that (i) GNNs are at most as powerful as the WL test in distinguishing graph
structures and that (ii) if the graph function of a GNN—i.e. its graph embedding
scheme—is injective, then the GNN is as powerful as the WL test. The authors
also present the Graph Isomorphism Network (GIN), which approximates the
theoretical maximally expressive GNN. In another study [4], the authors present
a simple neural network defined on a set of graph augmented features and show
that their architecture can be obtained by linearizing graph convolutions in
GNNs.

Our work is related to [25] in that we adopt the same definition of expres-
siveness, that is, the ability of a GNN to compute distinct graph representations
for distinct input graphs. However, we go one step further and investigate how
the graph function learned by GNNs affects their generalization performance.
On the other hand, our SPI-GCN extends the GCN in [13] to graph-level clas-
sification. Our SPI-GCN is also related to [27] in that we use a similar graph
convolution operator inspired by [13]. Unlike [27], however, our architecture does
not require any node ordering, and we only use a simple multilayer perceptron
(MLP) to perform classification.

3 Some Graph Concepts

A graph G is a pair (V,E) of a set V = {v1, . . . , vn} of vertices (or nodes) vi, and
a set E ⊆ V × V of edges (vi, vj). In this work, we represent a graph G by two
matrices: (i) an adjacency matrix A ∈ R

n×n such that aij = 1 if there is an edge
between nodes vi and vj and aij = 0 otherwise,1 and (ii) a node feature matrix
X ∈ R

n×d, with d being the number of node features. Each row xi ∈ R
d of X

contains the feature representation of a node vi, where d is the dimension of the
feature space. Since we only consider node features in this paper (as opposed to
edge features for instance), we will refer to the node feature matrix X simply as
the feature matrix in the rest of this paper.
1 Given a matrix M, mi denotes its ith row and mij denotes the entry at its ith row

and jth column. More generally, we denote matrices by capital letters and vectors
by small letters. Scalars, on the other hand, are denoted by small italic letters.

30 A. Atamna et al.

An important notion in graph theory is graph isomorphism. Two graphs
G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there exists a bijection
g : V1 → V2 such that every edge (u, v) is in E1 if and only if the edge (g(u), g(v))
is in E2. Informally, this definition states that two graphs are isomorphic if there
exists a vertex permutation such that when applied to one graph, we recover the
vertex and edge sets of the other graph.

3.1 Graph Neural Networks

Consider a graph G with adjacency matrix A and feature matrix X. GNNs
use the graph structure (A) and the node features (X) to learn a node-level or
a graph-level representation—or embedding—of G. GNNs iteratively update a
node representation by aggregating its neighbors’ representations. At iteration l,
a node representation captures its l-hop neighborhood’s structural information.
Formally, the lth layer of a general GNN can be defined as follows:

al+1
i = AGGREGATEl({zl

j : j ∈ N(i)}) (1)

zl+1
i = COMBINEl(zl

i, a
l+1
i) , (2)

where zl+1
i is the feature vector of node vi at layer l and where z0i = xi. While

COMBINE usually consists in concatenating node representations from different
layers, different—and often complex—architectures for AGGREGATE have been
proposed. In [13], the presented GCN merges the AGGREGATE and COMBINE
functions as follows:

zl+1
i = ReLU

(
mean({zl

j : j ∈ N(i) ∪ {i}}) · Wl
)

, (3)

where ReLU is a rectified linear unit and Wl is a trainable weight matrix. GNNs
for graph classification have an additional module that aggregates the node-level
representations to produce a graph-level one as follows:

zG = READOUT({zL
i : vi ∈ V }) , (4)

for a GNN with L layers. In [25], the authors discuss the impact that the choice
of AGGREGATEl, COMBINEl, and READOUT has on the so-called expres-
siveness of the GNN, that is, its ability to map different graphs to different
embeddings. They present theoretical conditions under which a GNN is maxi-
mally expressive.

We now present a simple yet practical GNN architecture on which we illus-
trate our experimental framework.

4 Simple Permutation-Invariant Graph Convolutional
Network (SPI-GCN)

Our Simple Permutation-Invariant Graph Convolutional Network (SPI-GCN)
consists of the following sequential modules: (1) a graph convolution module

A Principled Approach to Analyze Expressiveness and Accuracy of GNNs 31

that encodes local graph structure and node features in a substructure feature
matrix whose rows represent the nodes of the graph, (2) a sum-pooling layer as
a READOUT function to produce a single-vector representation of the input
graph, and (3) a prediction module consisting of dense layers that reads the
vector representation of the graph and outputs predictions.

Let G be a graph represented by the adjacency matrix A ∈ R
n×n and the

feature matrix X ∈ R
n×d, where n and d represent the number of nodes and

the dimension of the feature space respectively. Without loss of generality, we
consider graphs without self-loops.

4.1 Graph Convolution Module

Given a graph G with its adjacency and feature matrices, A and X, we define
the first convolution layer as follows:

Z = f(D̂
−1

ÂXW) , (5)

where Â = A + In is the adjacency matrix of G with added self-loops, D̂ is the
diagonal node degree matrix of Â,2 W ∈ R

d×d′
is a trainable weight matrix, f is

a nonlinear activation function, and Z ∈ R
n×d′

is the convolved graph. To stack
multiple convolution layers, we generalize the propagation rule in (5) as follows:

Zl+1 = f l(D̂
−1

ÂZlWl) , (6)

where Z0 = X, Zl is the output of the lth convolution layer, Wl is a trainable
weight matrix, and f l is the nonlinear activation function applied at layer l.
Similarly to the GCN presented in [13] from which we draw inspiration, our
graph convolution module merges the AGGREGATE and COMBINE functions
(see (1) and (2)), and we can rewrite (6) as:

zl+1
i = f l

(
mean({zl

j : j ∈ N(i) ∪ {i}}) · Wl
)

, (7)

where zt+1
i is the ith row of Zl+1.

We return the result of the last convolution layer, that is, for a network with
L convolution layers, the result of the convolution is the last substructure feature
matrix ZL. Note that (6) is able to process graphs with varying node numbers.

4.2 Sum-Pooling Layer

The sum-pooling layer produces a graph-level representation zG by summing the
rows of ZL, previously returned by the convolution module. Formally:

zG =
n∑

i=1

zL
i . (8)

2 If G is a directed graph, D̂ corresponds to the outdegree diagonal matrix of Â.

32 A. Atamna et al.

The resulting vector zG ∈ R
dL contains the final vector representation (or embed-

ding) of the input graph G in a dL-dimensional space. This vector representation
is then used for prediction—graph classification in our case.

Using a sum pooling operator is a simple idea that has been used in GNNs
such as [1,21]. Additionally, it results in the invariance of our architecture to
node permutation, as stated in Theorem 1.

Theorem 1. Let G and Gς be two arbitrary isomorphic graphs. The sum-pooling
layer of SPI-GCN produces the same vector representation for G and Gς .

This invariance property is crucial for GNNs as it ensures that two isomorphic—
and hence equivalent—graphs will result in the same output. The proof of The-
orem 1 is straightforward and omitted for space limitations.

4.3 Prediction Module

The prediction module of SPI-GCN is a simple MLP that takes as input the
graph-level representation zG returned by the sum-pooling layer and returns
either: (i) a probability p in case of binary classification or (ii) a vector p of
probabilities such that

∑
i pi = 1 in case of multi-class classification.

Note that SPI-GCN can be trained in an end-to-end fashion through back-
propagation. Additionally, since only one graph is treated in a forward pass, the
training complexity of SPI-GCN is linear in the number of graphs.

In the next section, we describe a practical methodology for studying the
expressiveness of SPI-GCN and its connection to the generalization performance
of the algorithm.

5 Investigating Expressiveness of SPI-GCN

We start here by introducing a practical definition of expressiveness. We then
show how the defined measure can be used to train SPI-GCN and help under-
stand the impact expressiveness has on its generalization performance.

5.1 Practical Measure of Expressiveness

The expressiveness of a GNN, as defined in [25], is its ability to map different
graph structures to different embeddings and, therefore, reflects the injectivity
of its graph embedding function. Since studying injectivity can be tedious, we
characterize expressiveness—and hence injectivity—as a function of the pairwise
distance between graph embeddings.

Let {zGi
}m

i=1 be the set of graph embeddings computed by a GNN A for
a given input graph data set {Gi}m

i=1. We define A’s expressiveness, E(A), as
follows:

E(A) = mean({||zGi
− zGj

||2 : i, j = 1, . . . ,m, i �= j}) , (9)

that is, E(A) is the average pairwise Euclidean distance between graph embed-
dings produced by A. While not strictly equivalent to injectivity, E is a reasonable

A Principled Approach to Analyze Expressiveness and Accuracy of GNNs 33

indicator thereof, as the average pairwise distance reflects the diversity within
graph representations which, in turn, is expected to be higher for more diverse
input graph data sets. For permutation-invariant GNNs like SPI-GCN,3 E is zero
when all graphs {Gi}m

i=1 are isomorphic.

5.2 Penalized Cross Entropy Loss

We train SPI-GCN using a penalized cross entropy loss, Lp, that consists of a
classical cross entropy augmented with a penalty term defined as a function of
the expressiveness of SPI-GCN. Formally:

Lp = cross-entropy({yi}m
i=1, {ŷi}m

i=1) − α · E(SPI-GCN) , (10)

where {yi}m
i=1 (resp. {ŷi}m

i=1) is the set of real (resp. predicted) graph labels, α
is a non-negative penalty factor, and E is defined in (9) with {zGi

}m
i=1 being the

graph embeddings computed by SPI-GCN.
By adding the penalty term −α · E(SPI-GCN) in Lp, the expressiveness is

maximized while the cross entropy is minimized during the training process.
The penalty factor α controls the importance attributed to E(SPI-GCN) when
Lp is minimized. Consequently, higher values of α allow to train more expressive
variants of SPI-GCN whereas for α = 0, only the cross entropy is minimized.

In the next section, we assess the performance of SPI-GCN for different values
of α. We also compare SPI-GCN with other more complex GNN architectures,
including the state-of-the-art method.

6 Experiments

We carry out a first set of experiments where we compare our approach, SPI-
GCN, with two recent GCNs. In a second set of experiments, we train different
instances of SPI-GCN with increasing values of the penalty factor α (see (10))
in an attempt to understand how the expressiveness of SPI-GCN affects its test
accuracy, and whether it is the determining factor of its generalization perfor-
mance, as implicitly suggested in [25]. Our code and data are available at https://
github.com/asmaatamna/SPI-GCN.

6.1 Data Sets

We use nine public benchmark data sets including five bioinformatics data sets
(MUTAG [6], PTC [22], ENZYMES [3], NCI1 [23], PROTEINS [8]), two social
network data sets (IMDB-BINARY, IMDB-MULTI [26]), one image data set
where images are represented as region adjacency graphs (COIL-RAG [18]), and
one synthetic data set (SYNTHIE [16]). We also evaluate SPI-GCN on an original
real-world data set collected at the ICMPE,4 HYDRIDES, that contains metal
hydrides in graph format, labelled as stable or unstable according to specific
energetic properties that determine their ability to store hydrogen efficiently.
3 As mentioned previously, we state that permutation-invariance is a minimal require-

ment for any practical GNN.
4 East Paris Institute of Chemistry and Materials Science, France.

https://github.com/asmaatamna/SPI-GCN
https://github.com/asmaatamna/SPI-GCN

34 A. Atamna et al.

6.2 Architecture of SPI-GCN

The instance of SPI-GCN that we use for experiments has two graph convolution
layers of 128 and 32 hidden units respectively, followed by a hyperbolic tangent
function and a softmax function (per node) respectively. The sum-pooling layer
is a classical sum applied row-wise; it is followed by a prediction module con-
sisting of a MLP with one hidden layer of 256 hidden units followed by a batch
normalization layer and a ReLU. We choose this architecture by trial and error
and keep it unchanged throughout the experiments.

6.3 Comparison with Other Methods

In these experiments, we consider the simplest variant of SPI-GCN where the
penalty term in (10) is discarded by setting α = 0. That is, the algorithm is
trained using only the cross entropy loss.

Baselines. We compare SPI-GCN with the well-known GCN, Patchy-san
(PSCN) [17], the Deep Graph Convolutional Neural Network (Dgcnn) [27] that
uses a similar convolution module to ours, and the recent state-of-the-art Graph
Isomorphism Network (GIN) [25].

Experimental Procedure. We train SPI-GCN using full batch Adam opti-
mizer [12], with cross entropy as the loss function to minimize (α = 0 in (10)).
Upon experimentation, we set Adam’s hyperparameters as follows. The algo-
rithm is trained for 200 epochs on all data sets and the learning rate is set
to 10−3. To estimate the accuracy, we perform 10-fold cross validation using 9
folds for training and one fold for testing each time. We report the average (test)
accuracy and the corresponding standard deviation in Table 1. Note that we only
use node attributes in our experiments. In particular, SPI-GCN does not exploit
node or edge labels of the data sets. When node attributes are not available, we
use the identity matrix as the feature matrix for each graph.

We follow the same procedure for Dgcnn. We use the authors’ implemen-
tation5 and perform 10-fold cross validation with the recommended values for
training epochs, learning rate, and SortPooling parameter k, for each data set.

For PSCN, we report the results from the original paper [17] (for receptive
field size k = 10) as we could not find an authors’ public implementation of the
algorithm. The experiments were conducted using a similar procedure as ours.

For GIN, we also report the published results [25] (GIN-0 in the paper), as
it was not straightforward to use the authors’ implementation.

Results. Table 1 shows the results for our algorithm (SPI-GCN), Dgcnn [27],
PSCN [17], and the state-of-the-art GIN [25]. We observe that SPI-GCN is highly
competitive with other algorithms despite using the same architecture for all
data sets. The only noticeable exceptions are on the NCI1 and IMDB-BINARY
data sets, where the best approach (GIN) is up to 1.28 times better. On the
other hand, SPI-GCN appears to be highly competitive on classification tasks

5 https://github.com/muhanzhang/pytorch DGCNN.

https://github.com/muhanzhang/pytorch_DGCNN

A Principled Approach to Analyze Expressiveness and Accuracy of GNNs 35

with more than 3 classes (ENZYMES, COIL-RAG, SYNTHIE). The difference in
accuracy is particularly significant on COIL-RAG (100 classes), where SPI-GCN
is around 34 times better than Dgcnn, suggesting that the features extracted
by SPI-GCN are more suitable to characterize the graphs at hand. SPI-GCN
also achieves a very reasonable accuracy on the HYDRIDES data set and is 1.06
times better than Dgcnn on ENZYMES.

The results in Table 1 show that despite its simplicity, SPI-GCN is com-
petitive with other practical graph algorithms and, hence, it is a reasonable
architecture to consider for our next set of experiments involving expressiveness.

Table 1. Accuracy results for SPI-GCN and three other deep learning methods
(Dgcnn, PSCN, GIN).

Algorithm SPI-GCN Dgcnn PSCN GIN

MUTAG 84.40 ± 8.14 86.11 ± 7.14 88.95 ± 4.37 89.4± 5.6

PTC 56.41 ± 5.71 55.00 ± 5.10 62.29 ± 5.68 64.6± 7.0

NCI1 64.11 ± 2.37 72.73 ± 1.56 76.34 ± 1.68 82.7± 1.7

PROTEINS 72.06 ± 3.18 72.79 ± 3.58 75.00 ± 2.51 76.2± 2.8

ENZYMES 50.17± 5.60 47.00 ± 8.36 − −
IMDB-BINARY 60.40 ± 4.15 68.60 ± 5.66 71.00 ± 2.29 75.1± 5.1

IMDB-MULTI 44.13 ± 4.61 45.20 ± 3.75 45.23 ± 2.84 52.3± 2.8

COIL-RAG 74.38± 2.42 2.21 ± 0.33 − −
SYNTHIE 71.00± 6.44 54.25 ± 4.34 − −
HYDRIDES 82.75 ± 2.67 − − −

6.4 Expressiveness Experiments

Through these experiments, we try to answer the following questions:

– Do more expressive GNNs perform better on graph classification tasks? That
is, is the injectivity of a GNN’s graph function the determining factor of its
performance?

– Can the performance be explained by another factor? If yes, what is it?

To this end, we train increasingly injective instances of SPI-GCN on the penal-
ized cross entropy loss Lp (10) by setting the penalty factor α to increasingly
large values. Then, for each trained instance, we investigate (i) its test accu-
racy, (ii) its expressiveness E(SPI-GCN) (9), and (iii) the average normalized
Inter-class Graph Embedding Distance (IGED), defined as the average pairwise
Euclidean distance between mean graph embeddings taken class-wise divided by
E(SPI-GCN). Formally:

IGED =
mean({||z∗

c − z∗
c′ ||2 : c, c′ = 1, . . . , C, c �= c′})
E(SPI-GCN)

, (11)

36 A. Atamna et al.

Table 2. Expressiveness experiments results. SPI-GCN is trained on the penalized
cross entropy loss, Lp, with increasing values of the penalty factor α. For each data set,
and for each value of α, we report the test accuracy (a), the expressiveness E(SPI-GCN)
(b), and the IGED (c). Highlighted are the maximal values for each quantity.

α 0 10−3 10−1 1 10

MUTAG 84.40± 8.14 84.40± 8.14 86.07± 9.03 82.56± 7.33 81.45± 6.68 (a)

0.09± 0.01 0.09± 0.01 0.12± 0.01 5.96± 1.08 6.32± 0.76 (b)

0.68± 0.16 0.68± 0.16 0.82± 0.18 1.21± 0.23 1.20± 0.22 (c)

PTC 56.41± 5.71 54.97± 6.05 54.64± 6.33 57.88± 8.65 58.70± 7.40 (a)

0.09± 0.01 0.09± 0.01 0.11± 0.01 8.41± 3.13 9.03± 2.94 (b)

0.26± 0.05 0.26± 0.05 0.26± 0.06 0.41± 0.22 0.42± 0.22 (c)

NCI1 64.11± 2.37 64.21± 2.36 64.01± 2.87 63.48± 1.36 63.19± 1.72 (a)

0.09± 0.004 0.09± 0.005 1.07± 0.19 16.83± 0.49 16.91± 0.52 (b)

0.18± 0.02 0.19± 0.03 0.59± 0.05 0.62± 0.05 0.62± 0.05 (c)

PROTEINS 72.06± 3.18 71.78± 3.55 71.51± 3.26 70.97± 3.49 71.42± 3.23 (a)

5.89± 1.34 13.07± 3.21 35.88± 4.89 35.88± 4.89 35.88± 4.89 (b)

0.74± 0.09 0.74± 0.09 0.74± 0.09 0.74± 0.09 0.74± 0.09 (c)

ENZYMES 50.17± 5.60 50.17± 5.60 29.33± 5.93 29.33± 5.54 29.33± 5.88 (a)

0.79± 0.21 1.85± 0.64 23.22± 2.99 23.33± 3.02 23.35± 3.01 (b)

0.44± 0.06 0.42± 0.10 0.42± 0.10 0.42± 0.10 0.42± 0.10 (c)

IMDB-BIN. 60.40± 4.15 61.70± 4.96 61.10± 3.75 54.40± 3.10 54.20± 5.15 (a)

0.12± 0.01 0.12± 0.01 0.16± 0.01 12.43± 2.37 11.70± 2.89 (b)

0.15± 0.03 0.15± 0.03 0.15± 0.03 0.12± 0.08 0.12± 0.08 (c)

IMDB-MUL. 44.13± 4.61 44.60± 5.41 44.80± 4.51 39.73± 4.34 38.87± 4.42 (a)

0.08± 0.01 0.08± 0.01 0.64± 0.14 10.38± 1.05 9.91± 1.15 (b)

0.16± 0.02 0.16± 0.02 0.16± 0.09 0.15± 0.09 0.15± 0.09 (c)

COIL-RAG 74.38± 2.42 74.38± 2.45 72.49± 3.21 52.08± 4.89 28.72± 3.62 (a)

0.08± 0.002 0.081± 0.002 0.13± 0.01 2.00± 0.18 2.33± 0.14 (b)

0.95± 0.01 0.95± 0.01 0.96± 0.01 0.98± 0.02 0.98± 0.02 (c)

SYNTHIE 71.00± 6.44 71.00± 6.04 74.00± 6.44 73.00± 7.57 73.75± 7.52 (a)

1.60± 0.20 1.86± 0.24 29.97± 2.16 29.50± 2.18 29.37± 2.18 (b)

0.73± 0.07 0.72± 0.08 0.61± 0.11 0.59± 0.12 0.58± 0.12 (c)

HYDRIDES 82.75± 2.67 82.65± 2.44 83.92± 4.30 77.45± 3.25 76.37± 2.57 (a)

0.13± 0.01 0.13± 0.01 1.68± 0.87 4.75± 0.41 5.03± 0.75 (b)

0.50± 0.11 0.50± 0.11 0.8± 0.19 0.85± 0.21 0.72± 0.22 (c)

where z∗
k is the mean graph embedding for class k. The IGED can be interpreted

as an estimate of how well the graph embeddings computed by SPI-GCN are
separated with respect to their respective class.

Experimental Procedure. We train SPI-GCN on the penalized cross entropy
loss Lp (10) where we sequentially choose α from {0, 10−3, 10−1, 1, 10}. We do
so using full batch Adam optimizer that we run for 200 epochs with a learning
rate of 10−3, on all the graph data sets introduced previously. For each data set

A Principled Approach to Analyze Expressiveness and Accuracy of GNNs 37

and for each value of α, we perform 10-fold cross validation using 9 folds for
training and one fold for testing. We report in Table 2 the average and standard
deviation of: (a) the test accuracy, (b) the expressiveness E(SPI-GCN), and (c)
the IGED (11), for each value of α and for each data set.

Results. We observe from Table 2 that using a penalty term in Lp to maxi-
mize the expressiveness—or injectivity—of SPI-GCN helps to improve the test
accuracy on some data sets, notably on MUTAG, PTC, and SYNTHIE. How-
ever, larger values of E(SPI-GCN) do not correspond to a higher test accu-
racy except for two cases (PTC, SYNTHIE). Overall, E(SPI-GCN) increases
when α increases, as expected, since the expressiveness is maximized during
training when α > 0. The IGED, on the other hand, is correlated to the best
performance in four out of ten cases (ENZYMES, IMDB-BINARY, and IMDB-
MULTI), where the test accuracy is maximal when the IGED is maximal. On
HYDRIDES, the difference in IGED for α = 10−1 (highest accuracy) and α = 1
(highest IGED value) is negligible.

Our empirical results indicate that while optimizing the expressiveness of
SPI-GCN may result in a higher test accuracy in some cases, more expressive
GNNs do not systematically perform better in practice. The IGED, however,
which reflects a GNN’s ability to compute graph representations that are cor-
rectly clustered according to their effective class, better explains the generaliza-
tion performance of the GNN.

7 Conclusion

In this paper, we challenged the common belief that more expressive GNNs
achieve a better performance. We introduced a principled experimental pro-
cedure to analyze the link between the expressiveness of a GNN and its test
accuracy in a graph classification setting. To the best of our knowledge, our
work is the first that explicitly studies the generalization performance of GNNs
by trying to uncover the factors that control it, and paves the way for more
theoretical analyses. Interesting directions for future work include the design of
better expressiveness estimators, as well as different (possibly more complex)
penalized loss functions.

References

1. Atwood, J., Towsley, D.: Diffusion-convolutional neural networks. In: NIPS (2016)
2. Bojchevski, A., Shchur, O., Zügner, D., Günnemann, S.: NetGAN: generating

graphs via random walks. In: ICML (2018)
3. Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S.V.N., Smola, A.J.,

Kriegel, H.P.: Protein function prediction via graph kernels. Bioinformatics 21(1),
47–56 (2005)

4. Chen, T., Bian, S., Sun, Y.: Are powerful graph neural nets necessary? A dissection
on graph classification (2019). arXiv:1905.04579v2

http://arxiv.org/abs/1905.04579v2

38 A. Atamna et al.

5. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–
2537 (2011)

6. Debnath, A.K., Lopez de Compadre, R.L., Debnath, G., Shusterman, A.J., Hansch,
C.: Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro
compounds. Correlation with molecular orbital energies and hydrophobicity. J.
Med. Chem. 34(2), 786–797 (1991)

7. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. In: NIPS (2016)

8. Dobson, P.D., Doig, A.J.: Distinguishing enzyme structures from non-enzymes
without alignments. J. Mol. Biol. 330(4), 771–783 (2003)

9. Duvenaud, D.K., et al.: Convolutional networks on graphs for learning molecular
fingerprints. In: NIPS (2015)

10. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. In: ICML (2017)

11. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains.
In: IJCNN (2005)

12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional

networks. In: ICLR (2017)
14. Mckay, B.D., Piperno, A.: Practical graph isomorphism, II. J. Symb. Comput. 60,

94–112 (2014)
15. Min, S., Lee, B., Yoon, S.: Deep learning in bioinformatics. Brief. Bioinform. 18(5),

851–869 (2017)
16. Morris, C., Kriege, N.M., Kersting, K., Mutzel, P.: Faster kernels for graphs with

continuous attributes via hashing. In: ICDM (2016)
17. Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for

graphs. In: ICML (2016)
18. Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern

recognition and machine learning. In: da Vitoria Lobo, N., et al. (eds.) SSPR
/SPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-89689-0 33

19. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. Trans. Neural Netw. 20(1), 61–80 (2009)

20. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling,
M.: Modeling relational data with graph convolutional networks. In: Gangemi, A.,
et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-93417-4 38

21. Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional
neural networks on graphs. In: CVPR 2017 (2017)

22. Srinivasan, A., Helma, C., King, R.D., Kramer, S.: The predictive toxicology chal-
lenge 2000–2001. Bioinformatics 17(1), 107–108 (2001)

23. Wale, N., Watson, I.A., Karypis, G.: Comparison of descriptor spaces for chemical
compound retrieval and classification. Knowl. Inf. Syst. 14(3), 347–375 (2008)

24. Weisfeiler, B., Lehman, A.A.: A reduction of a graph to a canonical form and an
algebra arising during this reduction. Nauchno-Technicheskaya Informatsia 9(2),
12–16 (1968)

https://doi.org/10.1007/978-3-540-89689-0_33
https://doi.org/10.1007/978-3-540-89689-0_33
https://doi.org/10.1007/978-3-319-93417-4_38

A Principled Approach to Analyze Expressiveness and Accuracy of GNNs 39

25. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
In: ICLR (2019)

26. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: SIGKDD (2015)
27. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning archi-

tecture for graph classification. In: AAAI (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Efficient Batch-Incremental Classification
Using UMAP for Evolving Data Streams

Maroua Bahri1,3(B), Bernhard Pfahringer2, Albert Bifet1,2,
and Silviu Maniu3,4,5

1 LTCI, Télécom Paris, IP-Paris, Paris, France
{maroua.bahri,albert.bifet}@telecom-paris.fr
2 University of Waikato, Hamilton, New Zealand

bernhard@waikato.ac.nz
3 Université Paris-Saclay, LRI, CNRS, Orsay, France

silviu.maniu@lri.fr
4 Inria, Paris, France

5 ENS DI, CNRS, École Normale Supérieure, Université PSL, Paris, France

Abstract. Learning from potentially infinite and high-dimensional
data streams poses significant challenges in the classification task. For
instance, k-Nearest Neighbors (kNN) is one of the most often used algo-
rithms in the data stream mining area that proved to be very resource-
intensive when dealing with high-dimensional spaces. Uniform Manifold
Approximation and Projection (UMAP) is a novel manifold technique
and one of the most promising dimension reduction and visualization
techniques in the non-streaming setting because of its high performance
in comparison with competitors. However, there is no version of UMAP
that copes with the challenging context of streams. To overcome these
restrictions, we propose a batch-incremental approach that pre-processes
data streams using UMAP, by producing successive embeddings on a
stream of disjoint batches in order to support an incremental kNN classi-
fication. Experiments conducted on publicly available synthetic and real-
world datasets demonstrate the substantial gains that can be achieved
with our proposal compared to state-of-the-art techniques.

Keywords: Data stream · k-Nearest Neighbors · Dimension
reduction · UMAP

1 Introduction

With the evolution of technology, several kinds of devices and applications are
continuously generating large amounts of data in a fast-paced way as streams.
Hence, the data stream mining area has become indispensable and ubiquitous
in many real-world applications that require real-time – or near real-time –

This work was done in the context of IoTA AAP Emergence DigiCosme Project and
was funded by Labex DigiCosme.

c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 40–53, 2020.
https://doi.org/10.1007/978-3-030-44584-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_4

Batch-Incremental Classification Using UMAP for Data Streams 41

processing, e.g., social networks, weather forecast, spam filters, and more. Unlike
traditional datasets, the dynamic environment and the tremendous volume of
data streams make them impossible to store or to scan multiple times [12].

Classification is an active area of research in data stream mining field where
several researchers are paying attention to develop new – or improve existing
– algorithms [14]. However, the dynamic nature of data streams has outpaced
the capability of traditional classification algorithms to process data streams.
In this context, a multitude of supervised algorithms for static datasets that
have been widely studied in the offline processing, and proved to be of lim-
ited effectiveness on large data, have been extended to work within a stream-
ing framework [3,5,11,18]. Data stream mining approaches can be divided into
two main types [23]: (i) instance-incremental approaches which update the
model with each instance as soon as it arrives, such as Self-Adjusting Memory
kNN (samkNN) [18], and Hoeffding Adaptive Tree (HAT) [4]; and (ii) batch-
incremental approaches which make no change/increment to their model until
a batch is completed, e.g., support vector machines [10], and batch-incremental
ensemble of decision trees [15]. Nevertheless, the high dimensionality of data
complicates the classification task for some algorithms and increases their com-
putational resources, most notably the k-Nearest Neighbors (kNN) because it
needs the entire dataset to predict the labels for test instances [23]. To cope with
this issue, a promising approach is feature transformation which transforms the
input features into a new set of features, containing the most relevant compo-
nents, in some lower-dimensional space.

In attempt to improve the performance of kNN, we incorporate a
batch-incremental feature transformation strategy to tackle potentially high-
dimensional and possibly infinite batches of evolving data streams while ensur-
ing effectiveness and quality of learning (e.g. accuracy). This is achieved via
a new manifold technique that has attracted a lot of attention recently: Uni-
form Manifold Approximation and Projection (UMAP) [21], built upon rigorous
mathematical foundations, namely Riemannian geometry. To the best of our
knowledge, no incremental version of UMAP exists which makes it not applica-
ble on large datasets. The main contributions are summarized as follows:

– Batch-Incremental UMAP : a new batch-incremental novel manifold learning
technique, based on extending the UMAP algorithm to data streams.

– UMAP-kNearest Neighbors (UMAP-kNN): a new batch-incremental kNN
algorithm for data streams classification using UMAP.

– Empirical experiments: we provide an experimental study, on various
datasets, that discusses the implication of parameters on the algorithms per-
formance;

The paper is organized as follows. Section 2 reviews the prominent related
work. Section 3 provides the background of UMAP, followed by the description
of our approach. In Sect. 4 we present and discuss the results of experiments on
diverse datasets. Finally, we draw our conclusions and present future directions.

42 M. Bahri et al.

2 Related Work

Dimensionality reduction (DR) is a powerful tool in data science to look for
hidden structure in data and reduce the resources usage of learning algorithms.
The problem of dimensionality has been widely studied [25] and used throughout
different domains, such as image processing and face recognition. Dimensionality
reduction techniques facilitate the classification task, by removing redundancies
and extracting the most relevant features in the data, and permits a better data
visualization. A common taxonomy divides these approaches into two major
groups: matrix factorization and graph-based approaches.

Matrix factorization algorithms require matrix computation tools, such as
Principal Components Analysis (PCA) [16]. It is a well-known linear technique
that uses singular value decomposition and aims to find a lower-dimensional basis
by converting the data into features called principal components by computing
the eigenvalues and eigenvectors of a covariance matrix. This straightforward
technique is computationally cheap but ineffective with data streams since it
relies on the whole dataset. Therefore, some incremental versions of PCA have
been developed to handle streams of data [13,24,26].

Graph/Neighborhood-based techniques are leveraged in the context of dimen-
sion reduction and visualization by using the insight that similar instances in a
large space should be represented by close instances in a low-dimensional space,
whereas dissimilar instances should be well separated. t-distributed Stochastic
Neighbor Embedding (tSNE) [20] is one of the most prominent DR techniques in
the literature. It has been proposed to visualize high-dimensional data embed-
ded in a lower space (typically 2 or 3 dimensions). In addition to the fact that
it is computationally expensive, tSNE does not preserve distances between all
instances and can affect any density–or distance–based algorithm and hence con-
serves more of the local structure than the global structure.

3 Batch-Incremental Classification

In the following, we assume a data stream S is a sequence of instances
X1, . . . , XN , where N denotes the number of available observations so far. Each
instance Xi is composed of a vector of d attributes Xi = (x1

i , . . . , x
d
i). The

dimensionality reduction of S comprises the process of finding a low-dimensional
presentation S′ = Y1, . . . , YN , where Yi = (y1i , . . . , y

p
i) and p � d.

3.1 Prior Work

Unlike tSNE [20], UMAP has no restriction on the projected space size making it
useful not only for visualization but also as a general dimension reduction tech-
nique for machine learning algorithms. It starts by constructing open balls over
all instances and building simplicial complexes. Dimension reduction is obtained
by finding a representation, in a lower space, that closely resembles the topo-
logical structure in the original space. Given the new dimension, an equivalent

Batch-Incremental Classification Using UMAP for Data Streams 43

Fig. 1. Projection of CNAE dataset in 2-dimensional space. Offline: (a) UMAP, (b)
tSNE, and (c) PCA. Batch-incremental: (d) UMAP, (e) tSNE, and (f) PCA. (Color
figure online)

fuzzy topological representation is then constructed [21]. Then, UMAP optimizes
it by minimizing the cross-entropy between these two fuzzy topological represen-
tations. UMAP offers better visualization quality than tSNE by preserving more
of the global structure in a shorter running time. To the best of our knowledge,
none of these techniques has a streaming version. Ultimately, both techniques
are essentially transductive1 and do not learn a mapping function from the input
space. Hence, they need to process all the data for each new unseen instance,
which prevents them from being usable in data streams classification models.

Figure 1 shows the projection of CNAE dataset (see Table 1) into 2-
dimensions in an offline/online fashions where each color represents a label. In
Fig. 1a, we note that UMAP offers the most interesting visualization while sep-
arating classes (9 classes). The overlap in the new space, for instance with tSNE
in Fig. 1b, can potentially affect later classification task, notably distance-based
algorithms, since properties like global distances and density may be lost. On the
other hand, linear transformation, such as PCA, cannot discriminate between
instances which prevents them from being represented in the form of clusters
(Fig. 1c). To motivate our choice, we project the same dataset using our batch-

1 Transductive learning consists on learning on a full given dataset (including unknown
label), but prediction is only made on the known set of unlabeled instances from the
same dataset. This is achieved by clustering data instances.

44 M. Bahri et al.

incremental strategy (more details in Sect. 3.2). Figure 1d illustrates the change
from the offline UMAP representation; this is not as drastic as the ones engen-
dered by tSNE and PCA (Figs. 1e and f, respectively) showing their limits on
capturing information from data that arrives in a batch-incremental manner.

3.2 Algorithm Description

A very efficient and simple scheme in supervised learning is lazy learning [1].
Since lazy learning approaches are based on distances between every pair of
instances, they unfortunately have a low performance in terms of execution time.
The k-Nearest Neighbors (kNN) is a well-known lazy algorithm that does not
require any work during training, so it uses the entire dataset to predict labels for
test instances. However, it is impossible to store an evolving data stream which
is potentially infinite – nor to scan it multiple times – due to its tremendous
volume. To tackle this challenge, a basic incremental version of kNN has been
proposed which uses a fixed-length window that slides through the stream and
merges new arriving instances with the closest ones already in the window [23].

To predict the class label for an incoming instance, we take the majority class
labels of its nearest neighbors inside the window using a defined distance metric
(Eq. 2). Since we keep the recent arrived instances inside the sliding window for
prediction, the search for the nearest neighbors is still costly in terms of memory
and time [3,7] and high-dimensional streams require further resources.

Given a window w, the distance between Xi and Xj is defined as follows:

DXj
(Xi) =

√
‖Xi − Xj‖2. (1)

Similarly, the k-Nearest Neighbors distance is defined as follows:

Dw,k(Xi) = min
(wk),Xj∈w

∑k

j=1
DXj

(Xi), (2)

where
(
w
k

)
denotes the subset of the kNN to Xi in w.

When dealing with high-dimensional data, a pre-processing phase before
applying a learning algorithm is imperative to avoid the curse of dimension-
ality from a computational point of view. The latter may increase the resources
usage and decrease the performance of some algorithms, such as kNN. The main
idea to mitigate this curse consists of using an efficient strategy with consistent
and promising results such as UMAP.

Since UMAP is a transductive technique, an instance-incremental learning
approach that includes UMAP does not work because the entire stream needs to
be processed for each new incoming instance. By doing it this way, the process
will be costly and will not respond to the streaming requirements. To alleviate the
processing cost considering the framework within which several challenges shall
be respected, including the memory constraint and the incremental behavior of
data, we adopt a batch-incremental strategy. In the following, we introduce the
procedure of our novel approach, batch-incremental UMAP-kNN.

Batch-Incremental Classification Using UMAP for Data Streams 45

X1 X2X3 X4 X5X6X7X8 X9X10X11X12
... Xr Xr+1Xr+2Xr+3

d

Y1 Y2Y3 Y4 Y5Y6Y7Y8 Y9Y10Y11Y12
... Yr Yr+1Yr+2Yr+3

p

T1 T2 T3 Tq

Y1 Y2

Y1 Y2Y3

Y1 Y2Y3 Y4

Y1 Y2Y3 Y4 Y5Y6

Y1 Y2Y3 Y4 Y5Y6Y7

Y8
Y1 Y2Y3 Y4 Y5Y6Y7 ...

Y8
Y1 Y2Y3 Y4 Y5Y6Y7 Y9Y10Y11Y12 ... Yr Yr+1Yr+2Yr+3

kNN

Fig. 2. Batch-incremental UMAP-kNN scheme

Step 1: Partition of the Stream. During this step, we assume that data
arrive in batches – or chunks – by dividing the stream into disjoint partitions
S1, S2, . . . of size s. The first part of Fig. 2 shows a stream of instances divided
into batches, so instead of having instances available one at a time, they will
arrive as a group of instances simultaneously, S1, . . . , Sq, where Sq is the qth
chunk. A simple example of data stream is a video sequence where at each
instant we have a succession of images.

Step 2: Data Pre-processing. We aim to construct a low-dimensional Yi ∈ p,
from an infinite stream of high-dimensional data Xi ∈ d, where p � d. As men-
tioned before, UMAP is unable to compress data incrementally and needs to
transform more than one observation at a time because it builds a neighborhood-
graph on a set of instances and then lays it out in a lower dimensional space [21].
Thus, our proposed approach operates on batches of the stream where a single
batch Si of data is processed at a time Ti. The two first steps in Fig. 2 depict the
application of UMAP on the disjoint batches. Once a batch is complete, through-
out the second step, we apply UMAP on it independently from the chunks that
have been already processed, so each Si ∈ R

d will be transformed and repre-
sented by S′

i ∈ R
p. This new representation is very likely devoid of redundan-

cies, irrelevant attributes, and is obtained by finding potentially useful non-linear
combinations of existing attributes, i.e. by repacking relevant information of the
larger feature space and encoding it more compactly.

For UMAP to learn when moving from a batch to another, we seed each
chunk’s embedding with the outcome of the previous one, i.e., match the prior
initial coordinates for instances in the current embedding to the final coordinates
in the preceding one. This will help to avoid losing the topological information of
the stream and to keep stability in successive embeddings as we transition from
one batch to its successor. Afterwards, we use the compressed representation

46 M. Bahri et al.

of the high-dimensional chunk for the next step that consists in supporting the
incremental kNN classification algorithm.

Step 3: kNN Classification. UMAP-kNN aims to decrease the computational
costs of kNN on high-dimensional data stream by reducing the input space size
using the dimension reducing UMAP, in a batch-incremental way. In addition to
the prediction phase of the kNN algorithm that, based on the neighborhood2,
UMAP operates on a k-nearest graph (topological representation) as well and
optimizes the low-dimensional representation of the data using gradient descent.
One nice takeaway is that UMAP, because of its solid theoretical backing as
a manifold technique, keeps properties such as density and pairwise distances.
Thus, it does not bias the neighborhood-based kNN performance.

This step consists of classifying the evolving data stream, where the learn-
ing task occurs on consecutive batches, i.e. we train incrementally kNN with
instances becoming successively available in chunk buffers after pre-processing.
Figure 2 shows the underlying batch-incremental learning scheme used which
is built upon the divide-and-conquer strategy. Since UMAP is independently
applied to batches, so once a chunk is complete and has been transformed in R

p,
we feed the half of the batch to the sliding window and we predict incrementally
the class label for the second half (the rest of instances).

Given that kNN is adaptive, the main novelty of UMAP-kNN is in how it
merges the current batch to previous ones. This is done by adding it to the
instances from previous chunks inside the kNN window. Even if past chunks
have been discarded, only some of them have been stored and maintained while
the adaptive window scrolls. Thereafter, instances kept temporarily inside the
window are going to be used to define the neighborhood and predict the class
labels for later incoming instances. As presented in Fig. 2, the intuitive idea to
combine results from different batches is to use the half of each batch for training
and the second half for prediction. In general, due to the possibility of having
often very different successive embeddings, one would expect that this may affect
the global performance of our approach. Thus, we adopt this scheme to maintain
a stability over an adaptive batch-incremental manifold classification approach.

4 Experiments

In this section, we present a series of experiments carried out on various datasets
based on three main results: the accuracy, the memory (MB), and the time (Sec).

4.1 Datasets

We use 3 synthetic and 6 real-world datasets from different scenarios that have
been thoroughly used in the literature to evaluate the performance of data

2 The distances between the new incoming instance and the instances already available
inside the adaptive window are computed in order to assign it to a particular class.

Batch-Incremental Classification Using UMAP for Data Streams 47

streams classifiers. Table 1 presents a short description of each dataset, and fur-
ther details are provided in what follows.

Tweets. The dataset was created using the tweets text data generator provided
by MOA [6] that simulates sentiment analysis on tweets, where messages can
be classified depending on whether they convey positive or negative feelings.
Tweets1,2,3 produce instances of 500, 1,000 and 1,500 attributes respectively.

Har. Human Activity Recognition dataset [2] built from several subjects per-
forming daily living activities, such as walking, sitting, standing and laying, while
wearing a waist-mounted smartphone equipped with sensors. The sensor signals
were pre-processed using noise filters and attributes were normalized.

CNAE. CNAE is the national classification of economic activities dataset [9].
Instances represent descriptions of Brazilian companies categorized into 9 classes.
The original texts were pre-processed to obtain the current highly sparse data.

Enron. The Enron corpus dataset is a large set of email messages that was made
public during the legal investigation concerning the Enron corporation [17]. This
cleaned version of Enron consists of 1, 702 instances and 1, 000 attributes.

Table 1. Overview of the datasets

Dataset #Instances #Attributes #Classes Type

Tweets1 1,000,000 500 2 Synthetic

Tweets2 1,000,000 1,000 2 Synthetic

Tweets3 1,000,000 1,500 2 Synthetic

Har 10,299 561 6 Real

CNAE 1,080 856 9 Real

Enron 1,702 1,000 2 Real

IMDB 120,919 1,001 2 Real

Nomao 34,465 119 2 Real

Covt 581,012 54 7 Real

IMDB. IMDB movie reviews dataset was proposed for sentiment analysis [19],
where each review is encoded as a sequence of word indexes (integers).

Nomao. Nomao dataset [8] was provided by Nomao Labs where data come from
several sources on the web about places (name, address, localization, etc.).

Covt. The forest covertype dataset obtained from US forest service resource
information system data where each class label presents a different cover type.

48 M. Bahri et al.

100 200 300 400 500
Chunk size

30

40

50

60

70

80

90

100
Ac

cu
ra

cy

(a)

10 15 20 25 30
Number of neighbors

60

65

70

75

80

85

90

95

100

Ac
cu

ra
cy

(b)

Fig. 3. (a) Varying the chunk size. (b) Varying the neighborhood size for UMAP.

4.2 Results and Discussions

We compare our proposed classifier, UMAP-kNN, to various commonly-used
baseline methods in dimensionality reduction and machine learning areas.
PCA [24], tSNE (fixing the perplexity to 30, which is the best value as reported
in [20]), SAM-kNN (SkNN) [18]. We use HAT, a classifier with a different struc-
ture based on trees [4], to assess its performance with the neighborhood-based
UMAP. For fair comparison, we compare the performance of UMAP-kNN app-
roach with a competitor using UMAP as well in the same batch-incremental
manner. Actually, incremental kNN has two crucial parameters: (i) the num-
ber of neighbors k fixed to 5; and (ii) the window size w, that maintains the
low-dimensional data, fixed to 1000. According to previous studies such as [7], a
bigger window will increase the resources usage and smaller size will impact the
accuracy.

The experiments were conducted on a machine equipped with an Intel Core
i5 CPU and 4 GB of RAM. All experiments were implemented and evaluated in
Python by extending the Scikit-multiflow framework3 [22].

Figure 3a depicts the influence of the chunk size on the accuracy using
UMAP-kNN with some datasets. Generally, fixing the chunk size imposes the
following dilemma: choosing a small size so that we obtain an accurate reflection
of the current data or choosing a large size that may increase the accuracy since
more data are available. The ideal would be to use a batch with the maximum of
instances to represent as possible the whole stream. In practice, the chunk size
needs to be small enough to fit in the main memory otherwise the running time
of the approach will increase. Since UMAP is relatively slow, we choose small
chunk sizes to overcome this issue with UMAP-kNN. Based on the obtained
results, we fix the chunk size to 400 for the best trade-off accuracy-memory.

We investigate the behavior of a crucial parameter that controls UMAP,
number of neighbors, via the classification performance of our approach. Based

3 https://scikit-multiflow.github.io/.

https://scikit-multiflow.github.io/

Batch-Incremental Classification Using UMAP for Data Streams 49

Tweet 1Tweet 2Tweet 3 Har CNAE Enron IMDB Nomao Covt
0

10

20

30

40

50

60

70

80

90

100
Ac

cu
ra

cy

(a)

Tweet 1Tweet 2Tweet 3 Har CNAE Enron IMDB Nomao Covt
0

1000

2000

3000

4000

5000

6000

7000

8000

M
em

or
y

(b)

Tweet 1Tweet 2Tweet 3 Har CNAE Enron IMDB Nomao Covt
10 0

10 1

10 2

10 3

10 4

10 5

10 6

Ti
m

e

(c)

Fig. 4. Comparison of UMAP-kNN, tSNE-kNN, PCA-kNN, and kNN (with the entire
datasets) while projecting into 3-dimensions: (a) Accuracy. (b) Memory.

on the size of the neighborhood, UMAP constructs the manifold and focuses on
preserving local and global structures. Figure 3b shows the accuracy when the
number of neighbors is varied on diverse datasets. We notice that for all datasets,
the accuracy is consistently the same with no large differences, e.g. Har. Since
a large neighborhood leads to a slower learning process, in the following we fix
the neighborhood size to 15.

tSNE is a visualization technique, so we are limited to project high-
dimensional data into 2 or 3 dimensions. In order to evaluate the performance
of our proposal in a fair comparison against each of tSNE-kNN and PCA-kNN,
we project data into 3-dimensional space. We illustrate in Fig. 4a that UMAP-
kNN makes significantly more accurate predictions beating consistently the best
performing baselines (tSNE-kNN and PCA-kNN) notably with CNAE and the
tweets datasets. Figure 4b depicts the quantity of memory needed by the three
algorithms which is practically the same for some datasets. Compared to kNN
that uses the whole data without projection, we notice that UMAP-kNN con-
sumes much less memory whilst sacrificing a bit in accuracy because we are
removing many attributes. Figure 4c shows that our approach is consistently
faster than tSNE-kNN because tSNE computes the distances between every pair
of instances to project. But PCA-kNN is a bit faster thanks to the simplicity of
PCA. But with this trade-off our approach performs good on almost all datasets.

In addition to its good classification performance in comparison with com-
petitors, the batch-incremental UMAP-kNN did a better job of preserving den-
sity by capturing both of global and local structures, as shown in Fig. 1d. The
fact that UMAP and kNN are both neighborhood-based methods arises as a
key element in achieving a good accuracy. UMAP has not only the power of
visualization but also the ability to reduce the dimensionality of data efficiently
which makes it useful as pre-processing technique for machine learning.

Table 2 reports the comparison of UMAP-kNN against state-of-the-art clas-
sifiers. We highlight that our approach performs better on almost all datasets. It
achieves similar accuracies to UMAP-SkNN on several datasets but in terms
of resources, the latter is slower because of its drift detection mechanism.

50 M. Bahri et al.

Table 2. Comparison of UMAP-kNN, PCA-kNN, UMAP-SkNN, and UMAP-HAT.

Dataset UMAP-kNN PCA-kNN UMAP-SkNN UMAP-HAT

Accuracy (%)

Tweets1 75.71 69.89 75.37 66.47

Tweets2 75.16 69.21 74.40 61.27

Tweets3 71.01 70.81 70.47 66.98

Har 75.30 70.50 64.09 84.89

CNAE 76.67 67.41 75.18 40.18

Enron 92.24 93.41 91.89 91.77

IMDB 67.38 67.28 67.43 64.52

Nomao 91.92 91.13 91.63 83.75

Covt 61.29 66.73 53.08 55.43

Memory (MB)

Tweets1 1366.71 1354.24 1373.15 2738.32

Tweets2 2530.30 2518.76 2532.95 4891.23

Tweets3 3706.99 3706.55 3722.68 7144.77

Har 311.58 310.48 312.84 381.49

CNAE 254.17 246.94 260.29 262.52

Enron 269.00 267.31 271.56 288.74

IMDB 3012.85 3013.28 3018.04 7471.64

Nomao 289.81 285.50 290.60 508.50

Covt 700.69 689.97 704.46 3788.54

Time (Sec)

Tweets1 558.56 217.44 1396.32 2163.14

Tweets2 616.50 350.63 908.59 3453.21

Tweets3 667.43 400.62 1066.98 6273.19

Har 75.20 24.37 77.99 82.47

CNAE 8.89 4.81 13.17 19.78

Enron 12.80 9.52 17.26 32.84

IMDB 715.68 407.60 1038.77 4691.07

Nomao 248.79 20.46 327.36 228.00

Covt 2311.21 137.62 3756.41 2297.01

UMAP-kNN has a better performance than PCA-kNN, e.g. the Tweets datasets
at the cost of being slower. We also observe the UMAP-HAT failed to overcome
our approach (in terms of accuracy, memory, and time) due to the integration
of a neighborhood-based technique (UMAP) to a tree structure (HAT).

Figure 5 reports detailed results for Tweet1 dataset with five output dimen-
sions. Figure 5a exhibits the accuracy of our approach which is consistently above

Batch-Incremental Classification Using UMAP for Data Streams 51

10 20 30 40 50
Dimension

58

60

62

64

66

68

70

72

74

76

78

80
Ac

cu
ra

cy

(a)

10 20 30 40 50
Dimension

1400

1600

1800

2000

2200

2400

2600

2800

3000

M
em

or
y

(b)

10 20 30 40 50
Dimension

0

500

1000

1500

2000

2500

3000

Ti
m

e

(c)

Fig. 5. Comparison of UMAP-kNN, PCA-kNN, UMAP-SkNN, and UMAP-HAT over
different output dimensions on Tweet1: (a) Accuracy. (b) Memory. (c) Time.

competitors whilst ensuring stability for different manifolds. Figures 5b and c
show that kNN-based classifiers use much less resources than the tree-based
UMAP-HAT. We see that UMAP-kNN requires less time than UMAP-HAT and
UMAP-SkNN to execute the stream but PCA-kNN is fastest thanks to its sim-
plicity. Still, the gain in accuracy with UMAP-kNN is more significant.

5 Concluding Remarks and Future Work

In this paper, we presented a novel batch-incremental approach for mining data
streams using the kNN algorithm. UMAP-kNN combines the simplicity of kNN
and the high performance of UMAP which is used as an internal pre-processing
step to reduce the feature space of data streams. We showed that UMAP is
capable of embedding efficiently data streams within a batch-incremental strat-
egy in an extensive evaluation with well-known state-of-the-art algorithms using
various datasets. We further demonstrated that the batch-incremental approach
is just as effective as the offline approach in visualization and its accuracy out-
performs reputed baselines while using reasonable resources.

We would like to pursue our promising approach further to enhance its run-
time performance by applying a fast dimension reduction before using of UMAP.
Another area for future work could be the use of a different mechanism, such
as the application of UMAP for each incoming data inside a sliding window.
We believe that this may be slow but will be suited for instance-incremental
learning.

References

1. Aha, D.W.: Lazy Learning. Springer, Heidelberg (2013)
2. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: Human activity

recognition on smartphones using a multiclass hardware-friendly support vector
machine. In: Bravo, J., Hervás, R., Rodŕıguez, M. (eds.) IWAAL 2012. LNCS,
vol. 7657, pp. 216–223. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-35395-6 30

https://doi.org/10.1007/978-3-642-35395-6_30
https://doi.org/10.1007/978-3-642-35395-6_30

52 M. Bahri et al.

3. Bahri, M., Maniu, S., Bifet, A.: A sketch-based Naive Bayes algorithms for evolving
data streams. In: International Conference on Big Data, pp. 604–613. IEEE (2018)

4. Bifet, A., Gavaldà, R.: Adaptive learning from evolving data streams. In: Adams,
N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol.
5772, pp. 249–260. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03915-7 22

5. Bifet, A., Gavaldà, R., Holmes, G., Pfahringer, B.: Machine Learning for Data
Streams: with Practical Examples in MOA. MIT Press, Cambridge (2018)

6. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis.
JMLR 11(May), 1601–1604 (2010)

7. Bifet, A., Pfahringer, B., Read, J., Holmes, G.: Efficient data stream classification
via probabilistic adaptive windows. In: SIGAPP, pp. 801–806. ACM (2013)

8. Candillier, L., Lemaire, V.: Design and analysis of the nomao challenge active
learning in the real-world. In: ALRA, Workshop ECML-PKDD. sn (2012)

9. Ciarelli, P.M., Oliveira, E.: Agglomeration and elimination of terms for dimension-
ality reduction. In: ISDA, pp. 547–552. IEEE (2009)

10. Cortes, C., Vapnik, V.: Support-vector networks. ML 20(3), 273–297 (1995)
11. Domingos, P., Hulten, G.: Mining high-speed data streams. In: SIGKDD, pp. 71–

80. ACM (2000)
12. Gama, J., Sebastião, R., Rodrigues, P.P.: Issues in evaluation of stream learning

algorithms. In: SIGKDD, pp. 329–338. ACM (2009)
13. Günter, S., Schraudolph, N.N., Vishwanathan, S.: Fast iterative kernel principal

component analysis. JMLR 8(8), 1893–1918 (2007)
14. Hand, D.J., Mannila, H., Smyth, P.: Principles of Data Mining. MIT Press, Cam-

bridge (2001)
15. Holmes, G., Kirkby, R.B., Bainbridge, D.: Batch-incremental learning for mining

data streams (2004)
16. Hotelling, H.: Analysis of a complex of statistical variables into principal compo-

nents. J. Educ. Psychol. 24(6), 417 (1933)
17. Klimt, B., Yang, Y.: The enron corpus: a new dataset for email classification

research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.)
ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30115-8 22

18. Losing, V., Hammer, B., Wersing, H.: KNN classifier with self adjusting memory
for heterogeneous concept drift. In: ICDM, pp. 291–300. IEEE (2016)

19. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning
word vectors for sentiment analysis. In: ACL-HLT, pp. 142–150. Association for
Computational Linguistics (2011)

20. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. JMLR 9, 2579–2605
(2008)

21. McInnes, L., Healy, J., Melville, J.: UMAP: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)

22. Montiel, J., Read, J., Bifet, A., Abdessalem, T.: Scikit-multiflow: a multi-output
streaming framework. JMLR 19(1), 2914–2915 (2018)

23. Read, J., Bifet, A., Pfahringer, B., Holmes, G.: Batch-incremental versus instance-
incremental learning in dynamic and evolving data. In: Hollmén, J., Klawonn, F.,
Tucker, A. (eds.) IDA 2012. LNCS, vol. 7619, pp. 313–323. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-34156-4 29

https://doi.org/10.1007/978-3-642-03915-7_22
https://doi.org/10.1007/978-3-642-03915-7_22
https://doi.org/10.1007/978-3-540-30115-8_22
http://arxiv.org/abs/1802.03426
https://doi.org/10.1007/978-3-642-34156-4_29

Batch-Incremental Classification Using UMAP for Data Streams 53

24. Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual
tracking. IJCV 77(1–3), 125–141 (2008)

25. Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction
techniques. arXiv preprint arXiv:1403.2877 (2014)

26. Weng, J., Zhang, Y., Hwang, W.S.: Candid covariance-free incremental principal
component analysis. TPAMI 25(8), 1034–1040 (2003)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/1403.2877
http://creativecommons.org/licenses/by/4.0/

GraphMDL: Graph Pattern Selection
Based on Minimum Description Length

Francesco Bariatti(B), Peggy Cellier, and Sébastien Ferré

Univ Rennes, INSA, CNRS, IRISA,
Campus de Beaulieu, Rennes, France

{francesco.bariatti,peggy.cellier,sebastien.ferre}@irisa.fr

Abstract. Many graph pattern mining algorithms have been designed
to identify recurring structures in graphs. The main drawback of these
approaches is that they often extract too many patterns for human anal-
ysis. Recently, pattern mining methods using the Minimum Description
Length (MDL) principle have been proposed to select a characteristic
subset of patterns from transactional, sequential and relational data. In
this paper, we propose an MDL-based approach for selecting a character-
istic subset of patterns on labeled graphs. A key notion in this paper is
the introduction of ports to encode connections between pattern occur-
rences without any loss of information. Experiments show that the num-
ber of patterns is drastically reduced. The selected patterns have complex
shapes and are representative of the data.

Keywords: Pattern mining · Graph mining · Minimum Description
Length

1 Introduction

Many fields have complex data that need labeled graphs, i.e. graphs where ver-
tices and edges have labels, for an accurate representation. For instance, in chem-
istry and biology, molecules are represented as atoms and bonds; in linguistics,
sentences are represented as words and dependency links; in the semantic web,
knowledge graphs are represented as entities and relationships. Depending on
the domain, graph datasets can be made of large graphs or large collections
of graphs. Graphs are complex to analyze in order to extract knowledge, for
instance to identify frequent structures in order to make them more intelligible.

In the field of pattern mining, there has been a number of proposals, namely
graph mining approaches, to extract frequent subgraphs. Classical approaches
to graph mining, e.g. gSpan [12] and Gaston [7], work on collections of graphs,
and generate all patterns w.r.t. a frequency threshold. The major drawback of
this kind of approach is the huge amount of generated patterns, which ren-
ders them difficult to analyze. Some approaches such as CloseGraph [13] reduce
the number of patterns by only generating closed patterns. However, the set of
closed patterns generally remains too large, with a lot of redundancy between
c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 54–66, 2020.
https://doi.org/10.1007/978-3-030-44584-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_5

GraphMDL 55

patterns. Constraint-based approaches, such as gPrune [14], reduce the num-
ber of extracted patterns by extracting only the patterns following a certain
acceptance rule. These algorithms generally manage to reduce the number of
patterns, however they also limit their type. Additionally, if the acceptance rule
is user-provided, the user needs some background knowledge on the data.

More effective approaches to reduce the number of patterns are those based
on the Minimum Description Length (MDL) principle [3]. The MDL principle
comes from information theory, and states that the model that describes the
data the best is the one that compresses the data the best. It has been shown
on sets of items [10], sequences [9] and relations [4] that an MDL-based app-
roach can select a small and descriptive subset of patterns. Few MDL-based
approaches have been proposed for graphs. SUBDUE [1] iteratively compresses
a graph by replacing each occurrence of a pattern by a single vertex. At each
step, the chosen pattern is the one that compresses the most. The drawback of
SUBDUE is that the replacement of pattern occurrences by vertices entails a loss
of information. VoG [5] summarizes graphs as a composition of predefined fam-
ilies of patterns (e.g., paths, stars). Like SUBDUE, VoG aims to only extract
“interesting” patterns, but instead of evaluating each pattern individually like
SUBDUE, it evaluates the set of extracted patterns as a whole. This allows the
algorithm to find a “good set of patterns” instead of a “set of good patterns”.
One limitation of VoG is that the type of patterns is restricted to predefined
ones. Another limitation is that VoG works on unlabeled graphs, (e.g. network
graphs), while we are interested in labeled graphs.

The contribution of this paper (Sect. 3) is a novel approach called Graph-
MDL, leveraging the MDL principle to select graph patterns from labeled
graphs. Contrary to SUBDUE, GraphMDL ensures that there is no loss of
information thanks to the introduction of the notion of ports associated to graph
patterns. Ports represent how adjacent occurrences of patterns are connected.
We evaluate our approach experimentally (Sect. 4) on two datasets with differ-
ent kinds of graphs: one on AIDS-related molecules (few labels, many cycles),
and the other one on dependency trees (many labels, no cycles). Experiments
validate our approach by showing that the data can be significantly compressed,
and that the number of selected patterns is drastically reduced compared to the
number of candidate patterns. More so, we observe that the patterns can have
complex and varied shapes, and are representative of the data.

2 Background Knowledge

2.1 The MDL Principle

The Minimum Description Length (MDL) principle [3] is a technique from the
domain of information theory that allows to select the model, from a family of
models, that best describes some data. The MDL principle states that the best
model M for describing some data D is the one that minimizes the description
length L(M,D) = L(M)+L(D|M), where L(M) is the length of the model and
L(D|M) the length of the data encoded with the model. The MDL principle does

56 F. Bariatti et al.

Fig. 1. A labeled undi-
rected simple graph.

Fig. 2. Embeddings of a pattern in the
graph of Fig. 1.

X

a

Vertex singleton

Edge singleton

Fig. 3. Two single-
ton patterns.

not define how to compute every possible description length. However, common
primitives exist for data and distributions [6]:

– An element x ∈ X with uniform distribution has a code of log(|X |) bits.
– An element x ∈ X , appearing usage(x,D) times in some data D has a code

of LX
usage(x,D) = −log

(
usage(x,D)∑

xi∈X usage(xi,D)

)
bits. This encoding is optimal.

– An integer n ∈ N without a known upper bound can be encoded with a
universal integer encoding, whose size in bits is noted LN(n)1.

Description lengths of elements that are common to all models are usually
ignored, since they do not affect their comparison.

Krimp [10] is a pattern mining algorithm using the MDL principle to select a
“characteristic” set of itemset patterns from a transactional database. Because of
its good performances, Krimp has been adapted to other types of data, such as
sequences [9] and relational databases [4]. In our approach we redefine Krimp’s
key concepts on graphs, in order to apply a Krimp-like approach to graph mining.

2.2 Graphs and Graph Patterns

Definition 1. A labeled graph G = (V,E, lV , lE) over two label sets LV and LE

is a data structure composed of a set of vertices V , a set of edges E ⊆ V × V ,
and two labeling functions lV ∈ V → 2LV and lE ∈ E → LE that associate a
set of labels to vertices, and one label to edges.

G is said undirected if E is symmetric, and simple if E is irreflexive.

Although our approach applies to all labeled graphs, in the following we
only consider undirected simple graphs, so as to compare ourselves with existing
tools and benchmarks. Figure 1 shows an example of graph, with 8 vertices and
7 edges, defined over vertex label set {W,X, Y, Z} and edge label set {a, b}. In
our definition vertices can have several or no labels, unlike usual definitions in
graph mining, because it makes it applicable to more datasets.
1 In our implementation we use Elias gamma encoding [2], shifted by 1 so that it can

encode 0. Therefore LN(n) = 2�log(n+ 1)� + 1.

GraphMDL 57

X Y Za b

a

W

v2

v1

Port ID Port code
length (bits)

2
0.42

Pattern code
length (bits)

1

Port count

2

Pattern structure

v2

v1 1
1

2.58 2

2.58

X 2.58

1

1

1

1

2

2

3

Pattern usage

3

1

1

1

Port usage

1

3

1

1

P1

Pattern code Port code

v1

v2

v1

v2

P

P1

Pa

Pw

Px

ccPGP

1 v1 1 0

1 v1 1 0

v

Pa

Pw

Px

Fig. 4. Example of a GraphMDL code table over the graph of Fig. 1. Pattern and
port usages, and code lengths have been added as illustration and are not part of the
table definition. Unused singleton patterns are omitted.

Definition 2. Let GP and GD be graphs. An embedding (or occurrence) of GP

in GD is an injective function ε ∈ V P → V D such that: (1) lPV (v) ⊆ lDV (ε(v)) for
all v ∈ V P ; (2) (ε(u), ε(v)) ∈ ED for all (u, v) ∈ EP ; and (3) lPE(e) = lDE (ε(e))
for all e ∈ EP .

We define graph patterns as graphs GP having some occurrences in the data
graph GD. Figure 2 shows the three embeddings ε1, ε2, ε3 of a two-vertices graph
pattern into the graph of Fig. 1. We define singleton patterns as the elementary
patterns. A vertex singleton pattern is a graph with one vertex having one label.
An edge singleton pattern is a graph with two unlabeled vertices, connected by
a single labeled edge. Figure 3 shows examples of singleton patterns.

3 GraphMDL: MDL for Graphs

In this section we present our contribution: the GraphMDL approach. This
approach takes as input a graph—the original graph Go—and a set of pat-
terns extracted from that graph—the candidate patterns—and outputs the most
descriptive subset of candidate patterns according to the MDL principle. The
candidates can be generated with any graph mining algorithm, e.g. gSpan [12].

The intuition behind GraphMDL is that since data and patterns are both
graphs, the data can be seen as a composition of pattern embeddings. Informally,
we want a user analyzing the output of GraphMDL to be able to say “the data
is composed of one occurrence of pattern A, connected to one occurrence of
pattern B, which is itself connected to one occurrence of pattern C”. More so,
we want the user to be able to tell how these structures are connected together:
which vertices of each pattern are used to connect it to other patterns.

3.1 Model: A Code Table for Graph Patterns

Similarly to Krimp [10], we define our model as a Code Table (CT), i.e. a set P of
patterns with associated coding information. A first difference with Krimp is that
the patterns are graph patterns. A second difference is the need for additional
coding information: a single code would not suffice since all the information
related to connectivity between pattern occurrences would be lost.

58 F. Bariatti et al.

P1

v1

v2

v2

v1

v2

Rewritten graph

X

YX

X

Z

Z

Z

X

W

a

a

a

a

b

b

b

P1

P1

P1

Pa

Pattern occurrences

v2

Pw

Px

v1

v1

P1

Pa

Pw

Px

P1

a) b)

Fig. 5. How the data graph of Fig. 1 is encoded with the code table of Fig. 4.
(a) Retained occurrences of CT patterns. (b) The rewritten graph. Blue squares are
pattern embeddings (their label indicates the pattern), white circles are port vertices.
Edge labels represent which pattern port correspond to each port vertex. (Color figure
online)

We therefore introduce the notion of ports in order to represent how pattern
embeddings connect to each other to form the original graph. The set of ports of
a pattern is a subset of the vertices of the pattern. Intuitively, a pattern vertex
is a port if at least one pattern embedding maps this vertex to a vertex in the
original graph that is also used by another embedding (be it of the same pattern
or a different one). For example, in Fig. 5a the three occurrences of pattern P1
are inter-connected through their middle vertex: this vertex is a port. Since port
information increases the description length, we expect our approach to select
patterns with few ports.

Figure 4 shows an example of CT associated to the graph of Fig. 1. Every
row of the CT is composed of three parts, and contains information about a
pattern P ∈ P (e.g. the first row contains information about pattern P1). The
first part of a row is the graph GP , which represents the structure of the pattern
(e.g. P1 is a pattern with three labeled vertices and two labeled edges). The
second part of a row is the code cP , associated to the pattern. The third part
of a row is the description of the port set of the pattern, ΠP , (e.g. P1 has two
ports, its first two vertices, with codes of 2 and 0.42 bits2). We note Π the set of
all ports of all patterns. Like Krimp, the length of the code of a pattern or port
depends on its usage in the encoding of the data, i.e. how many times it is used
to describe the original graph Go (e.g. P1 has a code of 1 bit because it is used
3 times and the sum of pattern usages in the CT is 6, see Sects. 3.2 and 3.3).

3.2 Encoding the Data with a Code Table

The intuition behind GraphMDL is that we can represent the original graph Go

(i.e. the data) as a set of pattern occurrences, connected via ports. Encoding the
data with a CT consists in creating a structure that explicits which occurrences
are used and how they interconnect to form the original graph. We call this
structure the rewritten graph Gr.
2 MDL approaches deal with theoretical code lengths, which may not be integers.

GraphMDL 59

Definition 3. A rewritten graph Gr = (V r, Er, lrV , lrE) is a graph where the set
of vertices is V r = V r

emb ∪ V r
port: V r

emb is the set of pattern embedding vertices
and V r

port is the set of port vertices. Er ⊆ V r
emb × V r

port is the set of edges from
embeddings to ports, lrV ∈ V r

emb → P and lrE ∈ Er → Π are the labelings.

In order to compute the encoding of the data graph with a given CT, we start
with an empty rewritten graph. One after another, we select patterns from the
CT. For each pattern, we compute the occurrences of its graph GP . Similarly to
Krimp, we limit embeddings overlaps: we admit overlap on vertices (since it is
the key notion behind ports), but we forbid edge overlaps.

Each retained embedding is represented in the rewritten graph by a pat-
tern embedding vertex : a vertex ve ∈ V r

emb with a label P ∈ P indicating
which pattern it instantiates. Vertices that are shared by several embeddings
are represented in the rewritten graph by a port vertex vp ∈ V r

port. We add an
edge (ve, vp) ∈ Er between the pattern embedding vertex ve of a pattern P and
the port vertex vp, when the embedding associated to ve maps the pattern’s
port vπ ∈ ΠP to vp. We label this edge vπ.

We make sure that code tables always include all singleton patterns, so that
they can always encode any vertex and edge of the original graph.

Figure 5 shows the graph of Fig. 1 encoded with the CT of Fig. 4. Embeddings
of CT patterns become pattern embedding vertices in the rewritten graph (blue
squares). Vertices that are at the boundary between multiple embeddings become
port vertices in the rewritten graph (white circles). When an embedding has a
port, its pattern embedding vertex in the rewritten graph is connected to the
corresponding port vertex and the edge label indicates which pattern’s port it
is. For instance, the three retained occurrences of pattern P1 all share the same
vertex labeled Y (middle of the original graph), thus in the rewritten graph the
three corresponding pattern embedding vertices are connected to the same port
vertex via port v2.

3.3 Description Lengths

In this section we define how to compute the description length of the CT and
the rewritten graph. Description lengths are used to compare CTs. Formulas are
explained below and grouped in Fig. 6.

Code Table. The description length L(M) = L(CT) of a CT is the sum of the
description lengths of its rows (skipping rows with unused patterns), and every
row is composed of three parts: the pattern graph structure, the pattern code,
and the pattern port description.

To describe the structure G = GP of a pattern (L(G)) we start by encoding
the number of vertices of the pattern. Then we encode the vertices one after
the other. For each vertex v, we encode its labels then its adjacent edges. To
encode the vertex labels (LV (v,G)) we specify their number first, then the labels
themselves. To encode the adjacent edges (LE(v,G)) we specify their number
(between 0 and |V | − 1 in a simple graph), then for each edge, its destination

60 F. Bariatti et al.

Fig. 6. Formulas used for computing description lengths. The structure GP =
(V P , EP , lPV , lPE) is shortened to G = (V,E, lV , lE) for ease of reading.

vertex and its label. To avoid encoding twice the same edge, we decide—in
undirected graphs—to encode edges with the vertex with the smallest identifier.
Vertex and edge labels are encoded based on their relative usage in the original
graph Go (LLV

usage(l, G
o) and LLE

usage(lE(v, w), Go)). Since this encoding does not
change between CTs, it is a meaningful way to compare them.

The second element of a CT row is the code cP associated to the pattern
(L(cP)). This code is based on the usage of the pattern in the rewritten graph.

The last element of a CT row is the description of the pattern’s ports
(L(ΠP)). First, we encode the number of pattern’s ports (between 0 and |V |).
Then we specify which vertices are ports: if there are k ports, then there are

(|V |
k

)
possibilities. Finally, we encode the port codes (L(cπ, P)): their code is based on
the usage of the port in the rewritten graph w.r.t. other ports of the pattern.

Rewritten Graph. The rewritten graph has two types of vertices: port ver-
tices and pattern embedding vertices. Port vertices do not have any associ-
ated information, so we just need to encode their number. The description
length L(D|M) = L(Gr) of the rewritten graph is the length needed for encoding
the number of vertex ports plus the sum of the description lengths Lemb(v, P,Gr)
of the pattern embedding vertices v. Every pattern embedding vertex has a
label lrV (v) specifying its pattern P , encoded with the code cP of the pattern.
We then encode the number of edges of the vertex i.e. the number of ports of this

GraphMDL 61

embedding in particular (between 0 and |ΠP |). Then for each edge we encode
the port vertex to which it is connected and to which port it corresponds (using
the port code cπ).

Table 1. Characteristics of the datasets used in the experiments

Dataset Graph count |V | |E| |LV | |LE |
AIDS-CA 423 16714 17854 21 3
AIDS-CM 1082 34387 37033 26 3
UD-PUD-En 1000 21176 20176 17 46

3.4 The GraphMDL Algorithm

In previous subsections we presented the different MDL definitions that Graph-
MDL uses to evaluate pattern sets (CT). A naive algorithm for finding the most
descriptive pattern set (in the MDL sense) could be to create a CT for every
possible subset of candidates and retain the one yielding the smallest descrip-
tion length. However, such an approach is often infeasible because of the large
amount of possible subsets. That is why GraphMDL applies a greedy heuristic
algorithm, adapting Krimp algorithm [10] to our MDL definitions.

Like Krimp, our algorithm starts with a CT composed of all singletons, which
we call CT0. One after the other, candidates are added to the CT if they allow to
lower the description length. Two heuristics guide GraphMDL: the candidate
order and the order of patterns in the CT. We use the same heuristics as Krimp,
with the difference that we define the size of a pattern as its total number of
labels (vertices and edges). We also implement Krimp’s “post-acceptance prun-
ing”: after a pattern is accepted in the CT, GraphMDL verifies if the removal
of some patterns from the CT allows to lower the description length L(M,D).

4 Experimental Evaluation

In order to evaluate our proposal, we developed a prototype of GraphMDL.
The prototype was developed in Java 1.8 and is available as a git repository3.

4.1 Datasets

The first two datasets that we use, AIDS-CA and AIDS-CM, are part of the
National Cancer Institute AIDS antiviral screen data4. They are collections of
graphs often used to compare graph mining algorithms [11]. Graphs of this col-
lection represent molecules: vertices are atoms and edges are bonds. We stripped
all hydrogen atoms from the molecules, since their positions can be inferred.

We took our third dataset, UD-PUD-En, from the Universal Dependen-
cies project5. This project curates a collection of trees describing dependency
3 https://gitlab.inria.fr/fbariatt/graphmdl.
4 https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data.
5 https://universaldependencies.org/.

https://gitlab.inria.fr/fbariatt/graphmdl
https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data
https://universaldependencies.org/

62 F. Bariatti et al.

Table 2. Experimental results for different candidate sets

Dataset gSpan
support

Candidate
count

Runtime |CT | L(CT,D)
L(CT0,D)

Median
label count

Median
port count

AIDS-CA 20% 2194 19m 115 24.42% 9 3
AIDS-CA 15% 7867 1 h 47m 123 21.64% 10 4
AIDS-CA 10% 20596 3 h 36m 148 19.03% 11 3

AIDS-CM 20% 433 22m 111 28.91% 7 4
AIDS-CM 15% 779 32m 131 27.44% 9 4
AIDS-CM 10% 2054 1 h 10m 163 24.94% 9 4
AIDS-CM 5% 9943 5 h 02m 225 20.43% 9 4

UD-PUD-En 10% 164 1m 162 39.55% 5 2
UD-PUD-En 5% 458 3m 249 34.45% 5 2
UD-PUD-En 1% 6021 19m 523 28.14% 7 2
UD-PUD-En 0% 233434 9 h 57m 773 26.25% 7 2

relationships between words of sentences of multiple corpora in multiple lan-
guages. We used the trees corresponding to the English version of the PUD
corpus.

Table 1 presents the main characteristics of the three datasets that we use:
the number of elementary graphs in the dataset, the total amount of vertices,
the total amount of edges, the number of different vertex labels, and the number
of different edge labels. Since GraphMDL works on a single graph instead of a
collection, we aggregate collections into a single graph with multiple connected
components when needed. We generate candidate patterns by using a gSpan
implementation available on its author’s website6.

4.2 Quantitative Evaluation

Table 2 presents the results of the first experiment. For instance the first line
tells that we ran GraphMDL on the AIDS-CA dataset, with as candidates the
2194 patterns generated by gSpan for a support threshold of 20%. It took 19min
for our approach to select a CT composed of 115 patterns, yielding a description
length that is 24% of the description length obtained by the singleton-only CT0.
Selected patterns have a median of 9 labels and 3 ports.

We observe that the number of patterns of a CT is often significantly smaller
than the number of candidates. This is particularly remarkable for experiments
ran with small support thresholds, where GraphMDL reduces the number of
patterns up to 300 times: patterns generated for these support thresholds prob-
ably contain a lot of redundancy, that GraphMDL avoids.

We also note that the description lengths of the CTs found by GraphMDL
are between 20% and 40% of the lengths of the baseline code tables CT0, which
shows that our algorithm succeeds in finding regularities in the data. Description

6 https://sites.cs.ucsb.edu/~xyan/software/gSpan.htm.

https://sites.cs.ucsb.edu/~xyan/software/gSpan.htm

GraphMDL 63

lengths are smaller when the number of candidates is higher: this may be because
with more candidates, there are more chances of finding “good” candidates that
allow to better reduce description lengths.

P1

P1

P2

P2

P3

P1

P1

P2

P2

P3

v1

v1

v1

v1

v2

v1
v2

v2

P1 P1

With GraphMDL With SUBDUE

P1: 7 labels
P2: 16 labels
P3: 1 label (singleton)

Fig. 7. How GraphMDL (left) and SUBDUE (right) encode one of AIDS-CM graphs.

We observe that GraphMDL can find patterns of non-trivial size, as shown
by the median label count in Table 2. Also, most patterns have few ports, which
shows that GraphMDL manages to find models in which the original graph is
described as a set of components without many connections between them. We
think that a human will interpret such a model with more ease, as opposed to a
model composed of “entangled” components.

4.3 Qualitative Evaluations

Interpretation of Rewritten Graphs. Figure 7 shows how GraphMDL uses pat-
terns selected on the AIDS-CM dataset to encode one of the graphs of the
dataset (more results are available in our git repository). It illustrates the key
idea behind our approach: find a set of patterns so that each one describes part
of the data, and connect their occurrences via ports to describe the whole data.

We observe that GraphMDL selects bigger patterns (such as P2), describ-
ing big chunks of data, as well as smaller patterns (such as P3, edge singleton),
that can form bridges between pattern occurrences. Big patterns increase the
description length of the CT, but describe more of the data in a single occur-
rence, whereas small patterns do the opposite. Following the MDL principle,
GraphMDL finds a good balance between the two types of patterns.

It is interesting to note that pattern P1 in Fig. 7 corresponds to the carboxylic
acid functional group, common in organic chemistry. GraphMDL selected this
pattern without any prior knowledge of chemistry, solely by using MDL.

64 F. Bariatti et al.

Comparison with SUBDUE. On the right of Fig. 7 we can observe the encoding
found by SUBDUE on the same graph. The main disadvantage of SUBDUE is
information loss: we can see that the data is composed of two occurrences of
pattern P1, but not how these two occurrences are connected. Thanks to the
notion of ports, GraphMDL does not suffer from this problem: the user can
exactly know which atoms lie at the boundary of each pattern occurrence.

Table 3. Classification accuracies. Results of methods marked with * are from [8].

Algorithm AIDS-CA/CI Mutag PTC-MR PTC-FR

Baseline-Largest 50.01 ± 0.03 66.50 ± 0.00 55.80 ± 0.00 65.50 ± 0.00

GraphMDL 71.61 ± 0.96 80.79 ± 1.51 57.38 ± 1.68 62.70 ± 1.86

WL* N/A 87.26 ± 1.42 63.12 ± 1.44 67.64 ± 0.74

P-WL-C* N/A 90.51 ± 1.34 64.02 ± 0.82 67.15 ± 1.09

RetGK* N/A 90.30 ± 1.10 62.15 ± 1.60 67.80 ± 1.10

Assessing Patterns Through Classification. We showed in the previous experi-
ments that GraphMDL manages to reduce the amount of patterns, and that the
introduction of ports allows for a precise analysis of graphs. We now ask ourselves
if the extracted patterns are characteristic of the data. To evaluate this aspect, we
adopt the classification approach used by Krimp [10]. We applyGraphMDL inde-
pendently on each class of a multi-class dataset, and then use the resulting CTs to
classify each graph: we encode it with each of the CTs, and classify it in the class
whoseCTyields the smallest description lengthL(D|M). SinceGraphMDL is not
designed with the goal of classification in mind, we would expect existing classifiers
to outperform GraphMDL. In particular, note that patterns are selected on each
class independently of other classes. Indeed, GraphMDL follows a descriptive
approach whereas classifiers generally follow a discriminative approach. Table 3
presents the results of this new experiment. We compare GraphMDL with graph
classification algorithms found in the literature [8], and a baseline that classifies
all graphs as belonging to the largest class. The AIDS-CA/CI dataset is composed
of the CA class of the AIDS dataset and a same-size same-labels random sample
from the CI class (corresponding to negative examples). The other datasets7 are
from [8]. We performed a 10-fold validation repeated 10 times and report average
accuracies and standard deviations.

GraphMDL clearly outperforms the baseline on two datasets, AIDS and
Mutag, but is only comparable to the baseline for the PTC datasets. On Mutag,
GraphMDL is less accurate than other classifiers but closer to them than to
the baseline. On the PTC datasets, we hypothesize that the learned descriptions
are not discriminative w.r.t. the chosen classes, although they are characteristic
enough to reduce description length. Nonetheless results are still better than
random guessing (accuracy would be 50%). An interesting point of GraphMDL

7 For concision, we do not report on PTC-{MM,FM}, they yield similar results.

GraphMDL 65

classification is that it is explainable: the user can look at how the patterns of
the two classes encode a graph (similarly to Fig. 7) and understand why one class
is chosen over another.

5 Conclusion

In this paper, we have proposed GraphMDL, an MDL-based pattern mining
approach to select a representative set of graph patterns on labeled graphs. We
proposed MDL definitions allowing to compute description lengths necessary to
apply the MDL principle. The originality of our approach lies in the notion of
ports, which guarantee that the original graph can be perfectly reconstructed,
i.e., without any loss of information. Our experiments show that GraphMDL
significantly reduces the amount of patterns w.r.t. complete approaches. Further,
the selected patterns can have complex shapes with simple connections. The
introduction of the notion of ports facilitates interpretation w.r.t. to SUBDUE.
We plan to apply our approach to more complex graphs, e.g. knowledge graphs.

References

1. Cook, D.J., Holder, L.B.: Substructure discovery using minimum description length
and background knowledge. J. Artif. Intell. Res. 1, 231–255 (1993)

2. Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans.
Inf. Theory 21(2), 194–203 (1975)

3. Grünwald, P.: Model selection based on minimum description length. J. Math.
Psychol. 44(1), 133–152 (2000)

4. Koopman, A., Siebes, A.: Characteristic relational patterns. In: Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 2009, pp. 437–446. ACM (2009)

5. Koutra, D., Kang, U., Vreeken, J., Faloutsos, C.: Summarizing and understanding
large graphs. Stat. Anal. Data Mining: ASA Data Sci. J. 8(3), 183–202 (2015)

6. Lee, T.C.M.: An introduction to coding theory and the two-part minimum descrip-
tion length principle. Int. Stat. Rev. 69(2), 169–183 (2001)

7. Nijssen, S., Kok, J.N.: The Gaston tool for frequent subgraph mining. Electron.
Notes Theor. Comput. Sci. 127(1), 77–87 (2005)

8. Rieck, B., Bock, C., Borgwardt, K.: A persistent Weisfeiler-Lehman procedure
for graph classification. In: Proceedings of the 36th International Conference on
Machine Learning, pp. 5448–5458. PMLR (2019)

9. Tatti, N., Vreeken, J.: The long and the short of it: summarising event sequences
with serial episodes. In: Proceedings of the International Conference on Knowledge
Discovery and Data Mining (KDD 2012), pp. 462–470. ACM (2012)

10. Vreeken, J., van Leeuwen, M., Siebes, A.: KRIMP: mining itemsets that compress.
Data Min. Knowl. Discov. 23(1), 169–214 (2011)

11. Wörlein, M., Meinl, T., Fischer, I., Philippsen, M.: A quantitative comparison of
the subgraph miners MoFa, gSpan, FFSM, and Gaston. In: Jorge, A.M., Torgo, L.,
Brazdil, P., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721,
pp. 392–403. Springer, Heidelberg (2005). https://doi.org/10.1007/11564126_39

https://doi.org/10.1007/11564126_39

66 F. Bariatti et al.

12. Yan, X., Han, J.: gSpan: graph-based substructure pattern mining. In: Proceedings
of the 2002 IEEE International Conference on Data Mining (ICDM 2002), pp. 721–
724. IEEE Computer Society (2002)

13. Yan, X., Han, J.: CloseGraph: mining closed frequent graph patterns. In: ACM
SIGKDD International Conference Knowledge Discovery and Data Mining (KDD),
pp. 286–295. ACM (2003)

14. Zhu, F., Yan, X., Han, J., Yu, P.S.: gPrune: a constraint pushing framework for
graph pattern mining. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS
(LNAI), vol. 4426, pp. 388–400. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-71701-0_38

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-71701-0_38
https://doi.org/10.1007/978-3-540-71701-0_38
http://creativecommons.org/licenses/by/4.0/

Towards Content Sensitivity Analysis

Elena Battaglia, Livio Bioglio, and Ruggero G. Pensa(B)

Department of Computer Science, University of Turin, Turin, Italy
{elena.battaglia,livio.bioglio,ruggero.pensa}@unito.it

Abstract. With the availability of user-generated content in the Web,
malicious users dispose of huge repositories of private (and often sensi-
tive) information regarding a large part of the world’s population. The
self-disclosure of personal information, in the form of text, pictures and
videos, exposes the authors of such contents (and not only them) to many
criminal acts such as identity thefts, stalking, burglary, frauds, and so
on. In this paper, we propose a way to evaluate the harmfulness of any
form of content by defining a new data mining task called content sensi-
tivity analysis. According to our definition, a score can be assigned to any
object (text, picture, video...) according to its degree of sensitivity. Even
though the task is similar to sentiment analysis, we show that it has its
own peculiarities and may lead to a new branch of research. Thanks to
some preliminary experiments, we show that content sensitivity analysis
can not be addressed as a simple binary classification task.

Keywords: Privacy · Text mining · Text categorization

1 Introduction

Internet privacy has gained much attention in the last decade due to the suc-
cess of online social networks and other social media services that expose our
lives to the wide public. In addition to personal and behavioral data collected
more or less legitimately by companies and organizations, many websites and
mobile/web applications store and publish tons of user-generated content in the
form of text posts and comments, pictures and videos which, very often, capture
and represent private moments of our life. The availability of user-generated con-
tent is a huge source of relatively easy-to-access private (and often very sensitive)
information concerning habits, preferences, families and friends, hobbies, health
and philosophy of life, which expose the authors of such contents (or any other
individual referenced by them) to many (cyber)criminal risks, including iden-
tity theft, stalking, burglary, frauds, cyberbullying or “simply” discrimination
in workplace or in life in general. Sometimes users are not aware of the dan-
gers due to the uncontrolled diffusion of their sensitive information and would
probably avoid publishing it if only someone told them how harmful it could be.

In this paper, we address exactly this problem by proposing a way to measure
the degree of sensitivity of any type of user-generated content. To this purpose,

c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 67–79, 2020.
https://doi.org/10.1007/978-3-030-44584-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_6&domain=pdf
http://orcid.org/0000-0001-5145-3438
https://doi.org/10.1007/978-3-030-44584-3_6

68 E. Battaglia et al.

we define a new data mining task that we call content sensitivity analysis (CSA),
inspired by sentiment analysis [13]. The goal of CSA is to assign a score to any
object (text, picture, video...) according to the amount of sensitive information it
potentially discloses. The problem of private content analysis has already been
investigated as a way to characterize anonymous vs. non anonymous content
posting in specific social media [5,15,16] or question-and-answer platforms [14].
However, the link between anonymity and sensitive contents is not that obvious:
users may post anonymously because, for instance, they are referring to illegal
matters (e.g., software/steaming piracy, black market and so on); conversely,
fully identifiable persons may post very sensitive contents simply because they
are underestimating the visibility of their action [18,19]. Although CSA has
some points in common with anonymous content analysis and the well-known
sentiment analysis task, we show that it has its own peculiarities and may lead
to a brand new branch of research, opening many intriguing challenges in several
computer science and linguistics fields.

Through some preliminary but extensive experiments on a large annotated
corpus of social media posts, we show that content sensitivity analysis can not
be addressed straightforwardly. In particular, we design a simplified CSA task
leveraging binary classification to distinguish between sensitive and non sensitive
posts by testing several bag-of-words and word embedding models. According to
our experiments, the classification performances achieved by the most accurate
models are far from being satisfactory. This suggests that content sensitivity
analysis should consider more complex linguistic and semantic aspects, as well
as more sophisticated machine learning models.

The remainder of the paper is organized as follows: we report a short analysis
of the related scientific literature in Sect. 2 and Sect. 3 provides the definition of
content sensitivity analysis and presents some challenging aspects of this new
task together with some hints for possible solutions; the preliminary experiments
are reported and discussed in Sect. 4; finally, Sect. 5 concludes by also presenting
some open problems and suggestions for future research.

2 Related Work

With the success of online social networks and content sharing platforms, under-
standing and measuring the exposure of user privacy in the Web has become
crucial [11,12]. Thus, many different metrics and methods have been proposed
with the goal of assessing the risk of privacy leakage in posting activities [1,23].
Most research efforts, however, focus on measuring the overall exposure of users
according to their privacy settings [8,19] or position within the network [18].

Very few research works address the problem of measuring the amount of
sensitivity of user-generated content, and yet different definitions of sensitivity
are adopted. In [5], for instance, the authors define sensitivity of a social media
post as the extent to which users think the post should be anonymous. Then,
they try to understand the nature of content posted anonymously and analyze
the differences between content posted on anonymous (e.g., Whisper) and non-
anonymous (e.g., Twitter) social media sites. They also find significant linguistic

Towards Content Sensitivity Analysis 69

differences between anonymous and non-anonymous content. A similar approach
has been applied on posts collected from a famous question-and-answer website
[14]. The authors of this work identify categories of questions for which users are
more likely to exercise anonymity and analyze different machine learning model
to predict whether a particular answer will be written anonymously. They also
show that post sensitivity should be viewed as a nuanced measure rather than as
a binary concept. In [2], the authors propose a ranking-based method for assess-
ing the privacy risk emerging from textual contents related to sensitive topics,
such as depression. They use latent topic models to capture the background
knowledge of an hypothetical rational adversary who aims at targeting the most
exposed users. Additionally, the results are exploited to inform and alert users
about their risk of being targeting.

Similarly to sentiment analysis [13], valuable linguistic resources are needed
to identify sensitive content in texts. To the best of our knowledge, the only
works addressing this issue are [6,22], where the authors leverage prototype the-
ory and traditional theoretical approaches to describe and evaluate a dictionary
of privacy designed for content analysis. Dictionary categories are evaluated
according to privacy-related categories from an existing content analysis tool,
using a variety of text corpora.

The problem of sensitive content detection has been investigated as a pattern
recognition problem in images as well. In [25], the authors leverage massive
social images and their privacy settings to learn the object-privacy correlation
and identify categories of privacy-sensitive object automatically. To increase the
accuracy and speed of the classifier, they propose a deep multi-task learning
architecture that learn more representative deep convolutional neural networks
and more discriminative tree classifier. Additionally, they use the outcomes of
such model to identify the most suitable privacy settings and/or blur sensitive
objects automatically. This framework is further improved in [24], where the
authors add a clustering-based approach to also incorporate trustworthiness of
users being granted to see the images in the prediction model.

Contrary to the above-mentioned works, in this paper we formally define
the general task of content sensitivity analysis independently from the type of
data to be analyzed. Additionally, we provide some suggestions for improving
the accuracy of the results and show experimentally that the task is challenging,
and deserves further investigation and greater research efforts.

3 Content Sensitivity Analysis

In this section, we introduce the new data mining task that we call content
sensitivity analysis (CSA), aimed at determining the amount of privacy-sensitive
content expressed in any user-generated content. We first distinguish two cases,
namely basic CSA and continuous CSA, according to the outcome of the analysis
(binary or continuous). Then, we identify a set of subtasks and discuss their
theoretical and technical details. Before introducing the technical details of CSA,
we briefly provide the intuition behind CSA by describing a motivating example.

70 E. Battaglia et al.

3.1 Motivating Example

To explain the main objectives of CSA and the scientific challenges associated to
them, we consider the example in Fig. 1. To decide whether (and to what extent)
the sentence is sensitive, an inference algorithm should be able to answer the
following questions:

1. Subjects: whose information is going to be disclosed?
2. Information types: does the post refer to any potentially sensitive infor-

mation type?
3. Terms: does the post mention any sensitive term?
4. Topics: does the post mention any sensitive topic?
5. Relations: is sensitive information referred to any of the subjects?

Fig. 1. An example of a potentially privacy-sensitive post.

By observing the post in Fig. 1, it is clear that: the post discloses information
about the author and his friend Alice Green (1); the post contains spatiotempo-
ral references (“now” and “General Hospital”), which are generally considered
intrinsically sensitive; the post mentions “chemo”, a potentially sensitive term
(3); the sentence is related to “cancer”, a potentially sensitive topic (4); the
sentence structure suggests that the two subjects of disclosure have cancer and
they are both about to start their first course of chemotherapy (5).

It is clear that, reducing sensitivity to anonymity, as done in previous research
work [5,14], is only one side of the coin. Instead, CSA has much more in common
with the famous sentiment analysis (SA) task, where the objective is to measure
the “polarity” or “sentiment” of a given text [7,13]. However, while SA has
already a well-established theory and may count on a set of easy-to-access and
easy-to-use tools, CSA has never been defined before. Therefore, apart from the
known open problems in SA (such as sarcasm detection), CSA involves three
new scientific challenges:

Towards Content Sensitivity Analysis 71

1. Definition of sensitivity. A clear definition of sensitivity is required. Sen-
sitivity is often defined in the legal systems, such as in the EU General Data
Protection Regulation (GDPR), as a characteristic of some personal data
(e.g., criminal or medical records), but a cognitive and perceptive explana-
tion of what can be defined as “sensitive” is still missing [22].

2. Sensitivity-annotated corpora. Large text corpora need to be annotated
according to sensitivity and at multiple levels: at the sentence level (“I got
cancer” is more sensitive than “I got some nice volleyball shorts”), at the
topic level (“health” is more sensitive than “sports”) and at the term level
(“cancer” is more sensitive than “shorts”).

3. Context-aware sensitivity. Due to its subjectivity, a clear evaluation of
the context is needed. The fact that a medical doctor talks about cancer is
not sensitive per se, but if she talks about some of her patients having cancer,
she could disclose very sensitive information.

In the following, we will provide the formal definitions concerning CSA and
provide some preliminary ideas on how to address the problem.

3.2 Definitions

Here, we provide the details regarding the formal framework of content sensitivity
analysis. To this purpose, we consider generic user-generated contents, without
specifying their nature (whether textual, visual or audiovisual). We will propose
a definition of “sensitivity” further in this section. The simplest way to define
CSA is as follows:

Definition 1 (basic content sensitivity analysis). Given a user-generated
object oi ∈ O, with O being the domain of all user-generated contents, the
basic content sensitivity analysis task consists in designing a function fs : O →
{sens, na, ns}, such that fs(oi) = sens iff oi is privacy-sensitive, fs(oi) = ns iff
oi is not sensitive, otherwise fs(oi) = na.

The na value is required since the assignment of a correct sensitivity value
could be problematic when dealing with controversial contents or borderline
topics. In some cases, assessing the sensitivity of a content object is simply
impossible without some additional knowledge, i.e., the conversation a post is
part of, the identity of the author of a post, and so on. In addition, sensitivity is
not the same for all sensitive objects: a post dealing with health is certainly more
sensitive than a post dealing with vacations, although both can be considered
as sensitive. This suggests that, instead of considering sensitivity as a binary
feature of a text, a more appropriate definition of CSA should take into account
different degrees of sensitivity, as follows:

Definition 2 (continuous content sensitivity analysis). Let oi ∈ O be a
user-generated object, with O being the domain of all user-generated contents.
The continuous content sensitivity analysis task consists in designing a function
fs : O → [−1, 1], such that fs(oi) = 1 iff oi is maximally privacy-sensitive,

72 E. Battaglia et al.

fs(oi) = −1 iff oi is minimally privacy-sensitive, fs(oi) = 0 iff oi has unknown
sensitivity. The value σi = fs(oi) is the sensitivity score of object oi.

According to this definition, sensitive objects have 0 < σ ≤ 1, while non sen-
sitive posts have −1 ≤ σ < 0. In general, when σ ≈ 0 the sensitivity of an object
cannot be assessed confidently. Of course, by setting appropriate thresholds, a
continuous CSA can be easily turned into a basic CSA task.

At this point, a congruent definition of “sensitivity” is required to set up the
task correctly. Although different characterizations of privacy-sensitivity exist,
there is no consistent and uniform theory [22]; so, in this work, we consider a more
generic, flexible and application-driven definition of privacy-sensitive content.

Definition 3 (privacy-sensitive content). A generic user-generated content
object is privacy-sensitive if it makes the majority of users feel uncomfortable
in writing or reading it because it may reveal some aspects of their own or others’
private life to unintended people.

Notice that “uncomfortableness” should not be guided by some moral or eth-
ical judgement about the disclosed fact, but uniquely by its harmfulness towards
privacy. Such a definition allows the adoption of the “wisdom of the crowd” prin-
ciple in contexts where providing an objective definition of what is sensitive (and
what is not sensitive) is particularly hard. Moreover, it has also an intuitive jus-
tification. Different social media may have different meaning of sensitivity. For
instance, in a professional social networking site, revealing details about one’s
own job is not only tolerated, but also encouraged, while one may want to hide
detailed information about her professional life in a generic photo-video sharing
platform. Similarly, in a closed message board (or group), one may decide to
disclose more private information than in open ones. Sensitivity towards certain
topics also varies from country to country. As a consequence, function fs can be
learnt according to an annotated corpus of content objects as follows.

Definition 4 (sensitivity function learning). Let O = {(oi, σi)}Ni=1 be a set
of N annotated objects oi ∈ O with the related sensitivity score σi ∈ [−1, 1].
The goal of a sensitivity function learning algorithm is to search for a function
fs : O → [−1, 1], such that

∑N
i=1 (fs(oi) − σi)

2 is minimum.

The simplest way to address this problem is by setting a regression (or clas-
sification, in the case of basic CSA) task. However, we will show in Sect. 4 that
such an approach is unable to capture the actual manifold of sensitivity accu-
rately. Hence, in the following sections, we present a fine-grained definition of
CSA together with a list of open subproblems related to CSA and provide some
hints on how to address them.

3.3 Fine-Grained Content Sensitivity Analysis

In the previous section, we have considered contents as monolithic objects with
a sensitivity score associated to them. However, in general, any user-generated

Towards Content Sensitivity Analysis 73

content object (text, video, picture) may contain both privacy-sensitive and
privacy-unsensitive elements. For instance, a long text post (or video) may deal
with some unsensitive topic but the author may insert some references to her or
his private life. Similarly, a user may post a picture of her own desk deemed to
be anonymous but some elements may disclose very private information (e.g.,
the presence of train tickets, drug paraphernalia, someone else’s photo and so
on). Moreover, the same object (or some of its elements) may violate the privacy
of multiple subjects, including the author and other people mentioned in the
corpus, in a different way. For all these reasons, here we propose a fine-grained
definition of content sensitivity analysis. The definition is as follows:

Definition 5 (fine-grained content sensitivity analysis). Let oi ∈ O be a
user-generated content object. Let Ei = {eij}mi

j=1 ⊂ E be a set of mi ≥ 1 elements
(or components) that constitutes the object oi, with E being the domain of all
possible elements. Let Pi = {pik}ni

j=1 ⊂ P be the set of ni ≥ 1 persons (or subjects)
mentioned in oi, with P being the domain of all subjects. The fine-grained content
sensitivity analysis task consists in designing a function fs : E × P → [−1, 1],
such that fs(eij , p

i
k) = 1 iff eij is maximally privacy-sensitive for subject pik,

fs(eij , p
i
k) = −1 iff eii is minimally privacy-sensitive for subject pik, fs(eij , p

i
k) = 0

iff eij has unknown sensitivity for subject pik. The value σi
jk = fs(eij , p

i
k) is the

sensitivity score of element eij towards subject pik.

Notice that |Ei| ≥ 1 since each object contains at least one element (when
|Ei| = 1, the only element ei1 corresponds the object oi itself). Similarly |Pi| ≥ 1
because each object has at least the author as subject. In the example reported
in Fig. 1, the post contains only one element (there is only one sentence) and
concerns two subjects (the author and Alice Green). According to Definition 5
(and to what we said in Sect. 3.1), the sensitivity score of the post towards both
the author and Alice Green will be high.

3.4 Challenges and Possible Solutions

Fine-grained content sensitivity analysis presents many scientific and technical
challenges, and may benefit of the cross-fertilization of computational linguistics,
machine learning and semantic analysis. Addressing the problem of connecting
sensitivity to specific subjects in texts requires the solution of many NLP tasks
such as named entity recognition, relation extraction [21], and coreference res-
olution [4]. Additionally, concept extraction and topic modeling are important
to understand whether a given text deals with sensitive content. To this pur-
pose, privacy dictionaries [22] could provide a valid support for tagging certain
topics/terms as sensitive or non-sensitive. Sentiment analysis and emotion detec-
tion could also reveal private personality traits if related to contents associated
to certain topics, persons or categories of persons. Furthermore, elements in a
sentence cannot be simply considered as separated entities, but the connection
between different parts of a text play an important role in determining the cor-
rect fine-grained sensitivity. It is clear that such a complex problem requires the

74 E. Battaglia et al.

availability of massive annotated text corpora and the design of robust machine
learning algorithms to cope with the sparsity of the feature space. All these con-
siderations apply to the case of visual and audiovisual content as well, but, in
addition, the intrinsic difficulty of handling multimedia data makes the above
mentioned challenge even harder and more computationally expensive.

In the next section, we will show how the basic content sensitivity analysis
settings can be modeled as a binary classification problem on text data using
different approaches with scarce or moderate success, thus showing the necessity
of a more systematic and in-depth investigation of the problem.

4 Preliminary Experiments

In this section, we report the results of some preliminary experiments aimed at
showing the feasibility of content sensitivity analysis together with its difficulties.
The experiments are conducted under the basic CSA framework (see Definition 1
in Sect. 3) with the only difference that we do not consider the “na” class. We
set up a binary classification task to distinguish whether a given input text is
privacy-sensitive or not. Before presenting the results, in the following, we first
introduce the data, then we provide the details of our experimental protocol.

4.1 Annotated Corpus

Since all previous attempts of identifying sensitive text have leveraged user
anonymity as a discriminant for sensitive content [5,14], there is no reliable
annotated corpus that we can use as benchmark. Hence, we construct our own
dataset by leveraging a crowdsourcing experiment. We use one of the datasets
described in [3], consisting of 9917 anonymized social media posts, mostly writ-
ten in English, with a minimum length of 2 characters and a maximum length
of 435 (the average length is 80). Thus, they well represent typical social media
short posts. On the other hand, they are not annotated for the specific purpose
of our experiment and, because of their shortness, they are also very difficult to
analyze. Consequently, after discarding all useless posts (mostly uncomprehen-
sible ones) we have set up a crowdsourcing experiment by using a Telegram bot
that, for each post, asks whether it is sensitive or not. As third option, it was
also possible to select “unable to decide”. We collected the annotations of 829
posts from 14 distinct annotators. For each annotated post, we retain the most
frequently chosen annotation. Overall, 449 posts where tagged as non sensitive,
230 as sensitive, 150 as undecidable. Thus, the final dataset consists of 679 posts
of the first two categories (we discarded all 150 undecidable posts).

4.2 Datasets

We consider two distinct document representations for the dataset, a bag-of-
words and four word vector models. To obtain the bag-of-word representation we
perform the following steps. First, we remove all punctuation characters of terms

Towards Content Sensitivity Analysis 75

contained in the input posts as well as short terms (less than two characters) and
terms containing digits. Then, we build the bag-of-words model with all remain-
ing 2584 terms weighted by their tfidf score. Differently from classic text mining
approaches, we deliberately exclude lemmatization, stemming and stop word
removal from text preprocessing, since those common steps would affect content
sensitivity analysis negatively. Indeed, inflections (removed by lemmatization
and stemming) and stop words (like “me”, “myself”) are important to decide
whether a sentence reproduces some personal thoughts or private action/status.
Hereinafter, the bag-of-words representation is referred to as BW2584.

The word vector representation, instead, is built using word vectors pre-
trained with two billion tweets (corresponding to 42 billion tokens) using the
GloVe (Global Vector) model [17]. We use this word embedding method as it
consistently outperforms both continuous bag-of-words and skip-gram model
architectures of word2vec [10]. In detail, we use three representation, here called
WV25, WV50 and WV100 with, respectively, 25, 50 and 100 dimensions1. Addi-
tionally, we build an ensemble by considering the concatenation of the three
vector spaces. The latter representation is named WVEns.

Finally, from all five datasets we removed all posts having an empty bag-
of-words or word vector representation. Such preprocessing step further reduces
the size of the dataset down to 611 posts (221 sensitive and 390 non sensitive),
but allows for a fair performance comparison.

4.3 Experimental Settings

Each dataset obtained as described beforehand is given in input to a set of six
classifiers. In details, we use k-NN, decision tree (DT), Multi-layer Perceptron
(MLP), SVM, Random Forest (RF), and Gradient Boosted trees (GBT). We do
not execute any systematic parameter selection procedure since our main goal is
not to compare the performances of classifiers, but, rather, to show the overall
level of accuracy that can be achieved in a basic content sensitivity analysis task.
Hence, we use the following default parameter for each classifier:

– kNN: we set k = 3 in all experiments;
– DT: for all datasets, we use C4.5 with Gini Index as split criterion, allowing a

minimum of two records per node and minimum description length as pruning
strategy;

– MLP: we train a shallow neural network with one hidden layer; the number
of neurons of the hidden layer is 30 for the bag-of-words representation and
20 for all word vector representations;

– SVM: for all datasets, we use the polynomial kernel with default parameters;
– RF: we train 100 models with Gini index as splitting criterion in all experi-

ments;
– GBT: for all datasets, we use 100 models with 0.1 as learning rate and 4 as

maximum tree depth.

1 Pre-trained vectors are available at https://nlp.stanford.edu/projects/glove/.

https://nlp.stanford.edu/projects/glove/

76 E. Battaglia et al.

All experiments are conducted by performing ten-fold cross-validation, using,
for each iteration, nine folds as training set and the remaining fold as test set.

4.4 Results and Discussion

The summary of the results, in terms of average F1-score, are reported in Table 1.
It is worth noting that the scores are, in general, very low (between 0.5826,
obtained by the neural network on the bag-of-words model, and 0.6858, obtained
by Random Forest on the word vector representation with 50 dimensions). Of
course, these results are biased by the fact that data are moderately unbalanced
(64% of posts fall in the non-sensible class). However they are not completely
negative, meaning that there is space for improvement. We observe that the win-
ning model-classifier pair (50-dimensional word vector processed with Random
Forest) exhibits high recall on the non-sensitive class (0.928) and rather similar
results in terms of precision for the two classes (0.671 and 0.688 for the sensitive
and non-sensitive classes respectively). The real negative result is the low recall
on the sensitive class (only 0.258), due to the high number of false negatives2. We
recall that the number of annotated sensitive posts is only 221, i.e., the number
of examples is not sufficiently large for training a prediction model accurately.

Table 1. Classification in terms of average F1-score for different post representations.

Dataset Type kNN DT MLP SVM RF GBT

BW2584 bag-of-words 0.6579 0.6743 0.5826 0.6481 0.6776 0.6678

WV25 word vector 0.6203 0.6317 0.6497 0.6383 0.6628 0.6268

WV50 word vector 0.6121 0.6105 0.6530 0.6448 0.6858 0.6399

WV100 word vector 0.6367 0.6088 0.6497 0.6563 0.6694 0.6497

WVEns word vector 0.6432 0.5859 0.6481 0.6547 0.6628 0.6416

These results highlight the following issues and perspectives. First, nega-
tive (or not-so-positive) results are certainly due to the lack of annotated data
(especially for the sensitive class). Sparsity is certainly a problem in our set-
tings. Hence, a larger annotated corpus is needed, although this objective is not
trivial. In fact, private posts are often difficult to obtain, because social media
platforms (luckily, somehow) do not allow users to get them using their API.
As a consequence, all previous attempts to guess the sensitivity of text or con-
struct privacy dictionaries strongly leverage user anonymity in public post shar-
ing activities [5,14], or rely on focus groups and surveys [22]. Moreover, without
a sufficiently large corpus, not even the application of otherwise successful deep
learning techniques (e.g., RNNs for sentiment analysis [9]) would produce valid
results. Second, simple classifiers, even when applied to rather complex and rich
representations, can not capture the manifold of privacy sensitivity accurately.
2 Due to space limitations, we do not report detailed precision/recall results.

Towards Content Sensitivity Analysis 77

So, more complex and heterogenous models should be considered. Probably, an
accurate sensitivity content analysis tool should consider lexical, semantic as
well as grammatical features. Topics are certainly important, but sentence con-
struction and lexical choices are also fundamental. Therefore, reliable solutions
would consist of a combination of computational linguistic techniques, machine
learning algorithms and semantic analysis. Third, the success of picture and
video sharing platforms (such as Instagram and TikTok), implies that any suc-
cessful sensitivity content analysis tool should be able to cope with audiovisual
contents and, in general, with multimodal/multimedia objects (an open problem
in sentiment analysis as well [20]). Finally, provided that a taxonomy of privacy
categories in everyday life exists (e.g., health, location, politics, religious belief,
family, relationships, and so on) a more complex CSA setting might consider,
for a given content object, the privacy sensitivity degree in each category.

5 Conclusions

In this paper, we have addressed the problem of determining whether a given
content object is privacy-sensitive or not by defining the generic task of content
sensitivity analysis (CSA). Then, we have declined it according to increasing
complexity of the problem settings. Although the task promises to be challeng-
ing, we have shown that it is not unfeasible by presenting a simplified formulation
of CSA based on text categorization. With some preliminary but extensive exper-
iments, we have showed that, no matter the data representation, the accuracy of
such classifiers can not be considered satisfactory. Thus, it is worth investigat-
ing more complex techniques borrowed from machine learning, computational
linguistics and semantic analysis. Moreover, without a strong effort in building
massive and reliable annotated corpora, the performances of any CSA tool would
be barely sufficient, no matter the complexity of the learning model.

Acknowledgments. The authors would like to thank Daniele Scanu for implementing
the Telegram bot used by the annotators. This work is supported by Fondazione CRT
(grant number 2019-0450).

References

1. Alemany, J., del Val Noguera, E., Alberola, J.M., Garćıa-Fornes, A.: Metrics for pri-
vacy assessment when sharing information in online social networks. IEEE Access
7, 143631–143645 (2019)

2. Biega, J.A., Gummadi, K.P., Mele, I., Milchevski, D., Tryfonopoulos, C., Weikum,
G.: R-Susceptibility: an IR-centric approach to assessing privacy risks for users in
online communities. In: Proceedings of ACM SIGIR 2016, pp. 365–374 (2016)

3. Celli, F., Pianesi, F., Stillwell, D., Kosinski, M.: Workshop on computational per-
sonality recognition: shared task. In: Proceedings of ICWSM 2013 (2013)

4. Clark, K., Manning, C.D.: Improving coreference resolution by learning entity-level
distributed representations. In: Proceedings of ACL 2016 (2016)

78 E. Battaglia et al.

5. Correa, D., Silva, L.A., Mondal, M., Benevenuto, F., Gummadi, K.P.: The many
shades of anonymity: characterizing anonymous social media content. In: Proceed-
ings of ICWSM 2015, pp. 71–80 (2015)

6. Gill, A.J., Vasalou, A., Papoutsi, C., Joinson, A.N.: Privacy dictionary: a linguistic
taxonomy of privacy for content analysis. In: Proceedings of ACM CHI 2011, pp.
3227–3236 (2011)

7. Liu, B., Zhang, L.: A survey of opinion mining and sentiment analysis. In: Aggar-
wal, C.C., Zhai, C. (eds.) Mining Text Data, pp. 415–463. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-1-4614-3223-4 13

8. Liu, K., Terzi, E.: A framework for computing the privacy scores of users in online
social networks. TKDD 5(1), 6:1–6:30 (2010)

9. Ma, Y., Peng, H., Khan, T., Cambria, E., Hussain, A.: Sentic LSTM: a hybrid
network for targeted aspect-based sentiment analysis. Cogn. Comput. 10(4), 639–
650 (2018). https://doi.org/10.1007/s12559-018-9549-x

10. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: Proceedings of NIPS
2013, pp. 3111–3119 (2013)

11. Oukemeni, S., Rifà-Pous, H., i Puig, J.M.M.: IPAM: information privacy assess-
ment metric in microblogging online social networks. IEEE Access 7, 114817–
114836 (2019)

12. Oukemeni, S., Rifà-Pous, H., i Puig, J.M.M.: Privacy analysis on microblogging
online social networks: a survey. ACM Comput. Surv. 52(3), 60:1–60:36 (2019)

13. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf.
Retrieval 2(1–2), 1–135 (2007)

14. Peddinti, S.T., Korolova, A., Bursztein, E., Sampemane, G.: Cloak and swagger:
understanding data sensitivity through the lens of user anonymity. In: Proceedings
of IEEE SP 2014, pp. 493–508 (2014)

15. Peddinti, S.T., Ross, K.W., Cappos, J.: Finding sensitive accounts on Twitter:
an automated approach based on follower anonymity. In: Proceedings of ICWSM
2016, pp. 655–658 (2016)

16. Peddinti, S.T., Ross, K.W., Cappos, J.: User anonymity on Twitter. IEEE Secur.
Privacy 15(3), 84–87 (2017)

17. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: Proceedings of EMNLP 2014, pp. 1532–1543 (2014)

18. Pensa, R.G., di Blasi, G., Bioglio, L.: Network-aware privacy risk estimation in
online social networks. Soc. Netw. Analys. Mining 9(1), 15:1–15:15 (2019)

19. Pensa, R.G., Blasi, G.D.: A privacy self-assessment framework for online social
networks. Expert Syst. Appl. 86, 18–31 (2017)

20. Poria, S., Majumder, N., Hazarika, D., Cambria, E., Gelbukh, A.F., Hussain, A.:
Multimodal sentiment analysis: addressing key issues and setting up the baselines.
IEEE Intell. Syst. 33(6), 17–25 (2018)

21. Surdeanu, M., McClosky, D., Smith, M., Gusev, A., Manning, C.D.: Customiz-
ing an information extraction system to a new domain. In: Proceedings of
RELMS@ACL 2011, pp. 2–10 (2011)

22. Vasalou, A., Gill, A.J., Mazanderani, F., Papoutsi, C., Joinson, A.N.: Privacy
dictionary: a new resource for the automated content analysis of privacy. JASIST
62(11), 2095–2105 (2011)

23. Wagner, I., Eckhoff, D.: Technical privacy metrics: a systematic survey. ACM Com-
put. Surv. 51(3), 57:1–57:38 (2018)

https://doi.org/10.1007/978-1-4614-3223-4_13
https://doi.org/10.1007/s12559-018-9549-x

Towards Content Sensitivity Analysis 79

24. Yu, J., Kuang, Z., Zhang, B., Zhang, W., Lin, D., Fan, J.: Leveraging content
sensitiveness and user trustworthiness to recommend fine-grained privacy settings
for social image sharing. IEEE Trans. Inf. Forensics Secur. 13(5), 1317–1332 (2018)

25. Yu, J., Zhang, B., Kuang, Z., Lin, D., Fan, J.: iPrivacy: image privacy protec-
tion by identifying sensitive objects via deep multi-task learning. IEEE Trans. Inf.
Forensics Secur. 12(5), 1005–1016 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Gibbs Sampling Subjectively
Interesting Tiles

Anes Bendimerad1(B), Jefrey Lijffijt2, Marc Plantevit3, Céline Robardet1,
and Tijl De Bie2

1 Univ Lyon, INSA, CNRS UMR 5205, 69621 Villeurbanne, France
ahmed-anes.bendimerad@insa-lyon.fr

2 IDLab, ELIS Department, Ghent University, Ghent, Belgium
3 Univ Lyon, UCBL, CNRS UMR 5205, 69621 Lyon, France

Abstract. The local pattern mining literature has long struggled with
the so-called pattern explosion problem: the size of the set of patterns
found exceeds the size of the original data. This causes computational
problems (enumerating a large set of patterns will inevitably take a sub-
stantial amount of time) as well as problems for interpretation and usabil-
ity (trawling through a large set of patterns is often impractical).

Two complementary research lines aim to address this problem. The
first aims to develop better measures of interestingness, in order to reduce
the number of uninteresting patterns that are returned [6,10]. The sec-
ond aims to avoid an exhaustive enumeration of all ‘interesting’ patterns
(where interestingness is quantified in a more traditional way, e.g. fre-
quency), by directly sampling from this set in a way that more ‘interest-
ing’ patterns are sampled with higher probability [2].

Unfortunately, the first research line does not reduce computational
cost, while the second may miss out on the most interesting patterns.
In this paper, we combine the best of both worlds for mining inter-
esting tiles [8] from binary databases. Specifically, we propose a new
pattern sampling approach based on Gibbs sampling, where the proba-
bility of sampling a pattern is proportional to their subjective interest-
ingness [6]—an interestingness measure reported to better represent true
interestingness.

The experimental evaluation confirms the theory, but also reveals an
important weakness of the proposed approach which we speculate is
shared with any other pattern sampling approach. We thus conclude
with a broader discussion of this issue, and a forward look.

Keywords: Pattern mining · Subjective interestingness · Pattern
sampling · Gibbs sampling

1 Introduction

Pattern mining methods aim to select elements from a given language that bring
to the user “implicit, previously unknown, and potentially useful information
c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 80–92, 2020.
https://doi.org/10.1007/978-3-030-44584-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_7

Gibbs Sampling Subjectively Interesting Tiles 81

from data” [7]. To meet the challenge of selecting the appropriate patterns for
a user, several lines of work have been explored: (1) Many constraints on some
measures that assess the quality of a pattern using exclusively the data have
been designed [4,12,13]; (2) Preference measures have been considered to only
retrieve patterns that are non dominated in the dataset; (3) Active learning
systems have been proposed that interact with the user to explicit her interest
on the patterns and guide the exploration toward those she is interested in; (4)
Subjective interestingness measures [6,10] have been introduced that aim to take
into account the implicit knowledge of a user by modeling her prior knowledge
and retrieving the patterns that are unlikely according to the background model.

The shift from threshold-constraints on objective measures toward the use of
subjective measures provides an elegant solution to the so-called pattern explo-
sion problem by considerably reducing the output to only truly interesting pat-
terns. Unfortunately, the discovery of subjectively interesting patterns with exact
algorithms remains computationally challenging.

In this paper we explore another strategy that is pattern sampling. The
aim is to reduce the computational cost while identifying the most important
patterns, and allowing for distributed computations. There are two families of
local pattern sampling techniques.

The first family uses Metropolis Hastings [9], a Markov Chain Monte Carlo
(MCMC) method. It performs a random walk over a transition graph represent-
ing the probability of reaching a pattern given the current one. This can be done
with the guarantee that the distribution of the considered quality measure is
proportional on the sample set to the one of the whole pattern set [1]. However,
each iteration of the random walk is accepted only with a probability equal to the
acceptance rate α. This can be very small, which may result in a prohibitively
slow convergence rate. Moreover, in each iteration the part of the transition
graph representing the probability of reaching patterns given the current one,
has to be materialized in both directions, further raising the computational cost.
Other approaches [5,11] relax this constraint but lose the guarantee.

Methods in the second family are referred to as direct pattern sampling
approaches [2,3]. A notable example is [2], where a two-step procedure is pro-
posed that samples frequent itemsets without simulating stochastic processes. In
a first step, it randomly selects a row according to a first distribution, and from
this row, draws a subset of items according to another distribution. The combi-
nation of both steps follows the desired distribution. Generalizing this approach
to other pattern domains and quality measures appeared to be difficult.

In this paper, we propose a new pattern sampling approach based on Gibbs
sampling, where the probability of sampling a pattern is proportional to their
Subjective Interestingness (SI) [6]. Gibbs sampling – described in Sect. 3 – is
a special case of Metropolis Hastings where the acceptance rate α is always
equal to 1. In Sect. 4, we show how the random walk can be simulated with-
out materializing any part of the transition graph, except the currently sampled
pattern. While we present this approach particularly for mining tiles in rectan-
gular databases, applying it for other pattern languages can be relatively easily

82 A. Bendimerad et al.

achieved. The experimental evaluation (Sect. 5) confirms the theory, but also
reveals a weakness of the proposed approach which we speculate is shared by
other direct pattern sampling approaches. We thus conclude with a broader dis-
cussion of this issue (Sect. 6), and a forward look (Sect. 7).

2 Problem Formulation

2.1 Notation

Table 1. Example of a
binary dataset D.

1 2 3 4 5
1 0 1 0 1 0
2 0 1 1 0 0
3 1 0 1 0 1
4 0 1 1 1 0
5 1 1 1 1 1
6 0 1 1 1 0
7 0 1 1 1 1

Input Dataset. A dataset D is a Boolean matrix with
m rows and n columns. For i ∈ �1,m� and j ∈ �1, n�,
D(i, j) ∈ {0, 1} denotes the value of the cell corre-
sponding to the i-th row and the j-th column. For a
given set of rows I ⊆ �1,m�, we define the support
function suppC(I) that gives all the columns having
a value of 1 in all the rows of I, i.e., suppC(I) =
{j ∈ �1, n� | ∀i ∈ I : D(i, j) = 1}. Similarly, for
a set of columns J ⊆ �1, n�, we define the function
suppR(J) = {i ∈ �1,m� | ∀j ∈ J : D(i, j) = 1}. Table 1
shows a toy example of a Boolean matrix, where for
I = {4, 5, 6} we have that suppC(I) = {2, 3, 4}.

Pattern Language. This paper is concerned with a particular kind of pattern
known as a tile [8], denoted τ = (I, J) and defined as an ordered pair of a set
of rows I ⊆ {1, ...,m} and a set of columns J ⊆ {1, ...n}. A tile τ is said to be
contained (or present) in D, denoted as τ ∈ D, iff D(i, j) = 1 for all i ∈ I and
j ∈ J . The set of all tiles present in the dataset is denoted as T and is defined
as: T = {(I, J) | I ⊆ {1, ...,m} ∧ J ⊆ {1, ...n} ∧ (I, J) ∈ D}. In Table 1, the tile
τ1 = ({4, 5, 6, 7}, {2, 3, 4}) is present in D (τ1 ∈ T), because each of its cells has
a value of 1, but τ2 = ({1, 2}, {2, 3}) is not present (τ2 /∈ T) since D(1, 3) = 0.

2.2 The Interestingness of a Tile

In order to assess the quality of a tile τ , we use the framework of subjective
interestingness SI proposed in [6]. We briefly recapitulate the definition of this
measure for tiles, denoted SI(τ) for a tile τ , and refer the reader to [6] for
more details. SI(τ) measures the quality of a tile τ as the ratio of its subjective
information content IC(τ) and its description length DL(τ):

SI(τ) =
IC(τ)
DL(τ)

.

Tiles with large SI(τ) thus compress subjective information in a short descrip-
tion. Before introducing IC and DL, we first describe the background model—an
important component required to define the subjective information content IC.

Background Model. The SI is subjective in a sense that it accounts for prior
knowledge of the current data miner. A tile τ is informative for a particular

Gibbs Sampling Subjectively Interesting Tiles 83

user if this tile is somehow surprising for her, otherwise, it does not bring new
information. The most natural way for formalizing this is to use a background
distribution representing the data miner’s prior expectations, and to compute the
probability Pr(τ ∈ D) of this tile under this distribution. The smaller Pr(τ ∈ D),
the more information this pattern contains. Concretely, the background model
consists of a value Pr(D(i, j) = 1) associated to each cell D(i, j) of the dataset,
and denoted pij . More precisely, pij is the probability that D(i, j) = 1 under
user prior beliefs. In [6], it is shown how to compute the background model and
derive all the values pij corresponding to a given set of considered user priors.
Based on this model, the probability of having a tile τ = (I, J) in D is:

Pr(τ ∈ D) = Pr

⎛
⎝ ∧

i∈I,j∈J

D(i, j) = 1

⎞
⎠ =

∏
i∈I,j∈J

pij .

Information Content IC. This measure aims to quantify the amount of infor-
mation conveyed to a data miner when she is told about the presence of a tile
in the dataset. It is defined for a tile τ = (I, J) as follows:

IC(τ) = − log(Pr(τ ∈ D)) =
∑

i∈I,j∈J

− log(pij).

Thus, the smaller Pr(τ ∈ D), the higher IC(τ), and the more informative τ .
Note that for τ1, τ2 ∈ D : IC(τ1 ∪ τ2) = IC(τ1) + IC(τ2) − IC(τ1 ∩ τ2).

Description Length DL. This function should quantify how difficult it is for a
user to assimilate the pattern. The description length of a tile τ = (I, J) should
thus depend on how many rows and columns it refers to: the larger are |I| and
|J |, the larger is the description length. Thus, DL(τ) can be defined as:

DL(τ) = a + b · (|I| + |J |) ,

where a and b are two constants that can be handled to give more or less impor-
tance to the contributions of |I| and |J | in the description length.

2.3 Problem Statement

Given a Boolean dataset D, the goal is to sample a tile τ from the set of all the
tiles T present in D, with a probability of sampling PS proportional to SI(τ),
that is: PS(τ) = SI(τ)

∑
τ′∈T SI(τ ′)

.

A näıve approach to sample a tile pattern according to this distribution is
to generate the list {τ1, ..., τN} of all the tiles present in D, sample x ∈ [0, 1]

uniformly at random, and return the tile τk with
∑k−1

i=1 SI(τi)
∑

i SI(τi)
≤ x <

∑k
i=1 SI(τi)

∑
i SI(τi)

.

84 A. Bendimerad et al.

However, the goal behind using sampling approaches is to avoid materializing the
pattern space which is generally huge. We want to sample without exhaustively
enumerating the set of tiles. In [2], an efficient procedure is proposed to directly
sample patterns according to some measures such as the frequency and the area.
However, this procedure is limited to only some specific measures. Furthermore,
it is proposed for pattern languages defined on only the column dimension, for
example, itemset patterns. In such language, the rows related to an itemset
pattern F ⊆ {1, ..., n} are uniquely identified and they correspond to all the
rows containing the itemset, that are suppR(F). In our work, we are interested
in tiles which are defined by both columns and rows indices. In this case, it is
not clear how the direct procedure proposed in [2] can be applied.

For more complex pattern languages, a generic procedure based on Metropo-
lis Hasting algorithm has been proposed in [9], and illustrated for subgraph
patterns with some quality measures. While this approach is generic and can be
extended relatively easily to different mining tasks, a major drawback of using
Metropolis Hasting algorithm is that the random walk procedure contains the
acceptance test that needs to be processed in each iteration, and the accep-
tance rate α can be very small, which makes the convergence rate practically
extremely slow. Furthermore, Metropolis Hasting can be computationally expen-
sive, as the part of the transition graph representing the probability of reaching
patterns given the current one, has to be materialized.

Interestingly, a very useful MCMC technique is Gibbs sampling, which is a
special case of Metropolis-Hasting algorithm. A significant benefit of this app-
roach is that the acceptante rate α is always equal to 1, i.e., the proposal of
each sampling iteration is always accepted. In this work, we use Gibbs sampling
to draw patterns with a probability distribution that converges to PS . In what
follows, we will first generically present the Gibbs sampling approach, and then
we show how we efficiently exploit it for our problem. Unlike Metropolis Hast-
ing, the proposed procedure performs a random walk by materializing in each
iteration only the currently sampled pattern.

3 Gibbs Sampling

Suppose we have a random variable X = (X1,X2, ...,Xl) taking values in some
domain Dom. We want to sample a value x ∈ Dom following the joint distri-
bution P (X = x). Gibbs sampling is suitable when it is hard to sample directly
from P but known how to sample just one dimension xk (k ∈ �1, l�) from
the conditional probability P (Xk = xk | X1 = x1, ...,Xk−1 = xk−1,Xk+1 =
xk+1, ...,Xl = xl). The idea of Gibbs sampling is to generate samples by sweep-
ing through each variable (or block of variables) to sample from its conditional
distribution with the remaining variables fixed to their current values. Algo-
rithm1 depicts a generic Gibbs Sampler. At the beginning, x is set to its ini-
tial values (often values sampled from a prior distribution q). Then, the algo-
rithm performs a random walk of p iterations. In each iteration, we sample
x1 ∼ P (X1 = x

(i1)
1 | X2 = x

(i1)
2 , ...,Xl = x

(i1)
l) (while fixing the other dimen-

sions), then we follow the same procedure to sample x2, ..., until xl.

Gibbs Sampling Subjectively Interesting Tiles 85

Algorithm 1: Gibbs sampler
1 Initialize x(0) ∼ q(x)
2 for k ∈ �1, p� do

3 draw x
(k)
1 ∼ P

(
X1 = x1 | X2 = x

(k−1)
2 , X3 = x

(k−1)
3 , ..., Xl = x

(k−1)
l

)

4 draw x
(k)
2 ∼ P

(
X2 = x2 | X1 = x

(k)
1 , X3 = x

(k−1)
3 , ..., Xl = x

(k−1)
l

)

5 ...

6 draw x
(k)
l ∼ P

(
Xl = xl | X1 = x

(k)
1 , X2 = x

(k)
2 , ..., Xl−1 = x

(k)
l−1

)

7 return x(p)

The random walk needs to satisfy some constraints to guarantee that the
Gibbs sampling procedure converges to the stationary distribution P . In the
case of a finite number of states (a finite space Dom in which X takes values),
sufficient conditions for the convergence are irreducibility and aperiodicity:

Irreducibility. A random walk is irreducible if, for any two states x, y ∈ Dom s.t.
P (x) > 0 and P (y) > 0, we can get from x to y with a probability > 0 in a
finite number of steps. I.e. the entire state space is reachable.

Aperiodicity. A random walk is aperiodic if we can return to any state x ∈ Dom
at any time. I.e. revisiting x is not conditioned to some periodicity constraint.

One can also use blocked Gibbs sampling. This consists in growing many
variables together and sample from their joint distribution conditioned to the
remaining variables, rather than sampling each variable xi individually. Blocked
Gibbs sampling can reduce the problem of slow mixing that can be due to the
high number of dimensions used to sample from.

4 Gibbs Sampling of Tiles with Respect to SI

In order to sample a tile τ = (I, J) with a probability proportional to SI(τ), we
propose to use Gibbs sampling. The simplest solution is to consider a tile τ as
m + n binary random variables (x1, ..., xm, ..., xm+n), each of them corresponds
to a row or a column, and then apply the procedure described in Algorithm1. In
this case, an iteration of Gibbs sampling requires to sample from each column and
row separately while fixing all the remaining rows and columns. The drawback
of this approach is the high number of variables (m + n) which may lead to a
slow mixing time. In order to reduce the number of variables, we propose to
split τ = (I, J) into only two separated blocks of random variables I and J , we
then directly sample from each block while fixing the value of the other block.
This means that an iteration of the random walk contains only two sampling
operations instead of m+n ones. We will explain in more details how this Blocked
Gibbs sampling approach can be applied, and how to compute the distributions
used to directly sample a block of rows or columns.

86 A. Bendimerad et al.

Algorithm 2: Gibbs-SI
1 Initialize (I, J)(0) ∼ q(x)
2 for k ∈ �1, p� do

3 draw I(k) ∼ P
(
I = I | J = J(k−1)

)
, draw J(k) ∼ P

(
J = J | I = I(k)

)

4 return (I, J)(p)

Algorithm 2 depicts the main steps of Blocked Gibbs sampling for tiles. We
start by initializing (I, J)(0) with a distribution q proportional to the area (|I|×
|J |) following the approach proposed in [2]. This choice is mainly motivated by
its linear time complexity of sampling. Then, we need to efficiently sample from
P (I = I | J = J) and P (J = J | I = I). In the following, we will explain how
to sample I with P (I = I|J = J), and since the SI is symmetric w.r.t. rows
and columns, the same strategy can be used symmetrically to sample a set of
columns with P (J = J | I = I).

Sampling a Set of Rows I Conditioned to Columns J. For a specific J ⊆
{1, ..., n}, the number of tiles (I, J) present in the dataset can be huge, and can
go up to 2m. This means that näıvely generating all these candidate tiles and then
sampling from them is not a solution. Thus, to sample a set of rows I conditioned to
a fixed set of columns J , we propose an iterative algorithm that builds the sampled
I by drawing each i ∈ I separately, while ensuring that the joint distribution of
all the drawings is equal to P (I = I|J = J). I is built using two variables: R1 ⊆
{1, ...,m} made of rows that belong to I, and R2 ⊆ {1, ...,m} \ R1 that contains
candidate rows that can possibly be sampled and added to R1. Initially, we have
R1 = ∅ and R2 = suppR(J). At each step, we take i ∈ R2, do a random draw to
determine whether i is added to R1 or not, and remove it from R2. When R2 = ∅,
the sampled set of rows I is set equal to R1. To apply this strategy, all we need
is to compute P (i ∈ I | R1 ⊆ I ⊆ R1 ∪ R2 ∧ J = J), the probability of sampling i
considering the current sets R1, R2 and J :

P (i ∈ I | R1 ⊆ I ⊆ R1 ∪ R2 ∧ J = J) =
P (R1 ∪ {i} ⊆ I ⊆ R1 ∪ R2 ∧ J = J)

P (R1∪ ⊆ I ⊆ R1 ∪ R2 ∧ J = J)

=

∑
F⊆R2\{i} SI(R1 ∪ {i} ∪ F, J)∑

F⊆R2
SI(R1 ∪ F, J)

=

∑
F⊆R2\{i}

IC(R1∪{i},J)+IC(F,J)
a+b·(|R1|+|F |+1+|J|)∑

F⊆R2

IC(R1,Di)+IC(F,Di)
a+b·(|R1|+|F |+|J|)

=

∑|R2|−1
k=0

1
a+b·(|R1|+k+1+|J|)

∑
F⊆R2\{i}

|F |=k

(IC(R1 ∪ {i}, J) + IC(F, J))

∑|R2|
k=0

1
a+b·(|R1|+k+|J|)

∑
F⊆R2
|F |=k

(IC(R1, J) + IC(F, J))

=

∑|R2|−1
k=0

1
a+b·(|R1|+k+1+|J|)

((|R2|−1
k

) · IC(R1 ∪ {i}, J) +
(|R2|−2

k−1

) · IC(R2 \ {i}, J)
)

∑|R2|
k=0

1
a+b·(|R1|+k+|J|)

((|R2|
k

) · IC(R1, J) +
(|R2|−1

k−1

) · IC(R2, J)
)

=
IC(R1 ∪ {i}, J) · f(|R2| − 1, |R1| + 1) + IC(R2 \ {i}, J) · f(|R2| − 2, |R1| + 1)

IC(R1, J) · f(|R2|, |R1|) + IC(R2, J) · f(|R2| − 1, |R1|) ,

with f(x, y) =
∑x

k=0
(x

k)
a+b·(y+k+|J|) .

Gibbs Sampling Subjectively Interesting Tiles 87

Complexity . Let’s compute the complexity of sampling I with a probability
P (I = I|J = J). Before starting the sampling of rows from R2, we first compute
the value of IC({i}, J) for each i ∈ R2 (in O(n · m)). This will allow to compute
in O(1) the values of IC that appear in P (i ∈ I | R1 ⊆ I ⊆ R1 ∪ R2 ∧ J = J),
based on the relation IC(I1 ∪ I2, J) = IC(I1, J) + IC(I2, J) for I1, I2 ⊆ �1,m�.
In addition to that, sampling each element i ∈ R2 requires to compute the
corresponding values of f(x, y). These values are computed once for the first
sampled row i ∈ R2 with a cost of O(m), and then they can be updated directly
when sampling the next rows, using the following relation:

f(x − 1, y) = f(x, y) − 1
a + b · (x + y + |J |) · f(x − 1, y + 1).

This means that the overall cost of sampling the whole set of rows I with a
probability P (I = I|J = J) is O(n · m). Following the same approach, sampling
J conditionned to I is done in O(n · m). As we have p sampling iterations,
the worst case complexity of the whole Gibbs sampling procedure of a tile τ is
O (p · n · m).

Convergence Guarantee . In order to guarantee the convergence to the station-
ary distribution proportional to the SI measure, the Gibbs sampling procedure
needs to satisfy some constraints. In our case, the sampling space is finite, as
the number of tiles is limited to at most 2m+n. Then, the sampling procedure
converges if it satisfies the aperiodicity and the irreducibility constraints. The
Gibbs sampling for tiles is indeed aperiodic, as in each iteration it is possible
to remain in exactly the same state. We only have to verify if the irreducibil-
ity property is satisfied. We can show that, in some cases, the random walk is
reducible, we will show how to make Gibbs sampling irreducible in those cases.

Theorem 1. Let us consider the bipartite graph G = (U, V,E) derived from the
dataset D, s.t., U = {1, ..,m}, V = {1, ..., n}, and E = {(i, j) | i ∈ �1,m� ∧ j ∈
�1, n� ∧ D(i, j) = 1}. A tile τ = (I, J) present in D corresponds to a complete
bipartite subgraph Gτ = (I, J,Eτ) of G. If the bipartite graph G is connected,
then the Gibbs sampling procedure on tiles of D is irreducible.

Proof. We need to prove that for all pair of tiles τ1 = (I1, J1), τ2 = (I2, J2)
present in D, the Gibbs sampling procedure can go from τ1 to τ2. Let Gτ1 , Gτ2

be the complete bipartite graphs corresponding to τ1 and τ2. As G is connected,
there is a path from any vertex of Gτ1 to any vertex of Gτ2 . The probability that
the sampling procedure walks through one of these paths is not 0, as each step of
these paths constitutes a tile present in D. After walking on one of these paths,
the procedure will find itself on a tile τ ′ ⊆ τ2. Reaching τ2 from τ ′ is probable
after one iteration by sampling the right rows and then the right columns.

Thus, if the bipartite graph G is connected, the Gibbs sampling procedure
converges to a stationary distribution. To make the random walk converge when
G is not connected, we can compute the connected components of G, and then
apply Gibbs sampling separately in each corresponding subset of the dataset.

88 A. Bendimerad et al.

Table 2. Dataset characteristics.

Dataset # rows # columns Avg. |row|
mushrooms 8124 120 24

chess 3196 76 38

kdd 843 6159 65.3

Fig. 1. Distribution of sampled patterns in synthetic data with 10 rows and 10 columns.

5 Experiments

We report our experimental study to evaluate the effectiveness of Gibbs-SI. Java
source code is made available1. We consider three datasets whose characteris-
tics are given in Table 2. mushrooms and chess from the UCI repository2 are
commonly used for evaluation purposes. kdd contains a set of SIGKDD paper
abstracts between 2001 and 2008 downloaded from the ACM website. Each
abstract is represented by a row and words correspond to columns, after stop
word removal and stemming. For each dataset, the user priors that we represent
in the SI background model are the row and column margins. In other terms, we
consider that user knows (or, is already informed about) the following statistics:∑

j D(i, j) for all i ∈ I, and
∑

i D(i, j) for all j ∈ J .

Empirical Sampling Distribution. First, we want to experimentally evaluate
how the Gibbs sampling distribution matches with the desired distribution. We
need to run Gibbs-SI in small datasets where the size of T is not huge. Then, we
take a sufficiently large number of samples so that the sampling distribution can
be created. To this aim, we have synthetically generated a dataset containing 10
rows, 10 columns, and 855 tiles. We run Gibbs-SI with three different numbers
of iterations p: 1k, 10k, and 100k, for each case, we keep all the visited tiles, and
we study their distribution w.r.t. their SI values. Figure 1 reports the results.
For 1k sampled patterns, the proportionality between the number of sampling
and SI is not clearly established yet. For higher numbers of sampled patterns,
a linear relation between the two axis is evident, especially for the case of 100k
sampled patterns, which represents around 100 times the total number of all the
tiles in the dataset. The two tiles with the highest SI are sampled the most, and
the number of sampling clearly decreases with the SI value.

1 http://tiny.cc/g5zmgz.
2 https://archive.ics.uci.edu/ml/.

http://tiny.cc/g5zmgz
https://archive.ics.uci.edu/ml/

Gibbs Sampling Subjectively Interesting Tiles 89

Fig. 2. Distributions of the sampled patterns w.r.t. # rows, # columns and SI.

Characteristics of Sampled Tiles. To investigate which kind of patterns are
sampled by Gibbs-SI, we show in Fig. 2 the distribution of sampled tiles w.r.t
their number of rows, columns, and their SI, for each of the three datasets given
in Table 2. For mushrooms and chess, Gibbs-SI is able to return patterns with a
diverse number of rows and columns. It samples much more patterns with low SI
than patterns with high SI values. In fact, even if we are sampling proportionally
to SI, the number of tiles in T with poor quality are significantly higher than
the ones with high quality values. Thus, the probability of sampling one of low
quality patterns is higher than sampling one of the few high quality patterns.
For kdd, although the number of columns in sampled tiles varies, all the sampled
tiles unfortunately cover only one row. In fact, the particularity of this dataset
is the existence of some very large transactions (max = 180).

Quality of the Sampled Tiles. In this part of the experiment, we want to
study whether the quality of the top sampled tiles is sufficient. As mining exhaus-
tively the best tiles w.r.t. SI is not feasible, we need to find some strategy
that identifies high quality tiles. We propose to use LCM [14] to retrieve the
closed tiles corresponding to the top 10k frequent closed itemsets. A closed tile
τ = (I, J) is a tile that is present in D and whose I and J cannot be extended
anymore. Although closed tiles are not necessarily the ones with the highest SI,
we make the hypothesis that at least some of them have high SI values as they
maximize the value of IC function. For each of the three real world datasets, we
compare between the SI of the top closed tiles identified with LCM and the ones
identified with Gibbs-SI. In Table 3, we show the SI of the top-1 tile, and the
average SI of the top-10 tiles, for each of LCM and Gibbs-SI.

Unfortunately, the scores of tiles retrieved with LCM are substantially larger
than the ones of Gibbs-SI, especially for mushrooms and chess. Importantly,

90 A. Bendimerad et al.

Table 3. The SI of the top-1 tile, and the average SI of the top-10 tiles, found by
LCM and Gibbs-SI in the studied datasets.

Mushrooms Chess KDD

Top 1 SIAvg(top 10 SI)Top 1 SIAvg(top 10 SI)Top 1 SIAvg(top 10 SI)

Gibbs sampling0.12 0.11 0.015 0.014 0.54 0.54

LCM 3.89 3.20 0.40 0.40 0.83 0.70

there may exist tiles that are even better than the ones found by LCM. This
means that Gibbs-SI fails to identify the top tiles in the dataset. We believe
that this is due to the very large number of low quality tiles which trumps the
number of high quality tiles. The probability of sampling a high-quality tile is
exceedingly small, necessitating a practically too large sample to identify any.

6 Discussion

Our results show that efficiently sampling from the set of tiles with a sampling
probability proportional to the tiles’ subjective interestingness is possible. Yet,
they also show that if the purpose is to identify some of the most interesting
patterns, direct pattern sampling may not be a good strategy. The reason is that
the number of tiles with low subjective interestingness is vastly larger that those
with high subjective interestingness. This imbalance is not sufficiently offset
by the relative differences in their interestingness and thus in their sampling
probability. As a result, the number of tiles that need to be sampled in order
to sample one of the few top interesting ones is of the same order as the total
number of tiles.

To mitigate this, one could attempt to sample from alternative distributions
that attribute an even higher probability to the most interesting patterns, e.g.
with probabilities proportional to the square or other high powers of the sub-
jective interestingness. We speculate, however, that the computational cost of
sampling from such more highly peaked distributions will also be larger, undoing
the benefit of needing to sample fewer of them. This intuition is supported by
the fact that direct sampling schemes according to itemset support are compu-
tationally cheaper than according to the square of their support [2].

That said, the use of sampled patterns as features for downstream machine
learning tasks, even if these samples do not include the most interesting ones,
may still be effective as an alternative to exhaustive pattern mining.

7 Conclusions

Pattern sampling has been proposed as a computationally efficient alternative to
exhaustive pattern mining. Yet, existing techniques have been limited in terms
of which interestingness measures they could handle efficiently.

Gibbs Sampling Subjectively Interesting Tiles 91

In this paper, we introduced an approach based on Gibbs sampling, which is
capable of sampling from the set of tiles proportional to their subjective inter-
estingness. Although we present this approach for a specific type of pattern
language and quality measure, we can relatively easily follow the same scheme
to apply Gibbs sampling for other pattern mining settings. The empirical evalua-
tion demonstrates effectiveness, yet, it also reveals a potential weakness inherent
to pattern sampling: when the number of interesting patterns is vastly outnum-
bered by the number of non-interesting ones, a large number of samples may
be required, even if the samples are drawn with a probability proportional to
the interestingness. Investigating our conjecture that this problem affects all
approaches for sampling interesting patterns (for sensible measures of interest-
ingness) seems a fruitful avenue for further research.

Acknowledgements. This work was supported by the ERC under the EU’s Sev-
enth Framework Programme (FP7/2007-2013)/ERC Grant Agreement no. 615517, the
Flemish Government under the “Onderzoeksprogramma Artificiële Intelligentie (AI)
Vlaanderen” programme, the FWO (project no. G091017N, G0F9816N, 3G042220),
and the EU’s Horizon 2020 research and innovation programme and the FWO under
the Marie Sklodowska-Curie Grant Agreement no. 665501, and by the ACADEMICS
grant of the IDEXLYON, project of the Université of Lyon, PIA operated by ANR-16-
IDEX-0005.

References

1. Boley, M., Gärtner, T., Grosskreutz, H.: Formal concept sampling for counting and
threshold-free local pattern mining. In: Proceedings of SDM, pp. 177–188 (2010)

2. Boley, M., Lucchese, C., Paurat, D., Gärtner, T.: Direct local pattern sampling by
efficient two-step random procedures. In: Proceedings of KDD, pp. 582–590 (2011)

3. Boley, M., Moens, S., Gärtner, T.: Linear space direct pattern sampling using
coupling from the past. In: Proceedings of KDD, pp. 69–77 (2012)

4. Boulicaut, J., Jeudy, B.: Constraint-based data mining. In: Maimon, O., Rokach,
L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 339–354. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-0-387-09823-4 17

5. Chaoji, V., Hasan, M.A., Salem, S., Besson, J., Zaki, M.J.: ORIGAMI: a novel
and effective approach for mining representative orthogonal graph patterns. SADM
1(2), 67–84 (2008)

6. De Bie, T.: Maximum entropy models and subjective interestingness: an application
to tiles in binary databases. DMKD 23(3), 407–446 (2011)

7. Frawley, W.J., Piatetsky-Shapiro, G., Matheus, C.J.: Knowledge discovery in
databases: an overview. AI Mag. 13(3), 57–70 (1992)

8. Geerts, F., Goethals, B., Mielikäinen, T.: Tiling databases. In: Suzuki, E., Arikawa,
S. (eds.) DS 2004. LNCS (LNAI), vol. 3245, pp. 278–289. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30214-8 22

9. Hasan, M.A., Zaki, M.J.: Output space sampling for graph patterns. PVLDB 2(1),
730–741 (2009)

10. Kontonasios, K.N., Spyropoulou, E., De Bie, T.: Knowledge discovery interesting-
ness measures based on unexpectedness. Wiley IR: DMKD 2(5), 386–399 (2012)

https://doi.org/10.1007/978-0-387-09823-4_17
https://doi.org/10.1007/978-3-540-30214-8_22

92 A. Bendimerad et al.

11. Moens, S., Goethals, B.: Randomly sampling maximal itemsets. In: Proceedings of
KDD-IDEA, pp. 79–86 (2013)

12. Pei, J., Han, J., Wang, W.: Constraint-based sequential pattern mining: the
pattern-growth methods. JIIS 28(2), 133–160 (2007)

13. Raedt, L.D., Zimmermann, A.: Constraint-based pattern set mining. In: Proceed-
ings of SDM, pp. 237–248 (2007)

14. Uno, T., Asai, T., Uchida, Y., Arimura, H.: An efficient algorithm for enumerating
closed patterns in transaction databases. In: Suzuki, E., Arikawa, S. (eds.) DS
2004. LNCS (LNAI), vol. 3245, pp. 16–31. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30214-8 2

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-30214-8_2
https://doi.org/10.1007/978-3-540-30214-8_2
http://creativecommons.org/licenses/by/4.0/

Even Faster Exact k-Means Clustering

Christian Borgelt1,2(B)

1 Department of Mathematics/Computer Sciences, Paris-Lodron-University
of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria

christian.borgelt@sbg.ac.at
2 Department of Computer and Information Science, University of Konstanz,

Universitätsstraße 10, 78457 Konstanz, Germany
christian@borgelt.net

Abstract. A näıve implementation of k-means clustering requires com-
puting for each of the n data points the distance to each of the k cluster
centers, which can result in fairly slow execution. However, by storing
distance information obtained by earlier computations as well as informa-
tion about distances between cluster centers, the triangle inequality can
be exploited in different ways to reduce the number of needed distance
computations, e.g. [3–5,7,11]. In this paper I present an improvement of
the Exponion method [11] that generally accelerates the computations.
Furthermore, by evaluating several methods on a fairly wide range of
artificial data sets, I derive a kind of map, for which data set parameters
which method (often) yields the lowest execution times.

Keywords: Exact k-means · Triangle inequality · Exponion

1 Introduction

The k-means algorithm [9] is, without doubt, the best known and (among) the
most popular clustering algorithm(s), mainly because of its simplicity. However,
a näıve implementation of the k-means algorithm requires O(nk) distance com-
putations in each update step, where n is the number of data points and k is the
number of clusters. This can be a severe obstacle if clustering is to be carried
out on truly large data sets with hundreds of thousands or even millions of data
points and hundreds to thousands of clusters, especially in high dimensions.

Hence, in our “big data” age, considerable effort was spent on trying to
accelerate the computations, mainly by reducing the number of needed distance
computations. This led to several very clever approaches, including [3–5,7,11].
These methods exploit that for assigning data points to cluster centers knowing
actual distances is not essential (in contrast to e.g. fuzzy c-means clustering [2]).
All one really needs to know is which center is closest. This, however, can some-
times be determined without actually computing (all) distances.

A core idea is to maintain, for each data point, bounds on its distance to
different centers, especially to the closest center. These bounds are updated by

c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 93–105, 2020.
https://doi.org/10.1007/978-3-030-44584-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_8

94 C. Borgelt

exploiting the triangle inequality, and can enable us to ascertain that the center
that was closest before the most recent update step is still closest. Furthermore,
by maintaining additional information, tightening these bounds can sometimes
be done by looking at only a subset of the cluster centers.

In this paper I present an improvement of one of the most sophisticated of
such schemes: the Exponion method [11]. In addition, by comparing my new
approach to other methods on several (artificial) data sets with a wide range of
number of dimensions and number of clusters, I derive a kind of map, for which
data set parameters which method (often) yields the lowest execution times.

2 k-Means Clustering

The k-means algorithm is a very simple, yet effective clustering scheme that
finds a user-specified number k of clusters in a given data set. This data set is
commonly required to consist of points in a metric space. The algorithm starts
by choosing an initial set of k cluster centers, which may näıvely be obtained
by sampling uniformly at random from the given data points. In the subsequent
cluster center optimization phase, two steps are executed alternatingly: (1) each
data point is assigned to the cluster center that is closest to it (that is, closer
than any other cluster center) and (2) the cluster centers are recomputed as
the vector means of the data points assigned to them (to enable these mean
computations, the data points are supposed to live in a metric space).

Using νm(x) to denote the cluster center m-th closest to a point x in the
data space, this update scheme can be written (for n data points x1, . . . , xn) as

∀i; 1 ≤ i ≤ k : ct+1
i =

∑n
j=1 1(νt

1(xj) = cti) · xj
∑n

j=1 1(νt
1(xj) = cti)

,

where the indices t and t + 1 indicate the update step and the function 1(φ)
yields 1 if φ is true and 0 otherwise. Here νt

1(xj) represents the assignment step
and the fraction computes the mean of the data points assigned to center ci.

It can be shown that this update scheme must converge, that is, must reach a
state in which another execution of the update step does not change the cluster
centers anymore [14]. However, there is no guarantee that the obtained result is
optimal in the sense that it yields the smallest sum of squared distances between
the data points and the cluster centers they are assigned to. Rather, it is very
likely that the optimization gets stuck in a local optimum. It has even been
shown that k-means clustering is NP-hard for 2-dimensional data [10].

Furthermore, the quality of the obtained result can depend heavily on the
choice of the initial centers. A poor choice can lead to inferior results due to a
local optimum. However, improvements of näıvely sampling uniformly at random
from the data points are easily found, for example the Maximin method [8] and
the k-means++ procedure [1], which has become the de facto standard.

Even Faster Exact k-Means Clustering 95

3 Bounds-Based Exact k-Means Clustering

Some approaches to accelerate the k-means algorithm rely on approximations,
which may lead to different results, e.g. [6,12,13]. Here, however, I focus on
methods to accelerate exact k-means clustering, that is, methods that, starting
from the same initialization, produce the same result as a näıve implementation.

Fig. 1. Using the triangle inequality to update the distance bounds for a data point xj .

The core idea of these methods is to compute for each update step the dis-
tance each center moved, that is, the distance between the new and the old
location of the center. Applying the triangle inequality one can then derive how
close or how far away an updated center can be from a data point in the worst
possible case. For this we distinguish between the center closest (before the
update) to a data point xj on the one hand and all other centers on the other.

k Distance Bounds. The first approach along these lines was developed in [5]
and maintains one distance bound for each of the k cluster centers.

For the center closest to a data point xj an upper bound ut
j on its distance

is updated as shown in Fig. 1(a): If we know before the update that the distance
between xj and its closest center ctj1 = νt

1(xj) is (at most) ut
j , and the update

moved the center ctj1 to the new location ct∗j1, then the distance d(xj , c
t∗
j1) between

the data point and the new location of this center1 cannot be greater than
ut+1
j = ut

j + d(ctj1, c
t∗
j1). This bound is actually reached if before the update the

bound was tight and the center ctj1 moves away from the data point xj on the
straight line through xj and ctj1 (that is, if the triangle is “flat”).

For all other centers, that is, centers that are not closest to the point xj ,
lower bounds �ji, i = 2, . . . , k, are updated as shown in Fig. 1(b): If we know
before the update that the distance between xj and a center ctji = νt

i (xj), is (at
least) �tji, and the update moved the center ctji to the new location ct∗ji , then the
distance d(xj , c

t∗
ji) between the data point and the new location of this center

cannot be less than �t+1
ji = �tji − d(ctji, c

t∗
ji). This bound is actually reached if

before the update the bound was tight and the center ctji moves towards the
data point xj on the straight line through xj and ctji (“flat” triangle).

1 Note that it may be ct∗j1 �= ct+1
j1 (although equality is not ruled out either), because

the update may have changed which cluster center is closest to the data point xj .

96 C. Borgelt

These bounds are easily exploited to avoid distance computations for a data
point xj : If we find that ut+1

j < �t+1
j = mink

i=2 �t+1
ji , that is, if the upper bound

on the distance to the center that was closest before the update (in step t) is less
than the smallest lower bound on the distances to any other center, the center
that was closest before the update must still be closest after the update (that is,
in step t + 1). Intuitively: even if the worst possible case happens, namely if the
formerly closest center moves straight away from the data point and the other
centers move straight towards it, no other center can have been brought closer
than the one that was already closest before the update.

And even if this test fails, one first computes the actual distance between
the data point xj and ct∗j1. That is, one tightens the bound ut+1

j to the actual
distance and then reevaluates the test. If it succeeds now, the center that was
closest before the update must still be closest. Only if the test fails also with
the tightened bound, the distances between the data point and the remaining
cluster centers have to be computed in order to find the closest center and to
reinitialize the bounds (all of which are tight after such a computation).

This scheme leads to considerable acceleration, because the cost of computing
the distances between the new and the old locations of the cluster centers as
well as the cost of updating the bounds is usually outweighed by the distance
computations that are saved in those cases in which the test succeeds.

2 Distance Bounds. A disadvantage of the scheme just described is that
k bound updates are needed for each data point. In order to reduce this cost,
in [7] only two bounds are kept per data point: ut

j and �tj , that is, all non-closest
centers are captured by a single lower bound. This bound is updated according to
�t+1
j = �tj − maxk

i=2 d(ctji, c
t∗
ji). Even though this leads to worse lower bounds for

the non-closest centers (since they are all treated as if they moved by the max-
imum of the distances any one of them moved), the fact that only two bounds
have to be updated leads to faster execution, at least in many cases.

YinYang Algorithm. Instead of having either one distance bound for each cen-
ter (k bounds) or capturing all non-closest centers by a single bound (2 bounds),
one may consider a hybrid approach that maintains lower bounds for subsets of
the non-closest centers. This improves the quality of bounds over the 2 bounds
approach, because bounds are updated only by the maximum distance a center
in the corresponding group moved (instead of the global maximum). On the
other hand, (considerably) fewer than k bounds have to be updated.

This is the idea of the YinYang algorithm [4], which forms the groups of
centers by clustering the initial centers with k-means clustering. The number of
groups is chosen as k/10 in [4], but other factors may be tried. The groups found
initially are maintained, that is, there is no re-clustering after an update.

However, apart from fewer bounds (compared to k bounds) and better bounds
(compared to 2 bounds), grouping the centers has yet another advantage: If the
bounds test fails, even with a tightened bound ut

j , the groups and their bounds
may be used to limit the centers for which a distance recomputation is needed.
Because if the test succeeds for some group, one can infer that the closest center

Even Faster Exact k-Means Clustering 97

Fig. 2. If 2ut+1
j < d(ct∗j1, ν

t+1
2 (ct∗j1)), then the center ct∗j1 must still be closest to the data

point xj , due to the triangle inequality.

Fig. 3. Annular algorithm [3]: If even after the upper bound uj for the distance from
data point xj to its (updated) formerly closest center ct∗j1 has been made tight, the lower
bound �j for distances to other centers is still lower, it is necessary to recompute the
two closest centers. Exploiting information about the distance between ct∗j1 and another
center ν2(c

t∗
j1) closest to it, these two centers are searched in a (hyper-)annulus around

the origin (dot in the bottom left corner) with ct∗j1 in the middle and thickness 2θj ,
where θj = 2uj + δj and δj = d(ct∗i1 , ν2(c

t∗
j1)). (Color figure online)

cannot be in that group. Only centers in groups, for which the group-specific
test fails, need to be considered for recomputation.

Cluster to Cluster Distances. The described bounds test can be improved
by not only computing the distance each center moved, but also the distances
between (updated) centers, to find for each center another center that is closest to
it [5]. With my notation I can denote such a center as νt+1

2 (ct∗j1), that is, the center
that is second closest2 to the point ct∗j1. Knowing the distances d(ct∗j1, ν

t+1
2 (ct∗j1)),

one can test whether 2ut+1
l < d(ct∗j1, ν

t+1
2 (ct∗j1)). If this is the case, the center that

was closest to the data point xj before the update must still be closest after, as

2 Note that νt+1
1 (ct∗j1) = ct∗j1, because a center is certainly the center closest to itself.

98 C. Borgelt

is illustrated in Fig. 2 for the worst possible case (namely xj , ct∗ji and νt+1
2 (ct∗j1)

lie on a straight line with ct∗ji and νt+1
2 (ct∗j1) on opposite sides of xj).

Note that this second test can be used with k as well as with 2 bounds.
However, it should also be noted that, although it can lead to an acceleration,
if used in isolation it may also make an algorithm slower, because of the O(k2)
distance computations needed to find the k distances d(ct+1

i , νt+1
2 (ct+1

i)).

Annular Algorithm. With the YinYang algorithm an idea appeared on the
scene that is at the focus of all following methods: try to limit the centers that
need to be considered in the recomputations if the tests fail even with a tightened
bound ut+1

j . Especially, if one uses the 2 bounds approach, significant gains may
be obtained: all we need to achieve in this case is to find ct+1

i1 = νt+1
1 (xj) and

ct+1
i2 = νt+1

2 (xj), that is, the two centers closest to xj , because these are all that
is needed for the assignment step as well as for the (tight) bounds ut+1

j and �t+1
j .

One such approach is the Annular algorithm [3]. For its description, as gen-
erally in the following, I drop the time step indices t + 1 in order to simplify
the notation. The Annular algorithm relies on the following idea: if the tests
described above fail with a tightened bound uj , we cannot infer that ct∗ji is still
the center closest to xj . But we know that the closest center must lie in (hyper-)
ball with radius uj around xj (darkest circle in Fig. 3). Any center outside this
(hyper-)ball cannot be closest to xj , because ct∗ji is closer. Furthermore, if we
know the distance to another center closest to ct∗ji , that is, ν2(ct∗j1), we know that
even in the worst possible case (which is depicted in Fig. 3: xj , ct∗ji and ν2(ct∗j1)
lie on a straight line), the two closest centers must lie in a (hyper-)ball with
radius uj + δj around xj , where δj = d(ct∗i1, ν2(c

t∗
j1)) (medium circle in Fig. 3),

because we already know two centers that are this close, namely ct∗ji and ν2(ct∗j1).
Therefore, if we know the distances of the centers from the origin, we can easily
restrict the recomputations to those centers that lie in a (hyper-)annulus (hence
the name of this algorithm) around the origin with ct∗j1 in the middle and thick-
ness 2θj , where θj = 2uj + δj with δj = d(ct∗i1, ν2(c

t∗
j1)) (see Fig. 3, light gray ring

section, origin in the bottom left corner; note that the green line is perpendicular
to the red/blue lines only by accident/for drawing convenience).

Exponion Algorithm. The Exponion algorithm [11] improves over the Annular
algorithm by switching from annuli around the origin to (hyper-)balls around
the (updated) formerly closest center ct∗j1. Again we know that the center closest
to xj must lie in a (hyper-)ball with radius uj around xj (darkest circle in Fig. 4)
and that the two closest centers must lie in a (hyper-)ball with radius uj + δj
around xj , where δj = d(ct∗i1, ν2(c

t∗
j1)) (medium circle in Fig. 4). Therefore, if

we know the pairwise distances between the (updated) centers, we can easily
restrict the recomputations to those centers that lie in the (hyper-)ball with
radius rj = 2uj + δj around ct∗j1 (lightest circle in Fig. 4).

The Exponion algorithm also relies on a scheme with which it is avoided
having to sort, for each cluster center, the lists of the other centers by their
distance. For this concentric annuli, one set centered at a each center, are created,
with each annulus further out containing twice as many centers as the preceding

Even Faster Exact k-Means Clustering 99

Fig. 4. Exponion algorithm [11]: If even after the upper bound uj for the distance from
a data point xj to its (updated) formerly closest center ct∗j1 has been made tight, the
lower bound �j for distance to other centers is still lower, it is necessary to recompute
the two closest centers. Exploiting information about the distance between ct∗j1 and
another center ν2(c

t∗
j1) closest to it, these two centers are searched in a (hyper-)sphere

around center ct∗j1 with radius rj = 2uj + δj where δj = d(ct∗j1, ν2(c
t∗
j1)). (Color figure

online)

one. Clearly this creates an onion-like structure, with an exponentially increasing
number of centers in each layer (hence the name of the algorithm).

However, avoiding the sorting comes at a price, namely that more centers may
have to be checked (although at most twice as many [11]) for finding the two
closest centers and thus additional distance computations ensue. In my imple-
mentation I avoided this complication and simply relied on sorting the distances,
since the gains achievable by concentric annuli over sorting are somewhat unclear
(in [11] no comparisons of sorting versus concentric annuli are provided).

Shallot Algorithm. The Shallot algorithm is the main contribution of this
paper. It starts with the same considerations as the Exponion algorithm, but
adds two improvements. In the first place, not only the closest center cj1 and
the two bounds uj and �j are maintained for each data point (as for Exponion),
but also the second closest center cj2. This comes at practically no cost (apart
from having to store an additional integer per data point), because the second
closest center has to be determined anyway in order to set the bound �j .

If a recomputation is necessary, because the tests fail even for a tightened uj ,
it is not automatically assumed that ct∗j1 is the best center z for a (hyper-)ball
to search. As it is plausible that the formerly second closest center ct∗j2 may now
be closer to xj than ct∗j1, the center ct∗j2 is processed first among the centers ct∗ji ,

100 C. Borgelt

i = 2, . . . , k. If it turns out that it is actually closer to xj than ct∗j1, then ct∗j2 is
chosen as the center z of the (hyper-)ball to check. In this case the (hyper-)ball
will be smaller (since we found that d(xj , c

t∗
j2) < d(xj , c

t∗
j1)). For the following,

let p denote the other (updated) center that was not chosen as the center z.
The second improvement may be understood best by viewing the chosen

center z of the (hyper-)ball as the initial candidate c∗
j1 for the closest center in

step t + 1. Hence we initialize uj = d(xj , z). For the initial candidate c∗
j2 for the

second closest center in step t + 1 we have two choices, namely p and ν2(z). We
choose c∗

j2 = p if uj +d(xj , p) < 2ul+δj and c∗
j2 = ν2(z) otherwise, and initialize

�j = uj +d(xj , p) or �j = 2uj +δj accordingly, thus minimizing the radius, which
then can be written, regardless of the choice taken, as rj = uj + �j .

While traversing the centers in the constructed (hyper-)ball, better candi-
dates may be obtained. If this happens, the radius of the (hyper-)ball may be
reduced, thus potentially reducing the number of centers to be processed. This
idea is illustrated in Fig. 5. Let u◦

j be the initial value of uj when the (hyper-)
ball center was chosen, but before the search is started, that is u◦

j = d(xj , z).
If a new closest center (candidate) c∗

j1 is found (see Fig. 5(a)), we can update
uj = d(xj , c

∗
j1) and �j = d(xj , c

∗
j2) = u◦

j . Hence we can shrink the radius to
rj = 2u◦

j = u◦
j + �j . If then an even closer center is found (see Fig. 5(b)), the

radius may be shrunk further as uj and �j are updated again. As should be clear
from these examples, the radius is always rj = u◦

j + �j .

Fig. 5. Shallot algorithm: If a center closer to the data point than the two currently
closest centers is found, the radius of the (hyper-)ball to be searched can be shrunk.

A shallot is a type of onion, smaller than, for example, a bulb onion. I chose
this name to indicate that the (hyper-)ball that is searched for the two closest
centers tends to be smaller than for the Exponion algorithm. The reference to an
onion may appear misguided, because I rely on sorting the list of other centers
by their distance for each cluster center, rather than using concentric annuli.
However, an onion reference may also be justified by the fact that my algorithm
may shrink the (hyper-)ball radius during the traversal of centers in the (hyper-)
ball, as this also creates a layered structure of (hyper-)balls.

Even Faster Exact k-Means Clustering 101

4 Experiments

In order to evaluate the performance of the different exact k-means algorithms
I generated a large number of artificial data sets. Standard benchmark data sets
proved to be too small to measure performance differences reliably and would also
not have permitted drawing “performance maps” (see below). I fixed the number
of data points in these data sets at n = 100 000. Anything smaller renders the
time measurements too unreliable, anything larger requires an unpleasantly long
time to run all benchmarks. Thus I varied only the dimensionality m of the
data space, namely as m ∈ {2, 3, 4, 5, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50}, and
the number k of clusters, from 20 to 300 in steps of 20. For each parameter
combination I generated 10 data sets, with clusters that are (roughly, due to
random deviations) equally populated with data points and that may vary in
size by a factor of at most ten per dimension. All clusters were modeled as
isotropic normal (or Gaussian) distributions. Each data set was then processed
10 times with different initializations. All optimization algorithms started from
the same initializations, thus making the comparison as fair as possible.

The clustering program is written in C (however, there is also a Python ver-
sion, see the link to the source code below). All implementations of the different
algorithms are entirely my own and use the same code to read the data and to
write the clustering results. This adds to the fairness of the comparison, as in
this way any differences in execution time can only result from differences of
the actual algorithms. The test systems was an Intel Core 2 Quad Q9650@3GHz
with 8 GB of RAM running Ubuntu Linux 18.04 64bit.

Fig. 6. Map of the algorithms that produced the best execution times over number of
dimensions (horizontal) and number of clusters (vertical), showing fairly clear regions
of algorithm superiority. Enjoyably, the Shallot algorithm that was developed in this
paper yields the best results for the largest number of parameter combinations.

102 C. Borgelt

Fig. 7. Relative comparison between the Shallot algorithm and the Exponion algo-
rithm. The left diagram refers to the number of distance computations, the right dia-
gram to execution time. Blue means that Shallot is better, red that Exponion is better.
(Color figure online)

The results of these experiments are visualized in Figs. 6, 7 and 8. Figure 6
shows on a grid spanned by the number of dimensions (horizontal axis) and the
number of clusters inducted into the data set (vertical axis) which algorithm
performed best (in terms of execution time) for each combination. Clearly, the
Shallot algorithm wins most parameter combinations. Only for larger numbers
of dimensions and larger numbers of clusters the YinYang algorithm is superior.

In order to get deeper insights, Fig. 7 shows on the same grid a comparison
of the number of distance computations (left) and the execution times (right)
of the Shallot algorithm and the Exponion algorithm. The relative performance

Fig. 8. Variation of the execution times over number of dimensions (horizontal) and
number of clusters (vertical). The left diagram refers to the Shallot algorithm, the right
diagram to the Exponion algorithm. The larger variation for fewer clusters and fewer
dimensions may explain the speckled look of Figs. 6 and 7.

Even Faster Exact k-Means Clustering 103

Fig. 9. Relative comparison between the Shallot algorithm and the YinYang algorithm
using the cluster to cluster distance test (pure YinYang is very similar, though). The left
diagram refers to the number of distance computations, the right diagram to execution
time. Blue means that Shallot is better, red that YinYang is better. (Color figure
online)

is color-coded: saturated blue means that the Shallot algorithm needed only
half the distance computations or half the execution time of the Exponion algo-
rithm, saturated red means that it needed 1.5 times the distance computations
or execution time compared to the Exponion algorithm.

W.r.t. distance computations there is no question who is the winner: the
Shallot algorithm wins all parameter combinations, some with a considerable
margin. W.r.t. execution times, there is also a clear region towards more dimen-
sions and more clusters, but for fewer clusters and fewer dimensions the diagram
looks a bit speckled. This is a somewhat strange result, as a smaller number of
distance computations should lead to lower execution times, because the effort
spent on organizing the search, which is also carried out in exactly the same
situations, is hardly different between the Shallot and the Exponion algorithm.

The reason for this speckled look could be that the benchmarks were carried
out with heavy parallelization (in order to minimize the total time), which may
have distorted the measurements. As a test of this hypothesis, Fig. 8 shows the
standard deviation of the execution times relative to their mean. White means
no variation, fully saturated blue indicates a standard deviation half as large as
the mean value. The left diagram refers to the Shallot, the right diagram to the
Exponion algorithm. Clearly, for a smaller number of dimensions and especially
for a smaller number of clusters the execution times vary more (this may be,
at least in part, due to the generally lower execution times for these parameter
combinations). It is plausible to assume that this variability is the explanation
for the speckled look of the diagrams in Fig. 6 and in Fig. 7 on the right.

Finally, Fig. 9 shows, again on the same grid, a comparison of the number
of distance computations (left) and the execution times (right) of the Shallot

104 C. Borgelt

algorithm and the YinYang algorithm (using the test based on cluster to cluster
distances, although a pure YinYang algorithm performs very similarly). The
relative performance is color-coded in the same way as in Fig. 7. Clearly, the
smaller number of distance computations explains why the YinYang algorithm
is superior for more clusters and more dimensions.

The reason is likely that grouping the centers leads to better bounds. This
hypothesis is confirmed by the fact that the Elkan algorithm (k distance bounds)
always needs the fewest distance computations (not shown as a grid) and loses
on execution time only due to having to update so many distance bounds.

5 Conclusion

In this paper I introduced the Shallot algorithm, which adds two improvements
to the Exponion algorithm [11], both of which can potentially shrink the (hyper-)
ball that has to be searched for the two closest centers if recomputation becomes
necessary. This leads to a measurable, sometimes even fairly large speedup com-
pared to the Exponion algorithm due to fewer distance computations. How-
ever, for high-dimensional data and large numbers of clusters the YinYang algo-
rithm [4] (with or without the cluster to cluster distance test) is superior to both
algorithms. Yet, since clustering in high dimensions is problematic anyway due
to the curse of dimensionality, it may be claimed reasonably confidently that the
Shallot algorithm is the best choice for standard clustering tasks.

Software. My implementation of the described methods (C and Python), with
which I conducted the experiments, can be obtained under the MIT License at

http://www.borgelt.net/cluster.html.

Complete Results. A table with the complete experimental results I obtained
can be retrieved as a simple text table at

http://www.borgelt.net/docs/clsbench.txt.

More maps comparing the performance of the algorithms can be found at
http://www.borgelt.net/docs/clsbench.pdf.

References

1. Arthur, D., Vassilvitskii, S.: k-Means++: the advantages of careful seeding. In: Pro-
ceedings of 18th Annual SIAM Symposium on Discrete Algorithms, SODA 2007,
New Orleans, LA, pp. 1027–1035. Society for Industrial and Applied Mathematics,
Philadelphia (2007)

2. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum Press, New York (1981)

3. Drake, J.: Faster k-means clustering, Master’s thesis, Baylor University, Waco, TX,
USA (2013)

4. Ding, Y., Zhao, Y., Shen, Y., Musuvathi, M., Mytkowicz, T.: YinYang k-means: a
drop-in replacement of the classic k-means with consistent speedup. In: Proceedings
of 32nd International Conference on Machine Learning, ICML 2015, Lille, France,
JMLR Workshop and Conference Proceedings, vol. 37, pp. 579–587 (2015)

http://www.borgelt.net/cluster.html
http://www.borgelt.net/docs/clsbench.txt
http://www.borgelt.net/docs/clsbench.pdf

Even Faster Exact k-Means Clustering 105

5. Elkan, C.: Using the triangle inequality to accelerate k-means. In: Proceedings 20th
International Conference on Machine Learning, ICML 2003, Washington, DC, pp.
147–153. AAAI Press, Menlo Park (2003)

6. Frahling, G., Sohler, C.: A fast k-means implementation using coresets. In: Pro-
ceedings of 22nd Annual Symposium on Computational Geometry, SCG 2006,
Sedona, AZ, pp. 135–143. ACM Press, New York (2006)

7. Hamerly, G.: Making k-means even faster. In: Proceedings of SIAM International
Conference on Data Mining, SDM 2010, Columbus, OH, pp. 130–140. Society for
Industrial and Applied Mathematics, Philadelphia (2010)

8. Hathaway, R.J., Bezdek, J.C., Huband, J.M.: Maximin initialization for clus-
ter analysis. In: Mart́ınez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.)
CIARP 2006. LNCS, vol. 4225, pp. 14–26. Springer, Heidelberg (2006). https://
doi.org/10.1007/11892755 2

9. Lloyd, S.P.: Least square quantization in PCM. IEEE Trans. Inf. Theory 28, 129–
137 (1982)

10. Mahajan, M., Nimbhorkar, P., Varadarajan, K.: The planar k-means problem is
NP-hard. Theor. Comput. Sci. 442, 13–21 (2009)

11. Newling, J., Fleuret, F.: Fast k-means with accurate bounds. In: Proceedings of
33rd International Conference on Machine Learning, ICML 2016, New York, NY,
JMLR Workshop and Conference Proceedings, vol. 48, pp. 936–944 (2016)

12. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large
vocabularies and fast spatial matching. In: Proceedings of IEEE International Con-
ference on Computer Vision and Pattern Recognition, CVPR 2007, Minneapolis,
MN. IEEE Press, Piscataway (2007)

13. Sculley, D.: Web-scale k-means clustering. In: Proceedings of 19th International
Conference on World Wide Web, WWW 2010, Raleigh, NC, pp. 1177–1178. ACM
Press, New York (2010)

14. Selim, S.Z., Ismail, M.A.: k-means-type algorithms: a generalized convergence the-
orem and characterization of local optimality. IEEE Trans. Pattern Anal. Mach.
Intell. 1(6), 81–87 (1984)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/11892755_2
https://doi.org/10.1007/11892755_2
http://creativecommons.org/licenses/by/4.0/

Ising-Based Consensus Clustering
on Specialized Hardware

Eldan Cohen1(B), Avradip Mandal2, Hayato Ushijima-Mwesigwa2,
and Arnab Roy2

1 University of Toronto, Toronto, Canada
ecohen@mie.utoronto.ca

2 Fujitsu Laboratories of America, Inc., Sunnyvale, USA
{amandal,hayato,aroy}@us.fujitsu.com

Abstract. The emergence of specialized optimization hardware such as
CMOS annealers and adiabatic quantum computers carries the promise
of solving hard combinatorial optimization problems more efficiently in
hardware. Recent work has focused on formulating different combina-
torial optimization problems as Ising models, the core mathematical
abstraction used by a large number of these hardware platforms, and
evaluating the performance of these models when solved on specialized
hardware. An interesting area of application is data mining, where com-
binatorial optimization problems underlie many core tasks. In this work,
we focus on consensus clustering (clustering aggregation), an important
combinatorial problem that has received much attention over the last two
decades. We present two Ising models for consensus clustering and evalu-
ate them using the Fujitsu Digital Annealer, a quantum-inspired CMOS
annealer. Our empirical evaluation shows that our approach outperforms
existing techniques and is a promising direction for future research.

1 Introduction

The increasingly challenging task of scaling the traditional Central Processing
Unit (CPU) has lead to the exploration of new computational platforms such
as quantum computers, CMOS annealers, neuromorphic computers, and so on
(see [3] for a detailed exposition). Although their physical implementations dif-
fer significantly, adiabatic quantum computers, CMOS annealers, memristive
circuits, and optical parametric oscillators all share Ising models as their core
mathematical abstraction [3]. This has lead to a growing interest in the formula-
tion of computational problems as Ising models and in the empirical evaluation
of these models on such novel computational platforms. This body of literature
includes clustering and community detection [14,19,23], graph partitioning [26],
and many NP-Complete problems such as covering, packing, and coloring [17].

Consensus clustering is the problem of combining multiple ‘base clusterings’
of the same set of data points into a single consolidated clustering [9]. Consen-
sus clustering is used to generate robust, stable, and more accurate clustering

E. Cohen—Work done while at Fujitsu Laboratories of America.

c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 106–118, 2020.
https://doi.org/10.1007/978-3-030-44584-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_9&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_9

Ising-Based Consensus Clustering on Specialized Hardware 107

results compared to a single clustering approach [9]. The problem of consensus
clustering has received significant attention over the last two decades [9], and
was previously considered under different names (clustering aggregation, clus-
ter ensembles, clustering combination) [10]. It has applications in different fields
including data mining, pattern recognition, and bioinformatics [10] and a number
of algorithmic approaches have been used to solve this problem. The consensus
clustering is, in essence, a combinatorial optimization problem [28] and different
instances of the problem have been proven to be NP-hard (e.g., [6,25]).

In this work, we investigate the use of special purpose hardware to solve the
problem of consensus clustering. To this end, we formulate the problem of con-
sensus clustering using Ising models and evaluate our approach on a specialized
CMOS annealer. We make the following contributions:

1. We present and study two Ising models for consensus clustering that can be
solved on a variety of special purpose hardware platforms.

2. We demonstrate how our models are embedded on the Fujitsu Digital
Annealer (DA), a quantum-inspired specialized CMOS hardware.

3. We present an empirical evaluation based on seven benchmark datasets and
show our approach outperforms existing techniques for consensus clustering.

2 Background

2.1 Problem Definition

Let X = {x1, ..., xn} be a set of n data points. A clustering of X is a process that
partitions X into subsets, referred to as clusters, that together cover X. A clus-
tering is represented by the mapping π : X → {1, . . . , kπ} where kπ is the number
of clusters produced by clustering π. Given X and a set Π = {π1, . . . , πm} of
m clusterings of the points in X, the Consensus Clustering Problem is to find
a new clustering, π∗, of the data X that best summarizes the set of clusterings
Π. The new clustering π∗ is referred to as the consensus clustering.

Due to the ambiguity in the definition of an optimal consensus clustering, sev-
eral approaches have been proposed to measure the solution quality of consensus
clustering algorithms [9]. In this work, we focus on the approach of determin-
ing a consensus clustering that agrees the most with the original clusterings. As
an objective measure to determine this agreement, we use the mean Adjusted
Rand Index (ARI) metric (Eq. 14). However, we also consider clustering quality
measured by mean Silhouette Coefficient [22] and clustering accuracy based on
true labels. In Sect. 4 these evaluation criteria are discussed in more details.

2.2 Existing Criteria and Methods

Various criteria or objectives have been proposed for the Consensus Clustering
Problem. In this work we mainly focus on two well-studied criteria, one based on
the pairwise similarity of the data points, and the other based on the different
assignments of the base clusterings. Other well-known criteria and objectives
for the Consensus Clustering Problem can be found in the excellent surveys of
[9,27], with most defining NP-Hard optimization problems.

108 E. Cohen et al.

Pairwise Similarity Approaches: In this approach, a similarity matrix S is con-
structed such that each entry in S represents the fraction of clusterings in which
two data points belong to the same cluster [20]. In particular,

Suv =
1
m

m∑

i=1

1(πi(u) = πi(v)), (1)

with 1 being the indicator function. The value Suv lies between 0 and 1, and is
equal to 1 if all the base clusterings assign points u and v to the same cluster.
Once the pairwise similarity matrix is constructed, one can use any similarity-
based clustering algorithm on S to find a consensus clustering with a fixed num-
ber of clusters, K. For example, [16] proposed to find a consensus clustering π∗

with exactly K clusters that minimizes the within-cluster dissimilarity:

min
∑

u,v∈X:
π∗(u)=π∗(v)

(1 − Suv). (2)

Partition Difference Approaches: An alternative formulation is based on the
different assignments between clustering. Consider two data points u, v ∈ X,
and two clusterings πi, πj ∈ Π. The following binary indicator tests if πi and πj

disagree on the clustering of u and v:

du,v(πi, πj) =

⎧
⎪⎨

⎪⎩

1, if πi(u) = πi(v) and πj(u) �= πj(v)
1, if πi(u) �= πi(v) and πj(u) = πj(v)
0, otherwise.

(3)

The distance between two clusterings is then defined based on the number of
pairwise disagreements:

d(πi, πj) =
1
2

∑

u,v∈X

du,v(πi, πj) (4)

with the 1
2 factor to take care of double counting and can be ignored. This

measure is defined as the number of pairs of points that are in the same cluster
in one clustering and in different clusters in the other, essentially considering the
(unadjusted) Rand index [9]. Given this measure, a common objective is to find
a consensus clustering π∗ with respect to the following optimization problem:

min
m∑

i=1

d(πi, π
∗). (5)

Methods and Algorithms: The two different criteria given above define funda-
mentally different optimization problems, thus different algorithms have been
proposed. One key difference between the two approaches inherently lies in deter-
mining the number of clusters kπ∗ in π∗. The pairwise similarity approaches (e.g.,

Ising-Based Consensus Clustering on Specialized Hardware 109

Eq. (2)) require an input parameter K that fixes the number of clusters in π∗,
whereas the partition difference approaches such as Eq. (5) do not have this
requirement and determining kπ∗ is part of the objective of the problem. There-
fore, for example, Eq. (2) will have a minimum value in the case when kπ∗ = n,
however this does not hold for Eq. (5).

The Cluster-based Similarity Partitioning Algorithm (CSPA) is proposed in
[24] for solving the pairwise similarity based approach. The CSPA constructs a
similarity-based graph with each edge having a weight proportional to the simi-
larity given by S. Determining the consensus clustering with exactly K clusters
is treated as a K-way graph partitioning problem, which is solved by methods
such as METIS [12]. In [20], the authors experiment with different clustering
algorithms including hierarchical agglomerative clustering (HAC) and iterative
techniques that start from an initial partition and iteratively reassign points to
clusters based on their pairwise similarities. For the partition difference app-
roach, Li et al. [15] proposed to solve Eq. (5) using nonnegative matrix factor-
ization (NMF). Gionis et al. [10] proposed several algorithms that make use of
the connection between Eq. (5) and the problem of correlation clustering. CSPA,
HAC, NMF: these three approaches are considered as baseline in our empirical
evaluation section (Sect. 4).

2.3 Ising Models

Ising models are graphical models that include a set of nodes representing spin
variables and a set of edges corresponding to the interactions between the spins.
The energy level of an Ising model which we aim to minimize is given by:

E(σ) =
∑

(i,j)∈E
Ji,jσiσj +

∑

i∈N
hiσi, (6)

where the variables σi ∈ {−1, 1} are the spin variables and the couplers, Ji,j ,
represent the interaction between the spins.

A Quadratic Unconstrained Binary Optimization (QUBO) model includes
binary variables qi ∈ {0, 1} and couplers, ci,j . The objective to minimize is:

E(q) =
n∑

i=1

ciqi +
∑

i<j

ci,jqiqj . (7)

QUBO models can be transformed to Ising models by setting σi = 2qi −1 [2].

3 Ising Approach for Consensus Clustering on Specialized
Hardware

In this section, we present our approach for solving consensus clustering on
specialized hardware using Ising models. We present two Ising models that cor-
respond to the two approaches in Sect. 2.2. We then demonstrate how they can
be solved on the Fujitsu Digital Annealer (DA), a specialized CMOS hardware.

110 E. Cohen et al.

3.1 Pairwise Similarity-Based Ising Model

For each data point u ∈ X, let quc ∈ {0, 1} be the binary variable such that
quc = 1 if π∗ assigns u to cluster c, and 0 otherwise. Then the constraints

K∑

c=1

quc = 1, for each u ∈ X (8)

ensure π∗ assigns each point to exactly one cluster. Subject to the constraints
(8), the sum of quadratic terms

∑K
c=1 qucqvc is 1 if π∗ assigns both u, v ∈ X to

the same cluster, and is 0 if assigned to different clusters. Therefore the value

∑

u,v∈X:
π∗(u)=π∗(v)

(1 − Suv) =
∑

u,v∈X

(1 − Suv)
K∑

c=1

qucqvc (9)

represents the sum of within-cluster dissimilarities in π∗: (1−Suv) is the fraction
of clusterings in Π that assign u and v to different clusters while π∗ assigns them
to the same cluster. We therefore reformulate Eq. (2) as QUBO:

min
∑

u,v∈X

(1 − Suv)
K∑

c=1

qucqvc +
∑

u∈X

A(
K∑

c=1

quc − 1)2. (10)

where the term
∑

u∈X A(
∑K

c=1 quc − 1)2 is added to the objective function to
ensure that the constraints (8) are satisfied. A is positive constant that penalizes
the objective for violations of constraints (8). One can show that if A ≥ n, the
optimal solution of the QUBO in Eq. (10) does not violate the constraints (8).
The proof is very similar to proof of Theorem1 and a similar result in [14].

3.2 Partition Difference Ising Model

The partition difference approach essentially considers the (unadjusted) Rand
Index [9] and therefore can be expected to perform better. The Correlation
Clustering Problem is another important problem in data mining. Gionis et
al. [10] showed that Eq. (5) is a restricted case of the Correlation Clustering
Problem, and that Eq. (5) can be expressed as the following equivalent form of
the Correlation Clustering Problem

min
π∗

∑

u,v∈X:
π∗(u)=π∗(v)

(1 − Suv) +
∑

u,v∈X:
π∗(u) �=π∗(v)

Suv. (11)

We take advantage of this equivalence to model Eq. (5) as a QUBO. In a similar
fashion to the QUBO formulated in the preceding subsection, the terms

∑

u,v∈X:
π∗(u) �=π∗(v)

Suv =
∑

u,v∈X

Suv

∑

1≤c �=l≤K

qucqvl (12)

Ising-Based Consensus Clustering on Specialized Hardware 111

measure the similarity between points in different clusters, where K represents
an upper bound for the number of clusters in π∗. This then leads to the mini-
mizing the following QUBO:

∑

u,v∈X

(1 − Suv)
K∑

c=1

qucqvc +
∑

u,v∈X

Suv

∑

1≤c �=l≤K

qucqvl +
∑

u∈X

B(
K∑

c=1

quc − 1)2.

(13)
Intuitively, Eq. (13) measures the disagreement between the consensus clus-

tering and the clusterings in Π. This disagreement is due to points that are
clustered together in the consensus clustering but not in the clusterings in Π,
however it is also due to points that are assigned to different clusters in the
consensus partition but in the same cluster in some of the partitions in Π.

Formally, we can show that Eq. (13) is equivalent to the correlation clustering
formulation in Eq. (11) when setting B ≥ n. Consistent with other methods that
optimize Eq. (5) (e.g., [15]), our approach takes as an input K, an upper bound
on the number of clusters in π∗, however the obtained solution can use smaller
number of clusters. In our proof, we assume K is large enough to represent the
optimal solution, i.e., greater than the number of clusters in optimal solutions
to the correlation clustering problem in Eq. (11).

Theorem 1. Let q̄ be the optimal solution to the QUBO given by Eq. (13).
If B ≥ n, for a large enough K ≤ n, an optimal solution to the Correlation
Clustering Problem in Eq. (11), π̄, can be efficiently evaluated from q̄.

Proof. First we show the optimal solution to the QUBO in Eq. (13) satisfies
the one-hot encoding (

∑
k quk = 1). This would imply given q̄ we can create a

valid clustering π̄. Note, the optimal solution will never have
∑

c quc > 1 as it
can only increase the cost. The only case in which an optimal solution will have∑

c quc < 1 is when the cost of assigning a point to a cluster is higher than the
cost of not assigning it to a cluster (i.e., the penalty B). Assigning a point u to
a cluster will incur a cost of (1 − Suv) for each point v in the same cluster and
Suv for each point v that is not in the cluster. As there is additional n−1 points
in total, and both (1 − Suv) and Suv are less or equal to one (Eq. (1)), setting
B ≥ n guarantees the optimal solution satisfies the one-hot encoding.

Now we assume that π̄ is not optimal, i.e., there exists an optimal solution
π̂ to Eq. (11) that has a strictly lower cost than π̄. Let q̂ be the corresponding
QUBO solution to π̂, such that π̄(u) = k if and only if q̄uk = 1. This is possible
because K is large enough to accomodate all clusters in π̂. As both q̄ and q̂
satisfy that one-hot encoding (penalty terms are zero), their cost is identical to
the cost of π̄ and π̂ . Since the cost of π̂ is strictly lower than π̄, and the cost of
q̄ is lower or equal to q̂, we have a contradiction. ��

3.3 Solving Consensus Clustering on the Fujitsu Digital Annealer

The Fujitsu Digital Annealer (DA) is a recent CMOS hardware for solving com-
binatorial optimization problems formulated as QUBO [1,8]. We use the second

112 E. Cohen et al.

generation of the DA that is capable of representing problems with up to 8192
variables with up to 64 bits of precision. The DA has previously been used to
solve problems in areas such as communication [18] and signal processing [21].

The DA algorithm [1] is based on simulated annealing (SA) [13], while taking
advantage of the massive parallelization provided by the CMOS hardware [1]. It
has several key differences compared to SA, most notably a parallel-trial scheme
in which each MC step considers all possible one-bit flips in parallel and dynamic
offset mechanism that increase the energy of a state to escape local minima [1].

Encoding Consensus Clustering on the DA. When embedding our Ising
models on the DA, we need to consider the hardware specification and adapt the
representation of our model accordingly. Due to hardware precision limit, we need
to embed the couplers and biases on an integer scale with limited granularity.
In our experiments, we normalize the pairwise costs Suv in the discrete range
[0, 100], Dij = [Suv · 100], and accordingly (1 − Suv) is replaced by (100 − Duv).
Note that the theoretical bound B = n is adjusted accordingly to be B = 100 ·n.

The theoretical bound guarantees that all constraints are satisfied if problems
are solved to optimality. In practice, the DA does not necessarily solve problems
to optimality and due to the nature of annealing-based algorithms, using very
high weights for constraints is likely to create deep local minima and result
in solutions that may satisfy the constraints but are often of low-quality. This
is especially relevant to our pairwise similarity model where the bound tends
to become loose as the number of clusters grows. In our experiments, we use
constant, reasonably high, weights that were empirically found to perform well
across datasets. For the pairwise similarity-based model (Eq. (10)) we use A =
214, and for the partition difference model (Eq. (13)) we use B = 215. While we
expect to get better performance by tuning the weights per-dataset, our goal is
to demonstrate the performance of our approach in a general setting. Automatic
tuning of the weight values for the DA is a direction for future work.

Unlike many of the existing consensus clustering algorithms that run until
convergence, our method runs for a given time limit (defined by the number of
runs and iterations) and returns the best solution encountered. In our experi-
ments, we arbitrarily choose three seconds as a (reasonably short) time limit to
solve our Ising models. As with the weights, we employ a single temperature
schedule across all datasets, and do not tune it per dataset.

4 Empirical Evaluation

We perform an extensive empirical evaluation of our approach using a set of seven
benchmark datasets. We first describe how we generate the set of clusterings,
Π. Next, we describe the baselines, the evaluation metrics, and the datasets.

Generating Partitions. We follow [7] and generate a set of clusterings by
randomizing the parameters of the K-Means algorithm, namely the number of

Ising-Based Consensus Clustering on Specialized Hardware 113

clusters K and the initial cluster centers. In this work, we only use labelled
datasets for which we know the number of clusters, K̃, based on the true labels.
To generate the base clusterings we run the K-Means algorithm with random
cluster centers and we randomly choose K from the range [2, 3K̃]. For each
dataset, we generate 100 clusterings to serve as the clustering set Π.

Baseline Algorithms. We compare our pairwise similarity-based Ising model,
referred to as DA-Sm, and our correlation clustering Ising model, referred to as
DA-Cr, to three popular algorithms for consensus clustering:

1. The cluster-based similarity partitioning algorithm (CSPA) [24] solved as a
K-way graph partitioning problem using METIS [12].

2. The nonnegative matrix factorization (NMF) formulation in [15].
3. Hierarchical agglomerative clustering (HAC) starts with all points in single-

ton clusters and repeatedly merges the two clusters with the largest average
similarity based on S, until reaching the desired number of clusters [20].

Evaluation. We evaluate the different methods using three measures. Our main
concern in this work is the level of agreement between the consensus clustering
and the set of input clusterings. To this end, one requires a metric measuring the
similarity of two clusterings that can be used to measure how close the consensus
clustering π∗ to each base clustering πi ∈ Π is. One of popularly used metrics
to measure the similarity between two clusterings is the Rand Index (RI) and
Adjusted Rand Index (ARI) [11]. The Rand Index of two clustering lies between 0
and 1, obtaining the value 1 when both clusterings perfectly agree. Likewise, the
maximum score of ARI, which is corrected-for-chance version of RI, is achieved
when both clusterings perfectly agree. ARI(πi, π

∗) can be viewed as measure
of agreement between the consensus clustering π∗ and some base clusterings
πi ∈ Π. We use the mean ARI as the main evaluation criteria:

1
m

m∑

i=1

ARI(πi, π
∗) (14)

We also evaluate π∗ based on clustering quality and accuracy. For clustering
quality, we use the mean Silhouette Coefficient [22] of all data points (computed
using the Euclidean distance between the data points). For clustering accuracy,
we compute the ARI between the consensus partition π∗ and the true labels.

Benchmark Datasets. We run experiments on seven datasets with differ-
ent characteristics: Iris, Optdigits, Pendigits, Seeds, Wine from the UCI reposi-
tory [5] as well as Protein [29] and MNIST.1 Optdigits-389 is a randomly sampled
subset of Optdigits containing only the digits {3, 8, 9}. Similarly, MNIST-3689
and Pendigits-149 are subsets of the MNIST and Pendigits datasets.

1 http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/

114 E. Cohen et al.

Table 1 provides statistics on each of the data set, with the coefficient of vari-
ation (CV) [4] describing the degree of class imbalance: zero indicates perfectly
balanced classes, while higher values indicate higher degree of class imbalance.

Table 1. Datasets

Dataset # Instances # Features # Clusters CV

Iris 150 4 3 0.000

MNIST-3689 389 784 4 0.015

Optdigits-389 537 64 3 0.021

Pendigits-149 532 16 3 0.059

Protein 116 20 6 0.301

Seeds 210 7 3 0.000

Wine 178 13 3 0.158

4.1 Results

We compare the baseline algorithms to the two Ising models in Sect. 3 solved
using the Fujitsu Digital Annealer described in Sect. 3.3.

Clustering is typically an unsupervised task and the number of clusters is
unknown. The number of clusters in the true labels, K̃, is not available in real
scenarios. Furthermore, K̃ is not necessarily the best value for clustering tasks
(e.g., in many cases it is better to have smaller clusters that are more pure). We
therefore test the algorithms in two configurations: when the number of clusters
is set to K̃, as in the true labels, and when the number of clusters is set to 2K̃.

Table 2. Consensus performance measured by mean ARI across partitions

Dataset ˜K clusters 2 ˜K clusters

CSPA NMF HAC DA-Sm DA-Cr CSPA NMF HAC DA-Sm DA-Cr

Iris 0.555 0.618 0.618 0.619 0.621 0.536 0.614 0.627 0.608 0.642

MNIST 0.459 0.449 0.469 0.474 0.474 0.456 0.511 0.517 0.490 0.521

Optdig. 0.528 0.550 0.541 0.550 0.551 0.492 0.596 0.608 0.576 0.612

Pendig. 0.546 0.546 0.507 0.555 0.555 0.531 0.629 0.642 0.605 0.644

Protein 0.344 0.393 0.379 0.390 0.405 0.324 0.419 0.423 0.378 0.415

Seeds 0.558 0.577 0.534 0.575 0.577 0.484 0.602 0.602 0.580 0.612

Wine 0.481 0.536 0.535 0.537 0.538 0.502 0.641 0.641 0.641 0.643

Best 0 4 1 6 7 0 1 3 1 6

Ising-Based Consensus Clustering on Specialized Hardware 115

Consensus Criteria. Table 2 shows the mean ARI between π∗ and the clus-
terings in Π. To avoid bias due to very minor differences, we consider all the
methods that achieved Mean ARI that is within a threshold of 0.0025 from the
best method to be equivalent and highlight them in bold. We also summarize the
number of times each method was considered best across the different datasets.

The results show that DA-Cr is the best performing method for both K̃ and
2K̃ clusters. The results of DA-Sm are not consistent: DA-Sm and NMF are
performing well for K̃ clusters and HAC is performing better for 2K̃ clusters.

Clustering Quality. Table 3 report the mean Silhouette Coefficient of all data
points. Again, DA-Cr is the best performing method across datasets, followed
by HAC. NMF seems to be equivalent to HAC for 2K̃.

Table 3. Clustering quality measured by Silhouette

Dataset ˜K clusters 2 ˜K clusters

CSPA NMF HAC DA-Sm DA-Cr CSPA NMF HAC DA-Sm DA-Cr

Iris 0.519 0.555 0.555 0.551 0.553 0.289 0.366 0.371 0.343 0.373

MNIST 0.075 0.072 0.078 0.079 0.078 0.069 0.082 0.074 0.074 0.082

Optdig. 0.127 0.120 0.120 0.130 0.130 0.088 0.119 0.119 0.112 0.121

Pendig. 0.307 0.307 0.315 0.310 0.310 0.305 0.332 0.375 0.368 0.364

Protein 0.074 0.106 0.095 0.094 0.104 0.068 0.111 0.115 0.119 0.118

Seeds 0.461 0.468 0.410 0.469 0.472 0.275 0.343 0.304 0.344 0.302

Wine 0.453 0.542 0.571 0.547 0.545 0.452 0.543 0.541 0.539 0.542

Best 0 2 4 2 5 0 4 4 2 5

Clustering Accuracy. Table 4 shows the clustering accuracy measured by the
ARI between π∗ and the true labels. For K̃, we find DA-Sm to be best-performing
solution (followed by DA-Cr). For 2K̃, DA-Cr outperforms the other methods.
Interestingly, there is no clear winner between CSPA, NMF, and HAC.

Experiments with Higher K. In partition difference approaches, increasing
K does not necessarily lead to a π∗ that has more clusters. Instead, K serves as
an upper bound and new clusters will be used in case they reduce the objective.

To demonstrate how different algorithms handle different K values, Table 5
shows the consensus criteria and the actual number of clusters in π∗ for different
values of K (note that K̃ = 3 in Iris). The results show that the performance of
the pairwise similarity methods (CSPA, HAC, DA-Sm) degrades as we increase
K. This is associated with the fact the actual number of clusters in π∗ is equal to
K which is significantly higher compared to the clusterings in Π. Methods based
on partition difference (NMF and DA-Cr) do not exhibit significant degradation
and the actual number of clusters does not grow beyond 5 for DA-Cr and 6 for
NMF. Note that the average number of clusters in Π is 5.26.

116 E. Cohen et al.

Table 4. Clustering accuracy measured by ARI compared to true labels

Dataset ˜K clusters 2 ˜K clusters

CSPA NMF HAC DA-Sm DA-Cr CSPA NMF HAC DA-Sm DA-Cr

Iris 0.868 0.746 0.746 0.716 0.730 0.438 0.463 0.447 0.433 0.521

MNIST 0.684 0.518 0.704 0.730 0.720 0.412 0.484 0.545 0.440 0.484

Optdig. 0.712 0.642 0.675 0.734 0.738 0.380 0.513 0.630 0.481 0.623

Pendig. 0.674 0.679 0.499 0.668 0.668 0.398 0.614 0.625 0.490 0.639

Protein 0.365 0.298 0.363 0.349 0.376 0.237 0.332 0.301 0.308 0.345

Seeds 0.705 0.710 0.704 0.764 0.717 0.424 0.583 0.573 0.500 0.619

Wine 0.324 0.395 0.371 0.402 0.398 0.231 0.245 0.240 0.248 0.238

Best 1 1 0 3 2 0 0 2 1 4

Table 5. Results for Iris dataset with different number of clusters

K Consensus Criteria # of clusters in consensus clustering

CSPA NMF HAC DA-Sm DA-Cr CSPA NMF HAC DA-Sm DA-Cr

3 0.555 0.618 0.618 0.619 0.621 3 3 3 3 3

6 0.536 0.614 0.627 0.608 0.642 6 6 6 6 5

9 0.447 0.614 0.591 0.497 0.642 9 6 9 9 5

12 0.370 0.614 0.507 0.414 0.642 12 6 12 12 5

5 Conclusion

Motivated by the recent emergence of specialized hardware platforms, we present
a new approach to the consensus clustering problem that is based on Ising models
and solved on the Fujitsu Digital Annealer, a specialized CMOS hardware. We
perform an extensive empirical evaluation and show that our approach outper-
forms existing methods on a set of seven datasets. These results shows that using
specialized hardware in core data mining tasks can be a promising research direc-
tion. As future work, we plan to investigate additional problems in data mining
that can benefit from the use of specialized optimization hardware as well as
experimenting with different types of specialized hardware platforms.

References

1. Aramon, M., Rosenberg, G., Valiante, E., Miyazawa, T., Tamura, H., Katzgraber,
H.G.: Physics-inspired optimization for quadratic unconstrained problems using a
digital annealer. Front. Phys. 7, 48 (2019)

2. Bian, Z., Chudak, F., Macready, W.G., Rose, G.: The Ising model: teaching an old
problem new tricks. D-Wave Syst. 2 (2010)

Ising-Based Consensus Clustering on Specialized Hardware 117

3. Coffrin, C., Nagarajan, H., Bent, R.: Evaluating Ising processing units with integer
programming. In: Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS, vol.
11494, pp. 163–181. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
19212-9 11

4. DeGroot, M.H., Schervish, M.J.: Probability and Statistics. Pearson, London
(2012)

5. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.
edu/ml

6. Filkov, V., Skiena, S.: Integrating microarray data by consensus clustering. Int. J.
Artif. Intell. Tools 13(04), 863–880 (2004)

7. Fred, A.L., Jain, A.K.: Combining multiple clusterings using evidence accumula-
tion. IEEE TPAMI 27(6), 835–850 (2005)

8. Fujitsu: Digital annealer. https://www.fujitsu.com/jp/digitalannealer/
9. Ghosh, J., Acharya, A.: Cluster ensembles. Wiley Interdisc. Rev.: Data Mining

Knowl. Discov. 1(4), 305–315 (2011)
10. Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. TKDD 1(1), 4 (2007)
11. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)
12. Karypis, G., Kumar, V.: Multilevelk-way partitioning scheme for irregular graphs.

J. Parallel Distrib. Comput. 48(1), 96–129 (1998)
13. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.

Science 220(4598), 671–680 (1983)
14. Kumar, V., Bass, G., Tomlin, C., Dulny, J.: Quantum annealing for combinatorial

clustering. Quantum Inf. Process. 17(2), 1–14 (2018). https://doi.org/10.1007/
s11128-017-1809-2

15. Li, T., Ding, C., Jordan, M.I.: Solving consensus and semi-supervised clustering
problems using nonnegative matrix factorization. In: ICDM, pp. 577–582 (2007)

16. Li, T., Ogihara, M., Ma, S.: On combining multiple clusterings: an overview and
a new perspective. Appl. Intell. 33(2), 207–219 (2010)

17. Lucas, A.: Ising formulations of many np problems. Front. Phys. 2, 5 (2014)
18. Naghsh, Z., Javad-Kalbasi, M., Valaee, S.: Digitally annealed solution for the max-

imum clique problem with critical application in cellular v2x. In: ICC, pp. 1–7
(2019)

19. Negre, C.F.A., Ushijima-Mwesigwa, H., Mniszewski, S.M.: Detecting multiple com-
munities using quantum annealing on the d-wave system. PLoS ONE 15, 1–14
(2020)

20. Nguyen, N., Caruana, R.: Consensus clusterings. In: ICDM, pp. 607–612 (2007)
21. Rahman, M.T., Han, S., Tadayon, N., Valaee, S.: Ising model formulation of outlier

rejection, with application in WiFi based positioning. In: ICASSP, pp. 4405–4409
(2019)

22. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

23. Shaydulin, R., Ushijima-Mwesigwa, H., Safro, I., Mniszewski, S., Alexeev, Y.: Net-
work community detection on small quantum computers. Adv. Quantum Technol.
2, 1900029 (2019)

24. Strehl, A., Ghosh, J.: Cluster ensembles-a knowledge reuse framework for combin-
ing multiple partitions. JMLR 3(Dec), 583–617 (2002)

25. Topchy, A., Jain, A.K., Punch, W.: Clustering ensembles: models of consensus and
weak partitions. IEEE TPAMI 27(12), 1866–1881 (2005)

26. Ushijima-Mwesigwa, H., Negre, C.F., Mniszewski, S.M.: Graph partitioning using
quantum annealing on the d-wave system. In: PMES, pp. 22–29 (2017)

https://doi.org/10.1007/978-3-030-19212-9_11
https://doi.org/10.1007/978-3-030-19212-9_11
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://www.fujitsu.com/jp/digitalannealer/
https://doi.org/10.1007/s11128-017-1809-2
https://doi.org/10.1007/s11128-017-1809-2

118 E. Cohen et al.

27. Vega-Pons, S., Ruiz-Shulcloper, J.: A survey of clustering ensemble algorithms.
IJPRAI 25(03), 337–372 (2011)

28. Wu, J., Liu, H., Xiong, H., Cao, J., Chen, J.: K-means-based consensus clustering:
a unified view. IEEE TKDE 27(1), 155–169 (2014)

29. Xing, E.P., Jordan, M.I., Russell, S.J., Ng, A.Y.: Distance metric learning with
application to clustering with side-information. In: NIPS, pp. 521–528 (2003)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Transfer Learning by Learning
Projections from Target to Source

Antoine Cornuéjols1(B) , Pierre-Alexandre Murena1,2, and Raphaël Olivier3

1 UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay,
75005 Paris, France

antoine.cornuejols@agroparistech.fr
2 Telecom ParisTech - Université Paris-Saclay, 75013 Paris, France

3 University Carnegie-Mellon, Pittsburgh, USA
http://www.agroparistech.fr/mia/equipes:membres:page:antoine

Abstract. Using transfer learning to help in solving a new classification
task where labeled data is scarce is becoming popular. Numerous exper-
iments with deep neural networks, where the representation learned on
a source task is transferred to learn a target neural network, have shown
the benefits of the approach. This paper, similarly, deals with hypothesis
transfer learning. However, it presents a new approach where, instead of
transferring a representation, the source hypothesis is kept and this is a
translation from the target domain to the source domain that is learned.
In a way, a change of representation is learned. We show how this method
performs very well on a classification of time series task where the space
of time series is changed between source and target.

Keywords: Transfer learning · Boosting

1 Introduction

While transfer learning has a long history, dating back at least to the study of
analogy reasoning, it has enjoyed a spectacular rise of interest in recent years,
thanks largely to its use and effectiveness in learning new tasks with deep neural
networks using an architecture learned on a source task. This approach is called
Hypothesis Transfer Learning [6]. The justification for this strategy is that, in the
absence of enough data in the target domain to learn anew a good hypothesis,
it might be effective to transfer the intermediate representations learned on the
source task. This is indeed the case, for instance, in face analysis when the
source task is to guess the age of the person, and the target task is to recognize
the gender. Technically, with neural networks, this amounts to keeping the first
layers of the source neural network in the target network and learning only the
last layers, the ones that combine intermediate representations of the examples
in order to make a prediction.

Let X , Y and Z be the input, output and feature spaces respectively. Let F
be a class of representation functions, where f ∈ F : X → Z. Let G be a class
c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 119–131, 2020.
https://doi.org/10.1007/978-3-030-44584-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_10&domain=pdf
http://orcid.org/0000-0002-2979-3521
https://doi.org/10.1007/978-3-030-44584-3_10

120 A. Cornuéjols et al.

of decision functions that use descriptions of the examples in the feature space:
g ∈ G : Z → Y. Then, in the context of deep neural networks, the hypothesis
class is H := {h : ∃f ∈ F, g ∈ G st. h = g ◦ f} and while f is kept (at least
approximately) from the source problem to the target one, only g remains to be
learned to solve the target problem.

In this paper, we adopt a dual perspective: we propose to keep the decision
function g fixed, and learn translation functions from the target input space to
the source input space, π : XT → XS , such that the target hypothesis space
becomes HT := {hT : ∃π ∈ Π, f ∈ F, g ∈ G st. hT = g◦f ◦π}, which, given that
hS = g ◦ f might be considered as the source hypothesis, may be re-expressed
as: HT := {hT : ∃π ∈ Π, f ∈ F, g ∈ G st. hT = hS ◦ π}.

Indeed, for some problems, it might be much more easy to learn a translation
(also called projections in this paper) from the target input space XT to the
source input space XS than to learn a new target decision function. Furthermore,
this allows one to tackle problems with different input spaces XS and XT .

In the following, Sect. 2 presents TransBoost a new algorithm for trans-
fer learning. The theoretical analysis of Sect. 3 provides a PAC-learning bound
on the generalization error on the target domain. Controlled experiments are
described in Sect. 4 together with an analysis of the results. The new approach
is put in perspective in Sect. 5 before we conclude in Sect. 6.

2 A New Algorithm for Transfer Learning

Suppose that we have a system that is able to recognize poppy fields in satellite
images. We might imagine that knowing how to translate a biopsy image into
a satellite image, we could, using the recognition function defined on satellite
image, decide if there is cancerous cells in the biopsy.

Ideally then, one could translate a target query: “what is the label of xT ∈
XT ” into a source query “what is the label of π(xT) ∈ XS” where hS is the
source hypothesis which, applied to π(xT) ∈ XS , provides the answer we are
looking for. Notice here that we suppose that YS = YT , but not XS = XT .

The goal is then to learn a good translation π : XT → XS . However, defining
a proper space of candidate projections Π might be problematic, not to mention
the risk of overfitting if the space of functions hS ◦ Π has too high a capacity.
It might be more easy and manageable to discover “weak projections” from XT
to XS using a boosting learning scheme.

Definition 1. A weak projection w.r.t. source decision function hS is a func-
tion π : XT → XS such that the decision function hS

(
π(xT)

)
has better than

random classification performance on the target training set ST .

In this setting, the training set ST = {(xT
i , yT

i)}1≤i≤m is used to learn weak
projections (Fig. 1).

Once the concept of weak projection is assumed, it is natural to use a boost-
ing algorithm in order to learn a set of such weak projections and to combine
them to get a final good classification on elements of T . This is what does the

Transfer Learning by Learning Projections from Target to Source 121

Fig. 1. The principle of prediction using TransBoost. A given target example xT
i is

projected in the source domain using a set of identified weak projections πj and the

prediction for xT
i is computed as: HT (xT

i) = sign

{∑N
j=1 αjhS

(
πj(x

T
i)

)}
.

TransBoost algorithm (see Algorithm 1). It does rely on the property of the
boosting algorithm to find and combine weak rules to get a strong(er) rule.

3 Theoretical Analysis

Here, we study the question: can we get guarantees about the performance of
the learned decision function HT in the target space using TransBoost?

We tackle this question in two steps. First, we suppose that we learn a single
projection function π ∈ Π : XT → XS so that hT = hS ◦ π, and we find bounds
on the generalization error on the target domain given the generalization error
on the source domain. Second, we turn to the TransBoost algorithm in order to
justify the use of a boosting approach.

3.1 Generalization Error Bounds When Using a Single Projection

For this analysis, we suppose the existence of a source input distribution PXS in
addition to the target input distribution PXT . We consider the binary classifica-
tion setting Y = {−1,+1}, and we note h̄S and h̄T respectively the source and
the target labelling functions. We note RS(h) (resp. RT (h)) the risk of a hypoth-
esis h on the source (resp. target) domain: RS(h) = ExS∼PXS

[hS(xS) �= h̄S(xS)]
(resp. RT (h) = ExT ∼PXT

[hT (xT) �= h̄T (xT)]). Let R̂S(h) and R̂T (h) be the
corresponding empirical risks, with mS training points for S and mT training
points for T . Let dH be the VC dimension of the hypothesis space H.

In the following, what is learned is a projection π ∈ Π : XT → XS in order to
get a target hypothesis of the form hT = ĥS ◦π, where ĥS = ArgMinh∈HS R̂S(h)
is the source hypothesis. Our aim is to upper-bound RT (ĥT), the risk of the
learned hypothesis on the target domain in terms of:

122 A. Cornuéjols et al.

Algorithm 1. Transfer learning by boosting

Input: hS : XS → YS the source hypothesis
ST = {(xT

i , yT
i }1≤i≤m: the target training set

Initialization of the distribution on the training set: D1(i) = 1/m for
i = 1, . . . , m ;

for n = 1, . . . , N do
Find a projection πi : XT → XS st. hS(πi(·)) performs better than random
on Dn(ST) ;
Let εn be the error rate of hS(πi(·)) on Dn(ST) :
εn

.
= Pi∼Dn [hS(πn(xi)) �= yi] (with εn < 0.5) ;

Computes αi = 1
2

log2

(
1−εi

εi

)
;

Update, for i = 1 . . . , m:

Dn+1(i) =
Dn(i)

Zn
×

{
e−αn if hS

(
πn(xT

i)
)

= yT
i

eαn if hS
(
πn(xT

i)
) �= yT

i

=
Dn(i) exp

(−αn y
(T)
i hS(πn(x

(T)
i))

)
Zn

where Zn is a normalization factor chosen so that Dn+1 be a distribution on
ST ;

end

Output: the final target hypothesis HT : XT → YT :

HT (xT) = sign

{ N∑
n=1

αn hS
(
πn(xT)

)}
(1)

– the empirical risk R̂S(ĥS) of the source hypothesis,
– the generalization error of a hypothesis ĥS in HS learned from mS examples,

which depends on dHS ,
– the generalization error of a hypothesis ĥT = hS ◦ π in HT learned from mT

examples, which depends on dHT = dhS◦π,
– a term that expresses the “proximity” between the source and the target

problems.

For the latter term, we adapt the theoretical study of McNamara and Balcan
[9] on the transfer of representation in deep neural networks. We suppose that
PS , PT , hS , hT = ĥS ◦ π (π ∈ Π), ĥS and Π have the property:

∀ ĥS ∈ HS : Min
π∈Π

RT (ĥS ◦ π) ≤ ω
(
RS(hS)

)
(2)

where ω : IR → IR is a non-decreasing function.
Equation (2) means that the best target hypothesis expressed using the

learned source hypothesis has a true risk bounded by a non-decreasing func-
tion of the true risk on the source domain of the learned source hypothesis.

We are now in position to get the desired theorem.

Transfer Learning by Learning Projections from Target to Source 123

Theorem 1. Let ω : IR → IR be a non-decreasing function. Suppose that PS ,
PT , hS , hT = ĥS ◦ π(π ∈ Π), ĥS and Π have the property given by Eq. (2). Let
π̂ := ArgMinπ∈Π R̂T (ĥS ◦ π), be the best apparent projection.

Then, with probability at least 1 − δ (δ ∈ (0, 1)) over pairs of training sets
for tasks S and T :

RT (ĥT) ≤ ω
(
R̂S(ĥS)

)
+ 2

√
2 dHS log(2emS/dHS) + 2 log(8/δ)

mS

+ 4

√
2 dhS◦Π

log(2emT /dhS◦Π
) + 2 log(8/δ)

mT

(3)

Proof. Let π∗ = ArgMinπ∈Π RT (hS ◦ π). With probability at least 1 − δ:

RT (hS ◦ π̂) ≤ R̂T (hS ◦ π̂) + 2

√
2 dhS◦Π

log(2emT /dhS◦Π
) + 2 log(8/δ)

mT

≤ R̂T (hS ◦ π∗) + 2

√
2 dhS◦Π

log(2emT /dhS◦Π
) + 2 log(8/δ)

mT

≤ RT (hS ◦ π∗) + 4

√
2 dhS◦Π

log(2emT /dhS◦Π
) + 2 log(8/δ)

mT

≤ ω
(
RS(ĥS)

)
+ 4

√
2 dhS◦Π

log(2emT /dhS◦Π
) + 2 log(8/δ)

mT

≤ ω
(
R̂S(ĥS)

)
+ 2

√
2 dHS log(2emS/dHS) + 2 log(8/δ)

mS

+ 4

√
2 dhS◦Π

log(2emT /dhS◦Π
) + 2 log(8/δ)

mT

This follows from the fact that [10] (p. 48) using m training points and
a hypothesis class of VC dimension d, with probability at least 1 − δ, for all
hypotheses h simultaneously, the true risk R(h) and empirical risk R̂(h) satisfy

|(R(h)− R̂(h)| ≤ 2
√

2 d log(2em/d)+2 log(4/δ)
m . For hS ◦Π, this yields the first and

third inequalities with probabilities at least 1− δ/2. For HS , this yields the fifth
inequality with probability at least 1 − δ/2. Applying the union bound archives
the desired results. The second inequality follows from the definition of π̂, and
the fourth inequality is where we inject our assumption about the transferability
(or proximity) between the source and the target problem. �

We can thus control the generalization error on the transfer domain by con-
trolling dhS◦Π

, mS and ω which measures the link between the domain and the
target domain. The number of target training data mT is typically supposed to
be small in transfer learning and thus cannot be employed to control the error.

124 A. Cornuéjols et al.

3.2 Boosting Projections from Target to Source

The above analysis bounds the generalization error of the learned target hypoth-
esis hS ◦ π̂ in terms, among others, of the VC dimension of the space hS ◦ Π.
The problem of controlling the capacity of such a space of functions in order to
prevent under or over-fitting is the same as in the traditional supervised learning
setting. The difficulty lies in choosing the right space Π of projection functions
from XT to XS .

The space of hypothesis functions considered is:

L
(
hS ◦ΠB

)
:=

{
x 	→ sign

[N∑

n=1

αn

(
hS ◦πn(xT)

)
]

: ∀n, αn ∈ IR, and πn ∈ ΠB

}

where ΠB is a space of weak projections satisfying definition (1).
Now, from [11] (p. 109), the VC dimension of the space hS ◦ ΠB satisfies:

dL(hS◦ΠB) ≤ N(dhS◦ΠB
+ 1) (3 log(N(dhS◦ΠB

+ 1)) + 2)

If dhS◦ΠB

 dhS◦Π , then dL(hS◦ΠB) can also be much less than dhS◦Π , and

theorem (1) provides tighter bounds.
Using the TransBoost method, we can thus gain both on the theoretical

bounds on the generalization error and on the ease of finding an appropriate
space of projections XT → XS .

4 Design of the Experiments

4.1 The Main Dimensions of Experiments in Transfer Learning

There are two dimensions that can be expected to govern the efficiency of transfer
learning:

1. The level of signal in the target data.
2. The relatedness between the source and the target domains.

Regarding the first dimension, one can expect that if there is no signal in the
target data (i.e. the examples are labelled randomly), then no regularity can be
extracted, directly or using transfer. In fact, only overfitting of the training data
can potentially occur. If, on the contrary, the target learning task is easy, then
there cannot be much advantage in using transfer learning. A question therefore
arises as to whether there might be an optimal level of signal in the target data
so as to maximally benefit from transfer learning.

The second dimension is tricky. Here, we intuitively expect that the closer the
source and target domains (and problems), the more profitable transfer learning
should be. However, how should we measure the “relatedness” of the source and
target problems? In the domain adaptation setting, closeness can be measured
through a measure of the divergence between the source distribution and the
target one, since they are defined on the same input space. In transfer learning,

Transfer Learning by Learning Projections from Target to Source 125

the input spaces can be different, so that it is much more difficult to define a
divergence between distributions. This is why we resorted to the function ω in
our theoretical analysis. In our experiments, we control relatedness through the
information shared between source and target (see below).

4.2 Experimental Setup

In our study, we devised an experimental setup that would allow us to control
the two dimensions above.

In the target domain, the learning task is to classify time series of length
tT into two classes: hT : IRtT → {−1,+1}. By controlling the level of noise and
the difference between the distributions governing the two classes, we can control
the signal level, that is the difficulty of extracting information from the target
training data. We control the amount of information by varying the size mT of
the target training set.

Likewise, the source input space is the space of sequences of real measure-
ments of length tS . Therefore, we have hS : IRtS → {−1,+1}.

Varying |tS − tT | is a way of controlling the information potentially shared
in the two domains. With tS = tT , the two input domains are the same.

Note that learning to classify times series is not a trivial task. It has many
applications, some of them involving to classify time series of length different
from the length for which exists a classifier.

4.3 Description of the Experiments

Time series were generated according to the following equation:

xt = t × slope × class
︸ ︷︷ ︸
information gain

+ xmax sin(ωi × t + ϕj)︸ ︷︷ ︸
sub shape within class

+ η(t)
︸︷︷︸

noise factor

(4)

The fact that the noise factor is generated according to a Gaussian distribution
induces a distribution over the data (class ∈ {−1,+1}).

The level of signal in the training data is governed by:

1. the slope factor : the higher the value of the slope factor, the easier the dis-
crimination between the two classes at each additional time step

2. the number of different shapes in each class of sequences, each shape controlled
by ωi and φj , and the importance of this factor in the equation being weighted
by xmax

3. the noise factor η(t)
4. the length of the time series, that is the number of measurements
5. the size of the training set

In our experiments, the noise factor is generated according to a Gaussian distri-
bution of mean = 0 and standard deviation in {0.001, 0.002, 0.02, 0.2, 1}.

Figure 2 illustrates what can be obtained with slope = 0.01 with 3 subclasses
in the +1 class, and 2 subclasses in the −1 class.

126 A. Cornuéjols et al.

Fig. 2. A synthetic data set S with 5 times series where η is Gaussian (μ = 0, σ = 0.2).

In the experiments reported here, we kept the size of the training set constant.
In each experiment, 900 times series of length 200 were generated according to
the equation described above: 450 times series in each class −1 or +1. We varied
the difficulty of learning by varying the slope from almost non existent: 0.001 to
significant: 0.01. Similarly, we varied the length tT of the target training set in
{20, 50, 70, 100} thus providing increasing levels of signal.

A target training data set of 300 time series was drawn equally balanced
between the two classes. Note that this relatively small number corresponds
to transfer learning scenarios where the training data is limited in the target
domain. The remaining 600 time series were used as a test set. The source
hypothesis was learned using the complete time series generated as explained
above.

In these experiments, the set of projections Π was chosen as a set of “hinge
functions”, defined by three parameters, the slope of the first linear part, the
time t where the hinge takes place, and the slope of the second linear part. The
set is explored randomly by the algorithm and a projection is retained if its
error rate on the current weighted data is lower than 0.45. We explored other,
richer, spaces of projections without gaining superior performances. This simple
set seems to be sufficient for this learning task.

In order to better assess the value of TransBoost, its performance was com-
pared (1) to a classifier (Gaussian SVM as implemented in Scikit Learn) acting
directly on the target training data, (2) to a boosting algorithm operating in
the target domain with base classifiers being Gaussian SVMs, and (3) to a base-
line transfer learning method that consists in finding a regression from the target
input space to the source input space using a SVR regression. In this last method
the regression acts as a translation from XT to XS and the class of an example
xT is given by hS

(
regression(xT)

)
.

Table 1 provides representative examples of the results obtained. Each cell of
the table shows the average performance (and the standard deviations) computed
from 100 experiments repeated under the same conditions. The experimental
conditions are organized according to the level of signal in the training data. In
the experiments corresponding to this table, the source hypotheses were learned
according to the first protocol defined above.

Several lessons can be drawn. First of all, in most situations, TransBoost
brings very significant gains over learning without transfer or using transfer
learning with regression. Figures 3 and 4 that sum up a larger set of experimental

Transfer Learning by Learning Projections from Target to Source 127

Table 1. Comparison of the error rate (lower is better) between: learning directly in
the target domain (columns hT (train) and hT (test)), using TransBoost (columns HT
(train) and HT (test)), learning in the source domain (column hS (test)) and, finally,
mapping the time series with a SVR regression and using hS (näıve transfer, column
H ′

T (test)). Test errors are highlighted in the orange columns. Bold numbers indicate
where TransBoost significantly dominates both learning without transfer and learning
with näıve transfer.

slope, noise, tT hT (train) hT (test) HT (train) HT (test) hS (test) H′
T (test)

0.001, 0.001, 20 0.46 ± 0.02 0.50 ± 0.08 0.08 ± 0.03 0.08 ± 0.02 0.05 0.49 ± 0.01

0.005, 0.001, 20 0.46 ± 0.02 0.49 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 0.45 ± 0.01

0.005, 0.002, 20 0.46 ± 0.02 0.49 ± 0.03 0.03 ± 0.02 0.04 ± 0.02 0.02 0.43 ± 0.01

0.005, 0.02, 20 0.44 ± 0.02 0.48 ± 0.03 0.09 ± 0.01 0.10 ± 0.01 0.01 0.47 ± 0.01

0.001, 0.2, 20 0.46 ± 0.02 0.50 ± 0.01 0.46 ± 0.02 0.51 ± 0.02 0.11 0.49 ± 0.01

0.01, 0.2, 20 0.42 ± 0.03 0.47 ± 0.03 0.34 ± 0.02 0.35 ± 0.02 0.02 0.35 ± 0.01

0.001, 0.001, 50 0.46 ± 0.02 0.50 ± 0.01 0.08 ± 0.03 0.08 ± 0.02 0.06 0.41 ± 0.01

0.005, 0.001, 50 0.25 ± 0.07 0.28 ± 0.09 0.01 ± 0.01 0.01 ± 0.01 0.01 0.28 ± 0.01

0.005, 0.002, 50 0.27 ± 0.07 0.30 ± 0.08 0.02 ± 0.01 0.02 ± 0.01 0.02 0.28 ± 0.01

0.005, 0.02, 50 0.26 ± 0.07 0.30 ± 0.08 0.04 ± 0.01 0.04 ± 0.01 0.01 0.31 ± 0.01

0.001, 0.2, 50 0.44 ± 0.02 0.50 ± 0.01 0.38 ± 0.03 0.44 ± 0.02 0.15 0.43 ± 0.01

0.01, 0.2, 50 0.10 ± 0.03 0.12 ± 0.04 0.10 ± 0.02 0.11 ± 0.02 0.03 0.15 ± 0.02

0.001, 0.001, 100 0.43 ± 0.03 0.47 ± 0.03 0.07 ± 0.02 0.07 ± 0.02 0.02 0.23 ± 0.01

0.005, 0.001, 100 0.06 ± 0.03 0.07 ± 0.03 0.01 ± 0.01 0.01 ± 0.01 0.01 0.07 ± 0.02

0.005, 0.002, 100 0.08 ± 0.03 0.10 ± 0.04 0.02 ± 0.01 0.02 ± 0.01 0.02 0.07 ± 0.01

0.005, 0.02, 100 0.08 ± 0.03 0.09 ± 0.03 0.02 ± 0.01 0.03 ± 0.01 0.01 0.07 ± 0.01

0.001, 0.2, 100 0.04 ± 0.03 0.46 ± 0.02 0.28 ± 0.02 0.31 ± 0.01 0.16 0.31 ± 0.01

0.01, 0.2, 100 0.03 ± 0.01 0.05 ± 0.02 0.04 ± 0.01 0.05 ± 0.01 0.02 0.05 ± 0.01

conditions make this even more striking. In both tables, the x-axis reports the
error rate obtained using TransBoost, while the y-axis reports the error rate of
the competing algorithm: either the hypothesis hT learnt on the target training
data alone (Fig. 3), or the hypothesis H ′

T learned on the target data projected on
the source input space using a SVR regression (Fig. 4). The remarkable efficiency
of TransBoost in a large spectrum of situations is readily apparent.

Secondly, as expected, Transboost is less dominant when either the data is so
noisy that no method can learn from the data (high level of noise or low slope):
this is apparent on the right part of the graphs 3 and 4 (near the diagonal),
or when the task is so easy (large slope and/or low noise) that nothing can be
gained from transfer learning (left part of the two graphs).

We did not report here the results obtained with boosting directly in the
target input space XT since the learning performance was almost the same as
the performance as the one of the SVM classifier. This shows that this is not
boosting in itself that brings a gain.

128 A. Cornuéjols et al.

Fig. 3. Comparison of error rates. y-
axis: test error of the SVM classifier
(without transfer). x-axis: test error of
the TransBoost classifier with 10 boost-
ing steps. The results of 75 experi-
ments (each one repeated 100 times)
are summed up in this graph.

Fig. 4. Comparison of error rates. y-
axis: test error of the “näıve” transfer
method. x-axis: test error of the Trans-
Boost classifier with 10 boosting steps.
The results of 75 experiments (each one
repeated 100 times) are summed up in
this graph.

4.4 Additional Experiments

We show here, in Figs. 5, 6 and 7 qualitative results obtained on the classical
half-moon problem. It is apparent that Transboost brings satisfying results.

Fig. 5. Experiments on the half-moon problem.

5 Comparison to Previous Works

In the theoretical analysis of Ben-David et al. [1,2], one central idea is that
a common representation space should be found in which the projections of
the source data {(xS

i)}1≤i≤m and of the target data {(xT
i)}1≤i≤m should be as

undistinguishable as possible using discriminative functions from the hypothesis
space H. The intuition is that if the domains become indistinguishable, a classi-
fier constructed for the source domain should work also for the target domain.
It has been at the core of many proposed methods so far [3,5,7,12].

In [8] a scenario in which multiple sources are available for a single target
domain is studied. For each source i ∈ {1, . . . , k}, the input distribution Di is

Transfer Learning by Learning Projections from Target to Source 129

Fig. 6. A KNN model trained on the
few target data points (in yellow).
(Color figure online)

Fig. 7. A KNN model transboosted on
the few target data points.

known as well as a hypothesis hi with loss bounded by ε on Di. It is further
assumed that the target input distribution is a mixture of the k source distribu-
tions Di. The adaptation problem is thus seen as finding a combination of the
hypotheses hi. It is shown that guarantees on the loss of the combined target
hypothesis can be given for some forms of combinations. However, the authors do
not show how to learn the parameters of these combinations. In [4], the authors
present a system called TrAdaboost, which uses a boosting scheme to eliminate
data points that seem irrelevant for the new task defined over the same space
X . Despite the use of boosting, the scope is quite different from ours.

Finally, the authors in [6] study a scheme seemingly very close to ours. They
define Hypothesis Transfer Learning algorithms as algorithms taking as input a
training set in the target domain and a source hypothesis in the source domain,
and producing a target hypothesis:

Ahtl : (XT × YT)m × HS → HT ⊆ YX

One goal of the paper is to identify the effect of the source hypothesis on the
generalization properties of Ahtl. However, the scope of the analysis is limited in
several ways. First, it focusses on linear regression with the Regularized Least
Square algorithm. Second, the formal framework necessitates that in fact XT =
XS and YT = YS . It is thus more an analysis of domain adaptation than of
transfer learning. Third, the transfer learning algorithm in effect tries to find a
weight vector wT as close as possible to the source weight vector wS while fitting
the target data set. There is therefore a parameter λ to set. More importantly,
the consequence is that the analysis singles out the performance of the source
hypothesis on the target domain as the most significant factor controlling the
expected error on the target problem. Again, therefore, the target hypothesis
cannot be much different from the source one, which seems to defeat the whole
purpose of transfer learning.

6 Conclusion

This paper has presented a new transfer learning algorithm, TransBoost, that
uses the boosting mechanism in an original way by selecting and combining weak

130 A. Cornuéjols et al.

projections from the target domain to the source domain. The algorithm inherits
some nice features from boosting. There is only one parameter to set: the number
of boosting steps, and guarantees on the training error an on the test error are
easily derived from the ones obtained in the theory of boosting.

References

1. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.:
A theory of learning from different domains. Mach. Learn. 79(1), 151–175 (2010).
https://doi.org/10.1007/s10994-009-5152-4

2. Ben-David, S., Blitzer, J., Crammer, K., Pereira, F., et al.: Analysis of repre-
sentations for domain adaptation. In: Advances in Neural Information Processing
Systems, vol. 19, p. 137 (2007)

3. Bickel, S., Brückner, M., Scheffer, T.: Discriminative learning for differing training
and test distributions. In: Proceedings of the 24th International Conference on
Machine Learning, pp. 81–88. ACM (2007)

4. Dai, W., Yang, Q., Xue, G.R., Yu, Y.: Boosting for transfer learning. In: Proceed-
ings of the 24th International Conference on Machine Learning, pp. 193–200. ACM
(2007)

5. Jiang, J., Zhai, C.: Instance weighting for domain adaptation in NLP. In: ACL,
vol. 7, pp. 264–271 (2007)

6. Kuzborskij, I., Orabona, F.: Stability and hypothesis transfer learning. In: ICML
(3), pp. 942–950 (2013)

7. Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain adaptation: learning bounds
and algorithms. arXiv preprint arXiv:0902.3430 (2009)

8. Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain adaptation with multiple
sources. In: Advances in Neural Information Processing Systems, pp. 1041–1048
(2009)

9. McNamara, D., Balcan, M.F.: Risk bounds for transferring representations with
and without fine-tuning. In: International Conference on Machine Learning, pp.
2373–2381 (2017)

10. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning.
MIT Press, Cambridge (2012)

11. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory
to Algorithms. Cambridge University Press, Cambridge (2014)

12. Sugiyama, M., Nakajima, S., Kashima, H., Buenau, P.V., Kawanabe, M.: Direct
importance estimation with model selection and its application to covariate shift
adaptation. In: Advances in Neural Information Processing Systems, pp. 1433–1440
(2008)

https://doi.org/10.1007/s10994-009-5152-4
http://arxiv.org/abs/0902.3430

Transfer Learning by Learning Projections from Target to Source 131

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Computing Vertex-Vertex Dissimilarities
Using Random Trees: Application

to Clustering in Graphs

Kevin Dalleau(B), Miguel Couceiro, and Malika Smail-Tabbone

Universite de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France
{kevin.dalleau,miguel.couceiro,malika.smail}@loria.fr

Abstract. A current challenge in graph clustering is to tackle the issue
of complex networks, i.e, graphs with attributed vertices and/or edges. In
this paper, we present GraphTrees, a novel method that relies on random
decision trees to compute pairwise dissimilarities between vertices in a
graph. We show that using different types of trees, it is possible to extend
this framework to graphs where the vertices have attributes. While many
existing methods that tackle the problem of clustering vertices in an
attributed graph are limited to categorical attributes, GraphTrees can
handle heterogeneous types of vertex attributes. Moreover, unlike other
approaches, the attributes do not need to be preprocessed. We also show
that our approach is competitive with well-known methods in the case
of non-attributed graphs in terms of quality of clustering, and provides
promising results in the case of vertex-attributed graphs. By extending
the use of an already well established approach – the random trees – to
graphs, our proposed approach opens new research directions, by lever-
aging decades of research on this topic.

Keywords: Graph clustering · Attributed graph · Random tree ·
Dissimilarity · Heterogeneous data

1 Introduction

Identifying community structure in graphs is a challenging task in many appli-
cations: computer networks, social networks, etc. Graphs have an expressive
power that enables an efficient representation of relations between objects as
well as their properties. Attributed graphs where vertices or edges are endowed
with a set of attributes are now widely available, many of them being created
and curated by the semantic web community. While these so-called knowledge
graphs1 contain a lot of information, their exploration can be challenging in
practice. In particular, common approaches to find communities in such graphs
rely on rather complex transformations of the input graph.
1 Although many definitions can be found in the literature [9].

Funded by the RHU FIGHT-HF (ANR-15-RHUS-0004) and the Region Grand Est
(France).

c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 132–144, 2020.
https://doi.org/10.1007/978-3-030-44584-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_11&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_11

Computing Vertex-Vertex Dissimilarities Using Random Trees 133

In this paper, we propose a decision tree based method that we call Graph-
Trees (GT) to compute dissimilarities between vertices in a straightforward man-
ner. The paper is organized as follows. In Sect. 2, we briefly survey related work.
We present our method in Sect. 3, and we discuss its performance in Sect. 4
through an empirical study on real and synthetic datasets. In the last section of
the paper, we present a brief discussion of our results and state some perspectives
for future research.

Main Contributions of the Paper:

1. We propose a first step to bridge the gap between random decision trees and
graph clustering and extend it to vertex attributed graphs (Subsect. 4.1).

2. We show that the vertex-vertex dissimilarity is meaningful and can be used
for clustering in graphs (Subsect. 4.2).

3. Our method GT applies directly on the input graph without any preprocess-
ing, unlike the many community detection in vertex-attributed graphs that
rely on the transformation of the input graph.

2 Related Work

Community detection aims to find highly connected groups of vertices in a graph.
Numerous methods have been proposed to tackle this problem [1,8,24]. In the
case of vertex-attributed2 graph, clustering aims at finding homogeneous groups
of vertices sharing (i) common neighbourhoods and structural properties, and (ii)
common attributes. A vertex-attributed graph is thought of as a finite structure
G = (V,E,A), where

– V = {v1, v2, . . . , vn} is the set of vertices of G,
– E ⊆ V × V is the set of edges between the vertices of V , and
– A = {x1, x2, . . . , xn} is the set of feature tuples, where each xi represents the

attribute value of the vertex vi.

In the case of vertex-attributed graphs, the problem of clustering refers to
finding communities (i.e., clusters), where vertices in the same cluster are densely
connected, whereas vertices that do not belong to the same cluster are sparsely
connected. Moreover, as attributes are also taken into account, the vertices in
the same cluster should be similar w.r.t. attributes.

In this section, we briefly recall existing approaches to tackle this problem.

Weight-Based Approaches. The weight-based approach consists in trans-
forming the attributed graphs in weighted graphs. Standard clustering algo-
rithms that focus on structural properties can then be applied.

The problem of mapping attribute information into edge weight have been
considered by several authors. Neville et al. define a matching coefficient [20] as
2 To avoid terminology-related issues, we will exclusively use the terms vertex for

graphs and node for random trees throughout the paper.

134 K. Dalleau et al.

a similarity measure S between two vertices vi and vj based on the number of
attribute values the two vertices have in common. The value Svi,vj

is used as the
edges weight between vi and vj . Although this approach leads to good results
using Min-Cut [15], MajorClust [26] and spectral clustering [25], only nominal
attributes can be handled. An extended matching coefficient was proposed in [27]
to overcome this limitation, based on a combination of normalized dissimilarities
between continuous attributes and increments of the resulting weight per pair
of common categorical attributes.

Optimization of Quality Functions. A second type of methods aim at finding
an optimal clustering of the vertices by optimizing a quality function over the
partitions (clusters).

A commonly used quality function is modularity [21], that measures the den-
sity differences between vertices within the same cluster and vertices in different
clusters. However, modularity is only based on the structural properties of the
graph. In [6], the authors use entropy as the quality metric to optimize between
attributes, combined with a modularity-based optimization. Another method,
recently proposed by Combe et al. [5], groups similar vertices by maximizing
both modularity and inertia.

However, these methods suffer from the same drawbacks as any other mod-
ularity optimization based methods in simple graphs. Indeed, it was shown by
[17] that these methods are biased, and do not always lead to the best clustering.
For instance, such methods fail to detect small clusters in graphs with clusters
of different sizes.

Aggregated Distance Measures. Another type of methods used to find
communities in vertex-attributed graphs is to define an aggregated vertex-
vertex distance between the topological distance and the symbolic distance.
All these methods express a distance dvi,vj

between two vertices vi and vj as
dvi,vj

= αdT (vi, vj) + (1 − α)dS(vi, vj) where dT is a structural distance and
dS is a distance in the attribute space. These structural and attribute distances
represent the two different aspects of the data. These distances can be chosen
from the vast number of available ones in the literature. For instance, in [4] a
combination of geodesic distance and cosine similarities are used by the authors.
The parameter α is useful to control the importance of each aspect of the over-
all similarity in each use case. These methods are appealing because once the
distances between vertices are obtained, many clustering algorithms that cannot
be applied to structures such as graphs can be used to find communities.

Miscellaneous. There is yet another family of methods that enable the use of
common clustering methods on attributed graphs. SA-cluster [3,32] is a method
performing the clustering task by adding new vertices. The virtual vertices rep-
resent possible values of the attributes. This approach, although appealing by its
simplicity, has some drawbacks. First, continuous attributes cannot be taken into

Computing Vertex-Vertex Dissimilarities Using Random Trees 135

account. Second, the complexity can increase rapidly as the number of added
vertices depends on the number of attributes and values for each attribute. How-
ever, the authors proposed an improvement of their method named Inc-Cluster
in [33], where they reduce its complexity.

Some authors have worked on model-based approaches for clustering in
vertex-attributed settings. In [29], the authors proposed a method based on
a bayesian probabilistic model that is used to perform the clustering of vertex-
attributed graphs, by transforming the clustering problem into a probabilistic
inference problem. Also, graph embeddings can be used for this task of vertex-
attributed graph clustering. Examples of these techniques include node2vec [13]
or deepwalk [23], and aim to efficiently learn a low dimensional vector represen-
tation of each vertex. Some authors focused on extending vertex embeddings to
vertex-attributed networks [11,14,30].

In this paper, we take a different approach and present a tree-based method
enabling the computation of vertex-vertex dissimilarities. This method is pre-
sented in the next section.

3 Method

Previous works [7,28] have shown that random partitions of data can be used
to compute a similarity between the instances. In particular, in Unsupervised
Extremely Randomized Trees (UET), the idea is that all instances ending up
in the same leaves are more similar to each other than to other instances. The
pairwise similarities s(i, j) are obtained by increasing s(i, j) for each leaf where
both i and j appear. A normalisation is finally performed when all trees have
been constructed, so that values lie in the interval [0, 1]. Leaves, and, more
generally, nodes of the trees can be viewed as partitions of the original space.
Enumerating the number of co-occurrences in the leaves is then the same as
enumerating the number of co-occurrence of instances in the smallest regions of
a specific partition.

So far, this type of approach has not been applied to graphs. The intuition
behind our proposed method, GT, is to leverage a similar partition in the ver-
tices of a graph. Instead of using the similarity computation that we described
previously, we chose to use the mass-based approach introduced by Ting et al.
[28] instead. The key property of their measure is that the dissimilarity between
two instances in a dense region is higher than the same interpoint dissimilarity
between two instances in a sparse region of the same space. One of the inter-
esting aspects of this approach is that a dissimilarity is obtained without any
post-processing.

Let H ∈ H(D) be a hierarchical partitioning of the original space of a dataset
D into non-overlapping and non-empty regions, and let R(x, y|H) be the smallest
local region covering x and y with respect to H. The mass-based dissimilarity
me estimated by a finite number t of models – here, random trees – is given by
the following equation:

136 K. Dalleau et al.

me(x, y|D) =
1
t

t∑

i=1

P̃ (R(x, y|Hi)) (1)

where P̃ (R) = 1
|D|

∑
z∈D 1(z ∈ R). Figure 1 presents an example of a hierarchical

partition H of a dataset D containing 8 instances. These instances are vertices
in our case. For the sake of the example, let us compute me(1, 4) and me(1, 8).
We have me(1, 4) = 1

8 (2) = 0.25, as the smallest region where instances 1 and 4
co-appear contains 2 instances. However, me(1, 8) = 1

8 (8) = 1, since instances 1
and 8 only appear in one region of size 8, the original space. The same approach
can be applied to graphs.

, 3, 4, 5, 6,

1, 41, 4

, 3, 4, 5, 6,1, 2 7, 8

1, 3, 4, 5

3, 5

2, 6, 7, 8

2 6, 7, 8

Fig. 1. Example of partitioning of 8 instances in non-overlapping non-empty regions
using a random tree structure. The blue and red circles denote the smallest nodes (i.e.,
regions) containing vertices 1 and 4 and vertices 1 and 8, respectively. (Color figure
online)

Our proposed method is based on two steps: (i) obtain several partitions of
the vertices using random trees, (ii) use the trees to obtain a relevant dissimilarity
measure between the vertices. The Algorithm 1 describes how to build one tree,
describing one possible partition of the vertices. Each tree corresponds to a model
of (1). Finally, the dissimilarity can be obtained using Eq. 1.

The computation of pairwise vertex-vertex dissimilarities using Graph Trees
and the mass-based dissimilarity we just described has a time complexity of
O(t · Ψlog(Ψ) + n2tlog(Ψ)) [28], where t is the number of trees, Ψ the maximum
height of the trees, and n is the number of vertices. When Ψ << n, this time
complexity becomes O(n2).

To extend this approach to vertex-attributed graphs, we propose to build a
forest containing trees obtained by GT over the vertices and trees obtained by
UET on the vertex attributes. We can then compute the dissimilarity between
vertices by averaging the dissimilarities obtained by both types of trees.

In the next section, we evaluate GT on both real-world and synthetic
datasets.

4 Evaluation

This section is divided into 2 subsections. First, we assess GT’s perfor-
mance on graphs without vertex attributes (Subsect. 4.1). Then we present

Computing Vertex-Vertex Dissimilarities Using Random Trees 137

Algorithm 1. Algorithm describing how to build a random tree partition-
ing the vertices of a graph.
Data: A graph G(V, E), an uninitialized stack S
root node = V ; // The root node contains all the vertices of G
vs = a vertex sampled without replacement from V ;
Vleft = N (vs) ∪ {vs} ; //N (v) returns the set of neighbours of v
Vright = V \ Vleft ;
Push Vleft and Vright to S ;
leaves = []; //leaves is an empty list
while S is not empty do

Vnode = pop the last element of S;
if |Vnode| < nmin then

Append Vnode to leaves; //node size in lower than nmin, it is a leaf
node

end
else

vs = a vertex sampled without replacement from Vnode;
Vleft = (Vnode ∩ N (vs)) ∪ {vs};
Vright = Vnode \ Vleft ;
Push Vleft to S;
Push Vright to S;

end

end
return leaves;

the performance of our proposed method in the case of vertex-attributed graphs
(Subsect. 4.2). An implementation of GT, as well as these benchmarks are avail-
able on https://github.com/jdalleau/gt.

4.1 Graph Trees on Simple Graphs

We first evaluate our approach on simple graphs with no attributes, in order to
assess if our proposed method is able to discriminate clusters in such graphs.
This evaluation is performed on both synthetic and real-world graphs, presented
Table 1.

Table 1. Datasets used for the evaluation of clustering on simple graphs using
graph-trees

Dataset # vertices # edges Average degree # clusters

Football 115 1226 10.66 10

Email-Eu-Core 1005 25571 33.24 42

Polbooks 105 441 8.40 3

SBM 450 65994 293.307 3

https://github.com/jdalleau/gt

138 K. Dalleau et al.

The graphs we call SBM are synthetic graphs generated using stochastic
block models composed of k blocks of a user-defined size, that are connected by
edges depending on a specific probability which is a parameter. The Football
graph represents a network of American football games during a given season
[12]. The Email-Eu-Core graph [18,31] represents relations between members
of a research institution, where edges represents communication between those
members. We also use a random graph in our first experiment. This graph is
an Erdos-Renyi graph [10] generated with the parameters n = 300 and p = 0.2.
Finally, the PolBooks data [16] is a graph where nodes represent books about
US politics sold by an online merchant and edges books that were frequently
purchased by the same buyers.

Our first empirical setting aims to compare the differences between the mean
intracluster and the mean intercluster dissimilarities. These metrics enable a
comparison that is agnostic to a subsequent clustering method.

The mean difference is computed as follows. First, the arithmetic mean of
the pairwise similarities between all vertices with the same label is computed,
corresponding to the mean intracluster dissimilarity μintra. The same process
is performed for vertices with a different label, giving the mean intercluster
similarity μinter. We finally compute the difference Δ = |μintra − μinter|. In
our experiments, this difference Δ is computed 20 times. Δ̄ denotes the mean of
differences between runs, and σ its standard deviation. The results are presented
Table 2. We observe that in the case of the random graph, Δ̄ is close to 0, unlike
the graphs where a cluster structure exists. A projection of the vertices based
on their pairwise dissimilarity obtained using GT is presented Fig. 2.

Table 2. Mean difference between intercluster and intracluster similarities in different
settings.

Dataset Δ̄ σ

Random graph 0.0003 0.0002

SBM 0.29 0.005

Football 0.25 0.002

We then compare the Normalized Mutual Information (NMI) obtained using
GT with the NMI obtained using two well-known clustering methods on simple
graphs, namely MCL [8] and Louvain [1]. NMI is a clustering quality metric
when a ground truth is available. Its values lie in the range [0, 1], with a value
of 1 being a perfect matching between the computed clusters and the reference
one. The empirical protocol is the following:

1. Compute the dissimilarity matrices using GT, with a total number of trees
ntrees = 200.

2. Obtain a 2D projection of the points using t-SNE [19] (k = 2).
3. Apply k-means on the points of the projection and compute the NMI.

Computing Vertex-Vertex Dissimilarities Using Random Trees 139

Fig. 2. Projection of the vertices obtained using GT on (left) a random graph, (mid-
dle) an SBM generated graph (middle) and (right) the football graph. Each cluster
membership is denoted by a different color. Note how in the case of the random graph,
no clear cluster can be observed. (Color figure online)

We repeated this procedure 20 times and computed means and standard devia-
tions of the NMI.

The results are presented Table 3. We compared the mean NMI using the
t-test, and checked that the differences between the obtained values are statisti-
cally significant.

We observe that our approach is competitive with the two well-known meth-
ods we chose in the case of non-attributed graphs on the benchmark datasets.
In one specific case, we even observe that Graph trees significantly outperforms
state of the art results, on the graphs generated by the SBM model. Since the
dissimilarity computation is based on the method proposed by [28] to find clus-
ters in regions of varying densities, this may indicate that our approach performs
particularly well in the case of clusters of different size.

Table 3. Comparison of NMI on benchmark graph datasets. Best results are in bold-
face.

Dataset Graph-trees Louvain MCL

Football 0.923 (0.007) 0.924 (0.000) 0.879 (0.015)

Email-Eu-Core 0.649 (0.008) 0.428 (0.000) 0.589 (0.012)

Polbooks 0.524 (0.012) 0.521 (0.000) 0.544 (0.02)

SBM 0.998 (0.005) 0.684 (0.000) 0.846 (0.000)

4.2 Graph Trees on Attributed Graphs

Now that we have tested GT on simple graphs, we can assess its performance
on vertex-attributed graphs. The datasets that we used in this subsection are
presented Table 4.

WebKB represents relations between web pages of four universities, where
each vertex label corresponds to the university and the attributes represent the

140 K. Dalleau et al.

words that appear in the page. The Parliament dataset is a graph where the
vertices represent french parliament members, linked by an edge if they cosigned
a bill. The vertex attributes indicate their constituency, and each vertex has a
label that corresponds to their political party.

Table 4. Datasets used for the evaluation of clustering on attributed graphs using GT

Dataset # vertices # edges # attributes # clusters

WebKB 877 1480 1703 4

Parliament 451 11646 108 7

HVR 307 6526 6 2

The empirical setup is the following. We first compute the vertex-vertex dis-
similarities using GT, and the vertex-vertex dissimilarities using UET. In this
first step, a forest of trees on the structures and a forest of trees on the attributes
of each vertex are constructed. We then compute the average of the pairwise dis-
similarities. Finally, we then apply t-SNE and use the k-means algorithm on the
points in the embedded space. We set k to the number of clusters, since we have
the ground truths. We repeat these steps 20 times and report the means and
standard deviations. During our experiments, we found out that preprocessing
the dissimilarities prior to the clustering phase may lead to better results, in par-
ticular with Scikit learn’s [22] QuantileTransformer. This transformation tends
to spread out the most frequent values and to reduce the impact of outliers.
In our evaluations, we performed this quantile transformation prior to every
clustering, with nquantile = 10.

The NMI obtained after the clustering step are presented in Table 5.

Table 5. NMI using GT on the structure only, UET on the attributes only and
GT+UET. Best results are indicated in boldface.

Dataset GT UET GT+UET

WebKB 0.64 (0.07) 0.73 (0.08) 0.98 (0.01)

HVR 0.58 (0.06) 0.58 (0.00) 0.89 (0.06)

Parliament 0.65 (0.02) 0.03 (0.00) 0.66 (0.02)

We observe that for two datasets, namely WebKB and HVR, considering
both structural and attribute information leads to a significant improvement in
NMI. For the other dataset considered in this evaluation, while the attribute
information does not improve the NMI, we observe that is does not decrease it
either. Here, we give the same weight to structural and attribute information.

Computing Vertex-Vertex Dissimilarities Using Random Trees 141

Fig. 3. Projection of the WebKB data based on the dissimilarities computed (left)
using GT on structural data, (middle) using UET on the attributes data and (right)
using the aggregated dissimilarity. Each cluster membership is denoted by a different
color. (Color figure online)

In Fig. 3 we present the projection of the WebKB dataset, where we observe
that the structure and attribute information both bring a different view of the
data, each with a strong cluster structure.

HVR and Parliament datasets are extracted from [2]. Using their proposed
approach, they obtain an NMI of 0.89 and 0.78, respectively. Although the NMI
we obtained using our approach are not consistently better in this first assess-
ment, the methods still seems to give similar results without any fine tuning.

5 Discussion and Future Work

In this paper, we presented a method based on the construction of random
trees to compute dissimilarities between graph vertices, called GT. For vertex
clustering purposes, our proposed approach is plug-and-play, since any clustering
algorithm that can work on a dissimilarity matrix can then be used. Moreover,
it could find application beyond graphs, for instance in relational structures in
general.

Although the goal of our empirical study was not to show a clear superior-
ity in terms of clustering but rather to assess the vertex-vertex dissimilarities
obtained by GT, we showed that our proposed approach is competitive with well-
known clustering methods, Louvain and MCL. We also showed that by comput-
ing forests of graph trees and other trees that specialize in other types of input
data, e.g, feature vectors, it is then possible to compute pairwise dissimilarities
between vertices in attributed graphs.

Some aspects are still to be considered. First, the importance of the vertex
attributes is dataset dependent and, in some cases, considering the attributes can
add noise. Moreover, the aggregation method between the graph trees and the
attribute trees can play an essential role. Indeed, in all our experiments, we gave
the same importance to the attribute and structural dissimilarities. This choice
implies that both the graph trees and the attribute trees have the same weight,
which may not always be the case. Finally, we chose here a specific algorithm to
compute the dissimilarity in the attribute space, namely, UET. The poor results

142 K. Dalleau et al.

we obtained for some datasets may be caused by some limitations of UET in
these cases.

It should be noted that our empirical results depend on the choice of a
specific clustering algorithm. Indeed, GT is not a clustering method per se,
but a method to compute pairwise dissimilarities between vertices. Like other
dissimilarity-based methods, this is a strength of the method we propose in this
paper. Indeed, the clustering task can be performed using many algorithms,
leveraging their respective strengths and weaknesses.

As a future work, we will explore an approach where the choice of whether
to consider the attribute space in the case of vertex-attributed graphs is guided
by the distribution of the variables or the visualization of the embedding. We
also plan to apply our methods on bigger graphs than the ones we used in this
paper.

References

1. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008
(2008)

2. Bojchevski, A., Günnemann, S.: Bayesian robust attributed graph clustering: joint
learning of partial anomalies and group structure (2018)

3. Cheng, H., Zhou, Y., Yu, J.X.: Clustering large attributed graphs: a balance
between structural and attribute similarities. ACM Trans. Knowl. Discov. Data
(TKDD) 5(2), 12 (2011)

4. Combe, D., Largeron, C., Egyed-Zsigmond, E., Géry, M.: Combining relations and
text in scientific network clustering. In: 2012 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining, pp. 1248–1253. IEEE (2012)

5. Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-Louvain: an attributed
graph clustering method. In: Fromont, E., De Bie, T., van Leeuwen, M. (eds.) IDA
2015. LNCS, vol. 9385, pp. 181–192. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-24465-5 16

6. Cruz, J.D., Bothorel, C., Poulet, F.: Entropy based community detection in aug-
mented social networks. In: 2011 International Conference on Computational
Aspects of Social Networks (CASoN), pp. 163–168. IEEE (2011)

7. Dalleau, K., Couceiro, M., Smail-Tabbone, M.: Unsupervised extremely random-
ized trees. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi,
L. (eds.) PAKDD 2018. LNCS (LNAI), vol. 10939, pp. 478–489. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-93040-4 38

8. Dongen, S.: A cluster algorithm for graphs (2000)
9. Ehrlinger, L., Wöß, W.: Towards a definition of knowledge graphs. In: SEMAN-

TiCS (Posters, Demos, SuCCESS) (2016)
10. Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung.

Acad. Sci. 5(1), 17–60 (1960)
11. Fan, M., Cao, K., He, Y., Grishman, R.: Jointly embedding relations and mentions

for knowledge population. In: Proceedings of the International Conference Recent
Advances in Natural Language Processing, pp. 186–191 (2015)

12. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002). https://doi.org/10.1073/
pnas.122653799

https://doi.org/10.1007/978-3-319-24465-5_16
https://doi.org/10.1007/978-3-319-24465-5_16
https://doi.org/10.1007/978-3-319-93040-4_38
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799

Computing Vertex-Vertex Dissimilarities Using Random Trees 143

13. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 855–864. ACM (2016)

14. Huang, X., Li, J., Hu, X.: Accelerated attributed network embedding. In: Proceed-
ings of the 2017 SIAM International Conference on Data Mining, pp. 633–641.
SIAM (2017)

15. Karger, D.R.: Global min-cuts in RNC, and other ramifications of a simple min-cut
algorithm. In: SODA 1993, pp. 21–30 (1993)

16. Krebs, V.: Political books network (2004, Unpublished). Retrieved from Mark New-
man’s website. www-personal.umich.edu/mejn/netdata

17. Lancichinetti, A., Fortunato, S.: Limits of modularity maximization in community
detection. Phys. Rev. E 84(6), 066122 (2011)

18. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and
shrinking diameters. ACM Trans. Knowl. Discov. Data (TKDD) 1(1), 2 (2007)

19. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9(Nov), 2579–2605 (2008)

20. Neville, J., Adler, M., Jensen, D.: Clustering relational data using attribute and
link information. In: Proceedings of the Text Mining and Link Analysis Workshop,
18th International Joint Conference on Artificial Intelligence, pp. 9–15. Morgan
Kaufmann Publishers, San Francisco (2003)

21. Newman, M.E.: Modularity and community structure in networks. Proc. Nat.
Acad. Sci. 103(23), 8577–8582 (2006)

22. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12(Oct), 2825–2830 (2011)

23. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)

24. Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007)
25. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern

Anal. Mach. Intell. 22(8), 888–905 (2000)
26. Stein, B., Niggemann, O.: On the nature of structure and its identification. In:

Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp.
122–134. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46784-X 13

27. Steinhaeuser, K., Chawla, N.V.: Community detection in a large real-world social
network. In: Liu, H., Salerno, J.J., Young, M.J. (eds.) Social Computing, Behavioral
Modeling, and Prediction, pp. 168–175. Springer, Boston (2008). https://doi.org/
10.1007/978-0-387-77672-9 19

28. Ting, K.M., Zhu, Y., Carman, M., Zhu, Y., Zhou, Z.H.: Overcoming key weaknesses
of distance-based neighbourhood methods using a data dependent dissimilarity
measure. In: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1205–1214. ACM (2016)

29. Xu, Z., Ke, Y., Wang, Y., Cheng, H., Cheng, J.: A model-based approach to
attributed graph clustering. In: Proceedings of the 2012 ACM SIGMOD Inter-
national Conference on Management of Data, pp. 505–516. ACM (2012)

30. Yang, Z., Tang, J., Cohen, W.: Multi-modal Bayesian embeddings for learning
social knowledge graphs. arXiv preprint arXiv:1508.00715 (2015)

31. Yin, H., Benson, A.R., Leskovec, J., Gleich, D.F.: Local higher-order graph clus-
tering. In: Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 555–564. ACM (2017)

www-personal.umich.edu/mejn/netdata
https://doi.org/10.1007/3-540-46784-X_13
https://doi.org/10.1007/978-0-387-77672-9_19
https://doi.org/10.1007/978-0-387-77672-9_19
http://arxiv.org/abs/1508.00715

144 K. Dalleau et al.

32. Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute
similarities. Proc. VLDB Endow. 2(1), 718–729 (2009). https://doi.org/10.14778/
1687627.1687709

33. Zhou, Y., Cheng, H., Yu, J.X.: Clustering large attributed graphs: an efficient
incremental approach. In: 2010 IEEE International Conference on Data Mining,
pp. 689–698. IEEE (2010)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.14778/1687627.1687709
https://doi.org/10.14778/1687627.1687709
http://creativecommons.org/licenses/by/4.0/

Evaluation of CNN Performance in
Semantically Relevant Latent Spaces

Jeroen van Doorenmalen(B) and Vlado Menkovski(B)

Eindhoven University of Technology, Eindhoven, The Netherlands
j.v.doorenmalen@student.tue.nl, v.menkovski@tue.nl

Abstract. We examine deep neural network (DNN) performance and
behavior using contrasting explanations generated from a semantically
relevant latent space. We develop a semantically relevant latent space by
training a variational autoencoder (VAE) augmented by a metric learning
loss on the latent space. The properties of the VAE provide for a smooth
latent space supported by a simple density and the metric learning term
organizes the space in a semantically relevant way with respect to the
target classes. In this space we can both linearly separate the classes
and generate meaningful interpolation of contrasting data points across
decision boundaries. This allows us to examine the DNN model beyond
its performance on a test set for potential biases and its sensitivity to
perturbations of individual factors disentangled in the latent space.

Keywords: Deep learning · VAE · Metric learning · Interpretability ·
Explanation

1 Introduction

Advances in machine learning and deep learning have had a profound impact
on many tasks involving high dimensional data such as object recognition and
behavior monitoring. The domain of Computer Vision especially has been wit-
nessing a great growth in bridging the gap between the capabilities of humans
and machines. This field tries to enable machines to view the world as humans
do, perceive it similar and even use the knowledge for a multitude of tasks such
as Image & Video Recognition, Image Analysis and Classification, Media Recre-
ation, recommender systems, etc. And, has since been implemented in high-level
domains like COMPAS [8], healthcare [3] and politics [17]. However, as black-
box models inner workings are still hardly understood, can lead to dangerous
situations [3], such as racial bias [8], gender inequality [1].

The need for confidence, certainty, trust and explanations when using super-
vised black-box models is substantial in domains with high responsibility. This
paper provides an approach towards better understanding of a model’s predic-
tions by investigating its behavior on semantically relevant (contrastive) expla-
nations. The build a semantically relevant latent space we need a smooth space

c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 145–157, 2020.
https://doi.org/10.1007/978-3-030-44584-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_12&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_12

146 J. van Doorenmalen and V. Menkovski

that corresponds well with the generating factors of the data (i.e. regions well-
supported by the associated density should correspond to realistic data points)
and with a distance metric that conveys semantic information about the target
task. The vanilla VAE without any extra constraints is insufficient as is does not
necessarily deliver a distance metric that corresponds to the semantics of the tar-
get class assignment (in our task). Our target is to develop semantically relevant
decision boundaries in the latent space, which we can use to examine our tar-
get classification model. Therefore, we propose to use a weakly-supervised VAE
that uses a combination of metric learning and VAE disentanglement to create a
semantically relevant, smooth and well separated space. And, we show that we
can use this VAE and semantically relevant latent space can be used for various
interpretability/explainability tasks, such as validate predictions made by the
CNN, generate (contrastive) explanations when predictions are odd and being
able to detect bias. The approach we propose for these tasks is more specifically
explained using Fig. 1.

Fig. 1. The diagnostics approach to validate and understand the behavior of the CNN.
(1) extra constraints, loss functions are applied during training of the VAE in order to
create semantically relevant latent spaces. The generative model captures the essential
semantics within the data and is used by (2) A linear Support Vector Machine. The
linear SVM is trained on top of the latent space to classify input on semantics rather
than the direct mapping from input data X and labels Y . If the SVM and CNN do
not agree on a prediction then (3) we traverse the latent space in order to generate
and capture semantically relevant synthetic images, tested against the CNN, in order
to check what elements have to change in order to change its prediction from a to b,
where a and b are different classes.

In this paper, the key contributions are: (1) an approach that can be used in
order to validate and check predictions made by a CNN by utilizing a weakly-
supervised generative model that is trained to create semantically relevant latent
spaces. (2) The semantically relevant latent spaces are then used in order to
train a linear support vector machine to capture decision rules that define a
class assignment. The SVM is then used to check predictions based on semantics

Evaluation of CNN Performance in Semantically Relevant Latent Spaces 147

rather than the direct mapping of the CNN. (3) if there is a misalignment in
the predictions (i.e. the CNN and SVM do not agree) then we posit the top k
best candidates (classes) and for these candidates traverse the latent spaces in
order to generate semantically relevant (contrastive) explanations by utilizing
the decision boundaries of the SVM.

To conclude, This paper posits a method that allows for the validation of
CNN performance by comparing it against the linear classifier that is based
on semantics and provides a framework that generates explanations when the
classifiers do not agree. The explanations are provided qualitatively to an expert
within the field. This explanation encompasses the original image, reconstructed
images and the path towards its most probable answers. Additionally, it shows
the minimal difference that makes the classifiers change its prediction to one of
the most probable answers. The expert can then check these results to make a
quick assessment to which class the image actually belongs to. Additionally, the
framework provides the ability to further investigate the model mathematically
using the linear classifier as a proxy model.

2 Related Work

Interest in interpretability and explainability studies has significantly grown
since the inception of “Right to Explanation” [20] and ethicality studies into
the behavior of machine learning models [1,3,8,17]. As a result, developers of AI
are promoted and required, amongst others, to create algorithms that are trans-
parent, non-discriminatory, robust and safe. Interpretability is most commonly
used as an umbrella term and stands for providing insight into the behavior and
thought processes behind machine-learning algorithms and many other terms
are used for this phenomenon, such as, Interpretable AI, Explainable machine
learning, causality, safe AI, computational social science, etc. [5]. We posit our
research as an interpretability study, but it does not necessarily mean that other
interpretability studies are directly closely related to this work.

There have been many approaches that all work towards the goal of under-
standing black-box models: Linear Proxy Models: Lime [18] are approaches that
locally approximate complex models using linear fits, Decision trees and Rule
extraction methods, such as deepred [21] are also considered highly explainable,
but quickly become intractable as complexity increases and salience mapping
[19] that provide visual information as to which part of an image is most likely
used in its prediction, however, it has been demonstrated to be unreliable if not
strongly conditioned [10]. Additionally, another approach to interpretability is
explaining the role of each part within a black-box models such as the role of
a layer or individual neurons [2] or representation vectors within the activation
space [9].

Most of the approaches stated above assume that there has to be a trade-
off between model performance and explainability. Additionally, as the current
interpretable methods for black-box models are still insufficient and approxi-
mated can cause more harm than good when communicated as a method that

148 J. van Doorenmalen and V. Menkovski

solves all problems. A lot of the interpretability methods do not take into account
the actual needs that stakeholders require [13]. Or, fail to take into account the
vast research into explanations or interpretability of the field of psychology [14]
and social sciences [15]. The “Explanation in Artificial Intelligence” study by
Miller [15] describes the current state of interpretable and explainable algo-
rithms, how most of the techniques currently fail to capture the essence of an
explanation and how to improve: an interpretability or explainability method
should at least include, but is not limited to, a non-disputable textual- and/or
mathematical- and/or visual explanation that is selective, social and depending
on the proof, contrastive.

For this reason, our approach focuses on providing selective (contrastive)
explanations that combines visual aspects as well as the ability to further inves-
tigate the model mathematically using a proxy model that does not impact the
CNN directly. Usually, generative models such as the Variational Autoencoders
(VAE) [11] and Generative Adversarial Networks (GAN)s are unsupervised and
used in order to sample and generate images from a latent space, provided by
training the generative network. However, we posit to use a weakly-supervised
generative network in order to impose (discriminative) structure in addition to
variational inference to the latent space of said model using metric learning [6].

This approach and method is therefore most related to the interpretabil-
ity area of sub-sampling proxy generative models to answer questions about a
discriminative black box model. The two closest studies that attempt similar
research is a preprint of CDeepEx [4] by Amir Feghahati et al. and xGEMs [7]
by Joshi et al. Both cDeepEx and xGEMS propose the use of a proxy generative
model in order to explain the behavior of a black-box model, primarily using
generative adversarial networks (GANs). The xGems paper presents a frame-
work to characterize and explaining binary classification models by generating
manifold guided examples using a generative model. The behavior of the black
box model is summarized by quantitatively perturbing data samples along the
manifold. And, xGEMS detects and quantifies bias during model training to
understand how bias affects black box models. The xGEMS approach is similar
to our approach as in using a generative model in order to explain a black box
model. Similarly, the cDeepEx paper posits their work as generating contrastive
explanations using a proxy generative model. The generated explanations focus
on answering the question “why a and not b?” with GANs, where a is the class
of an input example I and b is a chosen class to which to capture the differences.

However, both of these papers do not state that in a multi-class (discrimina-
tive) classification problem if the generative models’ latent space is not smooth,
well separated and semantically relevant then unexpected behavior can happen.
For instance, when traversing the latent space it is possible to can pass from a
to any number of classes before reaching class b because the space is not well
separated and smooth. This will create ineffective explanations, as depending on
how they generate explanations will give information on ‘why class a and not b
using properties of c’. An exact geodesic path along the manifold would require
great effort, especially in high dimensions. Also, our approach is different in the

Evaluation of CNN Performance in Semantically Relevant Latent Spaces 149

fact that we utilize a weakly-supervised generative model as well as an extra
linear classifier on top of the latent space to provide us with extra information
on the data and the latent space. Some approaches we take, however, are very
similar, such as using a generative model as a proxy to explain a black-box model
as well as sub-sampling the latent space to probe the behavior of a black-box
model and generate explanations using the predictions.

3 Methodology

This paper posits its methodology as a way to explain and validate decisions
made by a CNN. The predictions made by the CNN are validated and explained
utilizing the properties of a weakly-supervised proxy generative model, more
specifically, a triplet-vae. There are three main factors that contribute to the
validation and explanation of the CNN. First, a triplet-vae is trained in order
to provide a semantically relevant and well separated latent space. Second, this
latent space is then used to train an interpretable linear support vector machine
and is used to validate decisions by the CNN by comparison. Third, when a
CNN decision is misaligned with the decision boundaries in the latent space, we
generate explanations through stating the K most probable answers as well as
provide a qualitative explanation to validate the top K most probable answers.
Each of these factors respectively refer to the number stated in Fig. 1 as well
as link to each section: (1) triplet-vae Sect. 3.1, (2) CNN Decision Validation,
Sect. 3.2, (3) Generating (contrastive) Explanations, Sect. 3.3.

3.1 Semantically Relevant Latent Space

Typically, a triplet network consists of three instances of a neural network that
share parameters. These three instances are separately fed differences types of
input: an anchor, positive sample and negative sample. These are then used to
learn useful representations by distance comparisons. We propose to incorporate
this notion of a triplet network to semantically structure and separate the latent
space of the VAE using the available input and labels. A triplet VAE consists
of three instances of the encoder with shared parameters that are each fed pre-
computed triplets: an anchor, positive sample and negative sample; xa, xp and
xn. The anchor xa and positive sample xp are of the same class but not the same
image, whereas negative sample xn is from a different class. In each iteration
of training, the input triplet is fed to the encoder network to get their mean
latent embedding: F(xa)μ = zμ

a , F(xp)μ = zμ
p , F(xn)μ = zμ

n . These are then
used to compute a similarity loss function as to induce loss when a negative
sample zμ

n is closer to zμ
a than zμ

p distance-wise. i.e. δap(zμ
a , zμ

p) = ||zμ
a − zμ

p ||
and δan(zμ

a , zμ
n) = ||zμ

a − zμ
n || and, provides us with three possible situations:

δap > δan, δap < δan and δap = δan [6].
We wish to find an embedding where samples of a certain class lie close to

each other in the latent space of the VAE. For this reason, we wish to add loss
the algorithm when we arrive in the situation where δap > δan. In other words,

150 J. van Doorenmalen and V. Menkovski

Fig. 2. Given an input image I we check the prediction of the CNN as well as the SVM.
If both classifiers predict the same class, we return the predicted class. In contrast, if
the classifiers do not predict the same class, we propose to return the top k most
probable answers as well as an explanation why those classes are the most probable.

we wish to push xn further away, such that we ultimately arrive in the situation
where δap < δan or δap = δan with some margin φ. As such we arrive at the triplet
loss function that we’ll use in addition to the KL divergence and reconstruction
loss within the VAE: L(zμ

a , zμ
p , zμ

n) = α ∗ argmax{||zμ
a − zμ

p ||− ||zμ
a − zμ

n ||+φ , 0}.
Where φ will provide leeway when δap = δan and push the negative sample away
even when the distances are equal.

We have an already present CNN which we would like to validate, and is
trained by input data X : xi...xn and labels Y : yi...yn where each yi states
the true class of xi. We then use the same X and Y to train the triplet-VAE.
(1) First, we compute triplets of the form xa, xpxn from the input data X and
labels Y which are then used to train the triplet VAE. A typical VAE consists
of an F(x) = Encoder(x) ∼ q(z|x) which compresses the data into a latent
space Z, a G(z) = Decoder(z) ∼ p(x|z) which reconstructs the data given the
latent space Z and a prior p(z), in our case a gaussian N (0, 1), imposed on
the model. In order for the VAE to train a latent space similar to its prior
and be able to reconstruct images it is trained by minimizing the Evidence
Lower Bound (ELBO). ELBO = −Ez∼Q(z|X)[log P (x|z)] + KL[Q(z|X)||P (z)]
This can be explained as the reconstruction loss or expected negative loglikeli-
hood: −Ez∼Q(z|X)[log P (x|z)] and the KL divergence loss KL[Q(z|X)||P (z)], to
which we add the triplet loss:

L(zμ
a , zμ

p , zμ
n) = α ∗ argmax{||zμ

a − zμ
p || − ||zμ

a − zμ
n || + φ , 0}

This compound loss semi-forces the latent space of the VAE to be well separated
due to the triplet loss, disentangled due to the KL divergence loss combined with
β scalar, and provides a means of (reasonably) reconstructing images by the
reconstruction loss. And, thus results in the following loss function for training
the VAE:

loss = −Ez∼Q(z|X)[log P (x|z)] + β ∗ KL[Q(z|X)||P (z)] + L(zμ
a , zμ

p , zμ
n).

Evaluation of CNN Performance in Semantically Relevant Latent Spaces 151

3.2 Decision Validation

Afterwards, given a semantically relevant latent space we can use it for step two
and three as indicated in Fig. 1. (2) Second step - CNN Decision Validation, we
train an additional classifier on top of the triplet-VAE latent space, specifically
zμ. We train the linear Support Vector Machine using Zμs as input data and Y
as labels where [Zμ, Zσ] = F(X). The goal of the linear support vector machine
is two-fold. It provides a means of validating each prediction made by the CNN
by using the encoder and the linear classifier. i.e. given an input example I, we
have C(I) = ŷC(I) and S(F(I)μ) = ŷS(I), and compare them against each other
ŷC(I) = ŷS(I). And, as the linear classifier is a simpler model than the highly
complex CNN it will function as the ground-truth base for the predictions that
are made. As such, we arrive at two possible cases:

Comparison(I) =

{
Positive if (ŷC(I) = ŷS(I))
Negative if (ŷC(I) �= ŷS(I))

(1)

First, If both classifiers agree then we arrive at an optimal state, meaning
that the prediction is based on semantics and the direct mapping found by the
CNN. In this way, we can say with high confidence that the prediction is correct.
In the second case, if the classifiers do not agree, three cases can occur: the SVM
is correct and the CNN is incorrect, the SVM is incorrect and the CNN is correct,
or both the SVM and the CNN is incorrect. In each of these cases we can suggest
a most probable answer as well as a selective (contrastive) explanation indicated
as step 3 of the framework as explained in Fig. 2.

3.3 Generating (contrastive) Explanations

An explanation consists of (1) the most probable answers and (2) a qualitative
investigation of latent traversal towards the most probable answers The most
probable answer is presented by the averaged sum rule [12] over the predicted
probabilities per class for both the CNN and SVM and selecting the top K
answers, where K can be appropriately selected. Additionally, originally an SVM
does not return a probabilistic answer, however, applying Platts [16] method we
apply an additional sigmoid function to map the SVM outputs into probabilities.
These top k answers are then used in order to present and generate selected
contrastive explanations.

The top K predictions or classes will be used in order to traverse and sub-
sample the latent space from the initial representation or Zμ

I location towards
another class. We can find a path by finding the closest point within the latent
space such that the decision boundary is crossed and the SVM predicts the tar-
get class. Alternatively we could use the closest data point in the latent space
that adheres to the training set argmin F(xi)μ −Zμ

I for every xi ∈ X. Traversing
and sub-sampling the latent space will change the semantics minimally to change
the class prediction. We capture the minimal change needed in order to change
both the SVM and CNN prediction to the target class. This information is then

152 J. van Doorenmalen and V. Menkovski

Fig. 3. Generating (contrastive) explanations consist of several steps: First, given an
input image I in question and the K top most probable answer. K denotes training
data X for class k labeled with y = k. We feed both I and K through the encoder
F(X) to receive their respective semantic location in the latent space. We then find
the closest training point that belongs to the target class k and find the vector v; the
direction of that point. Afterwards, uniformly sample ε data points along this vector v,
where j iterates over 0 · · · j · · · ε and is denoted as Zµ

v . Zµ
v is then used to check these

against the SVM and use them to generate images XZ
µ
v

using the decoder G(Zµ
v). The

generated images are then fed to the CNN to make a prediction and as the images will
semantically change along the vector the prediction will change as well. Afterwards, we
can compare the predictions from both the CNN and SVM. Subsequently, we use the
first moment where both predictions are equal to target class k, denoted as moment l
for generating an explanation - minimal semantic difference necessary to be equal to
the target class, ΔUl.

presented to the domain expert for verification and answers the following ques-
tion: The most probable answer is a because the input image I is semantically
closest to the following features, where the features are presented qualitatively.
The explanations are generated as follows: see Fig. 3.

The decision boundaries around the clusters within the latent space are fitted
by the SVM and can be used to answer questions of the form ‘why a and not
b?’. If ŷC(I) and ŷS(I) do not predict the same class, then, we assume that ŷS(I)

is correct. We then use the find a path, indicated by v from ŷS(I) to ŷC(I), Zμ
I

to the target class. This can be done by calculating a vector orthogonal to the
hyper-plane fitted by the SVM towards the target class. Alternatively, we can
find the closest zμ ∈ Zμ that satisfies ŷS(zµ) = ŷC(zµ) that are not the same as
the initial prediction ŷC(I). This means that v is the vector from I to the closest
data point of the target class, with respect to Euclidean distance.

We then uniformly sample points along vector v and check them against the
SVM as well as the CNN. The sampled points can directly be fed to the SVM to
get a prediction ŷ(∫(vi) for every vi ∈ V . Similarly, we can get predictions of the
CNN by transforming the images using the decoder D. The images are then fed to

Evaluation of CNN Performance in Semantically Relevant Latent Spaces 153

the CNN to get a prediction ŷ(C(D(vi)) for every vi ∈ V . The predictions of both
classifiers will change as the images start looking more and more like the target
class as generative factors change along the vector. If we capture the changes that
make the change happen, we can show the minimal difference required in order
to change the prediction of the CNN. In this way we can generate contrastive
examples: For the top ‘close’ class that is not ŷI we answer the question: ‘why
ŷI and not the other semantically close class?’. Hence, we find the answer to the
question “why a and not b?”, as the answer is the shortest approximate changes
between the two classes that make the CNN change its prediction. As a result,
we have found a way to validate the inner workings of the CNN. If there are
doubts about a prediction it can be investigated and checked.

4 Results

In this paper we show experimental results on MNIST by generating (con-
trastive) explanations to provide extra information to predictions made by the
CNN and evaluate its performance. The creation of these explanations requires
a semantically relevant and well separated latent space. Therefore, we first show
the difference between the latent space of the vanilla VAE and the triplet-VAE
and its effects on training a linear classifier on top of the latent space. The
Figs. 4 and 5 show a tSNE visualization of the separation of classes within the
latent space. Not surprisingly the triplet-VAE separated the data in a far more
semantically relevant way and this is also reflected with respect to the accuracy
of training a linear model on the data.

Fig. 4. Visualization of a two-
dimensional latent space of a vanilla
VAE on MNIST

Fig. 5. Visualization of a two-
dimensional latent space of a T -VAE
on MNIST

154 J. van Doorenmalen and V. Menkovski

Table 1. This table shows the per-
centages of agreement with respect
to all possible cases.

Case Percentage

(1) ŶS = ŶC = Y 0.9586

(2) ŶS = ŶC �= Y 0.003

(3) (ŶS = Y) �= ŶC 0.0086

(4) ŶS �= (ŶC = Y) 0.0314

(5) ŶS �= ŶC �= Y 0.0044

Second, the percentages show as to know
how much both classifiers agree by showing
the percentage per possible case, as shown in
Table 1. Not surprisingly case four happens
more often than case three and can mean
two things, our latent space is too simple
to capture the full complexity of the class
assignment and the CNN is not constraint
by extra loss functions. However, in three of
the four cases where YS �= YC we can explain
the most probable predictions and provide a generated (contrastive) explanation.
The only case we cannot check or know about is case two, where both YS and
YC predict the same class but is wrong. The only way to capture this behavior
is by explaining every single decision by generating explanations for everything.
Nevertheless, as an example for generating explanations we use an example: 6783
(case 5) as shown in Fig. 6.

Fig. 6. Once the SVM and the CNN both
predict the target class we capture the min-
imal changes that are necessary to change
their predictions

Generating explanations consists
of three parts: First, we propose the
top K probable answers: for this
example the true label is 1, the most
probable answers are 6, 8 and then 1
with averaged probabilities 0,512332,
0.3382, 0.1150. Second, Then for those
most probable target classes, 6, 8, 1
we traverse the latent space from the
initial location Zμ

I to the closest point
of that class, denoted as v ∈ that is
predicted correctly i.e. the SVM and
CNN agree. Figure 7 shows the gener-
ated images from the uniformly sam-
pled data points along vectors vk ∈ V where k ∈ K stand for 6, 8, 1 in this case.
The figures show which changes happen when traversing the latent space and at
which points both the SVM and the CNN agree with respect to their decision.

For the traversal from Zμ
I to class 6 it can be seen that rather quickly both

classifiers agree and only minimal changes are required to change the predictions.
Third, for such an occurrence we can further zoom in on what is happening
and what really makes that the most probable answer. Figure 6 shows these
minimal changes required to change its prediction as well as the transformed
image on which the classifiers agree. The first row shows the original image,
positive changes, negative changes and the changes combined. The second row
shows the reconstructed image and the reconstructed images with the positive
changes, negative changes and positive and negative changes respectively. In this
way, for each probable answer it shows its closest representative and the changes
required to be part of that class.

Evaluation of CNN Performance in Semantically Relevant Latent Spaces 155

Fig. 7. Per top k probable answers we traverse and sample the latent space to generate
images that can be used to test the behavior of the CNN. The red line indicates the
moment where both the SVM and the CNN predict the target class (Color figure online)

5 Conclusion

This paper examines deep neural network’s behaviour and performance by uti-
lizing a weakly-supervised generative model as a proxy. The weakly-supervised
generative model aims to uncover the generative factors underlying the data
and separate abstract classes by applying metric learning. The proxy’s goal is
three-fold: the semantically meaningful space will be the base for a linear sup-
port vector machine; The model’s generative capabilities will be used to generate
images that can be probed against the black box in question; the latent space
is traversed and sampled from an anchor I to another class k in order to find
the minimal important difference that changes both classifier’s predictions. The
goal of the framework is to be sure of the predictions made by the black box by
better understanding the behaviour of the CNN by simulating questions of the
form ‘Why a and not b?’ where a and b are different classes.

We examine deep neural network (DNN) performance and behaviour using
contrasting explanations generated from a semantically relevant latent space.
The results show that each of the above goals can be achieved and the frame-
work performs as expected. We develop a semantically relevant latent space by
training an variational autoencoder (VAE) augmented by a metric learning loss
on the latent space. The properties of the VAE provide for a smooth latent space
supported by a simple density and the metric learning term organizes the space
in a semantically relevant way with respect to the target classes. In this space we
can both linearly separate the classes and generate relevant interpolation of con-
trasting data points across decision boundaries and find the minimal important
difference that changes the classifier’s predictions. This allows us to examine the
DNN model beyond its performance on a test set for potential biases and its
sensitivity to perturbations of individual factors in the latent space.

156 J. van Doorenmalen and V. Menkovski

References

1. Buolamwini, J., Gebru, T.: Gender shades: intersectional accuracy disparities in
commercial gender classification. In: Friedler, S.A., Wilson, C. (eds.) Proceedings
of the 1st Conference on Fairness, Accountability and Transparency. Proceedings
of Machine Learning Research, vol. 81, pp. 77–91. PMLR, New York, February
2018. http://proceedings.mlr.press/v81/buolamwini18a.html

2. Carter, S., Armstrong, Z., Schubert, L., Johnson, I., Olah, C.: Activation
atlas. Distill (2019). https://doi.org/10.23915/distill.00015, https://distill.pub/
2019/activation-atlas

3. Challen, R., Denny, J., Pitt, M., Gompels, L., Edwards, T., Tsaneva-
Atanasova, K.: Artificial intelligence, bias and clinical safety. BMJ Qual.
Saf. 28(3), 231–237 (2019). https://doi.org/10.1136/bmjqs-2018-008370.
https://qualitysafety.bmj.com/content/28/3/231

4. Feghahati, A., Shelton, C.R., Pazzani, M.J., Tang, K.: CDeepEx: contrastive deep
explanations (2019). https://openreview.net/forum?id=HyNmRiCqtm

5. Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining
explanations: an approach to evaluating interpretability of machine learning. CoRR
abs/1806.00069 (2018). http://arxiv.org/abs/1806.00069

6. Ishfaq, H., Hoogi, A., Rubin, D.: TVAE: triplet-based variational autoencoder using
metric learning (2018)

7. Joshi, S., Koyejo, O., Kim, B., Ghosh, J.: xGEMs: generating examplars to explain
black-box models. CoRR abs/1806.08867 (2018). http://arxiv.org/abs/1806.08867

8. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine bias, May 2016.
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-
sentencing

9. Kim, B., et al.: Interpretability beyond feature attribution: quantitative testing
with concept activation vectors (TCAV). In: Dy, J., Krause, A. (eds.) Proceedings
of the 35th International Conference on Machine Learning, vol. 80, pp. 2668–2677,
July 2018

10. Kindermans, P.J., et al.: The (un)reliability of saliency methods. CoRR
abs/1711.00867 (2017). http://dblp.uni-trier.de/db/journals/corr/corr1711.
html#abs-1711-00867

11. Kingma, D.P., Welling, M.: An introduction to variational autoencoders. CoRR
abs/1906.02691 (2019). http://arxiv.org/abs/1906.02691

12. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE
Trans. Pattern Anal. Mach. Intell. 20(3), 226–239 (1998). https://doi.org/10.1109/
34.667881

13. Lipton, Z.C.: The doctor just won’t accept that! In: NIPS Proceedings 2017, no.
24, pp. 1–3, November 2017. https://arxiv.org/pdf/1711.08037.pdf

14. Lombrozo, T.: Explanation and abductive inference. In: Oxford Handbook of
Thinking and Reasoning, pp. 260–276 (2012). https://doi.org/10.1093/oxfordhb/
9780199734689.013.0014

15. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
CoRR abs/1706.07269 (2017). http://arxiv.org/abs/1706.07269

16. Platt, J.C.: Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. In: Advances in Large Margin Classifiers, pp.
61–74. MIT Press (1999)

17. Prakash, A.: Ai-politicians: a revolution in politics, August 2018. https://medium.
com/politics-ai/ai-politicians-a-revolution-in-politics-11a7e4ce90b0

http://proceedings.mlr.press/v81/buolamwini18a.html
https://doi.org/10.23915/distill.00015
https://distill.pub/2019/activation-atlas
https://distill.pub/2019/activation-atlas
https://doi.org/10.1136/bmjqs-2018-008370
https://qualitysafety.bmj.com/content/28/3/231
https://openreview.net/forum?id=HyNmRiCqtm
http://arxiv.org/abs/1806.00069
http://arxiv.org/abs/1806.08867
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
http://dblp.uni-trier.de/db/journals/corr/corr1711.html#abs-1711-00867
http://dblp.uni-trier.de/db/journals/corr/corr1711.html#abs-1711-00867
http://arxiv.org/abs/1906.02691
https://doi.org/10.1109/34.667881
https://doi.org/10.1109/34.667881
https://arxiv.org/pdf/1711.08037.pdf
https://doi.org/10.1093/oxfordhb/9780199734689.013.0014
https://doi.org/10.1093/oxfordhb/9780199734689.013.0014
http://arxiv.org/abs/1706.07269
https://medium.com/politics-ai/ai-politicians-a-revolution-in-politics-11a7e4ce90b0
https://medium.com/politics-ai/ai-politicians-a-revolution-in-politics-11a7e4ce90b0

Evaluation of CNN Performance in Semantically Relevant Latent Spaces 157

18. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you?: explaining the
predictions of any classifier. CoRR abs/1602.04938 (2016). http://arxiv.org/abs/
1602.04938

19. Selvaraju, R.R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., Batra, D.: Grad-
CAM: why did you say that? Visual explanations from deep networks via gradient-
based localization. CoRR abs/1610.02391 (2016). http://arxiv.org/abs/1610.02391

20. European Union: Official journal of the European union: Regulations
(2016). https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:
32016R0679&from=EN

21. Zilke, J.R., Loza Menćıa, E., Janssen, F.: DeepRED – rule extraction from deep
neural networks. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS
(LNAI), vol. 9956, pp. 457–473. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46307-0 29

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/1602.04938
http://arxiv.org/abs/1602.04938
http://arxiv.org/abs/1610.02391
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN
https://doi.org/10.1007/978-3-319-46307-0_29
https://doi.org/10.1007/978-3-319-46307-0_29
http://creativecommons.org/licenses/by/4.0/

Vouw: Geometric Pattern Mining
Using the MDL Principle

Micky Faas(B) and Matthijs van Leeuwen

LIACS, Leiden University, Leiden, The Netherlands
micky@edukitty.org, m.van.leeuwen@liacs.leidenuniv.nl

Abstract. We introduce geometric pattern mining, the problem of find-
ing recurring local structure in discrete, geometric matrices. It differs
from existing pattern mining problems by identifying complex spatial
relations between elements, resulting in arbitrarily shaped patterns.
After we formalise this new type of pattern mining, we propose an
approach to selecting a set of patterns using the Minimum Description
Length principle. We demonstrate the potential of our approach by intro-
ducing Vouw, a heuristic algorithm for mining exact geometric patterns.
We show that Vouw delivers high-quality results with a synthetic bench-
mark.

1 Introduction

Frequent pattern mining [1] is the well-known subfield of data mining that aims
to find and extract recurring substructures from data, as a form of knowledge
discovery. The generic concept of pattern mining has been instantiated for many
different types of patterns, e.g., for item sets (in Boolean transaction data) and
subgraphs (in graphs/networks). Little research, however, has been done on pat-
tern mining for raster-based data, i.e., geometric matrices in which the row and
column orders are fixed. The exception is geometric tiling [4,11], but that prob-
lem only considers tiles, i.e., rectangular-shaped patterns, in Boolean data.

In this paper we generalise this setting in two important ways. First, we
consider geometric patterns of any shape that are geometrically connected, i.e.,
it must be possible to reach any element from any other element in a pattern by
only traversing elements in that pattern. Second, we consider discrete geometric
data with any number of possible values (which includes the Boolean case). We
call the resulting problem geometric pattern mining.

Figure 1 illustrates an example of geometric pattern mining. Figure 1a shows
a 32 × 24 grayscale ‘geometric matrix’, with each element in [0, 255], apparently
filled with noise. If we take a closer look at all horizontal pairs of elements,
however, we find that the pair (146, 11) is, amongst others, more prevalent than
expected from ‘random noise’ (Fig. 1b). If we would continue to try all combina-
tions of elements that ‘stand out’ from the background noise, we would eventually
find four copies of the letter ‘I’ set in 16 point Garamond Italic (Fig. 1c).

c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 158–170, 2020.
https://doi.org/10.1007/978-3-030-44584-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_13&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_13

Vouw: Geometric Pattern Mining Using the MDL Principle 159

Fig. 1. Geometric pattern mining example. Each element is in [0, 255].

The 35 elements that make up a single ‘I’ in the example form what we call
a geometric pattern. Since its four occurrences jointly cover a substantial part
of the matrix, we could use this pattern to describe the matrix more succinctly
than by 768 independent values. That is, we could describe it as the pattern ‘I’
at locations (5, 4), (11, 11), (20, 3), (25, 10) plus 628 independent values, hereby
separating structure from accidental (noise) data. Since the latter description
is shorter, we have compressed the data. At the same time we have learned
something about the data, namely that it contains four I’s. This suggests that
we can use compression as a criterion to find patterns that describe the data.

Approach and Contributions. Our first contribution is that we introduce and
formally define geometric pattern mining, i.e., the problem of finding recurring
local structure in geometric, discrete matrices. Although we restrict the scope
of this paper to two-dimensional data, the generic concept applies to higher
dimensions. Potential applications include the analysis of satellite imagery, tex-
ture recognition, and (pattern-based) clustering.

We distinguish three types of geometric patterns: (1) exact patterns, which
must appear exactly identical in the data to match; (2) fault-tolerant patterns,
which may have noisy occurrences and are therefore better suited to noisy data;
and (3) transformation-equivalent patterns, which are identical after some trans-
formation (such as mirror, inverse, rotate, etc.). Each consecutive type makes
the problem more expressive and hence more complex. In this initial paper we
therefore restrict the scope to the first, exact type.

As many geometric patterns can be found in a typical matrix, it is crucial to
find a compact set of patterns that together describe the structure in the data
well. We regard this as a model selection problem, where a model is defined by
a set of patterns. Following our observation above, that geometric patterns can
be used to compress the data, our second contribution is the formalisation of
the model selection problem by using the Minimum Description Length (MDL)
principle [5,8]. Central to MDL is the notion that ‘learning’ can be thought
of as ‘finding regularity’ and that regularity itself is a property of data that
is exploited by compressing said data. This matches very well with the goals of
pattern mining, as a result of which the MDL principle has proven very successful
for MDL-based pattern mining [7,12].

160 M. Faas and M. van Leeuwen

Finally, our third contribution is Vouw, a heuristic algorithm for MDL-based
geometric pattern mining that (1) finds compact yet descriptive sets of patterns,
(2) requires no parameters, and (3) is tolerant to noise in the data (but not
in the occurrences of the patterns). We empirically evaluate Vouw on synthetic
data and demonstrate that it is able to accurately recover planted patterns.

2 Related Work

As the first pattern mining approach using the MDL principle, Krimp [12] was
one of the main sources of inspiration for this paper. Many papers on pattern-
based modelling using MDL have appeared since, both improving search, e.g.,
Slim [10], and extensions to other problems, e.g., Classy [7] for rule-based clas-
sification.

The problem closest to ours is probably that of geometric tiling, as introduced
by Gionis et al. [4] and later also combined with the MDL principle by Tatti
and Vreeken [11]. Geometric tiling, however, is limited to Boolean data and
rectangularly shaped patterns (tiles); we strongly relax both these limitations
(but as of yet do not support patterns based on densities or noisy occurrences).

Campana et al. [2] also use matrix-like data (textures) in a compression-
based similarity measure. Their method, however, has less value for explanatory
analysis as it relies on generic compression algorithms that are essentially a black
box.

Geometric pattern mining is different from graph mining, although the con-
cept of a matrix can be redefined as a grid-like graph where each node has a
fixed degree. This is the approach taken by Deville et al. [3], solving a problem
similar to ours but using an approach akin to bag-of-words instead of the MDL
principle.

3 Geometric Pattern Mining Using MDL

We define geometric pattern mining on bounded, discrete and two-dimensional
raster-based data. We represent this data as an M × N matrix A whose rows
and columns are finite and in a fixed ordering (i.e., reordering rows and columns
semantically alters the matrix). Each element ai,j ∈ S, where row i ∈ [0;N),
column j ∈ [0;M), and S is a finite set of symbols, i.e., the alphabet of A.

According to the MDL principle, the shortest (optimal) description of A
reveals all structure of A in the most succinct way possible. This optimal descrip-
tion is only optimal if we can unambiguously reconstruct A from it and nothing
more—the compression is both minimal and lossless. Figure 2 illustrates how an
example matrix could be succinctly described using patterns: matrix A is decom-
posed into patterns X and Y . A set of such patterns constitutes the model for
a matrix A, denoted HA (or H for short when A is clear from the context). In
order to reconstruct A from this model, we also need a mapping from the HA

back to A. This mapping represents what (two-part) MDL calls the data given
the model HA. In this context we can think of this as a set of all instructions

Vouw: Geometric Pattern Mining Using the MDL Principle 161

required to rebuild A from HA, which we call the instantiation of HA and is
denoted by I in the example. These concepts allow us to express matrix A as
a decomposition into sets of local and global spatial information, which we will
next describe in more detail.

Fig. 2. Example decomposition of A into instantiation I and patterns X, Y .

3.1 Patterns and Instances

� We define a pattern as an MX × NX submatrix X of the original matrix
A. Elements of this submatrix may be ·, the empty element, which gives us the
ability to cut-out any irregular-shaped part of A. We additionally require the
elements of X to be adjacent (horizontal, vertical or diagonal) to at least one
non-empty element and that no rows and columns are empty.

From this definition, the dimensions MX × NX give the smallest rectangle
around X (the bounding box). We also define the cardinality |X| of X as the
number of non-empty elements. We call a pattern X with |X| = 1 a singleton
pattern, i.e., a pattern containing exactly one element of A.

Each pattern contains a special pivot element: pivot(X) is the first non-
empty element of X. A pivot can be thought of as a fixed point in X which
we can use to position its elements in relation to A. This translation, or offset,
is a tuple q = (i, j) that is on the same domain as an index in A. We realise
this translation by placing all elements of X in an empty M × X size matrix
such that the pivot element is at (i, j). We formalise this in the instantiation
operator ⊗:

� We define the instance X⊗(i, j) as the M ×N matrix containing all elements
of X such that pivot(X) is at index (i, j) and the distances between all elements
are preserved. The resulting matrix contains no additional non-empty elements.

Since this does not yield valid results for arbitrary offsets (i, j), we enforce two
constraints: (1) an instance must be well-defined: placing pivot(X) at index
(i, j) must result in an instance that contains all elements of X, and (2) elements
of instances cannot overlap, i.e., each element of A can be described only once.

� Two pattern instances X ⊗ q and Y ⊗ r, with q �= r are non-overlapping if
|(X ⊗ q) + (Y ⊗ r)| = |X| + |Y |.

From here on we will use the same letter in lower case to denote an arbitrary
instance of a pattern, e.g., x = X ⊗ q when the exact value of q is unimportant.
Since instances are simply patterns projected onto an M × N matrix, we can
reverse ⊗ by removing all completely empty rows and columns:

� Let X ⊗ q be an instance of X, then by definition we say that �(X ⊗ q) = X.

162 M. Faas and M. van Leeuwen

We briefly introduced the instantiation I as a set of ‘instructions’ of where
instances of each pattern should be positioned in order to obtain A. As Fig. 2
suggests, this mapping has the shape of an M × N matrix.

� Given a set of patterns H, the instantiation (matrix) I is an M × N matrix
such that Ii,j ∈ H ∪ {·} for all (i, j), where · denotes the empty element. For all
non-empty Ii,j it holds that Ii,j ⊗ (i, j) is a non-overlapping instance of Ii,j in A.

3.2 The Problem and Its Solution Space

Larger patterns can be naturally constructed by joining (or merging) smaller
patterns in a bottom-up fashion. To limit the considered patterns to those rele-
vant to A, instances can be used as an intermediate step. As Fig. 3 demonstrates,
we can use a simple element-wise matrix addition to sum two instances and use
� to obtain a joined pattern. Here we start by instantiating X and Y with offsets
(1, 0) and (1, 1), respectively. We add the resulting x and y to obtain �z, the
union of X and Y with relative offset (1, 1) − (1, 0) = (0, 1).

Fig. 3. Example of joining patterns X and Y to construct a new pattern Z.

The Sets HA and IA . We define the model class H as the set of all possi-
ble models for all possible inputs. Without any prior knowledge, this would be
the search space. To simplify the search, however, we only consider the more
bounded subset HA of all possible models for A, and IA, the set of all possible
instantiations for these models. To this end we first define H0

A to be the model
with only singleton patterns, i.e., H0

A = S, and denote its corresponding instan-
tiation matrix by I0A. Given that each element of I0A must correspond to exactly
one element of A in H0

A, we see that each Ii,j = ai,j and so we have I0A = A.
Using H0

A and I0A as base cases we can now inductively define IA:

Base case I0A ∈ IA

By induction If I is in IA then take any pair Ii,j , Ik,l ∈ I such that (i, j) ≤ (k, l)
in lexicographical order. Then the set I ′ is also in IA, providing I ′ equals I
except: I ′

i,j := �(
Ii,j ⊗ (i, j) + Ik,l ⊗ (k, l)

)

I ′
k,l := ·

This shows we can add any two instances together, in any order, as they are by
definition always non-overlapping and thus valid in A, and hereby obtain another
element of IA. Eventually this results in just one big instance that is equal to
A. Note that when we take two elements Ii,j , Ik,l ∈ I we force (i, j) ≤ (k, l), not
only to eliminate different routes to the same instance matrix, but also so that
the pivot of the new pattern coincides with Ii,j . We can then leave Ik,l empty.

Vouw: Geometric Pattern Mining Using the MDL Principle 163

The construction of IA also implicitly defines HA. While this may seem
odd—defining models for instantiations instead of the other way around—note
that there is no unambiguous way to find one instantiation for a given model.
Instead we find the following definition by applying the inductive construction:

HA =
{{�(x) | x ∈ I} ∣

∣ I ∈ IA

}
. (1)

So for any instantiation I ∈ IA there is a corresponding set in HA of all patterns
that occur in I. This results in an interesting symbiosis between model and
instantiation: increasing the complexity of one decreases that of the other. This
construction gives a tightly connected lattice as shown in Fig. 4.

3.3 Encoding Models and Instances

From all models in HA we want to select the model that describes A best.
Two-part MDL [5] tells us to choose that model that minimises the sum of
L1(HA) + L2(A|HA), where L1 and L2 are two functions that give the length
of the model and the length of ‘the data given the model’, respectively. In this
context, the data given the model is given by IA, which represents the accidental
information needed to reconstruct the data A from HA.

Fig. 4. Model space lattice for a 2×2 Boolean matrix. The V, W, and Z columns show
which pattern is added in each step, while I depicts the current instantiation.

In order to compute their lengths, we need to decide how to encode HA and
I. As this encoding is of great influence on the outcome, we should adhere to
the conditions that follow from MDL theory: (1) the model and data must be
encoded losslessly; and (2) the encoding should be as concise as possible, i.e., it
should be optimal. Note that for the purpose of model selection we only need
the length functions; we do not need to actually encode the patterns or data.

Code Length Functions. Although the patterns in H and instantiation matrix
I are all matrices, they have different characteristics and thus require different
encodings. For example, the size of I is constant and can be ignored, while the

164 M. Faas and M. van Leeuwen

Table 1. Code length definitions. Each row specifies the code length given by the first
column as the sum of the remaining terms.

Matrix Bounds # Elements Positions Symbols

Lp(X) Pattern log(MN) LN

(
MXNX

|X|
) |X| log(|S|)

L1(H) Model N/A LN (|H|) N/A
∑

X∈H Lp(X)

L2(I) Instantiation Constant log(MN) Implicit Lpp(I)

sizes of the patterns vary and should be encoded. Hence we construct different
length functions1 for the different components of H and I, as listed in Table 1.

When encoding I, we observe that it contains each pattern X ∈ H multiple
times, given by the usage of X. Using the prequential plug-in code [5] to
encode I enables us to omit encoding these usages separately, which would cre-
ate unwanted bias. The prequential plug-in code gives us the following length
function for I. We use ε = 0.5 and elaborate on its derivation in the Appendix2.

Lpp(I | Pplugin) = −
|H|∑

Xi∈h

[
log

Γ (usage(Xi) + ε)
Γ (ε)

]
+ log

Γ (|I| + ε|H|)
Γ (ε|H|) (2)

Each length function has four terms. First we encode the total size of the
matrix. Since we assume MN to be known/constant, we can use this constant to
define the uniform distribution 1

MN , so that log MN encodes an arbitrary index
of A. Next we encode the number of elements that are non-empty. For patterns
this value is encoded together with the third term, namely the positions of the
non-empty elements. We use the previously encoded MXNX in the binominal
function to enumerate the ways we can place the |X| elements onto a grid of
MXNX . This gives us both how many non-empties there are as well as where
they are. Finally the fourth term is the length of the actual symbols that encode
the elements of the matrix. In case we encode single elements of A, we assume
that each unique value in A occurs with equal probability; without other prior
knowledge, using the uniform distribution has minimax regret and is therefore
optimal. For the instance matrix, which encodes symbols to patterns, the pre-
quential code is used as demonstrated before. Note that LN is the universal prior
for the integers [9], which can be used for arbitrary integers and penalises larger
integers.

4 The Vouw Algorithm

Pattern mining often yields vast search spaces and geometric pattern mining is
no exception. We therefore use a heuristic approach, as is common in MDL-based
approaches [7,10,12]. We devise a greedy algorithm that exploits the inductive

1 We calculate code lengths in bits and therefore all logarithms have base 2.
2 The appendix is available on https://arxiv.org/abs/1911.09587.

https://arxiv.org/abs/1911.09587

Vouw: Geometric Pattern Mining Using the MDL Principle 165

definition of the search space as shown by the lattice in Fig. 4. We start with a
completely underfit model (leftmost in the lattice), where there is one instance for
each matrix element. Next, in each iteration we combine two patterns, resulting
in one or more pairs of instances to be merged (i.e., we move one step right in the
lattice). In each step we merge the pair of patterns that improves compression
most, and we repeat this until no improvement is possible.

4.1 Finding Candidates

The first step is to find the ‘best’ candidate pair of patterns for merging
(Algorithm 1). A candidate is denoted as a tuple (X,Y, δ), where X and Y are pat-
terns and δ is the relative offset of X and Y as they occur in the data. Since we only
need to consider pairs of patterns and offsets that actually occur in the instance
matrix, we can directly enumerate candidates from the instantiation matrix and
never even need to consider the original data.

Algorithm 1 FindCandidates
Input: I
Output: C
1: for all x ∈ I do
2: for all y ∈ POST(x) do
3: X ← �(x), Y ← �(y)
4: δ ← dist(X, Y)
5: if X = Y then
6: if V (x)[e] = 1 continue
7: V (y)[e] ← 1
8: end if
9: C ← C ∪ (X, Y, δ)

10: sup(X, Y, δ) += 1
11: end for
12: end for

Algorithm 2 Vouw
Input: H, I
1: C ← FindCandidates(I)
2: (X, Y, δ) ∈ C : ∀c∈CΔL((X, Y, δ)) ≤ ΔL(c)
3: ΔLbest = ΔL((X, Y, δ))
4: if ΔLbest > 0 then
5: Z ← �(X ⊗ (0, 0) + (Y ⊗ δ))
6: H ← H ∪ {Z}
7: for all xi ∈ I | �(xi) = X do
8: for all y ∈ POST(xi) | �(y) = Y do
9: xi ← Z, y ← ·

10: end for
11: end for
12: end if
13: repeat until ΔLbest < 0

The support of a candidate, written sup(X,Y, δ), tells how often it is found
in the instance matrix. Computing support is not completely trivial, as one can-
didate occurs multiple times in ‘mirrored’ configurations, such as (X,Y, δ) and
(Y,X,−δ), which are equivalent but can still be found separately. Furthermore,
due to the definition of a pattern, many potential candidates cannot be consid-
ered by the simple fact that their elements are not adjacent.

Peripheries. For each instance x we define its periphery : the set of instances
which are positioned such that their union with x produces a valid pattern. This
set is split into anterior ANT(X) and posterior POST(X) peripheries, contain-
ing instances that come before and after x in lexicographical order, respectively.
This enables us to scan the instance matrix once, in lexicographical order. For

166 M. Faas and M. van Leeuwen

each instance x, we only consider the instances POST(x) as candidates, thereby
eliminating any (mirrored) duplicates.

Self-overlap. Self-overlap happens for candidates of the form (X,X, δ). In this
case, too many or too few copies may be counted. Take for example a straight
line of five instances of X. There are four unique pairs of two X’s, but only two
can be merged at a time, in three different ways. Therefore, when considering
candidates of the form (X,X, δ), we also compute an overlap coefficient. This
coefficient e is given by e = (2NX +1)δi + δj +NX , which essentially transforms
δ into a one-dimensional coordinate space of all possible ways that X could be
arranged after and adjacent to itself. For each instance x1 a vector of bits V (x)
is used to remember if we have already encountered a combination x1, x2 with
coefficient e, such that we do not count a combination x2, x3 with an equal e.
This eliminates the problem of incorrect counting due to self-overlap.

4.2 Gain Computation

After candidate search we have a set of candidates C and their respective sup-
ports. The next step is to select the candidate that gives the best gain: the
improvement in compression by merging the candidate pair of patterns. For
each candidate c = (X,Y, δ) the gain ΔL(A′, c) is comprised of two parts: (1)
the negative gain of adding the union pattern Z to the model H, resulting in
H ′, and (2) the gain of replacing all instances x, y with relative offset δ by Z in
I, resulting in I ′. We use length functions L1, L2 to derive an equation for gain:

ΔL(A′, c) =
(
L1(H ′) + L2(I ′)

)
−

(
L1(H) + L2(I)

)

= LN (|H|) − LN (|H| + 1) − Lp(Z) +
(
L2(I ′) − L2(I)

) (3)

As we can see, the terms with L1 are simplified to −Lp(Z) and the model’s
length because L1 is simply a summation of individual pattern lengths. The
equation of L2 requires the recomputation of the entire instance matrix’ length,
which is expensive considering we need to perform it for every candidate, every
iteration. However, we can rework the function Lpp in Eq. (2) by observing that
we can isolate the logarithms and generalise them into

logG(a, b) = log
Γ (a + bε)

Γ (bε)
= log Γ (a + bε) − log Γ (bε), (4)

which can be used to rework the second part of Eq. (3) in such way that the gain
equation can be computed in constant time complexity.

L2(I ′) − L2(I) = logG(U(X), 1) + logG(U(Y), 1)
− logG(U(X) − U(Z), 1) − logG(U(Y) − U(Z), 1)
− logG(U(Z), 1) + logG(|I|, |H|) − logG(|I ′|, |H ′|)

(5)

Notice that in some cases the usages of X and Y are equal to that of Z, which
means additional gain is created by removing X and Y from the model.

Vouw: Geometric Pattern Mining Using the MDL Principle 167

4.3 Mining a Set of Patterns

In the second part of the algorithm, listed in Algorithm 2, we select the candi-
date (X,Y, δ) with the largest gain and merge X and Y to form Z, as explained
in Sect. 3.2. We linearly traverse I to replace all instances x and y with relative
offset δ by instances of Z. (X,Y, δ) was constructed by looking in the posterior
periphery of all x to find Y and δ, which means that Y always comes after X in
lexicographical order. The pivot of a pattern is the first element in lexicograph-
ical order, therefore pivot(Z) = pivot(X). This means that we can replace all
matching x with an instance of Z and all matching y with ·.

4.4 Improvements

Local Search. To improve the efficiency of finding large patterns without sac-
rificing the underlying idea of the original heuristics, we add an optional local
search. Observe that without local search, Vouw generates a large pattern X

Fig. 5. Synthetic patterns are added to a matrix filled with noise. The difference
between the ground truth and the matrix reconstructed by the algorithm is used to
compute precision and recall.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

C
om

pr
es
si
on

Signal-to-noise Ratio

256
512

1024
2048

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

R
ec
al
l

Prevalence per Pattern

128
256
512

1024

Fig. 6. The influence of SNR in the ground truth (left) and prevalence on recall (right)

168 M. Faas and M. van Leeuwen

by adding small elements to an incrementally growing pattern, resulting in a
behaviour that requires up to |X| − 1 steps. To speed this up, we can try to
‘predict’ which elements will be added to X and add them immediately. After
selecting candidate (X,Y, δ) and merging X and Y into Z, for all m resulting
instances zi ∈ z0, . . . , zm−1 we try to find pattern W and offset δ such that

∀i∈0...m∃w ∈ ANT(zi) ∪ POST(zi) · �(w) = W ∧ dist(zi, w) = δ. (6)

This yields zero or more candidates (Z,W, δ), which are then treated as any
set of candidates: candidates with the highest gain are iteratively merged until
no candidates with positive gain exist. This essentially means that we run the
baseline algorithm only on the peripheries of all zi, with the condition that the
support of the candidates is equal to that of Z.

Reusing Candidates. We can improve performance by reusing the candidate
set and slightly changing the search heuristic of the algorithm. The Best-*
heuristic selects multiple candidates on each iteration, as opposed to the baseline
Best-1 heuristic that only selects a single candidate with the highest gain. Best-*
selects candidates in descending order of gain until no candidates with positive
gain are left. Furthermore we only consider candidates that are all disjoint,
because when we merge candidate (X,Y, δ), remaining candidates with X and/or
Y have unknown support and therefore unknown gain.

5 Experiments

To asses Vouw’s practical performance we primarily use Ril, a synthetic dataset
generator developed for this purpose. Ril utilises random walks to populate a
matrix with patterns of a given size and prevalence, up to a specified density,
while filling the remainder of the matrix with noise. Both the pattern elements
and the noise are picked from the same uniform random distribution on the
interval [0, 255]. The signal-to-noise ratio (SNR) of the data is defined as the
number of pattern elements over the matrix size MN . The objective of the
experiment is to assess whether Vouw recovers all of the signal (the patterns)
and none of the noise. Figure 5 gives an example of the generated data and how
it is evaluated. A more extensive description can be found in the Appendix (see
footnote 2).

Implementation. The implementation3 used consists of the Vouw algorithm
(written in vanilla C/C++), a GUI, and the synthetic benchmark Ril. Experi-
ments were performed on an Intel Xeon-E2630v3 with 512 GB RAM.

Evaluation. Completely random data (noise) is unlikely to be compressed. The
SNR tells us how much of the data is noise and thus conveniently gives us an
upper bound of how much compression could be achieved. We use the ground
truth SNR versus the resulting compression ratio as a benchmark to tell us how
close we are to finding all the structure in the ground truth.
3 https://github.com/mickymuis/libvouw.

https://github.com/mickymuis/libvouw

Vouw: Geometric Pattern Mining Using the MDL Principle 169

In addition, we also compare the ground truth matrix to the obtained model
and instantiation. As singleton patterns do not yield any compression over the
baseline model, we reconstruct the matrix omitting any singleton patterns. Ignor-
ing the actual values, this gives us a Boolean matrix with ‘positives’ (pattern
occurrence = signal) and ‘negatives’ (no pattern = noise). By comparing each ele-
ment in this matrix with the corresponding element in the ground truth matrix,
precision and recall can be calculated and evaluated.

Figure 6 (left) shows the influence of ground truth SNR on compression ratio
for different matrix sizes. Compression ratio and SNR are clearly strongly cor-
related. Figure 6 (right) shows that patterns with a low prevalence (i.e., number
of planted occurrences) have a lower probability of being ‘detected’ by the algo-
rithm as they are more likely to be accidental/noise. Increasing the matrix size
also increases this threshold. In Table 2 we look at the influence of the two
improvements upon the baseline algorithm as described in Sect. 4.4. In terms
of quality, local search can improve the results quite substantially while Best-*
notably lowers precision. Both improve speed by an order of magnitude.

Table 2. Performance measurements for the baseline algorithm and its optimisations.

Size SNR Precision/Recall Average time

None Local Best-* Both None Local Best-* Both

256 .05 .98/.98 .99/.99 .93/.98 .95/.99 29 s 1 s 2 s 1 s

.3 .99/.8 .99/.88 .96/.82 .99/.89 2m 32 s 9 s 5 s 5 s

512 .05 .98/.97 .99/.99 .87/.97 .93/.98 5m 26 s 8 s 20 s 6 s

.3 .97/.93 .99/.99 .94/.91 .97/.90 26m 52 s 2 m 32 s 24 s 65 s

1024 .05 .97/.98 .99/.99 .84/.98 .92/.96 21m 34 s 44 s 37 s 34 s

.3 .98/.98 .99/.99 .93/.96 .98/.97 116 m 4s 7m 31 s 1m 49 s 3 m 31 s

6 Conclusions

We introduced geometric pattern mining, the problem of finding recurring struc-
tures in discrete, geometric matrices, or raster-based data. Further, we presented
Vouw, a heuristic algorithm for finding sets of geometric patterns that are good
descriptions according to the MDL principle. It is capable of accurately recover-
ing patterns from synthetic data, and the resulting compression ratios are on par
with the expectations based on the density of the data. For the future, we think
that extensions to fault-tolerant patterns and clustering have large potential.

References

1. Aggarwal, C.C., Han, J.: Frequent Pattern Mining. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-07821-2

2. Bilson, J.L.C., Keogh, E.J.: A compression-based distance measure for texture.
Statistical Analysis and Data Mining 3(6), 381–398 (2010)

https://doi.org/10.1007/978-3-319-07821-2

170 M. Faas and M. van Leeuwen

3. Deville, R., Fromont, E., Jeudy, B., Solnon, C.: GriMa: a grid mining algorithm
for bag-of-grid-based classification. In: Robles-Kelly, A., Loog, M., Biggio, B.,
Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 132–142.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49055-7 12

4. Gionis, A., Mannila, H., Seppänen, J.K.: Geometric and combinatorial tiles in 0–1
data. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD
2004. LNCS (LNAI), vol. 3202, pp. 173–184. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30116-5 18

5. Grünwald, P.D.: The Minimum Description Length Principle. MIT press, Cam-
bridge (2007)

6. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions. TCS, vol. 3. Springer, New York (2008). https://doi.org/10.1007/978-0-387-
49820-1

7. Proença, H.M., van Leeuwen, M.: Interpretable multiclass classification by MDL-
based rule lists. Inf. Sci. 12, 1372–1393 (2020)

8. Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471
(1978)

9. Rissanen, J.: A universal prior for integers and estimation by minimum description
length. Ann. Stat. 11, 416–431 (1983)

10. Smets, K., Vreeken, J.: Slim: directly mining descriptive patterns. In: Proceedings
of the 2012 SIAM International Conference on Data Mining, SIAM, pp. 236–247
(2012)

11. Tatti, N., Vreeken, J.: Discovering descriptive tile trees - by mining optimal geo-
metric subtiles. In: Proceedings of ECML PKDD 2012, pp. 9–24 (2012)

12. Vreeken, J., van Leeuwen, M., Siebes, A.: KRIMP: mining itemsets that compress.
Data Min. Knowl. Disc. 23(1), 169–214 (2011)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-49055-7_12
https://doi.org/10.1007/978-3-540-30116-5_18
https://doi.org/10.1007/978-3-540-30116-5_18
https://doi.org/10.1007/978-0-387-49820-1
https://doi.org/10.1007/978-0-387-49820-1
http://creativecommons.org/licenses/by/4.0/

A Consensus Approach to Improve NMF
Document Clustering

Mickael Febrissy(B) and Mohamed Nadif

LIPADE, Université de Paris, 75006 Paris, France
mickael.febrissy@u-paris.fr

Abstract. Nonnegative Matrix Factorization (NMF) which was origi-
nally designed for dimensionality reduction has received throughout the
years a tremendous amount of attention for clustering purposes in several
fields such as image processing or text mining. However, despite its math-
ematical elegance and simplicity, NMF has exposed a main issue which
is its strong sensitivity to starting points, resulting in NMF struggling
to converge toward an optimal solution. On another hand, we came to
explore and discovered that even after providing a meaningful initializa-
tion, selecting the solution with the best local minimum was not always
leading to the one having the best clustering quality, but somehow a bet-
ter clustering could be obtained with a solution slightly off in terms of
criterion. Therefore in this paper, we undertake to study the clustering
characteristics and quality of a set of NMF best solutions and provide a
method delivering a better partition using a consensus made of the best
NMF solutions.

Keywords: NMF · Clustering · Clustering ensemble · Consensus

1 Introduction

When dealing with text data, document clustering techniques allow to divide
a set of documents into groups so that documents assigned to the same group
are more similar to each other than to documents assigned to other groups
[12,18,21,22]. In information retrieval, the use of clustering relies on the assump-
tion that if a document is relevant to a query, then other documents in the same
cluster can also be relevant. This hypothesis can be used at different stages
in the information retrieval process, the two most notable being: cluster-based
retrieval to speed up search, and search result clustering to help users navigate
and understand what is in the search results. The document clustering which
still remains a hot topic can be tackled under different approaches. In our con-
tribution we rely on the non-negative matrix factorization for its simplicity and
popularity. We will not propose a new variant of NMF but rather a consensus
approach that will boost its performance.

Unlike supervised learning, the evaluation of clustering algorithms - unsuper-
vised learning - remains a difficult problem. When relying on generative models,
c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 171–183, 2020.
https://doi.org/10.1007/978-3-030-44584-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_14

172 M. Febrissy and M. Nadif

it is easier to evaluate the performance of a given clustering algorithm based
on the simulated partition. On real data already labeled, many papers evaluate
the performance of clustering algorithms by relying on indices such as Accuracy
(ACC), Normalized Mutual Information (NMI) [25] and Adjusted Rand Index
(ARI) [14]. However, the algorithms commonly used which are of type k-means,
EM [8], Classification EM [6], NMF [15] etc. are iterative and require several ini-
tializations; the resulting partition is the one optimizing the objective function.
Sometimes in these works, we observe comparative studies between methods on
the basis of maximum ACC/NMI/ARI measures obtained after several initializa-
tions and not optimizing the criterion used in the algorithm. Such a comparison
is thereby not accurate, because in fact these measures cannot be calculated in
practice and cannot be used in this way to evaluate the quality of a clustering
algorithm.

A fair comparison can only be made on the basis of objective functions con-
sidered in a clustering purpose; for example, within-cluster inertia, likelihood,
classification likelihood for mixture models, factorization, etc. Nonetheless, in
our experiences, we realized that while the clustering results become better in
terms of ACC/NMI/ARI when the objective function value increases, the best
value is not necessarily associated with the best results. However, by ranking
the objective values, the best partition tends to be among those leading to the
first best scores. We illustrate this behavior in Fig. 4. This remark leads us to
consider an ensemble method that is widely used in supervised learning [11,24]
but a little less in unsupervised learning [25]. If this approach, referred to as con-
sensus clustering, is often used in the context of comparing partitions obtained
with different algorithms, it is less studied considering the same algorithm.

The paper is organized as follows. In Sect. 2, we review the nonnegative
matrix factorization with the Frobenius norm and the Kullback–Leibler diver-
gence. Section 3 is devoted to describe the ensemble method and the popular
used algorithms. In Sect. 4, we perform comparisons on document-term matrices
and propose a strategy to improve document clustering with NMF.

2 Nonnegative Matrix Factorization

Nonnegative Matrix Factorization (NMF) [15], aiming to deliver a lower rank
decomposition of a nonnegative data matrix X has highlighted clustering prop-
erties for which strong connections with K-means or Spectral clustering can be
drawn [16]. However, while several variants arise in order to accommodate its
clustering property [10,29–31], its premier model formulation does not involve a
clustering objective and was originally presented as a dimension reduction algo-
rithm with exclusive nonnegative factors. More specifically in text mining where
NMF produces a meaningful interpretation for document-term matrices in com-
parison with methods like Singular Value Decomposition (SVD) components or
Latent Semantic Analysis (LSA) [7] arising factors with possible negative values.
NMF seeks to approximate a matrix X ∈ R

n×d
+ by the product of two lower rank

matrices Z ∈ R
n×g
+ and W ∈ R

d×g
+ with g(n + d) < ng. This problem can be

formulated as a constrained optimization problem

A Consensus Approach to Improve NMF Document Clustering 173

F(Z,W) = min
Z≥0,W ≥0

D(X,ZW �) (1)

where D is a fitting error allowing to measure the quality of the approximation
of X by ZW �, the most popular ones being the Frobenius norm and Kullback-
Leibler (KL) divergence. For a clustering setup, Z will be referred to as the
soft classification matrix while W will be the centers matrix. Despite its mul-
tiple applications benefits, NMF has a recurrent downside which takes place at
its initialization. NMF provides a different solution for every different initial-
isation making it substantially sensitive to starting points as its convergence
directly relies on the characteristics of the given entries. Several publications
have shown interest in finding the best way to start a NMF algorithm by provid-
ing a structured initialization, in some cases obtained from results of clustering
algorithms such as k-means or Spherical K-means [27,28] (especially for applying
NMF on document-term matrices), Nonnegative Singular Value decomposition
(NNDSVD) [4] or SVD based strategies [17]. The optimization procedures for
D respectively equal to the Frobenius norm and the KL divergence, based on
multiplicative update rules are given in Algorithms 1 and 2.

Algorithm 1. (NMF-F).
Input: X , g, Z(0); W (0).
Output: Z and W .
repeat

1. Z ← Z � X W
Z W �W

;

2. W ← W � X �Z
W Z �Z

;
until convergence
5. Normalize Z so as it has unit-length
column vectors.

Algorithm 2. (NMF-KL).
Input: X , g, Z(0); W (0).
Output: Z and W .
repeat

1. Z ← Z � (
X

Z W � W
)/ ∑

j Wjk;

2. W ← W � (
X �

W Z � Z
)/ ∑

i Zik;
until convergence
5. Normalize Z so as it has unit-length
column vectors.

3 Cluster Ensembles (CE)

In machine learning, the idea of utilizing multiple sources of data partitions
firstly occurred with multi-learner systems where the output of several classifier
algorithms where used together in order to improve the accuracy and robustness
of a classification or regression, for which strong performances were acknowl-
edged [24,25]. At this stage, very few approaches have worked toward applying
a similar concept to unsupervised learning algorithms. In this sense, we denote
the work of [5] who tried to combine several clustering partitions according to
the combination of the cluster centers. In the early 2000, [25] were the first to
consider an idea of combining several data partitions however, without accessing
any original sources of information (features) or led computed centers. This app-
roach is referred to as cluster ensembles. At the time, their idea was motivated
by the possibilities of taking advantage of existing information such as a prior
clustering partitions or an expert categorization (all regrouped under the terms

174 M. Febrissy and M. Nadif

Knowledge Reuse), which may still be relevant or substantial for a user to con-
sider in a new analysis on the same objects, whether or not the data associated
with these objects may also be different than the ones used to define the prior
partitions. Another motivation was Distributed computing, referring to analyz-
ing different sources of data (which might be complicated to merge together for
instance for privacy reasons) stored in different locations. In our concept, we will
use cluster ensembles to improve the quality of the final partition (as opposed to
selecting a unique one) and therefore extract all the possibilities offered by the
miscellaneous best solutions created by NMF.

In [25], the authors introduced three consensus methods that can produce a
partition. All of them consider the consensus problem on a hypergraph represen-
tation H of the set of partitions Hr. More specifically, each partition Hr equals
a binary classification matrix (with objects in rows and clusters in columns)
where the concatenation of all the set defines the hypergraph H.

– The first one is called Cluster-based Similarity Partitioning Algorithm
(CSPA) and consists in performing a clustering on the hypergraph according
to a similarity measure.

– The second is referred to as HyperGraph Partitioning Algorithm (HGPA)
and aims at optimizing a minimum cut objective.

– The third one is called Meta-CLustering Algorithm (MCLA) and looks for-
ward to identifying and constructing groups of clusters.

Furthermore, in [25] the authors proposed an objective function to charac-
terize the cluster ensembles problem and therefore allowing a selection of the
best consensus algorithm among the three to deliver its ensemble partition. Let
Λ = {λ(q)|q ∈ {1, . . . , r}} be a given set of r partitions λ(q) represented as labels
vectors. The ensemble criterion denoted as λ(k−opt) is called the optimal combine
clustering and aims at maximizing the Average Normalized Mutual Information
(ANMI). It is defined as follows:

λ(k−opt) = argmax
˜λ

r∑

q=1

NMI(λ̃, λ(q)) (2)

The ANMI is simply the average of the normalized mutual information of a
labels vector λ̃ with all labels vectors λ(q) in Λ:

ANMI(Λ, λ̃) =
1
r

r∑

q=1

NMI(λ̃, λ(q)) (3)

To cast with cases where the vector labels λ(q) have missing values, the authors
have proposed a generalized expression of (2) not substantially different that
viewers can refer to in the original paper [25].

A Consensus Approach to Improve NMF Document Clustering 175

4 Experiments

We conduct several experiences leading to emphasise the behavior of NMF
regarding a clustering task compared to a dedicated clustering algorithm such
as Spherical K-means referred to as S-Kmeans [9] which was introduced for clus-
tering large sets of sparse text data (or directional data) and remains appealing
for its low computational cost beside its good performances. It was also retained
along side the random starting points (generated according to an uniform distri-
bution U(0, 1)×mean(X)) as initialization for NMF. We use two error measures
frequently employed for NMF: the Frobenius norm (which will be referred to as
NMF-F) and the Kullback-Leibler divergence (NMF-KL). Eventually, we compute
the consensus partition by using the Cluster Ensemble Python package1 which
utilizes the consensus methods defined earlier [25].

4.1 Datasets

We apply NMF on 5 bench-marking document-term matrices for which the
detailed characteristics are available in Table 1 where nz indicates the percentage
of values other than 0 and the balance coefficient is defined as the ratio of the
number of documents in the smallest class to the number of documents in the
largest class. These datasets highlight several varieties of challenging situations
such as the amount of clusters, the dimensions, the clusters balance, the degree
of mixture of the different groups and the sparsity. We normalized each data
matrix with TF-IDF and their respective documents-vectors to unit L2-norm to
remove the bias introduced by their length.

Table 1. Datasets description: # denotes the cardinality

Datasets Characteristics

#Documents #Words #Clusters nz(%) Balance

CSTR 475 1000 4 3.40 0.399

CLASSIC4 7095 5896 4 0.59 0.323

RCV1 6387 16921 4 0.25 0.080

NG5 4905 10167 5 0.92 0.943

NG20 18846 14390 20 0.59 0.628

4.2 NMF Raw Performances and Initialization

The results obtained by NMF-F and NMF-KL according to S-Kmeans and the
random starting points are available in Table 2. The clustering quality of the

1 https://pypi.org/project/Cluster Ensembles/.

https://pypi.org/project/Cluster_Ensembles/

176 M. Febrissy and M. Nadif

S-Kmeans partitions given as entry to both algorithms are also displayed. We
make use of two relevant measures to quantify and assess the clustering qual-
ity of each algorithm. The first one is the NMI [25] which quantifies how much
information the clustering partition shares with the true partition, the second
is the ARI [14], sensitive to the clusters proportions and measures the degree of
agreement between the clustering and the true partition. To replicate a relevant
user experience achieving an unsupervised task, we refer to the criterion of each
algorithm in order to select the 10 first best solutions (out of 30 runs) and report
their average NMI and ARI with the true partition.

One can clearly see that NMF-F and NMF-KL do not react similarly to the
different initializations. While NMF-F substantially benefits from the S-kmeans
initialization on every datasets compared to the random initialization, NMF-KL
does not seem to accommodate S-kmeans entries. In fact, S-Kmeans as starting
values seems to worsen NMF-KL solutions, especially on CLASSIC4 and NG5.
For this reason, we will avoid this initialization strategy for NMF-KL in the future
although it improves on RCV1. Also, NMF-KL with a random initialization pro-
vides much better results than the other algorithms on almost all datasets.

Table 2. Mean and standard deviation of NMI and ARI computed over the 10 best
solutions.

Datasets Metrics Skmeans NMF-F (Random) NMF-F (Skmeans) NMF-KL (Random) NMF-KL (Skmeans)

CSTR NMI 0.76± 0.007 0.65± 0.002 0.73± 0.04 0.73± 0.03 0.76± 0.006

ARI 0.80± 0.007 0.55± 0.002 0.75± 0.10 0.77± 0.04 0.80± 0.006

CLASSIC4 NMI 0.60± 0.001 0.53± 0.003 0.59± 0.002 0.71± 0.02 0.61± 0.03

ARI 0.47± 0.0009 0.45± 0.003 0.47± 0.002 0.65± 0.06 0.47± 0.004

RCV1 NMI 0.38± 0.0003 0.35± 0.0005 0.38± 0.0002 0.47± 0.02 0.53± 0.002

ARI 0.18± 0.0004 0.13± 0.0008 0.18± 0.0003 0.42± 0.02 0.46± 0.02

NG5 NMI 0.72± 0.02 0.56± 1.0e−05 0.72± 0.02 0.80± 0.03 0.79± 0.003

ARI 0.60± 0.01 0.33± 2.5e−05 0.60± 0.01 0.82± 0.04 0.76± 0.005

NG20 NMI 0.49± 0.02 0.41± 0.01 0.49± 0.02 0.48± 0.02 0.51± 0.01

ARI 0.30± 0.02 0.23± 0.01 0.30± 0.02 0.34± 0.02 0.32± 0.02

We reported in Figs. 1, 2, 3 and 4 the clustering quality of the algorithm’s
solutions ranked from the best one in terms of criterion to the poorest one. The
respective criterion of each algorithm is normalized to belong to [0, 1].

When one does have the real partition, a common practice to evaluate the
clustering result, one relies on the best solution obtained by optimizing the
objective function. Figures 1 and 3 highlight a critical behavior of NMF-F which
tends to produce solutions with the lowest minima that do not fulfil the best
clustering partitions, sometimes with a substantial gap (see CSTR, RCV1, NG5
in Fig. 1). Moreover, a surprising lesser but still similar behavior is delivered by
S-Kmeans which compared to NMF, optimizes a clustering objective by definition.
The results are displayed in Fig. 2. In reality, this behavior can be observed with
several types of what we refer to clustering algorithms hosting an optimization
procedure. Initializing NMF-F randomly as shown in Fig. 3 seems to lighten this

A Consensus Approach to Improve NMF Document Clustering 177

CSTR CLASSIC4 RCV1

NG5 NG20

Fig. 1. NMF-F: NMI/ARI behaviour according to the objective function F (initializa-
tions by S-Kmeans)

effect (on CSTR, Classic4 and RCV1). On another hand, NMF-KL which to this
day remains recognized as a relevant method for document clustering [13] seems
to consistently deliver solutions with the lowest criteria aligned with the goodness
of their clustering, sustaining the use of NMF for clustering purposes. Further-
more, compared to all, NMF-KL is the only method emphasizing a wide variety
of solutions and therefore seems to explore way more possibilities than NMF-F
or S-Kmeans. Its better behavior might almost comfort the idea of selecting the
best partition in terms of criterion as the one to keep. However, it still fails on
RCV1 which is the toughest dataset to partition mainly because of its scant
density. Eventually, it remains concerning to select the best partition just based
on the fact that, even with NMF-KL, the solution among the best ones providing
the best clustering, is not necessarily the first one (see on CSTR, CLASSIC4
and NG5).

In addition, while the best solutions possibly share a similar amount of infor-
mation with the true partition, they could be fairly distinct from each other,
making their use appealing to deduce an even more exhaustive solution. Figure 5
shows results of pairwise NMI and ARI between the top 10 partitions (criterion-
wise) of each algorithm. NMF-KL’s best solutions appear to be fairly different
among each other.

178 M. Febrissy and M. Nadif

CSTR CLASSIC4 RCV1

NG5 NG20

Fig. 2. S-Kmeans: NMI/ARI behaviour according to the objective function F (Random
initializations)

CSTR CLASSIC4 RCV1

NG5 NG20

Fig. 3. NMF-F: NMI/ARI behaviour according to the objective function F (Random
initializations)

A Consensus Approach to Improve NMF Document Clustering 179

CSTR CLASSIC4 RCV1

NG5 NG20

Fig. 4. NMF-KL: NMI/ARI behaviour according to the objective function F (Random
initializations)

Average pairwise NMI Average pairwise ARI

Fig. 5. Average pairwise NMI & ARI between top 10 solutions

4.3 Consensus Clustering

Following the previous statement, we went ahead and computed a cluster ensem-
ble (CE) for NMF-F and NMF-KL according to their best initialization strategy as
well as for S-Kmeans due to its pertinence for initializing NMF-F and the method
being widely known as relevant for document clustering. The results are reported
in Table 3. It appears that the consensus obtained with the top 10 results of each
method generally outperforms the best solution. This result is even stronger for
NMF-KL where the ensemble clustering increases the NMI and ARI by respec-
tively 11 and 13 points on NG20. Note that NG20 is the dataset where the

180 M. Febrissy and M. Nadif

average pairwise NMI and ARI between the 10 top partitions are the lowest,
meaning the most different (see Fig. 5). Furthermore, it is interesting to note
that these performances are obtained from solutions giving an average NMI and
ARI smaller than the best solution itself.

Table 3. Mean and standard deviation, first best result and CE consensus computed
over the 10 best solutions.

Datasets Metrics NMF-F (Skmeans) Skmeans NMF-KL (Random)

Mean± SD (best) CE Mean± SD (best) CE Mean± SD (best) CE

CSTR NMI 0.73± 0.04 (0.65) (0.76) 0.76± 0.007 (0.77) (0.77) 0.73± 0.03 (0.76) (0.80)

ARI 0.75± 0.10 (0.56) (0.80) 0.80± 0.007 (0.80) (0.80) 0.77± 0.04 (0.81) (0.83)

CLASSIC4 NMI 0.59± 0.002 (0.59) (0.59) 0.60± 0.001 (0.59) (0.60) 0.71± 0.02 (0.72) (0.74)

ARI 0.47± 0.002 (0.47) (0.47) 0.47± 0.0009 (0.47) (0.47) 0.65± 0.06 (0.65) (0.72)

RCV1 NMI 0.38± 0.0002 (0.38) (0.35) 0.38± 0.0003 (0.38) (0.35) 0.47± 0.02 (0.47) (0.52)

ARI 0.18± 0.0003 (0.18) (0.26) 0.18± 0.0004 (0.18) (0.26) 0.42± 0.02 (0.43) (0.46)

NG5 NMI 0.72± 0.02 (0.74) (0.76) 0.72± 0.02 (0.73) (0.75) 0.80± 0.03 (0.83) (0.86)

ARI 0.60± 0.01 (0.61) (0.60) 0.60± 0.01 (0.60) (0.64) 0.82± 0.04 (0.85) (0.88)

NG20 NMI 0.49± 0.02 (0.51) (0.50) 0.49± 0.02 (0.51) (0.50) 0.48± 0.02 (0.50) (0.61)

ARI 0.30± 0.02 (0.32) (0.34) 0.30± 0.02 (0.32) (0.34) 0.34± 0.02 (0.36) (0.49)

4.4 Consensus Multinomial

Following the cluster-based consensus approach which implies a similarity-
based clustering algorithm, we decided to make use of a model-based cluster-
ing to go and try to obtain a better final partition than the one delivered by
cluster ensembles. In [26], the authors have used the Multinomial mixture app-
roach to propose a consensus function. In model-based clustering, it is assumed
that the data are generated by a mixture of underlying probability distributions,
where each component k of the mixture represents a cluster.

Let Λ ∈ N
n×r
0 be the data matrix of labels vectors from the top r solutions.

Our data being categorical, we used a Multinomial Mixture Model (MMM) in
order to partition the elements λi. Categorical data being a generalization of
binary data; assuming a perfect scenario where there is no partition with an
empty cluster, a disjunctive matrix M ∈ {0, 1}n×rg is usually used instead of Λ

with value m
(h)
iq where h ∈ {1, . . . , g} is a cluster label. Therefore, the data values

m
(h)
iq are assumed to be generated from a Multinomial distribution of parameter

M(m(h)
iq ;α(h)

kq) where α
(h)
kq is the probability that an element mi in the group

k takes the category h for the partition/variable λq. The density probability
function of the model can be stated as:

f(M ;θ) =
n∏

i=1

g∑

k=1

πk

r,g∏

q,h

(α(h)
kq)m

(h)
iq (4)

where θ = (π,α) are the parameters of the model with π = (π1, . . . , πk) being
the proportions and α the vector of the components parameters.

A Consensus Approach to Improve NMF Document Clustering 181

Table 4. MMM consensus results over the 10 best solutions

Datasets Metrics NMF-KL (Random)

Mean±SD (best) CE MMM

CSTR NMI 0.73 ± 0.03 (0.76) (0.80) (0.77)

ARI 0.77 ± 0.04 (0.81) (0.83) (0.82)

CLASSIC4 NMI 0.71 ± 0.02 (0.72) (0.74) (0.77)

ARI 0.65 ± 0.06 (0.65) (0.72) (0.75)

RCV1 NMI 0.47 ± 0.02 (0.47) (0.52) (0.52)

ARI 0.42 ± 0.02 (0.43) (0.46) (0.46)

NG5 NMI 0.80 ± 0.03 (0.83) (0.86) (0.86)

ARI 0.82 ± 0.04 (0.85) (0.88) (0.89)

NG20 NMI 0.48 ± 0.02 (0.50) (0.61) (0.63)

ARI 0.34 ± 0.02 (0.36) (0.49) (0.50)

The Rmixmod package2 is used to achieve our analysis. We employ the
default settings to compute the clustering, allowing the selection between 10 par-
simonious models according to the Bayesian information Criterion (BIC) [23].
With CSTR, the model mainly selected is the one keeping the proportions πk

free with the model also independent from the variables (labels vectors), mean-
ing M(m(h)

iq ;αk). CSTR is the dataset with the highest pairwise NMI and ARI
therefore with the most similar best solutions. On CLASSIC4 and RCV1 where
the pairwise NMI & ARI are a little bit lower, it is the model with free propor-
tions and parameters α depending on distinct components and labels vectors
(M(m(h)

iq ;α(h)
kq)) which is mainly chosen. On NG5 where the best solutions are

fairly similar (high pairwise NMI & ARI), it is the model depending on the
components and the labels vectors which has been retained. However, the pro-
portions here were kept equal. For NG20 where the best solutions were fairly
distinct, the model selected is the one depending on the components and the
variables. As previously, the proportions πk are kept equal. Following the char-
acteristics in Table 1, it is notable to see that the datasets where the proportions
are kept equal are actually those with the more balanced real clusters propor-
tions. The results of the obtained consensus are displayed in Table 4 which only
retains prior results of NMF-KL top 10 solutions and CE consensus, as they were
the best overall. Apart from CSTR, we can see that MMM does a better job at
computing a better partition from the top 10 solutions than CE.

5 Conclusion

In this paper, by using cluster ensembles, we have proposed a simple method to
obtain a better clustering for the scope of NMF algorithms on text data. From its

2 https://cran.r-project.org/web/packages/Rmixmod/Rmixmod.pdf.

https://cran.r-project.org/web/packages/Rmixmod/Rmixmod.pdf

182 M. Febrissy and M. Nadif

gathering nature, this process should also alleviate the uncertainty based around
the overall quality of the final partition compared to other selection practices
such as keeping an unique solution according to the best criterion. Furthermore,
we have shown that it was possible to improve the consensus quality through the
use of finite mixture models, allowing more powerful underlying settings than
cluster-based consensus involving plain similarities or distances. A future work
will be to investigate the use of cluster ensembles for other recent clustering
algorithms [1–3,19,20].

References

1. Ailem, M., Salah, A., Nadif, M.: Non-negative matrix factorization meets word
embedding. In: SIGIR, pp. 1081–1084 (2017)

2. Allab, K., Labiod, L., Nadif, M.: A semi-NMF-PCA unified framework for data
clustering. IEEE Trans. Knowl. Data Eng. 29(1), 2–16 (2016)

3. Allab, K., Labiod, L., Nadif, M.: Simultaneous spectral data embedding and clus-
tering. IEEE Trans. Neural Netw. Learn. Syst. 29(12), 6396–6401 (2018)

4. Boutsidis, C., Gallopoulos, E.: SVD based initialization: a head start for nonneg-
ative matrix factorization. Pattern Recogn. 41(4), 1350–1362 (2008)

5. Bradley, P.S., Fayyad, U.M.: Refining initial points for k-means clustering. In:
ICML, vol. 98, pp. 91–99. Citeseer (1998)

6. Celeux, G., Govaert, G.: A classification EM algorithm for clustering and two
stochastic versions. Comput. Stat. Data Anal. 14(3), 315–332 (1992)

7. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Index-
ing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)

8. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–22
(1977)

9. Dhillon, I.S., Modha, D.S.: Concept decompositions for large sparse text data using
clustering. Mach. Learn. 42(1–2), 143–175 (2001)

10. Ding, C., Li, T., Peng, W., Park, H.: Orthogonal nonnegative matrix t-
factorizations for clustering. In: SIGKDD, pp. 126–135. ACM (2006)

11. Ghosh, J.: Multiclassifier systems: back to the future. In: Roli, F., Kittler, J. (eds.)
MCS 2002. LNCS, vol. 2364, pp. 1–15. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45428-4 1

12. Govaert, G., Nadif, M.: Mutual information, phi-squared and model-based co-
clustering for contingency tables. Adv. Data Anal. Classif. 12(3), 455–488 (2016).
https://doi.org/10.1007/s11634-016-0274-6

13. Hosseini-Asl, E., Zurada, J.M.: Nonnegative matrix factorization for document
clustering: a survey. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz,
R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8468, pp.
726–737. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07176-3 63

14. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)
15. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In:

Advances in Neural Information Processing Systems, pp. 556–562 (2001)
16. Li, T., Ding, C.: The relationships among various nonnegative matrix factorization

methods for clustering. In: ICDM, pp. 362–371 (2006)
17. Qiao, H.: New SVD based initialization strategy for non-negative matrix factor-

ization. Pattern Recogn. Lett. 63, 71–77 (2015)

https://doi.org/10.1007/3-540-45428-4_1
https://doi.org/10.1007/3-540-45428-4_1
https://doi.org/10.1007/s11634-016-0274-6
https://doi.org/10.1007/978-3-319-07176-3_63

A Consensus Approach to Improve NMF Document Clustering 183

18. Role, F., Morbieu, S., Nadif, M.: Coclust: a Python package for co-clustering. J.
Stat. Softw. 88, 1–29 (2019)

19. Salah, A., Ailem, M., Nadif, M.: A way to boost SEMI-NMF for document clus-
tering. In: CIKM, pp. 2275–2278 (2017)

20. Salah, A., Ailem, M., Nadif, M.: Word co-occurrence regularized non-negative
matrix tri-factorization for text data co-clustering. In: AAAI, pp. 3992–3999 (2018)

21. Salah, A., Nadif, M.: Model-based von Mises-Fisher co-clustering with a conscience.
In: Proceedings of the 2017 SIAM International Conference on Data Mining, pp.
246–254. SIAM (2017)

22. Salah, A., Nadif, M.: Directional co-clustering. Adv. Data Anal. Classif. 13(3),
591–620 (2018). https://doi.org/10.1007/s11634-018-0323-4

23. Schwarz, G., et al.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464
(1978)

24. Sharkey, A.J.: Multi-net systems. In: Sharkey, A.J.C. (ed.) Combining Artificial
Neural Nets, pp. 1–30. Springer, London (1999). https://doi.org/10.1007/978-1-
4471-0793-4 1

25. Strehl, A., Ghosh, J.: Cluster ensembles-a knowledge reuse framework for combin-
ing multiple partitions. J. Mach. Learn. Res. 3(Dec), 583–617 (2002)

26. Topchy, A., Jain, A.K., Punch, W.: A mixture model for clustering ensembles. In:
SDM, pp. 379–390. SIAM (2004)

27. Wild, S., Curry, J., Dougherty, A.: Improving non-negative matrix factorizations
through structured initialization. Pattern Recogn. 37(11), 2217–2232 (2004)

28. Wild, S., Wild, W.S., Curry, J., Dougherty, A., Betterton, M.: Seeding non-negative
matrix factorizations with the spherical k-means clustering. Ph.D. thesis, Univer-
sity of Colorado (2003)

29. Yang, Z., Oja, E.: Linear and nonlinear projective nonnegative matrix factorization.
IEEE Trans. Neural Netw. 21(5), 734–749 (2010)

30. Yoo, J., Choi, S.: Orthogonal nonnegative matrix factorization: multiplicative
updates on stiefel manifolds. In: Fyfe, C., Kim, D., Lee, S.-Y., Yin, H. (eds.)
IDEAL 2008. LNCS, vol. 5326, pp. 140–147. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-88906-9 18

31. Yuan, Z., Oja, E.: Projective nonnegative matrix factorization for image compres-
sion and feature extraction. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.)
SCIA 2005. LNCS, vol. 3540, pp. 333–342. Springer, Heidelberg (2005). https://
doi.org/10.1007/11499145 35

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/s11634-018-0323-4
https://doi.org/10.1007/978-1-4471-0793-4_1
https://doi.org/10.1007/978-1-4471-0793-4_1
https://doi.org/10.1007/978-3-540-88906-9_18
https://doi.org/10.1007/978-3-540-88906-9_18
https://doi.org/10.1007/11499145_35
https://doi.org/10.1007/11499145_35
http://creativecommons.org/licenses/by/4.0/

Discriminative Bias for Learning
Probabilistic Sentential Decision

Diagrams

Laura Isabel Galindez Olascoaga1(B), Wannes Meert2, Nimish Shah1,
Guy Van den Broeck3, and Marian Verhelst1

1 Electrical Engineering Department, KU Leuven, Leuven, Belgium
{laura.galindez,nimish.shah,marian.verhelst}@esat.kuleuven.be

2 Computer Science Department, KU Leuven, Leuven, Belgium
wannes.meert@cs.kuleuven.be

3 Computer Science Department, University of California, Los Angeles, USA
guyvdb@cs.ucla.edu

Abstract. Methods that learn the structure of Probabilistic Senten-
tial Decision Diagrams (PSDD) from data have achieved state-of-the-art
performance in tractable learning tasks. These methods learn PSDDs
incrementally by optimizing the likelihood of the induced probability
distribution given available data and are thus robust against missing val-
ues, a relevant trait to address the challenges of embedded applications,
such as failing sensors and resource constraints. However PSDDs are out-
performed by discriminatively trained models in classification tasks. In
this work, we introduce D-LearnPSDD, a learner that improves the
classification performance of the LearnPSDD algorithm by introducing
a discriminative bias that encodes the conditional relation between the
class and feature variables.

Keywords: Probabilistic models · Tractable inference · PSDD

1 Introduction

Probabilistic machine learning models have shown to be a well suited approach
to address the challenges inherent to embedded applications, such as the need
to handle uncertainty and missing data [11]. Moreover, current efforts in the
field of Tractable Probabilistic Modeling have been making great strides towards
successfully balancing the trade-offs between model performance and inference
efficiency: probabilistic circuits, such as Probabilistic Sentential Decision Dia-
grams (PSDDs), Sum-Product Networks (SPNs), Arithmetic Circuits (ACs)
and Cutset Networks, posses myriad desirable properties [4] that make them
amenable to application scenarios where strict resource budget constraints must
be met [12]. But these models’ robustness against missing data—from learn-
ing them generatively—is often at odds with their discriminative capabilities.

c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 184–196, 2020.
https://doi.org/10.1007/978-3-030-44584-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_15&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_15

Discriminative Bias for Learning PSDDs 185

We address such a conflict by proposing a discriminative-generative probabilis-
tic circuit learning strategy, which aims to improve the models’ discriminative
capabilities, while maintaining their robustness against missing features.

We focus in particular on the PSDD [17], a state-of-the-art tractable rep-
resentation that encodes a joint probability distribution over a set of random
variables. Previous work [12] has shown how to learn hardware-efficient PSDDs
that remain robust to missing data and noise. This approach relies largely on the
LearnPSDD algorithm [20], a generative algorithm that incrementally learns
the structure of a PSDD from data. Moreover, it has been shown how to exploit
such robustness to trade off resource usage with accuracy. And while the achieved
accuracy is competitive when compared to Bayesian Network classifiers, dis-
criminatively learned models perform consistently better than purely generative
models [21] since the latter remain agnostic to the discriminative task they ought
to perform. This begs the question of whether the discriminative performance of
the PSDD could be improved while remaining robust and tractable.

In this work, we propose a hybrid discriminative-generative PSDD learning
strategy, D-LearnPSDD, that enforces the discriminative relationship between
class and feature variables by capitalizing on the model’s ability to encode
domain knowledge as a logic formula. We show that this approach consistently
outperforms the purely generative PSDD and is competitive compared to other
classifiers, while remaining robust to missing values at test time.

2 Background

Notation. Variables are denoted by upper case letters X and their instantiations
by lower case letters x. Sets of variables are denoted in bold upper case X and
their joint instantiations in bold lower case x. For the classification task, the
feature set is denoted by F while the class variable is denoted by C.

Fig. 1. A Bayesian network and its equivalent PSDD (taken from [20]).

186 L. I. Galindez Olascoaga et al.

PSDD. Probabilistic Sentential Decision Diagrams (PSDDs) are circuit repre-
sentations of joint probability distributions over binary random variables [17].
They were introduced as probabilistic extensions to Sentential Decision Dia-
grams (SDDs) [7], which represent Boolean functions as logical circuits. The
inner nodes of a PSDD alternate between AND gates with two inputs and OR
gates with arbitrary number of inputs; the root must be an OR node; and each
leaf node encodes a distribution over a variable X (see Fig. 1c). The combination
of an OR gate with its AND gate inputs is referred to as decision node, where
the left input of the AND gate is called prime (p), and the right is called sub
(s). Each of the n edges of a decision node are annotated with a normalized
probability distribution θ1, ..., θn.

PSDDs possess two important syntactic restrictions: (1) Each AND node
must be decomposable, meaning that its input variables must be disjoint. This
property is enforced by a vtree, a binary tree whose leaves are the random vari-
ables and which determines how will variables be arranged in primes and subs
in the PSDD (see Fig. 1d): each internal vtree node is associated with the PSDD
nodes at the same level, variables appearing in the left subtree X are the primes
and the ones appearing in the right subtree Y are the subs. (2) Each decision
node must be deterministic, thus only one of its inputs can be true.

Each PSDD node q represents a probability distribution. Terminal nodes
encode a univariate distributions. Decision nodes, when normalized for a vtree
node with X in its left subtree and Y in its right subtree, encode the following
distribution over XY (see also Fig. 1a and c):

Prq(XY) =
∑

i

θiPrpi
(X)Prsi(Y) (1)

Thus, each decision node decomposes the distribution into independent distri-
butions over X and Y. In general, prime and sub variables are independent at
PSDD node q given the prime base [q] [17]. This base is the support of the node’s
distribution, over which it defines a non-zero probability and it is written as a
logical sentence using the recursion [q] =

∨
i[pi] ∧ [si]. Kisa et al. [17] show that

prime and sub variables are independent in PSDD node q given a prime base:

Prq(XY|[pi]) = Prpi
(X|[pi])Prsi(Y|[pi]) (2)

= Prpi
(X)Prsi(Y)

This equation encodes context specific independence [2], where variables (or sets
of variables) are independent given a logical sentence. The structural constraints
of the PSDD are meant to exploit such independencies, leading to a represen-
tation that can answer a number of complex queries in polynomial time [1],
which is not guaranteed when performing inference on Bayesian Networks, as
they don’t encode and therefore can’t exploit such local structures.

LearnPSDD. The LearnPSDD algorithm [20] generatively learns a PSDD by
maximizing log-likelihood given available data. The algorithm starts by learn-
ing a vtree that minimizes the mutual information among all possible sets of

Discriminative Bias for Learning PSDDs 187

variables. This vtree is then used to guide the PSDD structure learning stage,
which relies on the iterative application of the Split and Clone operations [20].
These operations keep the PSDD syntactically sound while improving likelihood
of the distribution represented by the PSDD. A problem with LearnPSDD
when using the resulting model for classification is that when the class variable
is only weakly dependent on the features, the learner may choose to ignore that
dependency, potentially rendering the model unfit for classification tasks.

3 A Discriminative Bias for PSDD Learning

Generative learners such as LearnPSDD optimize the likelihood of the distribu-
tion given available data rather than the conditional likelihood of the class vari-
able C given a full set of feature variables F. As a result, their accuracy is often
worse than that of simple models such as Naive Bayes (NB), and its close relative
Tree Augmented Naive Bayes (TANB) [12], which perform surprisingly well on
classification tasks even though they encode a simple—or naive—structure [10].
One of the main reasons for their performance, despite being generative, is that
(TA)NB models have a discriminative bias that directly encodes the conditional
dependence of all the features on the class variable.

We introduce D-LearnPSDD, an extension to LearnPSDD based on the
insight that the learned model should satisfy the “class conditional constraint”
present in Bayesian Network classifiers. That is, all feature variables must be
conditioned on the class variable. This enforces a structure that is beneficial for
classification while still allowing to generatively learn a PSDD that encodes the
distribution over all variables using a state-of-the-art learning strategy [20].

3.1 Discriminative Bias

The classification task can be stated as a probabilistic query:

Pr(C|F) ∼ Pr(F|C) · Pr(C). (3)

Our goal is to learn a PSDD whose root decision node directly represents the
conditional probability distribution Pr(F|C). This can be achieved by forcing
the primes of the first line in Eq. 2 to be [p0] = [¬c] and [p1] = [c], where [c]
states that the propositional variable c representing the class variable is true
(i.e. C = 1), and similarly [¬c] represents C = 0. For now we assume the class is
binary and will show later how to generalize to a multi-valued class variable. For
the feature variables we can assume they are binary without loss of generality
since a multi-valued variable can be converted to a set of binary variables via a
one-hot encoding (see, for example [20]). To achieve our goal we first need the
following proposition:

Proposition 1. Given (i) a vtree with a single variable C as the prime and
variables F as the sub of the root node, and (ii) an initial PSDD where the
root decision node decomposes the distribution as [root] = ([p0] ∧ [s0]) ∨ ([p1] ∧
[s1]); applying the Split and Clone operators will never change the root decision
decomposition [root] = ([p0] ∧ [s0]) ∨ ([p1] ∧ [s1]).

188 L. I. Galindez Olascoaga et al.

Proof. The D-LearnPSDD algorithm iteratively applies two operations: Clone
and Split (following the algorithm in [20]). First, the Clone operator requires a
parent node, which is not available for the root node. Since the initial PSDD
follows the logical formula described above, whose only restriction is on the root
node, there is no parent available to clone and the root’s base thus remains intact
when applying the Clone operator. Second, the Split operator splits one of the
subs to extend the sentence that is used to mutually exclusively and exhaustively
define all children. Since the given vtree has only one variable, C, as the prime
of the root node, there are no other variables available to add to the sub. The
Split operator cant thus not be applied anymore and the root’s base stays intact
(see Figs. 1c and d).

We can now show that the resulting PSDD contains nodes that directly
represent the distribution Pr(F|C).

Proposition 2. A PSDD of the form [root] = ([¬c] ∧ [s0]) ∨ ([c] ∧ [s1]) with c
the propositional variable stating that the class variable is true, and s0 and s1
any formula with propositional feature variables f0, . . . , fn, directly expresses the
distribution Pr(F|C).

Proof. Applying this to Eq. 1 results in:

Prq(CF) = Pr¬c(C)Prs0(F) + Prc(C)Prs1(F)
= Pr¬c(C|[¬c]) · Prs0(F|[¬c]) + Prc(C|[c]) · Prs1(F|[c])
= Pr¬c(C = 0) · Prs0(F|C = 0) + Prc(C = 1) · Prs1(F|C = 1)

The learned PSDD thus contains a node s0 with distribution Prs0 that
directly represents Pr(F|C = 0) and a node s1 with distribution Prs1 that rep-
resents Pr(F|C = 1). The PSDD thus encodes Pr(F|C) directly because the two
possible value assignments of C are C = 0 and C = 1.

The following examples illustrate why both the specific vtree and initial
PSDD are required.

Example 1. Figure 2b shows a PSDD that encodes a fully factorized probability
distribution normalized for the vtree in Fig. 2a. The PSDD shown in this example
initializes the incremental learning procedure of LearnPSDD [20]. Note that
the vtree does not connect the class variable C to all feature variables (e.g.
F1). Therefore, when initializing the algorithm on this vtree-PSDD combination,
there are no guarantees that the conditional relations between certain features
and the class will be learned.

Example 2. Figure 2e shows a PSDD that explicitly conditions the feature vari-
ables on the class variables by normalizing for the vtree in Fig. 2c and by fol-
lowing the logical formula from Proposition 2. This biased PSDD is then used to
initialize the D-LearnPSDD learner. Note that the vtree in Fig. 2c forces the
prime of the root node to be the class variable C.

Discriminative Bias for Learning PSDDs 189

Example 3. Figure 2d shows, however, that only setting the vtree in Fig. 2c is
not sufficient for the learner to condition the features on the class. When initial-
izing on a PSDD that encodes a fully factorized formula, and then applying the
Split and Clone operators, the relationship between the class variable and the
features are not guaranteed to be learned. In this worst case scenario, the learned
model could have an even worse performance than the case from Example 1. By
applying Eq. 1 on the top split, we can give intuition why this is the case:

Prq(CF) = Prp0(C|[c ∨ ¬c]) · Prs0(F|[c ∨ ¬c])
= (Prp1(C|[c]) + Prp2(C|[¬c])) · Prs0(F|[c ∨ ¬c])
= (Prp1(C = 1) + Prp2(C = 0)) · Prs0(F)

The PSDD thus encodes a distribution that assumes that the class variable is
independent from all feature variables. While this model might still have a high
likelihood, its classification accuracy will be low.

We have so far introduced the D-LearnPSDD for a binary classification
task. However, it can be easily generalized to an n-valued classification scenario:
(1) The class variable C will be represented by multiple propositional variables
c0, c1, . . . , cn that represent the set C = 0, C = 1, . . . , C = n, of which exactly
one will be true at all times. (2) The vtree in Proposition 1 now starts as a
right-linear tree over c0, . . . , cn. The F variables are the sub of the node that
has cn as prime. (3) The initial PSDD in Proposition 2 now has a root the
form [root] =

∨
i=0...n([ci

∧
j:0...n∧i�=j ¬cj] ∧ [si]), which remains the same after

applying Split and Clone. The root decision node now represents the distribution
Prq(CF) =

∑
i:0...n Prci

∧
j �=i ¬cj (C = i) · Prsi(F|C = i) and therefore has nodes

at the top of the tree that directly represent the discriminative bias.

3.2 Generative Bias

Learning the distribution over the feature variables is a generative learning pro-
cess and we can achieve this by applying the Split and Clone operators in the
same way as the original LearnPSDD algorithm. In the previous section we had
not yet defined how should Pr(F|C) from Proposition 2 be represented in the ini-
tial PSDD, we only explained how our constraint enforces it. So the question is
how do we exactly define the nodes corresponding to s0 and s1 with distribu-
tions Pr(F|C = 0) and Pr(F|C = 1)? We follow the intuition behind (TA)NB
and start with a PSDD that encodes a distribution where all feature variables
are independent given the class variable (see Fig. 2e). Next, the LearnPSDD
algorithm will incrementally learn the relations between the feature variables by
applying the Split and Clone operations following the approach in [20].

3.3 Obtaining the Vtree

In learnPSDD, the decision nodes decompose the distribution into independent
distributions. Thus, the vtree is learned from data by maximizing the approxi-
mate pairwise mutual information, as this metric quantifies the level of indepen-
dence between two sets of variables. For D-LearnPSDD we are interested in

190 L. I. Galindez Olascoaga et al.

the level of conditional independence between sets of feature variables given the
class variable. We thus obtain the vtree by optimizing for Conditional Mutual
Information instead and replace mutual information in the approach in [20] with:
CMI(X,Y|Z) =

∑
x

∑
y

∑
z Pr(xy) log Pr(z) Pr(xyz)

Pr(xz) Pr(yz) .

Fig. 2. Examples of vtrees and initial PSDDs.

4 Experiments

Table 1. Datasets
Dataset |F| |C| |N |
Australian 40 2 690
Breast 28 2 683
Chess 39 2 3196
Cleve 25 2 303
Corral 6 2 160
Credit 42 2 653
Diabetes 11 2 768
German 54 2 1000
Glass 17 6 214
Heart 9 2 270
Iris 12 3 150
Mofn 10 2 1324
Pima 11 2 768
Vehicle 57 2 846
Waveform 109 3 5000

We compare the performance of D-LearnPSDD,
LearnPSDD, two generative Bayesian classifiers
(NB and TANB) and a discriminative classifier
(logistic regression). In particular, we discuss the
following research queries: (1) Sect. 4.2 examines
whether the introduced discriminative bias improves
classification performance on PSDDs. (2) Sect. 4.3
analyzes the impact of the vtree and the imposed
structural constraints on model tractability and
performance. (3) Finally, Sect. 4.4 compares the
robustness to missing values for all classification
approaches.

Discriminative Bias for Learning PSDDs 191

4.1 Setup

We ran our experiments on the suite of 15 standard machine learning bench-
marks listed in Table 1. All of the datasets come from the UCI machine learning
repository [8], with exception of “Mofn” and “Corral” [18]. As pre-processing
steps, we applied the discretization method described in [9], and we binarized all
variables using a one-hot encoding. Moreover, we removed instances with miss-
ing values and features whose value was always equal to 0. Table 1 summarizes
the number of binary features |F|, the number of classes |C| and the available
number of training samples |N| per dataset.

4.2 Evaluation of DG-LearnPSDD

Table 2 compares D-LearnPSDD, LearnPSDD, Naive Bayes (NB), Tree Aug-
mented Naive Bayes (TANB) and logistic regression (LogReg)1 in terms of accu-
racy via five fold cross validation2. For LearnPSDD, we incrementally learned a
model on each fold until convergence on validation-data log-likelihood, following
the methodology in [20].

For D-LearnPSDD, we incrementally learned a model on each fold until
likelihood converged but then selected the incremental model with the highest
training set accuracy. For NB and TANB, we learned a model per fold and
compiled them to Arithmetic Circuits3, a more general form of PSDDs [6], which
allows us to compare the size of these Bayes net classifiers and the PSDDs.
Finally, we compare all probabilistic models with a discriminative classifier, a
multinomial logistic regression model with a ridge estimator.

Table 2 shows that the proposed D-LearnPSDD clearly benefits from the
introduced discriminative bias, outperforming LearnPSDD in all but two
datasets, as the latter method is not guaranteed to learn significant relations
between feature and class variables. Moreover, it outperforms Bayesian classi-
fiers in most benchmarks, as the learned PSDDs are more expressive and allow
to encode complex relationships among sets of variables or local dependencies
such as context specific independence, while remaining tractable. Finally, note
that the D-LearnPSDD is competitive in terms of accuracy with respect to
logistic regression (LogReg) a purely discriminative classification approach.

4.3 Impact of the Vtree on Discriminative Performance

The structure and size of the learned PSDD is largely determined by the vtree it
is normalized for. Naturally, the vtree also has an important role in determining
the quality (in terms of log-likelihood) of the probability distribution encoded
by the learned PSDD [20]. In this section, we study the impact that the choice
of vtree and learning strategy has on the trade-offs between model tractability,
quality and discriminative performance.
1 NB, TANB and LogReg are learned using Weka with default settings.
2 In each fold, we hold 10% of the data for validation.
3 Using the ACE tool Available at http://reasoning.cs.ucla.edu/ace/.

http://reasoning.cs.ucla.edu/ace/

192 L. I. Galindez Olascoaga et al.

Table 2. Five cross fold accuracy and size in number of parameters

Dataset D-LearnPSDD LearnPSDD NB TANB LogReg

Accuracy Size Accuracy Size Accuracy Size Accuracy Size Accuracy

Australian 86.2 ± 3.6 367 84.9 ± 2.7 386 85.1 ± 3.1 161 85.8 ± 3.4 312 84.1 ± 3.4

Breast 97.1 ± 0.9 291 94.9 ± 0.5 491 97.7 ± 1.2 114 97.7 ± 1.2 219 96.5 ± 1.6

Chess 97.3 ± 1.4 2178 94.9 ± 1.6 2186 87.7 ± 1.4 158 91.7 ± 2.2 309 96.9 ± 0.7

Cleve 82.2 ± 2.5 292 81.9 ± 3.2 184 84.9 ± 3.3 102 79.9 ± 2.2 196 81.5 ± 2.9

Corral 6 99.4 ± 1.4 39 98.1 ± 2.8 58 89.4 ± 5.2 26 98.8 ± 1.7 45 86.3 ± 6.7

Credit 85.6 ± 3.1 693 86.1 ± 3.6 611 86.8 ± 4.4 170 86.1 ± 3.9 326 84.7 ± 4.9

Diabetes 78.7 ± 2.9 124 77.2 ± 3.3 144 77.4 ± 2.56 46 75.8 ± 3.5 86 78.4 ± 2.6

German 72.3 ± 3.2 1185 69.9 ± 2.3 645 73.5 ± 2.7 218 74.5 ± 1.9 429 74.4 ± 2.3

Glass 79.1 ± 1.9 214 72.4 ± 6.2 321 70.0 ± 4.9 203 69.5 ± 5.2 318 73.0 ± 5.7

Heart 84.1 ± 4.3 51 78.5 ± 5.3 75 84.0 ± 3.8 38 83.0 ± 5.1 70 84.0 ± 4.7

Iris 90.0 ± 0.1 76 94.0 ± 3.7 158 94.7 ± 1.8 75 94.7 ± 1.8 131 94.7 ± 2.9

Mofn 98.9 ± 0.9 260 97.1 ± 2.4 260 85.0 ± 5.7 42 92.8 ± 2.6 78 100.0 ± 0

Pima 80.2 ± 0.3 108 74.7 ± 3.2 110 77.6 ± 3.0 46 76.3 ± 2.9 86 77.7 ± 2.9

Vehicle 95.0 ± 1.7 1186 93.9 ± 1.69 1560 86.3 ± 2.00 228 93.0 ± 0.8 442 94.5 ± 2.4

Waveform 85.0 ± 1.0 3441 78.7 ± 5.6 2585 80.7 ± 1.9 657 83.1 ± 1.1 1296 85.5 ± 0.7

Figure 3a shows test-set log-likelihood and Fig. 3b classification accuracy as a
function of model size (in number of parameters) for the “Chess” dataset. We dis-
play average log-likelihood and accuracy over logarithmically distributed ranges
of model size. This figure contrasts the results of three learning approaches: D-
LearnPSDD when the vtree learning stage optimizes mutual information (MI,
shown in light blue); when it optimizes conditional mutual information (CMI,
shown in dark blue); and the traditional LearnPSDD (in orange).

Figure 3a shows that likelihood improves at a faster rate during the first
iterations of LearnPSDD, but eventually settles to the same values as D-
LearnPSDD because both optimize for log-likelihood. However, the discrimi-
native bias guarantees that classification accuracy on the initial model will be
at least as high as that of a Naive Bayes classifier (see Fig. 3b). Moreover, this
results in consistently superior accuracy (for the CMI case) compared to the
purely generative LearnPSDD approach as shown also in Table 2. The dip in
accuracy during the second and third intervals are a consequence of the genera-
tive learning, which optimizes for log-likelihood and can therefore initially yield
feature-value correlations that decrease the model’s performance as a classifier.

Finally, Fig. 3b demonstrates that optimizing the vtree for conditional mutual
information results in an overall better performance vs. accuracy trade-off when
compared to optimizing for mutual information. Such a conditional mutual infor-
mation objective function is consistent with the conditional independence con-
straint we impose on the structure of the PSDD and allows the model to consider
the special status of the class variable in the discriminative task.

Discriminative Bias for Learning PSDDs 193

Fig. 3. Log-likelihood and accuracy vs. model size trade-off of the incremental PSDD
learning approaches. MI and CMI denote mutual information and conditional mutual
information vtree learning, respectively. (Color figure online)

4.4 Robustness to Missing Features

The generative models in this paper encode a joint probability distribution over
all variables and therefore tend to be more robust against missing features than
discriminative models, which only learn relations relevant to their discriminative
task. In this experiment, we assessed this robustness aspect by simulating the
random failure of 10% of the original feature set per benchmark and per fold
in five-fold cross-validation. Figure 4 shows the average accuracy over 10 such
feature failure trials in each of the 5 folds (flat markers) in relation to their full
feature set accuracy reported in Table 2 (shaped markers). As expected, the per-
formance of the discriminative classifier (LogReg) suffers the most during feature
failure, while D-LearnPSDD and LearnPSDD are notably more robust than
any other approach, with accuracy losses of no more than 8%. Note from the
flat markers that the performance of D-LearnPSDD under feature failure is
the best in all datasets but one.

Fig. 4. Classification robustness per method.

194 L. I. Galindez Olascoaga et al.

5 Related Work

A number of works have dealt with the conflict between generative and dis-
criminative model learning, some dating back decades [14]. There are multiple
techniques that support learning of parameters [13,23] and structure [21,24]
of probabilistic circuits. Typically, different approaches are followed to either
learn generative or discriminative tasks, but some methods exploit discrimina-
tive models’ properties to deal with missing variables [22]. Other works that also
constraint the structure of PSDDs have been proposed before, such as Choi et
al. [3]. However, they only do parameter learning, not structure learning: their
approach to improve accuracy is to learn separate structured PSDDs for each
distribution of features given the class and feed them to a NB classifier. In [5],
Correira and de Campos propose a constrained SPN architecture that shows both
computational efficiency and classification performance improvements. However,
it focuses on decision robustness rather than robustness against missing values,
essential to the application range discussed in this paper. There are also a num-
ber of methods that focus specifically on the interaction between discriminative
and generative learning. In [15], Khosravi et al. provide a method to compute
expected predictions of a discriminative model with respect to a probability dis-
tribution defined by an arbitrary generative model in a tractable manner. This
combination allows to handle missing values using discriminative couterparts of
generative classifiers [16]. More distant to this work is the line of hybrid discrim-
inative and generative models [19], their focus is on semisupervised learning and
deals with missing labels.

6 Conclusion

This paper introduces a PSDD learning technique that improves classification
performance by introducing a discriminative bias. Meanwhile, robustness against
missing data is kept by exploiting generative learning. The method capitalizes
on PSDDs’ domain knowledge encoding capabilities to enforce the conditional
relation between the class and the features. We prove that this constraint is
guaranteed to be enforced throughout the learning process and we show how not
encoding such a relation might lead to poor classification performance. Evalu-
ation on a suite of benchmarking datasets shows that the proposed technique
outperforms purely generative PSDDs in terms of classification accuracy and the
other baseline classifiers in terms of robustness.

Acknowledgements. This work was supported by the EU-ERC Project Re-SENSE
grant ERC-2016-STG-71503; NSF grants IIS-1943641, IIS-1633857, CCF-1837129,
DARPA XAI grant N66001-17-2-4032, gifts from Intel and Facebook Research, and
the “Onderzoeksprogramma Artificiële Intelligentie Vlaanderen” programme from the
Flemish Government.

Discriminative Bias for Learning PSDDs 195

References

1. Bekker, J., Davis, J., Choi, A., Darwiche, A., Van den Broeck, G.: Tractable learn-
ing for complex probability queries. In: Advances in Neural Information Processing
Systems (2015)

2. Boutilier, C., Friedman, N., Goldszmidt, M., Koller, D.: Context-specific indepen-
dence in Bayesian networks. In: Proceedings of the International Conference on
Uncertainty in Artificial Intelligence (1996)

3. Choi, A., Tavabi, N., Darwiche, A.: Structured features in naive bayes classification.
In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

4. Choi, Y., Vergari, A., Van den Broeck, G.: Lecture Notes: Probabilistic Cir-
cuits: Representation and Inference (2020). http://starai.cs.ucla.edu/papers/
LecNoAAAI20.pdf

5. Correia, A.H.C., de Campos, C.P.: Towards scalable and robust sum-product net-
works. In: Ben Amor, N., Quost, B., Theobald, M. (eds.) SUM 2019. LNCS (LNAI),
vol. 11940, pp. 409–422. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-35514-2 31

6. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge Uni-
versity Press, Cambridge (2009)

7. Darwiche, A.: SDD: a new canonical representation of propositional knowledge
bases. In: International Joint Conference on Artificial Intelligence (2011)

8. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.
edu/ml

9. Fayyad, U., Irani, K.: Multi-interval discretization of continuous-valued attributes
for classification learning. In: Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI) (1993)

10. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. J. Mach.
Learn. 29(2), 131–163 (1997)

11. Galindez, L., Badami, K., Vlasselaer, J., Meert, W., Verhelst, M.: Dynamic sensor-
frontend tuning for resource efficient embedded classification. IEEE J. Emerg. Sel.
Top. Circuits Syst. 8(4), 858–872 (2018)

12. Galindez Olascoaga, L., Meert, W., Shah, N., Verhelst, M., Van den Broeck, G.:
Towards hardware-aware tractable learning of probabilistic models. In: Advances
in Neural Information Processing Systems, pp. 13726–13736 (2019)

13. Gens, R., Domingos, P.: Discriminative learning of sum-product networks. In:
Advances in Neural Information Processing Systems (2012)

14. Jaakkola, T., Haussler, D.: Exploiting generative models in discriminative classi-
fiers. In: Advances in Neural Information Processing Systems (1999)

15. Khosravi, P., Choi, Y., Liang, Y., Vergari, A., Van den Broeck, G.: On tractable
computation of expected predictions. In: Advances in Neural Information Process-
ing Systems, pp. 11167–11178 (2019)

16. Khosravi, P., Liang, Y., Choi, Y., Van den Broeck, G.: What to expect of classifiers?
Reasoning about logistic regression with missing features. In: Proceedings of the
28th International Joint Conference on Artificial Intelligence (IJCAI), (2019)

17. Kisa, D., den Broeck, G.V., Choi, A., Darwiche, A.: Probabilistic sentential decision
diagrams. In: International Conference on the Principles of Knowledge Represen-
tation and Reasoning (2014)

18. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1–
2), 273–324 (1997)

http://starai.cs.ucla.edu/papers/LecNoAAAI20.pdf
http://starai.cs.ucla.edu/papers/LecNoAAAI20.pdf
https://doi.org/10.1007/978-3-030-35514-2_31
https://doi.org/10.1007/978-3-030-35514-2_31
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

196 L. I. Galindez Olascoaga et al.

19. Lasserre, J.A., Bishop, C.M., Minka, T.P.: Principled hybrids of generative and
discriminative models. In: IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR) (2006)

20. Liang, Y., Bekker, J., Van den Broeck, G.: Learning the structure of probabilistic
sentential decision diagrams. In: Proceedings of the Conference on Uncertainty in
Artificial Intelligence (UAI) (2017)

21. Liang, Y., Van den Broeck, G.: Learning logistic circuits. In: Proceedings of the
Conference on Artificial Intelligence (AAAI) (2019)

22. Peharz, R., et al.: Random sum-product networks: a simple and effective approach
to probabilistic deep learning. In: Conference on Uncertainty in Artificial Intelli-
gence (UAI) (2019)

23. Poon, H., Domingos, P.: Sum-product networks: a new deep architecture. In: IEEE
International Conference on Computer Vision Workshops (2011)

24. Rooshenas, A., Lowd, D.: Discriminative structure learning of arithmetic circuits.
In: Artificial Intelligence and Statistics, pp. 1506–1514 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Widening for MDL-Based Retail
Signature Discovery

Clément Gautrais1(B) , Peggy Cellier2, Matthijs van Leeuwen3,
and Alexandre Termier2

1 Department of Computer Science, KU Leuven, Leuven, Belgium
clement.gautrais@cs.kuleuven.be

2 Univ Rennes, Inria, INSA, CNRS, IRISA, Rennes, France
3 LIACS, Leiden University, Leiden, The Netherlands

Abstract. Signature patterns have been introduced to model repetitive
behavior, e.g., of customers repeatedly buying the same set of products
in consecutive time periods. A disadvantage of existing approaches to
signature discovery, however, is that the required number of occurrences
of a signature needs to be manually chosen. To address this limitation, we
formalize the problem of selecting the best signature using the minimum
description length (MDL) principle. To this end, we propose an encoding
for signature models and for any data stream given such a signature
model. As finding the MDL-optimal solution is unfeasible, we propose a
novel algorithm that is an instance of widening, i.e., a diversified beam
search that heuristically explores promising parts of the search space.
Finally, we demonstrate the effectiveness of the problem formalization
and the algorithm on a real-world retail dataset, and show that our
approach yields relevant signatures.

Keywords: Signature discovery · Minimum description length ·
Widening

1 Introduction

When analyzing (human) activity logs, it is especially important to discover
recurrent behavior. Recurrent behavior can indicate, for example, personal pref-
erences or habits, and can be useful in contexts such as personalized market-
ing. Some types of behavior are elusive to traditional data mining methods: for
example, behavior that has some temporal regularity but not strong enough to
be periodic, and which does not form simple itemsets or sequences in the log. A
prime example is the set of products that is essential to a retail customer: all of
these products are bought regularly, but often not periodically due to different

C. Gautrais—This work has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No [694980] SYNTH: Synthesising Inductive Data Models).

c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 197–209, 2020.
https://doi.org/10.1007/978-3-030-44584-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_16&domain=pdf
http://orcid.org/0000-0001-8486-9616
https://doi.org/10.1007/978-3-030-44584-3_16

198 C. Gautrais et al.

depletion rates, and they are typically bought over several transactions—in any
arbitrary order—rather than all at the same time.

To model and detect such behavior, we have proposed signature patterns [3]:
patterns that identify irregular recurrences in an event sequence by segmenting
the sequence (see Fig. 1). We have shown the relevance of signature patterns in
the retail context, and demonstrated that they are general enough to be used in
other domains, such as political speeches [2]. As a disadvantage, however, signa-
ture patterns require the analyst to provide the number of recurrences, i.e., the
number of segments in the segmentation. This number of segments influences the
signature: fewer segments give a more detailed signature, while more segments
result in a simpler signature. Although in some cases domain experts may have
some intuition on how to choose the number of segments, it is often difficult to
decide on a good trade-off between the number of segments and the complexity of
the signature. The main problem that we study in this paper is therefore how to
automatically set this parameter in a principled way, based on the data.

Our first main contribution is a problem formalization that defines the best
signature for a given dataset, so that the analyst no longer needs to choose the
number of segments. By considering the signature corresponding to each possible
number of segments as a model, we can naturally formulate the problem of select-
ing the best signature as a model selection problem. We formalize this problem
using the minimum description length (MDL) principle [4], which, informally,
states that the best model is the one that compresses the data best. The MDL
principle perfectly fits our purposes because (1) it allows to select the simplest
model that adequately explains the data, and (2) it has been previously shown
to be very effective for the selection of pattern-based models (e.g., [7,11]).

After defining the problem using the MDL principle, the remaining question
is how to solve it. As the search space of signatures is extremely large and the
MDL-based problem formulation does not offer any properties that could be used
to substantially prune the search space, we resort to heuristic search. Also here,
the properties of signature patterns lead to technical challenges. In particular,
we empirically show that a näıve beam search often gets stuck in suboptimal
solutions. Our second main contribution is therefore to propose a diverse beam
search algorithm, i.e., an instance of widening [9], that ensures that a diverse set
of candidate solutions is maintained on each level of the beam search. For this,
we define a distance measure for signatures based on their segmentations.

2 Preliminaries

Fig. 1. A sequence of transactions and a 4-segmentation. We have the signature items
R = {a, b}, the remaining items E = {c, d, e}, the set of items I = {a, b, c, d, e}, the
segmentation S = 〈[T1, T2, T3], [T4, T5], [T6], [T7]〉.

Widening for MDL-Based Retail Signature Discovery 199

Signatures. Let us first recall the definition of a signature as presented in [3].
Let I be the set of all items, and let α = 〈T1 . . . Tn〉, Ti ⊆ I be a sequence of
itemsets. A k-segmentation of α, denoted S(α, k) = 〈S1 . . . Sk〉, is a sequence of k
non-overlapping consecutive sub-sequences of α, denoted Si and called segments,
each consisting of consecutive transactions. An example of a 4-segmentation is
given in Fig. 1. Given S(α, k) = 〈S1 . . . Sk〉, a k-segmentation of α, we have
Rec(S(α, k)) =

⋂
Si∈S(α,k)(

⋃
Tj∈Si

Tj): the set of all recurrent items that are
present in each segment of S(α, k). For example in Fig. 1, the segmentation
S(α, 4) = 〈S1, S2, S3, S4〉 gives Rec(S(α, 4)) = {a, b}. Given k and α, one
can compute Smax(α, k), the set of k-segmentation of α yielding the largest
sets of recurrent items: Smax(α, k) = argmaxS(α,k) |Rec(S(α, k))|. For exam-
ple, in Fig. 4, 〈S1, S2, S3, S4〉 is the only 4-segmentation yielding two recurrent
items. As all other 4-segmentations either yield zero or one recurrent item,
Smax(α, 4) = {〈S1, S2, S3, S4〉}. A k-signature (also named signature when k
is clear from context) is then defined as a maximal set of recurrent items in a k-
segmentation S, with S ∈ Smax(α, k). As Smax(α, k) can contain several segmen-
tations, we define the k-signature set Sig(α, k), which contains all k-signatures:
Sig(α, k) = {Rec(Sm(α, k)) | Sm ∈ Smax(α, k)}. k gives the number of recur-
rences of the recurrent items in sequence α. Given a number of recurrences k,
finding a k-signature relies on finding a k-segmentation that maximizes the size
of the itemset that occurs in each segment of that segmentation. For example, in
Fig. 1, given segmentation S = 〈S1, S2, S3, S4〉 and given that Smax(α, 4) = {S},
we have Sig(α, 4) = {Rec(S)} = {{a, b}}. For simplicity, the segmentation asso-
ciated with a k-signature in Sig(α, k) is denoted S = 〈S1 . . . Sk〉, and the signa-
ture items are denoted R ⊆ I. The remaining items are denoted E , i.e., E = I\R.

Minimum Description Length (MDL). Let us now briefly introduce the basic
notions of the minimum description length (MDL) principle [4] as it is commonly
used in compression-based pattern mining [7]. Given a set of models M and
a dataset D, the best model M ∈ M is the one that minimizes L(D,M) =
L(M) + L(D|M), with L(M) the length, in bits, of the encoding of M , and
L(D|M) the length, in bits, of the encoding of the data given M . This is called
two-part MDL because it separately encodes the model and the data given the
model, which results in a natural trade-off between model complexity and data
complexity. To fairly compare all models, the encoding has to be lossless. To use
the MDL principle for model selection, the model class M has to be defined (in
our case, the set of all signatures), as well as how to compute the length of the
model and the length of the data given the model. It should be noted that only
the encoded length of the data is of interest, not the encoded data itself.

3 Problem Definition

To extract recurrent items from a sequence using signatures, one must define the
number of segments k. Providing meaningful values for k usually requires expert
knowledge and/or many tryouts, as there is no general rule to automatically set

200 C. Gautrais et al.

k. Our problem is therefore to devise a method that adjusts k, depending on the
data at hand. As this is a typical model selection problem, our approach relies
on the minimum description length principle (MDL) to find the best model from
a set of candidate models. However, the signature model must be refined into a
probabilistic model to use the MDL principle for model selection. Especially, the
occurrences of items in α should be defined according to a probability distribu-
tion. With no information about these occurrences, the uniform distribution is
the most natural choice. Indeed, without information on the transaction in which
an item occurs, the best is to assume it can occur uniformly at random in any
transaction of the sequence α. Moreover, the choice of the uniform distribution
has been shown to minimize the worst case description length [4].

To make the signature model probabilistic, we assume that it generates three
different types of occurrences independently and uniformly. As the signature
gives the information that there is at least one occurrence of every signature
item in every segment, the first type of occurrences correspond to this one occur-
rence of signature items in every segment. These are generated uniformly over
all the transactions of every segment. The second type of occurrences are the
remaining signature items occurrences. Here, the information is that these items
already have occurrences generated by the previous type of occurrences. As α is
a sequence of itemsets, an item can occur at most once in a transaction. Hence,
for a given signature item, the second type of occurrences for this item are dis-
tributed uniformly over the transactions where this item does not already occur
for the first type of occurrences. Finally, the third type are the occurrences of the
remaining items: the items that are not part of the signature. There is no infor-
mation about these items occurrences, hence we assume them to be generated
uniformly over all transactions of α.

With these three types of occurrences, the signature model is probabilistic: all
occurrences in α are generated according to a probability distribution that takes
into account the information provided by the signature specification. Hence, we
can now define the problem we are tackling:

Problem 1. Let S denote the set of signatures for all values of k, S =
⋃|α|

k=1 Sig(α, k). Given a sequence α, it follows from the MDL principle that
the best signature S ∈ S is the one that minimizes the two-part encoded length
of S and α, i.e.,

SMDL = argminS∈S L(α, S),

where L(α, S) is the two-part encoded length that we present in the next section.

4 An Encoding for Signatures

As typically done in compression-based pattern mining [7], we use a two-part
MDL code that leads to decomposing the total encoded length L(α, S) into two

Widening for MDL-Based Retail Signature Discovery 201

parts: L(S) and L(α|S), with the relation L(α, S) = L(S) + L(α|S). In the
upcoming subsection we define L(S), i.e., the encoded length of a signature,
after which Subsect. 4.2 introduces L(α|S), i.e., the length of the sequence α
given a signature S. In the remainder of this paper, all logarithms are in base 2.

4.1 Model Encoding: L(S)

A signature is composed of two parts: (1) the signature items, and (2) the sig-
nature segmentation. The two parts are detailed below.

Signature Items Encoding. The encoding of the signature items consists of
three parts. The signature items are a subset of I, hence we first encode the
number of items in I. A common way to encode non-negative integer numbers
is to use the universal code for integers [4,8], denoted LN

1. This yields a code
of size LN(|I|). Next, we encode the number of items in the signature, using
again the universal code for integers, with length LN(|R|). Finally, we encode
the items of the signature. As the order of signature items is irrelevant, we can
use an |R|-combination of |I| elements without replacement. This yields a length
of log(

(|I|
|R|

)
). From R and I, we can deduce E .

Segmentation Encoding. We now present the encoding of the second part
of the signature: the signature segmentation. To encode the segmentation, we
encode the segment boundaries. These boundaries are indexed on the size of the
sequence, hence we first need to encode the number of transactions n. This can be
done using again the universal code for integers, which is of size LN(n). Then, we
need to encode the number of segments |S|, which is of length LN(|S|). To encode
the segments, we only have to encode the boundaries between two consecutive
segments. As there are |S|−1 such boundaries, a naive encoded length would be
(|S|−1)∗log(n). An improved encoding takes into account the previous segments.
For example, when encoding the second boundary, we know that its value will
not be higher than n − |S1|. Hence, we can encode it in log(n − |S1|) instead of
log(n) bits. This principle can be applied to encode all boundaries. Another way
to further reduce the encoded length is to use the fact that we know that each
signature segment contains at least one transaction. We can therefore subtract
the number of remaining segments to encode the boundary of the segment we are
encoding. This yields an encoded length of

∑|S|−1
i=1 log(n− (|S|− i)−∑i−1

j=1 |Sj |).
Putting Everything Together. The total encoded length of a signature S is

L(S) = LN(|I|) + LN(|R|) + log(
(|I|

|R|
)

) +

LN(n) + LN(|S|) +
|S|−1∑

i=1

log(n − (|S| − i) −
i−1∑

j=1

|Sj |).

1 LN = log∗(n) + log(2.865064), with log∗(n) = log(n) + log(log(n)) +

202 C. Gautrais et al.

Fig. 2. A sequence of transactions and its encoding scheme. We have R = {a, b},
E = {c, d, e} and I = {a, b, c, d, e}. The first occurrence of each signature item in each
segment is encoded in the red stream, the remaining signature items occurrences in the
orange stream, and the items from E in the blue stream. (Color figure online)

4.2 Data Encoding: L(α|S)

We now present the encoding of the sequence given the model: L(α|S). This
encoding relies on the refinement of the signature model into a probabilistic
model presented in Sect. 3. To summarize, we have three separate encoding
streams that encode the three different types of occurrences presented in Sect. 3:
(1) one that encodes one occurrence of every signature item in every segment,
(2) one that encodes the rest of the signature items occurrences, and (3) one
that encodes the remaining items occurrences. An example illustrating the three
different encoding streams is presented in Fig. 2.

Encoding One Occurrence of Each Signature Item in Each Segment.
As stated in Sect. 3, the signature says that in each segment, there is at least
one occurrence of each signature item. The size of each segment is known (from
the encoding of the model, in Subsect. 4.1), hence we encode one occurrence of
each signature item in segment Si by encoding the index of the transaction,
within segment Si, that contains this occurrence. From Sect. 3, this occurrence
is uniformly distributed over the transactions in Si. As encoding an index over
|Si| equiprobable possibilities costs log(|Si|) bits and as in each segment, |R|
occurrences are encoded this way, we encode each segment in |R| ∗ log(|Si|) bits.

Encoding the Remaining Signature Items’ Occurrences. As presented
in Fig. 2, we now encode remaining signature items occurrences to guarantee
a lossless encoding. Again, this encoding relies on encoding transactions where
signature items occur. For each item a, we encode its occurrences occ(a) =∑

Ti∈α

∑
p∈Ti

1a=p by encoding to which transaction it belongs. As S occur-
rences have already been encoded using the previous stream, there are occ(a)−|S|
remaining occurrences to encode. These occurrences can be in any of the n−|S|
remaining transactions. From Sect. 3, we use a uniform distribution to encode
them. More precisely, the first occurrence of item a can belong to any of the n−|S|
transactions where a does not already occur. For the second occurrence of a, there
are now only n−|S|−1 transactions where a can occur. By applying this principle,
we encode all the remaining occurrences of a as

∑occ(a)−|S|−1
i=0 log(n−|S|−i). For

Widening for MDL-Based Retail Signature Discovery 203

each item, we also use LN(occ(a)−|S|) bits to encode the number of occurrences.
This yields a total length of

∑
a∈R LN(occ(a)−|S|)+∑occ(a)−|S|−1

i=0 log(n−|S|−i).

Remaining Items Occurrences Encoding. Finally, we encode the remaining
items occurrences, i.e., the occurrences of items in E . The encoding technique
is identical to the one used to encode additional signature items occurrences,
with the exception that the remaining items occurrences can initially be present
in any of the n transactions. This yields a total code of

∑
a∈E LN(occ(a)) +

∑occ(a)
i=0 log(n − i).

Putting Everything Together. The total encoded length of the data given the
model is given by: L(α|S) =

∑
Si∈S |R| ∗ log(|Si|) +

∑
a∈R LN(occ(a) − |S|) +

∑occ(a)−|S|−1
i=0 log(n − |S| − i) +

∑
a∈E LN(occ(a)) +

∑occ(a)
i=0 log(n − i).

5 Algorithms

The previous section presented how a sequence is encoded, completing our prob-
lem formalization. The remaining problem is to find the signature minimizing
the code length, that is, finding SMDL such that SMDL = argminS∈S L(α, S).

Naive Algorithm. A naive approach would be to directly mine the whole set
of signatures S and find the signature that minimizes the code length. However,
mining a signature with k segments has time complexity O(n2k). Mining the
whole set of signatures requires k to vary from 1 to n, resulting in a total com-
plexity of O(n4). The quartic complexity does not allow us to quickly mine the
complete set of possible signatures on large datasets, hence we have to rely on
heuristic approaches.

To quickly search for the signature in S that minimizes the code length, we
initially rely on a top-down greedy algorithm. We start with one segment con-
taining the whole sequence, and then search for the segment boundary that min-
imizes the encoded length. Then, we recursively search for a new single segment
boundary that minimizes the encoded length. We stop when no segment can
be added, i.e., when the number of segments is equal to the number of transac-
tions. During this process, we record the signature with the best encoded length.
However, this algorithm can perform early segment splits that seem promising
initially, but that eventually impair the search for the best signature.

5.1 Widening for Signatures

To solve this issue, a solution is to keep the w signatures with the lowest code
length at each step instead of keeping only the best one. This technique is called
beam search and has been used to tackle optimization problems in pattern mining
[6]. The beam width w is the number of solutions to keep at each step of the
algorithm. However, the beam search technique suffers from having many of the
best w signatures that tend to be similar and correspond to slight variations
of one signature. Here, this means that most signatures in the beam would

204 C. Gautrais et al.

Algorithm 1. Widening algorithm for signature code length minimization.
1: function Signature Mining(α = 〈T1, . . . , Tn〉, β, w)
2: BestKSign = ∅, BestSign = ∅
3: for k = 1 → n do
4: AllKSign = Split1Segment(BestKSign)
5: Sopt = argminS∈AllKSign L(α, S)
6: BestSign = BestSign

⋃{Sopt}
7: BestKSign = {Sopt}
8: θ = threshold(β, w,AllKSign)
9: while Sopt �= ∅ and |BestKSign| < w do

10: Sopt = argminS∈AllKSign L(α, S), �Si ∈ BestKSign, d(Si, S) ≤ θ
11: BestKSign = BestKSign

⋃{Sopt}
12: return argminS∈BestSign L(α, S)

Algorithm 2. Distance threshold computation.
1: function threshold(β, w, AllSign)
2: KBest = β ∗ |AllSign|
3: BestS = GetBestSign(AllSign, KBest)
4: return argminθ{N(θ), N(θ) = |{S ∈ BestS, d(S, BestS[0]) < θ}|, N(θ) ≥

|BestS|/w}

have segmentations that are very similar. The widening technique [9] solves this
issue by adding a diversity constraint into the beam. Different constraints exist
[5,6,9], but a common solution is to add a distance constraint between each pair
of elements in the beam: all pairwise distances between the signatures in the
beam have to be larger than a given threshold θ. As this threshold is dependent
on the data and the beam width, we propose a method to automatically set its
value.

Algorithm 1 presents the proposed widening algorithm. Line 3 iterates over
the number of segments. Line 4 computes all signatures having k segments that
are considered to enter the beam. More specifically, function Split1Segment com-
putes the direct refinements of each of all signatures in BestKSign. A direct
refinement of a signature corresponds to splitting one segment in the segmen-
tation associated with that signature. Line 5 selects the refinement having the
smallest code length. If several refinements yield the smallest code length, one
of these refinements is chosen at random. Lines 8 to 11 perform the widening
step by adding new signatures to the beam while respecting the pairwise dis-
tance constraint. Line 8 computes the distance threshold (θ) depending on the
diversity parameter (β), the beam width (w), and the current refinements. Algo-
rithm2 presents the details of the threshold computation. With this threshold,
we recursively add a new element in the beam, until either the beam is full or no
new element can be added (line 9). Lines 10 and 11 add the signature having the
smallest code length and being at a distance of at least θ to any current element
of the beam. Line 12 returns the best overall signature we have encountered.

Widening for MDL-Based Retail Signature Discovery 205

Distance Between Signatures. We now define the distance measure for signa-
tures (used in line 10 of Algorithm1). As the purpose of the signature distance
is to ensure diversity in the beam, we will use the segmentation to define the dis-
tance between two elements of the beam, i.e., between two signatures. Terzi et al.
[10] presented several distance measures for segmentations. The disagreement dis-
tance is particularly appealing for our purposes as it compares how transactions
belonging to the same segment in one segmentation are allocated to the other seg-
mentation. Let Sa = 〈Sa1 . . . Sak〉 and Sb = 〈Sb1 . . . Sbk〉 be two k-segmentations
of a sequence α. We denote by d(Sa, Sb) the disagreement distance between seg-
mentation a and segmentation b. The disagreement distance corresponds to the
number of transaction pairs that belong to the same segment in one segmentation,
but that are not in the same segment in the other segmentation. Techniques on
how to efficiently compute this distance are presented in [10].

Defining a Distance Threshold. Algorithm 1 uses a distance threshold θ
between two signatures, that controls the diversity constraint in the beam. If
θ is equal to 0, there is no diversity constraint, as any distance between two
different signatures is greater than 0. Higher values of θ enforce more diversity
in the beam: good signatures will not be included in the beam if they are too
close to signatures already in the beam. However, setting the θ threshold is not
easy. For example θ depends on the beam width w. Indeed, with large beam
widths, θ should be low enough to allow many good signatures to enter the
beam.

To this end, we introduce a method that automatically sets the θ parame-
ter, depending on the beam width and on a new parameter β that is easier to
interpret. The β parameter ranges from 0 to 1 and controls the strength of the
diversity constraint. The intuition behind β is that its value will approximately
correspond to the relative rank of the worst signature in the beam. For example,
if β is set to 0.2, it means that signatures in the beam are in the top-20% in
ascending order of code length. Algorithm2 details how θ is derived from β and
w; this algorithm is called by the threshold function in line 8 of Algorithm1.

Knowing the set of all candidate signatures that are considered to enter
the beam, we retain only the proportion β of the best signatures (line 3 of
Algorithm 2). Then, in line 4 we extract the best signature. Finally, we look for
the distance threshold θ such that the number of signatures within a distance of
θ from the best signature is equal to the number of considered signatures divided
by the beam width w (line 5). The rationale behind this threshold is that since
we are adding w signatures to the beam and we want to use the proportion β of
the best signatures, the distance threshold should approximately discard 1/w of
the proportion β of the best signatures around each signature of the beam.

206 C. Gautrais et al.

6 Experiments

This section, analyzes runtimes and code lengths of variants of our algorithm on
a real retail dataset2. We show that our method runs significantly faster than
the naive baseline, and give advice on how to choose the w and β parameters.
Next, we illustrate the usefulness of the encoding to analyze retail customers.

Fig. 3. Left: Mean relative code length for different instances of the widening algo-
rithm. For each customer, the relative code length is computed with regard to the
smallest code length found for this customer. Averaging these lengths across all cus-
tomers gives the mean relative code length. The β parameter sets the diversity con-
straint and w the beam width. The solid black line shows the mean code length of
the naive algorithm. Bootstrapped 95% confidence intervals [1] are displayed. Right:
Mean runtime in seconds for different instances of the widening algorithm. The dotted
black lines shows a bootstrapped 95% confidence interval of the naive algorithm’s mean
runtime.

6.1 Algorithm Runtime and Code Length Analysis

We here analyze the runtimes and code lengths obtained by variants of Algo-
rithm1. 3000 customers having more than 40 baskets in the Instacart 2017
dataset are randomly selected3. Customers having few purchases are less rel-
evant, as we are looking for purchase regularities. These 3000 customers are
analyzed individually, hence the algorithm is evaluated on different sequences.
2 Code is available at https://bitbucket.org/clement gautrais/mdl signature ida

2020/.
3 The Instacart Online Grocery Shopping Dataset 2017, Accessed from https://www.

instacart.com/datasets/grocery-shopping-2017on05/04/2018.

https://bitbucket.org/clement_gautrais/mdl_signature_ida2020/
https://bitbucket.org/clement_gautrais/mdl_signature_ida2020/
https://www.instacart.com/datasets/grocery-shopping-2017 on 05/04/2018
https://www.instacart.com/datasets/grocery-shopping-2017 on 05/04/2018

Widening for MDL-Based Retail Signature Discovery 207

Code Length Analysis. To assess the performance of the different algorithms,
we analyze the code length yielded by each algorithm on each of these 3000
customers. We evaluate different instances of the widening algorithm with dif-
ferent beam widths w and diversity constraints β. The resulting relative mean
code lengths per algorithm instance are presented in Fig. 3 left. When increasing
the beam width, the code length always decreases for a fixed β value. This is
expected, as increasing the beam size allows the widening algorithm to explore
more solutions. As increasing the beam size improves the search, we recommend
setting it as high as your computational budget allows you to do.

Increasing the β parameter usually leads to better code lengths. However, for
w = 5, higher β values give slightly worse results. Indeed, if β is too high, good
signatures might not be included in the beam, if they are too close to existing
solutions. Therefore, we recommend setting the β value to a moderate value,
for example between 0.3 and 0.5. A strong point of our method is that it is not
too sensitive to different β values. Hence, setting this parameter to its optimal
value is not critical. The enforced diversity is highly relevant, as a fixed beam
size with some diversity finds code lengths that are similar to the ones found by
a larger beam size with no diversity. For example, with w = 5 and β = 0.3, the
code lengths are better than with w = 10 and β = 0. As using a beam size of
5 with β = 0.3 is faster than using a beam size of 10 with β = 0, it shows that
using diversity is highly suited to decrease runtime while yielding smaller code
lengths.

Runtime Analysis. We now present runtimes of different widening instances in
Fig. 3 right. The beam width mostly influences the runtime, whereas the β value
has a smaller influence. Overall, increasing β slightly increases computation time,
while yielding a noticeable improvement in the resulting code length, especially
for small beam sizes. Our method also runs 5 to 10 times faster than the naive
method. In this experiment, customers have a limited number of baskets (at
most 100), thus the O(n4) complexity of the naive approach exhibits reasonable
runtimes. However in settings with more transactions (retail data over a longer
period for example), the naive approach will require hours to run, and the per-
formance gain of our widening approach will be a necessity. Another important
thing is that the naive method has a high variability in runtimes. Confidence
intervals are narrow for the widening algorithm (they are barely noticeable on
the plot), whereas it spans over 5 s for the naive algorithm.

6.2 Qualitative Analysis

Figure 4 presents two signatures of a customer, to illustrate that signatures are
of practical use to analyze retail customers, and that finding signatures with
smaller code lengths is of interest. We use the widening algorithm to get a
variety of good signatures according to our MDL encoding. The top signature in
Fig. 4 is the best signature found: it has the smallest code length. This signature
seems to correctly capture the regular behavior of this customer, as it contains
7 products that are regularly bought throughout the whole purchase sequence.

208 C. Gautrais et al.

Fig. 4. Example of two signatures found by our algorithms. Gray vertical lines are seg-
ments boundaries and each dot represents an item occurrence in a purchase sequence.
Top: best signature (code length of 5221.33 bits) found by the widening algorithm,
with w = 20 and β = 0.5. Bottom: signature found by the beam search algorithm:
w = 1 and β = 0, with a code length of 5338.46 bits (the worst code length).

Knowing these 7 favorite products, a retailer could target its offers. The segments
also give some information regarding the temporal behavior of this customer. For
example, because segments tend to be smaller and more frequent towards the
end of the sequence, one could guess that this customer is becoming a regular.

On the other hand, the bottom signature is significantly worse than the top
one. It is clear that it mostly contains products that are bought only at the
end of the purchase sequence of this customer. This phenomenon occurs because
the beam search algorithm, with w = 1, only picks the best solution at each
step of the algorithm. Hence, it can quickly get stuck in a local minimum. This
example shows that considering larger beams and adding diversity is an effective
approach to optimize code length. Indeed, having a large and diverse beam is
necessary to have the algorithm explore different segmentations, yielding better
signatures.

7 Conclusions

We tackled the problem of automatically finding the best number of segments for
signature patterns. To this end, we defined a model selection problem for signa-
tures based on the minimum description length principle. Then, we introduced
a novel algorithm that is an instance of widening. We evaluated the relevance
and effectiveness of both the problem formalization and the algorithm on a
retail dataset. We have shown that the widening-based algorithm outperforms
the beam search approach as well as a naive baseline. Finally, we illustrated
the practical usefulness of the signature on a retail use case. As part of future

Widening for MDL-Based Retail Signature Discovery 209

work, we would like to study our optimization techniques on larger databases
(thousands of transactions), like online news feeds. We would also like to work on
model selection for sets of interesting signatures, to highlight diverse recurrences.

References

1. Davison, A.C., Hinkley, D.V., et al.: Bootstrap Methods and Their Application,
vol. 1. Cambridge University Press, Cambridge (1997)

2. Gautrais, C., Cellier, P., Quiniou, R., Termier, A.: Topic signatures in political
campaign speeches. In: Proceedings of EMNLP 2017, pp. 2342–2347 (2017)

3. Gautrais, C., Quiniou, R., Cellier, P., Guyet, T., Termier, A.: Purchase signatures
of retail customers. In: Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon, Y.-S.
(eds.) PAKDD 2017. LNCS (LNAI), vol. 10234, pp. 110–121. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-57454-7 9

4. Grünwald, P.D.: The Minimum Description Length Principle. MIT Press, Cam-
bridge (2007)

5. Ivanova, V.N., Berthold, M.R.: Diversity-driven widening. In: Tucker, A., Höppner,
F., Siebes, A., Swift, S. (eds.) IDA 2013. LNCS, vol. 8207, pp. 223–236. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-41398-8 20

6. van Leeuwen, M., Knobbe, A.: Diverse subgroup set discovery. Data Min. Knowl.
Disc. 25(2), 208–242 (2012)

7. van Leeuwen, M., Vreeken, J.: Mining and using sets of patterns through com-
pression. In: Aggarwal, C., Han, J. (eds.) Frequent Pattern Mining, pp. 165–198.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07821-2 8

8. Rissanen, J.: A universal prior for integers and estimation by minimum description
length. Ann. Stat. 11, 416–431 (1983)

9. Shell, P., Rubio, J.A.H., Barro, G.Q.: Improving search through diversity. In: Pro-
ceedings of the AAAI National Conference on Artificial Intelligence, pp. 1323–1328.
AAAI Press (1994)

10. Terzi, E.: Problems and algorithms for sequence segmentations. Ph.D. thesis (2006)
11. Vreeken, J., van Leeuwen, M., Siebes, A.: KRIMP: mining itemsets that compress.

Data Min. Knowl. Disc. 23(1), 169–214 (2011). https://doi.org/10.1007/s10618-
010-0202-x

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-57454-7_9
https://doi.org/10.1007/978-3-642-41398-8_20
https://doi.org/10.1007/978-3-319-07821-2_8
https://doi.org/10.1007/s10618-010-0202-x
https://doi.org/10.1007/s10618-010-0202-x
http://creativecommons.org/licenses/by/4.0/

Addressing the Resolution Limit and the
Field of View Limit in Community Mining

Shiva Zamani Gharaghooshi1, Osmar R. Zäıane1(B), Christine Largeron2,
Mohammadmahdi Zafarmand1, and Chang Liu1

1 Alberta Machine Intelligence Institute, University of Alberta,
Edmonton, AB, Canada

{zamanigh,zaiane,zafarman,chang6}@ualberta.ca
2 Laboratoire Hubert Curien, Université de Lyon, Saint-Etienne, France

Christine.Largeron@univ-st-etienne.fr

Abstract. We introduce a novel efficient approach for community detec-
tion based on a formal definition of the notion of community. We name
the links that run between communities weak links and links being inside
communities strong links. We put forward a new objective function,
called SIWO (Strong Inside, Weak Outside) which encourages adding
strong links to the communities while avoiding weak links. This process
allows us to effectively discover communities in social networks without
the resolution and field of view limit problems some popular approaches
suffer from. The time complexity of this new method is linear in the
number of edges. We demonstrate the effectiveness of our approach on
various real and artificial datasets with large and small communities.

Keywords: Community detection · Social network analysis

1 Introduction

Community detection is an important task in social network analysis and can
be used in different domains where entities and their relations are presented
as graphs. It allows us to find linked nodes that we call communities inside
graphs. There are community detection methods that partition the graph into
subgroups of nodes such as the spectral bisection method [4] or the Kernighan-
Lin algorithm [27]. There are also hierarchical methods such as the divisive
algorithms based on edge betweenness of Girwan et al. [18] or agglomerative
algorithms based on dynamical process such as Walktrap [20], Infomap [24] or
Label propagation [22]. We do not detail them and refer the interested reader to
[7,10,12], but we come back on another class of hierarchical algorithms that aim
at maximizing Q-modularity introduced by Newman et al. [18]. After the greedy
agglomerative algorithm initially introduced by Newman [19], Blondel et al. [5]
proposed Louvain, one of the fastest algorithms to optimize Q-modularity and
to solve the community detection task. However, Fortunato et al. [11] showed
that Q-Modularity suffers from the resolution limit which means by optimizing
c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 210–222, 2020.
https://doi.org/10.1007/978-3-030-44584-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_17&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_17

Addressing Resolution and Field of View Limits 211

Q-modularity, communities that are smaller than a scale cannot be resolved.
The field of view limit [25] is in contrast to the resolution limit leads to overpar-
titioning the communities with a large diameter.

To overcome the resolution limit of Q-modularity, several proposals have been
made, notably by [2,17,23], who introduced variants of this criterion allowing
the detection of community structures at different levels of granularity. However,
these revised criteria make the method time-consuming since they require to
tune a parameter. Therefore, we retain the greedy approach of Louvain for its
efficiency and ability to handle very large networks, but we introduce SIWO
because it relies on the notions of strong and weak links defined in Sect. 2.

We consider that a community corresponds to a subgraph sparsely connected
to the rest of the graph. Contrary to the majority of methods which do not for-
mally define what is a community and simply consider that it corresponds to a
subset of nodes densely connected internally, we define the conditions a subgraph
should meet to be considered as a community in Sect. 2. In Sect. 3, we present
the generic community detection algorithm. We can apply this general process
regardless of the objective function to improve other community detection meth-
ods as our experiments show.

Finally, the extensive experiments described in Sects. 4 and 5, confirm that
our objective function is less sensitive to the resolution and the field of view limit
compared to the objective functions mentioned earlier. Also, our algorithm has
consistently good performance regardless of the size of communities in a network
and is efficient on large size networks having up to a million edges.

2 Notations and Definitions

2.1 Strong and Weak Links

A community is oftentimes defined as a subgraph in which nodes are densely
connected while sparsely connected to the rest of the graph. One way to find
such subgraphs is to divide the network into parts so that the number of links
lying inside that part is maximized. However, if there is no prior information
about the number of communities or their sizes, one can maximize the number
of links within communities by putting all the nodes in one community, but the
final result will not be the true communities. To avoid this approach, we penalize
the missing links within the communities and we introduce the notions of strong
and weak links.

Fig. 1. A network with two communi-
ties; each consists of a clique of size 5.

Fig. 2. A network with 2 communities
and 4 dangling nodes (1, 2, 3, and 4).

212 S. Z. Gharaghooshi et al.

Weak links lie between communities, while strong links are inside them. We
develop our criterion so that it encourages adding strong links to the communi-
ties while avoiding weak ones instead of penalizing the missing links. As these
different types of links play different roles in graph connectivity; removing a
weak link may divide the graph into disconnected subgraphs, whereas removing
a random link would not. Let us focus on the link between nodes i and j in Fig. 1
and also the link between nodes j and k in this graph. Node j is connected to
all the neighbors of node k, whereas node i and j have no common neighbors.
As generally, nodes in the same community are more likely to have common
neighbors, (i, j) can be considered as a weak link whereas (j, k) as a strong link
and it is exactly what we want to capture through weights assigned to the links.

2.2 Edge Strength

Given a graph G = (V,E) where V is the set of nodes and E the set of edges, we
propose to assign a weight in the range of (−1, 1) to each edge; such that strong
links have larger weights. As nodes in the same community tend to have more
common neighbors compared to nodes in different communities, if Sxy > Sxy′

then exy is more likely to be a strong link compared to exy′ with Sxy defined by:

Sxy = |{k ∈ V : (x, k) ∈ E, (y, k) ∈ E}| (1)

We can compare two links according to S only if they share a node. Thus, if
we consider nodes x and y that have 5 and 20 links incident to them, then S
can be in range of [0, 4] and [0, 19] for x and y respectively. Consequently, for
comparisons, we have to scale down S values to (−1, 1). If Sxy has the maximum
value of Smax

x (Smax
x = maxy:(x,y)∈E Sxy) for a particular node x. We divide the

range [−1, 1] into Smax
x + 1 equal length segments. Each S value in the range of

[0, Smax
x] is then mapped to the center of (n + 1)th segment using equation:

wx
xy = Sxy

2
Smax
x + 1

+
1

Smax
x + 1

− 1 (2)

where wx
xy is the scaled value of Sxy from the viewpoint of node x (min-max

normalization could also work). We can also scale Sxy from the viewpoint of
node y: wy

xy = Sxy
2

Smax
y +1 + 1

Smax
y +1 − 1 where Smax

y = maxx:(y,x)∈E Sxy. To
decide whether we should trust x or y, we need to look at the importance of
each one in the network. Local clustering coefficient (CC) [28], given below, is a
measure that reflects the importance of nodes and it can be computed even on
large graphs, for instance with Mapreduce [15].

CC(x) =
|{eij : i, j ∈ Nx, eij ∈ E}|

(
dx

2

) (3)

where dx and Nx are respectively the degree and the set of neighbors of node x.
CC is in the range of [0,1] with 1 for nodes whose neighbors form cliques, and
0 for nodes whose neighbors are not connected to each other directly. Here, we

Addressing Resolution and Field of View Limits 213

scale each edge from the viewpoint of the endpoint that is more likely to be in
a dense neighborhood characterized by a large CC:

wxy =

{
wx

xy, if CC(x) ≥ CC(y)
wy

xy, otherwise
(4)

2.3 SIWO Measure

The new measure that we propose encourages adding strong links into the com-
munities while keeping the weak links outside of the communities (Strong Inside,
Weak Outside). This measure is defined as follows:

SIWO =
∑

i,j∈V

wijδ(ci, cj)
2

(5)

where ci is the community of node i and δ(x, y) is 1 if x = y and 0 otherwise.
SIWO is the sum of weights of the edges that reside in the communities. This
objective function provides a way to partition the set of nodes but it does not
specify the conditions required by a subset of nodes to be a community. These
conditions are defined in the following.

2.4 Community Definition

Following [21] we consider that a subgraph C is a community in a weak sense if
the following condition is satisfied:

1
2

∑

v∈C

|NC
v | >

∑

v∈C

|Nv − NC
v | (6)

where Nv is the set of the neighbors of node v and NC
v is the set of the neighbors

of node v that are also in community C. This condition means that the collective
of the nodes in a community have more neighbors within the community than
outside. In this paper, we expand this definition by adding one more condition.
Given a partition p = {C1, C2, ..., Ct} of a network, subgraph Ci is considered
as a qualified community if it satisfies the following conditions:

1. Ci is a community in a weak sense (Eq. 6).
2. The number of links within Ci exceeds the number of links towards any other

subgraph Cj (j �= i) in the partition p taken separately, such that:

1
2

∑

v∈Ci

|NCi
v | >

∑

v∈Ci

|NCj
v |, j ∈ [1..t], j �= i (7)

214 S. Z. Gharaghooshi et al.

3 The SIWO Method

This method has four steps: pre-processing, optimizing SIWO, qualified commu-
nity identification, and post-processing. They are discussed in detail below.

Step 1. Pre-processing
The first step calculates the edge strength weights (wij) needed during the SIWO
optimization. Moreover, to reduce the computational time, we remove the dan-
gling nodes temporally. Node x is a dangling node if there exists node y such that
by removing exy, the network would be divided into two disconnected parts with
partx (the part containing node x) being a tree. Since partx has a tree structure,
it cannot form a community on its own. So all the nodes in partx belong to the
same community as node y. In Fig. 2, nodes 1, 2, 3 and 4 are dangling nodes and
they belong to the same community as node 5, unless we consider them outliers.
Even though such tree-structured subgraphs attached to the network are very
sparse and cannot be considered as communities, they satisfy Eqs. (6) and (7)
defined for qualified communities. So we do not need to consider them during the
community detection process. To remove them (and the links incident to them),
we need to investigate every node of the network in the first time to identify
nodes with degree of 1. However, after the first visit, we only need to check the
list of the neighbors of the nodes that are removed in the previous time.

Step 2. Optimizing SIWO
We use Louvain’s optimization process to maximize SIWO since it has been
proven to be very efficient but we replace the modularity by our criterion. This
greedy optimization process has two main phases, iteratively performed until a
local maximum of the objective function (SIWO measure) is reached. The first
phase starts by placing each node of graph G in its community. Then each node
is moved to the neighbor community which results in the maximum gain of the
SIWO value. If no gain can be achieved, the node stays in its community. In the
second phase, a new weighted graph G′ is created in which each node corresponds
to a community in G. Two nodes in G′ are connected if there exists at least one
edge lying between their corresponding communities in G. Finally, we assign
each edge exy in G′ a weight equal to the sum of the weights of edges between
the communities that match with x and y. These two phases are repeated until
no further improvement in the SIWO objective function can be achieved.

Step 3. Qualified Community Identification
This step determines qualified communities complying with Eqs. (6) and (7) for
the dense subgraphs discovered in the previous step. However, there may exist
communities consisting of one node weakly connected to all of its neighbors
(Smax

x = 0) and that have links with non-positive weight incident to it, we
call them Lone communities. Since the decision about the communities of such
nodes can not be made on edge strength, we let the majority of their neighbors
decide about their communities but, to reduce the computational time, like for
dangling nodes, we temporarily remove these nodes in this step and bring them
back in the final step. Then, we identify the unqualified communities which do

Addressing Resolution and Field of View Limits 215

not satisfy Eqs. (6) or (7). We keep merging each unqualified community with
one of its neighboring communities (qualified or not) until no more unqualified
community exists. For that, first, we assign a weight equal to 1 to each edge.
Then, we repeat the two phases of Louvain. In phase 1, we create a new graph
G∗ in which each node corresponds to a community identified in step 3 for the
first iteration of in phase 2 for the next ones and where each edge exy is assigned
a weight equal to the sum of the weights of edges between the communities that
correspond to x and y. We also add a self-loop to each node that has a weight
equal to the sum of the weights of the edges that reside in its corresponding
community. In phase 2, we visit all nodes in G∗. If a node x has a self-loop with
a weight that is larger than (1) half of sum of the weights of the edges incident
to it and (2) weight of any edge connecting x to another node in G∗, it means
the community assigned to x satisfies both the conditions in Eqs. (6) and (7),
we let x stay in its community. Otherwise, we move node x to the neighboring
community that results in the maximum decrease in the sum of the weights of
the edges that lie between communities of G∗.

Step 4. Post-processing
Finally, each lone community that was temporarily removed is sequentially added
back to the network and merged with the community in which it has the most
neighbors. If two or more communities tie and they have more than one con-
nection to the node, then one is chosen at random. Otherwise, we choose the
community of the most important neighbor, based on the largest degree of cen-
trality within its community. Since we add lone nodes one after the other, the
community that a former node is assigned to, might not be the best for that
node. To resolve this issue, once all lone nodes are added to the network, we
repeat moving each one of them to the community of the majority of its neigh-
bors until no further movement can be made. Dangling nodes are also added to
the network in the reverse order that they were removed and they are assigned
to the community of their unique neighbor.

4 The Resolution Limit of SIWO

Fortunato and Barthélemy [11] used two sample networks, shown in Fig. 3, to
demonstrate how Q-modularity is affected by the resolution limit. The first exam-
ple is a ring of cliques where each clique is connected to its adjacent cliques
through a single link. If the number of cliques is larger than about

√
m with m

being the total number of edges in the network, then optimizing Q-modularity
results in merging the adjacent cliques into groups of two or more, despite that
each clique corresponds to a community. The second example is a network con-
taining 4 cliques: 2 of size k and 2 of size p. If k >> p, Q-modularity similarly
fails to find the correct communities and the cliques of size p will be merged.

To prove how SIWO resolves the resolution limit of Q-modularity, the exact
structure of the network should be known; which is not possible. So, we analyze
whether SIWO is affected by the resolution limit on these networks Given the
definition of SIWO, let us consider the edge exy between two adjacent cliques

216 S. Z. Gharaghooshi et al.

Fig. 3. Schematic examples (a) a ring of cliques; adjacent cliques are connected through
a single link (b) a network with 2 cliques of size k and 2 cliques of size p.

in the first network. Since x and y do not have any common neighbors, the
edge between them has a non-positive weight. Therefore, by maximizing SIWO
measure in our algorithm, the adjacent cliques will not be merged. For the edge
exy between the cliques of size p in the second network, since x and y have at
most one common neighbor, the edge between them has a non-positive weight.
Therefore, the cliques in the second network will not be merged either.

5 Experimental Results

We compared the performance of our method with the most widely used and
efficient algorithms, as pointed out in several recent state of art studies [8,29],
on both real and synthetic networks. The algorithms are: 1- Fastgreedy [6]; 2-
Infomap; 3- Infomap+ which is Infomap to which we added the third step of
our algorithm (to relieve its sensitivity to the field of view limit and demon-
strate that our framework can be used to improve other algorithms); 4- Label
Propagation [22]; 5- Louvain1 [5]; 6- Walktrap2 [20]. It should be noted that
Infomap is the only algorithm that suffers from the filed of view limit among
these algorithms.

The results are evaluated according to the Adjusted Rand Index (ARI) [14]
and Normalized Mutual Information (NMI) [26]. As both ARI and NMI show
similar results, we only present ARI results for lack of space. We also compared
the results of different methods according to the ratio of the number of detected
communities over the true number of communities in the ground-truth to observe
how a method is affected by the resolution and the field of view limits.

5.1 Real Networks

We used 5 real networks and the ground-truth communities are available for 4
of them. Table 1 presents the properties of these networks.

We compared SIWO and Louvain on Eurosis network [9] which represents
scientific web pages from 12 European countries and the hyperlinks between
them without known ground-truth communities. However, since each European
country has its own language, web pages in different countries are sparsely con-
nected to each other. Moreover, as reported in [9], some of the countries can be
1 https://github.com/taynaud/python-louvain.
2 https://www-complexnetworks.lip6.fr/∼latapy/PP/walktrap.html.

https://github.com/taynaud/python-louvain
https://www-complexnetworks.lip6.fr/~latapy/PP/walktrap.html

Addressing Resolution and Field of View Limits 217

Table 1. Properties of real networks

Network #nodes #edges #C Network #nodes #edges #C

Karate [30] 34 78 2 Eurosis [9] 1218 5999 -

Polbooksa 105 441 3 Polblogs [1] 1222 16717 2

Football [13] 115 613 12
ahttp://www.orgnet.com

divided into smaller components e.g. Montenegro network includes three com-
ponents: 1- Telecom and Engineering, 2- Faculties and 3- High Schools. Louvain
detects 13 communities whereas SIWO detects 16 communities in this network.
Louvain assigns all nodes in Montenegro network to one giant community. How-
ever, SIWO puts Faculties and High Schools in one community and Telecom
and Engineering web pages in another community. These two communities are
connected to each other with only 7 links. However, Louvain cannot separate
them due to its resolution limit.

Table 2. Comparison of 7 algorithms according to ARI and the ratio of the number
of detected communities over the true number of communities in the ground-truth on
real networks. Tables shows the average results and standard deviation computed on
10 iterations of the algorithms on each network.

Karate Polbooks Football Polblogs

SIWO ARI 1 ± 0 0.67 ± 0 0.79 ± 0 0.77 ± 0

C/Cr 1 ± 0 1.3 ± 0 1 ± 0 1.5 ± 0

Fastgreedy ARI 0.68 ± 0 0.63 ± 0 0.47 ± 0 0.78 ± 0

C/Cr 1.5 ± 0 1.3 ± 0 0.5 ± 0 5 ± 0

Infomap ARI 0.7 ± 0 0.64 ± 0 0.84 ± 0 0.68 ± 0

C/Cr 1.5 ± 0 1.6 ± 0 0.9 ± 0 17.5 ± 0

Infomap+ ARI 0.70 ± 0 0.66 ± 0 0.84 ± 0 0.76 ± 0

C/Cr 1.5 ± 0 1.3 ± 0 0.9 ± 0 1.5 ± 0

Label prop ARI 0.66 ± 0.3 0.66 ± 0 0.73 ± 0 0.8 ± 0

C/Cr 1.2 ± 0.35 1.1 ± 0.1 0.8 ± 0.1 2.1 ± 0

Louvain ARI 0.46 ± 0 0.55 ± 0 0.8 ± 0 0.77 ± 0

C/Cr 2 ± 0 1.3 ± 0 0.8 ± 0 4.5 ± 0

Walktrap ARI 0.32 ± 0 0.65 ± 0 0.81 ± 0 0.76 ± 0

C/Cr 3 ± 0 1.3 ± 0 0.8 ± 0 5.5 ± 0

Table 2 presents the comparison with respect to ARI and C/Cr, the ratio
of the number of detected communities over the true number of communities
(both ARI and C/Cr should be as close to 1 as possible) in the ground-truth,

http://www.orgnet.com

218 S. Z. Gharaghooshi et al.

on real networks with ground-truth communities. It shows that SIWO performs
better on Karate and Polbooks based on ARI. It also outperforms the others
methods on Karate, Football, and Polblogs networks according to C/Cr measure
(SIWO could detect the exact communities with respect to the ground-truth on
these networks). Infomap detects a considerably larger number of communities
in Polblogs network which indicates this algorithm is sensitive to the field of view
limit [25]. However, Infomap+ is much less sensitive to this limit which implies
the third step of SIWO, added to Infomap+, is effective in resolving the field
of view limit. Considering results for all networks, SIWO is the top performer
among these algorithms on a variety of networks.

5.2 Synthetic Networks

To analyze the effect of the resolution and field of view limit, it is important to
test how community detection algorithms perform on networks with small/large
communities. Therefore, in this work we generated two sets of networks using
LFR [16] to test the different algorithms: one with large communities and one
with small communities. The first set is in favor of algorithms that suffer from
resolution limit such as Louvain and the second set is in favor of algorithms with
field of view limit such as Infomap. Each set includes networks with a varying
number of nodes and mixing parameter. The mixing parameter controls the frac-
tion of edges that lie between communities. We do not generate networks with
mixing parameter ≥0.5 since beyond this point and including 0.5, the communi-
ties in the ground truth no longer satisfy the definition of community. The input
parameters used to generate these two sets are presented in Table 3. Figures 4
and 5 present respectively ARI or the ratio of the number of detected com-
munities over the true number of communities (C/Cr). Panels correspond to
networks with a specific number of nodes (1000 to 100000) and they are divided
into two parts; the lower (respectively upper) part illustrates the average ARI
(or C/Cr) (respectively standard deviation) computed over 20 graphs (10 small
and 10 large communities) as a function of the mixing parameter.

Table 3. Input parameters of LFR benchmark: Set 1 contains networks with large com-
munities and Set 2 contains networks with small communities. For each combination
of parameters we generated 10 networks.

Set 1 Set 2

#nodes (N) [1, 10, 50, 100] × 103 [1, 10, 50, 100] × 103

Average and max degrees 20 - N/10 20 -
√
N

Mixing parameter [1, . . . , 7] × 0.1 [1, . . . , 7] × 0.1

Min and max community sizes N/20 - N/10 Default - by default
√
N

Figure 4 shows the performance of Fastgreedy decreases as the mixing param-
eter increases. Louvain and Walktrap perform well on the smallest networks in

Addressing Resolution and Field of View Limits 219

the set; however, its performance drops when we apply it to the networks with
sizes 50000 and larger. Label propagation, Infomap and Infomap+ perform well
up to when the mixing parameter reaches 0.3. However, a larger mixing param-
eter causes a rapid decrease in the ARI value when applying these algorithms to
the two largest networks in the set. These three algorithms have a large standard
deviation and their outputs are not stable on these networks. SIWO correctly
detects the communities when the mixing parameter is less than or equal to 0.3
(ARI � 1) regardless of size of the network and has the best performance overall.

Figure 5 clearly shows the resolution limit of Louvain and Fastgreedy as they
underestimate the number of communities. SIWO is the best performer in terms
of the number of communities and it has a very small standard deviation whereas,
Infomap+ and Label propagation have a large standard deviation and fail to find
the correct number of communities when the mixing parameter exceeds 0.3.

Fig. 4. Evaluation according to ARI
on synthetic networks generated with
LFR.

Fig. 5. Evaluation of SIWO, Label
propagation, Infomap+, Louvain and
Fastgreedy according to C/Cr on syn-
thetic networks generated with LFR.

6 Scalability

We analyze how the computational cost of SIWO varies with the size of the
network. The pre-processing step has two phases: removing dangling nodes which
requires a time of the order of n where n is the number of nodes, and calculating
the edge strength weights which requires a time of the order of nd2 = 2md where
m is the number of edges and d is the average degree. In many real networks d is
much smaller than n and it does not grow with n [10]. The second and third step
follows the same greedy process as Louvain does. Louvain is theoretically cubic
but was demonstrated experimentally to be quasi-linear [3] and has been applied
with success to handle large size networks having several million nodes, and 100
million links. The time complexity of the post-processing step depends on the

220 S. Z. Gharaghooshi et al.

number of Lone communities and if all the nodes are in Lone communities, it
requires a time O(nd2). Overall, the time complexity of SIWO is O(n + md),
which is similar to Louvain due to the fact that d is small and n = 2m/d.
SIWO can detect communities in a networks with 100000 nodes and 1 million
edges, in about 1 min on a commodity i7 and 8GB RAM laptop. The current
implementation of SIWO is in Python3, derived from python-louvain.

7 Conclusion

This paper introduces SIWO, a novel objective function based on edge strength
for community detection, and a formal definition of community, that we use to
lead the community detection process after optimizing the objective function.
This framework can also be applied to other community detection methods to
remedy their inability that causes the resolution or the field of view limit. Our
extensive experiments using both small and large networks confirm that our algo-
rithm is consistent, effective and scalable for networks with either large or small
communities demonstrating less sensitivity to the resolution limit and field of
view limit that most community mining algorithms suffer from. As a future direc-
tion, we will generalize the proposed algorithm for weighted/directed networks.
Notably, SIWO algorithm can be easily generalized to handle weighted graphs. It
requires only to adjust the pre-processing step by combining the weights from the
input graph and the weights computed by SIWO to evaluate the edge strength.

References

1. Adamic, L.A., Glance, N.: The political blogosphere and the 2004 U.S. election.
In: Proceedings of the 3rd International Workshop on Link Discovery, pp. 36–43
(2005)

2. Arenas, A., Fernandez, A., Gomez, S.: Analysis of the structure of complex net-
works at different resolution levels. New J. Phys. 10(5), 053039 (2008)

3. Aynaud, T., Blondel, V.D., Guillaume, J.L., Lambiotte, R.: Multilevel Local Opti-
mization of Modularity, pp. 315–345. Wiley, Hoboken (2013)

4. Barnes, E.R.: An algorithm for partitioning the nodes of a graph. SIAM J. Alg.
Discr. Meth. 3(4), 541–550 (1982)

5. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of com-
munities in large networks. J. Stat. Mech. Theor. Exp. 2008(10), P10008 (2008)

6. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very
large networks. Phys. Rev. E 70, 066111 (2004)

7. Coscia, M., Giannotti, F., Pedreschi, D.: A classification for community discovery
methods in complex networks. Stat. Anal. Data Min. 4(5), 512–546 (2013)

8. Emmons, S., Kobourov, S., Gallant, M., Börner, K.: Analysis of network clustering
algorithms and cluster quality metrics at scale. PLoS One 11(7), 1–18 (2016)

3 SIWOCode anddatasets available at https://www.dropbox.com/sh/eehjt5qblll0yvg/
AACW2XjHJjHX2Q876Vbk0e4Ya?dl=0 .

https://www.dropbox.com/sh/eehjt5qblll0yvg/AACW2XjHJjHX2Q876Vbk0e4Ya?dl=0
https://www.dropbox.com/sh/eehjt5qblll0yvg/AACW2XjHJjHX2Q876Vbk0e4Ya?dl=0

Addressing Resolution and Field of View Limits 221

9. EUROSIS Final Report: Webmapping of science and society actors in Europe, final
report. www.eurosfaire.prd.fr/7pc/documents/1274371553 finalreporteurosis3 1.
doc. Accessed 01 June 2018

10. Fortunato, S.: Community detection in graphs. Phy. Rep. 486(3–5), 75–174 (2010)
11. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. PNAS

104(1), 36–41 (2007)
12. Fortunato, S., Hric, D.: Community detection in networks: a user guide. Phys. Rep.

659, 1–44 (2016)
13. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-

works. PNAS 99(12), 7821–7826 (2002)
14. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)
15. Kolda, T.G., Pinar, A., Plantenga, T.D., Seshadhri, C., Task, C.: Counting trian-

gles in massive graphs with MapReduce. SIAM J. Sci. Comput. 36(5), S48–S77
(2014)

16. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing com-
munity detection algorithms. Phys. Rev. E 78(4), 1–5 (2008)

17. Li, Z., Zhang, S., Wang, R.S., Zhang, X.S., Chen, L.: Quantitative function for
community detection. Phys. Rev. E 77(3), 36109 (2008)

18. Newman, M., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69, 026113 (2004)

19. Newman, M.: Fast algorithm for detecting community structure in networks. Phys.
Rev. E - Stat. Nonlinear Soft Matter Phys. 69, 066133 (2004)

20. Pons, P., Latapy, M.: Computing communities in large networks using random
walks. In: Yolum, I., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005.
LNCS, vol. 3733, pp. 284–293. Springer, Heidelberg (2005). https://doi.org/10.
1007/11569596 31

21. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and iden-
tifying communities in networks. PNAS 101(9), 2658–63 (2004)

22. Raghavan, N., Albert, R., Kumara, S.: Near linear time algorithm to detect com-
munity structures in large-scale networks. Phys. Rev. E - Stat. Nonlinear Soft
Matter Phys. 76, 036106 (2007)

23. Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Phys.
Rev. E 74, 16110 (2006)

24. Rosvall, M., Bergstrom, C.: Maps of random walks on complex network reveal
community structure. PNAS 105(4), 1118–1123 (2008)

25. Schaub, M.T., Delvenne, J.C., Yaliraki, S.N., Barahona, M.: Markov dynamics as
a zooming lens for multiscale community detection: non clique-like communities
and the field-of-view limit. PLoS One 7, e32210 (2012)

26. Strehl, A., Ghosh, J.: Cluster ensembles – a knowledge reuse framework for com-
bining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2003)

27. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
Bell Syst. Tech. J. 49(2), 291–307 (1970)

28. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature
393(6684), 440–442 (1998)

29. Yang, Z., Algesheimer, R., Tessone, C.J.: A comparative analysis of community
detection algorithms on artificial networks. Sci. Rep. 6, 30750 (2016)

30. Zachary, W.: An information flow model for conflict and fission in small groups. J.
Anthropol. Res. 33, 452–473 (1977)

www.eurosfaire.prd.fr/7pc/documents/1274371553_finalreporteurosis3_1.doc
www.eurosfaire.prd.fr/7pc/documents/1274371553_finalreporteurosis3_1.doc
https://doi.org/10.1007/11569596_31
https://doi.org/10.1007/11569596_31

222 S. Z. Gharaghooshi et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Estimating Uncertainty in Deep Learning
for Reporting Confidence: An Application
on Cell Type Prediction in Testes Based

on Proteomics

Biraja Ghoshal1(B), Cecilia Lindskog2, and Allan Tucker1

1 Brunel University London, Uxbridge UB8 3PH, UK
biraja.ghoshal@brunel.ac.uk

2 Department of Immunology, Genetics and Pathology, Rudbeck Laboratory,
Uppsala University, 75185 Uppsala, Sweden

https://www.brunel.ac.uk/computer-science

Abstract. Multi-label classification in deep learning is a practical yet
challenging task, because class overlaps in the feature space means that
each instance is associated with multiple class labels. This requires a pre-
diction of more than one class category for each input instance. To the
best of our knowledge, this is the first deep learning study which quan-
tifies uncertainty and model interpretability in multi-label classification;
as well as applying it to the problem of recognising proteins expressed
in cell types in testes based on immunohistochemically stained images.
Multi-label classification is achieved by thresholding the class proba-
bilities, with the optimal thresholds adaptively determined by a grid
search scheme based on Matthews correlation coefficients. We adopt MC-
Dropweights to approximate Bayesian Inference in multi-label classifica-
tion to evaluate the usefulness of estimating uncertainty with predictive
score to avoid overconfident, incorrect predictions in decision making.
Our experimental results show that the MC-Dropweights visibly improve
the performance to estimate uncertainty compared to state of the art
approaches.

Keywords: Uncertainty estimation · Multi-label classification · Cell
type prediction · Human Protein Atlas · Proteomics

1 Introduction

Proteins are the essential building blocks of life, and resolving the spatial distri-
bution of all human proteins at an organ, tissue, cellular, and subcellular level
greatly improves our understanding of human biology in health and disease. The
testes is one of the most complex organs in the human body [15]. The spermato-
genesis process results in the testes containing the most tissue-specific genes
than elsewhere in the human body. Based on an integrated ‘omics’ approach
using transcriptomics and antibody-based proteomics, more than 500 proteins
with distinct testicular protein expression patterns have previously been identi-
fied [10], and transcriptomics data suggests that over 2,000 genes are elevated
c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 223–234, 2020.
https://doi.org/10.1007/978-3-030-44584-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_18&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_18

224 B. Ghoshal et al.

in testes compared to other organs. The function of a large proportion of these
proteins are however largely unknown, and all genes involved in the complex pro-
cess of spermatogenesis are yet to be characterized. Manual annotation provides
the standard for scoring immunohistochemical staining pattern in different cell
types. However, it is tedious, time-consuming and expensive as well as subject to
human error as it is sometimes challenging to separate cell types by the human
eye. It would be extremely valuable to develop an automated algorithm that can
recognise the various cell types in testes based on antibody-based proteomics
images while providing information on which proteins are expressed by that cell
type [10]. This is, therefore, a multi-label image classification problem.

Fig. 1. Schematic overview: cell type-specific expression of testis elevated genes [10]

Exact Bayesian inference with deep neural networks is computationally
intractable. There are many methods proposed for quantifying uncertainty or
confidence estimates. Recently Gal [5] proved that a dropout neural network,
a well-known regularisation technique [13], is equivalent to a specific varia-
tional approximation in Bayesian neural networks. Uncertainty estimates can
be obtained by training a network with dropout and then taking Monte Carlo
(MC) samples of the prediction using dropout during test time. Following Gal
[5], Ghoshal et al. [7] also showed similar results for neural networks with Drop-
weights and Teye [14] with batch normalisation layers in training (Fig. 1).

In this paper, we aim to:

1. Present the first approach in multi-label pattern recognition that can recog-
nise various cell types-specific protein expression patterns in testes based
on antibody-based proteomics images and provide information on which cell
types express the protein with estimated uncertainty.

2. Show Multi-Label Classification (MLC) is achieved by thresholding the class
probabilities, with the Optimal Thresholds adaptively determined by a grid
search scheme based on Matthews correlation coefficient.

Estimating Uncertainty to Recognise the Cell Types 225

3. Demonstrate through extensive experimental results that a Deep Learning
Model with MC-Dropweights [7] is significantly better than a wide spectrum
of MLC algorithms such as Binary Relevance (BR), Classifier Chain (CC),
Probabilistic Classifier Chain (PCC) and Condensed Filter Tree (CFT), Cost-
sensitive Label Embedding with Multidimensional Scaling (CLEMS) and
state-of-the-art MC-Dropout [5] algorithms across various cell types.

4. Develop Saliency Maps in order to increase model interpretability visualizing
descriptive regions and highlighting pixels from different areas in the input
image. Deep learning models are often accused of being “black boxes”, so
they need to be precise, interpretable, and uncertainty in predictions must be
well understood.

Our objective is not to achieve state-of-the-art performance on these prob-
lems, but rather to evaluate the usefulness of estimating uncertainty leveraging
MC-Dropweights with predictive score in multi-label classification to avoid over-
confident, incorrect predictions for decision making.

2 Multi-label Cell-Type Recognition and Localization
with Estimated Uncertainty

2.1 Problem Definition

Given a set of training data D, where X = {x1, x2 . . . xN} is the set of N images
and the corresponding labels Y = {y1, y2 . . . yN} is the cell-type information.
The vector yi = {yi,1, yi,2 . . . yi,M} is a binary vector, where yi,j = 1 indicates
that the ith image belongs to the jth cell-type. Note that an image may belong to
multiple cell-types, i.e., 1 <=

∑
j yi,j <= M . Based on D(X,Y), we constructed

a Bayesian Deep Learning model giving an output of the predictive probability
with estimated uncertainty of a given image xi belonging to each cell category.
That is, the constructed model acts as a function such that f : X → Y using
weights of neural net parameters ω where (0 <= ŷx,j <= 1) as close as possible
to the original function that has generated the outputs Y, output the estimated
value (ŷi,1, ŷi,2, . . . , ŷi,M) as close to the actual value (yi,1, yi,2, . . . , yi,M).

2.2 Solution Approach

We tailored Deep Convolutional Neural Network (DCNN) architectures for cell
type detection and localisation by considering a large image capacity, binary-
cross entropy loss, sigmoid activation, along with Dropweights in the fully con-
nected layer and Batch Normalization formulation of propagating uncertainty in
deep learning to estimate meaningful model uncertainty.

Multi-label Setup: There are multiple approaches to transform the multi-
label classification into multiple single-label problems with the associated loss
function [8]. In this study, we used immunohistochemically stained testes tissue
consisting of 8 cell types corresponding to 512 testis elevated genes.

226 B. Ghoshal et al.

Therefore, we define a 8-dimensional class label vector Y = {y1, y2 . . . yN} ;
Y ∈ {0, 1}, given 8 cell types. yc indicates the presence with respect to according
cell type expressing the protein in the image while an all-zero vector [0; 0; 0; 0;
0; 0; 0; 0] represents the “Absence” (no cell type expresses the protein in the
scope of any of 8 categories).

Multi-label Classification Cost Function: The cost function for Multi-label
Classification has to be different considering the fact that a prediction for a class
is not mutually exclusive. So we selected the sigmoid function with the addition
of binary cross-entropy.

Data Augmentation: We used Keras’ image pre-processing package to apply
affine transformations to the images, such as rotation, scaling, shearing, and
translation during training and inference. This reduces the epistemic uncertainty
during training, captures heteroscedastic aleatoric uncertainty during inference
and overall improves the performance of models.

Multi-label Classification Algorithm: In Bayesian classification, the mean
of the predictive posterior corresponds to the parameter point estimates, and the
width of the posterior reflects the confidence of the predictions. The output of the
network is an M-dimensional probability vector, where each dimension indicates
how likely each cell type in a given image expresses the protein. The number
of cell types that simultaneously express the protein in an image varies. One
method to solve this multi-label classification problem is placing thresholds on
each dimension. However different dimensions may be associated with different
thresholds. If the value of the ith dimension of ŷ is greater than a threshold, we
can say that the i-th cell-type is expressed in the given tissue. The main problem
is defining the threshold for each class label.

A threshold based on Matthews Correlation Coefficient (MCC) is used on
the model outcome to determine the predicted class to improve the accuracy of
the models.

We adopted a grid search scheme based on Matthews Correlation Coefficients
(MCC) to estimate the optimal thresholds for each cell type-specific protein
expression [2]. Details of the optimal threshold finding algorithm is shown in
Algorithm 1.

The idea is to estimate the threshold for each cell category in an image sepa-
rately. We convert the predicted probability vector with the estimated threshold
into binary and calculate the Matthews correlation coefficient (MCC) between
the threshold value and the actual value. The Matthews correlation coefficient
for all thresholds are stored in the vector ω, from which we find the index of
threshold that causes the largest correlation. The Optimal Threshold for the ith

dimension is then determined by the corresponding value. We then leveraged
Bias-Corrected Uncertainty quantification method [6] using Deep Convolutional
Neural Network (DCNN) architectures with Dropweights [7].

Estimating Uncertainty to Recognise the Cell Types 227

Input: Ground Truth Vector: {yi,1, yi,2, . . . , yi,M} ;
Estimated Probability Vector: {ŷi,1, ŷi,2, . . . , ŷi,M} ;
Upper Bound for threshold = Ω, and Threshold Stride = S
Result: The Optimal Thresholds T = (ot1, ot2, . . . , otM)
Initialization: The set of threshold T = (ot1 = 0, ot2 = 0, . . . , otM = 0) ;
for i ← 1 to M do

j ← 0;
ω ← 0;
π ← 0;
for j < Ω do

Initialize M-dimensional binary vector v ← (v1 = 0, v2 = 0, . . . , vM = 0)
;

if ŷi > j then
vi ← 1;

end
else

vi ← 0;
end
ω ← ω.append(MCC(y[1 : i], v));
π = π.append(j) ;
j = j + S

end
m̂ ← argmaxmω = (ω1, ω2, . . . , ωm, . . .) ;
oti = π[m̂]

end
Algorithm 1. Find Optimal Threshold

Network Architecture: Our models are trained and evaluated using Keras
with Tensorflow backend. For the DNN architecture, we used a generic build-
ing block containing the following model structure: Conv-Relu-BatchNorm-
MaxPool-Conv-Relu-BatchNorm-MaxPool-Dense-Relu-Dropweights and Dense-
Relu-Dropweights-Dense-Sigmoid, with 32 convolution kernels, 3× 3 kernel size,
2 × 2 pooling, dense layer with 512 units, 128 units, and 8 feed-forward Drop-
weights probabilities 0.3. We optimised the model using Adam optimizer with
the default learning rate of 0.001. The training process was conducted in 1000
epochs, with mini-batch size 32. We repeated our experiments three times for
an algorithm and calculated a mean of the results.

3 Estimating Bias-Corrected Uncertainty Using Jackknife
Resampling Method

3.1 Bayesian Deep Learning and Estimating Uncertainty

There are many measures to estimate uncertainty such as softmax variance,
expected entropy, mutual information, predictive entropy and averaging predic-
tions over multiple models. In supervised learning, information gain, i.e. mutual

228 B. Ghoshal et al.

information between the input data and the model parameters is considered as
the most relevant measure of the epistemic uncertainty [4,12]. Estimation of
entropy from the finite set of data suffers from a severe downward bias when
the data is under-sampled. Even small biases can result in significant inaccura-
cies when estimating entropy [9]. We leveraged Jackknife resampling method to
calculate bias-corrected entropy [11].

Given a set of training data D, whereX = {x1, x2 . . . xN} is the set of N images
and the corresponding labels Y = {y1, y2 . . . yN}, a BNN is defined in terms of a
prior p(ω) on the weights, as well as the likelihood p(D|ω). Consider class prob-
abilities p(yxi

= c | xi, ωt,D) with ωt ∼ q(ω | D) with W = (ωt)T
t=1, a set

of independent and identically distributed (i.i.d.) samples draws from q(ω |,D).
The below procedure computes the Monte Carlo (MC) estimate of the posterior
predictive distribution, its Entropy and Mutual Information(MI):

N∑

i=1

IMC(yi;ω | xi,D) = H
(
p̂(yi | xi,D)

) − 1
|W|

∑

ω∈W
H

(
p(yi | xi, ω,D)

)
. (1)

where
p̂(yi | xi,D) =

1
|W|

∑

ω∈W
p(yi | xi, ω,D) . (2)

The stochastic predictive entropy is H[y | x, ω] = H(p̂) = −∑
c p̂c log(p̂c),

where p̂c = 1
T

∑
t ptc is the entire sample maximum likelihood estimator of prob-

abilities.
The first term in the MC estimate of the mutual information is called the

plug-in estimator of the entropy. It has long been known that the plug-in esti-
mator underestimates the true entropy and plug-in estimate is biased [11,17].

A classic method for correcting the bias is the Jackknife resampling method [3].
In order to solve the bias problem, we propose a Jackknife estimator to estimate the
epistemic uncertainty to improve an entropy-based estimation model. Unlike MC-
Dropout, it does not assume constant variance. If D(X,Y) is the observed random
sample, the ith Jackknife sample, xi, is the subset of the sample that leaves-one-out
observation xi : x(i) = (x1, . . . xi−1, xi+1 . . . xn). For sample size N , the Jackknife

standard error σ̂ is defined as:
√

(N−1)
N

∑N
i=1(σ̂i − σ̂(�))2 , where σ̂(�) is the empir-

ical average of the Jackknife replicates: 1
N

∑N
i=1 σ̂(i). Here, the Jackknife estimator

is an unbiased estimator of the variance of the sample mean. The Jackknife correc-
tion of a plug-in estimator H(·) is computed according to the method below [3]:

Given a sample (pt)T
t=1 with pt discrete distribution on 1...C classes, T corre-

sponds to the total number of MC-Dropweights forward passes during the test.

1. for each t = 1...T
– calculate the leave-one-out estimator: p̂−t

c = 1
T−1

∑
j �=i pjc

– calculate the plug-in entropy estimate: Ĥ−t = H(p̂−t)
2. calculate the bias-corrected entropy ĤJ = TĤ + (T−1)

T

∑T
t=1 Ĥ(−i), where

Ĥ(−i) is the observed entropy based on a sub-sample in which the ith indi-
vidual is removed.

Estimating Uncertainty to Recognise the Cell Types 229

We leveraged the following relation:

μ−i =
1

T − 1

∑

j �=i

xj = μ +
μ − xi

T − 1
.

while resolving the i-th data point out of the sample mean μ = 1
T

∑
i xi and

recompute the mean μ−i. This makes it possible to quickly calculate leave-one-
out estimators of a discrete probability distribution.

The epistemic uncertainty can be obtained as the difference between the
approximate predictive posterior entropy (or total entropy) and the average
uncertainty in predictions (i.e: aleatoric entropy):

I(y : ω) = He(y|x) = ĤJ (y|x) − Ha(y|x) = ĤJ(y|x) − Eq(ω|D)[ĤJ (y|x, ω)]

Therefore, the mutual information I(y : ω) i.e. as a measure of bias-corrected
epistemic uncertainty, represents the variability in the predictions made by the
neural network weight configurations drawn from approximate posteriors. It
derives an estimate of the finite sample bias from the leave-one-out estimators
of the entropy and reduces bias considerably down to O(n−2) [3].

The bias-corrected uncertainty estimation model explains regions of ambigu-
ous data space or difficult to classify, as data distribution with noise in the
inputs or model, which was trained with different domain data. Consequently,
these inputs should be assigned a higher aleatoric uncertainty. As a result, we
can expect high model uncertainty in these regions.

Following Gal [5], we define the stochastic versions of Bayesian uncertainty
using MC-Dropweights, where the class probabilities p(yxi

= c | xi, ωt,D) with
ωt ∼ q(ω | D) and W = (ωt)T

t=1 along with a set of independent and identically
distributed (i.i.d.) samples drawn from q(ω |,D), can be approximated by the
average over the MC-Dropweights forward pass.

We trained the multi-label classification network with all eight classes. We
dichotomised the network outputs using optimal threshold with Algorithm1 for
each cell type, with a 1000 MC-Dropweights forward passes at test time. In these
detection tasks, p(yxi

>= 0;OptimalThresholdi | xi, ωt,D), where 1 marks the
presence of cell type, is sufficient to indicate the most likely decision along with
estimated uncertainty.

3.2 Dataset

Our main dataset is taken from The Human Protein Atlas project, that maps the
distribution of all human proteins in human tissues and organs [15]. Here, we used
high-resolution digital images of immunohistochemically stained testes tissue
consisting of 8 cell types: spermatogonia, preleptotene spermatocytes, pachytene
spermatocytes, round/early spermatids, elongated/late spermatids, sertoli cells,
leydig cells, and peritubular cells, publicly available on the Human Protein Atlas
version 18 (v18.proteinatlas.org), as shown in Fig. 2:

230 B. Ghoshal et al.

Fig. 2. Examples of proteins expressed only in one cell-type [10]

Fig. 3. Annotated heatmap of a correlation matrix between cell types

A relationship was observed between spermatogonia and preleptotene sper-
matocytes cell types and between round/early spermatids and elongated/late
spermatids cell types along with Pachytene spermatocytes cells. Figure 3 illus-
trates the correlation coefficients between cell types. The observable pattern is
that very few cell types are strongly correlated with each other.

3.3 Results and Discussions

We conducted the experiments on Human Protein Atlas datasets to validate the
proposed algorithm, MC-Dropweights in Multi-Label Classification.

Estimating Uncertainty to Recognise the Cell Types 231

Multi-label Classification Model Performance: Model evaluation met-
rics for multi-label classification are different from those used in multi-class (or
binary) classification. The performance metrics of multi-label classifiers can be
classified as label-based (i.e.: it is assumed that labels are mutually exclusive)
and example-based [16]. In this work, example-based measures (Accuracy score,
Hamming-loss, F1-Score) and Rank-Loss are used to evaluate the performance
of the classifiers.

Table 1. Performance metrics

%Metrics BR CC PCC CFT CLEMS MC-
Dropout

MC-
Dropweights

Hamming loss 0.2445 0.2420 0.2420 0.2375 0.2370 0.207 0.1925

Rank loss 3.6700 3.5740 3.1580 3.2920 3.1120 2.862 2.626

F1 score 0.5038 0.5184 0.5733 0.5373 0.5902 0.6306 0.6627

Avg. accuracy score 0.4236 0.4389 0.4643 0.4573 0.5052 0.6150 0.7067

In the first experiment, we compared the MC-Dropweights neural network-
based method with five machine learning MLC algorithms introduced in Sect. 1:
binary relevance (BR), Classifier Chain (CC), Probabilistic Classifier Chain
(PCC) and Condensed Filter Tree (CFT), Cost-Sensitive Label Embedding
with Multi-dimensional Scaling (CLEMS) and the MC-Dropout neural network
model. Table 1 shows that MC-Dropweights exhibits considerably better perfor-
mance overall the algorithms, which demonstrates the importance of considering
the Dropweights in the neural network.

Cell Type-Specific Predictive Uncertainty: The relationship between
uncertainty and predictive accuracy grouped by correct and incorrect predic-
tions is shown in Fig. 4. It is interesting to note that, on average, the high-
est uncertainty is associated with Elongated/late Spermatids and Round/early
Spermatids. This indicates that there is some feature which contributes greater
uncertainty to the Spermatids class types than to the other cell types.

Cell Type Localization: Estimated uncertainty with Saliency Mapping is a
simple technique to uncover discriminative image regions that strongly influ-
ence the network prediction in identifying a specific class label in the image. It
highlights the most influential features in the image space that affect the pre-
dictions of the model [1] and visualises the contributions of individual pixels to
epistemic and aleatoric uncertainties separately. We calculated the class activa-
tion maps (CAM) [18] using the activations of the fully connected layer and the
weights from the prediction layer as shown in Fig. 5.

232 B. Ghoshal et al.

Fig. 4. Distribution of uncertainty values for all protein images, grouped by correct
and incorrect predictions. Label assignment was based on optimal thresholding (Algo-
rithm 1). For an incorrect prediction, there is a strong likelihood that the predictive
uncertainty is also high in all cases except for Spermatids.

Estimating Uncertainty to Recognise the Cell Types 233

Fig. 5. Saliency maps for some common methods towards model explanation

4 Conclusion and Discussion

In this study, a multi-label classification method was developed using deep learn-
ing architecture with Dropweights for the purposes of predicting cell types-
specific protein expression with estimated uncertainty, which can increase the
ability to interpret, with confidence and make models based on deep learning
more applicable in practice. The results show that a Deep Learning Model with
MC-Dropweights yields the best performance among all popular classifiers.

Building truly large-scale, fully-automated, high precision, very high dimen-
sional, image analysis system that can recognise various cell type-specific protein
expression, specifically for Elongated/Late Spermatids and Round/early Sper-
matids remains a strenuous task. The properties in the dataset such as label
correlations, label cardinality can strongly affect the uncertainty quantification
in predictive probability performance of a Bayesian Deep learning algorithm in
multi-label settings. There is no systematic study on how and why the perfor-
mance varies over different data properties; any such study would be of great
benefit in progressing multi-label algorithms.

References

1. Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity
checks for saliency maps. In: Advances in Neural Information Processing Systems,
pp. 9505–9515 (2018)

2. Chu, W.T., Guo, H.J.: Movie genre classification based on poster images with deep
neural networks. In: Proceedings of the Workshop on Multimodal Understanding
of Social, Affective and Subjective Attributes, pp. 39–45. ACM (2017)

3. DasGupta, A.: Asymptotic Theory of Statistics and Probability. Springer, New
York (2008). https://doi.org/10.1007/978-0-387-75971-5

4. Depeweg, S., Hernández-Lobato, J.M., Doshi-Velez, F., Udluft, S.: Decomposition
of uncertainty in Bayesian deep learning for efficient and risk-sensitive learning.
arXiv preprint arXiv:1710.07283 (2017)

https://doi.org/10.1007/978-0-387-75971-5
http://arxiv.org/abs/1710.07283

234 B. Ghoshal et al.

5. Gal, Y.: Uncertainty in deep learning. Ph.D. thesis, University of Cambridge (2016)
6. Ghoshal, B., Tucker, A., Sanghera, B., Wong, W.: Estimating uncertainty in deep

learning for reporting confidence to clinicians in medical image segmentation and
diseases detection. In: Computational Intelligence - Special Issue on Foundations
of Biomedical (Big) Data Science, vol. 1 (2019)

7. Ghoshal, B., Tucker, A., Sanghera, B., Wong, W.: Estimating uncertainty in deep
learning for reporting confidence to clinicians when segmenting nuclei image data.
2019 IEEE 32nd International Symposium on Computer-Based Medical Systems
(CBMS), vol. 1, pp. 318–324, June 2019. https://doi.org/10.1109/CBMS.2019.
00072

8. Huang, K.H., Lin, H.T.: Cost-sensitive label embedding for multi-label classifica-
tion. Mach. Learn. 106(9–10), 1725–1746 (2017)

9. Macke, J., Murray, I., Latham, P.: Estimation bias in maximum entropy models.
Entropy 15(8), 3109–3129 (2013)

10. Pineau, C., et al.: Cell type-specific expression of testis elevated genes based on
transcriptomics and antibody-based proteomics. J. Proteome Res. 18, 4215–4230
(2019)

11. Quenouille, M.H.: Notes on bias in estimation. Biometrika 43(3/4), 353–360 (1956)
12. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),

379–423 (1948)
13. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:

Dropout: a simple way to prevent neural networks from overfitting. Journal Mach.
Learn. Res. 15(1), 1929–1958 (2014)

14. Teye, M., Azizpour, H., Smith, K.: Bayesian uncertainty estimation for batch nor-
malized deep networks. arXiv preprint arXiv:1802.06455 (2018)

15. Uhlén, M., et al.: Tissue-based map of the human proteome. Science 347(6220),
1260419 (2015)

16. Wu, X.Z., Zhou, Z.H.: A unified view of multi-label performance measures. In:
Proceedings of the 34th International Conference on Machine Learning, vol. 70,
pp. 3780–3788. JMLR. org (2017)

17. Yeung, R.W.: A new outlook on Shannon’s information measures. IEEE Trans.
Inf. Theory 37(3), 466–474 (1991)

18. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features
for discriminative localization. In: CVPR (2016)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/CBMS.2019.00072
https://doi.org/10.1109/CBMS.2019.00072
http://arxiv.org/abs/1802.06455
http://creativecommons.org/licenses/by/4.0/

Adversarial Attacks Hidden in Plain Sight

Jan Philip Göpfert1(B), André Artelt1, Heiko Wersing2, and Barbara Hammer1

1 Bielefeld University, Bielefeld, Germany
jgoepfert@techfak.uni-bielfeld.de

2 Honda Research Institute Europe GmbH, Offenbach, Germany

Abstract. Convolutional neural networks have been used to achieve a
string of successes during recent years, but their lack of interpretability
remains a serious issue. Adversarial examples are designed to deliber-
ately fool neural networks into making any desired incorrect classifica-
tion, potentially with very high certainty. Several defensive approaches
increase robustness against adversarial attacks, demanding attacks of
greater magnitude, which lead to visible artifacts. By considering human
visual perception, we compose a technique that allows to hide such adver-
sarial attacks in regions of high complexity, such that they are impercep-
tible even to an astute observer. We carry out a user study on classifying
adversarially modified images to validate the perceptual quality of our
approach and find significant evidence for its concealment with regards
to human visual perception.

1 Introduction

The use of convolutional neural networks has led to tremendous achievements
since Krizhevsky et al. [1] presented AlexNet in 2012. Despite efforts to under-
stand the inner workings of such neural networks, they mostly remain black boxes
that are hard to interpret or explain. The issue was exaggerated in 2013 when
Szegedy et al. [2] showed that “adversarial examples” – images perturbed in such
a way that they fool a neural network – prove that neural networks do not simply
generalize correctly the way one might näıvely expect. Typically, such adversarial
attacks change an input only slightly, but in an adversarial manner, such that
humans do not regard the difference of the inputs relevant, but machines do.
There are various types of attacks, such as one pixel attacks, attacks that work
in the physical world, and attacks that produce inputs fooling several different
neural networks without explicit knowledge of those networks [3–5].

Adversarial attacks are not strictly limited to convolutional neural networks.
Even the simplest binary classifier partitions the entire input space into labeled
regions, and where there are no training samples close by, the respective label
can only be nonsensical with regards to the training data, in particular near
decision boundaries. One explanation of the “problem” that convolutional neu-
ral networks have is that they perform extraordinarily well in high-dimensional
settings, where the training data only covers a very thin manifold, leaving a lot
of “empty space” with ragged class regions. This creates a lot of room for an
c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 235–247, 2020.
https://doi.org/10.1007/978-3-030-44584-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_19&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_19

236 J. P. Göpfert et al.

Fig. 1. Two adversarial attacks carried out using the Basic Iterative Method (first two
rows) and our Entropy-based Iterative Method (last two rows). The original image (a)
(and (g)) is correctly classified as umbrella but the modified images (b) and (h) are
classified as slug with a certainty greater than 99%. Note the visible artifacts caused
by the perturbation (c), shown here with maximized contrast. The perturbation (i)
does not lead to such artifacts. (d), (e), (f), (j), (k), and (l) are enlarged versions of
the marked regions in (a), (b), (c), (g), (h), and (i), respectively.

Adversarial Attacks Hidden in Plain Sight 237

attacker to modify an input sample and move it away from the manifold on
which the network can make meaningful predictions, into regions with nonsen-
sical labels. Due to this, even adversarial attacks that simply blur an image,
without any specific target, can be successful [6]. There are further attempts at
explaining the origin of the phenomenon of adversarial examples, but so far, no
conclusive consensus has been established [7–10].

A number of defenses against adversarial attacks have been put forward,
such as defensive distillation of trained networks [11], adversarial training [12],
specific regularization [9], and statistical detection [13–16]. However, no defense
succeeds in universally preventing adversarial attacks [17,18], and it is possible
that the existence of such attacks is inherent in high-dimensional learning prob-
lems [6]. Still, some of these defenses do result in more robust networks, where
an adversary needs to apply larger modifications to inputs in order to success-
fully create adversarial examples, which begs the question how robust a network
can become and whether robustness is a property that needs to be balanced
with other desirable properties, such as the ability to generalize well [19] or a
reasonable complexity of the network [20].

Strictly speaking, it is not entirely clear what defines an adversarial example
as opposed to an incorrectly classified sample. Adversarial attacks are devised to
change a given input minimally such that it is classified incorrectly – in the eyes
of a human. While astonishing parallels between human visual information pro-
cessing and deep learning exist, as highlighted e. g. by Yamins and DiCarlo [21]
and Rajalingham et al. [22], they disagree when presented with an adversarial
example. Experimental evidence has indicated that specific types of adversarial
attacks can be constructed that also deteriorate the decisions of humans, when
they are allowed only limited time for their decision making [23]. Still, human
vision relies on a number of fundamentally different principles when compared
to deep neural networks: while machines process image information in parallel,
humans actively explore scenes via saccadic moves, displaying unrivaled abilities
for structure perception and grouping in visual scenes as formalized e. g. in the
form of the Gestalt laws [24–27]. As a consequence, some attacks are perceptible
by humans, as displayed in Fig. 1. Here, humans can detect a clear difference
between the original image and the modified one; in particular in very homoge-
neous regions, attacks lead to structures and patterns which a human observer
can recognize. We propose a simple method to address this issue and answer the
following questions. How can we attack images using standard attack strategies,
such that a human observer does not recognize a clear difference between the
modified image and the original? How can we make use of the fundamentals of
human visual perception to “hide” attacks such that an observer does not notice
the changes?

Several different strategies for performing adversarial attacks exist. For a
multiclass classifier, the attack’s objective can be to have the classifier predict
any label other than the correct one, in which case the attack is referred to as
untargeted, or some specifically chosen label, in which case the attack is called
targeted. The former corresponds to minimizing the likelihood of the original

238 J. P. Göpfert et al.

label being assigned; the latter to maximizing that of the target label. Moreover,
the classifier can be fooled into classifying the modified input with extremely high
confidence, depending on the method employed. This, in particular, can however
lead to visible artifacts in the resulting images (see Fig. 1). After looking at a
number of examples, one can quickly learn to make out typical patterns that
depend on the classifying neural network. In this work, we propose a method for
changing this procedure such that this effect is avoided.

For this purpose, we extend known techniques for adversarial attacks. A par-
ticularly simple and fast method for attacking convolutional neural networks is
the aptly named Fast Gradient Sign Method (FGSM) [4,7]. This method, in its
original form, modifies an input image x along a linear approximation of the
objective of the network. It is fast but limited to untargeted attacks. An exten-
sion of FGSM, referred to as the Basic Iterative Method (BIM) [28], repeatedly
adds small perturbations and allows targeted attacks. Moosavi-Dezfooli et al.
[29] linearize the classifier and compute smaller (with regards to the �p norm)
perturbations that result in untargeted attacks. Using more computationally
demanding optimizations, Carlini and Wagner [17] minimize the �0, �2, or �∞
norm of a perturbation to achieve targeted attacks that are still harder to detect.
Su et al. [3] carry out attacks that change only a single pixel, but these attacks
are only possible for some input images and target labels. Further methods exist
that do not result in obvious artifacts, e. g. the Contrast Reduction Attack [30],
but these are again limited to untargeted attacks – the input images are merely
corrupted such that the classification changes. None of the methods mentioned
here regard human perception directly, even though they all strive to find imper-
ceptibly small perturbations. Schönherr et al. [31] successfully do this within the
domain of acoustics.

We rely on BIM as the method of choice for attacks based on images, because
it allows robust targeted attacks with results that are classified with arbitrarily
high certainty, even though it is easy to implement and efficient to execute. Its
drawbacks are the aforementioned visible artifacts. To remedy this issue, we
will take a step back and consider human perception directly as part of the
attack. In this work, we propose a straightforward, very effective modification
to BIM that ensures targeted attacks are visually imperceptible, based on the
observation that attacks do not need to be applied homogeneously across the
input image and that humans struggle to notice artifacts in image regions of high
local complexity. We hypothesize that such attacks, in particular, do not change
saccades as severely as generic attacks, and so humans perceive the original image
and the modified one as very similar – we confirm this hypothesis in Sect. 3 as
part of a user study.

2 Adversarial Attacks

Recall the objective of a targeted adversarial attack. Given a classifying convo-
lutional neural network f , we want to modify an input x, such that the network
assigns a different label f(x′) to the modified input x′ than to the original x,

Adversarial Attacks Hidden in Plain Sight 239

where the target label f(x′) can be chosen at will. At the same time, x′ should
be as similar to x as possible, i. e. we want the modification to be small. This
results in the optimization problem:

min ‖x′ − x‖ such that f(x′) = y �= f(x), (1)

where y = f(x′) is the target label of the attack. BIM finds such a small pertur-
bation x′ − x by iteratively adapting the input according to the update rule

x ← x − ε · sign[∇xJ(x, y)] (2)

until f assigns the label y to the modified input with the desired certainty,
where the certainty is typically computed via the softmax over the activations
of all class-wise outputs. sign[∇xJ(x, y)] denotes the sign of the gradient of the
objective function J(x, y), and is computed efficiently via backpropagation; ε
is the step size. The norm of the perturbation is not considered explicitly, but
because in each iteration the change is distributed evenly over all pixels/features
in x, its �∞-norm is minimized.

2.1 Localized Attacks

The main technical observation, based on which we hide attacks, is the fact that
one can weigh and apply attacks locally in a precise sense: During prediction, a
convolutional neural network extracts features from an input image, condenses
the information contained therein, and conflates it, in order to obtain its best
guess for classification. Where exactly in an image a certain feature is located
is of minor consequence compared to how strongly it is expressed [32,33]. As a
result, we find that during BIM’s update, it is not strictly necessary to apply the
computed perturbation evenly across the entire image. Instead, one may choose
to leave parts of the image unchanged, or perturb some pixels more or less than
others, i. e. one may localize the attack. This can be directly incorporated into
Eq. (2) by setting an individual value for ε for every pixel.

For an input image x ∈ [0, 1]w×h×c of width w and height h with c color
channels, we formalize this by setting a strength map E ∈ [0, 1]w×h that holds
an update magnitude for each pixel. Such a strength map can be interpreted as
a grayscale image where the brightness of a pixel corresponds to how strongly
the respective pixel in the input image is modified. The adaptation rule (2) of
BIM is changed to the update rule

xijk ← xijk − ε · Eijk · sign[∇xJ(x, y)] (3)

for all pixel values (i, j, k). In order to be able to express the overall strength of
an attack, for a given strength map E of size w by h, we call

κ(E) =

∑
i,j∈w×h Ei,j

w · h
(4)

240 J. P. Göpfert et al.

Fig. 2. Localized attacks with different relative total strengths. The strength maps
(d), (e), and (f), which are based on Perlin noise, scaled such that the relative total
strength is 0.43, 0.14, and 0.04, are used to create the adversarial examples in (a),
(b), and (c), respectively. In each case, the attacked image is classified as slug with a
certainty greater than 99 %. The attacks took 14, 17, and 86 iterations. (g), (h), and
(i) are enlarged versions of the marked regions in (a), (b), and (c).

the relative total strength of E , where for n ∈ N we let n = {1, . . . , n} denote the
set of natural numbers from 1 to n. In the special case where E only contains
either black or white pixels, κ(E) is the ratio of white pixels, i. e. the number of
attacked pixels over the total number of pixels in the attacked image.

As long as the scope of the attack, i. e. κ(E), remains large enough, adversarial
attacks can still be carried out successfully – if not as easily – with more iterations
required until the desired certainty is reached. This leads to the attacked pixels

Adversarial Attacks Hidden in Plain Sight 241

being perturbed more, which in turn leads to even more pronounced artifacts.
Given a strength map E , it can be modified to increase or decrease κ(E) by
adjusting its brightness or by applying appropriate morphological operations.
See Fig. 2 for a demonstration that uses pseudo-random noise as a strength
map.

2.2 Entropy-Based Attacks

The crucial component necessary for “hiding” adversarial attacks is choosing
a strength map E that appropriately considers human perceptual biases. The
strength map essentially determines which “norm” is chosen in Eq. (1). If it
differs from a uniform weighting, the norm considers different regions of the
image differently. The choice of the norm is critical when discussing the visibility
of adversarial attacks. Methods that explicitly minimize the �p norm of the
perturbation for some p, only “accidentally” lead to perturbations that are hard
to detect visually, since the �p norm does not actually resemble e. g. the human
visual focus for the specific image. We propose to instead make use of how
humans perceive images and to carefully choose those pixels where the resulting
artifacts will not be noticeable.

Instead of trying to hide our attack in the background or “where an observer
might not care to look”, we instead focus on those regions where there is high
local complexity. This choice is based on the rational that humans inspect images
in saccadic moves, and a focus mechanism guides how a human can process highly
complex natural scenes efficiently in a limited amount of time. Visual interest
serves as a selection mechanism, singling out relevant details and arriving at an
optimized representation of the given stimuli [34]. We rely on the assumption
that adversarial attacks remain hidden if they do not change this scheme. In
particular, regions which do not attract focus in the original image should not
increase their level of interest, while relevant parts can, as long as the adversarial
attack is not adding additional relevant details to the original image.

Due to its dependence on semantics, it is hard – if not impossible – to agnos-
tically compute the magnitude of interest for specific regions of an image. Hence,
we rely on a simple information theoretic proxy, which can be computed based
on the visual information in a given image: the entropy in a local region. This
simplification relies on the observation that regions of interest such as edges typ-
ically have a higher entropy than homogeneous regions and the entropy serves
as a measure for how much information is already contained in a region – that
is, how much relative difference would be induced by additional changes in the
region.

Algorithmically, we compute the local entropy at every pixel in the input
image as follows: After discarding color, we bin the gray values, i. e. the inten-
sities, in the neighborhood of pixel i, j such that Bi,j contains the respective
occurrence ratios. The occurrence ratios can be interpreted as estimates of the

242 J. P. Göpfert et al.

intensity probability in this neighborhood, hence the local entropy Si,j can be
calculated as the Shannon entropy

Si,j = −
∑

p∈Bi,j

p log p. (5)

Through this, we obtain a measure of local complexity for every pixel in the
input image, and after adjusting the overall intensity, we use it as suggested
above to scale the perturbation pixel-wise during BIM’s update. In other words,
we set

E = φ(S) (6)

where φ is a nonlinear mapping, which adjusts the brightness. The choice of a
strength map based on the local entropy of an image allows us to perform an
attack as straightforward as BIM, but localized, in such a way that it does not
produce visible artifacts, as we will see in the following experiments.

While we could attach our technique to any attack that relies on gradients,
we use BIM because of the aforementioned advantages including simplicity, ver-
satility, and robustness, but also because as the direct successor to FGSM we
consider it the most typical attack at present. As a method of performing adver-
sarial attacks, we refer to our method as the Entropy-based Iterative Method
(EbIM).

3 A Study of How Humans Perceive Adversarial
Examples

It is often claimed that adversarial attacks are imperceptible1. While this can
be the case, there are many settings in which it does not necessarily hold
true – as can be seen in Fig. 1. When robust networks are considered and an
attack is expected to reliably and efficiently produce adversarial examples, vis-
ible artifacts appear. This motivated us to consider human visual perception
directly and thereby our method. To confirm that there are in fact differences
in how adversarial examples produced by BIM and EbIM are perceived, we con-
ducted a user study with 35 participants.

1 We do not want to single out any specific source for this claim, and it should not
necessarily be considered strictly false, because there is no commonly accepted rig-
orous definition of what constitutes an adversarial example or an adversarial attack,
just as it remains unclear how to best measure adversarial robustness. Whether an
adversarial attack results in noticeable artifacts depends on a multitude of factors,
such as the attacked model, the underlying data (distribution), the method of attack,
and the target certainty.

Adversarial Attacks Hidden in Plain Sight 243

3.1 Generation of Adversarial Examples

To keep the course of the study manageable, so as not to bore our relatively small
number of participants, and still acquire statistically meaningful (i. e. with high
statistical power) and comparable results, we randomly selected only 20 labels
and 4 samples per label from the validation set of the ILSVRC 2012 classification
challenge [35], which gave us a total of 80 images. For each of these 80 images
we generated a targeted high confidence adversarial example using BIM and
another one using EbIM – resulting in a total of 240 images. We set a fixed target
class and the target certainty to 0.99. We attacked the pretrained Inception v3
model [36] as provided by keras [37]. We set the parameters of BIM to ε =
1.0, stepsize = 0.004 and max iterations = 1000. For EbIM, we binarized the
entropy mask with a threshold of 4.2. We chose these parameters such that the
algorithms can reliably generate targeted high certainty adversarial examples
across all images, without requiring expensive per-sample parameter searches.

3.2 Study Design

For our study, we assembled the images in pairs according to three different
conditions:

(i) The original image versus itself.
(ii) The original image versus the adversarial example generated by BIM.
(iii) The original image versus the adversarial example generated by EbIM.

This resulted in 240 pairs of images that were to be evaluated during the study.
All image pairs were shown to each participant in a random order – we also

randomized the positioning (left and right) of the two images in each pair. For
each pair, the participant was asked to determine whether the two images were
identical or different. If the participant thought that the images were identical
they were to click on a button labeled “Identical” and otherwise on a button
labeled “Different” – the ordering of the buttons was fixed for a given participant
but randomized when they began the study. To facilitate completion of the study
in a reasonable amount of time, each image pair was shown for 5 s only; the
participant was, however, able to wait as long as they wanted until clicking on
a button, whereby they moved on to the next image pair.

3.3 Hypotheses Tests

Our hypothesis was that it would be more difficult to perceive the changes in the
images generated by EbIM than by BIM. We therefore expect our participants
to click “Identical” more often when seeing an adversarial example generated by
EbIM than when seeing an adversarial generated by BIM.

As a test statistic, we compute for each participant and for each of the three
conditions separately, the percentage of time they clicked on “Identical”. The
values can be interpreted as a mean if we encode “Identical” as 1 and “Different”
as 0. Hereinafter we refer to these mean values as μBIM and μEbIM. For each of

244 J. P. Göpfert et al.

Fig. 3. Percentage of times users clicked on “Identical” when seeing two identical
images (condition (i), blue box), a BIM adversarial (condition (ii), orange box), or
an EbIM adversarial (condition (iii), green box). (Color figure online)

the three conditions, we provide a boxplot of the test statistics in Fig. 3 – the
scores of EbIM are much higher than BIM, which indicates that it is in fact
much harder to perceive the modifications introduced by EbIM compared to
BIM. Furthermore, users almost always clicked on “Identical” when seeing two
identical images.

Finally, we can phrase our belief as a hypothesis test. We determine whether
we can reject the following five hypotheses:

(1) H0 : μBIM ≥ μEbIM, i. e. attacks using BIM are as hard or harder to perceive
than EbIM.

(2) H0 : μBIM ≥ 0.5, i. e. whether attacks using BIM are easier or harder to
perceive than a random prediction

(3) H0 : μEbIM ≤ 0.5, i. e. whether attacks using EbIM are easier or harder to
perceive than a random prediction

(4) H0 : μBIM ≥ μNONE, i. e. whether attacks using BIM are as easy or easier to
perceive than identical images.

(5) H0 : μEbIM ≥ μNONE, i. e. whether attacks using EbIM are as easy or easier
to perceive than identical images.

We use a one-tailed t-test and the (non-parametric) Wilcoxon signed rank
test with a significance level α = 0.05 in both tests. The cases (1), (4) and (5)
are tested as a paired test and the other two cases (2) and (3) as one sample
tests.

Because the t-test assumes that the mean difference is normally distributed,
we test for normality2 by using the Shapiro-Wilk normality test. The Shapiro-
Wilk normality test computes a p-value of 0.425, therefore we assume that the
mean difference follows a normal distribution. The resulting p-values are listed
in Table 1 – we can reject all null hypotheses with very low p-values.

2 Because we have 35 participants, we assume that normality approximately holds
because of the central limit theorem.

Adversarial Attacks Hidden in Plain Sight 245

Table 1. p-values of each hypothesis (columns) under each test (rows). We reject all
null hypotheses.

Test Hyp. (1) Hyp. (2) Hyp. (3) Hyp. (4) Hyp. (5)

t-test 2.20 × 10−16 1.03 × 10−10 2.13 × 10−5 2.20 × 10−16 2.20 × 10−16

Wilcoxon 1.28 × 10−7 9.10 × 10−7 6.75 × 10−5 1.28 × 10−7 1.28 × 10−7

In order to compute the power of the t-test, we compute the effect size by
computing Cohen’s d. We find that d ≈ 2.29 which is considered a huge effect
size [38]. The power of the one-tailed t-test is then approximately 1.

We have empirically shown that adversarial examples produced by EbIM are
significantly harder to perceive than adversarial examples generated by BIM.
Furthermore, adversarial examples produced by EbIM are not perceived as dif-
fering from their respective originals.

4 Discussion

Adversarial attacks will remain a potential security risk on the one hand and
an intriguing phenomenon that leads to insight into neural networks on the
other. Their nature is difficult to pinpoint and it is hard to predict whether
they constitute a problem that will be solved. To further the understanding of
adversarial attacks and robustness against them, we have demonstrated two key
points:

– Adversarial attacks against convolutional neural networks can be carried out
successfully even when they are localized.

– By reasoning about human visual perception and carefully choosing areas of
high complexity for an attack, we can ensure that the adversarial perturbation
is barely perceptible, even to an astute observer who has learned to recognize
typical patterns found in adversarial examples.

This has allowed us to develop the Entropy-based Iterative Method (EbIM),
which performs adversarial attacks against convolutional neural networks that
are hard to detect visually even when their magnitude is considerable with
regards to an �p-norm. It remains to be seen how current adversarial defenses
perform when confronted with entropy-based attacks, and whether robust net-
works learn special kinds of features when trained adversarially using EbIM.

Through our user study we have made clear that not all adversarial attacks
are imperceptible. We hope that this is only the start of considering human
perception explicitly during the investigation of deep neural networks in general
and adversarial attacks against them specifically. Ideally, this would lead to a
concise definition of what constitutes an adversarial example.

246 J. P. Göpfert et al.

References

1. Krizhevsky, A., et al.: ImageNet classification with deep convolutional neural net-
works. In: Advances in Neural Information Processing Systems, vol. 25 (2012).
https://doi.org/10.1145/3065386

2. Szegedy, C., et al.: Intriguing properties of neural networks (2013)
3. Su, J., et al.: One pixel attack for fooling deep neural networks (2017)
4. Kurakin, A., et al.: Adversarial examples in the physical world (2016)
5. Papernot, N., et al.: Practical black-box attacks against deep learning systems

using adversarial examples (2016)
6. Chakraborty, A., et al.: Adversarial attacks and defences: a survey (2018)
7. Goodfellow, I.J., et al.: Explaining and harnessing adversarial examples (2014)
8. Luo, Y., et al.: Foveation-based mechanisms alleviate adversarial examples, 19

November 2015
9. Cisse, M., et al.: Parseval networks: improving robustness to adversarial examples.

In: ICML, 28 April 2017
10. Ilyas, A., et al.: Adversarial examples are not bugs, they are features, 6 May 2019
11. Papernot, N., et al.: Distillation as a defense to adversarial perturbations against

deep neural networks. In: 2016 IEEE Symposium on Security and Privacy (SP),
May 2016. https://doi.org/10.1109/sp.2016.41

12. Madry, A., et al.: Towards deep learning models resistant to adversarial attacks. In:
Proceedings of the International Conference on Learning Representations (ICLR)
(2018)

13. Crecchi, F., et al.: Detecting adversarial examples through nonlinear dimension-
ality reduction. In: Proceedings of the European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning (ESANN) (2019)

14. Feinman, R., et al.: Detecting Adversarial Samples from Artifacts, 1 March 2017
15. Grosse, K., et al.: On the (statistical) detection of adversarial examples, 21 Febru-

ary 2017
16. Metzen, J.H., et al.: On detecting adversarial perturbations, 14 February 2017
17. Carlini, N., et al.: Towards evaluating the robustness of neural networks. In: 2017

IEEE Symposium on Security and Privacy (SP) (2017)
18. Athalye, A., et al.: Obfuscated gradients give a false sense of security: circumventing

defenses to adversarial examples. In: ICML, 1 February 2018
19. Tsipras, D., et al.: Robustness may be at odds with accuracy. In: Proceedings of

the International Conference on Learning Representations (ICLR) (2019)
20. Nakkiran, P.: Adversarial robustness may be at odds with simplicity (2019)
21. Yamins, D.L.K., et al.: Using goal-driven deep learning models to understand sen-

sory cortex. Nat. Neurosci. 19, 356–365 (2016). https://doi.org/10.1038/nn.4244
22. Rajalingham, R., et al.: Large-scale, high-resolution comparison of the core visual

object recognition behavior of humans, monkeys, and state-of-the-art deep artificial
neural networks. J. Neurosci. 38(33), 7255–7269 (2018). https://doi.org/10.1523/
JNEUROSCI.0388-18.2018. ISSN 0270–6474

23. Elsayed, G., et al.: Adversarial examples that fool both computer vision and time-
limited humans. In: Advances in Neural Information Processing Systems, vol. 31,
pp. 3910–3920 (2018)

24. Wersing, H., et al.: A competitive-layer model for feature binding and sensory
segmentation. Neural Comput. 13(2), 357–387 (2001). https://doi.org/10.1162/
089976601300014574

https://doi.org/10.1145/3065386
https://doi.org/10.1109/sp.2016.41
https://doi.org/10.1038/nn.4244
https://doi.org/10.1523/JNEUROSCI.0388-18.2018
https://doi.org/10.1523/JNEUROSCI.0388-18.2018
https://doi.org/10.1162/089976601300014574
https://doi.org/10.1162/089976601300014574

Adversarial Attacks Hidden in Plain Sight 247

25. Ibbotson, M., et al.: Visual perception and saccadic eye movements. Curr.
Opin. Neurobiol. 21(4), 553–558 (2011). https://doi.org/10.1016/j.conb.2011.05.
012. ISSN 0959–4388. Sensory and Motor Systems

26. Lewicki, M., et al.: Scene analysis in the natural environment. Front. Psychol. 5,
199 (2014). https://doi.org/10.3389/fpsyg.2014.00199. ISSN 1664–1078

27. Jäkel, F., et al.: An overview of quantitative approaches in Gestalt perception. Vis.
Res. 126, 3–8 (2016). https://doi.org/10.1016/j.visres.2016.06.004. ISSN 0042–
6989. Quantitative Approaches in Gestalt Perception

28. Kurakin, A., et al.: Adversarial machine learning at scale (2016)
29. Moosavi-Dezfooli, S.-M., et al.: DeepFool: a simple and accurate method to fool

deep neural networks. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2574–2582 (2016)

30. Rauber, J., et al.: Foolbox v0.8.0: a Python toolbox to benchmark the robustness
of machine learning models (2017)

31. Schönherr, L., et al.: Adversarial attacks against automatic speech recognition
systems via psychoacoustic hiding (2018)

32. Sabour, S., et al.: Dynamic routing between capsules. In: Advances in Neural Infor-
mation Processing Systems (2017)

33. Brown, T.B., et al.: Adversarial Patch, 27 December 2017
34. Carrasco, M.: Visual attention: the past 25 years. Vis. Res. 51, 1484–1525 (2011)
35. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.

Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
36. Szegedy, C., et al.: Rethinking the inception architecture for computer vision. In:

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
2818–2826 (2016)

37. Chollet, F., et al.: Keras (2015). https://keras.io
38. Sawilowsky, S.S.: New effect size rules of thumb. J. Mod. Appl. Stat. Methods 8(2),

597–599 (2009). https://doi.org/10.22237/jmasm/1257035100

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1016/j.conb.2011.05.012
https://doi.org/10.1016/j.conb.2011.05.012
https://doi.org/10.3389/fpsyg.2014.00199
https://doi.org/10.1016/j.visres.2016.06.004
https://doi.org/10.1007/s11263-015-0816-y
https://keras.io
https://doi.org/10.22237/jmasm/1257035100
http://creativecommons.org/licenses/by/4.0/

Enriched Weisfeiler-Lehman Kernel
for Improved Graph Clustering

of Source Code

Frank Höppner(B) and Maximilian Jahnke

Department of Computer Science, Ostfalia University of Applied Sciences,
38302 Wolfenbüttel, Germany
f.hoeppner@ostfalia.de

Abstract. To perform cluster analysis on graphs we utilize graph ker-
nels, Weisfeiler-Lehman kernel in particular, to transform graphs into
a vector representation. Despite good results, these kernels have been
criticized in the literature for high dimensionality and high sensitivity,
so we propose an efficient subtree distance measure that is subsequently
used to enrich the vector representations and enables more sensitive dis-
tance measurements. We demonstrate the usefulness in an application,
where the graphs represent different source code snapshots, and a cluster
analysis of these snapshots provides the lecturer an overview about the
overall performance of a group of students.

1 Motivation

Graphs are a universal data structure and have become very popular over recent
years in various domains with structured data (e.g. protein function prediction,
drug toxicity prediction, malware detection, etc.). To apply existing clustering
or classification techniques to graphs, either a distance (or similarity) measure
is needed, or a transformation into a vector representation for which most clus-
tering and classification algorithms were developed for. In this paper we are
concerned about repeatedly clustering graphs to understand the evolution of
student’s source code. As will be explained in Sect. 2, we settle on Weisfeiler-
Lehman (WL) graph kernels [9] to decompose the graph into subtrees and to
define a similarity function over the number of common substructures across
graphs. It has been criticized, however, that WL subtree kernels produce (a)
many different substructures and thus only a few substructures will be common
across graphs, which establishes (b) a tendency of being only similar to itself.
In this paper we propose to include the subtree similarity in an efficient post-
processing step to tackle both problems: We exploit the fact that many of the
substructures may be formally distinct but actually quite similar. By enrich-
ing the vector representations we obtain positive effects for the overall graph
similarity.

c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 248–260, 2020.
https://doi.org/10.1007/978-3-030-44584-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_20&domain=pdf
http://orcid.org/0000-0003-4170-5077
https://doi.org/10.1007/978-3-030-44584-3_20

Enriched Weisfeiler-Lehman Kernel for Improved Graph Clustering 249

Algorithm 1. WLSK(G, li−1)
Require: graph G = (V, E), label function li−1 : V → Σ∗

Ensure: returns new label function li : V → Σ∗

1: for v ∈ V do
2: store node label li−1(v) in s
3: for w ∈ V, (v, w) ∈ E in (some lexicographical) order of li−1(w) do
4: append li−1(w) to s
5: end for
6: compress s ← h(s) by applying a hash function h
7: assign new label to node v : li(v) ← s
8: end for
9: return li

2 Related Work

2.1 Measuring Similarity Directly

A common approach to compare graphs is to calculate the edit distance between
graphs F and G: the minimal number of steps to transform G to F . For the
special case of trees, these steps consists of node deletion, node insertion, and
node relabelling. A survey on tree edit distance can be found in [1], an efficient
algorithmic O(n3) solution, n being the maximal number of nodes in F and G, is
proposed in [2]. To adapt a tree edit distance to a specific application, there are
approaches to learn appropriate cost parameters [6]. With general graphs, the
editing process becomes more complicated as additional operations need to be
considered (edge insertion and edge deletion). A survey on graph edit distance is
given in [3]. Its computation is exponential in the number of nodes and therefore
infeasible for large graphs.

2.2 Measuring Similarity Indirectly

Instead of coping with the full graph, one may decompose the graph into a set
of smaller entities and compare these sets instead of the graphs. These entities
may be frequent subgraphs (e.g. [8]), walks (short paths), graphlets (e.g. [10]) or
subtrees (e.g. [9]). Many graph kernel approaches explicitly construct a vector
representation, where the ith element indicates how often the ith substructure
occurs in the graph. From this vector a kernel or similarity matrix may be
calculated. Recent approaches, such as subgraph2vec [5], use deep learning to
translate graphs into such a vector representation.

This section particularly reviews the construction of a WL subtree kernel
(following [9]), as it will be foundation of the next section. The subtree kernel
transforms a graph into a vector, where a non-zero entry indicates the occurrence
of a specific subtree in the graph. The total number of dimensions is determined
by all subtrees that have been identified in the full set of graphs.

Given a graph G = (V,E), a label function l : V → Σ∗ yields for each node
v ∈ V a label over a finite alphabet Σ. The initial labels l0(v) are provided

250 F. Höppner and M. Jahnke

together with the graph G (original labels). A new label function li is obtained
by calling WLSK(G, li−1), which is shown in Algorithm 1: It constructs new
labels by concatenating all child labels deterministically (by processing children
in some lexicographic order). A series of n WLSK calls provides a sequence of
n label functions l0, . . . , ln, where a node label li(v) takes all children of v up to
depth i into account. A label li(v) may thus serve as a kind of fingerprint of the
neighbourhood of v (hashcode). Let Li = {l1i , l

2
i , . . . , l

ki
i } = li(V) be the set of

all different li-labels in G. The final vector representation of a graph is obtained
from

Φ(G) =
(
#l10, . . . ,#lk0

0 ,#l11, . . . ,#lk1
1 , . . . ,#l1n−1, . . . ,#l

kn−1
n−1

)

where #lji denotes how many nodes received the label lji . Originally this approach
was proposed as a test of isomorphism [11], as isomorphic graphs exhibit identical
substructures (labels).

Figure 1 shows an illustrative example. On the top left we have two graphs
G1 and G2 with nodes v1–v7 and v8–v14, resp. The (numeric) label is written in
the node, the node identifiers are shown in gray. The table next to the graphs
shows, for each node, how the new label s is constructed from the current node
label and its successors. For instance, node v1 of G1 has label 0 and successors
with labels 2, 0, 1. Algorithm 1 creates new labels by appending the node label
and the successor labels (in sorted order), which yields “0 : 0, 1, 2” for v1. The
rightmost table shows a dictionary, where each new label (here: 0 : 0, 1, 2) gets
a fresh ID (here: 3). Algorithm 1 refers to this step as hashing the node label
into a new ID (or hashcode) – we use consecutive numbers just for illustrative
purposes. Children need to be ordered deterministically to get the same hash for
identical subtrees. The new label l1(v1) = 3 thus encodes a subtree of depth 1
with root 0 and children 0, 1, 2. Once all new labels are determined (lower half
of Fig. 1) the nodes v1 and v8 still have the same label: l1(v1) = 3 = l1(v8),
because their subtree of depth 1 was identical. After another WLSK iteration,
however, the subtrees of depth 2 are no longer identical for v1 and v8, so their
l2-labels are no longer the same: l2(v1) = 11 �= 17 = l2(v8). The final vector
representation for G1 and G2 (after 2 iterations) consists of counts for each label
(from all depths):

Φ(G1) = (4, 1, 2, 1, 1, 1, 1, 2, 1, 0, 0, 1, 1, 1, 1, 2, 1, 0, 0, 0, 0)
Φ(G2) = (3, 2, 2︸ ︷︷ ︸

L0−

, 2, 0, 0, 0, 2, 1, 1, 1︸ ︷︷ ︸
L1−

, 0, 0, 0, 0, 2, 1, 1, 1, 2, 1︸ ︷︷ ︸
L2−label counts

)

The vector representation Φ(G) enables us to construct a kernel matrix or apply
standard clustering and classification directly.

2.3 Discussion

Measuring graph similarity indirectly is in general more efficient than direct
approaches. Among the kernel approaches it has been pointed out that with some

Enriched Weisfeiler-Lehman Kernel for Improved Graph Clustering 251

G1 0
v1

1
v2

0
v3

0
v4

2
v5

0
v6

2
v7

G2 0
v8

1
v9

0
v10

2
v11

1
v12

0
v13

2
v14

vi l0 s l1
#1 0 0:0,1,2 3
#2 1 1:0,0 4
#3 0 0:0,2 5

G1 #4 0 0:2 6
#5 2 2:0 7
#6 0 0: 8
#7 2 2:0 7
#8 0 0:0,1,2 3
#9 1 1:0,2 9
#10 0 0:0,1,2 3

G2 #11 2 2:0 7
#12 1 1: 10
#13 0 0: 8
#14 2 2:0 7

L0 = {0, 1, 2}

Label ID
0:0,1,2 3
1:0,0 4
0:0,2 5
0:2 6
2:0 7
0: 8

1:0,2 9
1: 10

8 labels

L1 = {3, . . . , 10}

G1 3
v1

4
v2

5
v3

6
v4

7
v5

8
v6

7
v7

G2 3
v8

9
v9

3
v10

7
v11

10
v12

8
v13

7
v14

vi l1 s l2
#1 3 3:4,5,7 11
#2 4 4:5,6 12
#3 5 5:7,8 13

G1 #4 6 6:7 14
#5 7 7:8 15
#6 8 8: 16
#7 7 7:8 15
#8 3 3:3,7,9 17
#9 9 9:3,7 18
#10 3 3:7,8,10 19

G2 #11 7 7:8 15
#12 10 10: 20
#13 8 8: 16
#14 7 7:8 15

Label ID
3:4,5,7 11
4:5,6 12
5:7,8 13
6:7 14
7:8 15
8: 16

3:3,7,9 17
9:3,7 18

3:7,8,10 19
10: 20

10 labels

L2 = {11, . . . , 20}

Fig. 1. Illustrative example of 2 WLSK iterations. left: initial labels l0, middle: l1,
right: l2

substructures, e.g. short paths (aka walks), many different graphs refer to the
same point at the same point in the feature space (cf. [7]). Subtree kernels (and
in particular WLSK) have been reported to be efficient1 and well-performing in
subsequent task (e.g. SVM classification). However, from the example in Fig. 1
we can also acknowledge the critique of the approach: Although G2 has been
obtained from G1 by removing v4 and adding v12 only, the vector representations
are very different. Spotting differences early is good when checking for isomorphic
graphs, but may be less desirable for similarity assessment (e.g. clustering).
Despite the few changes, more than half of the labels occur exclusively in only
one of the graphs (13 entries out of 21 that are zero in one of the two graphs).
Continuous (rather than integer) features may help, as provided by some deep
learning approaches, but deep learning requires a huge amount of training data,
which makes them unsuitable for datasets of moderate size.

3 Enriching WL Subtree Kernels

Revisiting Fig. 1, node v3 of G1 and node v10 of G2 differ only by a missing node
labelled ‘1’. From the different l1-hashcodes for both nodes (5 for v3 and 3 for
v10) we cannot conclude what they have in common. Secondly, node v2 of G1 and
v9 of G2 are similar in the sense that nodes labelled 0 and 2 can be reached, only
in G1 there is an intermediate node v4. If we accept that node pairs (v2, v9) and
(v3, v10) are somewhat similar, this should then positively affect the l2-similarity
of v1 and v8, too. We want to take this kind of similarity into account without
1 The only necessary data structure is a hash table that collects how often each node

label occurred.

252 F. Höppner and M. Jahnke

sacrificing the efficiency of WLSK. Instead of integer features (subtree counts)
we introduce continuous features to better reflect a partial matching of subtrees.
We stick to the WLSK construction, but propose a post-processing step, which
replaces the zero entries in the vector representation. As many subtrees (with
different hashcodes) are in fact similar, we obtain highly correlating dimensions
which are safe to remove and thus reduces the dimensionality. We optionally
apply dimensionality reduction to arrive at a vector of moderate size.

3.1 Subtree Similarity

Given a graph G = (V,E), let Li = li(V) be the set of all hashcodes for sub-
trees of depth i (cf. tables on the right of Fig. 1). The hashcodes compress the
newly constructed node labels, but no longer contain any information about
the subtree. So we track this information in tables: For all occurred hashcodes
h ∈ Li, we denote the root node label by rh ∈ Li−1 and the multiset of successor
labels by Sh ⊆ Li−1. (Example: For h = 11 ∈ L2 in Fig. 1 we have rh = 3 and
Sh = {4, 5, 7}.)

Next we define a series of distance functions di : Li × Li → R to capture
the distance between subtree hashcodes of the same depth i. We start with a
distance d0 for the original graph node labels. In absence of any background
knowledge we use for the initial level

d0(h, h′) :=
{

0 if h = h′

1 otherwise , (1)

but generally assume that some background information can be provided to
arrive at meaningful distances for the initial node labels.

For non-trivial subtrees (that is, i > 0) we recursively define distance func-
tions di(h, h′). It is natural to define the distance as the sum of distances between
root and child nodes. This requires to assign child nodes of h uniquely to child
nodes of h′, which is provided by a bijective function f : Sh → Sh′ :

di(h, h′) := di−1(rh, rh′)︸ ︷︷ ︸
root node distance

+ min
f∈B(Sh,Sh′)

∑
k∈Sh

di−1(k, f(k))

︸ ︷︷ ︸
distance of best subtree alignment

(2)

Here B(S, T) denotes the set of bijective functions f : S → T . The first term
measures the distance between the root node labels and the second term identifies
the minimal distance among all node assignments. Finding the assignment with
minimal distance is known as the assignment problem, which has well-known
solutions and we adopt the Munkres algorithm for this task [4].

We are likely to deal with unbalanced assignments, that is, different numbers
of children for h and h′. A bijective assignment requires |Sh| = |Sh′ |, so we add
the necessary number of missing nodes (denoted by ⊥) to the smaller multiset.2

2 More formally B(S, T) is the set of bijective functions f : S′ → T ′ where |S′| = k =
|T ′|, S ⊆ S′, T ⊆ T ′, S′ has k − |S| (and T ′ has k − |T |) additional ⊥ elements.

Enriched Weisfeiler-Lehman Kernel for Improved Graph Clustering 253

d0

0 1 2 ⊥
0 0.0 1.0 0.5 1.0
1 0.0 1.0 1.0
2 0.0 1.0
⊥ 0.0

(i)

0 0
0 0.0 0.0
2 0.5 0.5

(ii)

0 2 ⊥
0 0.0 0.5 1.0
1 1.0 1.0 1.0
2 0.5 0.0 1.0

d1
- 3 4 5 6 7 8 9 10 ⊥
3 0.0 2.5 1.0 . 2.5 . 2.0 . 4.0
4 0.0 1.5 . 2.0 . 0.5 . 3.0
5 0.0 . 1.5 . . 3.0
6 . 1.0 . . 2.0
7 0.0 . . 2.0
8 . . 1.0
9 0.0 . 3.0
10 . 1.0
⊥ 0.0

(iii)

4 5 7
3 2.5 1.0 2.5
7 2.0 1.5 0.0
9 0.5 0.0 1.0

Fig. 2. Left: A priori distances d0 between labels of L0. Case (i): Assignment matrix for
d1 distance of l1(v2) = 4 and l1(v9) = 9. Case (ii): Assignment matrix for d1 distance of
v3 ({0, 2}) and v10 ({0, 1, 2}). Right: Derived d1-distances from case (i) and (ii). Case
(iii): Assignment matrix for d2 distance of v0 ({4, 5, 7}) and v8 ({3, 7, 9}) (Color figure
online)

We extend the distance d0 to the case of missing nodes, which corresponds to an
additional row/column in the d0-matrix (see d0 example matrix in Fig. 1(left)).
Again, these ⊥-distances may be an arbitrary constant or specifically provided
for each label h ∈ L0 using background knowledge. Then Eq. (2) extends natu-
rally to ⊥-values:

di(h,⊥) := di−1(rh,⊥) +
∑

k∈Sh

di−1(k,⊥) (3)

Figure 2 shows an example. The leftmost table shows the d0-distances between
original node labels (cf. Fig. 1: L0 = {0, 1, 2}), including the case of a missing
label ⊥. For the sake of illustration we assume a distance of 1

2 for the label pair
(0, 2). Consider the comparison of v2 and v9 for depth-1 subtrees: d1(h, h′) with
h = l1(v2), h′ = l1(v9). Both root nodes are identical (rh = rh′ = 0), but the
multisets of successors are not (Sh = {0, 0}, Sh′ = {0, 2}). Matrix (i) shows the
distance matrix for the assignment problem: all nodes of h′ (rows) have to be
assigned to a node of h (columns). As the child nodes represent l0-hashcodes,
we take the distances from the d0 table. An optimal assignment is marked in
red and we obtain a distance d1(h, h′) = 0 + (0 + 1

2) = 1
2 . Matrix (ii) shows a

second example for the d1 comparison of v3 vs v10: As v10 has three children
but v3 only two, we introduce one ⊥-element to obtain a square matrix. The
optimal assignment is shown in red, the d1-distance becomes 1.0. Both examples
contribute two values to the d1-distance (fourth matrix), from which we may
then calculate, e.g., d2(l2(v1), l2(v8)) = 0 + (12 + 1 + 0) = 1.5 (matrix (iii)).

3.2 Updating Vector Representations

Once the WLSK algorithm has been executed, we determine all di-distances from
the li-labels alone (without revisiting the graphs). Then we update the vector

254 F. Höppner and M. Jahnke

G1
v1 v2

v3
h
v4

v5 v6
k
v7

G2
v8

h′
v9

v10

v11

h
vs

v12 v13
k′
v14

Fig. 3. Insertion of nodes to compensate side-effects of superfluous nodes. (Color figure
online)

representations of all graphs, the zero entries in particular. Suppose x is a vector
representation of G and xh = 0 for some h ∈ Li, which means that subtree h is
not present in G. Among the subtrees that do occur in G we can now find the
one most similar to h′ ∈ Li (smallest distance di(h, h′)) and replace xh by

xh ← k(di(h, h′)) · xh′

where k : R+ → [0, 1] is a monotonically decreasing function that turns distances
into similarities with k(0) = 1. The multiplication with xh′ accounts for the fact
that h′ may occur multiple times in G. We used k(d) = e−(d/δ)2 , where δ is a
user-defined threshold.

3.3 Compensating Superfluous Nodes

We say v is an superfluous node if it is just a stopover on the way to yet another
node, but does not contribute to the graph structure itself, that is, if the in-
and out-degree of v is 1. In Fig. 1 the node v4 in G1 is such a superfluous node.
In some applications nodes with certain labels may occur occasionally, but do
not carry any important information. Their existence/absence should therefore
affect the graph similarity not too much.

The discussed distance measure can cope with such differences when com-
paring, e.g., the subtree of v2 with that of v9. But if we consider v4 as an super-
fluous intermediate node, it brings another undesired effect: It may introduce
completely new subtrees which are not present in other graphs. In the example
of Fig. 1 the node v4 introduces subtrees with hashcodes 6 (at depth 1) and 14
(at depth 2), which are not present in G2. When measuring the similarity of G1

and G2, such subtrees make the graphs appear less similar.
We address such cases by considering the insertion of a superfluous node in

our distance calculation. Figure 3 shows the situation once more: To enrich the
vector representation of G2 we seek a closest match for label h. According to
Sect. 3.1 we consider, amongst others, the node v9 with label h′ as a candidate.
With both nodes having a single child only, finding the optimal bijective assign-
ment f is trivial (f(k) = k′) and Eq. (2) boils down to di−1(rh, rh′)+di−1(k, k′).
Now we additionally consider the insertion of a superfluous node vs with the

Enriched Weisfeiler-Lehman Kernel for Improved Graph Clustering 255

same label as v4, as shown in Fig. 3 (red). Note that a hashcode li(vs) for the
newly inserted node was not necessarily generated earlier. How would the dis-
tance between a node v4 and vs evaluate? According to (2) we have

di(li(v), li(vs)) = di−1(li−1(v), li−1(vs)) + di−1(k, k′)

The second part consists of a single term because both nodes have a single child
only. Note that it does not depend on vs. Substituting the first term repeatedly
by its definition eventually leads us to

di(li(v), li(vs)) = d0(l0(v), l0(vs))︸ ︷︷ ︸
0 by construction

+
i−1∑
j=0

dj(lj(k), lj(l)) (4)

The level-0-distance to the newly inserted node is 0 by construction, however, we
replace it by a penalty term dI(l0(v)) to reflect the fact that we had to insert a
new node. As with d0(·, ·) we assume that dI(·) can be derived meaningfully from
the application context: If, for instance, nodes with a certain label h are optional,
we choose a low insertion distance dI(h) and may otherwise set dI(h) = ∞ to
prevent undesired insertions.

We thus arrive at a distance d∗
i (h, h′) for the insertion of a superfluous node

min
{

min{dI(rh), dI(rh′)} +
∑i−1

j=0(lj(k), lj(k′)) if Sh = {k} ∧ Sh′ = {k′}
∞ otherwise

(5)

which yields ∞ if the prerequisites of a superfluous nodes are not given and
considers node insertion on both sides (inner min-term). The original distance
(2) may then be replaced by min{di(h, h′), d∗

i (h, h′)} to reflect the occurrence of
superfluous nodes appropriately. These changes can be handled during the pre-
calculation of the distance matrices, the vector enrichment remains unchanged.

3.4 Complexity

Enriching the vector representations requires two steps: (1) The calculation of all
distance matrices di requires to calculate

∑
i |Li|2 entries. For each entry we have

to solve an assignment problem, which is O(d2 log d) where d is the maximal node
degree. The method is therefore unattractive for highly connected graphs. But
many applications with large graphs have a bounded node degree. (2) Secondly,
the vector representations x of all n graphs need to be enriched. This takes
O(mz · mnz) for each graph, where mz (resp. mnz) is the number of entries in x
with zero (resp. non-zero) entries: for each 0-entry in x we have to find the most
similar 1-entry. The number of all labels from all graphs (m =

∑
i |Li|) is much

larger than the number of nodes in a single graph, whereas mnz is bounded by
the number of nodes in a single graph. With mnz
 mz we may consider mnz as
a constant (max. no. of nodes) and arrive at O(n ·m) for the vector enrichment.

256 F. Höppner and M. Jahnke

Exercise: Write a function to
count the number of entries in
an integer array having a 3 at
the last digit.

public static int count3(int [] x){
int count=0;
int i=0;
int zaehler=0;
while (i < x.length) {
zaehler=x[i] % 10;
if (zaehler == 3) {
++count;

} } }

count3

int

return

Parameters

public

modifier

static

modifier

Body

body

x

parameter_0

ArrayType

type

int

element_Type

Declare

statement_0

Declare

statement_1

Declare

statement_2

While

statement_3

Declaration

Declare

count

name

0

set

int

type

Declaration

Declare

i

name

0

set

int

type

Declaration

Declare

zaehler

name

0

set

int

type

Condition

control

Body

repeat

operand_0Field access

operand_1

<

operator

variable

Assignment

statement_0

If

statement_1

left=

operator

Condition

right

ArrayAccess

operand_0

10

operand_1

%

operator

array index

Condition

control

Body

then

operand_0

3

operand_1

==

operator

Assignment

statement_0

left

+=

operator

1

right

Fig. 4. Example of a source code snapshot and its graph representation. The student
has not yet finished the solution at this stage/snapshot, the return statement is still
missing.

4 Application

We demonstrate the usefulness of the proposed modification in an application
from computer science education. The increase in the number of CS students
over the last years calls for tools that help lecturers to assess the stage of devel-
opment of a whole group of students – rather than inspecting the solutions one
by one. Our dataset consists of editing streams from the students source code
editor (for selected exercises of an introductory programming course using Java).
In our preliminary evaluation we have about 30–50 such streams per task. We
extract snapshots of the code whenever a student starts to edit a different code
line than before. (Many snapshot thus do not represent compileable code.) The
goal is to compare editing paths against each other, for instance, to identify the
most common paths or outliers. We replace the textual representation of the
source snapshot by a graph capturing the abstract syntax tree and the variable
usage, as can be seen in the example of Fig. 4. We want to cluster the snap-
shots and to construct a new graph where nodes correspond to clusters (of code
snapshots) and edges indicate editing paths of students. For the experiments we
applied some preprocessing (e.g. variable renaming in the graph) and assigned
low insertion costs to expression- and declaration-nodes, because students may
phrase conditions quite differently. Our use case for superfluous nodes (Sect. 3.3)
are code blocks ({ }), which are optional if the code within the block consists
of a single statement only (e.g. the ++count in Fig. 4).

4.1 Effect on Distances

To measure the effect of the enriched kernel we have manually subdivided a set of
snapshots into similar and dissimilar snapshots. In a clustering setting we want

Enriched Weisfeiler-Lehman Kernel for Improved Graph Clustering 257

Table 1. Effect of vector enrichment on distances.

Kernel depth d σ Standard vector Enriched vector

f f

2 3 · d 8.43−4.76
2.44

= 1.50 7.03−1.75
0.97

= 5.44

3 3 · d 9.48−6.43
3.06

= 0.99 11.18−4.24
2.36

= 2.93

4 3 · d 9.85−7.82
3.46

= 0.58 14.67−6.63
3.99

= 2.01

5 3 · d 9.91−8.52
3.64

= 0.38 15.07−8.34
4.54

= 1.48

the modification to carve out clusters more clearly. We therefore compare the
mean distance μw (and variance σw) within the group of similar graphs against
the mean distance μb (and variance σb) between both groups. By the factor f we
denote the size of the gap between both means in multiples of the within-group
standard deviation σw, that is, f = μb−μs

σs
. The factor f may be considered as a

measure of separation between the cluster of similar graphs and the remaining
graphs. From Table 1 we find that the enriched representation consistently yields
higher values of f for the enriched than for the standard vector representation.

4.2 Dimensionality

New node labels are introduced for every new subtree, which introduces a high
dimensional vector representation that has been identified as problematic in the
literature (Sect. 2.3). Enriching the vector representation can help to overcome
this problem, because labels with minor changes will receive similar (enriched)
entries. For instance, a dataset with 718 code snapshot graphs generated as
many as 5179 different subtree labels (depth 3). After enrichment we identified
the number of attributes that might be removed from the dataset because it con-
tains a highly correlating attribute already. This leads to a substantial reduction
in the number of columns: Depending on the Pearson correlation threshold of
0.9/0.95/0.99 as much as 77%/68%/55% of the attributes can be discarded.

4.3 Code Graph Clustering

To reduce the dimensionality further, a principal component analysis (PCA)
may be applied. Figure 5 shows the scatter plot of the principal components
(PC) #2 against PC #1, #3 and #4 for the standard representation (top) and
the enriched vectors (bottom). The colors indicate cluster memberships from a
mean shift clustering over 4 principal components. Note that, by construction of
the dataset, we do not expect the source code snapshots to fall apart completely
in well separated clusters, because the data represents the evolution towards a
final solution, snapshots differ by incremental changes only. In the standard case
the data scatters more uniformly and less structured (left; PC1 vs PC2), while
the enriched data shows two long-stretched clusters that reflect a somewhat
linear code evolution for two different approaches to solve the exercise, which

258 F. Höppner and M. Jahnke

Fig. 5. Principal component #2 versus principal component #1, #3 and #4 for stan-
dard (left) and enriched (right) vectors. (Color figure online)

8:3 (0|0)

2:32 (1|18)

3

5:2 (0|0)

1

20:1 (0|0)

2

3:14 (0|14)

1:42 (42|4)

2

4:14 (0|2)

2

2

10 1

1

2

2

2

13 1

1

25 1

13:1 (0|0)

1

11:3 (0|3)

2

17:1 (0|1)

1

14:1 (0|0)

115:1 (0|1)

3

2

12

3

4

1 1

2

2

1

1

Fig. 6. Snapshot evolution for a group of students: Nodes represent clusters, edges
represent snapshot transitions. (Color figure online)

corresponds much better to our expectation. When taking additional component
into account (PC3), the scatterplot in the middle (PC2 vs PC3) offers a clearer
structure for the enriched data (e.g. the separation of the curved red cluster at
the top) than the original data.

Figure 6 shows how the clusters are used in the context of our application.
Each cluster (like those in Fig. 5, but for a different exercise) corresponds to a
node in this graph. Whenever a student changes the code and thereby moves to a
different cluster, a (directed) edge is inserted. The number of students who have
followed a path is written nearby the edge. Clusters that have only one incoming
and one outgoing edge are not shown for the sake of brevity. The green color
indicates the degree of unit-test fulfillment. The node labels a : b(c|d) carry
information about the cluster id a, number of students b that came across this
node, number of students c (resp. d) who started (resp. ended) in this node. From
this example the lecturer can immediately recognize that 42 students start in
cluster #1, from where most students (25) transition to cluster #2 and 10 more
students reach the same cluster via cluster #4 as an intermediate step. Cluster
#2 does not yet correspond to a perfect solution, but only 12 students manage
to reach the green cluster #3 from cluster #2. Other clusters and edges have
much smaller numbers, they cover exotic solutions or trial-and-error approaches.
The graph provides a good overview about the students performance as a group.

Enriched Weisfeiler-Lehman Kernel for Improved Graph Clustering 259

5 Conclusions

Weisfeiler-Lehman subtree kernels can be used to transform graphs into a mean-
ingful vector representation, but suffer from high dimensionality and sparsity,
such that the similarity assessment is limited. We overcome both problems by
taking the subtree distances into account – which are simpler to assess than gen-
eral tree distance, because only subtrees of equal depth need to be considered.
Based on the subtree distance we enrich the zero entries of graph vectors and
improve the similarity assessment. A removal of highly correlating attributes
reduces the dimensionality considerably. The modifications turned out to be
advantageous in a use case of source code snapshot clustering.

References

1. Bille, P.: A survey on tree edit distance and related problems. Theor. Comput. Sci.
337, 217–239 (2005)

2. Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An optimal decomposi-
tion algorithm for tree edit distance. In: International Colloquium on Automata,
Languages, and Programming, pp. 146–157 (2007)

3. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal.
Appl. 13(1), 113–129 (2010)

4. Munkres, M.: Algorithms for the assignment and transportation problems. J. Soc.
Ind. Appl. Math. 5(1), 32–38 (1957)

5. Narayanan, A., Chandramohan, M., Chen, L., Liu, Y., Saminathan, S.: sub-
graph2vec: learning distributed representations of rooted sub-graphs from large
graphs. In: Workshop on Mining and Learning with Graphs (2016)

6. Paassen, B.: Metric learning for structured data. Ph.D. thesis, Bielefeld University
(2019)

7. Ramon, J., Gärtner, T.: Expressivity versus efficiency of graph kernels. In: Proceed-
ings of the First International Workshop on Mining Graphs, Trees and Sequences,
pp. 65–74 (2003)

8. Seeland, M., Girschick, T., Buchwald, F., Kramer, S.: Online structural graph
clustering using frequent subgraph mining. In: Balcázar, J.L., Bonchi, F., Gionis,
A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6323, pp. 213–228.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15939-8 14

9. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)

10. Shervashidze, N., Vishwanathan, S., Petri, T.H., Mehlhorn, K., Borgwardt, K.M.:
Efficient graphlet kernels for large graph comparison. In: Proceedings of the Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS) (2009)

11. Weisfeiler, B., Lehman, A.: A reduction of a graph to a canonical form and an
algebra arising during this reduction. Nauchno-Technicheskaya Informatsia 2(9),
12–16 (1968)

https://doi.org/10.1007/978-3-642-15939-8_14

260 F. Höppner and M. Jahnke

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Overlapping Hierarchical Clustering
(OHC)

Ian Jeantet(B), Zoltán Miklós, and David Gross-Amblard

Univ Rennes, CNRS, IRISA, Rennes, France
{ian.jeantet,zoltan.miklos,

david.gross-amblard}@irisa.fr

Abstract. Agglomerative clustering methods have been widely used by
many research communities to cluster their data into hierarchical struc-
tures. These structures ease data exploration and are understandable
even for non-specialists. But these methods necessarily result in a tree,
since, at each agglomeration step, two clusters have to be merged. This
may bias the data analysis process if, for example, a cluster is almost
equally attracted by two others. In this paper we propose a new method
that allows clusters to overlap until a strong cluster attraction is reached,
based on a density criterion. The resulting hierarchical structure, called
a quasi-dendrogram, is represented as a directed acyclic graph and com-
bines the advantages of hierarchies with the precision of a less arbitrary
clustering. We validate our work with extensive experiments on real data
sets and compare it with existing tree-based methods, using a new mea-
sure of similarity between heterogeneous hierarchical structures.

1 Introduction

Agglomerative hierarchical clustering methods are widely used to analyze large
amounts of data. These successful methods construct a dendrogram – a tree
structure – that enables a natural exploration of data which is very suitable
even for non-expert users. Various tools offer intuitive top-down or bottom-up
exploration strategies, zoom-in and zoom-out operations, etc.

Let us consider the following real-life scenario: a social science researcher
would like to understand the structure of specific scientific domains based on a
large corpus of publications, such as dblp or Wiley. A contemporary approach
is to construct a word embedding [23] of the key terms in publications, that is,
to map terms into a high-dimensional space such that terms frequently used in
the same context appear close together in this space (for the sake of simplicity,
we omit interesting issues such as preprocessing, polysemy, etc.). Identifying
for example the denser regions in this space directly leads to insights on the
key terms of Science. Moreover, building a dendrogram of key terms using an
agglomerative method is typically used [9,14] to organize terms into hierarchies.
This dendogram (Fig. 1a) eases data exploration and is understandable even for
non-specialists of data science.

c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 261–273, 2020.
https://doi.org/10.1007/978-3-030-44584-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_21&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_21

262 I. Jeantet et al.

Despite its usefulness, the dendrogram structure might be limiting. Indeed,
any embedding of key terms has a limited precision, and key terms proximity is
a debatable question. For example, in Fig. 1a, we can see that the bioinformatics
key term is almost equally attracted by biology and computing, meaning that
these terms appear frequently together, but in different contexts (e.g. different
scientific conferences). Unfortunately, with classical agglomerative clustering, a
merging decision has to be made, even if the advantage of one cluster on another
is very small. Let us suppose that arbitrarily, biology and bioinformatics are
merged. This may suggest to our analyst (not expert in computer science) that
bioinformatics is part of biology, and its link to computing may only appear at
the root of the dendrogram. Clearly, an interesting part of information is lost in
this process.

In this paper, our goal is to combine the advantages of hierarchies while
avoiding early cluster merge. Going back to the previous example, we would like
to provide two different clusters showing that bioinformatics is closed both to
biology and computing. At a larger level of granularity, these clusters will still
collapse, showing that these terms belong to a broader community. This way,
we deviate from the strict notion of trees, and produce a directed acyclic graph
that we call a quasi-dendrogram (Fig. 1b).

biology ∪ computing ∪ bioinformatics

biology ∪ bioinformatics

biology bioinformatics computing 0

100

di
st
an

ce

(a) A classical dendrogram, hiding the
early relationship between bioinformatics
and computing.

biology ∪ computing ∪ bioinformatics

bio ∪ bioinfo bioinfo ∪ computing

biology bioinformatics computing 0

100

di
st
an

ce

(b) A quasi-dendrogram, preserving
the relationships of bioinformatics.

Fig. 1. Dendrogram and quasi-dendrogram for the structure of Science.

Our contributions are the following:

– We propose an agglomerative clustering method that produces a directed
acyclic graph of clusters instead of a tree, called a quasi-dendrogram,

– We define a density-based merging condition to identify these clusters,
– We introduce a new similarity measure to compare our method with other,

quasi-dendrogram or tree-based ones,
– We show through extensive experiments on real and synthetic data that we

obtain high quality results with respect to classical hierarchical clustering,
with reasonable time and space complexity.

The rest of the paper is organized as follows: Sect. 2 describes our proposed
overlapping hierarchical clustering framework1. Section 3 details our experimen-
1 Source code available at https://gitlab.inria.fr/ijeantet/ohc.

https://gitlab.inria.fr/ijeantet/ohc

Overlapping Hierarchical Clustering (OHC) 263

tal evaluation. Section 4 presents the related works, while Sect. 5 concludes the
paper.

2 Overlapping Hierarchical Clustering

2.1 Intuition and Basic Definitions

In a nutshell, our method obtains clusters in a gradual agglomerative fashion
and in a precise way. At each step, when we increase the neighbourhood of the
clusters by including more interconnections, we consider the points that fall in
this connected neighbourhood and we take the decision to merge some of them
whenever they are connected enough to a cluster using a density criterion λ.
Taking interconnections into account may lead to overlapping clusters.

More precisely, we consider a set V = {X1, . . . , XN} of N points in a n-
dimensional space, i.e. Xi ∈ V ⊂ R

n where n ≥ 1 and |V | = N . In order to
explore this space in an iterative way, we consider points that are close up to a
limit distance δ ≥ 0. We define the δ-neighbourhood graph of V as follows:

Definition 1 (δ-neighbourhood graph). Let V ⊂ R
n be a finite set of data

points and E ⊂ V 2 a set of pair of elements of V , let d be a metric on R
n and let

δ ≥ 0 be a positive number. The δ-neighbourhood graph Gδ(V,E) is a graph with
vertices labelled with the data points in V , and where there is an edge (X,Y) ∈ E
between X ∈ V and Y ∈ V if and only if d(X,Y) ≤ δ.

Property 1. If δ = 0 then the δ-neighbourhood graph consists of isolated points
while if δ = δmax, where δmax is the maximum distance between any two nodes
in V then Gδ(V,E) is the complete graph on V .

Varying δ will allow to progressively extend the neighbourhood of the vectors
to form bigger and bigger clusters. Clusters will be formed according to the
density of a region of the graph.

Definition 2 (Density). The density [16] dens(G) of a graph G(V,E) is given
by the ratio of the number of edges of G to the number of edges of G if it were
a complete graph, that is, dens(G) = 2|E|

|V |(|V |−1) . If |V | = 1, dens(G) = 1.

A cluster is simply defined as a subset of the nodes of the graph and its
density is defined as the density of the corresponding subgraph.

2.2 Computing Hierarchies with Overlaps

Our algorithm, called OHC, computes a hierarchy of clusters that we can identify
in the data. We call the generated structure a quasi-dendrogram and it is defined
as follows.

Definition 3 (Quasi-dendrogram). A quasi-dendrogram is a hierarchical
structure, represented as a directed acyclic graph, where the nodes are labelled
with a set of data points, the clusters, such as:

264 I. Jeantet et al.

– The leaves (i.e. the nodes with 0 in-degree) correspond to the singletons, i.e.
contain a unique data point. The level of the leaf nodes is 0.

– There is only one root node (node with 0 out-degree) that corresponds to the
set of all the data points.

– Each node (except the root node) has one or more parent nodes. The parent
relationship corresponds to inclusion of the corresponding clusters.

– The nodes at a level δ represent a set of (potentially overlapping) clusters
that is a cover of all the data points. Also, for each pair of points of a given
cluster, it exists a path between points of this cluster that have a distance less
than δ. In other terms, a node contains a part of a connected subgraph of the
δ-neighbourhood graph.

The OHC method works as presented in Algorithm 1. We first compute the
distance matrix of the data points (I3). We chose the cosine distance, widely use
in NLP. Then we construct and maintain the δ-neighbourhood graph Gδ(V,E),
starting from δ = 0 (I4).

We also initialize the set of clusters, i.e. the leaves of our quasi-dendrogram,
with the individual data points (I4). At each iteration, we increase δ (I6) and
consider the new added links to the graph (I8) and the impacted clusters (I9).
We extend these clusters by integrating the most linked neighbour vertices if
the density does not change more than a given threshold λ (I10–15). We remove
all the clusters included in these extended clusters (I16) and add the new set of
clusters to the hierarchy as a new level (I18). We stop when all the points are in
the same cluster which means that we reached the root of the quasi-dendrogram.

Also to improve the efficiency of this algorithm we use dynamic programming
to avoid to recompute information related to the clusters like their density and
the list of their neighbour vertices. It lead to significant improvements in the
execution time of the algorithm. We will discuss this further in the Sect. 3.3.

Property 2 (λ = 0). When λ = 0, each level δi of a quasi-dendrogram contains
exactly the cliques (complete subgraphs) of the δi-neighbourhood graph Gδi

.

Property 3 (λ = 1). When λ = 1, each level δi of a quasi-dendrogram contains
exactly the connected subgraphs of the δi-neighbourhood graph Gδi

.

3 Experimental Evaluation

3.1 Experimental Methodology

Tests: The tests we performed were focused on the quality of the hierarchical
structures produced by our algorithm. To measure this quality we used the classi-
cal hierarchy produced by SLINK, an optimal single-linkage clustering algorithm
proposed in Sibson et al. [28], as a baseline. Our goal was to study the behaviour
of the merging criterion parameter λ that we introduced, as long as its influ-
ence on the execution time, to verify if for λ = 1 we experimentally obtain the
same hierarchy as SLINK (Property 3) and hence observe the conservative-
ness of our algorithm. We also compared our method to other agglomerative

Overlapping Hierarchical Clustering (OHC) 265

Algorithm 1. Overlapping Hierarchical Clustering (OHC)
1: Input:

– V = {x1, . . . , xN }, N data points.
– λ ≥ 0, a merging density threshold.

2: Output: quasi-dendrogram H.
3: Preprocessing: obtain Δ = (δ1, . . . , δm) the distances between data points in increasing order.
4: Initialization:

– Create the graph G(V, E0 = ∅).
– Set a list of clusters C = [{x1}, . . . , {xN }].
– Add the list of clusters to the level 0 of H.

5: i=1.
6: while #C > 1 and i ≤ m do
7: for each pair (u, v) ∈ V 2 such as d(u, v) = δi do
8: Add (u, v) to Eδi−1 .

9: Determine the impacted clusters Cimp of C containing either u or v.

10: for each impacted cluster Cimpj
∈ Cimp do

11: Look for the points {p1, . . . , pk} that are the most linked to Cimpj
in Gδi

.

12: Compute the density dens(Sj) of the subgraph Sj = Cimpj
∪ {p1, . . . , pk}.

13: if Sj �= Cimpj
and |dens(Sj) − dens(Cimpj

)| ≤ λ then

14: Continue to add the most linked neighbors to Sj the same way if possible.
15: When Sj stops growing remove Cimpj

from the list of clusters C and add Sj to the

list of new clusters Cnew.

16: Remove all cluster of C included in one of the clusters of Cnew.
17: Concatenate Cnew to C.
18: Add the list of clusters to the level δi of H.
19: i=i+1.

20: return H

methods such as the Ward variant [29] and HDBSCAN* [8]. To compare such
structures we needed to create a new similarity measure which is described in
Sect. 3.2.

Datasets: To partially see the scalability of our algorithm but also to avoid
too long running times we had to limit the size of the datasets to few thousand
vectors. To be able to compare the results, we run the tests on datasets of same
size that we fixed to 1000 vectors.

– The first dataset is composed of 1000 randomly generated 2-dimensional
points.

– To test the algorithm on real data and in our motivating scenario, the second
dataset was created from the Wiley collection via their API2. We extracted
the titles and abstracts of the scientific papers and trained a word embedding
model on the data of a given period of time by using the classical SGNS
algorithm from Mikolov et al. [22] following the recommendation of Levy et al.
[20]. We set the vocabulary size to only 1000 key words per year even though
this dataset allows us to extract up to 50000 of them. This word embedding
algorithm created 1000 300-dimensional vectors for each year over 20 years.

Experimental Setting: All our experiments are done on a Intel Xeon 5 Core
1.4 GHz, running MacOS 10.2 on a SSD hard drive. Our code is developed with
2 https://onlinelibrary.wiley.com/library-info/resources/text-and-datamining.

https://onlinelibrary.wiley.com/library-info/resources/text-and-datamining

266 I. Jeantet et al.

Python 3.5 and the visualization part was done on a Jupyter NoteBook. We used
the SLINK and Ward implementations from the scikit-learn python package and
the HDBSCAN* implementation of McInnes et al. [21].

3.2 A Hierarchy Similarity Measure

As there is no ground truth on the hierarchy of the data we used, we need a sim-
ilarity measure to compare the hierarchical structures produced by hierarchical
clustering algorithms. The goal is not only to compare the topology but also the
content of the nodes of the structure. However up to our knowledge there is very
little in the literature about hierarchy comparison especially when the structure
is similar to a DAG or a quasi-dendrogram. Fowlkes and Mallows [19] defined a
similarity measure per level and the new similarity function we propose is based
on the same principle. First we construct a similarity between two given levels
of the hierarchies, and then we extend it to the global structures by exploring
all the existing levels.

Level Similarity: Given two hierarchies h1 and h2 and a cardinality i, we
assume that it is possible to identify a set l1 (resp. l2) of i clusters for a given
level of hierarchy h1 (resp. h2). Then, to measure the similarity between l1 and
l2, we take the maximal Jaccard similarity among one cluster of l1 and every
clusters of l2. The average of these similarities, one for each cluster of l1, will
give us the similarity between the two sets. If we consider the similarity matrix
of h1 and h2 with a cluster of l1 for each row, a cluster of l2 for each column and
the Jaccard similarity between each pair of clusters at the respective coordinates
in the matrix, we can compute the similarity between l1 and l2 by taking the
average of the maximal value for each row. Hence, the similarity function between
two sets of clusters l1, l2 is defined as:

siml(l1, l2) = mean{max{J(c1, c2) | c2 ∈ l2}|c1 ∈ l1} (1)

where J is the Jaccard similarity function.
However, taking the maximal value of each row shows how the clusters of

the first set are represented in the second. If we take the maximal value of
each column we will see the opposite, i.e. how the second set is represented in
the first set. Hence with this definition the similarity might not be symmetrical
so we propose this corrected similarity measure that shows how both sets are
represented in the other one:

sim∗
l (l1, l2) = mean(siml(l1, l2), siml(l2, l1)) (2)

Complete Similarity: Now that we can compare two levels of the hierarchical
structures, we can simply average the similarity for each corresponding levels
of the same size. For classical dendograms, each level has a distinct number of
clusters so identification of levels is easy. Conversely, our quasi-dendrograms may

Overlapping Hierarchical Clustering (OHC) 267

have several distinct levels (pseudo-levels) with the same number of clusters. If so,
we need to find the best similarity between these pseudo-levels. For a given level
(i.e. number of clusters), we want to build a matching M that maps each pseudo-
level l11, l

2
1, ... of h1 to at least one pseudo-level l12, l

2
2, ...of h2 and conversely (see

Fig. 2). This matching M should maximize the similarity between pseudo-levels
while preserving their hierarchical relationship. That is, for a, b, c, d representing
the height of pseudo-levels in the hierarchies, if (la1 , lc2) ∈ M and (lb1, l

d
2) ∈ M ,

then (b ≥ a → d ≥ c) or (b < a → d < c) (no “crossings” in M , such as
((l2311 , l3032) with (l2301 , l3042)).

304

303

302

301

300

299

h2

231

230

h1

1

2

3

sim=0.81

0.82

0.79

0.83

0.78

0.84

0.88

0.87

Fig. 2. Computing the similarity
between two quasi-dendograms h1

and h2 for levels having the same
number of clusters.

To produce this mapping, our sim-
ple algorithm is the following. We initial-
ize M and two pointers with the two
highest pseudo-levels ((l2311 , l3042), step 1
of Fig. 2). At each step, for each hier-
archy, we consider current pointers and
their children, and compute all their sim-
ilarities (step 2). We then add pseudo-
levels with maximal similarity to M (here,
(l2301 , l3032)). Whenever a child is chosen,
the respective pointer advances, and at
each step, at least one pointer advances.
Once pseudo-levels have been consumed
on one side, ending with l, we can fin-
ish the process by adding (lf , l) to M
for all remaining pseudo-level l′ on the
other side (here, l = l2301 . On our
example, the final matching is M =
{(l2311 , l3042), (l2301 , l3032), (l2301 , l3022), (l2301 , l3012),
(l2301 , l3002), (l2301 , l2992)}.

Finally, from (2) we define the similarity between two hierarchies as

sim(h1, h2) = mean{sim∗
l (l1, l2)|(l1, l2) ∈ (h1, h2) & (l1, l2) ∈ M}. (3)

3.3 Experimental Results

Expressiveness: With this small following example we would like to present
the expressiveness of our algorithm compared to classical hierarchical clustering
algorithms such as SLINK. On the hand-built example shown in Fig. 3a we can
clearly distinguish two groups of points, {A,B,C,D,E} and {G,H, I, J,K} and
two points that we can consider as noise, F and L. Due to the chaining effect we
expect that the SLINK algorithm will regroup the 2 sets of points early in the
hierarchy while we would like to prevent it by allowing some cluster overlaps.

Figure 3b shows the dendrogram computed by SLINK and we can see as
expected that when F merges with the cluster formed by {A,B,C,D,E} the
next step is to merge this new cluster with {G,H, I, J,K}.

On the contrary in Fig. 4 that presents the hierarchy built with our method
for a specific merging criterion, we can see an example of diamond shape that

268 I. Jeantet et al.

2 4 6 8 10
0

5

10

15

A

B
C D

E

F

G H
I

J
K

L

(a)
(b)

Fig. 3. A hand-built example (a) and its SLINK dendrogram (b).

is specific to our quasi-dendrogram. For simplicity the view here slightly differs
from the quasi-dendrogram definition as we used dashed arrows to represent
the provenance of some elements of a cluster instead of going further down in
hierarchy to have a perfect inclusion and respect the lattice-like structure. The
merge between the clusters {A,B,C,D,E} and {G,H, I, J,K} is delayed to
the very last moment and the point F will belong to these 2 clusters instead
of forcing them to merge. Also depending on the merging criterion we obtain
different hierarchical structures by merging earlier of later some clusters.

Fig. 4. OHC quasi-dendrogram obtained from the
hand-built example in Fig. 3a for λ = 0.2.

Merging Criterion: As we
can see in Fig. 5b when the
merging criterion increases
we obtain a hierarchy more
and more similar to the
one produced by the classi-
cal SLINK algorithm until
we obtain exactly the same
for a merging criterion of 1.
Knowing this fact it is also
normal to have a similar-
ity between OHC and Ward
(resp. HDBSCAN*) hierar-
chies converging to the sim-
ilarity between SLINK and
Ward (resp. HDBSCAN*)
hierarchies. However we can
notice that the OHC and
Ward hierarchies are the
most similar for a merging
criterion smaller than 1.

Overlapping Hierarchical Clustering (OHC) 269

0 1,000 2,000 3,000 4,000

0

100

200

300

400

500

600

number of vectors

ti
m
e(
s)

time ohc

(a) Execution time according to the num-
ber of vectors.

0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

merging criterion (λ)

si
m
ila

ri
ty

wiley ohc slink

rand ohc slink

wiley ohc ward

rand ohc ward

rand ohc hdbscan∗

(b) Similarity between hierarchical struc-
tures according to the merging criterion.

Fig. 5. Study of the merging criterion.

Execution Time: We observe that when the merging criterion increases the
execution time decreases. It is due to the fact that when the merging criterion
increases we are more likely to completely merge clusters so we reach faster the
top of the hierarchy. It means less levels and less overlapping clusters so less
computation. However in this case we have the same drawback of chaining effect
as the single-linkage clustering that we wanted to avoid. Even if it was not the
objective of this work we set λ = 0.1, as it is an interesting value according
to the study of the merging criterion (Fig. 5a), to observe the evolution of the
execution time (Fig. 5a). The trend gives a function in O(n2.45) so to speed
up the process and scale up our algorithm is it possible to precompute a set of
possibly overlapping clusters over a given δ-neighbourhood graph with a classical
method, for instance CLIQUE, and build the OHC hierarchy on top of that.

4 Related Work

Our goal is to group together data points represented as vectors in R
n. For our

motivating application domain of understanding the structure of scientific fields,
it is important to construct structures (i) that are hierarchical, (ii) that allow
overlaps between the identified groups of vectors and (iii) which groups (clusters)
are related to dense areas of the data. There are a number of other application
domains where obtaining a structure with these properties is important. In the
following, we relate our work to relevant literature.

Hierarchical Clustering: There exist two kinds of hierarchical clustering.
Divisive methods follow a top-down strategy while agglomerative techniques
compute the hierarchy in a bottom-up fashion. It produces the well known den-
drogram structure [1]. One of the oldest methods is the single-linkage clustering

270 I. Jeantet et al.

that first appeared in the work of Florek et al. [18]. It had many improvements
over the years until an optimal algorithm named SLINK proposed by Sibson
[28]. However the commonly cited drawback of the single-linkage clustering is
that it is not robust to noise and suffers from chaining effects (spurious points
merging clusters prematurely). It led to the invention of many variants with their
advantages and disadvantages. In the NLP world we have for instance the Brown
clustering [7] and its generalized version [13]. The drawback of choosing the num-
ber of clusters beforehand present in the original Brown clustering is corrected
in the generalized version. Researchers also tried to address directly the chaining
effect problem with approaches through defining new objective functions such as
the Robust Hierarchical Clustering [4,11]. However these variants do not allow
any overlaps in the clusters. Other variants tried to allow this fuzzy clustering
in the hierarchy such as SOHC [10], a hierarchical clustering based on a spatial
overlapping metric but with a fixed number of clusters, or HCOSM [26], that
use an overlap similarity measure to merge clusters and then compute a hierar-
chy from an already determined set of clusters. Generalization of dendrogram to
more complex structures like Pyramidal Clustering [15] and Weak Hierarchies
[5] were also proposed. We can find examples to prove that our method produces
even more general hierarchical structures that include the weak hierarchies.

Density-Based Clustering: Another important class of work is the density-
based clustering. Here, clusters are defined as regions in the data that have a
higher density. The data points in the sparse areas that are required to separate
clusters are considered as noise or border points. One of the most widely-used
algorithms of this category is DBSCAN defined by Ester et al. [17]. This method
connects data points that satisfy a specific density-based criterion: the minimum
number of other data points within a given radius must be above a predefined
threshold. The main advantage of this method is that it allows detecting clus-
ters of arbitrary shapes. More recently improved versions of DBSCAN were
proposed such as HDBSCAN* [8]. This new variant not only improved notions
from DBSCAN and OPTICS [3] but also proposed a procedure to extract a
simplified cluster tree from the reachability relation which allows determining a
hierarchy of the clusters but again with no overlapping.

Overlapping Clustering: Fuzzy clustering methods [6] allow that certain data
points belong to multiple clusters with a different level of confidence. In this
way, the boundary of clusters is fuzzy and we can talk about overlaps of these
clusters. In our definition it is a different notion, a data point either does or does
not belong to a specific cluster and might also belong to multiple clusters. While
HDBSCAN is closely related to connected components of certain level sets, the
clusters do not overlap (since overlap would imply the connectivity).

Community Detection in Networks: A number of algorithmic methods have
been proposed to identify communities. The first kind of methods produces a

Overlapping Hierarchical Clustering (OHC) 271

partition where a vertex can belong to one and only one community. Following
the modularity function of Newman and Girvan [24], numerous quality functions
have been proposed to evaluate the goodness of a partition with a fundamental
drawback, the now proved existence of a resolution limit. The second kind of
methods, such as CLIQUE [2], k-clique [25], DBLC [31] or NMF [30], aims
at finding sets of vertices that respect an edge density criterion which allows
overlaps but can lead to incomplete cover of the network. Similarly to HCOSM,
the method EAGLE [27] builds a dendrogram over the set of predetermined
clusters, here the maximal cliques of the network so overlaps appear only at
the leaf level. Coscia et al. [12] have proposed an algorithm to reconstruct a
hierarchical and overlapping community structure of a network, by hierarchically
merging local ego neighbourhoods.

5 Conclusion and Future Work

We propose an overlapping hierarchical clustering framework. We construct a
quasi-dendrogram hierarchical structure to represent the clusters that is how-
ever not necessarily a tree (of specific shape) but a directed acyclic graph. In
this way, at each level, we represent a set of possibly overlapping clusters. We
experimentally evaluated our method using several datasets and also our new
similarity measure that hence proved its usefulness. If the clusters present in
the data show no overlaps, the obtained clusters are identical to the clusters we
can compute using agglomerative clustering methods. In case of overlapping and
nested clusters, however, our method results in a richer representation that can
contain relevant information about the structure of the clusters of the underlying
dataset. As a future work we plan to identify interesting clusters on the basis
of the concept of stability. Such methods give promising results in the context
of hierarchical density-based clustering [21], but the presences of overlaps in the
clusters requires specific considerations.

References

1. Achtert, E.: Hierarchical subspace clustering. Ph.D. thesis, LMU (2007)
2. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clus-

tering of high dimensional data. Data Min. Knowl. Disc. 11(1), 5–33 (2005)
3. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: ordering points

to identify the clustering structure. In: ACM SIGMOD Record, vol. 28, pp. 49–60.
ACM (1999)

4. Balcan, M.F., Liang, Y., Gupta, P.: Robust hierarchical clustering. J. Mach. Learn.
Res. 15(1), 3831–3871 (2014)

5. Bandelt, H.J., Dress, A.W.: Weak hierarchies associated with similarity measures-
an additive clustering technique. Bull. Math. Biol. 51(1), 133–166 (1989). https://
doi.org/10.1007/BF02458841

6. Bezdek, James C.: Pattern Recognition with Fuzzy Objective Function Algorithms.
Springer, Boston (1981)

https://doi.org/10.1007/BF02458841
https://doi.org/10.1007/BF02458841

272 I. Jeantet et al.

7. Brown, P.F., Desouza, P.V., Mercer, R.L., Pietra, V.J.D., Lai, J.C.: Class-based
n-gram models of natural language. Comput. Linguist. 18(4), 467–479 (1992)

8. Campello, R.J., Moulavi, D., Zimek, A., Sander, J.: Hierarchical density estimates
for data clustering, visualization, and outlier detection. ACM Trans. Knowl. Dis-
cov. Data (TKDD) 10(1), 5 (2015)

9. Chavalarias, D., Cointet, J.P.: Phylomemetic patterns in science evolution - the
rise and fall of scientific fields. PloS One 8(2), e54847 (2013)

10. Chen, H., Guo, G., Huang, Y., Huang, T.: A spatial overlapping based similar-
ity measure applied to hierarchical clustering. In: Fuzzy Systems and Knowledge
Discovery (FSKD 2008), vol. 2, pp. 371–375. IEEE (2008)

11. Cohen-Addad, V., Kanade, V., Mallmann-Trenn, F., Mathieu, C.: Hierarchical
clustering: objective functions and algorithms. In: Proceedings of the 29th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 378–397. SIAM (2018)

12. Coscia, M., Rossetti, G., Giannotti, F., Pedreschi, D.: Uncovering hierarchical and
overlapping communities with a local-first approach. ACM Trans. Knowl. Discov.
Data 9(1), 6:1–6:27 (2014)

13. Derczynski, L., Chester, S.: Generalised brown clustering and roll-up feature gen-
eration. In: AAAI, pp. 1533–1539 (2016)

14. Dias, L., Gerlach, M., Scharloth, J., Altmann, E.G.: Using text analysis to quantify
the similarity and evolution of scientific disciplines. R. Soc. Open Sci. 5(1), 171545
(2018)

15. Diday, E.: Une représentation visuelle des classes empiétantes: les pyramides (1984)
16. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 101 (2005)
17. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for

discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp.
226–231 (1996)

18. Florek, K., �Lukaszewicz, J., Perkal, J., Steinhaus, H., Zubrzycki, S.: Sur la liaison
et la division des points d’un ensemble fini. In: Colloquium Mathematicae, vol. 2,
p. 282 (1951)

19. Fowlkes, E.B., Mallows, C.L.: A method for comparing two hierarchical clusterings.
J. Am. Stat. Assoc. 78(383), 553–569 (1983)

20. Levy, O., Goldberg, Y., Dagan, I.: Improving distributional similarity with lessons
learned from word embeddings. Trans. Assoc. Comput. Linguist. 3, 211–225 (2015)

21. McInnes, L., Healy, J.: Accelerated hierarchical density based clustering. In: 2017
IEEE International Conference on Data Mining Workshops (ICDMW), pp. 33–42.
IEEE (2017)

22. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

23. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

24. Newman, M.E., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(2), 026113 (2004)

25. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community
structure of complex networks in nature and society. Nature 435(7043), 814 (2005)

26. Qu, J., Jiang, Q., Weng, F., Hong, Z.: A hierarchical clustering based on overlap
similarity measure. In: Eighth ACIS International Conference on Software Engi-
neering, Artificial Intelligence, Networking, and Parallel/Distributed Computing
(SNPD 2007), vol. 3, pp. 905–910. IEEE (2007)

27. Shen, H., Cheng, X., Cai, K., Hu, M.B.: Detect overlapping and hierarchical com-
munity structure in networks. Phys. A: Stat. Mech. Appl. 388(8), 1706–1712 (2009)

http://arxiv.org/abs/1301.3781

Overlapping Hierarchical Clustering (OHC) 273

28. Sibson, R.: SLINK: an optimally efficient algorithm for the single-link cluster
method. Comput. J. 16(1), 30–34 (1973)

29. Ward Jr., J.H.: Hierarchical grouping to optimize an objective function. J. Am.
Stat. Assoc. 58(301), 236–244 (1963)

30. Yang, J., Leskovec, J.: Overlapping community detection at scale: a nonnegative
matrix factorization approach. In: Proceedings of the Sixth ACM International
Conference on Web Search and Data Mining, pp. 587–596. ACM (2013)

31. Zhou, X., Liu, Y., Wang, J., Li, C.: A density based link clustering algorithm for
overlapping community detection in networks. Phys. A: Stat. Mech. Appl. 486,
65–78 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Digital Footprints of International
Migration on Twitter

Jisu Kim1(B) , Alina Ŝırbu2(B) , Fosca Giannotti3(B) ,
and Lorenzo Gabrielli3(B)

1 Scuola Normale Superiore, Pisa, Italy
jisu.kim@sns.it

2 University of Pisa, Pisa, Italy
alina.sirbu@unipi.it

3 Istituto di Scienza e Tecnologie dell’Informazione,
National Research Council of Italy, Pisa, Italy

{fosca.giannotti,lorenzo.gabrielli}@isti.cnr.it

Abstract. Studying migration using traditional data has some limi-
tations. To date, there have been several studies proposing innovative
methodologies to measure migration stocks and flows from social big
data. Nevertheless, a uniform definition of a migrant is difficult to find
as it varies from one work to another depending on the purpose of the
study and nature of the dataset used. In this work, a generic method-
ology is developed to identify migrants within the Twitter population.
This describes a migrant as a person who has the current residence dif-
ferent from the nationality. The residence is defined as the location where
a user spends most of his/her time in a certain year. The nationality is
inferred from linguistic and social connections to a migrant’s country of
origin. This methodology is validated first with an internal gold standard
dataset and second with two official statistics, and shows strong perfor-
mance scores and correlation coefficients. Our method has the advantage
that it can identify both immigrants and emigrants, regardless of the ori-
gin/destination countries. The new methodology can be used to study
various aspects of migration, including opinions, integration, attachment,
stocks and flows, motivations for migration, etc. Here, we exemplify how
trending topics across and throughout different migrant communities can
be observed.

Keywords: International migration · Emigration · Big data · Twitter

This work was supported by the European Commission through the Horizon2020 Euro-
pean project “SoBigData Research Infrastructure—Big Data and Social Mining Ecosys-
tem” (grant agreement no 654024) and partially by the Horizon2020 European project
“HumMingBird – Enhanced migration measures from a multidimensional perspective”
(grant agreement no 870661).

c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 274–286, 2020.
https://doi.org/10.1007/978-3-030-44584-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_22&domain=pdf
http://orcid.org/0000-0003-3265-7245
http://orcid.org/0000-0002-3947-7143
http://orcid.org/0000-0003-3099-3835
https://doi.org/10.1007/978-3-030-44584-3_22

Digital Footprints of International Migration on Twitter 275

1 Introduction

Understanding where migrants are is an important topic because it touches upon
multidimensional aspects of the sending and receiving countries’ society. It is
not only the demographic fabric of countries but also labour market conditions,
as well as economic conditions that may alter due to demographic adjustment.
Understanding their allocation is essential for both policy makers and researchers
to bring the best of its effects.

Official data such as census, survey and administrative data have been tradi-
tionally the main data source to study migration. However, these data have some
limitations [12]. They are inconsistent across different nations because countries
employ different definitions of a migrant. Moreover, collecting traditional data
is costly and time consuming, thus tracking instantaneous stocks of migrants
becomes difficult. This becomes even harder when tracking emigrants because
of the lack of motivation from citizens to declare their departure.

In recent years, however, we are provided with other alternative data sources
for migration. The availability of social big data allows us to study social
behaviours both at large scale and at a granular level, and to peek into real-
world phenomena. Although known to suffer from other types of issues, such as
selection bias, these data could bring complementary value to standard statistics.

Here, we propose a method to identify migrants based on Twitter data, to
be used in further analyses. According to the official definition, a migrant1 is “a
person who moves to a country other than that of his or her usual residence for
a period of at least a year”. In the context of Twitter, we define a migrant as “a
person who has the current residence different from the nationality”.

Following this definition, we performed a two step analysis. First, we esti-
mated the current residence for users by examining location information from
tweets. The residence is defined as the country where the user spends most of
the time in a year. Second, we estimated nationality, by considering the social
network of users. In the international literature, nationality is defined as a rela-
tionship between a state and an individual, with rights and duties on both sides
[1,6]. Related concepts are ethnicity - in terms of cultural features - and citizen-
ship - in terms of political life. In this paper, we employ the term nationality
to define the ensemble of features that make a person feel like they belong to a
certain country [2,5]. This could be the country where a person was born, raised
and/or lived most of their lives. By comparing labels of residence and nationality
of a user, we were able to understand whether the person has moved from their
home country to a host country, and thus if they are a migrant. We validated
our estimation internally, from the data itself, and externally, with two official
datasets (Italian register and Eurostat data).

One of the advantages of our methodology is that it is generic enough to
allow for identification of both immigrants and emigrants. We also overcome
one of the limitations of traditional data by setting up a uniform definition of

1 Recommendations on Statistics of International Migration, Revision 1 (p. 113).
United Nations, 1998.

276 J. Kim et al.

a migrant across different countries. Furthermore, our definition of a migrant
is very close to the official definition. We establish the fact that a person has
spent a significant period at the current location. Also, we eliminate visitors
or short-term stays that do not follow the definition of a migrant. This is also
validated by the comparison with official datasets. Another advantage of our
method is the fact that it uses only very basic features from the Twitter data:
location, language and network information. This is useful since the settings of
the freely available Twitter API change constantly. Some of the user attributes
that the existing literature use to estimate nationality are no longer available.
In addition, we make use of unknown locations of tweets by examining whether
they intersect with identified locations. By doing so, we do not neglect any
information provided by the tweets from unknown locations which later provide
useful information on trending topics of Italian emigrants overseas.

One of the issues with our method is that the migrants that we observed are
selected from the Twitter population, and not from the general world population,
and it is known that some demographic groups are missing. Nevertheless, we
believe that studying the Twitter migrant population can provide important
insight into migration phenomena, even if some findings may not apply to the
other demographic groups that are not represented in the data.

It is important to note that tracking individual migrants is not the objective
of our study, but it is only an intermediate stage to enable further analyses.
We simply perform user classification to identify migrants among users in our
data, and then aggregate the findings. Further studies we envision are aimed at
devising new population-level indices useful to evaluate and improve the quality
of life of migrants, through targeted evidence-based policy making. No individ-
ual personal information nor migration status is released at any stage during
the current analysis, nor in any population-level analysis, which is performed
following the highest ethical and privacy standards.

The rest of the paper is organised as follows. In the next section we describe
related work that studies migration using big data. In Sect. 3, we provide details
of the experimental setting for data collection as well as data pre-processing.
We then explain our identification strategy for both residence and nationality in
Sect. 4. In Sect. 5, we evaluate our estimation using both internal and external
data. Section 6 covers a possible application of our method on studying trending
topics among Italian emigrants, while Sect. 7 concludes the paper.

2 Related Work

In the past few years, there have been several works on migration studies using
social big data. Most of these employed Twitter data but Facebook, Skype, Email
as well as Call Detail Record (CDR) data have also been used to study both
international and internal migration [3,9,10,14,16]. Here, we focus on studies
that have employed freely available data. The definition of a migrant varied from
one work to another depending on the purpose of the study and the nature of
the dataset. Thus, the definitions provided fit under different types of migration
such as refugees, internal migrants, seasonal migrants or even visitors.

Digital Footprints of International Migration on Twitter 277

One example of using Twitter to observe migration flows is [15]. They defined
residence as the country where the tweets were most frequently sent out for
periods of four months. If one’s residence changed in the following four months
period, it was considered that the person has moved. In a more recent work,
[11] measure migration flows from Venezuela to neighbouring countries between
2015 and 2019. They look at the bounding boxes and country labels provided by
the tweets and identified the most common country of tweets posted monthly.
Their definition of a migrant was “any individual leaving Venezuela during the
time window of observation” which was observed when an identified Venezuelan
resident appeared for the first time in a different country. Our definition of
residence is somewhat similar to these works. However, unlike them, we are
measuring stocks of migrants, and not flows. Thus, we take into account the
aspect of duration of stay. This naturally eliminates short-term trips and visits.

Apart from geo-tagged tweets, there is other information provided by the
Twitter API that can help us infer whether a person is a migrant or not.
Although [8] did not directly study migrants, but looked at foreigners present
in Qatar, it provides important insights to which of the features provided by
Twitter is useful in identifying nationality of users. They gathered features from
both profile and tweets of users. For features providing information on profile
pictures and name, they performed facial recognition and name ethnicity detec-
tion. Their final results showed that ethnicity of name, race, language of tweet,
language of mention, location of followers and friends are the first six features
that are useful. In this paper, we purely employ data provided by Twitter for
the analysis and therefore, we do not have name, ethnicity and race features.
Nevertheless, our work also shows that locations of users and friends are the use-
ful features. The difference here is that we propose to use the social network of
users as one of the main features in identifying nationality, which is more flexible
than having to perform ethnicity detection on names and profile pictures.

3 Experimental Setting for Data Collection

We began with a Twitter dataset collected by the SoBigData.eu Laboratory [4].
We started from a three months period of geo-tagged tweets from August to
October 2015. Due to our focus on Italy, we selected from these data the users
that tweeted from Italy, obtaining thus 34,160 users. We then crawled the net-
work of geo-enabled friends of these 34,160 users, using the Twitter API. Friends
are people that the individual users are following. We focused on friends because
we believe that for a user, the information on whom they follow is more infor-
mative when it comes to nationality, than who they are followed by. We concen-
trated on geo-enabled friends because geo-location is necessary for our analysis.
By collecting friends, the list of users crossed our initial geographic boundary,
i.e., Italy. At this stage, the number of unique users grew to over 250,000. For
all users we also scraped the profile information and the 200 most recent tweets
using the Twitter API. During this process, we were able to collect all 200 recent
tweets for 97% of users and at least 55 tweets for 99% of users. Our final user

278 J. Kim et al.

network consists of 258,455 nodes and 1,205,133 edges which includes both our
initial 34,160 users and their geo-tagged friends.

For the process of identifying migration status, we focus on the core users, i.e.,
34,160 users. We assign a residence and a nationality to each user, based on the
geo-locations included in the data, the language of tweets and profile information.
The final dataset includes 237 unique countries from where individuals have sent
out their tweets, including ‘undefined’ location. Even if a user enables geo-tags
on their tweets, not all tweets are geo-tagged. As a result, 21% of our tweets are
‘undefined’. As for the languages, there are 66 unique languages and 12% of our
tweets are in English.

Fig. 1. Distribution of the number of days (left) and the number of tweets (right)
observed in the data per user: on average, our users have tweeted 47 days and 82
tweets in 2018.

As for the profile features, we observe that 40% of the users have filled out
location description. In addition, most of users have set their profile language
to English. The number of unique profile languages detected in our data is 58
which is smaller than the languages used, indicating that some users are using
languages different from their profile language when tweeting.

In order to assign a place of residence to users, we needed to restrict the
observation time period. We have chosen to look at one year length of tweets from
2018, in order to assign the residence label for the 2018 solar year. We selected
users that have tweeted in 2018, identifying 128,305 users. To remove bots, we
looked at whether a user is tweeting too many times a day. We considered that
tweeting more than 50 tweets on average in a single day was excessive and we
have eliminated in this way 39 users. In addition, we removed users that were
not very active in 2018. If the number of tweets was less than 20, we checked
whether the tweeted days were spread out during the year. If the days were not
well spread out, we filtered out the user. On the other hand, if it was well spread
out, it meant that the user was regularly tweeting, so the user was kept. During
this process, we removed 10,764 users. After removing bots and inactive users,
we have 117,502 users. For these, we show the distribution of the number of
tweets and number of days in which they tweeted in Fig. 1. On average we see
47 days and 82 tweets.

Digital Footprints of International Migration on Twitter 279

In addition to the Twitter data, we also collected a list of official and spoken
languages for countries identified in our data2.

4 Identifying Migrants

A migrant is a person that has the residence different from the nationality. We
thus consider our core 34,160 Twitter users and assign a residence and nationality
based on the information included in our dataset. The difference between the two
labels will allow us to detect individuals who have migrated and are currently
living in a place different from their home country. The methodology we propose
is based on a series of hypotheses: a person that has moved away from their
home country stays in contact with their friends back in the home country and
may keep using their mother tongue.

4.1 Assigning Residence

In order for a place to be called residence, a person has to spend a considerable
amount of time at the location. Our definition of residence is based on the amount
of time in which a Twitter user is observed in a country for a given solar year.
More precisely, a residence for each user is the country with the longest length of
stay which is calculated by taking into account both the number of days in which
a user tweets from a country but also the period between consecutive tweets in
the same country. In this work we compute residences based on 2018 data.

To compute the residence, we first compute the number of days in which we
see tweets for each country for each user. If the top location is not ‘undefined’,
then that is the location chosen as residence. Otherwise, we check whether any
tweet sent from ‘undefined’ country was sent on a same day as tweets sent
from the second top country. In case at least one date matched between the
two locations, we substitute second country as the user’s place of residence. On
average, 5 dates matched. This is done under the assumption that a user cannot
tweet from two different countries in a day. Although this is not always the case if
a user travels, in most of the days of the year this should be true. This approach
allowed us to assign a residence in 2018 to 57,180 users.

For the remaining 60,322 users, a slightly different approach was imple-
mented. We computed the length of stay in days by adding together the duration
between consecutive tweets in the same country. We selected the country with
the largest length of stay. In case the top country was ‘undefined’, we checked
whether ‘undefined’ locations were in between segments of the second top coun-
try, in which case the second country was chosen. In this way, an additional
11,046 users were assigned a place of residence. The remaining 49,276 users were
neglected because we considered that we did not have enough information to
assign a residence.

2 Retrieved from http://www.geonames.org and https://www.worlddata.info.

http://www.geonames.org
https://www.worlddata.info

280 J. Kim et al.

4.2 Assigning Nationality

In order to estimate nationalities for Twitter users, we took into account two
types of information included in our Twitter data. The first type relates to the
users themselves, and includes the countries from which tweets are sent and the
languages in which users tweet. For each user u we define two dictionaries locu

and langu where we include, for each country and language the proportion of
user tweets in that country/language.

Fig. 2. Example of calculation of the floc and flang values for a user. The calculation
of flocU1 and flangU1 is based of the floc and flang values for the three friends,
showing the distribution of tweets in various countries/languages for each.

The second type of information used is related to the user’s friends. Again,
we look at the languages spoken by friends, and locations from which friends
tweet. Specifically, starting from the loc and lang dictionaries of all friends of
a user, we define two further dictionaries floc and flang. The first stores all
countries from where friends tweet, together with the average fraction of tweets
in that country, computed over all friends:

flocu[C] =
1

|F (u)|
∑

f∈F (u)

locf [C] (1)

where F (u) is the set of friends of user u. Similarly, the flang dictionary stores all
languages spoken by friends, with the average fraction of tweets in each language
l:

flangu[l] =
1

|F (u)|
∑

f∈F (u)

langf [l] (2)

Figure 2 shows an example of a (fictitious) user with their friends, and the four
resulting dictionaries.

The four dictionaries defined above are then used to assign a nationality score
to each country C for each user u:

Nu
C =wlocloc

u[C] + wlang

∑

l∈languages(C)

langu[l]+ (3)

wflocfloc
u[C] + wflang

∑

l∈languages(C)

flangu[l] (4)

Digital Footprints of International Migration on Twitter 281

where languages(C) are the set of languages spoken in country C, while wloc,
wlang , wfloc and wflang are parameters of our model which need to be estimated
from the data (one global value estimated for all users). Each of the w value gives
a weight to the corresponding user attribute in the calculation of the nationality.
To select the nationality for each user we simply select the country C with
maximum NC : Nu = argmaxCN

u
C .

5 Evaluation

To evaluate our strategy for identifying migrants we first propose an internal val-
idation procedure. This defines gold standard datasets for residence and nation-
ality and computes the classification performance of our two strategies to identify
the two user attributes. The gold standard datasets are produced using profile
information as they are provided by the users themselves. We then perform an
external validation where we compare the migrant percentages obtained in our
data with those from official statistics.

5.1 Internal Validation: Gold Standards Derived from Our Data

Residence. To devise a gold standard dataset for residence we consider profile
locations set by users. We assume that if users declare a location in their profile,
then that is most probably their residence. Very few users actually declare a
location, and not all of them provide a valid one, thus we only selected profile
locations that were identifiable to country level. Among the user accounts for
which we could estimate the residence, 3,065 accounts had a valid country in
their profile location. Using these accounts as our validation data, we computed
the F1 score to measure the performance of our residence calculation. Table 1
shows overall results, and also scores for the most common countries individually.
The weighted average of the F1 score is 86%, with individual countries reaching
up to 94%, demonstrating the validity of our residence estimation procedure.

Nationality. In order to build a gold standard for nationality, we take into account
the profile language declared by the users. The assumption is that profile languages
can provide a hint of one’s nationality [13]. However, many users might not set their
profile language, but use the default English setting. For this reason, we do not
include into the gold standard users that have English as their profile language.

Table 1. Average precision, recall and F1 scores, together with scores for the top 7
residences in terms of support size.

Weighted Avg Macro avg Micro avg IT KW US ID SG AU

F1-score 0.858 0.716 0.856 0.928 0.839 0.703 0.945 0.83 0.891

Precision 0.879 0.745 0.856 0.935 0.989 0.572 0.949 0.946 0.883

Recall 0.856 0.727 0.856 0.921 0.728 0.91 0.941 0.739 0.899

Support 3065 3065 3065 343 125 122 119 119 109

282 J. Kim et al.

Table 2. Average precision, recall and F1 scores for top 8 nationalities in terms of
support numbers

Weighted avg Macro avg Micro avg IT ES TR RU FR BR DE AR

F1-score 0.99 0.98 0.72 0.99 0.96 0.98 0.95 0.94 0.95 0.92 0.97

Precision 0.99 0.98 0.73 1 0.94 0.98 0.98 0.9 0.96 0.91 0.98

Recall 0.98 0.98 0.75 0.99 0.97 0.99 0.93 0.98 0.94 0.93 0.95

Support 12223 12223 12223 10781 302 173 146 118 113 86 59

The profile language, however, does not immediately translate into national-
ity. While for some languages the correspondence to a country is immediate, for
many others it is not. For instance, Spanish is spoken in Spain and most Amer-
ican countries, so one needs to select the correct one. For this, we look at tweet
locations. We consider all countries that match with the profile language and,
among these, we select the one with the largest number of tweets, but only if the
number of tweets from that country is at least 10% of the total number of tweets
of that user. This allows to select the most probable country, also for users who
reside outside their native country. If no location satisfies this criterion the user
is not included in the gold standard. We were able to identify nationalities of
12,223 users. Due to the fact that during data collection we focused on geo-tags
in Italy, the dataset contains a significant number of Italians.

Fig. 3. Distribution of residences and nationalities of top 30 countries, for all users
that possess both residence and nationality labels.

We employed this gold standard dataset in two ways. First, we needed to
select suitable values for the w weights from Eqs. 3–4. These show the importance
of the four components used for nationality computation: own language and
location, friends’ language and location. We performed a simple grid search and
obtained the best accuracy on the gold standard using values 0 for languages
and 2 and 1.5 for own and friends’ location, respectively. Thus we can conclude
that it is the locations that are most important in defining nationality for twitter
users, with a slightly stronger weight on the individual’s location rather than the
friends. The final F1-score, both overall and for top individual nationalities, are
included in Table 2, showing a very good performance in all cases.

Digital Footprints of International Migration on Twitter 283

To assign final residences and nationalities to our core users, we combined the
predictions with the gold standards (we predicted only if the gold standard was
not present). Figure 3 shows the final distribution of residences and nationalities
of top 30 countries for all users that have both the residence and nationality
labels. The difference in the residence and nationality can be interpreted as
either immigrants or emigrants.

Fig. 4. Comparison between the true and predicted data; the first two plots show
predicted versus AIRE/EUROSTAT data on European countries. The last plot shows
predicted versus AIRE data on non-European countries.

5.2 External Validations: Validation with Ground Truth Data

In order to validate our results with ground truth data, we study users labelled
with Italian nationality and non-Italian residence, i.e. Italian emigrants. We com-
puted the normalised percentage of Italian emigrants resulting from our data for
all countries, and compared with two official datasets: AIRE (Anagrafe Italiani
residenti all’estero), containing Italian register data, and Eurostat, the European
Union statistical office. For comparison we use Spearman correlation coefficients,
which allow for quantifying the monotonic relationship between the ground truth
data and our estimation by taking ranks of variables into consideration.

Figure 4 displays the various values obtained, compared with official data.
A first interesting remark is that even between the official datasets themselves,
the numbers do not match completely. The correlation between the two datasets
is 0.91. Secondly we observed good agreement between our predictions and the
official data for European countries. The correlation with AIRE is 0.753, while
with Eurostat it is 0.711 when considering Europe. For non-European countries,
however the correlation with AIRE data drops to 0.626. We believe the lower
performance is due to several factors related to sampling bias and data quality
in the various datasets. This includes bias on Twitter and in our methods, but
also errors in the official data, which could be larger in non-EU countries due to
less efficient connections in sharing information.

All in all, we believe our method shows good performance and can be suc-
cessfully used to build population level indices for studying migration. We do
not aim to perform nowcasting of immigrant stocks, but rather to identify a
population that can be representative enough for further analyses.

284 J. Kim et al.

6 Case Study: Topics on Twitter

In this section we show that our methodology can be employed to study how
trending topics in Italy are also being discussed among Italian emigrants. As
an example, we selected one hashtag that has been very popular in the last
years: #Salvini. This refers to the Italian politician Matteo Salvini who served as
Deputy Prime Minister and Minister of internal affairs in Italy until recently. To
this, we added the top nine hashtags that appear frequently with #Salvini in our
data: Berlusconi, Conti, Diciott, DiMaio, Facciamorete, Legga, M5S, Migrant,
Ottoemezzo. Indeed, they all represent people that are often mentioned together
or political parties or other issues that are associated with the hashtag #Salvini.

Fig. 5. Stream graph: appearance of hashtags related to #Salvini from Italians across
10 selected residence countries in 2018. The discussion continuously appeared in Italy
throughout the year and it became more lively employed by Italians overseas as Salvini
gained more political attention.

Figure 5 shows an evolution of the usage of the 10 above mentioned hashtags
across different Italian communities both within and abroad Italy. The values
shown are the number of tweets from Italian nationals residing in each country
that include one of the 10 hashtags, divided by the total number of tweets from
Italian nationals from that country. Values are computed monthly. Thus, we
show the monthly popularity of the topics in each country. In this way, even
the tweets from less represented countries are well shown. As the figure shows,
the hashtag was continuously used by Italians in Italy. We observed that the
hashtag gradually spread over other residence countries as Salvini received more
and more attention. We also observe that most of the attention comes from
Italians residing in Europe, with non-European countries less represented.

7 Conclusion and Future Work

We have developed a new methodology to provide a snapshot of migrants within
the Twitter population. We considered the length of stay in a country as the

Digital Footprints of International Migration on Twitter 285

key factor to define a user’s residence. As for the nationality, connections which
migrants maintain with their country of origin provided us with a good indica-
tion. In particular, the location of friends seemed to be a strong feature in deter-
mining nationality, together with the location of the users themselves. Tweet
language, on the other hand, was not considered relevant by our model. This
is probably due to the fact that English is the dominating language on Twit-
ter, since a language that is widely understood has to be spoken to get more
attention from other users. We have validated our results both with internal and
external data. The results show good classification performance scores and good
correlation coefficients with official datasets.

The constructed dataset can be applied in different scenarios. We have shown
how it can be used to study trending topics on Twitter, and how attention is
divided between emigrants and non-migrants of a certain nationality. In the
future, we plan to analyse social ties, integration and assimilation of migrants
[7]. At the same time, one can investigate the strength of the ties with the
community of origin.

References

1. Castillo petruzzi case (1999)
2. Assal, M.A.: Nationality and citizenship questions in Sudan after the Southern

Sudan referendum vote. Sudan Report (2011)
3. Blumenstock, J.E.: Inferring patterns of internal migration from mobile phone call

records: evidence from Rwanda. Inf. Technol. Dev. 18(2), 107–125 (2012)
4. Coletto, M., et al.: Perception of social phenomena through the multidimensional

analysis of online social networks. Online Soc. Netw. Media 1, 14–32 (2017)
5. Donner, R.: The Regulation of Nationality in International Law, 2d edn, p. 289.

Leiden, Brill Nijhoff (1994). https://brill.com/view/title/14000, ISBN 978-09-41-
32077-1

6. Hailbronner, K.: Nationality in public international law and European law. JSTOR
(2006)

7. Herdağdelen, et al.: The social ties of immigrant communities in the united states.
In: Proceedings of the 8th ACM Conference on Web Science, pp. 78–84. ACM
(2016)

8. Huang, W., et al.: Inferring nationalities of Twitter users and studying inter-
national linking. In: Proceedings of the 25th ACM Conference on Hypertext and
Social Media, pp. 237–242. ACM (2014)

9. Kikas, R., et al.: Explaining international migration in the Skype network: the role
of social network features. In: Proceedings of the 1st ACM Workshop on Social
Media World Sensors, pp. 17–22. ACM (2015)

10. Lamanna, F., et al.: Immigrant community integration in world cities. PLoS One
13(3), e0191612 (2018)

11. Mazzoli, M., et al.: Migrant mobility flows characterized with digital data. arXiv
preprint arXiv:1908.02540 (2019)

12. Ŝırbu, A., et al.: Human migration: the big data perspective. Int. J. Data Sci. Anal.
(2020, under review)

13. Stokes, B.: Language: the cornerstone of national identity. Pew Research Center’s
Global Attitudes Project (2017)

https://brill.com/view/title/14000
http://arxiv.org/abs/1908.02540

286 J. Kim et al.

14. Zagheni, E., et al.: Combining social media data and traditional surveys to nowcast
migration stocks. In: Annual Meeting of the Population Association of America
(2018)

15. Zagheni, E., et al.: Inferring international and internal migration patterns from
Twitter data. In: Proceedings of the 23rd International Conference on World Wide
Web, pp. 439–444. ACM (2014)

16. Zagheni, E., Weber, I.: You are where you e-mail: using e-mail data to estimate
international migration rates. In: Proceedings of the 4th Annual ACM Web Science
Conference, pp. 348–351. ACM (2012)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Percolation-Based Detection
of Anomalous Subgraphs in Complex

Networks

Corentin Larroche1,2(B), Johan Mazel1, and Stephan Clémençon2

1 French National Cybersecurity Agency (ANSSI), Paris, France
{corentin.larroche,johan.mazel}@ssi.gouv.fr

2 LTCI, Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France
{corentin.larroche,stephan.clemencon}@telecom-paris.fr

Abstract. The ability to detect an unusual concentration of extreme
observations in a connected region of a graph is fundamental in a number
of use cases, ranging from traffic accident detection in road networks to
intrusion detection in computer networks. This task is usually performed
using scan statistics-based methods, which require explicitly finding the
most anomalous subgraph and thus are computationally intensive.

We propose a more scalable method in the case where the observa-
tions are assigned to the edges of a large-scale network. The rationale
behind our work is that if an anomalous cluster exists in the graph, then
the subgraph induced by the most individually anomalous edges should
contain an unexpectedly large connected component. We therefore refor-
mulate our problem as the detection of anomalous sample paths of a
percolation process on the graph, and our contribution can be seen as a
generalization of previous work on percolation-based cluster detection.
We evaluate our method through extensive simulations.

1 Introduction

Detection of a significant connected subgraph in a larger background network is
a ubiquitous task: such significant regions can be indicative of fraudulent behav-
ior in social networks [15] or of the propagation of an intruder in a computer
network [22], for instance. Therefore, being able to discern them from ambient
noise has valuable applications in a number of settings. This anomaly detection
problem is, however, remarkably challenging: the large size and complex struc-
ture of real-world graphs make the characterization of normal behavior difficult
and the search for non-trivial substructures computationally expensive.

The aim of this paper is to propose a scalable method for anomalous con-
nected subgraph detection in a graph with observations attached to its edges. The
null distribution of the observations, or an approximation thereof, is assumed
to be known. Building upon this knowledge, the degree of abnormality of each
individual edge with respect to the model can be measured, and our goal is to
detect a significant concentration of anomalous edges in a connected region of
c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 287–299, 2020.
https://doi.org/10.1007/978-3-030-44584-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_23&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_23

288 C. Larroche et al.

the graph. Usual methods for this task are built around scan statistics [14]. Such
methods boil down to maximizing a scoring function over the set of connected
regions of the graph, then rejecting the null hypothesis (i.e. absence of anoma-
lous subgraph) if the maximum exceeds a certain threshold. This implies solving
a combinatorial optimization problem over the class of all connected subgraphs,
which is expensive due to the exponentially growing size of the latter.

In contrast, our approach does not require explicitly searching for the best
candidate subgraph. Instead, we build on the following idea: under the null
hypothesis, the most individually anomalous edges are randomly spread out
over the graph. Therefore, removing all but the k most anomalous edges from
the graph is equivalent to drawing k edges uniformly at random and extracting
the subgraph induced by these edges. In other words, this procedure amounts to
bond percolation on a graph. On the other hand, when an anomalous subgraph
is present, the location of the individual anomalies is no longer random, and
thus the largest connected component of the subgraph induced by the k most
anomalous edges should contain an unexpectedly large connected component.
This link between anomalous subgraph detection and percolation theory has
already been introduced in the context of regular lattices [6,19,20], but to the
best of our knowledge, it has not yet been studied for arbitrary graphs.

We argue that our method is more scalable than traditional ones while
retaining an acceptable detection power, especially when seeking to detect small
anomalous regions in large graphs. We assess this detection performance through
numerical experiments on several realistic synthetic graphs.

The rest of this paper is structured as follows. In Sect. 2, we introduce the
statistical framework for our problem and present some related work. Section 3
describes our detection method, while Sect. 4 is devoted to its empirical evalua-
tion on simulated data. Finally, we discuss our results and some interesting leads
for future work in Sect. 5, then briefly conclude in Sect. 6.

2 Problem Formulation and Related Work

We begin with a thorough formulation of our problem as a case of statistical
hypothesis testing, then review the main existing approaches to it.

2.1 Problem Formulation – Statistical Hypothesis Testing

Consider an undirected and connected graph G = (V, E), where V (resp. E) is
the set of vertices (resp. edges) of G. Letting |A| denote the number of elements
of a set A, we write m = |E|, and we use E and [m] = {1, . . . , m} interchangeably
to represent the set of edges. We further write 2A for the set of all subsets of A
and 1{·} for the indicator function of an event.

Let Λ ⊂ 2E denote the class of subsets of E whose induced subgraph in G
is connected. Given a signal X = (X1, . . . , Xm) ∈ R

m observed on the edges
of G and a known probability distribution F0, the null hypothesis is defined as

Percolation-Based Detection of Anomalous Subgraphs in Complex Networks 289

H0 : Xi
iid∼ F0. For each S ∈ Λ, we further define the alternative

HS :

{
X|S ∼ FS
∀i /∈ S, Xi ∼ F0

,

where X|S is the restriction of X to S and FS is a joint probability distribution.
FS is only assumed to be different from F

⊗|S|
0 , and it can differ in various ways.

In many applications, the observations in S are simply larger than expected
(consider for instance network intrusion detection, where the presence of an
intruder results in additional activity in a connected region of the network). The
problem considered in this paper can be formulated as

H0 vs. H1 =
⋃

S∈Λ

HS .

That is, we want to know whether there exists a connected subgraph of G
inside of which the observations Xi are drawn from an alternative distribution.
Note that we only care about detection, leaving the reconstruction of S aside.

2.2 Related Work – Scan Statistics and Beyond

A lot of existing work deals with a specific instance of the problem defined above,
namely elevated mean detection on a graph. In this setting, the observations are
independent standard centered normal random variables under the null, while Xi

has mean μS1{i ∈ S} under the alternative HS (for some μS > 0). Theoretical
conditions for detectability in this case are stated in [1]. A closely related problem
arises when the observations are associated with vertices rather than edges,
and this setting was studied in [3–5]. However, these papers focus on statistical
analysis and do not provide computationally tractable tests.

From a more practical perspective, the most common approach to anomalous
subgraph detection is based on scan statistics. Broadly speaking, this method
consists in defining a scoring function f : 2E → R, computing the test statis-
tic t = maxS∈Λ f(S), then rejecting H0 if t exceeds a given threshold. This
amounts to finding the most anomalous subset S∗ in Λ, and then rejecting the
null hypothesis if S∗ is anomalous enough. Defining f requires some hypothe-
ses on the class of alternative distributions {FS}. For instance, when FS has a
parametric form, f(S) can be defined as the likelihood ratio between HS and
H0. In the more general case considered here, however, finding a suitable scoring
function is non-trivial. Moreover, computing t implies maximizing f over the
combinatorial class Λ, which quickly becomes computationally intensive as the
graph grows. Therefore, most related work focuses on making the computation
of scan statistics more efficient. Ways to achieve this include the following:

Restriction of the Class Λ. The easiest way to speed up the computation is
to simply reduce the size of the search space by considering only a subset of
Λ. Such restriction can be based on domain-specific knowledge [17,18,22,25]
or more general heuristics [24].

290 C. Larroche et al.

Convex Relaxation. Another classical approach to combinatorial optimization
consists in solving a convex relaxation of the problem, and then projecting
the solution back onto the original search space. This method was applied to
scan statistics [2,26,27], using elements of spectral graph theory [9] to find a
relaxed form of the connectivity constraint. Similar ideas were also used in
a slightly different context [29–31], where the class Λ consists of subgraphs
with low cut size rather than connected ones.

Algorithmic Approaches. Finally, efficient optimization algorithms have been
used to find exact or approximate values for the scan statistic, including sim-
ulated annealing [11,12], greedy algorithms [28], primal-dual algorithms [28],
branch and bound algorithms [32] and dynamic programming algorithms [33].

Despite the popularity of scan statistics, other ideas have also been considered
in the literature. We focus on one of these alternative approaches, namely the
Largest Open Cluster (LOC) test, which was first studied in the context of object
detection in images [19,20]. The idea of this method is to represent an image
as a two-dimensional lattice, each node carrying a random variable standing
for the value of the associated pixel. Then, after deleting from the lattice every
vertex whose pixel value is lower than a suitable threshold, the largest remaining
connected component is expected to be small if there is no object in the image.
On the other hand, if an object is present, an unexpectedly large connected
component should remain in the thresholded lattice. The theory behind the
LOC test has since been extended to lattices of arbitrary dimension [6], but to
the best of our knowledge, the underlying idea of using percolation theory to
detect anomalous connected subgraphs has not yet been applied to complex,
arbitrary-shaped networks.

3 Local Anomaly Detection and Percolation Theory

We now describe our method, first introducing some necessary notions of percola-
tion theory, then highlighting their relevance to our anomaly detection problem.
Finally, we provide a detailed description of our testing procedure.

3.1 Some Notions of Percolation Theory

An interesting aspect of the LOC test is that the behavior of its test statistic
under the null hypothesis can be described using percolation theory. Therefore,
we first review some useful results from this field, which motivate our approach.
For more details, see for example [10] and references therein. Since our primary
interest is in signals associated with edges, we focus on bond percolation, where
edges of a connected graph with n vertices are occupied uniformly at random
with probability p or unoccupied with probability 1 − p.

Let C(p) denote the size of the largest connected component of this graph
at occupation probability p. The main focus of percolation theory is to find the
limit of C(p) as n becomes large. Extremal values of p yield obvious results: for

Percolation-Based Detection of Anomalous Subgraphs in Complex Networks 291

p = 0, C(p) = 1 for any n and for p = 1, limn→∞ C(p) = ∞. For intermediate
values of p, however, there are two possible regimes. If p is small enough, only
small connected components are present and C(p)/n converges in probability
to 0. On the other hand, larger values of p lead to the emergence of a giant
connected component, which contains a constant fraction of the vertices. The
transition between the two regimes happens for a critical value of p called the
percolation threshold pc. Note that pc depends on the graph structure and can be
vanishingly small. Although this phase transition is only well-defined in the limit
of an infinite graph, a somewhat similar behavior can be observed in the finite
case [8,16]. In particular, define the percolation process {C(p)}0≤p≤1 as follows:
assign to each edge e an independent random variable Ue, uniformly distributed
on [0, 1]. Then, keeping the Ue fixed, let p vary on [0, 1], deleting e from the
graph whenever Ue > p. A tightly related process is obtained by considering
the imbedded Markov chain {Gk}k≥0, where Gk is the subgraph induced by
the edges associated with the k smallest random variables. Letting Ck denote
the size of the largest connected component of Gk, {Ck}k≥0 can be seen as a
discretized version of {C(p)}0≤p≤1. Even for finite graphs, sample paths of these
two processes do not deviate significantly from the mean trajectory, making them
suitable candidates for anomaly detection.

3.2 Application to Anomalous Subgraph Detection

We now motivate the idea of mapping a signal X onto a sample path of the
percolation process. For i ∈ [m], define Pi = 1−F0(Xi) as the upper tail p-value
associated with Xi. Define also, for k ∈ {0, . . . ,m}, the subgraph Gk induced
by the edges associated with the k smallest p-values, and let Sk denote the
size of its largest connected component. Under the null hypothesis, the random
variables {Pi} are independent and uniformly distributed on [0, 1]. Therefore,
Sk has the same distribution as Ck for all k ∈ {0, . . . , m}. Under the alternative
HS , however, the distribution of the variables {Pi}i∈S is altered, which induces
a deviation in the process {Sk}0≤k≤m with respect to the normal percolation
process. Our test aims to detect this deviation.

Figure 1 illustrates the normal and anomalous behaviors of the percolation
process for three graph models: a two-dimensional square lattice, an Erdős-Rényi
random graph [13] and a Barabási-Albert preferential attachment graph [7].
For each model, a graph with 1024 vertices and approximately 2000 edges is
generated, and the mean and standard deviation of the fraction of vertices in the
largest connected component for each value of p is estimated using 10000 Monte
Carlo simulations. Then, for each graph, we generate a subtree S containing a
fraction δ of the vertices, assign to each edge e an independent Gaussian random
variable Xe ∼ N (μ1{e ∈ S}, 1) and compute the associated sample path of the
percolation process. This experiment was repeated 1000 times for each graph,
and the mean sample path for different values of δ and μ is displayed. The two
regimes of the percolation process can be observed, and the shape and location
of the phase transition both clearly depend on the graph model. While the

292 C. Larroche et al.

Fig. 1. Evolution of the fraction of vertices in the largest connected component as
p varies from 0 to 1, under H0 and various alternatives, for three kinds of graphs:
a two-dimensional square lattice (left), an Erdős-Rényi random graph (center) and a
Barabási-Albert preferential attachment graph (right).

separation between the two regimes is quite clear for the lattice and the Erdős-
Rényi graph, it is much blurrier for the Barabási-Albert model, which yields more
complex structures – most interestingly, heavy-tailed degree distributions. Since
such properties are often found in real-world networks, it is important to qualify
their impact on the feasibility of percolation-based cluster detection. Figure 1
shows that although the anomalous sample paths become harder to distinguish
as the phase transition gets hazier, the normal trajectories are concentrated
enough to make even small deviations visible, which motivates our approach.

3.3 Putting It All Together – Description of Our Test

We now proceed with the description of our test. First, define

K = min
{

k ≤ m, E0[Sk] ≥
√

|V|
}

,

where E0 denotes the expected value under H0. K can be understood as the
index corresponding to the onset of the phase transition. Since we aim to detect
the appearance of an unexpectedly large connected component in the early steps
of the percolation process, the test statistic we use is

χ =
1

|V| · K

K∑
k=1

Sk .

This statistic is equivalent to the area under a piecewise constant interpolation
of the sequence of points {(k, Sk)}0≤k≤K , and is therefore expected to be higher
than usual in the presence of an anomalous subgraph.

Estimation of K and calibration of the test are both done through Monte
Carlo simulation: using the Newman-Ziff algorithm [23], N random sample paths

Percolation-Based Detection of Anomalous Subgraphs in Complex Networks 293

of the imbedded Markov chain are computed. Let {S
(i)
k }0≤k≤m denote the tra-

jectory of the largest connected component’s size for the ith realization of the
process. We get the following estimates:

K̂ = min

{
k ≤ m,

1
N

N∑
i=1

S
(i)
k ≥

√
|V|

}
, χ̂ =

1
|V| · K̂

K̂∑
k=1

Sk .

Finally, the empirical p-value can be expressed as

p̂ =
1
N

N∑
i=1

1{χ̂ ≤ χ̂(i)}, where χ̂(i) =
1

|V| · K̂
K̂∑

k=1

S
(i)
k for i ∈ {1, . . . , N}.

4 Experiments

In order to assess the power of our test, we ran it on several synthetic graphs
containing random anomalous trees. This section describes the procedure we
used to generate the dataset, then presents our results and their interpretation.

4.1 Generation of the Dataset

The dataset is generated using the stochastic Kronecker graph model [21].
Kronecker graphs exhibit similar structural properties as real-world networks,
most importantly power law-distributed degrees and small diameter. Hence, this
model allows us to evaluate our test in a somewhat realistic setting.

Two parameter matrices are used: Θ1 = [0.9 0.5; 0.5 0.3] (core-periphery net-
work) and Θ2 = [0.9 0.2; 0.2 0.9] (hierarchical network). For a given matrix and
for i ∈ {12, 13, 14, 15}, we generate an undirected graph through i iterations of
the Kronecker product, and only the largest connected component of this graph
is kept in order to obtain a connected network with approximately 2i vertices.
Using this procedure, 10 graphs are generated for each pair of parameters (Θ, i).
Thus, we evaluate our test on graphs with sizes ranging from a few thousands
to a few tens of thousands of vertices, which covers a wide scope of potential use
cases. For each synthetic graph, anomalies are then generated as follows: given
δ ∈ (0, 1), a random subtree S containing a fraction δ of the vertices is drawn.
Then, a random observation Xe ∼ N (μ1{e ∈ S}, 1) is independently drawn
for each edge e of the graph (where μ is a fixed signal strength). For a given
graph and a pair of parameters (δ, μ), 1000 anomalous signals X = (X1, . . . , Xm)
are generated. 1000 signals are also drawn from the null distribution (that is,
X ∼ N (0, Im), where Im is the m × m identity matrix) for comparison. Finally,
for each graph, the null distribution of the test statistic is estimated using 10000
random realizations of the percolation process. Using the obtained histogram,
the empirical p-values associated with the normal and anomalous samples are
derived, and we construct the Receiver Operating Characteristic (ROC) curve
for each pair (δ, μ). This procedure exposes the influence of various parameters
on the performance of our test, namely the graph size, the generator matrix, the
size δ of the anomalous region and the signal strength μ.

294 C. Larroche et al.

4.2 Detectability Conditions – Empirical Study

Our results are displayed in Table 1 and Figs. 2 and 3. Our main interest is in
finding out which parameters have the strongest influence on the power of the
test, and we provide some key observations and interpretations below.

Fig. 2. Aggregated ROC curves of our test for 10 Kronecker graphs with initial matrix
Θ1 = [0.9 0.5; 0.5 0.3], for several values of the number of Kronecker product iterations
i, the proportion δ of vertices in the anomalous tree and the signal strength μ.

Influence of the Graph Size. The first thing we notice in Figs. 2 and 3 is that for a
given pair of parameters (δ, μ), the performance of the test consistently improves
as the size of the graph increases. One possible explanation for this comes from
percolation theory: before the phase transition, the size of the largest connected
component is sublinear in the size of the graph. This implies that, for a fixed
ratio of vertices in the anomalous component, the difference between the size
of the latter and the expected size of the largest component grows with the
graph size. Therefore, the anomalous component becomes more visible as the
graph grows. Note, however, that some structural properties of our synthetic
graphs (e.g. density) might not remain identical for different values of i. It is
thus difficult to pinpoint the actual influence of the sole number of vertices.

Percolation-Based Detection of Anomalous Subgraphs in Complex Networks 295

Fig. 3. Aggregated ROC curves of our test for 10 Kronecker graphs with initial matrix
Θ2 = [0.9 0.2; 0.2 0.9], for several values of the number of Kronecker product iterations
i, the proportion δ of vertices in the anomalous tree and the signal strength μ.

Trade-Off Between δ and μ. As could be intuitively expected, our test performs
better for higher values of δ and μ. More interestingly, these two parameters
are intertwined: what makes an anomalous subgraph detectable is not only the
number of vertices it contains (which is controlled by δ), but also the presence
of a sufficient fraction of its edges among the most individually anomalous edges
of the graph (which is controlled by μ). In terms of experimental results, this
translates to poor performance when at least one of these parameters is too low.
However, there seems to be a range of values of δ and μ in which a decrease in
one can be made up for by an increase in the other. In particular, this implies
that even small subgraphs can be detected by our test as long as the signal is
strong enough. This is useful in “needle-in-a-haystack” scenarios such as network
intrusion detection, where the anomalies one looks for are often localized.

Influence of the Graph Structure. As evidenced by Fig. 1, structural properties
of the graph heavily influence the normal behavior of the percolation process, in
turn affecting the viability of percolation-based cluster detection. This explains
the observable difference in detection power between the two kinds of graphs we
consider. Further analysis shows that the generator Θ1 yields more heavy-tailed
degree distributions, which is a plausible cause for the performance gap.

296 C. Larroche et al.

5 Discussion and Future Work

We now discuss the main properties of our test, identifying some limitations and
providing leads for future work.

Table 1. Aggregated AUC score of our test for 10 Kronecker graphs, using various
combinations of initial matrix Θ, number of iterations of the Kronecker product i,
proportion δ of vertices in the anomalous tree and signal strength μ.

Θ1 Θ2

δ = 0.001 0.005 0.01 0.05 0.001 0.005 0.01 0.05

i = 12 μ = 1 0.502 0.510 0.525 0.591 0.502 0.527 0.582 0.796

1.5 0.505 0.542 0.603 0.819 0.502 0.626 0.763 0.990

2 0.503 0.628 0.769 0.981 0.505 0.785 0.949 1.000

i = 13 1 0.507 0.513 0.528 0.602 0.505 0.540 0.595 0.838

1.5 0.513 0.560 0.631 0.847 0.512 0.694 0.848 0.998

2 0.518 0.699 0.845 0.993 0.531 0.902 0.988 1.000

i = 14 1 0.503 0.515 0.525 0.596 0.503 0.550 0.614 0.867

1.5 0.508 0.570 0.639 0.855 0.524 0.764 0.908 1.000

2 0.528 0.752 0.887 0.997 0.590 0.969 0.998 1.000

i = 15 1 0.500 0.509 0.522 0.586 0.508 0.565 0.634 0.897

1.5 0.511 0.584 0.645 0.861 0.555 0.840 0.955 1.000

2 0.551 0.801 0.925 0.999 0.706 0.994 1.000 1.000

Theoretical Guarantees. From a theoretical perspective, our setting is more com-
plex than that of [6]: we consider arbitrary networks instead of regular lattices,
and our test statistic depends on the whole sample path of the percolation pro-
cess rather than the marginal behavior at a given occupation probability. There-
fore, the search for theoretical guarantees for our test was left out of the scope
of this work, although it would certainly be of great interest.

Computational Cost. The main advantage of our method is its computational
efficiency. Indeed, computing the empirical p-value for a given graph and an
observed signal only requires N + 1 runs of the Newman-Ziff algorithm, which
has a very low cost. In contrast, a scan statistic-based test would require N + 1
runs of a combinatorial optimization algorithm (one for the observed data and
N additional runs to estimate the distribution of the test statistic under the
null). Even with a very efficient optimization method, this is significantly more
intensive. In terms of complexity, our test requires sorting the observations Xi,
running the Newman-Ziff algorithm N + 1 times, computing the mean sample
path and the index K, and summing the first K values for each of the N + 1
trajectories, resulting in O(m(log m + N)) operations. Note that the algorithm

Percolation-Based Detection of Anomalous Subgraphs in Complex Networks 297

can be further optimized using the fact that the test statistic depends only
on the first K steps of the percolation process. Although the exact value of K
depends on the graph, we empirically observe that it is generally smaller than the
number of vertices |V|. Therefore, early stopping of the Newman-Ziff algorithm
and partial sorting can reduce the complexity to O(m + |V|(N + log |V|)).

Detection Power. The expected downside of our method’s low computational
cost is a loss in detection power. Our simulations show, however, that the pro-
posed test can detect reasonably small anomalous subgraphs in large enough
ambient graphs, which is our main goal here. Moreover, it does not rely on prior
knowledge of the alternative distribution and can be used with only a rough
estimate of F0, which improves its usability in realistic settings.

Although the influence of some factors on the performance of the test was
left out of the scope of this work, a wider analysis would be an interesting topic
for future work. These factors include the density of the graph and the shape
of the anomalous subgraph. More specifically, we only evaluated our test in the
case of random anomalous trees, which provides general results but no insight
into the influence of the diameter and the density of the anomalous subgraph.

6 Conclusion

By extending previous work on percolation-based cluster detection to a more
general setting, we propose a computationally efficient test to detect an anoma-
lous connected subgraph in an edge-weighted network. The underlying intuition
is that it is often possible to find out whether such a subgraph is present with-
out explicitly finding it: instead of enumerating all possible candidates, a much
faster method can be obtained by looking for properties of the whole graph which
are affected by the apparition of an anomalous cluster. Our work suggests that
percolation theory can provide such properties.

Since it scales easily to large graphs and does not rely on extensive knowledge
of the null and alternative distributions of the observed signal, we argue that
our method is applicable to real-world problems. Moreover, we show through
extensive simulations that its detection power remains acceptable, and that it
can in particular detect small anomalous regions in large graphs. Therefore, we
think the link between cluster detection and percolation theory deserves further
exploration, both from a theoretical and applied point of view.

References

1. Addario-Berry, L., Broutin, N., Devroye, L., Lugosi, G., et al.: On combinatorial
testing problems. Ann. Stat. 38(5), 3063–3092 (2010)

2. Aksoylar, C., Orecchia, L., Saligrama, V.: Connected subgraph detection with mir-
ror descent on SDPs. In: ICML (2017)

3. Arias-Castro, E., Candes, E.J., Durand, A., et al.: Detection of an anomalous
cluster in a network. Ann. Stat. 39(1), 278–304 (2011)

298 C. Larroche et al.

4. Arias-Castro, E., Candès, E.J., Helgason, H., Zeitouni, O., et al.: Searching for a
trail of evidence in a maze. Ann. Stat. 36(4), 1726–1757 (2008)

5. Arias-Castro, E., Donoho, D.L., Huo, X., et al.: Near-optimal detection of geomet-
ric objects by fast multiscale methods. IEEE Trans. Inf. Theory 51(7), 2402–2425
(2005)

6. Arias-Castro, E., Grimmett, G.R., et al.: Cluster detection in networks using per-
colation. Bernoulli 19(2), 676–719 (2013)

7. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

8. Callaway, D.S., Newman, M.E., Strogatz, S.H., Watts, D.J.: Network robustness
and fragility: percolation on random graphs. Phys. Rev. Lett. 85(25), 5468 (2000)

9. Chung, F.: Spectral Graph Theory. American Mathematical Society, Providence
(1997)

10. Chung, F., Horn, P., Lu, L.: Percolation in general graphs. Internet Math. 6(3),
331–347 (2009)

11. Duczmal, L., Assuncao, R.: A simulated annealing strategy for the detection of
arbitrarily shaped spatial clusters. Comput. Stat. Data Anal. 45(2), 269–286 (2004)

12. Duczmal, L., Kulldorff, M., Huang, L.: Evaluation of spatial scan statistics for
irregularly shaped clusters. J. Comput. Graph. Stat. 15(2), 428–442 (2006)

13. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci 5, 17–60 (1960)

14. Glaz, J., Naus, J., Wallenstein, S.: Scan Statistics. Springer, Berlin (2001)
15. Hooi, B., Song, H.A., Beutel, A., Shah, N., Shin, K., Faloutsos, C.: Fraudar: bound-

ing graph fraud in the face of camouflage. In: KDD (2016)
16. Karrer, B., Newman, M.E., Zdeborová, L.: Percolation on sparse networks. Phys.

Rev. Lett. 113(20), 208702 (2014)
17. Kulldorff, M.: A spatial scan statistic. Commun. Stat. - Theory Methods 26(6),

1481–1496 (1997)
18. Kulldorff, M., Huang, L., Pickle, L., Duczmal, L.: An elliptic spatial scan statistic.

Stat. Med. 25(22), 3929–3943 (2006)
19. Langovoy, M., Habeck, M., Schölkopf, B.: Spatial statistics, image analysis and

percolation theory. arXiv preprint arXiv:1310.8574 (2013)
20. Langovoy, M., Wittich, O.: Robust nonparametric detection of objects in noisy

images. J. Nonparametr. Stat. 25(2), 409–426 (2013)
21. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., Ghahramani, Z.: Kro-

necker graphs: an approach to modeling networks. J. Mach. Learn. Res. 11, 985–
1042 (2010)

22. Neil, J., Hash, C., Brugh, A., Fisk, M., Storlie, C.B.: Scan statistics for the online
detection of locally anomalous subgraphs. Technometrics 55(4), 403–414 (2013)

23. Newman, M.E., Ziff, R.M.: Fast Monte Carlo algorithm for site or bond percolation.
Phys. Rev. E 64(1), 016706 (2001)

24. Patil, G., Taillie, C., et al.: Geographic and network surveillance via scan statistics
for critical area detection. Stat. Sci. 18(4), 457–465 (2003)

25. Priebe, C.E., Conroy, J.M., Marchette, D.J., Park, Y.: Scan statistics on enron
graphs. Comput. Math. Organ. Theory 11(3), 229–247 (2005)

26. Qian, J., Saligrama, V.: Efficient minimax signal detection on graphs. In: NeurIPS
(2014)

27. Qian, J., Saligrama, V., Chen, Y.: Connected sub-graph detection. In: AISTATS
(2014)

28. Rozenshtein, P., Anagnostopoulos, A., Gionis, A., Tatti, N.: Event detection in
activity networks. In: KDD (2014)

http://arxiv.org/abs/1310.8574

Percolation-Based Detection of Anomalous Subgraphs in Complex Networks 299

29. Sharpnack, J., Rinaldo, A., Singh, A.: Detecting anomalous activity on networks
with the graph Fourier scan statistic. IEEE Trans. Signal Process. 64(2), 364–379
(2015)

30. Sharpnack, J., Singh, A., Rinaldo, A.: Changepoint detection over graphs with the
spectral scan statistic. In: AISTATS (2013)

31. Sharpnack, J.L., Krishnamurthy, A., Singh, A.: Near-optimal anomaly detection
in graphs using Lovasz extended scan statistic. In: NeurIPS (2013)

32. Speakman, S., McFowland III, E., Neill, D.B.: Scalable detection of anomalous
patterns with connectivity constraints. J. Comput. Graph. Stat. 24(4), 1014–1033
(2015)

33. Wu, N., Chen, F., Li, J., Zhou, B., Ramakrishnan, N.: Efficient nonparametric
subgraph detection using tree shaped priors. In: AAAI (2016)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

A Late-Fusion Approach to Community
Detection in Attributed Networks

Chang Liu1, Christine Largeron2, Osmar R. Zäıane1(B),
and Shiva Zamani Gharaghooshi1

1 Alberta Machine Intelligence Institute, University of Alberta, Edmonton, Canada
{chang6,zaiane,zamanigh}@ualberta.ca

2 Laboratoire Hubert Curien, Université de Lyon, Saint-Etienne, France
christine.largeron@univ-st-etienne.fr

Abstract. The majority of research on community detection in
attributed networks follows an “early fusion” approach, in which the
structural and attribute information about the network are integrated
together as the guide to community detection. In this paper, we pro-
pose an approach called late-fusion, which looks at this problem from
a different perspective. We first exploit the network structure and node
attributes separately to produce two different partitionings. Later on,
we combine these two sets of communities via a fusion algorithm, where
we introduce a parameter for weighting the importance given to each
type of information: node connections and attribute values. Extensive
experiments on various real and synthetic networks show that our late-
fusion approach can improve detection accuracy from using only network
structure. Moreover, our approach runs significantly faster than other
attributed community detection algorithms including early fusion ones.

Keywords: Community detection · Attributed networks · Late fusion

1 Introduction

In many modern applications, data is represented in the form of relationships
between nodes forming a network, or interchangeably a graph. A typical charac-
teristic of these real networks is the community structure, where network nodes
can be grouped into densely connected modules called communities. Community
identification is an important issue because it can help to understand the net-
work structure and leads to many substantial applications [6]. While traditional
community detection methods focus on the network topology where communities
can be defined as sets of nodes densely connected internally, recently, increasing
attention has been paid to the attributes associated with the nodes in order
to take into account homophily effects, and several works have been devoted
to community detection in attributed networks. The aim of such process is to
obtain a partitioning of the nodes where vertices belonging to the same subgroup
are densely connected and homogeneous in terms of attribute values.
c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 300–312, 2020.
https://doi.org/10.1007/978-3-030-44584-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_24&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_24

A Late-Fusion Approach to Community Detection 301

In this paper, we propose a new method designed for community detection
in attributed networks, called late fusion. This is a two-step approach where we
first identify two sets of communities based on the network topology and node
attributes respectively, then we merge them together to produce the final par-
titioning of the network that exhibits the homophily effect, according to which
linked nodes are more likely to share the same attribute values. The commu-
nities based upon the network topology are obtained by simply applying an
existing algorithm such like Louvain [2]. For graphs whose node attributes are
numeric, we utilize existing clustering algorithms to get the communities (i.e.,
clusters) based on node attributes. We extend to binary-attributed graphs by
generating a virtual graph from the attribute similarities between the nodes, and
performing traditional community detection on the virtual graph. Albeit being
simple, extensive experiments have shown that our late-fusion method can be
competitive in terms of both accuracy and efficiency when compared against
other algorithms. We summarize our main contributions in this work are:

1. A new late-fusion approach to community detection in attributed networks,
which allows the use of traditional methods as well as the integration of
personal preference or prior knowledge.

2. A novel method to identify communities that reflect attribute similarity for
networks with binary attributes.

3. Extensive experiments to validate the proposed method in terms of accuracy
and efficiency.

The rest of the paper is organized as follows: In Sect. 2, we provide a brief
review of community detection algorithms suited for attributed networks, next
we present our late fusion approach in Sect. 3. Experiments to illustrate the effec-
tiveness of the proposed method are detailed in Sect. 4. Finally, we summarize
our work and point out several future directions in Sect. 5.

2 Related Work

How to incorporate the node attribute information into the process of network
community detection has been studied for a long time. One of the early ideas
is to transform attribute similarities into edge weights. For example, [13] pro-
poses matching coefficient which is the count of shared attributes between two
connected nodes in a network; [15] extends the matching coefficient to networks
with numeric node attributes; [4] defines edge weights based on self-organizing
maps. A drawback of these methods is that new edge weights are only appli-
cable to edges already existed, hence the attribute information is not fully uti-
lized. To overcome this issue, a different approach is to augment the original
graph by adding virtual edges and/or nodes based on node attribute values. For
instance, [14] generates content edges based on the cosine similarity between
node attribute vectors, in graphs where nodes are textual documents and the
corresponding attribute vector is the TF-IDF vector describing their content.
The kNN-enhance algorithm [9] adds directed virtual edges from a node to one

302 C. Liu et al.

of its k-nearest neighbors if their attributes are similar. The SA-Clustering [17]
adds both virtual nodes and edges to the original graph, where the virtual nodes
represent binary-valued attributes, and the virtual edges connect the real nodes
to the virtual nodes representing the attributes that the real nodes own.

Another class of methods is inspired by the modularity measure. These meth-
ods incorporate attribute information into an optimization objective like the
modularity. [5] injects an attribute based similarity measure into the modular-
ity function; [1] combines the gain in the modularity with multiple common
users’ attributes as an integrated objective; I-Louvain algorithm [3] proposes
inertia-based modularity to describe the similarity between nodes with numeric
attributes, and adds the inertia-based modularity to the original modularity
formula to form the new optimization objective.

With the wide spreading of deep learning, network representation learning
and node embedding (e.g. [8]) motivated new solutions. [12] proposes an embed-
ding based community detection algorithm that applies representation learning
of graphs to learn a feature representation of a network structure, which is com-
bined with node attributes to form a cost function. Minimizing it, the optimal
community membership matrix is obtained.

Probabilistic models can be used to depict the relationship between node
connections, attributes, and community membership. The task of community
detection is thus converted to inferring the community assignment of the nodes.
A representative of this kind is the CESNA algorithm [16], which builds a gen-
erative graphical model for inferring the community memberships.

Whereas the majority of the previous methods exploit simultaneously both
types of information, we propose the late-fusion approach that combines two
sets of communities obtained separately and independently from the network
structure and node attributes via a fusion algorithms.

3 The Late-Fusion Method

Given an attributed network G = (V,E,A), with V being the set of m nodes,
E the set of n edges, and A an m × r attribute matrix describing the attribute
values of the nodes with r attributes, the goal is to build a partitioning P =
{C1, ..., Ck} of V into k communities such that nodes in the same community
are densely connected and similar in terms of attributes, whereas nodes from
distinct communities are loosely connected and different in terms of attribute.

For networks with numeric attributes, we can directly apply a community
detection algorithm Fs on G to identify a set of communities based on node
connections Ps = {C1, C2, ..., Cks

}, and a clustering algorithms Fa on A to find
a set of clusters based on node attributes Pa = {C1, C2, ..., Cka

}. When it comes
to binary attributed networks, traditional clustering algorithms become inacces-
sible, we instead build a virtual graph Ga that shares the same node set as G,
but there is an edge only when the two nodes are similar enough in terms of
attributes. Then we apply Fs on Ga and obtain Pa. Note that we omit cate-
gorical attributes since categorical values can be easily converted to the binary
case.

A Late-Fusion Approach to Community Detection 303

The second step is to combine the partitions Ps and Pa. We first derive the
adjacency matrices Ds and Da from Ps and Pa respectively, where dij = 1 when
nodes i and j are in the same community in a partitioning P and dij = 0 other-
wise. Next, an integrated adjacency matrix D is given by D = αDs +(1−α)Da.
Here α is the weighting parameter that leverages the strength between network
topology and node attributes. In this way, the information about network topol-
ogy and node attributes of the original graph G is represented in D. Now Gint,
derived from the adjacency matrix D, is an integrated, virtual, weighted graph
whose edges embody the homophily effect of G. Algorithm 1 shows the steps of
our late-fusion approach applied to networks with binary attributes.

Algorithm 1. Late-fusion on networks with binary attributes
Input: G = (V, E, A), Fs, α
Output: P = {C1, C2, ..., Ck}

1 Ps = Fs(Gs)
2 Ga = build virtual graph (A)
3 Pa = Fs(Ga)
4 Ds = get adjacency matrix(Ps), Da = get adjacency matrix(Pa)
5 D = αDs + (1 − α)Da

6 Gintegrated = from adjacency matrix (D)
7 P = Fs(Gintegrated)
8 return P

Here we address an important detail: how to build the virtual graph Ga from
the node-attribute matrix A? We compute the inner product as the similarity
measure between each node pair, and if the inner product exceeds a predeter-
mined threshold, we regard the nodes as similar and add a virtual edge between
them. The threshold can be determined heuristically based on the distribution of
the node similarities. However, the threshold should be chosen properly so that
the resulted Ga would be neither too dense nor too sparse, where both cases
could harm the quality of the final communities. Under this guidance, we put
forward two thresholding approaches:

1. Median thresholding (MT): Suppose S is the m × m similarity matrix
of all nodes in V , we take all the off-diagonal, upper triangular (or lower
triangular) entries of S, find the median of these numbers and set it as the
threshold. This approach guarantees that we add virtual edges to half of all
node pairs who share a similarity value higher than the other half.

2. Equal-edge thresholding (EET): We compute q = 1 − d(G) where d(G)
is the density of G. Then the qth quantile of the similarity distribution is the
chosen threshold. In this approach, we let the original graph Gs be the proxy
that decides how we construct the virtual graph Ga.

304 C. Liu et al.

Fig. 1. Node attribute distribution for three groups of experiments. (a) Strong
attributes, (b) Medium attributes, (c) Weak attributes. Each color represents a unique
community (Color figure online)

4 Experiments

Our proposed method has been evaluated through experiments on multiple syn-
thetic and real networks and results are presented in this section. For networks
with numeric attributes, we take advantage of existing clustering algorithms to
obtain communities based on attributes (i.e., clusters), and for networks with
binary attributes, we employ Algorithm 1 to perform community detection. We
have also released our code so that readers can reproduce the results1.

4.1 Synthetic Networks with Numeric Attributes

Data. We use an attributed graph generator [10] to create three attributed
graphs with ground-truth communities, denoted as Gstrong, Gmedium and Gweak,
indicating the corresponding ground-truth partitionings are strong, medium, and
weak in terms of modularity Q. To examine the effect of attributes on community
detection, for each of Gstrong, Gmedium and Gweak, we assign three different
attribute distributions as shown in Fig. 1, where attributes in Fig. 1a and b are
generated from a Gaussian mixture model with a shared standard deviation, and
Fig. 1c presents the original attributes generated by [10]. By this way, for each
graph having a specific community structure (Gstrong, Gmedium, Gweak) we have
also three types of attributes denoted strong attributes, medium attributes and
weak attributes leading in fact to 9 datasets.

Evaluation Measures and Baselines. Normalized Mutual Information
(NMI) and Adjusted Rand Index (ARI) and running time are used to evaluate
algorithm accuracy and efficiency. Louvain [2] and SIWO [7] have been chosen as
baseline algorithms that utilize only the links to identify network communities.

1 https://github.com/changliu94/attributed-community-detection.

https://github.com/changliu94/attributed-community-detection

A Late-Fusion Approach to Community Detection 305

Table 1. Properties of synthetic networks

m n k r Q

Gstrong 2000 7430 10 2 0.81

Gmedium 2000 7445 10 2 0.65

Gweak 2000 6988 10 2 0.54

Table 2. Properties of Sina Weibo
network

m n k r Q I

3490 30282 10 10 0.05 0.04

Note that since the attribute distribution does not affect Louvain and SIWO,
the results of Louvain and SIWO are only presented in Table 3. We choose Spec-
tral Clustering (SC) and DBSCAN as two representative clustering algorithms
as they both can handle non-flat geometry. We treat the number of clusters as a
known input parameter of SC, and the neighborhood size of DBSCAN is set to
the average node degree. We adopt default values of the remaining parameters
from the scikit-learn implementation of these two algorithms. Finally, we take
the implementation of the I-Louvain algorithm which exploits links and attribute
values as our contender. The code of I-Louvain is available online2. Given Lou-
vain, SIWO, SC, and DBSCAN, correspondingly we can have four combinations
for our late-fusion method. In all experiments, the α parameter in Algorithm 1
is chosen to be 0.5, i.e., the same weight is allocated to structural and attribute
information.

Table 3. Results of strong attributes, time is measured in seconds

Gstrong Gmedium Gweak

NMI ARI Time NMI ARI Time NMI ARI Time

Louvain .795 .797 0.41 .695 .686 0.49 .665 .674 0.64

SIWO .836 .850 0.97 .702 .705 1.09 .504 .458 0.98

SC .802 .713 1.15 .777 .677 0.64 .768 .669 0.68

DBSCAN .469 .103 0.06 .434 .083 0.06 .465 .102 0.24

I-Louvain .515 .150 39.2 .718 .704 30.0 .608 .503 37.6

Louvain + SC .824 .704 7.34 .784 .618 5.74 .765 .597 7.14

Louvain + DBSCAN .818 .813 8.64 .730 .702 8.87 .704 .690 10.6

SIWO + SC .844 .738 10.3 .786 .636 7.33 .723 .508 6.46

SIWO + DBSCAN .818 .813 11.7 .730 .702 10.2 .704 .690 11.6

2 https://www.dropbox.com/sh/j4aqitujiaifgq4/AAAAH0L3uIPYNWKoLpcAh0TPa.

https://www.dropbox.com/sh/j4aqitujiaifgq4/AAAAH0L3uIPYNWKoLpcAh0TPa

306 C. Liu et al.

Table 4. Results of medium attributes, time is measured in seconds

Gstrong Gmedium Gweak

NMI ARI Time NMI ARI Time NMI ARI Time

SC .529 .338 0.83 .522 .322 0.53 .538 .349 0.57

DBSCAN .096 .012 0.08 .066 .008 0.14 .065 .011 0.09

I-Louvain .517 .150 36.8 .707 .690 33.7 .614 .522 33.2

Louvain + SC .734 .450 5.62 .696 .390 5.96 .677 .392 5.66

Louvain + DBSCAN .755 .726 9.20 .670 .636 11.9 .641 .633 13.6

SIWO + SC .748 .469 12.7 .699 .402 7.12 .625 .335 7.44

SIWO + DBSCAN .744 .726 8.73 .670 .636 8.98 .641 .633 12.4

Results. Table 3, corresponding to strong attributes, shows that late fusion is
the best-performing algorithm in terms of NMI on Gstrong and Gmedium, and
very close to SC on Gweak (0.765 against 0.768) whereas it is better in terms of
ARI on this last graph. On Tables 4 and 5, corresponding respectively to medium
and weak attributes, with the deterioration of the attribute quality, the accu-
racy of late-fusion degrades, but late fusion still remains at a consistently high
level compared to I-Louvain and the clustering algorithms. Moreover, the perfor-
mance degradation of late-fusion methods is less susceptible to the deterioration
of community quality compared to the clustering algorithms, thanks to the com-
plementary structural information. As for the running time, it is expected that
classic community detection algorithms Louvain and SIWO are the fastest algo-
rithms, as they do not consider node attributes, but the late-fusion method still
outperforms I-Louvain by a remarkable margin.

Table 5. Results of weak attributes, time is measured in seconds

Gstrong Gmedium Gweak

NMI ARI Time NMI ARI Time NMI ARI Time

SC .483 .270 3.31 .514 .307 2.32 .489 .276 2.45

DBSCAN .000 .000 0.06 .000 .000 0.06 .000 .000 0.14

I-Louvain .517 .150 35.1 .707 .690 34.3 .614 .522 39.5

Louvain + SC .770 .670 11.8 .705 .613 10.2 .689 .564 9.33

Louvain + DBSCAN .795 .797 11.2 .695 .685 10.4 .667 .674 12.9

SIWO + SC .797 .703 13.2 .709 .635 12.3 .601 .467 11.0

SIWO + DBSCAN .795 .797 11.6 .695 .685 11.3 .667 .674 12.6

A Late-Fusion Approach to Community Detection 307

4.2 Real Network with Numeric Attributes

Data and Baselines. Sina Weibo3 is the largest online Chinese micro-blog
social networking website. Table 2 shows the corresponding properties of the
Sina Weibo network built by [9]4. It includes within-inertia ratio I, a measure
of attribute homogeneity of data points that are assigned to the same subgroup.
The lower the within-inertia ratio, the more similar the nodes in the same com-
munity are. As DBSCAN algorithm performs poorly on the Sina Weibo network
and it is costly to infer a good combination of the hyper-parameters of the algo-
rithm, it has been replaced by k-means as a supplement to spectral clustering.
The number of clusters required as an input by k-means and SC is inferred from
the ‘elbow method’, which happens to be 10, the actual number of clusters.
Moreover, since we have the prior knowledge that the ground truth communities
are based on the topics of the forums from which those users are gathered, we
reckon that the formation of communities depends more on the attribute values
than the structure and set the parameter α at 0.2.

Results. Table 6 presents the results on Sina Weibo network. The two baseline
algorithms Louvain and SIWO and the contending algorithm I-Louvain perform
poorly on the Sina Weibo network, whereas the clustering algorithms show a high
accuracy. Especially, the k-means algorithm together with our four late-fusion
methods with the emphasis on attribute information produce results with the best
NMI and ARI. This is because modularity of Sina Weibo network is low (0.05 as
indicated in Table 2) and the within-inertia ratio is also low (0.04). The results also
validate our assumption that communities in this network are mainly determined
by the attributes. We will further explore the effect of α in Sect. 4.4.

Table 6. Experimental results on Sina
Weibo network

NMI ARI Time

Louvain .232 .197 1.98

SIWO .040 .000 3.26

SC .612 .520 3.16

k-means .649 .579 0.25

I-Louvain .204 .038 261

Louvain+SC .611 .519 48.9

Louvain+k-means .649 .579 42.1

SIWO+SC .611 .519 37.9

SIWO+k-means .649 .579 50.4

Table 7. Properties of Facebook net-
works

Network ID m n k r Q

0 347 5038 24 224 0.179

107 1045 53498 9 576 0.218

348 227 6384 14 161 0.210

414 159 3386 7 105 0.468

686 170 3312 14 63 0.101

698 66 540 13 48 0.239

1684 792 28048 17 319 0.509

1912 755 60050 46 480 0.339

3437 547 9626 32 262 0.026

3980 59 292 17 42 0.242

3 http://www.weibo.com.
4 This dataset is available online https://github.com/smileyan448/Sinanet.

http://www.weibo.com
https://github.com/smileyan448/Sinanet

308 C. Liu et al.

4.3 Real Network with Binary Attributes

Data. Facebook dataset [11] contains 10 egocentric networks with binary
attributes corresponding to anonymous information of the user about the name,
work, and education and ground-truth communities. This dataset is available
online5 and Table 7 presents the properties of these networks.

We still treat Louvain and SIWO as our baselines. We use the CESNA algo-
rithm [16], able to handle binary attributes in addition to the links, as our
contender6. To compare the two thresholding strategies proposed in Section 3,
we present experimental results of four late-fusion methods: Louvain + equal-
edge thresholding (denoted as Louvain-EET), Louvain + median thresholding
(denoted as Louvain-MT), SIWO + equal-edge thresholding (denoted as SIWO-
EET), and SIWO + median thresholding (denoted as SIWO-MT). We set α to
its default value 0.5.

Table 8. NMI of different community detection results on Facebook network

Network ID 0 107 348 414 686 698 1684 1912 3437 3980 Average

Louvain .382 .332 .478 .609 .284 .281 .047 .565 .181 .729 .389

SIWO .390 .363 .375 .586 .215 .259 .053 .557 .174 .605 .358

CESNA .263 .249 .307 .586 .238 .564 .438 .450 .176 .552 .382

Louvain-EET .558 .355 .525 .538 .463 .669 .462 .511 .310 .704 .509

Louvain-MT .452 .341 .489 .556 .351 .479 .323 .491 .262 .696 .444

SIWO-EET .541 .364 .452 .531 .406 .630 .460 .509 .310 .648 .485

SIWO-MT .431 .353 .405 .538 .252 .406 .332 .491 .260 .588 .406

Table 9. ARI of different community detection results on Facebook network

Network ID 0 107 348 414 686 698 1684 1912 3437 3980 Average

Louvain .143 .148 .303 .558 .110 .000 .000 .461 .000 .398 .209

SIWO .220 .177 .127 .519 .000 .009 .000 .419 .002 .209 .167

CESNA .073 .097 .156 .480 .001 .202 .310 .361 .014 .067 .176

Louvain-EET .024 .047 .103 .265 .006 .000 .043 .252 .000 .069 .008

Louvain-MT .061 .079 .129 .413 .063 .000 .048 .235 .000 .084 .110

SIWO-EET .043 .045 .124 .252 .003 .000 .057 .235 .000 .095 .009

SIWO-MT .108 .079 .141 .391 .040 .016 .060 .223 .000 .073 .113

5 http://snap.stanford.edu/data.
6 The source code of CESNA is available online https://github.com/snap-stanford/

snap/tree/master/examples/cesna.

http://snap.stanford.edu/data
https://github.com/snap-stanford/snap/tree/master/examples/cesna
https://github.com/snap-stanford/snap/tree/master/examples/cesna

A Late-Fusion Approach to Community Detection 309

Table 10. Running time of different community detection results on Facebook network,
measured in seconds

Network ID 0 107 348 414 686 698 1684 1912 3437 3980 Average

Louvain 0.15 1.83 0.12 0.06 0.09 0.02 0.80 1.28 0.31 0.01 0.47

SIWO 0.34 3.78 0.31 0.16 0.17 0.03 1.46 3.79 0.51 0.02 1.06

CESNA 9.76 103 6.02 2.47 3.12 0.63 38.3 22.9 21.1 0.60 20.8

Louvain-EET 0.72 4.68 0.40 0.25 0.24 0.07 1.95 3.83 0.78 0.03 1.30

Louvain-MT 2.90 20.0 0.82 0.48 0.44 0.08 8.22 9.41 3.28 0.06 4.57

SIWO-EET 1.73 24.4 2.87 0.68 0.76 0.14 5.76 28.5 4.26 0.12 6.92

SIWO-MT 9.45 91.4 5.27 1.73 3.14 0.34 44.9 43.4 13.5 0.17 21.3

Results. Results in terms of NMI, ARI, and running time are respectively pre-
sented in Tables 8, 9, and 10. In terms of NMI, results in Table 8 show again
that our late-fusion algorithms can significantly improve the community detec-
tion accuracy upon Louvain. On average, the late fusion method Louvain+EET
outperforms Louvain, SIWO, and CESNA by 30.8%, 42.2%, and 33.2% respec-
tively. The late fusion method Louvain+MT outperforms the three by 14.1%,
24.0%, and 16.2% respectively. However, all of the late-fusion methods perform
poorly when evaluated by ARI. This is resulted from the goal of our late-fusion
approach. Remember that we aim to find the set of communities such that nodes
in the same subgroup are densely connected and similar in terms of attributes,
whereas nodes residing in different communities are loosely connected and dis-
similar in attributes. This purpose led the late-fusion approach to over-partition
communities that are formed by only one of the two sources of information. The
over-partitioning greatly hurts the results of ARI. A postprocessing model to
resolve the over-partitioning issue with late fusion is left as a future work. The
running time results shown in Table 10 again manifests the efficiency advantage
of our late-fusion methods over CESNA.

4.4 Effect of Parameter α

In the Sina Weibo experiment, we see the advantage of having a weighting param-
eter to accordingly leverage the strength of the two sources of information. In this
section, we dive deeper into the effect of α on the community detection results.
To do so, we devise an experiment where we use the Gstrong and Gweak intro-
duced in Table 1. In reverse, we assign weak attributes to Gstrong and strong
attributes to Gweak. Then we perform our late fusion algorithm on these two
graphs with varying α values. In our experiment, we choose SIWO as Fs and
k-means as Fa.

Table 11 presents the NMI and ARI of the late fusion with SIWO and k-
means when α varies. Gstrong has communities with a strong structure but weak
attributes, so the accuracy score for NMI and ARI goes up as we put more weight
on the structure; On the contrary, Gweak has weak structural communities but

310 C. Liu et al.

Table 11. Effect of α

α = 0.0 α = 0.2 α = 0.5 α = 0.8 α = 1.0

NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI

Gstrong 0.530 0.359 0.530 0.359 0.756 0.513 0.836 0.850 0.836 0.850

Gweak 0.867 0.834 0.867 0.834 0.762 0.470 0.526 0.364 0.526 0.364

strong attributes, hence the accuracy score decreases as α increases. One can also
notice that when α is sufficiently high or low, late fusion becomes equivalent to
using community detection or clustering only, which is in accordance with our
observation done on the Sina Weibo experiment.

In practice, when network communities are mainly determined by the links,
α should be greater than 0.5; α < 0.5 is recommended if attributes play a
more important role in forming the communities; When prior knowledge about
network communities is unavailable or both sources of information contribute
equally, α should be 0.5.

4.5 Complexity of Late Fusion

It is a known drawback of attributed community detection algorithms that they
are very time-consuming due to the need to consider node attributes. Our late-
fusion method tries to circumvent this problem by taking advantage of the exist-
ing community detection and clustering algorithms that are efficiently optimized,
and combining their results by a simple approach. To further show the computa-
tional efficiency of our late-fusion method, we compute the running time of the
late-fusion method and compare it with other methods.

Fig. 2. Running time of Louvain, SIWO, late fusion and I-Louvain on networks of
different sizes

A Late-Fusion Approach to Community Detection 311

We test the running time of four different community detection methods on
five graphs with the number of nodes varying from 2000, 4000, 6000, 8000, and
10000. These graphs are also generated by the attributed graph generator [10].
We control the modularity of each graph at the range of 0.64−0.66 and keep
other hyperparameters the same. For each size, we randomly sample 10 graphs
from the graph generator and plot the average running time of each method. As
we can see in Fig. 2, it is expected that our late-fusion method is inevitably slower
than the two community detection methods that only utilize node connections.
However, our algorithm runs way faster than the I-Louvain algorithm, albeit
both being approximately linear in the growth of network sizes.

5 Conclusion and Future Direction

In this paper, we proposed a new approach to the problem of community detec-
tion in attributed networks that follows a late-fusion strategy. We showed with
extensive experiments that most often, our late-fusion method is not only able
to improve the detection accuracy provided by traditional community detec-
tion algorithms, but it can also outperform the chosen contenders in terms of
both accuracy and efficiency. We learned that combining node connections with
attributes to detect communities of a network is not always the best solution,
especially when one side of the network properties is strong while the other
is weak, using only the best information available can lead to better detection
results. It is part of our future work to understand when and how we should use
the extra attribute information to help community detection. ARI suffers greatly
from over-partitioning issue with our late fusion when applied to networks with
binary attributes. A postprocessing model to resolve this issue is desired. We also
hope to expand the late-fusion approach to networks with a hybrid of binary and
numeric attributes as well as networks with overlapping communities.

References

1. Asim, Y., Ghazal, R., Naeem, W., Majeed, A., Raza, B., Malik, A.K.: Community
detection in networks using node attributes and modularity. Int. J. Adv. Comput.
Sci. Appl. 8(1), 382–388 (2017)

2. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008
(2008)

3. Combe, D., Largeron, C., Géry, M., Egyed-Zsigmond, E.: I-Louvain: an attributed
graph clustering method. In: Fromont, E., De Bie, T., van Leeuwen, M. (eds.) IDA
2015. LNCS, vol. 9385, pp. 181–192. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-24465-5 16

4. Cruz, J.D., Bothorel, C., Poulet, F.: Semantic clustering of social networks using
points of view. In: CORIA, pp. 175–182 (2011)

5. Dang, T., Viennet, E.: Community detection based on structural and attribute sim-
ilarities. In: International Conference on Digital Society (ICDS), pp. 7–14 (2012)

https://doi.org/10.1007/978-3-319-24465-5_16
https://doi.org/10.1007/978-3-319-24465-5_16

312 C. Liu et al.

6. Fortunato, S., Hric, D.: Community detection in networks: a user guide. Phys. Rep.
659, 1–44 (2016)

7. Gharaghooshi, S.Z., Zäıane, O., Largeron, C., Zafarmand, M., Liu, C.: Addressing
the resolution limit and the field of view limit in community mining. In: Berthold,
M.R., et al. (eds.) Symposium on Intelligent Data Analysis, IDA 2020. LNCS, vol.
12080, pp. 1–12. Springer, Cham (2020)

8. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD Conference, pp. 855–864. ACM (2016)

9. Jia, C., Li, Y., Carson, M.B., Wang, X., Yu, J.: Node attribute-enhanced commu-
nity detection in complex networks. Sci. Rep. 7, 1–15 (2017)

10. Largeron, C., Mougel, P., Benyahia, O., Zäıane, O.R.: DANCer: dynamic attributed
networks with community structure generation. Knowl. Inf. Syst. 53(1), 109–151
(2017)

11. Leskovec, J., Mcauley, J.J.: Learning to discover social circles in ego networks. In:
Advances in Neural Information Processing Systems, pp. 539–547 (2012)

12. Li, Y., Sha, C., Huang, X., Zhang, Y.: Community detection in attributed graphs:
An embedding approach. In: AAAI (2018)

13. Neville, J., Adler, M., Jensen, D.: Clustering relational data using attribute and
link information. In: Proceedings of the Text Mining and Link Analysis Workshop,
18th International Joint Conference on Artificial Intelligence, pp. 9–15. Morgan
Kaufmann Publishers, San Francisco (2003)

14. Ruan, Y., Fuhry, D., Parthasarathy, S.: Efficient community detection in large net-
works using content and links. In: Proceedings of the 22nd International Conference
on World Wide Web, pp. 1089–1098. ACM (2013)

15. Steinhaeuser, K., Chawla, N.V.: Community detection in a large real-world social
network. In: Liu, H., Salerno, J.J., Young, M.J. (eds.) Social Computing, Behavioral
Modeling, and Prediction, pp. 168–175. Springer, Boston (2008). https://doi.org/
10.1007/978-0-387-77672-9 19

16. Yang, J., McAuley, J., Leskovec, J.: Community detection in networks with node
attributes. In: ICDM Conference, pp. 1151–1156. IEEE (2013)

17. Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute
similarities. Proc. VLDB Endow. 2(1), 718–729 (2009)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-0-387-77672-9_19
https://doi.org/10.1007/978-0-387-77672-9_19
http://creativecommons.org/licenses/by/4.0/

Reconciling Predictions in the Regression
Setting: An Application to Bus Travel Time

Prediction

João Mendes-Moreira1,2 and Mitra Baratchi3(B)

1 LIAAD-INESC TEC, Porto, Portugal
jmoreira@fe.up.pt

2 Faculty of Engineering, University of Porto, Porto, Portugal
3 LIACS, Leiden University, Leiden, The Netherlands

m.baratchi@liacs.leidenuniv.nl

Abstract. In different application areas, the prediction of values that are hierar-
chically related is required. As an example, consider predicting the revenue per
month and per year of a company where the prediction of the year should be
equal to the sum of the predictions of the months of that year. The idea of rec-
onciliation of prediction on grouped time-series has been previously proposed
to provide optimal forecasts based on such data. This method in effect, models
the time-series collectively rather than providing a separate model for time-series
at each level. While originally, the idea of reconciliation is applicable on data
of time-series nature, it is not clear if such an approach can also be applica-
ble to regression settings where multi-attribute data is available. In this paper,
we address such a problem by proposing Reconciliation for Regression (R4R),
a two-step approach for prediction and reconciliation. In order to evaluate this
method, we test its applicability in the context of Travel Time Prediction (TTP)
of bus trips where two levels of values need to be calculated: (i) travel times of
the links between consecutive bus-stops; and (ii) total trip travel time. The results
show that R4R can improve the overall results in terms of both link TTP per-
formance and reconciliation between the sum of the link TTPs and the total trip
travel time. We compare the results acquired when using group-based reconcilia-
tion methods and show that the proposed reconciliation approach in a regression
setting can provide better results in some cases. This method can be generalized
to other domains as well.

Keywords: Regression · Reconciliation · Bus travel time

1 Introduction

Regression analysis provides a simple framework for predicting numerical target
attributes from a set of independent predictive attributes. Addressing any problem using
this framework requires designing models that fully capture the relations between pre-
dictive and target attributes. This has so far led to many classes of regression models
being designed. For instance, multi-target regression models [11] consider predicting

c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 313–325, 2020.
https://doi.org/10.1007/978-3-030-44584-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_25&domain=pdf
http://orcid.org/0000-0002-2471-2833
http://orcid.org/0000-0002-1279-9310
https://doi.org/10.1007/978-3-030-44584-3_25

314 J. Mendes-Moreira and M. Baratchi

the value of multiple target attributes as opposed to basic regression models that aim
at predicting only a single target attribute at a time. In another case, when one target
variable is being predicted from a set of hierarchically ordered predictive attributes, the
problem is known to be multi-level regression [5].

In this paper, we address the problem of regression for a class of problems where
dependent variables are additionally hierarchically organized following different levels
of aggregation. An example is the revenue forecasts per month and also per year of a
given company. The forecasts for the new year can be the sum of the predictions done
for each of the twelve months of the new year or can be done directly for the full new
year. However, in many situations, it is important that the sum of the prediction per
month is equal to the prediction for the full year. Moreover, relevant questions in this
regard can arise. Can we obtain better predictions using both predictions for all months
and for the full year? How may we reconcile the sum of the predictions done per month
with the prediction done for the full year? Authors of [8] answered these questions for
hierarchies of time series, i.e., a sequence of values, typically equally spaced, where
this sequence can be aggregated by a given dimension.

This notion of hierarchy can also exist in the regression setting i.e., a problem with
a set of n instances (Xi,yi), i = 1, ...,n. Each (Xi,yi) instance has a vector Xi with
p predictive attributes (xi1 , xi2 , ..., xip) and a quantitative target attribute yi. The hier-
archy can exist in this regression setting when, for instance, two of the p predictive
attributes have a 1-to-many relation as referred to in relational databases. Addressing
this problem in the regression setting leads to more flexible and robust solutions com-
pared to the time series approach because: (1) any number of observations per time
interval can be defined; (2) there are no limitations to the time interval between consec-
utive observations; and (3) any other type of predictive attribute can be used to better
explain the target attribute.

In this work, we present an approach to reconcile predictions in the regression set-
ting. We achieve this by proposing a new method named Reconciling for Regression
(R4R). The R4R method is tested for the bus travel time prediction problem. This prob-
lem considers that buses run in predefined routes, and each route is composed of several
links. Each link is the road stretch between two consecutive bus stops. Reconciling the
predictions in this problem aims at reconciling the sum of the predictions done for each
link with the prediction done for the full route. According to the authors’ knowledge,
this is the first work on reconciling predictions in the regression setting. This work is
also different from multi-target and multi-level variants being a combination of both
(having multiple targets that are hierarchically ordered).

The R4R method can be applied to any other regression problem which exhibits
a one-to-many relationship between instances, and also where the aggregated target
value (the one) is the sum of the detailed target values (the many). In the previous
example: (1) the revenue forecasts for the new year, the many component targets are
the revenue forecasts per month, and the one component target is the revenue forecast
for the full year; (2) in the bus travel time example, the many component targets are the
link predictions while the one component target is the full route prediction. In this paper,
we only discuss the sum as aggregation criterion (the one should be equal to the sum
of the many), but the proposed method could be easily extended to other aggregation
criteria, e.g., the average.

Reconciling Predictions in the Regression Setting 315

The remainder of this paper is organized as follows. In Sect. 2, we present the pre-
vious work on reconciling predictions. Section 3 elaborates the proposed methodology.
In Sect. 4, we describe the case study. The results of the case study are presented and
discussed in Sect. 5. Finally, the conclusions are presented in Sect. 6.

2 Literature Review

In this section, we review the previous research, both considering (i) the methods for
forecasting for hierarchically organized time-series data and (ii) application area of
travel time prediction.

Methods for Forecasting Hierarchically Organized Data: Common methods used
to reconcile predictions for hierarchically organized time-series data can be further
grouped into three categories: bottom-up, top-down and middle-out, based on the level
which is predicted first. Bottom-up strategies forecast all the low-level target attributes
and use the sum of these predictions as the forecast for the higher-level attribute. On
the contrary, top-down approaches predict the top-level attribute and then splits up the
predictions for the lower level attributes based on historical proportions that may be
estimated. For time-series data with more than two levels of hierarchy, a middle-out
approach can be used, combining both bottom-up and top-down approaches [3]. These
methods form linear mappings from the initial predictions to reconciled estimates. As
a consequence, the sum of the forecasts of the components of a hierarchical time series
is equal to the forecast of the whole. However, this is achieved without guaranteeing
an optimal solution. Authors of [8] presented a new framework for optimally reconcil-
ing forecasts of all series in a hierarchy to ensure they add up. The method first com-
putes the forecast independently for each level of the hierarchy. Afterward, the method
provides a means for optimally reconciling the base forecasts so that they aggregate
appropriately across the hierarchy. The optimal reconciliation is based on a general-
ized least squares estimator and requires an estimation of the covariance matrix of the
reconciliation errors. Using Australian domestic tourism data, authors of [8] compare
their optimal method with bottom-up and conventional top-down forecast approaches.
Results show that the optimal combinational approach and the bottom-up approach out-
perform the top-down method. The same authors extended, in [9], the previous work
proposed in [8] to cover non-hierarchical groups of time series, as well as, large groups
of time series data with a partial hierarchical structure. A new combinational forecast-
ing approaches is proposed that incorporates the information from a full covariance
matrix of forecast errors in obtaining a set of aggregate forecasts. They use a weighted
least squares method due to the difficulty of estimating the covariance matrix for large
hierarchies.

In [16], an alternative representation that involves inverting only a single matrix of
a lower number of dimensions is used. The new combinational forecasting approach
incorporates the information from a full covariance matrix of forecast errors in obtain-
ing a set of aggregate consistent forecasts. The approach minimizes the mean squared
error of the aggregate consistent forecasts across the entire collection of time series.

316 J. Mendes-Moreira and M. Baratchi

A game-theoretically optimal reconciliation method is proposed in [6]. The authors
address the problem in two independent steps, by first computing the best possible fore-
casts for the time series without taking into account the hierarchical structure and next
to a game-theoretic reconciliation procedure to make the forecasts aggregate consistent.

The previously mentioned methods are limited by the nature of the time-series app-
roach they take. It is often impossible to take any advantage of additional features and
attributes accompanying data with such an approach. Furthermore, many prevalent data
imperfection problems such as missing data, lead to imperfect time-series. This fact
reduces the applicability of time-series models that require equally distanced samples.

In our work, we take advantage of additional features and the structure of the
grouped data to improve and reconcile predictions. Instead of forecasting each time
series independently and then combine the predictions, in a regression setting, we can
reconcile future events using only some past events. This leads to a solution suitable for
online applications.

Application Area of Travel Time Prediction: There exists a considerable amount of
research papers that address the problem of travel time prediction for transport appli-
cations. Accurate travel time information is essential as it attracts more commuters and
increases commuter’s satisfaction [1]. The majority of these works are on short-term
travel time prediction [19], aimed at applications in advanced traveler information sys-
tems. There are also works on long-term travel time prediction [13], which can be used
as a planning tool for public transport companies or even for freight transports.

Link travel time prediction can be used for route guidance [17], for bus bunching
detection [14], or to predict the bus arrival time at the next station [18] which can
promote information services about it. More recently, Global Positioning System (GPS)
data is becoming more and more available, allowing its use to predict travel times from
GPS trajectories. These trajectories can be used to construct origin-destination matrices
of travel times or traffic flows, an important tool for mobility purposes [2].

Using both link travel time predictions and the full trip travel time prediction in
order to improve all those predictions is a contribution of this paper for the transporta-
tion field.

3 The R4R Method

3.1 Problem Definition

Consider a dataset D = 〈X,L, r〉. Note that X in this tuple denotes the set of predictive
attributes and is a matrix of size N × Q representing a set of N number of instances
each composed of Q number of predictive attributes. Furthermore, L is the set of the
many component targets and is a matrix of size N × K with K being the number of
elements of the many component target. r representes the set of one component target
and is a vector of length N . Elements of {rn ∈ r} represent the target attributes of the
one component and each {ln,k ∈ L} is the kth target attribute of the many component.
Also, consider rn =

∑K
k=1 ln,k denoting the sum of all the many component targets

being equal to a corresponding one component target.
Defining the prediction of each ln,k as pn,k, we are looking for a model that ensures

that the sum of the predictions of the many component target are as close as possible

Reconciling Predictions in the Regression Setting 317

to the rn. In other words, after making predictions, we want the following equation to
hold:

{
K∑

k=1

pn,k ≈ rn|n ≤ N} (1)

3.2 Methodology

In this section, we elaborate on our proposed method, Reconciling for Regression
(R4R), to address the above-mentioned problem. R4R method is composed of two steps.
In the first step, it learns models for prediction of the many component targets, sepa-
rately. In the second step, it reconciles the many predictions with the one component.

In order to improve the individual pn,k predictions such that Eq. 1 holds, our pro-
posed framework uses a modified version of the least squares optimization method to
compute a set of corrective coefficients (see Eq. 4), that are used to update the individual
pn,k predictions.

Step 1, Learning the Predictive Models: at the first step, the predictions of the many
component targets are calculated using a specific base learning method. K different
models are trained, one for each of the K elements of the many target component.
It is possible to select a different learning method for each element to ensure higher
accuracy. The resulting predictions for each of the K elements are referred to as pm,k,
where m is the instance number, and k identifies elements of the many component
targets. Algorithm 1 depicts these steps. As a result, this algorithm creates an output P,
a matrix of size M × K composed of predictions pm,k. P is used in the second stage
for reconciliation.

Algorithm 1. Learning the predictive model
Input: D (dataset matrix of size N × (Q + K)), Me (base learning method),γ (a percentage

value)
Output: P (Predictions matrix of size M × K)
1: Split Dataset D into Train set of size (1− γ)N and Test set of size M = γ × N ;
2: for k = 1 to K do
3: Train modelk using Me to predict the kth element of the many component target;
4: for m = 1 to M do
5: pm,k := Predict the value of mth instance of kth target in Test using modelk; / / pm,k

denotes elements of P

6: end for
7: end for
8: return P;

Step 2, Reconciling Predictions: In the second step, the framework updates the value
of predictions resulted from the initial models used in Algorithm 1. This is achieved by
estimating a corrective coefficient (θk) for each element of the many target component
(pm,k). This coefficient needs to be multiplied with the model predictions to ensure
minimized error from the actual one component target (rm) and many component target

318 J. Mendes-Moreira and M. Baratchi

(lm,k). We achieve this goal using a least-squares method on the current training dataset
and using the objective functions given by Eqs. 2 and 3 to estimate θ = (θ1, ..., θK).

argmin
lb<θ<ub

(
K∑

k=1

(θkpm,k) − rm)2,m ≤ M (2)

argmin
lb<θ<ub

K∑

k=1

(θkpm,k − lm,k)2,m ≤ M (3)

The first objective function presented in Eq. 2 is attempting to optimize reconcili-
ation based on the value of one component target. The second objective function pre-
sented in Eq. 3 aims at minimizing the error of the predictions based on the value of
each element of the many component targets, separately. Both of these objective func-
tions can be combined and expanded to Eq. 4. In Eq. 4, the first M rows are representing
the objective function presented in Eq. 2. The remaining M ×(KM) rows represent the
second objective function as provided in Eq. 3.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1,1 p1,2 · · · p1,k · · · p1,K
p2,1 p2,2 · · · p2,k · · · p2,K

.

.

.
.
.
.

. . .
.
.
.

.

.

.
pm,1 pm,2 · · · pm,k · · · pm,K

p1,1 0 · · · 0 · · · 0
0 p1,2 · · · 0 · · · 0

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

0 0 · · · 0 · · · p1,K

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

pm,1 0 · · · 0 · · · 0
0 pm,2 · · · 0 · · · 0

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

0 0 · · · pm,k · · · 0

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

0 0 · · · 0 · · · pm,K

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

θ1
θ2

.

.

.
θK

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1
r2

.

.

.
rm

l1,1
l1,2

.

.

.
l1,K

.

.

.
lm,1
lm,2

.

.

.
lm,k

.

.

.
lm,K

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

As seen in Eqs. 2 and 3 we have defined a constraint on the values of θ. The aim
is to regularize the modifications to the predictions done for each element of the many
component targets in a sensible manner (e.g. negative factors cannot be allowed when
negative predictions are not meaningful). Therefore, we assume, without loss of gen-
erality, that all values of θ are positive, with lower (lb) and upper (ub) bound con-
straints, 0 < lb < θk < ub. Both lb and ub are free input parameters. We reduce
the number of free parameters to one (α) by defining a symmetric bound region as
(lb, up) = (1 − α, 1 + α).

The process of reconciliation on predictions is explained in Algorithm 2. In the final
step of this algorithm, the prediction matrix for all elements of the many component
targets is updated using the corrective coefficients θ. A Least Squares method is used to
calculate corrective coefficients. To allow robustness against outliers, we suggest using
a nk number of nearest neighbors for estimating θ. We assume that similar trips from
the past have the same behavior, as shown in [12]. The new predictions are defined as
Pnew. The algorithm takes into account the information of the predictions for both the

Reconciling Predictions in the Regression Setting 319

Algorithm 2. Reconciling predictions
Input: P (Predictions matrix of size M × K), nk (number of nearest neighbors), lb, up (lower

and upper bounds for θks)
Output: Pnew (new predictions matrix of size M × K), θ (vector of corrective coefficients)
1: for k = 1 to K do
2: get nk nearest neighbor for each prediction;
3: Calculate θ using the Least Squares method with Bounds (lb,up) according to Eq. 4;
4: Pnew = P · θ
5: end for
6: return Pnew, θ

many component elements and the one component predicted from similar instances in
Pm,k, in order to verify Eq. 1 on reconciliation.

Table 1. Characteristics of tested STCP bus routes

Bus line Origin – Destiny #Stops #Trips

L200 Bolhão – Castelo do Queijo 30 2526

L201 Viso – Aliados 26 2453

L305 Cordoaria – Hospital S. João 22 3126

L401 Bolhão – S. Roque 26 4476

L502 Bolhão – Matosinhos 32 5966

L900 Trindade – S. Odivio 34 219

4 Case Study

To test the methodology explained in Sect. 3.2, we conduct a series of experiments using
a real dataset that has our desired hierarchical organization of target values. Measuring
travel time in public transport systems can produce such a dataset. Being able to per-
form accurate Travel Time Prediction (TTP) is an important goal for public transport
companies. On the one hand, travel time prediction of the link between two consecutive
stops (the many component targets in our model) allows timely informing the roadside
users about the arrival of buses at bus stops (in the rest of this paper we refer to this
value as link TTP). On the other hand, total trip travel time prediction (the one compo-
nent in our model) is useful to better schedule drivers’ duty services (in the rest of this
paper, we refer to this value as total TTP) [4].

The dataset used in this section is provided by the Sociedade de Transportes Colec-
tivos do Porto (STCP), the main mass public transportation company in Porto, Portugal.

The experiments described in the following sections are based on the data collected
during a period from January 1st to March 30th of 2010 from six bus routes (shown in
Table 1). All the six selected bus routes operate between 5:30 a.m. to 2:00 a.m. However,
we have considered only bus trips starting after 6 a.m.

320 J. Mendes-Moreira and M. Baratchi

The collected dataset has multiple nominal and ordinal attributes that make it suit-
able for defining a regression problem. We have selected five features that characterize
each bus trip: (1) WEEKDAY: the day of the week {Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday}; (2) DAYTYPE: the type of the day {holiday, nor-
mal, non-working day, weekend holiday}; (3) Bus Day Month: {1,...,31}; (4) Shift ID;
(5) Travel ID.

We have implemented R4R using the R Software [15] and the lsq linear routine from
Scipy Python library [10]. For the first stage of R4R, as depicted in Algorithm 1, we use
a simple multivariate linear regression as a base learning method. We refer to this base
learning method as (Bas). We further split data according to the following format. A 30
days window length is used for selecting training samples, and a 60 days window length
is considered for selecting test samples.

In our experiments, the parameter α used for determining the lower and upper bound
for the parameter for estimating θ varies from 0.01 to 0.04, which corresponds to 0.96–
1.04, minimum and maximum values that θ can take, respectively.

5 Comparative Study

5.1 Can Reconciliation Be Achieved Using R4R?

Firstly, using the proposed R4R method, we try to answer the following question: is it
possible to use the total trip travel time to improve the link TTPs guaranteeing a better
reconciliation between the sum of the link TTPs and the total TTP simultaneously? To
answer this question we measure the relative performance improvement achieved by
R4R compared to a multivariate linear regression as the base learning method (denoted
by Bas).

We evaluate the performance in predicting the following metrics (i) link travel time
prediction (LP), the sum of link travel time predictions (SFP), and full trip time predic-
tion (FP). Methods are compared based on Root Mean Square Error (RMSE) as defined
in Eq. 5.

RMSE =

√
√
√
√ 1

Ntest

Ntest∑

i=1

(ŷi − yi)2 (5)

where yi and ŷi represent the target and predicted bus arrival times, for the ith example
in the test set, respectively. Ntest is the total number of test samples. For link travel time
prediction indicator, LP, the mean of the RMSE of each bus link is considered.

Results of the comparison of R4R and Bas are presented in Fig. 1. Please note that
relative gains are presented for the sake of readability of graphs. The duration of travel-
times varies widely. This fact leads to unreadable graphs when actual data is presented.

As seem, R4R outperforms the base multivariate regression model in all cases. This
comparison answers the question posed earlier. R4R improves predictions of the base
regression learning method, guaranteeing a better reconciliation between the sum of the
link TTPs and the total trip travel time, simultaneously.

Reconciling Predictions in the Regression Setting 321

Fig. 1. Relative improvement of R4R (Res) relative to Baseline (Bas) for mean LP - Link Predic-
tion (red), sum of the link travel time predictions (green) and the full trip time prediction (blue).
(Color figure online)

5.2 How Does R4R Perform Against Baselines Made for Time Series Data?

We continue our experiments by comparing our proposed methodology R4R with the
methods proposed by Hyndman et al. in the recent related works [8,9,16] denoted by
(H2011, W2015, and H2016). To compare with these works, we used the available
implementation in the R package [7]. It should be considered that these baseline models
are designed for time-series data. Therefore, in order to perform comparisons with these
approaches, we also define a time series problem using this dataset. This is achieved by
representing data in the form of a time series with a resolution of a one-hour interval.
We compute the mean link travel time for each hour between 6:00 a.m. to 2:00 a.m the
next day, i.e. 20 data points in total for each “bus day”. In the majority of the cases,
each interval has more than one link travel time. For this reason we averaged the link
travel times for each hour. Because the dataset has a considerable amount of missing
values, interpolation was used to fill the missing links’ travel times. However, the results
presented in the paper do not take into account the predictions done for intervals with
no data.

The above-mentioned pre-processing tasks that were necessary in order to use the
approaches proposed by Hyndman et al. already suggest that it is viable to propose
methods such as R4R that perform in a more general and flexible regression setting.
Indeed, the discretization of data into a time-series format implies the need to make pre-
dictions for intervals instead of point-wise predictions as done in the regression setting.
Discretization also implies the necessity of filling missing data when the intervals have
no data instances. This problem can be prevented by considering larger intervals. How-
ever, larger intervals imply loss of details. Moreover, the regression setting deals natu-
rally with additional attributes that can partially explain the value of the target attribute.

322 J. Mendes-Moreira and M. Baratchi

Fig. 2. RMSE for each of the Link Travel Time Predictions of R4R against the methods proposed
in H2011 [8], W2015 [16], H2016 [9] applied to bus route L305. SUM is the RMSE of the
sum of the LTT prediction for the entire trip against the full trip time. This plot shows the results
before the bus starts its journey.

Table 2. Overall mean RMSE for each model, H2011 [8], W2015 [16], H2016 [9] and the new
proposed approach R4R. BL - the Bus Line, LP - mean of the RMSE of Link Predictions, STP -
RMSE of the sum of the LTT prediction for the entire trip against the full trip time.

BL MODEL LP STP BL MODEL LP STP BL MODEL LP STP

L200 BAS 277.88 318.11 L201 BAS 41.56 354.11 L305 BAS 48.37 327.69

L200 R4R 277.76 309.82 L201 R4R 41.43 346.52 L305 R4R 48.25 321.81

L200 H2011 51.50 865.38 L201 H2011 42.01 321.80 L305 H2011 48.59 297.27

L200 H2016 44.40 496.71 L201 H2016 41.69 314.09 L305 H2016 48.49 295.97

L200 W2015 37.38 319.22 L201 W2015 41.64 308.85 L305 W2015 48.40 296.41

L401 BAS 29.26 239.11 L502 BAS 42.62 385.34 L900 BAS 58.60 401.89

L401 R4R 29.17 234.29 L502 R4R 42.50 375.75 L900 R4R 58.60 395.79

L401 H2011 26.87 193.29 L502 H2011 47.27 264.14 L900 H2011 48.20 432.25

L401 H2016 26.80 192.65 L502 H2016 46.69 270.02 L900 H2016 48.24 420.58

L401 W2015 26.76 192.38 L502 W2015 46.82 287.71 L900 W2015 48.08 403.34

Figure 2 presents the results of predictions for bus route L305. It should be men-
tioned that we have chosen to show only results for α = 0.01, the parameter that con-
sistently gave us the best performance in all the experiments we did. Indeed, the errors
increase with increasing values of α in all experiments we did. The results show very
small differences between the methods under study.

The data provided is not homogeneous. This can adversely affect the performance of
the least-squares method when outlying data is used to find the corrective coefficients θ.
To avoid such problems, in our proposed framework, we select the nk number of nearest
neighbors for each bus trip (also presented in Algorithm 2). Thus, after each link travel

Reconciling Predictions in the Regression Setting 323

time prediction, it is necessary to recompute the whole process, i.e., to select a new set
of similar bus trips and further find the coefficients using the least-squares method and
update the predictions. Comparing with Hyndman et al. works, this process leads to a
more computationally expensive solution. It is also important to find a suitable value for
nk. During our experiments, we observed that the best results are achieved for nk = 3.
Therefore, all results presented in this paper are based on nk = 3.

Table 2 shows the general results of predictions using this approach for all bus routes
tested using multivariate linear regression as the base learning method (Bas). The results
show that R4R outperforms Bas in all cases. There are a number of cases where a ver-
sion of the time series model proposed by Hyndman. et al. perform better than R4R.
These differences can be explained when considering the simple linear regression algo-
rithm we used as a base learner in Algorithm 1. A linear model cannot find non-linear
relations between features. Technically, the performance of R4R can be improved fur-
ther as it allows using any other regression method. Furthermore, using extra features,
such as weather conditions, could possibly improve the performance of R4R even fur-
ther. However, the methods proposed by Hyndman et al. cannot benefit from using extra
features.

6 Conclusion

In this paper, we study the problem of the reconciliation of predictions in a regression
setting. We presented a two-stage prediction framework for prediction and reconcilia-
tion. In order to evaluate the performance and applicability of this method, we conduct
a set of experiments using a real dataset collected from buses in Porto, Portugal. The
results demonstrate that R4R improves the predictions of the base learning method.
R4R is also able to further improve the reconciliation of the link TTPs after each itera-
tion in an online manner. However, this is not shown due to space constraints. We also
compare the results achieved in a regression setting with that of a time-series approach.
In the case study discussed in this paper, R4R is able to reduce the error of link TTPs
and increase reconciliation. An important advantage of the R4R method compared to
time series variants is that it provides a flexible framework that can take advantage of
any regression model and additional features accompanying data. Furthermore, R4R is
not affected by data imperfection problems such as missing data, that reduce the appli-
cability of time-series models that require equally distanced samples.

Acknowledgments. This work is financed by the Portuguese funding agency, FCT - Fundação
para a Ciência e a Tecnologia, through national funds, and co-funded by the FEDER, where
applicable.

We also thank STCP - Sociedade de Transportes Colectivos do Porto, SA, for providing the
data used in this work.

References

1. Amita, J., Jain, S., Garg, P.: Prediction of bus travel time using ann: a case study in Delhi.
Transp. Res. Procedia 17, 263–272 (2016). International Conference on Transportation Plan-
ning and Implementation Methodologies for Developing Countries (12th TPMDC) Selected
Proceedings, IIT Bombay, Mumbai, India, 10–12 December 2014

324 J. Mendes-Moreira and M. Baratchi

2. Bhanu, M., Priya, S., Dandapat, S.K., Chandra, J., Mendes-Moreira, J.: Forecasting traffic
flow in big cities using modified tucker decomposition. In: Gan, G., Li, B., Li, X., Wang,
S. (eds.) ADMA 2018. LNCS (LNAI), vol. 11323, pp. 119–128. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-05090-0 10

3. Borges, C.E., Penya, Y.K., Fernandez, I.: Evaluating combined load forecasting in large
power systems and smart grids. IEEE Trans. Ind. Inf. 9(3), 1570–1577 (2013)

4. Chen, G., Yang, X., An, J., Zhang, D.: Bus-arrival-time prediction models: link-based and
section-based. J. Transp. Eng. 138(1), 60–66 (2011)

5. De Leeuw, J., Meijer, E., Goldstein, H.: Handbook of Multilevel Analysis. Springer, New
York (2008). https://doi.org/10.1007/978-0-387-73186-5

6. van Erven, T., Cugliari, J.: Game-theoretically optimal reconciliation of contemporaneous
hierarchical time series forecasts. In: Antoniadis, A., Poggi, J.-M., Brossat, X. (eds.) Mod-
eling and Stochastic Learning for Forecasting in High Dimensions. LNS, vol. 217, pp. 297–
317. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18732-7 15

7. Hyndman, R., Lee, A., Wang, E.: hts: Hierarchical and Grouped Time Series (2017). https://
CRAN.R-project.org/package=hts, r package version 5.1.4

8. Hyndman, R.J., Ahmed, R.A., Athanasopoulos, G., Shang, H.L.: Optimal combination fore-
casts for hierarchical time series. Comput. Stat. Data Anal. 55(9), 2579–2589 (2011)

9. Hyndman, R.J., Lee, A.J., Wang, E.: Fast computation of reconciled forecasts for hierarchical
and grouped time series. Comput. Stat. Data Anal. 97, 16–32 (2016)

10. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for Python
(2001). http://www.scipy.org/. Accessed 10 Jan 2018

11. Kocev, D., Džeroski, S., White, M.D., Newell, G.R., Griffioen, P.: Using single-and multi-
target regression trees and ensembles to model a compound index of vegetation condition.
Ecol. Model. 220(8), 1159–1168 (2009)

12. Mendes-Moreira, J.: Travel time prediction for the planning of mass transit companies: a
machine learning approach. University of Porto, Porto, Portugal, phD thesis (2008)

13. Mendes-Moreira, J., Jorge, A.M., Freire de Sousa, J., Soares, C.: Comparing state-of-the-art
regression methods for long term travel time prediction. Intell. Data Anal. 16(3), 427–449
(2012)

14. Moreira-Matias, L., Gama, J., Mendes-Moreira, J., Freire de Sousa, J.: An incremental prob-
abilistic model to predict bus bunching in real-time. In: Blockeel, H., van Leeuwen, M., Vin-
ciotti, V. (eds.) IDA 2014. LNCS, vol. 8819, pp. 227–238. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-12571-8 20

15. R Development Core Team: R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria (2008). http://www.R-project.org,
ISBN 3-900051-07-0

16. Wickramasuriya, S.L., Athanasopoulos, G., Hyndman, R.: Forecasting hierarchical and
grouped time series through trace minimization. Monash Econometrics and Business Statis-
tics Working Papers 15/15, Monash University, Department of Econometrics and Business
Statistics (2015)

17. Wunderlich, K.E., Kaufman, D.E., Smith, R.L.: Link travel time prediction for decentralized
route guidance architectures. IEEE Trans. Intell. Transp. Syst. 1(1), 4–14 (2000)

18. Yu, B., Yang, Z.Z., Chen, K., Yu, B.: Hybrid model for prediction of bus arrival times at next
station. J. Adv. Transp. 44(3), 193–204 (2010)

19. Zhang, X., Rice, J.A.: Short-term travel time prediction. Transp. Res. Part C Emerg. Technol.
11(3), 187–210 (2003). Traffic Detection and Estimation

https://doi.org/10.1007/978-3-030-05090-0_10
https://doi.org/10.1007/978-0-387-73186-5
https://doi.org/10.1007/978-3-319-18732-7_15
https://CRAN.R-project.org/package=hts
https://CRAN.R-project.org/package=hts
http://www.scipy.org/
https://doi.org/10.1007/978-3-319-12571-8_20
https://doi.org/10.1007/978-3-319-12571-8_20
http://www.R-project.org

Reconciling Predictions in the Regression Setting 325

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

A Distribution Dependent
and Independent Complexity Analysis

of Manifold Regularization

Alexander Mey1(B) , Tom Julian Viering1 , and Marco Loog1,2

1 Delft University of Technology, Delft, The Netherlands
{a.mey,t.j.viering}@tudelft.nl

2 University of Copenhagen, Copenhagen, Denmark
m.loog@tudelft.nl

Abstract. Manifold regularization is a commonly used technique in
semi-supervised learning. It enforces the classification rule to be smooth
with respect to the data-manifold. Here, we derive sample complexity
bounds based on pseudo-dimension for models that add a convex data
dependent regularization term to a supervised learning process, as is in
particular done in Manifold regularization. We then compare the bound
for those semi-supervised methods to purely supervised methods, and
discuss a setting in which the semi-supervised method can only have a
constant improvement, ignoring logarithmic terms. By viewing Manifold
regularization as a kernel method we then derive Rademacher bounds
which allow for a distribution dependent analysis. Finally we illustrate
that these bounds may be useful for choosing an appropriate manifold
regularization parameter in situations with very sparsely labeled data.

Keywords: Semi-supervised learning · Learning theory · Manifold
regularization

1 Introduction

In many applications, as for example image or text classification, gathering unla-
beled data is easier than gathering labeled data. Semi-supervised methods try
to extract information from the unlabeled data to get improved classification
results over purely supervised methods. A well-known technique to incorporate
unlabeled data into a learning process is manifold regularization (MR) [7,18].
This procedure adds a data-dependent penalty term to the loss function that
penalizes classification rules that behave non-smooth with respect to the data
distribution. This paper presents a sample complexity and a Rademacher com-
plexity analysis for this procedure. In addition it illustrates how our Rademacher
complexity bounds may be used for choosing a suitable Manifold regularization
parameter.

We organize this paper as follows. In Sects. 2 and 3 we discuss related work
and introduce the semi-supervised setting. In Sect. 4 we formalize the idea of
c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 326–338, 2020.
https://doi.org/10.1007/978-3-030-44584-3_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_26&domain=pdf
http://orcid.org/0000-0003-0528-3081
http://orcid.org/0000-0002-7337-8624
http://orcid.org/0000-0002-1298-8461
https://doi.org/10.1007/978-3-030-44584-3_26

Complexity Analysis of Manifold Regularization 327

adding a distribution-dependent penalty term to a loss function. Algorithms
such as manifold, entropy or co-regularization [7,14,21] follow this idea. Section 5
generalizes a bound from [4] to derive sample complexity bounds for the proposed
framework, and thus in particular for MR. For the specific case of regression,
we furthermore adapt a sample complexity bound from [1], which is essentially
tighter than the first bound, to the semi-supervised case. In the same section we
sketch a setting in which we show that if our hypothesis set has finite pseudo-
dimension, and we ignore logarithmic factors, any semi-supervised learner (SSL)
that falls in our framework has at most a constant improvement in terms of
sample complexity. In Sect. 6 we show how one can obtain distribution dependent
complexity bounds for MR. We review a kernel formulation of MR [20] and show
how this can be used to estimate Rademacher complexities for specific datasets.
In Sect. 7 we illustrate on an artificial dataset how the distribution dependent
bounds could be used for choosing the regularization parameter of MR. This is
particularly useful as the analysis does not need an additional labeled validation
set. The practicality of this approach requires further empirical investigation. In
Sect. 8 we discuss our results and speculate about possible extensions.

2 Related Work

In [13] we find an investigation of a setting where distributions on the input
space X are restricted to ones that correspond to unions of irreducible algebraic
sets of a fixed size k ∈ N, and each algebraic set is either labeled 0 or 1. A SSL
that knows the true distribution on X can identify the algebraic sets and reduce
the hypothesis space to all 2k possible label combinations on those sets. As we
are left with finitely many hypotheses we can learn them efficiently, while they
show that every supervised learner is left with a hypothesis space of infinite VC
dimension.

The work in [18] considers manifolds that arise as embeddings from a circle,
where the labeling over the circle is (up to the decision boundary) smooth.
They then show that a learner that has knowledge of the manifold can learn
efficiently while for every fully supervised learner one can find an embedding
and a distribution for which this is not possible.

The relation to our paper is as follows. They provide specific examples where
the sample complexity between a semi-supervised and a supervised learner are
infinitely large, while we explore general sample complexity bounds of MR and
sketch a setting in which MR can not essentially improve over supervised methods.

3 The Semi-supervised Setting

We work in the statistical learning framework: we assume we are given a feature
domain X and an output space Y together with an unknown probability distri-
bution P over X × Y. In binary classification we usually have that Y = {−1, 1},
while for regression Y = R. We use a loss function φ : R × Y → R, which is
convex in the first argument and in practice usually a surrogate for the 0–1 loss

328 A. Mey et al.

in classification, and the squared loss in regression tasks. A hypothesis f is a
function f : X → R. We set (X,Y) to be a random variable distributed accord-
ing to P , while small x and y are elements of X and Y respectively. Our goal is
to find a hypothesis f , within a restricted class F , such that the expected loss
Q(f) := E[φ(f(X), Y)] is small. In the standard supervised setting we choose
a hypothesis f based on an i.i.d. sample Sn = {(xi, yi)}i∈{1,..,n} drawn from
P . With that we define the empirical risk of a model f ∈ F with respect to φ
and measured on the sample Sn as Q̂(f, Sn) = 1

n

∑n
i=1 φ(f(xi), yi). For ease of

notation we sometimes omit Sn and just write Q̂(f). Given a learning problem
defined by (P,F , φ) and a labeled sample Sn, one way to choose a hypothesis is
by the empirical risk minimization principle

fsup = arg min
f∈F

Q̂(f, Sn). (1)

We refer to fsup as the supervised solution. In SSL we additionally have samples
with unknown labels. So we assume to have n + m samples (xi, yi)i∈{1,..,n+m}
independently drawn according to P , where yi has not been observed for the
last m samples. We furthermore set U = {x1, ..., xxn+m}, so U is the set that
contains all our available information about the feature distribution.

Finally we denote by mL(ε, δ) the sample complexity of an algorithm L. That
means that for all n ≥ mL(ε, δ) and all possible distributions P the following
holds. If L outputs a hypothesis fL after seeing an n-sample, we have with
probability of at least 1 − δ over the n-sample Sn that Q(fL) − min

f∈F
Q(f) ≤ ε.

4 A Framework for Semi-supervised Learning

We follow the work of [4] and introduce a second convex loss function ψ : F×X →
R+ that only depends on the input feature and a hypothesis. We refer to ψ as
the unsupervised loss as it does not depend on any labels. We propose to add
the unlabeled data through the loss function ψ and add it as a penalty term to
the supervised loss to obtain the semi-supervised solution

fsemi = arg min
f∈F

1
n

n∑

i=1

φ(f(xi), yi) + λ
1

n + m

n+m∑

j=1

ψ(f, xj), (2)

where λ > 0 controls the trade-off between the supervised and the unsupervised
loss. This is in contrast to [4], as they use the unsupervised loss to restrict the
hypothesis space directly. In the following section we recall the important insight
that those two formulations are equivalent in some scenarios and we can use [4]
to generate sample complexity bounds for the here presented SSL framework.

For ease of notation we set R̂(f, U) = 1
n+m

∑n+m
j=1 ψ(f, xj) and R(f) =

E[ψ(f,X)]. We do not claim any novelty for the idea of adding an unsupervised
loss for regularization. A different framework can be found in [11, Chapter 10].
We are, however, not aware of a deeper analysis of this particular formulation, as
done for example by the sample complexity analysis in this paper. As we are in
particular interested in the class of MR schemes we first show that this method
fits our framework.

Complexity Analysis of Manifold Regularization 329

Example: Manifold Regularization. Overloading the notation we write now P (X)
for the distribution P restricted to X . In MR one assumes that the input dis-
tribution P (X) has support on a compact manifold M ⊂ X and that the
predictor f ∈ F varies smoothly in the geometry of M [7]. There are sev-
eral regularization terms that can enforce this smoothness, one of which is∫

M
||∇Mf(x)||2dP (x), where ∇Mf is the gradient of f along M . We know that∫

M
||∇Mf(x)||2dP (x) may be approximated with a finite sample of X drawn

from P (X) [6]. Given such a sample U = {x1, ..., xn+m} one defines first a
weight matrix W , where Wij = e−||xi−xj ||2/σ. We set L then as the Laplacian
matrix L = D − W , where D is a diagonal matrix with Dii =

∑n+m
j=1 Wij .

Let furthermore fU = (f(x1), ..., f(xn+m))t be the evaluation vector of f on
U . The expression 1

(n+m)2 f t
ULfU = 1

(n+m)2

∑
i,j(f(xi) − f(xj))2Wij converges

to
∫

M
||∇Mf ||2dP (x) under certain conditions [6]. This motivates us to set the

unsupervised loss as ψ(f, (xi, xj)) = (f(xi) − f(xj))2Wij . Note that f t
ULfU is

indeed a convex function in f : As L is a Laplacian matrix it is positive definite
and thus f t

ULfU defines a norm in f . Convexity follows then from the triangle
inequality.

5 Analysis of the Framework

In this section we analyze the properties of the solution fsemi found in Equation
(2). We derive sample complexity bounds for this procedure, using results from
[4], and compare them to sample complexities for the supervised case. In [4]
the unsupervised loss is used to restrict the hypothesis space directly, while we
use it as a regularization term in the empirical risk minimization as usually
done in practice. To switch between the views of a constrained optimization
formulation and our formulation (2) we use the following classical result from
convex optimization [15, Theorem 1].

Lemma 1. Let φ(f(x), y) and ψ(f, x) be functions convex in f for all x, y. Then
the following two optimization problems are equivalent:

min
f∈F

1
n

n∑

i=1

φ(f(xi), yi) + λ
1

n + m

n+m∑

i=1

ψ(f, xi) (3)

min
f∈F

1
n

n∑

i=1

φ(f(xi), yi) subject to
n+m∑

i=1

1
n + m

ψ(f, xi) ≤ τ (4)

Where equivalence means that for each λ we can find a τ such that both problems
have the same solution and vice versa.

For our later results we will need the conditions of this lemma are true, which
we believe to be not a strong restriction. In our sample complexity analysis we
stick as close as possible to the actual formulation and implementation of MR,
which is usually a convex optimization problem. We first turn to our sample
complexity bounds.

330 A. Mey et al.

5.1 Sample Complexity Bounds

Sample complexity bounds for supervised learning use typically a notion of com-
plexity of the hypothesis space to bound the worst case difference between the
estimated and the true risk. As our hypothesis class allows for real-valued func-
tions, we will use the notion of pseudo-dimension Pdim(F , φ), an extension of the
VC-dimension to real valued loss functions φ and hypotheses classes F [17,22].
Informally speaking, the pseudo-dimension is the VC-dimension of the set of
functions that arise when we threshold real-valued functions to define binary
functions. Note that sometimes the pseudo-dimension will have as input the loss
function, and sometimes not. This is because some results use the concatenation
of loss function and hypotheses to determine the capacity, while others only use
the hypotheses class. This lets us state our first main result, which is a gener-
alization of [4, Theorem 10] to bounded loss functions and real valued function
spaces.

Theorem 1. Let Fψ
τ := {f ∈ F | E[ψ(f, x)] ≤ τ}. Assume that φ, ψ are measur-

able loss functions such that there exists constants B1, B2 > 0 with ψ(f, x) ≤ B1

and φ(f(x), y) ≤ B2 for all x, y and f ∈ F and let P be a distribution. Further-
more let f∗

τ = arg min
f∈Fψ

τ

Q(f). Then an unlabeled sample U of size

m ≥ 8B1
2

ε2

[

ln
16
δ

+ 2Pdim(F , ψ) ln
4B1

ε
+ 1

]

(5)

and a labeled sample Sn of size

n ≥ max
(

8B2
2

ε2

[

ln
8
δ

+ 2Pdim(Fψ
τ+ ε

2
, φ) ln

4B2

ε
+ 1

]

,
h

4

)

(6)

is sufficient to ensure that with probability at least 1− δ the classifier g ∈ F that
minimizes Q̂(·, Sn) subject to R̂(·, U) ≤ τ + ε

2 satisfies

Q(g) ≤ Q(f∗
τ) + ε. (7)

Sketch Proof: The idea is to combine three partial results with a union bound.
For the first part we use Theorem 5.1 from [22] with h = Pdim(F , ψ) to show
that an unlabeled sample size of

m ≥ 8B1
2

ε2

[

ln
16
δ

+ 2h ln
4B1

ε
+ 1

]

(8)

is sufficient to guarantee R̂(f)−R(f) < ε
2 for all f ∈ F with probability at least

1− δ
4 . In particular choosing f = f∗

τ and noting that by definition R(f∗
τ) ≤ τ we

conclude that with the same probability

R̂(f∗
τ) ≤ τ +

ε

2
. (9)

Complexity Analysis of Manifold Regularization 331

For the second part we use Hoeffding’s inequality to show that the labeled sample
size is big enough that with probability at least 1 − δ

4 it holds that

Q̂(f∗
τ) ≤ Q(f∗

τ) + B2

√

ln(
4
δ
)

1
2n

. (10)

The third part again uses Th. 5.1 from [22] with h = Pdim(Fψ
τ , φ) to show that

n ≥ 8B2
2

ε2

[
ln 8

δ + 2h ln 4B2
ε + 1

]
is sufficient to guarantee Q(f) ≤ Q̂(f) + ε

2 with
probability at least 1 − δ

2 .
Putting everything together with the union bound we get that with proba-

bility 1 − δ the classifier g that minimizes Q̂(·,X, Y) subject to R̂(·, U) ≤ τ + ε
2

satisfies

Q(g) ≤ Q̂(g) +
ε

2
≤ Q̂(f∗

τ) +
ε

2
≤ Q(f∗

τ) +
ε

2
+ B2

√

ln(4δ)
2n

. (11)

Finally the labeled sample size is big enough to bound the last rhs term by ε
2 . �

The next subsection uses this theorem to derive sample complexity bounds
for MR. First, however, a remark about the assumption that the loss function
φ is globally bounded. If we assume that F is a reproducing kernel Hilbert
space there exists an M > 0 such that for all f ∈ F and x ∈ X it holds that
|f(x)| ≤ M ||f ||F . If we restrict the norm of f by introducing a regularization
term with respect to the norm ||.||F , we know that the image of F is globally
bounded. If the image is also closed it will be compact, and thus φ will be
globally bounded in many cases, as most loss functions are continuous. This can
also be seen as a justification to also use an intrinsic regularization for the norm
of f in addition to the regularization by the unsupervised loss, as only then
the guarantees of Theorem 1 apply. Using this bound together with Lemma1 we
can state the following corollary to give a PAC-style guarantee for our proposed
framework.

Corollary 1. Let φ and ψ be convex supervised and an unsupervised loss func-
tion that fulfill the assumptions of Theorem1. Then fsemi (2) satisfies the guar-
antees given in Theorem1, when we replace for it g in Inequality (7).

Recall that in the MR setting R̂(f) = 1
(n+m)2

∑n+m
i=1 Wij(f(xi) − f(xj))2. So we

gather unlabeled samples from X × X instead of X . Collecting m samples from
X equates m2 − 1 samples from X × X and thus we only need

√
m instead of m

unlabeled samples for the same bound.

5.2 Comparison to the Supervised Solution

In the SSL community it is well-known that using SSL does not come without a
risk [11, Chapter 4]. Thus it is of particular interest how those methods compare
to purely supervised schemes. There are, however, many potential supervised
methods we can think of. In many works this problem is avoided by comparing

332 A. Mey et al.

to all possible supervised schemes [8,12,13]. The framework introduced in this
paper allows for a more fine-grained analysis as the semi-supervision happens
on top of an already existing supervised methods. Thus, for our framework, it
is natural to compare the sample complexities of fsup with the sample complex-
ity of fsemi. To compare the supervised and semi-supervised solution we will
restrict ourselves to the square loss. This allows us to draw from [1, Chapter 20],
where one can find lower and upper sample complexity bounds for the regres-
sion setting. The main insight from [1, Chapter 20] is that the sample complexity
depends in this setting on whether the hypothesis class is (closure) convex or
not. As we anyway need convexity of the space, which is stronger than closure
convexity, to use Lemma 1, we can adapt Theorem 20.7 from [1] to our semi-
supervised setting.

Theorem 2. Assume that Fψ
τ+ε is a closure convex class with functions mapping

to [0, 1]1, that ψ(f, x) ≤ B1 for all x ∈ X and f ∈ F and that φ(f(x), y) =
(f(x) − y)2. Assume further that there is a B2 > 0 such that (f(x) − y)2 < B2

almost surely for all (x, y) ∈ X × Y and f ∈ Fψ
τ+ε. Then an unlabeled sample

size of

m ≥ 2B1
2

ε2

[

ln
8
δ

+ 2Pdim(F , ψ) ln
2B1

ε
+ 2

]

(12)

and a labeled sample size of

n ≥ O
(

B2
2

ε

(

Pdim(Fψ
τ+ε) ln

√
B2

ε
+ ln

2
δ

))

(13)

is sufficient to guarantee that with probability at least 1 − δ the classifier g that
minimizes Q̂(·) w.r.t R̂(f) ≤ τ + ε satisfies

Q(g) ≤ min
f∈Fψ

τ

Q(f) + ε. (14)

Proof: As in the proof of Theorem 1 the unlabeled sample size is sufficient to
guarantee with probability at least 1− δ

2 that R(f∗
τ) ≤ τ + ε. The labeled sample

size is big enough to guarantee with at least 1 − δ
2 that Q(g) ≤ Q(f∗

τ+ε) + ε
[1, Theorem 20.7]. Using the union bound we have with probability of at least
1 − δ that Q(g) ≤ Q(f∗

τ+ε) + ε ≤ Q(f∗
τ) + ε. �

Note that the previous theorem of course implies the same learning rate in
the supervised case, as the only difference will be the pseudo-dimension term.
As in specific scenarios this is also the best possible learning rate, we obtain the
following negative result for SSL.

Corollary 2. Assume that φ is the square loss, F maps to the interval [0, 1]
and Y = [1 − B,B] for a B ≥ 2. If F and Fψ

τ are both closure convex, then
for sufficiently small ε, δ > 0 it holds that msup(ε, δ) = Õ(msemi(ε, δ)), where

1 In the remarks after Theorem 1 we argue that in many cases |f(x)| is bounded, and
in those cases we can always map to [0,1] by re-scaling.

Complexity Analysis of Manifold Regularization 333

Õ suppresses logarithmic factors, and msemi,msup denote the sample complexity
of the semi-supervised and the supervised learner respectively. In other words,
the semi-supervised method can improve the learning rate by at most a constant
which may depend on the pseudo-dimensions, ignoring logarithmic factors. Note
that this holds in particular for the manifold regularization algorithm.

Proof: The assumptions made in the theorem allow is to invoke Equation (19.5)
from [1] which states that msemi = Ω(1ε + Pdim(Fψ

τ)).2 Using Inequality (13)
as an upper bound for the supervised method and comparing this to Eq. (19.5)
from [1] we observe that all differences are either constant or logarithmic in ε
and δ. �

5.3 The Limits of Manifold Regularization

We now relate our result to the conjectures published in [19]: A SSL cannot learn
faster by more than a constant (which may depend on the hypothesis class F and
the loss φ) than the supervised learner. Theorem 1 from [12] showed that this
conjecture is true up to a logarithmic factor, much like our result, for classes with
finite VC-dimension, and SSL that do not make any distributional assumptions.
Corollary 2 shows that this statement also holds in some scenarios for all SSL
that fall in our proposed framework. This is somewhat surprising, as our result
holds explicitly for SSLs that do make assumptions about the distribution: MR
assumes the labeling function behaves smoothly w.r.t. the underlying manifold.

6 Rademacher Complexity of Manifold Regularization

In order to find out in which scenarios semi-supervised learning can help it is
useful to also look at distribution dependent complexity measures. For this we
derive computational feasible upper and lower bounds on the Rademacher com-
plexity of MR. We first review the work of [20]: they create a kernel such that
the inner product in the corresponding kernel Hilbert space contains automati-
cally the regularization term from MR. Having this kernel we can use standard
upper and lower bounds of the Rademacher complexity for RKHS, as found
for example in [10]. The analysis is thus similar to [21]. They consider a co-
regularization setting. In particular [20, p. 1] show the following, here informally
stated, theorem.

Theorem 3 ([20, Propositions 2.1, 2.2]). Let H be a RKHS with inner prod-
uct 〈·, ·〉H . Let U = {x1, ..., xn+m}, f, g ∈ H and fU = (f(x1), ..., f(xn+m))t.
Furthermore let 〈·, ·〉Rn be any inner product in R

n. Let H̃ be the same space of
functions as H, but with a newly defined inner product by 〈f, g〉H̃ = 〈f, g〉H +
〈fU , gU 〉Rn . Then H̃ is a RKHS.

2 Note that the original formulation is in terms of the fat-shattering dimension, but
this is always bounded by the pseudo-dimension.

334 A. Mey et al.

Assume now that L is a positive definite n-dimensional matrix and we set
the inner product 〈fU , gU 〉Rn = f t

ULgU . By setting L as the Laplacian matrix
(Sect. 4) we note that the norm of H̃ automatically regularizes w.r.t. the data
manifold given by {x1, ..., xn+m}. We furthermore know the exact form of the
kernel of H̃.

Theorem 4 ([20, Proposition 2.2]). Let k(x, y) be the kernel of H, K be
the gram matrix given by Kij = k(xi, xj) and kx = (k(x1, x), ..., k(xn+m, x))t.
Finally let I be the n + m dimensional identity matrix. The kernel of H̃ is then
given by k̃(x, y) = k(x, y) − kt

x(I + LK)−1Lky.

This interpretation of MR is useful to derive computationally feasible upper and
lower bounds of the empirical Rademacher complexity, giving distribution depen-
dent complexity bounds. With σ = (σ1, ..., σn) i.i.d Rademacher random vari-
ables (i.e. P (σi = 1) = P (σi = −1) = 1

2 .), recall that the empirical Rademacher
complexity of the hypothesis class H and measured on the sample labeled input
features {x1, ..., xn} is defined as

Radn(H) =
1
n
Eσ sup

f∈H

n∑

i=1

σif(xi). (15)

Theorem 5 ([10, p. 333]). Let H be a RKHS with kernel k and Hr = {f ∈
H | ||f ||H ≤ r}. Given an n sample {x1, ..., xn} we can bound the empirical
Rademacher complexity of Hr by

r

n
√

2

√
√
√
√

n∑

i=1

k(xi, xi) ≤ Radn(Hr) ≤ r

n

√
√
√
√

n∑

i=1

k(xi, xi). (16)

The previous two theorems lead to upper bounds on the complexity of MR, in
particular we can bound the maximal reduction over supervised learning.

Corollary 3. Let H be a RKHS and for f, g ∈ H define the inner product
〈f, g〉H̃ = 〈f, g〉H + fU (μL)gt

U , where L is a positive definite matrix and μ ∈ R

is a regularization parameter. Let H̃r be defined as before, then

Radn(H̃r) ≤ r

n

√
√
√
√

n∑

i=1

k(xi, xi) − kt
xi

(
1
μ

I + LK)−1Lkxi
. (17)

Similarly we can obtain a lower bound in line with Inequality (16).

The corollary shows in particular that the difference of the Rademacher com-
plexity of the supervised and the semi-supervised method is given by the term

Complexity Analysis of Manifold Regularization 335

kt
xi

(1
μIn+m + LK)−1Lkxi

. This can be used for example to compute general-
ization bounds [17, Chapter 3]. We can also use the kernel to compute local
Rademacher complexities which may yield tighter generalization bounds [5]. Here
we illustrate the use of our bounds for choosing the regularization parameter μ
without the need for an additional labeled validation set.

7 Experiment: Concentric Circles

We illustrate the use of Eq. (17) for model selection. In particular, it can be
used to get an initial idea of how to choose the regularization parameter μ. The
idea is to plot the Rademacher complexity versus the parameter μ as in Fig. 1.
We propose to use an heuristic which is often used in clustering, the so called
elbow criteria [9]. We essentially want to find a μ such that increasing the μ will
not result in much reduction of the complexity anymore. We test this idea on a
dataset which consists out of two concentric circles with 500 datapoints in R

2,
250 per circle, see also Fig. 2. We use a Gaussian base kernel with bandwidth set
to 0.5. The MR matrix L is the Laplacian matrix, where weights are computed
with a Gaussian kernel with bandwidth 0.2. Note that those parameters have
to be carefully set in order to capture the structure of the dataset, but this is
not the current concern: we assume we already found a reasonable choice for
those parameters. We add a small L2-regularization that ensures that the radius
r in Inequality (17) is finite. The precise value of r plays a secondary role as the
behavior of the curve from Fig. 1 remains the same.

Looking at Fig. 1 we observe that for μ smaller than 0.1 the curve still drops
steeply, while after 0.2 it starts to flatten out. We thus plot the resulting kernels
for μ = 0.02 and μ = 0.2 in Fig. 2. We plot the isolines of the kernel around the
point of class one, the red dot in the figure. We indeed observe that for μ = 0.02
we don’t capture that much structure yet, while for μ = 0.2 the two concentric
circles are almost completely separated by the kernel. If this procedure indeed
elevates to a practical method needs further empirical testing.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Manifold regularization parameter

0.38

0.40

0.42

0.44

0.46

0.48

R
ad

em
ac

he
r

co
m

pl
ex

ity
 b

ou
nd

Fig. 1. The behavior of the Rademacher complexity when using manifold regularization
on circle dataset with different regularization values µ.

336 A. Mey et al.

Fig. 2. The resulting kernel when we use manifold regularization with parameter µ set
to 0.02 and 0.2.

8 Discussion and Conclusion

This paper analysed improvements in terms of sample or Rademacher complexity
for a certain class of SSL. The performance of such methods depends both on
how the approximation error of the class F compares to that of Fψ

τ and on the
reduction of complexity by switching from the first to the latter. In our analysis
we discussed the second part. The first part depends on a notion the literature
often refers to as a semi-supervised assumption. This assumption basically states
that we can learn with Fψ

τ as good as with F . Without prior knowledge, it is
unclear whether one can test efficiently if the assumption is true or not. Or is
it possible to treat just this as a model selection problem? The only two works
we know that provide some analysis in this direction are [3], which discusses
the sample consumption to test the so-called cluster assumption, and [2], which
analyzes the overhead of cross-validating the hyper-parameter coming from their
proposed semi-supervised approach.

As some of our settings need restrictions, it is natural to ask whether we can
extend the results. First, Lemma 1 restricts us to convex optimization problems.
If that assumption would be unnecessary, one may get interesting extensions.
Neural networks, for example, are typically not convex in their function space
and we cannot guarantee the fast learning rate from Theorem2. But maybe there
are semi-supervised methods that turn this space convex, and thus could achieve
fast rates. In Theorem 2 we have to restrict the loss to be the square loss, and
[1, Example 21.16] shows that for the absolute loss one cannot achieve such a
result. But whether Theorem 2 holds for the hinge loss, which is a typical choice
in classification, is unknown to us. We speculate that this is indeed true, as at
least the related classification tasks, that use the 0–1 loss, cannot achieve a rate
faster than 1

ε [19, Theorem 6.8].
Corollary 2 sketches a scenario in which sample complexity improvements of

MR can be at most a constant over their supervised counterparts. This may sound

Complexity Analysis of Manifold Regularization 337

like a negative result, as other methods with similar assumptions can achieve expo-
nentially fast learning rates [16, Chapter 6]. But constant improvement can still
have significant effects, if this constant can be arbitrarily large. If we set the reg-
ularization parameter μ in the concentric circles example high enough, the only
possible classification functions will be the one that classifies each circle uniformly
to one class. At the same time the pseudo-dimension of the supervised model can
be arbitrarily high, and thus also the constant in Corollary 2. In conclusion, one
should realize the significant influence constant factors in finite sample settings
can have.

References

1. Anthony, M., Bartlett, P.L.: Neural Network Learning: Theoretical Foundations,
1st edn. Cambridge University Press, New York, USA (2009)

2. Azizyan, M., Singh, A., Wasserman, L.A.: Density-sensitive semisupervised infer-
ence. Computing Research Repository. abs/1204.1685 (2012)

3. Balcan, M., Blais, E., Blum, A., Yang, L.: Active property testing. In: 53rd Annual
IEEE Symposium on Foundations of Computer Science, New Brunswick, NJ, USA,
pp. 21–30 (2012)

4. Balcan, M.F., Blum, A.: A discriminative model for semi-supervised learning. J.
ACM 57(3), 19:1–19:46 (2010)

5. Bartlett, P.L., Bousquet, O., Mendelson, S.: Local Rademacher complexities. Ann.
Stat. 33(4), 1497–1537 (2005)

6. Belkin, M., Niyogi, P.: Towards a theoretical foundation for Laplacian-based man-
ifold methods. J. Comput. Syst. Sci. 74(8), 1289–1308 (2008)

7. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric frame-
work for learning from labeled and unlabeled examples. JMLR 7, 2399–2434 (2006)

8. Ben-David, S., Lu, T., Pál, D.: Does unlabeled data provably help? Worst-case
analysis of the sample complexity of semi-supervised learning. In: Proceedings of
the 21st Annual Conference on Learning Theory, Helsinki, Finland (2008)

9. Bholowalia, P., Kumar, A.: EBK-means: a clustering technique based on elbow
method and k-means in WSN. Int. J. Comput. Appl. 105(9), 17–24 (2014)

10. Boucheron, S., Bousquet, O., Lugosi, G.: Theory of classification: a survey of some
recent advances. ESAIM Probab. Stat. 9, 323–375 (2005)

11. Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning. The MIT Press,
Cambridge (2006)

12. Darnstädt, M., Simon, H.U., Szörényi, B.: Unlabeled data does provably help. In:
STACS, Kiel, Germany, vol. 20, pp. 185–196 (2013)

13. Globerson, A., Livni, R., Shalev-Shwartz, S.: Effective semisupervised learning on
manifolds. In: COLT, Amsterdam, The Netherlands, pp. 978–1003 (2017)

14. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In:
NeuRIPS, Vancouver, BC, Canada, pp. 529–536 (2004)

15. Kloft, M., Brefeld, U., Laskov, P., Müller, K.R., Zien, A., Sonnenburg, S.: Effi-
cient and accurate Lp-norm multiple kernel learning. In: NeuRIPS, Vancouver,
BC, Canada, pp. 997–1005 (2009)

16. Mey, A., Loog, M.: Improvability through semi-supervised learning: a survey of
theoretical results. Computing Research Repository. abs/1908.09574 (2019)

17. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning.
The MIT Press, Cambridge (2012)

338 A. Mey et al.

18. Niyogi, P.: Manifold regularization and semi-supervised learning: some theoretical
analyses. JMLR 14(1), 1229–1250 (2013)

19. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory
to Algorithms. Cambridge University Press, New York (2014)

20. Sindhwani, V., Niyogi, P., Belkin, M.: Beyond the point cloud: from transductive
to semi-supervised learning. In: ICML, Bonn, Germany, pp. 824–831 (2005)

21. Sindhwani, V., Rosenberg, D.S.: An RKHS for multi-view learning and manifold
co-regularization. In: ICML, Helsinki, Finland, pp. 976–983 (2008)

22. Vapnik, V.N.: Statistical Learning Theory. Wiley, Hoboken (1998)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Actionable Subgroup Discovery
and Urban Farm Optimization

Alexandre Millot1, Romain Mathonat1,2, Rémy Cazabet3,
and Jean-François Boulicaut1(B)

1 Univ de Lyon, CNRS, INSA Lyon, LIRIS, UMR5205, 69621 Villeurbanne, France
{alexandre.millot,romain.mathonat,jean-francois.boulicaut}@insa-lyon.fr

2 Atos, 69100 Villeurbanne, France
3 Univ de Lyon, CNRS, Université Lyon 1, LIRIS, UMR5205,

69622 Villeurbanne, France
remy.cazabet@univ-lyon1.fr

Abstract. Designing, selling and/or exploiting connected vertical urban
farms is now receiving a lot of attention. In such farms, plants grow in
controlled environments according to recipes that specify the different
growth stages and instructions concerning many parameters (e.g., tem-
perature, humidity, CO2, light). During the whole process, automated
systems collect measures of such parameters and, at the end, we can
get some global indicator about the used recipe, e.g., its yield. Looking
for innovative ideas to optimize recipes, we investigate the use of a new
optimal subgroup discovery method from purely numerical data. It con-
cerns here the computation of subsets of recipes whose labels (e.g., the
yield) show an interesting distribution according to a quality measure.
When considering optimization, e.g., maximizing the yield, our virtuous
circle optimization framework iteratively improves recipes by sampling
the discovered optimal subgroup description subspace. We provide our
preliminary results about the added-value of this framework thanks to a
plant growth simulator that enables inexpensive experiments.

Keywords: Subgroup discovery · Virtuous circle · Urban farms

1 Introduction

Conventional farming methods have to face many challenges like, for instance,
soil erosion and/or an overuse of pesticides. The crucial problems related to
climate change also stimulate the design of new production systems. The concept
of urban farms (see, e.g., AeroFarms, FUL, Infarm1) could be part of a solution.
It enables the growth of plants in fully controlled environments close to the place
where consumers are [8]. Most of the crop protection chemical products can be
removed while being able to optimize both the quantity and the quality of plants
(e.g., improving the flavor [9] or their chemical proportions [20]).
1 https://aerofarms.com/, http://www.fermeful.com/, https://infarm.com/.

c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 339–351, 2020.
https://doi.org/10.1007/978-3-030-44584-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_27&domain=pdf
https://aerofarms.com/
http://www.fermeful.com/
https://infarm.com/
https://doi.org/10.1007/978-3-030-44584-3_27

340 A. Millot et al.

Urban farms can generate large amounts of data that can be pushed towards a
cloud environment such that various machine learning and data mining methods
can be used. We may then provide new insights about the plant growth process
itself (discovering knowledge about not yet identified/understood phenomena)
but also offer new services to farm owners. We focus here on services that rely
on the optimization of a given target variable, e.g., the yield. The number of
parameters influencing plant growth can be relatively large (e.g., temperature,
hygrometry, water pH level, nutrient concentration, LED lighting intensity, CO2

concentration). There are numerous ways of measuring the crop end-product
(e.g., energy cost, plant mass and size, flavor and chemical properties). In gen-
eral, for a given type of plants, expert knowledge exists that concerns the avail-
able sub-systems (e.g., to model the impact of nutrient on growth, the effect
of LED lighting on photosynthesis, the energy consumption w.r.t. the tempera-
ture instruction) but we are far from a global understanding of the interaction
between the various underlying phenomena. In other terms, setting the optimal
instructions for the diverse set of parameters given an optimization task remains
an open problem.

We want to address such an issue by means of data mining techniques. Plant
growth recipes are made of instructions in time and space for many numerical
attributes. Once a recipe is completed, collections of measures have been col-
lected and we assume that at least one numerical target label value is available,
e.g., the yield. Can we learn from available recipe records to suggest new ones
that should provide better results w.r.t. the selected target attribute? For that
purpose, we investigate the use of subgroup discovery [12,21]. It aims at discov-
ering subsets of objects - called subgroups - with high quality according to a
quality measure calculated on the target label. Such a quality measure has to
capture deviations in the target label distribution when we consider the overall
data set or the considered subset of objects. When addressing only subgroup
discovery from numerical data, a few approaches for numerical attributes [6,15]
and numerical target labels [14] have been described. To the best of our knowl-
edge, the reference algorithm for subgroup discovery in purely numerical data
is SD-Map* [14]. However, like other methods, it uses discretization and leads to
loss of information and sub-optimal results.

Our first contribution concerns the proposal of a simple branch and bound
algorithm called MinIntChange4SD that exploits the exhaustive enumeration
strategy from [11] to achieve a guaranteed optimal subgroup discovery in numeri-
cal data without any discretization. Discussing details about this algorithm is out
of the scope of this paper and we recently designed a significantly optimized ver-
sion of MinIntChange4SD in [17]. Our main contribution concerns a new method-
ology for plant growth recipe optimization that (i) uses MinIntChange4SD to
find the optimal subgroup of recipes and (ii) exploits the subgroup description
to design better recipes which can in turn be analyzed with subgroup discovery,
and so on.

The paper is organized as follows. Section 2 formalizes the problem. In Sect. 3,
we discuss related works and their limitations. In Sect. 4, we introduce our new

Actionable Subgroup Discovery and Urban Farm Optimization 341

m1 m2 T

g1 1 1 15
g2 1 2 30
g3 2 2 60
g4 3 2 40
g5 3 3 70
g6 4 3 85

m1

m2

0 1 2 3 4 5
0

1

2

3

4

g1

g2 g3

g5 g6

g4 p1

p2

[1,3]

[1,2]

[1,1] [2,2]

[2,3]

[3,3]

1

6

2

3 4

5

7

10

8

9

Fig. 1. (left) Purely numerical dataset. (center) Non-closed (p1 =
〈
[2, 4], [1, 3]

〉
, non-

hatched) and closed (p2 =
〈
[2, 4], [2, 3]

〉
, hatched) interval patterns. (right) Depth-first

traversal of m2 using minimal changes.

optimal subgroup discovery algorithm and we detail our framework for plant
growth recipe optimization. An empirical evaluation of our method is in Sect. 5.
Section 6 briefly concludes.

2 Problem Definition

Numerical Dataset. A numerical dataset (G,M, T) is given by a set of objects
G, a set of numerical attributes M and a numerical target label T . In a given
dataset, the domain of any attribute m ∈ M (resp. label T) is a finite ordered
set denoted Dm (resp. DT). Figure 1 (left) provides a numerical dataset made of
two attributes M = {m1,m2} and a target label T . A subgroup p is defined by
a pattern, i.e., its intent or description, and the set of objects from the dataset
where it appears, i.e., its extent, denoted ext(p). For instance, in Fig. 1, the
domain of m1 is {1, 2, 3, 4} and the intent 〈[2, 4], [1, 3]

〉
(see the definition of

interval patterns later) denotes a subgroup whose extent is {g3, g4, g5, g6}.

Quality Measure, Optimal Subgroup. The interestingness of a subgroup in a
numerical dataset is measured by a numerical value. We consider here the quality
measure based on the mean introduced in [14]. Let p be a subgroup. The quality
of p is given by: qamean(p) = |ext(p)|a × (µext(p) − µext(∅)), a ∈ [0, 1]. |ext(p)|
denotes the cardinality of ext(p), µext(p) is the mean of the target label in the
extent of p, µext(∅) is the mean of the target label in the overall dataset, and a is
a parameter that controls the number of objects of the subgroups. Let (G,M, T)
be a numerical dataset, q a quality measure and P the set of all subgroups of
(G,M, T). A subgroup p ∈ P is said to be optimal iff ∀p′ ∈ P : q(p′) ≤ q(p).

Plant Growth Recipe and Optimization Measure. A plant growth recipe
(M, P, T) is given by a set of numerical parameters M specifying the growing
conditions thanks to intervals on numerical values, a numerical value P repre-
senting the number of stages of the growth cycle, and a numerical target label T
to quantify the recipe quality. In a given recipe, each parameter of M is repeated

342 A. Millot et al.

P times s.t. we have |M |×P numerical attributes. Our goal is to optimize recipes
and we want to discover actionable patterns in the sense that delivering such
patterns will support the design of new growing conditions. An optimization
measure f quantifies the quality of an iteration. We are interested in the mean
of the target label of the objects of the optimal subgroup after each iteration.
The measure is given by fmean =

∑
i∈ext(p) T (i)

|ext(p)| where T (i) is the value of the
target label for object i.

3 Related Work

Designing recipes that optimize a given target attribute (e.g., the mass, the
energy cost) is often tackled by domain experts who exploit the scientific liter-
ature. However, in our setting, it has two major drawbacks. First, most of the
literature remains oriented towards conventional growing conditions and farm-
ing methods. In urban farms, there are more parameters that can be controlled.
Secondly, the amount of knowledge about plants is unbalanced from one plant to
another. Therefore, relying only on expert knowledge for plant recipe optimiza-
tion is not sufficient. We have an optimization problem and the need for a limited
number of iterations. Indeed, experimenting with plant growth recipes is time
consuming (i.e., asking for weeks or months). Therefore, we have to minimize
the number of experiments that are needed to optimize a given recipe. There are
two main families of methods addressing the problem of optimizing a function
over numerical variables: direct and model-based [18]. For direct methods, the
common idea is to apply various strategies to sequentially evaluate solutions in
the search space of recipes. However such methods do not address the problem
of minimizing the number of experiments. For model-based methods, the idea
is to build a model simulating the ground truth using available data and then
to use it to guide the search process. For instance, [9] introduced a solution for
recipe optimization using this type of method with the goal of optimizing the
flavor of plants. Their framework is based on using a surrogate model, in this
case a Symbolic Regression [13]. It considers recipe optimization by means of a
promising virtuous circle. However, it suffers from several shortcomings: there
is no guarantee on the quality of the generated models (i.e., they may not be
able to model correctly the ground truth), the number of tested parameters is
small (only 3), and the ratio between the number of objects and the number of
parameters in the data needs to be at least ten for Symbolic Regression [10].
Clearly, it would restrict the search to only a few parameters.

Heuristic [2,15] and exhaustive [1,5] solutions have been proposed for sub-
group discovery. Usually, these approaches consider a set of nominal attributes
with a binary label. To work with numerical data, prior discretization of the
attributes is then required (see, e.g., [3]) and it leads to loss of information and
suboptimal results. A major issue with exhaustive pattern mining is the size
of the search space. Fortunately, optimistic estimates can be used to prune the
search space and provide tractability in practice [7,21]. [14] introduces a large

Actionable Subgroup Discovery and Urban Farm Optimization 343

panel of quality measures and corresponding optimistic estimates for an exhaus-
tive subgroup mining given numerical target labels. They describe SD-Map*,
the reference algorithm for subgroup discovery in numerical data. Notice how-
ever that for [14] or others [6,15], discretization techniques over the numerical
attributes have to be performed. When looking for an exhaustive search of fre-
quent patterns - not subgroups - in numerical data without discretization, we
find the MinIntChange algorithm [11]. Using closure operators (see, e.g., [4]) has
become a popular solution to reduce the size of the search space. We indeed
exploit most of these ideas to design our optimal subgroup discovery algorithm.

4 Optimization with Subgroup Discovery

4.1 An Efficient Algorithm for Optimal Subgroup Discovery

Let us first introduce MinIntChange4SD, our branch and bound algorithm for the
optimal subgroup discovery in purely numerical data. It exploits smart concepts
about interval patterns from [11].

Interval Patterns, Extent and Closure. In a numerical dataset (G,M, T),
an interval pattern p is a vector of intervals p =

〈
[ai, bi]

〉
i∈{1,...,|M |} with ai, bi ∈

Dmi, where each interval is a restriction on an attribute of M , and |M | is the
number of attributes. Let g ∈ G be an object. g is in the extent of an interval
pattern p =

〈
[ai, bi]

〉
i∈{1,...,|M |} iff ∀i ∈ {1, ..., |M |},mi(g) ∈ [ai, bi]. Let p1 and

p2 be two interval patterns. p1 ⊆ p2 means that p2 encloses p1, i.e., the hyper-
rectangle of p1 is included in that of p2. It is said that p1 is a specialization of
p2. Let p be an interval pattern and ext(p) its extent. p is defined as closed if
and only if it is the most restrictive pattern (i.e., the smallest hyper-rectangle)
that contains ext(p). Figure 1 (center) depicts the dataset of Fig. 1 (left) in a
cartesian plane as well as examples of interval patterns that are closed (p2) or
not (p1).

Traversing the Search Space with Minimal Changes. To guarantee the
optimal subgroup discovery, we proceed to the so-called minimal changes intro-
duced in MinIntChange. It enables an exhaustive enumeration within the interval
pattern search space. A left minimal change consists in replacing the left bound
of an interval by the current value closest higher value in the domain of the
corresponding attribute. Similarly, a right minimal change consists in replacing
the right bound by the current value closest lower value. The search starts with
the computation of the minimal interval pattern that covers all the objects of
the dataset. The premise is to apply consecutive right or left minimal changes
until obtaining an interval whose left and right bounds have the same value for
each interval of the minimal interval pattern. In that case, the algorithm back-
tracks until it finds a pattern on which a minimal change can be applied. Figure 1
(right) depicts the depth-first traversal of attribute m2 from the dataset of Fig. 1
(left) using minimal changes.

344 A. Millot et al.

Compressing and Pruning the Search Space. We leverage the concept of
closure to significantly reduce the number of candidate interval patterns. After
a minimal change and instead of evaluating the resulting interval pattern, we
compute its corresponding closed interval pattern. We exploit advanced prun-
ing techniques to reduce the size of the search space thanks to the use of a
tight optimistic estimate. We also exploit a combination of forward checking
and branch reordering. Given an interval pattern, the set of all its direct spe-
cializations (application of a right or left minimal change on each interval) are
computed - forward checking - and those whose optimistic estimate is higher than
the best subgroup quality are stored. Branch reordering by descending order of
the optimistic estimate value is then carried out which enables to explore the
most promising parts of the search space first. It also enables a more efficient
pruning by raising the minimal quality early. In fact, providing details about the
algorithm is out of the scope of this paper though its source code is available at
https://bit.ly/3bA87NE. The important outcome is that it guarantees the dis-
covery of optimal subgroups for a given quality measure. Indeed, provided that it
remains tractable, the runtime efficiency is not here an issue given that we want
to use the algorithm at some steps of quite slow vegetable growth processes.

4.2 Leveraging Subgroups to Optimize Recipes

A Virtuous Circle. Our optimization framework can be seen as a virtuous
circle, where each new iteration uses information previously gathered to itera-
tively improve the targeted process. First, a set of recipe experiments - which
can be created with or without the use of expert knowledge - is created. With
the use of expert knowledge, values or domain of values are defined for each
attribute and then recipes are produced using these values. When generating
recipes without prior knowledge, we create recipes by randomly sampling the
values of each attribute. Secondly, we use subgroup discovery to find the best
subgroup of recipes according to the chosen quality measure (e.g., the subgroup
of recipes with the best average yield). Then, we exploit the subgroup descrip-
tion - i.e., we apply new restrictions on the range of each parameter according
to the description - to generate new, better, recipe experiments. Finally these
recipes are in turn processed to find the best subgroup for the new recipes, and
so on until recipes cannot be improved anymore. This way, we sample recipes in
a space which gets smaller after each iteration and where the ratio between good
and bad solutions gets larger and larger. Figure 2 depicts a step-by-step exam-
ple of the process behind the framework. Our framework makes use of several
hyperparameters that affect runtime efficiency, the number of iterations and the
quality of the results.

Convergence. The first hyperparameter is the parameter a used in the qamean

quality measure. In standard subgroup discovery, it controls the number of
objects in the returned subgroups. A higher value of a means larger subgroups.
For us, a larger subgroup means a larger search space to sample. By extension, a
higher value of a means more iterations to be able to reach smaller subspaces of

https://bit.ly/3bA87NE

Actionable Subgroup Discovery and Urban Farm Optimization 345

m1

m2

0 1 2 3 4
0

1

2

3

4

r1

r2

r3

r4

Iteration 1

m1

m2

1 2 3 4
1

2

3

4
r5

r6

r7

r8

Iteration 2

m1

m2

1 2 3
1

2

3

4
r9

r10

r11

r12

Iteration 3

Fig. 2. Example of execution of the optimization framework in 3 iterations. We consider
a two-dimensional space (i.e., 2 attributes m1 and m2) where 4 recipes are generated
during each iteration using our first sampling method. The best subgroup (optimizing
the yield) of each iteration (hatched) serves as the next iteration sampling space.

the search space. For that reason, we rename the parameter as the convergence
rate. The second hyperparameter is called the minimal improvement (minImp).
It defines the minimal improvement of the Optimization measure - fmean in our
setting - needed from one iteration to another for the framework to keep running.
After each iteration, we check whether the following statement is true or false.

fmeanit
− fmeanit−1

fmeanit−1

≥ minImp

If it is true, then the optimization framework keeps running, else we consider
that the recipes cannot be improved any further. This parameter has a direct
effect on the number of iterations needed for the algorithm to converge. A higher
value for minImp means a lower number of iterations and vice versa. We can also
forget minImp and set the number of iterations by means of another parameter
that would denote a budget.

Sampling the Subspace. After each iteration, to generate new recipes to
experiment with, we need to sample the subspace corresponding to the descrip-
tion of the best subgroup. Three sampling methods are currently available and
this defines again a new hyperparameter. The first method consists in sampling
recipes using the original set of values of each attribute (i.e., in the first iter-
ation) minus the excluded values due to the new restrictions applied on the
subspace. Let D1

m be the domain of values of attribute m at Iteration 1 and
[aim, bim] be the interval of attribute m at Iteration i according to the description
of the best subgroup of Iteration i−1. Then, ∀v ∈ D1

m, v ∈ Di
m ⇔ bim ≥ v ≥ aim.

Using this method, the number of values available for sampling for each attribute
gets smaller after each iteration, meaning that each iteration is faster than the
previous one. The second consists in discretizing the search space through the
discretization of each attribute in k intervals of equal length. Parameter k is
set before launching the framework. Recipes are then sampled using the dis-
cretized domain of values for each attribute. Finally, we can use Latin Hypercube

346 A. Millot et al.

Sampling [16] as a third method. In Latin Hypercube Sampling, each attribute
is divided in S equally probable intervals, with S the number of samples (i.e.,
recipes). Using this method, recipes are sampled such that each recipe is the
only one in each hyperspace that contains it. The number of samples generated
for each iteration is also a hyperparameter of the framework.

An Explainable Generic Framework. Our optimization framework is
explainable contrary to black box optimization algorithms. Each step of the pro-
cess is easily understandable due to the descriptive nature of subgroup discovery.
Although we have been referring to our algorithm MinIntChange4SD when intro-
ducing the optimization framework, other subgroup discovery algorithms can be
used, including [14] and [17]. Notice however that the better the quality of the
provided subgroup, the better the results returned by our framework will be.
Finally, our method can be applied to quite many application domains where
we want to optimize a numerical target given collections of numerical features
(e.g., hyperparameter optimization in machine learning).

5 Experiments

We work on urban farm recipe optimization while we do not have access to real
farming data yet. One of our partners in the FUI DUF 4.0 project (2018–2021)
is designing new types of urban farms. We found a way to support the empiri-
cal study of our recipe optimizing framework thanks to inexpensive experiments
enabled by a simulator. In an urban farm, plants grow in a controlled envi-
ronment. In the absence of failure, recipe instructions are followed and we can
investigate the optimization of the plant yield at the end of the growth cycle.
We simulate recipe experiments by using the PCSE2 simulation environment by
setting the characteristics (e.g., the climate) of the different growth stages. We
focus on 3 variables that set the amount of solar irradiation (range [0, 25000]),
wind (range [0, 30]) and rain (range [0, 40]). The plant growth is split into 3 stages
of equal length such that we finally get 9 attributes. In real life, we can control
most of the parameters of an urban farm (e.g., providing more or less light)
and a recipe optimization iteration needs for new insights about the promising
parameter values. This is what we can emulate using the crop simulator: given
the description of the optimal subgroup, we get insights to support the design
of the next simulations, say experiments, as if we were controlling the growth
environment. At the end of the growth cycle, we retrieve the total mass of plants
harvested using a given recipe. Note that in the following experiments, unless
stated otherwise, no assumption is made on the values of parameters (i.e., no
restriction is applied on the range of values defined above and expert knowledge
is not taken into account). Table 1 features examples of plant growth recipes.
The source code and datasets used in our evaluation are available at https://
bit.ly/3bA87NE.

2 https://pcse.readthedocs.io/en/stable/index.html.

https://bit.ly/3bA87NE
https://bit.ly/3bA87NE
https://pcse.readthedocs.io/en/stable/index.html

Actionable Subgroup Discovery and Urban Farm Optimization 347

Table 1. Examples of growth recipes split in 3 stages (P1, P2, P3), 3 attributes, and
a target label (Yield).

R RainP1 IrradP1 WindP1 RainP2 IrradP2 WindP2 RainP3 IrradP3 WindP3 Yield

r1 10 23250 5 10 23250 5 15 21000 10 22000

r2 35 10000 14 5 25000 10 16 19500 30 20500

r3 15 17500 26 22 15000 18 30 4000 3 8600

r4 18 22800 17 38 17000 25 38 12000 19 14200

Table 2. Comparison between descriptions of the overall dataset (DS), the optimal
subgroup returned by MinIntChange4SD (MIC4SD), the optimal subgroup returned
by SD-Map*. “–” means no restriction on the attribute compared to DS, Q and S
respectively the quality and size of the subgroup.

SubgroupRainP1 IrradP1 WindP1RainP2 IrradP2 WindP2RainP3 IrradP3 WindP3Q S

DS [0, 39] [1170, 23471][2, 29] [0, 37] [111, 24111] [0, 29] [2, 40] [964, 24197] [1, 30] 0 30

MIC4SD [16, 37] [1170, 22085][2, 24] [7, 37] [18309, 23584][2, 24] [15, 37] [12626, 24197][1, 25] 338747

SD-Map* [21, 39] – – – [14455, 24111]– – [12760, 24197]– 306625

5.1 MinIntChange4SD vs SD-Map*

We study the description of the best subgroup returned by MinIntChange4SD
and SD-Map*, the state-of-the art algorithm for subgroup discovery in numeri-
cal data. Table 2 depicts the descriptions for a dataset comprised of 30 recipes
generated randomly with the simulator. Besides the higher quality of the sub-
group returned by MinIntChange4SD, the optimal subgroup description also
enables to extract information that is missing from the description obtained
with SD-Map*. In fact, where SD-Map* only offers a strong restriction on 3
attributes, MinIntChange4SD provides actionable information on all the con-
sidered attributes, i.e., the 9 attributes. This confirms its qualitative superiority
over SD-Map* which has to proceed to attribute discretizations.

5.2 Empirical Evaluation of the Model Hyperparameters

Our optimization framework involves several hyperparameters whose values need
to be studied to define proper ranges or values that will lead to optimized results
with a minimized number of recipe experiments. We choose to apply a random
search on discretized hyperparameters. Note that in this setting, grid search
is a bad solution due to the combinatorial number of hyperparameter values
and the high time cost of the optimization process itself. We discretize each
hyperparameter in several values (the convergence rate is split into 10 values
ranging from 0.1 to 1, the minimal improvement parameter is split into 12 values
between 0 and 0.05, the sampling parameter is split between the 3 available
methods, and the number of recipes for each iteration is either 20 or 30). We
run 100 iterations of random search, with each iteration - read set of parameter
values - being tested 10 times and averaged to account for randomness of the

348 A. Millot et al.

Fig. 3. Yield of the best recipe depending on the value of different hyperparameters
using 100 sample recipes for each hyperparameter.

recipes generated. After each iteration of random search, we store the set of
hyperparameter values and the corresponding best recipe found. Figure 3 depicts
results of the experiments. Optimal values for convergence rate seem to be around
0.5, between 0.001 and 0.01 for minimal improvement, and the best sampling
method is tied between the first and second one. Generating 30 recipes for each
iteration yields better results than 20 (average yield of 23857 for 30 recipes
against 22829 for 20 recipes). To compare our method against other methods, we
run our framework with the following parameters: 30 recipes times 5 iterations
(for a total of 150 recipes), 0.5 convergence rate, using the second sampling
method with k = 15. To address the variance in the yield due to randomness
in the recipe generation process, we run the framework 10 times, we store the
best recipe found at each iteration and then compute the average of the stored
recipes. We report the results in Table 3.

5.3 Comparison with Alternative Methods

Good hyperparameter values have been defined for our optimization framework
and we can now compare our method with other ones. Let us consider the use
of expert knowledge and random search. First, we want to create a model using
expert knowledge. With the help of an agricultural engineer, we defined a priori
good values for each parameter using expert knowledge and we generated a recipe
that can serve as a baseline for our experiments. We then choose to compare our
method against a random search model without expert knowledge. We set the
number of recipes to 150 for all methods to provide a fair comparison with our
own model where the number of recipes is set to 150. To account for randomness
in the recipe generation, we run 10 iterations of the random search model, we
store the value of the best recipe found in each iteration, and we compute their
average yield. Results of the experiments and a description of the best recipe for
each method are available in Table 3. Random search and expert knowledge find
recipes with almost equal yields, while our framework find recipes with higher

Actionable Subgroup Discovery and Urban Farm Optimization 349

Table 3. Comparison of the description and the yield of the best recipe returned
by each method. EK = Expert Knowledge, RS = Random Search, SM = Surrogate
Modeling, VC = Virtuous Circle (our framework).

Method RainP1 IrradP1 WindP1 RainP2 IrradP2 WindP2 RainP3 IrradP3 WindP3 Yield

EK 10 0 5 10 25000 5 10 25000 5 23472

RS 17 23447 8 31 22222 23 39 22385 7 23561

SM 20 44 0 20 24981 0 40 31 30 10170

VC 19 16121 18 25 24052 28 14 21126 7 24336

yield. Note that in industrial settings, an improved yield of 3% to 4% has a
significant impact on revenues.

Let us now compare our framework to the Surrogate Modeling method pre-
sented in [9]. To be fair, we give the same number of data points to build the
Symbolic Regression surrogate model as we used in previous experiments, i.e.,
150 for training the model (we evaluated the RMSE of the model on a test set
of 38 other samples). We use gplearn [19], with default parameters, except for
the number of generations and the number of models evaluated for each gener-
ations, which are respectively of 1000 and 2000, as in [9]. Note that the model
obtained has a RMSE of 2112, and it is composed of more than 2000 terms
(including mathematical operators), therefore the argument of interpretability
is questionable. A grid search is finally done on this model and we select the
best recipe and obtain their true yield using the PCSE simulation environment.
The number of steps for each attribute for the grid search has to be defined.
We set it to 5. As we have 9 parameters, it means that the model needs to be
evaluated on nearly 9 million potential recipes. Also, the model is composed of
hundreds of terms such that experiments are computationally expensive. The
best recipe found so far is given in Table 3. The surrogate model predicts a yield
value of 21137. Compared to the ground truth of 10170, the model has a strong
bias. It illustrates that using a surrogate model for this kind of problem will
give good recipes only if it is reliable enough. Interestingly, the RMSE seems to
be quite good at first glance, but this does not guarantee that the model will
behave correctly on all elements of the search space: on the best recipe found,
it largely overestimates the yield, leading to a non-interesting recipe. It seems
that this method performs poorly on recipes with more attributes than in [9].
Further studies are here needed.

6 Conclusion

We investigated the optimization of plant growth recipes in controlled environ-
ments, a key process in connected urban farms. We motivated the reasons why
existing methods fall short of real life constraints, including the necessity to min-
imize the number of experiments needed to provide good results. We detailed a
new optimization framework that leverages subgroup discovery to iteratively find

350 A. Millot et al.

better growth recipes through the use of a virtuous circle. We also introduced
an efficient algorithm for the optimal subgroup discovery in purely numerical
datasets. It has been recently improved much further in [17]. We avoid dis-
cretization and it provides a qualitative added-value (i.e., more interesting opti-
mal subgroups). Future work includes extending our framework to deal with
multiple target labels at the same time (e.g., optimizing the yield while keeping
the energy cost as low as possible).

Acknowledgment. Our research is partially funded by the French FUI programme
(project DUF 4.0, 2018–2021).

References

1. Atzmueller, M., Puppe, F.: SD-Map – a fast algorithm for exhaustive subgroup
discovery. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006.
LNCS (LNAI), vol. 4213, pp. 6–17. Springer, Heidelberg (2006). https://doi.org/
10.1007/11871637 6

2. Bosc, G., Boulicaut, J.F., Räıssi, C., Kaytoue, M.: Anytime discovery of a diverse
set of patterns with Monte Carlo tree search. Data Min. Knowl. Discov. 32, 604–
650 (2018). https://doi.org/10.1007/s10618-017-0547-5

3. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued
attributes for classification learning. In: Proceedings IJCAI, pp. 1022–1029 (1993)

4. Garriga, G.C., Kralj, P., Lavrač, N.: Closed sets for labeled data. J. Mach. Learn.
Res. 9, 559–580 (2008)

5. Grosskreutz, H., Paurat, D.: Fast and memory-efficient discovery of the top-k rele-
vant subgroups in a reduced candidate space. In: Gunopulos, D., Hofmann, T.,
Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol.
6911, pp. 533–548. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23780-5 44

6. Grosskreutz, H., Rüping, S.: On subgroup discovery in numerical domains. Data
Min. Knowl. Discov. 19(2), 210–226 (2009). https://doi.org/10.1007/s10618-009-
0136-3

7. Grosskreutz, H., Rüping, S., Wrobel, S.: Tight optimistic estimates for fast sub-
group discovery. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD
2008. LNCS (LNAI), vol. 5211, pp. 440–456. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-87479-9 47

8. Harper, C., Siller, M.: OpenAG: a globally distributed network of food computing.
IEEE Pervasive Comput. 14, 24–27 (2015)

9. Johnson, A., Meyerson, E., Parra, J., Savas, T., Miikkulainen, R., Harper, C.:
Flavor-cyber-agriculture: optimization of plant metabolites in an open-source con-
trol environment through surrogate modeling. PLoS ONE 14, e0213918 (2019)

10. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. J. Global Optim. 13(4), 455–492 (1998)

11. Kaytoue, M., Kuznetsov, S.O., Napoli, A.: Revisiting numerical pattern mining
with formal concept analysis. In: Proceedings IJCAI, pp. 1342–1347 (2011)

12. Klösgen, W.: Explora: a multipattern and multistrategy discovery assistant. In:
Advances in Knowledge Discovery and Data Mining, pp. 249–271 (1996)

13. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection, pp. 162–169. MIT Press, Cambridge (1992)

https://doi.org/10.1007/11871637_6
https://doi.org/10.1007/11871637_6
https://doi.org/10.1007/s10618-017-0547-5
https://doi.org/10.1007/978-3-642-23780-5_44
https://doi.org/10.1007/978-3-642-23780-5_44
https://doi.org/10.1007/s10618-009-0136-3
https://doi.org/10.1007/s10618-009-0136-3
https://doi.org/10.1007/978-3-540-87479-9_47
https://doi.org/10.1007/978-3-540-87479-9_47

Actionable Subgroup Discovery and Urban Farm Optimization 351

14. Lemmerich, F., Atzmueller, M., Puppe, F.: Fast exhaustive subgroup discovery
with numerical target concepts. Data Min. Knowl. Discov. 30(3), 711–762 (2015).
https://doi.org/10.1007/s10618-015-0436-8

15. Mampaey, M., Nijssen, S., Feelders, A., Knobbe, A.: Efficient algorithms for finding
richer subgroup descriptions in numeric and nominal data. In: Proceedings ICDM,
pp. 499–508 (2012)

16. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for
selecting values of input variables in the analysis of output from a computer code.
Technometrics 21(2), 239–245 (1979)

17. Millot, A., Cazabet, R., Boulicaut, J.F.: Optimal subgroup discovery in purely
numerical data. In: Proceedings PaKDD, pp. 1–12 (2020, in press)

18. Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms
and comparison of software implementations. J. Global Optim. 56(3), 1247–1293
(2013). https://doi.org/10.1007/s10898-012-9951-y

19. Stephens, T.: gplearn (2013). https://github.com/trevorstephens/gplearn
20. Wojciechowska, R., D�lugosz-Grochowska, O., Ko�lton, A., Żupnik, M.: Effects of

LED supplemental lighting on yield and some quality parameters of lamb’s lettuce
grown in two winter cycles. Sci. Hortic. 187, 80–86 (2015)

21. Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In:
Komorowski, J., Zytkow, J. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63223-9 108

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/s10618-015-0436-8
https://doi.org/10.1007/s10898-012-9951-y
https://github.com/trevorstephens/gplearn
https://doi.org/10.1007/3-540-63223-9_108
http://creativecommons.org/licenses/by/4.0/

AVATAR - Machine Learning Pipeline
Evaluation Using Surrogate Model

Tien-Dung Nguyen1(B), Tomasz Maszczyk1, Katarzyna Musial1,
Marc-André Zöller2, and Bogdan Gabrys1

1 University of Technology Sydney, Sydney, Australia
TienDung.Nguyen-2@student.uts.edu.au,

{Tomasz.Maszczyk,Katarzyna.Musial-Gabrys,Bogdan.Gabrys}@uts.edu.au
2 USU Software AG, Karlsruhe, Germany

m.zoeller@usu.de

Abstract. The evaluation of machine learning (ML) pipelines is essen-
tial during automatic ML pipeline composition and optimisation. The
previous methods such as Bayesian-based and genetic-based optimisa-
tion, which are implemented in Auto-Weka, Auto-sklearn and TPOT,
evaluate pipelines by executing them. Therefore, the pipeline composi-
tion and optimisation of these methods requires a tremendous amount
of time that prevents them from exploring complex pipelines to find bet-
ter predictive models. To further explore this research challenge, we have
conducted experiments showing that many of the generated pipelines are
invalid, and it is unnecessary to execute them to find out whether they
are good pipelines. To address this issue, we propose a novel method to
evaluate the validity of ML pipelines using a surrogate model (AVATAR).
The AVATAR enables to accelerate automatic ML pipeline composition
and optimisation by quickly ignoring invalid pipelines. Our experiments
show that the AVATAR is more efficient in evaluating complex pipelines
in comparison with the traditional evaluation approaches requiring their
execution.

1 Introduction

Automatic machine learning (AutoML) has been studied to automate the pro-
cess of data analytics to collect and integrate data, compose and optimise ML
pipelines, and deploy and maintain predictive models [1–3]. Although many
existing studies proposed methods to tackle the problem of pipeline composi-
tion and optimisation [2,4–9], these methods have two main drawbacks. Firstly,
the pipelines’ structures, which define the executed order of the pipeline com-
ponents, use fixed templates [2,5]. Although using fixed structures can reduce
the number of invalid pipelines during the composition and optimisation, these
approaches limit the exploration of promising pipelines which may have a vari-
ety of structures. Secondly, while evolutionary algorithms based methods [4]
enable the randomness of the pipelines’ structure using the concept of evolu-
tion, this randomness tends to construct more invalid pipelines than valid ones.
c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 352–365, 2020.
https://doi.org/10.1007/978-3-030-44584-3_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_28&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_28

AVATAR - ML Pipeline Evaluation Using Surrogate Model 353

Besides, the search spaces of the pipelines’ structures and hyperparameters of the
pipelines’ components expand significantly. Therefore, the existing approaches
tend to be inefficient as they often attempt to evaluate invalid pipelines. There
are several attempts to reduce the randomness of pipeline construction by using
context-free grammars [8,9] or AI planning to guide the construction of pipelines
[6,7]. Nevertheless, all of these methods evaluate the validity of a pipeline by exe-
cuting them (T-method). After executing a pipeline, if the result is a predictive
model, the T-method evaluates the pipeline to be valid; otherwise it is invalid.
If a pipeline is complex, the complexity of preprocessing/predictor components
within the pipeline is high, or the size of the dataset is large, the evaluation of
the pipeline is expensive. Consequently, the optimisation will require a significant
time budget to find well-performing pipelines.

To address this issue, we propose the AVATAR to evaluate ML pipelines
using their surrogate models. The AVATAR transforms a pipeline to its surro-
gate model and evaluates it instead of executing the original pipeline. We use
the business process model and notation (BPMN) [10] to represent ML pipelines.
BPMN was invented for the purposes of a graphical representation of business
processes, as well as a description of resources for process execution. In addi-
tion, BPMN simplifies the understanding of business activities and interpreta-
tion of behaviours of ML pipelines. The ML pipelines’ components use the Weka
libraries1 for ML algorithms. The evaluation of the surrogate models requires a
knowledge base which is generated from many synthetic datasets. To this end,
this paper has two main contributions:

– We conduct experiments on current state-of-the-art AutoML tools to show
that the construction of invalid pipelines during the pipeline composition and
optimisation may lead to bad performance.

– We propose the AVATAR to accelerate the automatic pipeline composition
and optimisation by evaluating pipelines using a surrogate model.

This paper is divided into five sections. After the Introduction, Sect. 2 reviews
previous approaches to representing and evaluating ML pipelines in the context
of AutoML. Section 3 presents the AVATAR to evaluate ML pipelines. Section 4
presents experiments to motivate our research and prove the efficiency of the
proposed method. Finally, Sect. 5 concludes this study.

2 Related Work

Salvador et al. [2] proposed an automatic pipeline composition and optimisation
method of multicomponent predictive systems (MCPS) to deal with the prob-
lem of combined algorithm selection and hyperparameter optimisation (CASH).
This proposed method is implemented in the tool AutoWeka4MCPS [2] devel-
oped on top of Auto-Weka 0.5 [11]. The pipelines, which are generated by

1 https://www.cs.waikato.ac.nz/ml/weka/.

https://www.cs.waikato.ac.nz/ml/weka/

354 T.-D. Nguyen et al.

AutoWeka4MCPS, are represented using Petri nets [12]. A Petri net is a mathe-
matical modelling language used to represent pipelines [2] as well as data service
compositions [13]. The main idea of Petri nets is to represent transitions of
states of a system. Although it is not clearly mentioned in these previous works
[4–7], directed acyclic graph (DAG) is often used to model sequential pipelines
in the methods/tools such as AutoWeka4MCPS [14], ML-Plan [6], P4ML [7],
TPOT [4] and Auto-sklearn [5]. DAG is a type of graph that has connected
vertexes, and the connections of vertexes have only one direction [15]. In addi-
tion, a DAG does not allow any directed loop. It means that it is a topological
ordering. ML-Plan generates sequential workflows consisting of ML components.
Thus, the workflows are a type of DAG. The final output of P4ML is a pipeline
which is constructed by making an ensemble of other pipelines. Auto-sklearn
generates fixed-length sequential pipelines consisting of scikit-learn components.
TPOT construct pipelines consisting of multiple preprocessing sub-pipelines.
The authors claim that the representation of the pipelines is a tree-based struc-
ture. However, a tree-based structure always starts with a root node and ends
with many leaf nodes, but the output of a TPOT’s pipeline is a single predic-
tive model. Therefore, the representation of TPOT pipeline is more like a DAG.
P4ML uses a tree-based structure to make a multi-layer ensemble. This tree-
based structure can be specialised into a DAG. The reason is that the execution
of these pipelines will start from leaf nodes and end at root nodes where the
construction of the ensembles are completed. It means that the control flows of
these pipelines have one direction, or they are topologically ordered. Using a
DAG to model an ML pipeline makes it easy to understand by humans as DAGs
facilitate visualisation and interpretation of the control flow. However, DAGs
do not model inputs/outputs (i.e. possibly datasets, output predictive models,
parameters and hyperparameters of components) between vertexes. Therefore,
the existing studies use ad-hoc approaches and make assumptions about data
inputs/outputs of the pipelines’ components.

Although AutoWeka4MCPS, ML-Plan, P4ML, TPOT and Auto-sklearn eval-
uate pipelines by executing them, these methods have strategies to limit the gen-
eration of invalid pipelines. Auto-sklearn uses a fixed pipeline template includ-
ing preprocessing, predictor and ensemble components. AutoWeka4MCPS also
uses a fixed pipeline template consisting of six components. TPOT, ML-Plan
and P4ML use grammars/primitive catalogues, which are designed manually, to
guide the construction of pipelines. Although these approaches can reduce the
number of invalid pipelines, our experiments showed that the wasted time used
to evaluate the invalid pipelines is significant. Moreover, using fixed templates,
grammars and primitive catalogues reduce search spaces of potential pipelines,
which is a drawback during pipeline composition and optimisation.

3 Evaluation of ML Pipelines Using Surrogate Models

Because the evaluation of ML pipelines is expensive in certain cases (i.e., com-
plex pipelines, high complexity pipeline’s components and large datasets) in the

AVATAR - ML Pipeline Evaluation Using Surrogate Model 355

context of AutoML, we propose the AVATAR2 to speed up the process by eval-
uating their surrogate pipelines. The main idea of the AVATAR is to expand
the purpose and representation of MCPS introduced in [12]. The AVATAR uses
a surrogate model in the form of a Petri net. This surrogate pipeline keeps
the structure of the original pipeline, replaces the datasets in the form of data
matrices (i.e., components’ input/output simplified mappings) by the matrices
of transformed-features, and the ML algorithms by transition functions to calcu-
late the output from the input tokens (i.e., the matrices of transformed-features).
Because of the simplicity of the surrogate pipelines in terms of the size of the
tokens and the simplicity of the transition functions, the evaluation of these
pipelines is substantially less expensive than the original ones.

3.1 The AVATAR Knowledge Base

We define transformed-features as the features, which represent dataset’s charac-
teristics. These characteristics can be changed because of the transformations of
this dataset by ML algorithms. Table 1 describes the transformed-features used

Table 1. Descriptions of the transformed-features of a dataset.

Transformed-feature Description

BINARY CLASS A dataset has binary classes

NUMERIC CLASS A dataset has numeric classes

DATE CLASS A dataset has date classes

MISSING CLASS VALUES A dataset has missing values in classes

NOMINAL CLASS A dataset has nominal classes

SYMBOLIC CLASS A dataset has symbolic data in classes

STRING CLASS A dataset has string classes

UNARY CLASS A dataset has unary classes

BINARY ATTRIBUTES A dataset has binary attributes

DATE ATTRIBUTES A dataset has date attributes

EMPTY NOMINAL ATTRIBUTES A dataset has an empty column

MISSING VALUES A dataset has missing values in attributes

NOMINAL ATTRIBUTES A dataset has nominal attributes

NUMERIC ATTRIBUTES A dataset has numeric attributes

UNARY ATTRIBUTES A dataset has unary attributes

PREDICTIVE MODEL A predictive model generated by a predictor

2 https://github.com/UTS-AAi/AVATAR.

https://github.com/UTS-AAi/AVATAR

356 T.-D. Nguyen et al.

for the knowledge base. We select these transformed-features because the capa-
bilities of a ML algorithm to work with a dataset depend on these transformed-
features. These transformed-features are extended from the capabilities of Weka
algorithms3.

The purpose of the AVATAR knowledge base is for describing the logic of
transition functions of the surrogate pipelines. The logic includes the capabilities
and effects of ML algorithms (i.e., pipeline components).

The capabilities are used to verify whether an algorithm is compatible to work
with a dataset or not. For example, whether the linear regression algorithm can
work with missing value and numeric attributes or not? The capabilities have
a list of transformed-features. The value of each capability-related transformed-
feature is either 0 (i.e., the algorithm can not work with the dataset which
has this transformed-feature) or 1 (i.e., the algorithm can work with the dataset
which has this transformed-feature). Based on the capabilities, we can determine
which components of a pipeline (i.e., ML algorithms) are not able to process
specific transformed-features of a dataset.

The effects describe data transformations. Similar to the capabilities, the
effects have a list of transformed-features. Each effect-related transformed-
feature can have three values, 0 (i.e., do not transform this transformed-feature),
1 (i.e., transform one or more attributes/classes to this transformed-feature),
or −1 (i.e., disable the effect of this transformed-feature on one or more
attributes/classes).

To generate the AVATAR knowledge base4, we have to use synthetic datasets5

to minimise the number of active transformed-features in each dataset to evaluate
which and how transformed-features impact on the capabilities and effects of
ML algorithms6. Real-world datasets usually have many active transformed-
features that make them not suitable for our purpose. We minimise the number
of available transformed-features in each synthetic dataset so that the knowledge
base can be applicable in a variety of pipelines and datasets. Figure 1 presents
the algorithm to generate the AVATAR knowledge base. This algorithm has four
main stages:

1. Initialisation: The first stage initialises all transformed-features in the capa-
bilities and effects to 0.

2. Execution: Run ML algorithms with every synthetic dataset and get outputs
(i.e., output datasets or predictive models).

3. Find capabilities: If the execution is successful, we set the active transformed-
features of the input dataset for the ones in the capabilities.

4. Find effects: If an algorithm is a predictor/transformed-predictor, we set
PREDICTIVE MODEL for its effects. If the algorithm is a filter and its

3 http://weka.sourceforge.net/doc.dev/weka/core/Capabilities.html.
4 https://github.com/UTS-AAi/AVATAR/blob/master/avatar-knowledge-base/

avatar knowledge base.json.
5 https://github.com/UTS-AAi/AVATAR/tree/master/synthetic-datasets.
6 https://github.com/UTS-AAi/AVATAR/blob/master/supplementary-documents/

avatar algorithms.txt.

http://weka.sourceforge.net/doc.dev/weka/core/Capabilities.html
https://github.com/UTS-AAi/AVATAR/blob/master/avatar-knowledge-base/avatar_knowledge_base.json
https://github.com/UTS-AAi/AVATAR/blob/master/avatar-knowledge-base/avatar_knowledge_base.json
https://github.com/UTS-AAi/AVATAR/tree/master/synthetic-datasets
https://github.com/UTS-AAi/AVATAR/blob/master/supplementary-documents/avatar_algorithms.txt
https://github.com/UTS-AAi/AVATAR/blob/master/supplementary-documents/avatar_algorithms.txt

AVATAR - ML Pipeline Evaluation Using Surrogate Model 357

Has next machine
learning algorithm?

Is execution successful?

Has next
synthetic dataset?

Is the algorithm
a filter?

Has next
transformed-feature

in the effects?

NO

YES

NO

NO

YES
NO

YES

NO

YES

YES

INITIALIZATION - Set all transformed-features
in the capabilities and effects to 0

Calculate transformed-features of a synthetic dataset

EXECUTION: Run the algorithm with the synthetic dataset

FIND CAPABILITIES
For each transformed-feature in the capabilities
IF f_input_i = 1, SET f_cap_i = 1

IF f_effect_i = 0,
SET f_effect_i = f_output_i - f_input_i

Store the capabilities and
effects of the machine
learning algorithms in the
AVATAR knowledge base

SET PREDICTIVE_MODEL=1
for the effects

Fig. 1. Algorithm to generate the knowledge base for evaluating surrogate pipelines.

current value is a default value, we set this effect-related transformed-feature
equal the difference of the values of this transformed-feature of the output
and input dataset.

3.2 Evaluation of ML Pipelines

The AVATAR evaluates a ML pipeline by mapping it to its surrogate pipeline
and evaluating this surrogate pipeline. BPMN is the most promising method to
represent an ML pipeline. The reasons are that a BPMN-based ML pipeline can
be executable, has a better interpretation of the pipeline in terms of control,
data flows and resources for execution, as well as integrates into existing busi-
ness processes as a subprocess. Moreover, we claim that a Petri net is the most
promising method to represent a surrogate pipeline. The reason is that it is fast
to verify the validity of a Petri net based simplified ML pipeline.

358 T.-D. Nguyen et al.

Input: dataset

Stage 3. Mapping
components to transition
functions

weka.filters.
unsupervised.attribute.
EMImputation

weka.classifiers.
bayes.NaiveBayes

Stage 1. Mapping pipeline structure:
- Start Event to Start Place
- End Event to End Place
- Components to empty Transitions
- Put empty places between Transitions
- Control flow between Transitions and Places

Stage 2. Mapping the input
dataset to the input token
(transformed-feature
matrix)

Fig. 2. Mapping a ML pipeline to its surrogate model.

Mapping a ML Pipeline to Its Surrogate Model. The AVATAR maps a
BPMN pipeline to a Petri net pipeline via three stages (Fig. 2).

1. The structure of the BPMN-based ML pipeline is mapped to the respective
structure of the Petri net surrogate pipeline. The start and end events are
mapped to the start and end places respectively. The components are mapped
to empty transitions. Empty places are put between all transitions. Finally,
all flows are mapped to arcs.

2. The values of transformed-features are calculated from the input dataset to
form a transformed-feature matrix which is the input token in the start place
of the surrogate pipeline.

3. The transition functions are mapped from the components. In this stage, only
the corresponding algorithm information is mapped to the transition function.

Has next transformed-feature
(f_in_token_i)?

(f_in_token_i = 1 &&
f_cap_i = 0)

Has next
transformed-feature

(f_in_token_i)?NO

YES

NOYES

NO YES

Get all transformed-features
stored in the input token

Invalid Component

Get all transformed-features stored in the input tokenGet the respective f_cap_i from
the AVATAR knowledge base

Valid Component

Get the respective f_effect_i in
the AVATAR knowledge base f_out_token_i = f_in_token_i + f_effect_i

Output Token

Fig. 3. Algorithm for firing a transition of the surrogate model.

AVATAR - ML Pipeline Evaluation Using Surrogate Model 359

Evaluating a Surrogate Model. The evaluation of a surrogate model will
execute a Petri net pipeline. This execution starts by firing each transition of
the Petri net pipeline and transforming the input token. As shown in Fig. 3,
firing a transition consists of two tasks: (i) the evaluation of the capabilities
of each component; and (ii) the calculation of the output token. The first task
verifies the validity of the component using the following rules. If the value of a
transformed-feature stored in the input token (f in token i) is 1 and the corre-
sponding transformed-feature in the component’s capabilities (f cap i) is 0, this
component is invalid. Otherwise, this component is always valid. If a component
is invalid, the surrogate pipeline is evaluated as invalid. The second task calcu-
lates each transformed-feature stored in the output token (f out token i) in the
next place from the input token by adding the value of a transformed-feature
stored in the input token (f in token i) and the respective transformed-feature
in the component’s effects (f effect i).

4 Experiments

To investigate the impact of invalid pipelines on ML pipeline composition and
optimisation, we have first conducted a series of experiments with current state-
of-the-art AutoML tools. After that, we have conducted the experiments to
compare the performance of the AVATAR and the existing methods.

4.1 Experimental Settings

Table 2 summarises characteristics of datasets7 used for experiments. We use
these datasets because they were used in previous studies [2,4,5]. The AutoML
tools used for the experiments are AutoWeka4MCPS [2] and Auto-sklearn [5].
These tools are selected because their abilities to construct and optimise hyper-
parameters of complex ML pipelines have been empirically proven to be effective
in a number of previous studies [2,5,16]. However, these previous experiments

Table 2. Summary of datasets’ characteristics: the number of numeric attributes,
nominal attributes, distinct classes, instances in training and testing sets.

Dataset Numeric Nominal No. of distinct classes Training Testing

abalone 7 1 26 2,924 1,253

car 0 6 4 1,210 518

convex 784 0 2 8,000 50,000

gcredit 7 13 2 700 300

wineqw 11 0 7 3,429 1,469

7 https://archive.ics.uci.edu.

https://archive.ics.uci.edu

360 T.-D. Nguyen et al.

had not investigated the negative impact of the evaluation of invalid pipelines
on the quality of the pipeline composition and optimisation yet. This is the goal
of our first set of experiments. In the second set of experiments, we show that
the AVATAR can significantly reduce the evaluation time of ML pipelines.

4.2 Experiments to Investigate the Impact of Invalid Pipelines

To investigate the impact of invalid pipelines, we use five iterations (Iter) for the
first set of experiments. We run these experiments on AWS EC2 t3a.small virtual
machines which have 2 vCPU and 2 GB memory. Each iteration uses a different
seed number. We set the time budget to 1 h and the memory to 1 GB. We evaluate
the pipelines produced by the AutoML tools using three criteria: (1) the number
of invalid/valid pipelines, (2) the total evaluation time of invalid/valid pipelines
(seconds), and (3) the wasted evaluation time (%). The wasted evaluation time
is calculated by the percentage of the total evaluation time of invalid pipelines
over the total runtime of the pipeline composition and optimisation. The wasted
evaluation time represents the degree of negative impacts of invalid pipelines.

Tables 3 and 4 present negative impacts of invalid pipelines in ML pipeline
composition and optimisation of AutoWeka4MCPS and Auto-sklearn using the
above criteria. These tables show that not all of constructed pipelines are valid.
Because AutoWeka4MCPS can compose pipelines which have up to six com-
ponents, it is more likely to generate invalid pipelines and the evaluation time

Table 3. Negative impacts of invalid pipelines in pipeline composition and optimi-
sation of AutoWeka4MCPS. (1): the number of invalid/valid pipelines, (2): the total
evaluation time of invalid/valid pipelines (s), (3): the wasted evaluation time (%).

Dataset Criteria Iter 1 Iter 2 Iter 3 Iter 4 Iter 5

abalone (1) 16/26 90/79 69/88 34/29 53/80

(2) 3607.7/1322.5 2007.1/1236.4 4512.9/2172.3 3615.4/277.6 23.2/3509.0

(3) 73.18 61.88 67.51 92.87 0.66

car (1) 205/152 108/70 197/313 139/156 85/64

(2) 3818.1/291.8 3498.5/113.0 4523.6/532.6 5232.2/251.3 4365.1/90.1

(3) 92.90 96.87 89.47 95.42 97.98

convex (1) 18/20 2/0 17/11 crashed crashed

(2) 76.3/3588.1 3475.2/0.0 1324.7/2331.8

(3) 2.08 100.00 36.23

gcredit (1) 112/195 229/364 208/166 12/54 30/54

(2) 2821.0/2260.1 3829.8/285.6 3933.8/184.0 3667.6/34.1 3634.8/64.7

(3) 55.52 93.06 95.53 99.08 98.25

wineqw (1) 203/213 121/139 crashed 201/302 36/54

(2) 4880.6/1052.9 4183.4/1078.6 2418.5/1132.2 1639.2/862.2

(3) 82.26 79.50 68.11 65.53

AVATAR - ML Pipeline Evaluation Using Surrogate Model 361

Table 4. Negative impacts of invalid pipelines in pipeline composition and optimisation
of Auto-sklearn. (1): the number of invalid/valid pipelines, (2): the total evaluation time
of invalid/valid pipelines (s), (3): the wasted evaluation time (%).

Dataset Criteria Iter 1 Iter 2 Iter 3 Iter 4 Iter 5

abalone crashed crashed crashed crashed crashed

car crashed crashed crashed crashed crashed

convex (1) 2/13 2/6 2/8 2/6 2/8

(2) 560.8/2981.8 537.7/629.2 584.1/1537.5 558.1/977.1 560.0/1655.9

(3) 15.76 15.07 16.39 15.66 15.72

gcredit crashed crashed crashed crashed crashed

wineqw (1) 0/42 0/22 0/42 0/32 0/32

(2) 0.0/3523.4 0.0/909.7 0.0/3197.4 0.0/3054.0 0.0/3163.5

(3) 0.00 0.00 0.00 0.00 0.00

of these invalid pipelines are significant. For example, the wasted evaluation
time is 97.98% in the case of using the dataset car and Iter 5. We can see that
changing the different random iterations has a strong impact on the wasted
evaluation time in the case of AutoWeka4MCPS. For example, the experiments
with the dataset abalone show that the wasted evaluation time is in the range
between 0.66% and 92.87%. The reason is that Weka libraries them-self can eval-
uate the compatibility of a single component pipeline without execution. If the
initialisation of the pipeline composition and optimisation with a specific seed
number results in pipelines consisting of only one predictor, and these pipelines
are well-performing, it tends to exploit similar ML pipelines. As a result, the
wasted evaluation time is low. However, this impact is negligible in the case of
Auto-sklearn. The reason is that Auto-sklearn uses meta-learning to initialise
with promising ML pipelines. The experiments with the datasets abalone, car
and gcredit show that Auto-sklearn limits the generation of invalid pipelines by
making assumption about cleaned input datasets, because the experiments crash
if the input datasets have multiple attribute types. It means that Auto-sklearn
can not handle invalid pipelines effectively.

4.3 Experiments to Compare the Performance of AVATAR and the
Existing Methods

In order to demonstrate the efficiency of the AVATAR, we have conducted a
second set of experiments. We run these experiments on a machine with an
Intel core i7-8650U CPU and 16 GB memory. We compare the performance of
the AVATAR and the T-method that requires the executions of pipelines. The
T-method is used to evaluate the validity of pipelines in the pipeline compo-
sition and optimisation of AutoWeka4MCPS and Auto-sklearn. We randomly
generate ML pipelines which have up to six components (i.e., these component
types are missing value handling, dimensionality reduction, outlier removal, data
transformation, data sampling and predictor). The predictor is put at the end

362 T.-D. Nguyen et al.

Table 5. Comparison of the performance of the AVATAR and T-method

Dataset abalone car convex gcredit winequality

T-method Invalid/valid
pipelines

683/
1,097

4,387/
6,817

252/
428

4,557/
7,208

1,276/
1,951

Total
evaluation
time of
invalid/valid
pipelines (s)

27,711.9/
15,484.1

18,627.9/
24,459.4

5,818.3/
37,765.1

19,597.9/
23,452.5

10,830.1/
32,326.9

AVATAR Invalid/valid
pipelines

663/
1,117

4,387/
6,817

250/
430

4,552/
7,213

1,262/
1,965

Total
evaluation
time of
invalid/valid
pipelines (s)

3.5/4.9 43.1/64.8 19.6/131.1 57.0/89.2 17.1/25.4

Pipelines have
different/similar
evaluated results

20/1,760 0/11,204 2/678 5/11,760 14/3,213

The percentage of
pipelines that the
AVATAR can validate
accurately (%)

98.88 100.00 99.71 99.96 99.57

of the pipelines because a valid pipeline always has a predictor at the end. Each
pipeline is evaluated by the AVATAR and the T-method. We set the time budget
to 12 h per dataset. We use the following criteria to compare the performance:
the number of invalid/valid pipelines, the total evaluation time of invalid/valid
pipelines (seconds), the number of pipelines that have the same evaluated results
between the AVATAR and the T-method, and the percentage of the pipelines
that the AVATAR can validate accurately (%) in comparison to the T-method.

Table 5 compares the performance of the AVATAR and the T-method using
the above criteria. We can see that the total evaluation time of invalid/valid
pipelines of the AVATAR is significantly lower than the T-method. While the
evaluation time of pipelines of the AVATAR is quite stable, the evaluation time
of pipelines of the T-method is much higher and depends on the size of the
datasets. It means that the AVATAR is faster than the T-method in evaluating
both invalid and valid pipelines regardless of the size of datasets. Moreover, we
can see that the accuracy of the AVATAR is approximately 99% in comparison
with the T-method. We have carefully reviewed the pipelines which have different
evaluated results between the AVATAR and the T-method. Interestingly, the
AVATAR evaluates all of these pipelines to be valid and vice versa in the case of
the T-method. The reason is that executions of these pipelines cause the out of
memory problem. In other words, the AVATAR does not consider the allocated

AVATAR - ML Pipeline Evaluation Using Surrogate Model 363

memory as an impact on the validity of a pipeline. A promising solution is
to reduce the size of an input dataset by adding a sampling component with
appropriate hyperparameters. If the sampling size is too small, we may miss
important features. If the sampling size is large, we may continue to run into the
problem of out of memory. We cannot conclude that if we allocate more memory,
whether the executions of these pipelines would be successful or not. It proves
that the validity of a pipeline also depends on its execution environment such as
memory. These factors have not been considered yet in the AVATAR. This is an
interesting research gap that should be addressed in the future.

Table 6. Five invalid pipelines with the longest evaluation time using the T-method
on the gcredit dataset.

Pipeline #1 #2 #3 #4 #5

T-method (s) 11.092 11.068 11.067 11.067 11.066

AVATAR (s) 0.014 0.012 0.011 0.011 0.011

Finally, we take a detailed look at the invalid pipelines with the longest eval-
uation time using the T-method on the gcredit dataset, as shown in Table 6.
Pipeline #1 (11.092 s) has the structure ReplaceMissingValues → PeriodicSam-
pling → NumericToNominal → PrincipalComponents → SMOreg. This pipeline
is invalid because SMOreg does not work with nominal classes, and there is
no component transforming the nominal to numeric data. We can see that the
AVATAR is able to evaluate the validity of this pipeline without executing it in
just 0.014 s.

5 Conclusion

We empirically demonstrate the problem of generation of invalid pipelines dur-
ing pipeline composition and optimisation. We propose the AVATAR which is a
pipeline evaluation method using a surrogate model. The AVATAR can be used
to accelerate pipeline composition and optimisation methods by quickly ignor-
ing invalid pipelines to improve the effectiveness of the AutoML optimisation
process. In future, we will improve the AVATAR to evaluate pipelines’ quality
besides their validity. Moreover, we will investigate how to employ the AVATAR
to reduce search spaces dynamically.

Acknowledgment. This research is sponsored by AAi, University of Technology
Sydney (UTS).

References

1. Kadlec, P., Gabrys, B.: Architecture for development of adaptive on-line prediction
models. Memetic Computing 1 (2009). https://doi.org/10.1007/s12293-009-0017-8.
Article number. 241

https://doi.org/10.1007/s12293-009-0017-8

364 T.-D. Nguyen et al.

2. Salvador, M.M., Budka, M., Gabrys, B.: Automatic composition and optimization
of multicomponent predictive systems with an extended auto-WEKA. IEEE Trans.
Autom. Sci. Eng. 16(2), 946–959 (2019)

3. Zöller, M.A., Huber, M.F.: Survey on automated machine learning. arXiv preprint
arXiv:1904.12054 (2019)

4. Olson, R.S., Moore, J.H.: TPOT: a tree-based pipeline optimization tool for
automating machine learning. In: Workshop on Automatic Machine Learning, pp.
66–74 (2016)

5. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.:
Efficient and robust automated machine learning. In: Advances in Neural Informa-
tion Processing Systems, pp. 2962–2970 (2015)

6. Mohr, F., Wever, M., Hüllermeier, E.: ML-Plan: automated machine learning via
hierarchical planning. Mach. Learn. 107, 1495–1515 (2018). https://doi.org/10.
1007/s10994-018-5735-z

7. Gil, Y., et al.: P4ML: a phased performance-based pipeline planner for automated
machine learning. In: AutoML Workshop at ICML (2018)

8. de Sá, A.G.C., Pinto, W.J.G.S., Oliveira, L.O.V.B., Pappa, G.L.: RECIPE: a
grammar-based framework for automatically evolving classification pipelines. In:
McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., Garćıa-Sánchez, P. (eds.)
EuroGP 2017. LNCS, vol. 10196, pp. 246–261. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-55696-3 16

9. Tsakonas, A., Gabrys, B.: GRADIENT: grammar-driven genetic programming
framework for building multi-component, hierarchical predictive systems. Expert
Syst. Appl. 39, 13253–13266 (2012)

10. Chinosi, M., Trombetta, A.: Modeling and validating BPMN diagrams. In: 2009
IEEE Conference on Commerce and Enterprise Computing, pp. 353–360. IEEE
(2009)

11. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: combined
selection and hyperparameter optimization of classification algorithms. In: Pro-
ceedings of the 19th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 847–855. ACM (2013)

12. Salvador, M.M., Budka, M., Gabrys, B.: Modelling multi-component predictive
systems as Petri nets (2017)

13. Tan, W., Fan, Y., Zhou, M., Tian, Z.: Data-driven service composition in enterprise
SOA solutions: a Petri net approach. IEEE Trans. Autom. Sci. Eng. 7, 686–694
(2010)

14. Martin Salvador, M., Budka, M., Gabrys, B.: Towards automatic composition
of multicomponent predictive systems. In: Mart́ınez-Álvarez, F., Troncoso, A.,
Quintián, H., Corchado, E. (eds.) HAIS 2016. LNCS (LNAI), vol. 9648, pp. 27–39.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32034-2 3

15. Barker, A., van Hemert, J.: Scientific workflow: a survey and research directions.
In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM
2007. LNCS, vol. 4967, pp. 746–753. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-68111-3 78

16. Balaji, A., Allen, A.: Benchmarking automatic machine learning frameworks. arXiv
preprint arXiv:1808.06492 (2018)

http://arxiv.org/abs/1904.12054
https://doi.org/10.1007/s10994-018-5735-z
https://doi.org/10.1007/s10994-018-5735-z
https://doi.org/10.1007/978-3-319-55696-3_16
https://doi.org/10.1007/978-3-319-55696-3_16
https://doi.org/10.1007/978-3-319-32034-2_3
https://doi.org/10.1007/978-3-540-68111-3_78
https://doi.org/10.1007/978-3-540-68111-3_78
http://arxiv.org/abs/1808.06492

AVATAR - ML Pipeline Evaluation Using Surrogate Model 365

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Detection of Derivative Discontinuities
in Observational Data

Dimitar Ninevski(B) and Paul O’Leary

University of Leoben, 8700 Leoben, Austria
automation@unileoben.ac.at

http://automation.unileoben.ac.at

Abstract. This paper presents a new approach to the detection of dis-
continuities in the n-th derivative of observational data. This is achieved
by performing two polynomial approximations at each interstitial point.
The polynomials are coupled by constraining their coefficients to ensure
continuity of the model up to the (n− 1)-th derivative; while yielding an
estimate for the discontinuity of the n-th derivative. The coefficients of
the polynomials correspond directly to the derivatives of the approxima-
tions at the interstitial points through the prudent selection of a common
coordinate system. The approximation residual and extrapolation errors
are investigated as measures for detecting discontinuity. This is neces-
sary since discrete observations of continuous systems are discontinuous
at every point. It is proven, using matrix algebra, that positive extrema
in the combined approximation-extrapolation error correspond exactly
to extrema in the difference of the Taylor coefficients. This provides a
relative measure for the severity of the discontinuity in the observational
data. The matrix algebraic derivations are provided for all aspects of
the methods presented here; this includes a solution for the covariance
propagation through the computation. The performance of the method
is verified with a Monte Carlo simulation using synthetic piecewise poly-
nomial data with known discontinuities. It is also demonstrated that the
discontinuities are suitable as knots for B-spline modelling of data. For
completeness, the results of applying the method to sensor data acquired
during the monitoring of heavy machinery are presented.

Keywords: Data analysis · Discontinuity detection · Free-knot splines

1 Introduction

In the recent past physics informed data science has become a focus of research
activities, e.g., [9]. It appears under different names e.g., physics informed [12];
hybrid learning [13]; physics-based [17], etc.; but with the same basic idea of
embedding physical principles into the data science algorithms. The goal is to
ensure that the results obtained obey the laws of physics and/or are based on
physically relevant features. Discontinuities in the observations of continuous

c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 366–378, 2020.
https://doi.org/10.1007/978-3-030-44584-3_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_29&domain=pdf
http://orcid.org/0000-0003-0101-8686
http://orcid.org/0000-0002-1367-8270
https://doi.org/10.1007/978-3-030-44584-3_29

Detection of Derivative Discontinuities in Observational Data 367

systems violate some very basic physics and for this reason their detection is of
fundamental importance. Consider Newton’s second law of motion,

F (t) =
d
dt

{
m(t)

d
dt

y(t)
}

= ṁ(t) ẏ(t) + m(t) ÿ(t). (1)

Any discontinuities in the observations of m(t), ṁ(t), y(t), ẏ(t) or ÿ(t) indi-
cate a violation of some basic principle: be it that the observation is incorrect
or something unexpected is happening in the system. Consequently, detecting
discontinuities is of fundamental importance in physics based data science. A
function s(x) is said to be Cn discontinuous, if s ∈ Cn−1\Cn, that is if s(x) has
continuous derivatives up to and including order n − 1, but the n-th derivative
is discontinuous. Due to the discrete and finite nature of the observational data,
only jump discontinuities in the n-th derivative are considered; asymptotic dis-
continuities are not considered. Furthermore, in more classical data modelling,
Cn jump discontinuities form the basis for the locations of knots in B-Spline
models of observational data [15].

1.1 State of the Art

There are numerous approaches in the literature dealing with estimating regres-
sion functions that are smooth, except at a finite number of points. Based on the
methods, these approaches can be classified into four groups: local polynomial
methods, spline-based methods, kernel-based methods and wavelet methods. The
approaches vary also with respect to the available a priori knowledge about the
number of points of discontinuity or the derivative in which these discontinuities
appear. For a good literature review of these methods, see [3]. The method used
in this paper is relevant both in terms of local polynomials as well as spline-based
methods; however, the new approach requires no a priori knowledge about the
data.

In the local polynomial literature, namely in [8] and [14], ideas similar to the
ones presented here are investigated. In these papers, local polynomial approx-
imations from the left and the right side of the point in question are used. The
major difference is that neither of these methods use constraints to ensure that
the local polynomial approximations enforce continuity of the lower derivatives,
which is done in this paper. As such, they use different residuals to determine the
existence of a change point. Using constrained approximation ensures that the
underlying physical properties of the system are taken into consideration, which
is one of the main advantages of the approach presented here. Additionally, in the
aforementioned papers, it is not clear whether only co-locative points are con-
sidered as possible change points, or interstitial points are also considered. This
distinction between collocative and interstitial is of great importance. Funda-
mentally, the method presented here can be applied to discontinuities at either
locations. However, it has been assumed that discontinuities only make sense
between the sampled (co-locative) points, i.e., the discontinuities are interstitial.

In [11] on the other hand, one polynomial instead of two is used, and the focus
is mainly on detecting C0 and C1 discontinuities. Additionally, the number of

368 D. Ninevski and P. O’Leary

change-points must be known a-priori, so only their location is approximated;
the required a-priori knowledge make the method unsuitable in real sensor based
system observation.

In the spline-based literature there are heuristic methods (top-down and
bottom-up) as well as optimization methods. For a more detailed state of the
art on splines, see [2]. Most heuristic methods use a discrete geometric measure
to calculate whether a point is a knot, such as: discrete curvature, kink angle,
etc, and then use some (mostly arbitrary) threshold to improve the initial knot
set. In the method presented here, which falls under the category of bottom-
up approaches, the selection criterion is based on calculus and statistics, which
allows for incorporation of the fundamental physical laws governing the system,
in the model, but also ensures mathematical relevance and rigour.

1.2 The New Approach

This paper presents a new approach to detecting Cn discontinuities in obser-
vational data. It uses constrained coupled polynomial approximation to obtain
two estimates for the nth Taylor coefficients and their uncertainties, at every
interstitial point. These correspond approximating the local function by polyno-
mials, once from the left f(x,α) and once from the right g(x,β). The constraints
couple the polynomials to ensure that αi = βi for every i ∈ [0 . . . n − 1]. In this
manner the approximations are Cn−1 continuous at the interstitial points, while
delivering an estimate for the difference in the nth Taylor coefficients. All the
derivations for the coupled constrained approximations and the numerical imple-
mentations are presented. Both the approximation and extrapolation residuals
are derived. It is proven that the discontinuities must lie at local positive peaks
in the extrapolation error. The new approach is verified with both known syn-
thetic data and on real sensor data obtained from observing the operation of
heavy machinery.

2 Detecting Cn Discontinuities

Discrete observations s(xi) of a continuous system s(x) are, by their very nature,
discontinuous at every sample. Consequently, some measure for discontinuity will
be required, with uncertainty, which provides the basis for further analysis.

The observations are considered to be the co-locative points, denoted by xi

and collectively by the vector x; however, we wish to estimate the discontinuity
at the interstitial points, denoted by ζi and collectively as ζ. Using intersti-
tial points, one ensures that each data point is used for only one polynomial
approximation at a time. Furthermore, in the case of sensor data, one expects
the discontinuities to happen between samples. Consequently the data is seg-
mented at the interstitial points, i.e. between the samples. This requires the use
of interpolating functions and in this work we have chosen to use polynomials.

Polynomials have been chosen because of their approximating, interpolating
and extrapolating properties when modelling continuous systems: The Weier-
strass approximation theorem [16] states that if f(x) is a continuous real-valued

Detection of Derivative Discontinuities in Observational Data 369

function defined on the real interval x ∈ [a, b], then for every ε > 0, there
exists a polynomial p(x) such that for all x ∈ [a, b], the supremum norm
‖f(x) − p(x)‖∞ < ε. That is any function f(x) can be approximated by a
polynomial to an arbitrary accuracy ε given a sufficiently high degree.

The basic concept (see Fig. 1) to detect a Cn discontinuity is: to approximate
the data to the left of an interstitial point by the polynomial f(x,α) of degree dL

and to the right by g(x,β) of degree dR, while constraining these approximations
to be Cn−1 continuous at the interstitial point. This approximation ensures that,

f(k−1)(ζi) = g(k−1)(ζi), for every k ∈ [1 . . . n] . (2)

while yielding estimates for f(n)(ζi) and g(n)(ζi) together with estimates for their
variances λf(ζi) and λg(ζi). This corresponds exactly to estimating the Taylor
coefficients of the function twice for each interstitial point, i.e., once from the
left and once from the right. It they differ significantly, then the function’s nth

derivative is discontinuous at this point. The Taylor series of a function f(x)
around the point a is defined as,

Fig. 1. Schematic of a finite set of discrete observations (dotted circles) of a continuous
function. The span of the observation is split into a left and right portion at the
interstitial point (circle), with lengths lL and lR respectively. The left and right sides
are considered to be the functions f(x) and g(x); modelled by the polynomials f(x, α)
and g(x, β) of degrees dL and dR.

f(x) =
∞∑

k=0

f (k) (a)
k!

(x − a)k (3)

for each x for which the infinite series on the right hand side converges. Further-
more, any function which is n + 1 times differentiable can be written as

f(x) = f̃(x) + R(x) (4)

370 D. Ninevski and P. O’Leary

where f̃(x) is an nth degree polynomial approximation of the function f(x),

f̃(x) =
n∑

k=0

f (k) (a)
k!

(x − a)k (5)

and R(x) is the remainder term. The Lagrange form of the remainder R(x) is
given by

R(x) =
f (n+1) (ξ)
(n + 1)!

(x − a)n+1 (6)

where ξ is a real number between a and x.
A Taylor expansion around the origin (i.e. a = 0 in Eq. 3) is called a Maclaurin

expansion; for more details, see [1]. In the rest of this work, the nth Maclaurin
coefficient for the function f(x) will be denoted by

t
(n)
f � f (n) (0)

n!
. (7)

The coefficients of a polynomial f(x,α) = αnxn + . . . + α1x + α0 are closely
related to the coefficients of the Maclaurin expansion of this polynomial. Namely,
it’s easy to prove that

αk = t
(k)
f , for every k ∈ [0 . . . n] . (8)

A prudent selection of a common local coordinate system, setting the interstitial
point as the origin, ensures that the coefficients of the left and right approxi-
mating polynomials correspond to the derivative values at this interstitial point.
Namely, one gets a very clear relationship between the coefficients of the left and
right polynomial approximations, α and β, their Maclaurin coefficients, t

(n)
f and

t
(n)
g , and the values of the derivatives at the interstitial point

t
(n)
f = αn =

f(n) (0)
n!

and t(n)g = βn =
g(n) (0)

n!
. (9)

From Eq. 9 it is clear that performing a left and right polynomial approximation
at an interstitial point is sufficient to get the derivative values at that point, as
well as their uncertainties.

3 Constrained and Coupled Polynomial Approximation

The goal here is to obtain Δt
(n)
fg � t

(n)
f − t

(n)
g via polynomial approximation. To

this end two polynomial approximations are required; whereby, the interstitial
point is used as the origin in the common coordinate system, see Fig. 1. The
approximations are coupled [6] at the interstitial point by constraining the coef-
ficients such that αi = βi, for every i ∈ [0 . . . n − 1]. This ensures that the two
polynomials are Cn−1 continuous at the interstitial points. This also reduces the
degrees of freedom during the approximation and with this the variance of the
solution is reduced. For more details on constrained polynomial approximation
see [4,7].

Detection of Derivative Discontinuities in Observational Data 371

To remain fully general, a local polynomial approximation of degree dL is
performed to the left of the interstitial point with the support length lL cre-
ating f(x,α); similarly to the right dR, lR, g(x,β). The x coordinates to the
left, denoted as xL are used to form the left Vandermonde matrix VL, simi-
larly xR form VR to the right. This leads to the following formulation of the
approximation process,

yL = VL α and yR = VR β. (10)
[
VL 0
0 VR

] [
α
β

]
=

[
yL

yR

]
(11)

A Cn−1 continuity implies αi = βi, for every i ∈ [0 . . . n−1] which can be written
in matrix form as [

0 In−1 0 −In−1

] [
α
β

]
= 0 (12)

Defining

V �
[
VL 0
0 VR

]
, γ �

[
α
β

]
, y �

[
yL

yR

]
and C �

[
0 In−1 0 −In−1

]

We obtain the task of least squares minimization with homogeneous linear con-
straints,

min
γ

‖y − V γ‖22
Given C γ = 0. (13)

Clearly γ must lie in the null-space of C; now, given N , an ortho-normal vector
basis set for null {C}, we obtain,

γ = N δ. (14)

Back-substituting into Eq. 13 yields,

min
δ

‖y − V N δ‖22 (15)

The least squares solution to this problem is,

δ = (V N)+ y, (16)

and consequently,

γ =
[
α
β

]
= N (V N)+ y (17)

372 D. Ninevski and P. O’Leary

Formulating the approximation in the above manner ensures that the difference
in the Taylor coefficients can be simply computed as

Δt
(n)
fg = t

(n)
f − t(n)g = αn = βn. (18)

Now defining d = [1, 0dL−1, −1, 0dR−1]T, Δt
(n)
fg is obtained from γ as

Δt
(n)
fg = dTγ = dTN (V N)+ y. (19)

3.1 Covariance Propagation

Defining, K = N (V N)+, yields, γ = K y. Then given the covariance of y,
i.e., Λy , one gets that,

Λγ = K Λy KT. (20)

Additionally, from Eq. 19 one could derive the covariance of the difference in the
Taylor coefficients

ΛΔ = dΛγ dT (22)

Keep in mind that, if one uses approximating polynomials of degree n to deter-
mine a discontinuity in the nth derivative, as done so far, ΛΔ is just a scalar
and corresponds to the variance of Δt

(n)
fg .

4 Error Analysis

In this paper we consider three measures for error:

1. the norm of the approximation residual;
2. the combined approximation and extrapolation error;
3. the extrapolation error.

4.1 Approximation Error

The residual vector has the form

r = y − V γ =
[
yL − VLα
yR − VRβ

]
.

The approximation error is calculated as

Ea = ‖r‖22 = ‖yL − VLα‖22 + ‖yR − VRβ‖22
= (yL − VLα)T (yL − VLα) + (yR − VRβ)T (yR − VRβ)

=yTy − 2αTV T
L yL + αTV T

L VLα − 2βTV T
R yR + βTV T

R VRβ.

Detection of Derivative Discontinuities in Observational Data 373

Fig. 2. Schematic of the approximations around the interstitial point. Red: left polyno-
mial approximation f(x, α); dotted red: extrapolation of f(x, α) to the RHS; blue: right
polynomial approximation, g(x, β); dotted blue: extrapolation of g(x, β) to the LHS; εi
is the vertical distance between the extrapolated value and the observation. The approx-
imation is constrained with the conditions: f(0, α) = g(0, β) and f′(0, α) = g′(0, β).
(Color figure online)

4.2 Combined Error

The basic concept, which can be seen in Fig. 2, is as follows: the left polyno-
mial f (x,α), which approximates over the values xL, is extended to the right
and evaluated at the points xR. Analogously, the right polynomial g (x,β) is
evaluated at the points xL. If there is no Cn discontinuity in the system, the
polynomials f and g must be equal and consequently the extrapolated values
won’t differ significantly from the approximated values.

Analytical Combined Error. The extrapolation error in a continuous case,
i.e. between the two polynomial models, can be computed with the following
2-norm,

εx =
∫ xmax

xmin

{f(x,α) − g(x,β)}2 dx. (23)

Given, the constraints which ensure that αi = βi i ∈ [0, . . . , n − 1], we obtain,

εx =
∫ xmax

xmin

{(αn − βn)xn}2 dx. (24)

Expanding and performing the integral yields,

εx = (αn − βn)2
{

x2n+1
max − x2n+1

min

2n + 1

}
(25)

Given fixed values for xmin and xmax across a single computation implies that
the factor,

k =
x2n+1

max − x2n+1
min

2n + 1
(26)

is a constant. Consequently, the extrapolation error is directly proportional to
the square of the difference in the Taylor coefficients,

εx ∝ (αn − βn)2 ∝
{

Δt
(n)
fg

}2

. (27)

374 D. Ninevski and P. O’Leary

Numerical Combined Error. In the discrete case, one can write the errors
of f(x,α) and g(x,β) as

ef = y − f(x,α) and eg = y − g(x,β) (28)

respectively. Consequently, one could define an error function as

Efg = ‖ef − eg‖22 = ‖(an − bn)z‖22 = (an − bn)2zTzn = (an − bn)2
∑

xn
i (29)

where z � x.̂ n. From these calculations it is clear that in the discrete case the
error is also directly proportional to the square of the difference in the Taylor
coefficients and that Efg ∝ εx. This proves that the numerical computation is
consistent with the analytical continuous error.

4.3 Extrapolation Error

One could also define a different kind of error, based just on the extrapolative
properties of the polynomials. Namely, using the notation from the beginning of
Sect. 3, one defines

ref = yL − g(xL,β) = yL − VLβ and reg = yR − f(xR,α) = yR − VRα

and then calculates the error as

Ee = rT
efref + rT

egreg

= (yL − VLβ)T (yL − VLβ) + (yR − VRα)T (yR − VRα)

=yTy − 2βTV T
L yL + βTV T

L VLβ − 2αTV T
R yR + αTV T

R VRα.

In the example in Sect. 5, it will be seen that there is no significant numerical
difference between these two errors.

5 Numerical Testing

The numerical testing is performed with: synthetic data from a piecewise poly-
nomial, where the locations of the Cn discontinuities are known; and with real
sensor data emanating from the monitoring of heavy machinery.

5.1 Synthetic Data

In the literature on splines, functions of the type y (x) = e−x2
are commonly

used. However, this function is analytic and C∞ continuous; consequently it was
not considered a suitable function for testing. In Fig. 3 a piecewise polynomial
with a similar shape is shown; however, this curve has C2 discontinuities at
known locations. The algorithm was applied to the synthetic data from the
piecewise polynomial, with added noise with σ = 0.05 and the results for a single

Detection of Derivative Discontinuities in Observational Data 375

case can be seen in Fig. 3. Additionally, a Monte Carlo simulation with m =
10000 iterations was performed and the results of the algorithm were compared
to the true locations of the two known knots. The mean errors in the location
of the knots are: μ1 = (5.59 ± 2.05) × 10−4 with 95% confidence, and μ2 =
(−4.62 ± 1.94) × 10−4. Errors in the scale of 10−4, in a support with a range
[0, 1], and 5% noise amplitude in the curve can be considered a highly satisfactory
result.

Fig. 3. A piecewise polynomial of degree d = 2, created from the knots sequence
xk = [0, 0.3, 0.7, 1] with the corresponding values yk = [0, 0.3, 0.7, 1]. The end points
are clamped with y′(x)0,1 = 0. Gaussian noise is added with σ = 0.05. Top: the circles
mark the known points of C2 discontinuity; the blue and red lines indicate the detected
discontinuities; additionally the data has been approximated by the b-spline (red) using

the detected discontinuities as knots. Bottom: shows Δt
(n)
fg = t

(n)
f − t

(n)
g , together with

the two identified peaks. (Color figure online)

5.2 Sensor Data

The algorithm was also applied to a set of real-world sensor data1 emanating
from the monitoring of heavy machinery. The original data set can be seen in
Fig. 4 (top). It has many local peaks and periods of little or no change, so the
algorithm was used to detect discontinuities in the first derivative, in order to
determine the peaks and phases. The peaks in the Taylor differences were used in
combination with the peaks of the extrapolation error to determine the points of
discontinuity. A peak in the Taylor differences means that the Taylor coefficients
are significantly different at that interstitial point, compared to other interstitial
points in the neighbourhood. However, if there is no peak in the extrapolation
errors at the same location, then the peak found by the Taylor differences is
deemed insignificant, since one polynomial could model both the left and right
values and as such the peak isn’t a discontinuity. Additionally, it can be seen in
1 For confidentiality reasons the data has been anonymized.

376 D. Ninevski and P. O’Leary

Fig. 4. The top-most graph shows a function y(x), together with the detected C1

discontinuity points. The middle graph shows the difference in the Taylor polynomials
Δt

(n)
fg calculated at every interstitial point. The red and blue circles mark the relevant

local maxima and minima of the difference respectively. According to this, the red and
blue lines are drawn in the top-most graph. The bottom graph shows the approximation
error evaluated at every interstitial point. (Color figure online)

Fig. 5. The two error functions, Ee and Efg as defined in Sect. 4, for the example from
Fig. 4. One can see that the location of the peaks doesn’t change, and the two errors
don’t differ significantly.

Fig. 5 that both the extrapolation error and the combined error, as defined in
Sect. 4, have peaks at the same locations, and as such the results they provide
do not differ significantly.

6 Conclusion and Future Work

It may be concluded, from the results achieved, that the coupled constrained
polynomial approximation yield a good method for the detection of Cn disconti-
nuities in discrete observational data of continuous systems. Local peaks in the
square of the difference of the Taylor polynomials provide a relative measure as
a means of determining the locations of discontinuities.

Current investigations indicate that the method can be implemented directly
as a convolutional operator, which will yield a computationally efficient solution.

Detection of Derivative Discontinuities in Observational Data 377

The use of discrete orthogonal polynomials [5,10] is being tested as a means of
improving the sensitivity of the results to numerical perturbations.

Acknowledgements. This work was partially funded by:

1. The COMET program within the K2 Center “Integrated Computational Material,
Process and Product Engineering (IC-MPPE)” (Project No 859480). This program is
supported by the Austrian Federal Ministries for Transport, Innovation and Technology
(BMVIT) and for Digital and Economic Affairs (BMDW), represented by the Austrian
research funding association (FFG), and the federal states of Styria, Upper Austria
and Tyrol.
2. The European Institute of Innovation and Technology (EIT), a body of the European
Union which receives support from the European Union’s Horizon 2020 research and
innovation programme. This was carried out under Framework Partnership Agreement
No. 17031 (MaMMa - Maintained Mine & Machine).

The authors gratefully acknowledge this financial support.

References

1. Burden, R.L., Faires, J.D.: Numerical Analysis, 9th edn. Pacific Grove, Brooks/-
Cole (2010)

2. Dung, V.T., Tjahjowidodo, T.: A direct method to solve optimal knots of B-spline
curves: an application for non-uniform B-spline curves fitting. PLoS ONE 12(3),
1–24 (2017). https://doi.org/10.1371/journal.pone.0173857

3. Gijbels, I., Goderniaux, A.C.: Data-driven discontinuity detection in derivatives
of a regression function. Commun. Stat.-Theory Methods 33(4), 851–871 (2005).
https://doi.org/10.1081/STA-120028730

4. Klopfenstein, R.W.: Conditional least squares polynomial approximation. Math.
Comput. 18(88), 659–662 (1964). http://www.jstor.org/stable/2002954

5. O’Leary, P., Harker, M.: Discrete polynomial moments and Savitzky-
Golay smoothing. Int. J. Comput. Inf. Eng. 4(12), 1993–1997 (2010).
https://publications.waset.org/vol/48

6. O’Leary, P., Harker, M., Zsombor-Murray, P.: Direct and least square fitting of
coupled geometric objects for metric vision. IEE Proc. Vis. Image Sig. Process.
152, 687–694 (2006). https://doi.org/10.1049/ip-vis:20045206

7. O’Leary, P., Ritt, R., Harker, M.: Constrained polynomial approximation for
inverse problems in engineering. In: Abdel Wahab, M. (ed.) NME 2018. LNME, pp.
225–244. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-2273-
0 19

8. Orváth, L., Kokoszka, P.: Change-point detection with non-parametric regression.
Statistics 36(1), 9–31 (2002). https://doi.org/10.1080/02331880210930

9. Owhadi, H.: Bayesian numerical homogenization. Multiscale Model. Simul. 13(3),
812–828 (2015). https://doi.org/10.1137/140974596

10. Persson, P.O., Strang, G.: Smoothing by Savitzky-Golay and Legendre filters. In:
Rosenthal, J., Gilliam, D.S. (eds.) Mathematical Systems Theory in Biology, Com-
munications, Computation, and Finance. IMA, vol. 134, pp. 301–315. Springer,
New York (2003). https://doi.org/10.1007/978-0-387-21696-6 11

https://doi.org/10.1371/journal.pone.0173857
https://doi.org/10.1081/STA-120028730
http://www.jstor.org/stable/2002954
https://publications.waset.org/vol/48
https://doi.org/10.1049/ip-vis:20045206
https://doi.org/10.1007/978-981-13-2273-0_19
https://doi.org/10.1007/978-981-13-2273-0_19
https://doi.org/10.1080/02331880210930
https://doi.org/10.1137/140974596
https://doi.org/10.1007/978-0-387-21696-6_11

378 D. Ninevski and P. O’Leary

11. Qiu, P., Yandell, B.: Local polynomial jump-detection algorithm in nonpara-
metric regression. Technometrics 40(2), 141–152 (1998). https://doi.org/10.1080/
00401706.1998.10485196

12. Raissi, M., Perdikaris, P., Karniadakis, G.: Physics-informed neural networks:
a deep learning framework for solving forward and inverse problems involv-
ing nonlinear partial differential equations. J. Comput. Phys. 378, 686–707
(2019). https://doi.org/10.1016/j.jcp.2018.10.045. http://www.sciencedirect.com/
science/article/pii/S0021999118307125

13. Saxena, H., Aponte, O., McConky, K.T.: A hybrid machine learning model for
forecasting a billing period’s peak electric load days. Int. J. Forecast. 35(4), 1288–
1303 (2019). https://doi.org/10.1016/j.ijforecast.2019.03.025

14. Spokoiny, V.: Estimation of a function with discontinuities via local polynomial fit
with an adaptive window choice. Ann. Stat. 26 (1998). https://doi.org/10.1214/
aos/1024691246

15. Wahba, G.: Spline models for observational data. Soc. Ind. Appl. Math. (1990).
https://doi.org/10.1137/1.9781611970128

16. Weierstrass, K.: Über die analytische darstellbarkeit sogenannter willkürlicher
functionen einer reellen veränderlichen. Sitzungsberichte der Königlich Preußis-
chen Akademie der Wissenschaften zu Berlin, 1885(II), 633–639, 789–805 (1885)

17. Yaman, B., Hosseini, S.A.H., Moeller, S., Ellermann, J., Uǧurbil, K., Akçakaya,
M.: Self-supervised physics-based deep learning MRI reconstruction without fully-
sampled data (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1080/00401706.1998.10485196
https://doi.org/10.1080/00401706.1998.10485196
https://doi.org/10.1016/j.jcp.2018.10.045
http://www.sciencedirect.com/science/article/pii/S0021999118307125
http://www.sciencedirect.com/science/article/pii/S0021999118307125
https://doi.org/10.1016/j.ijforecast.2019.03.025
https://doi.org/10.1214/aos/1024691246
https://doi.org/10.1214/aos/1024691246
https://doi.org/10.1137/1.9781611970128
http://creativecommons.org/licenses/by/4.0/

Improving Prediction with Causal
Probabilistic Variables

Ana Rita Nogueira1,2(B), João Gama1(B), and Carlos Abreu Ferreira1(B)

1 LIAAD - INESC TEC, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
ana.r.nogueira@inesctec.pt, jgama@fep.up.pt, cgf@isep.ipp.pt

2 Faculdade de Ciências da Universidade do Porto,

Rua do Campo Alegre 1021/1055, 4169-007 Porto, Portugal

Abstract. The application of feature engineering in classification prob-
lems has been commonly used as a means to increase the classification
algorithms performance. There are already many methods for construct-
ing features, based on the combination of attributes but, to the best of
our knowledge, none of these methods takes into account a particular
characteristic found in many problems: causality. In many observational
data sets, causal relationships can be found between the variables, mean-
ing that it is possible to extract those relations from the data and use
them to create new features. The main goal of this paper is to propose a
framework for the creation of new supposed causal probabilistic features,
that encode the inferred causal relationships between the target and the
other variables. In this case, an improvement in the performance was
achieved when applied to the Random Forest algorithm.

Keywords: Causality · Causal discovery · Conditional probability ·
Feature engineering · Causal features

1 Introduction

In regular classification problems, a set of data, classified with a finite set of
classes, is used as input so that the chosen classification algorithm can build a
model, that represents the behaviour of the learning set. This classifier can have
better or worse results, depending on the data and how the algorithm handles
it.

Nevertheless, in many problems, applying only machine learning algorithms
may not be the answer [4]. Instead, the use of feature engineering can be a way
of improving the performance of these algorithms.

Feature engineering is a process by which new information is extracted from
the available data, to create new features. These new features are related to
the original variables, but also with the target variable, being a better repre-
sentation of the knowledge embedded in the data, hence helping the algorithms
achieve more accurate results [4]. These types of solutions are usually problem-
related, being that one solution might work in one particular problem, but not
c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 379–390, 2020.
https://doi.org/10.1007/978-3-030-44584-3_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_30&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_30

380 A. R. Nogueira et al.

in the other. However, there is one particular characteristic common to many
classification problems: causality. In observational data, there is the possibility
of existing causal relationships between variables, especially in data related to
medical problems (among others) [16,17]. This fact should be taken into consid-
eration, for example when selecting or creating new features, since it can give
clues to which variables are the most important to the problem.

By definition, causality, more specifically causal discovery, relates to the
search of possible cause-effect relationships between variables [13]. The appli-
cation of causal discovery in the various tasks of machine learning may be chal-
lenging, both at the level of the causal process or the sampling process to generate
the observed data [9]. Despite this fact, this subject has been the focus of several
researchers over the years, given the importance and the potential impact that
the discovery of causal relationships between events can have in the problem-
solving. In the words of Judea Pearl: “while probabilities encode our beliefs about
a static world, causality tells us whether and how probabilities change when the
world changes, be it by intervention or by an act of imagination” [20]. By dis-
covering causal relationships, it is possible to uncover, not only correlations but
also relations that explain how and why the variables behave the way they do.

In this paper, we propose a framework to create new features for discrete
data sets (discrete features + discrete target) based on the causal relationships
uncovered in the data. These attributes are created through the generation of a
causal network, using a modified version of PC [21], and posterior probabilistic
analysis of the relations a target variable and the variables considered as relevant.
The relevant variables can be chosen by two different methods: parents and
children of the target and Markov blanket [19].

This paper is organised as follows: Sect. 2 describes some important defini-
tions. Section 3 describes the proposed framework and Sect. 4 the results obtained
in the tests.

2 Background

In this section, we introduce some important notations that are used throughout
the document.

2.1 PC

PC is a constraint-based algorithm and was proposed by Spirtes et al. [21].
This algorithm relies on the faithfulness assumption (“If we have a joint prob-
ability distribution P of the random variables in some set V and a DAG G
=(V,E), (G,P) satisfies the faithfulness condition if, G entails all and only con-
ditional independencies in P” [18]), meaning that all the independencies in a
DAG (directed acyclic graph) need to respect the d-separation criterion [8].

This algorithm is divided into two phases. In the first phase, the algorithm
starts with a fully connected undirected graph. It removes an edge if the two
nodes are independent, i.e., if there is a set of nodes adjacent to both variables in

Improving Prediction with Causal Probabilistic Variables 381

which they are conditionally independent [12]. One of the most applied statistical
independence tests is G2, proposed by Spirtes et al. [21], and then used in non-
causal Bayesian networks by Tsamardinos et al. [24].

In the second phase [12], the algorithm orients the edges by first searching
for v-structures (A → B ← C) and then by applying a set of rules, to create a
completed partially directed acyclic graph (CPDAG), that is equivalent to the
original one, where the faithfulness is respected.

2.2 Cochran-Mantel-Haenszel Test

The Cochran-Mantel-Haenszel test, [2] is an independence test that studies
the influence of two variables on each other, and takes into account the pos-
sible influence of other variables on this dependence, i.e., it searches for causal
dependence [11].

There are two different versions of this test: the normal Cochran-Mantel-
Haenszel test, which is used in 2 × 2 × K tables (being K the number of tables
created), and the Generalised Cochran-Mantel-Haenszel tests, which is used in
I × J × K tables (being that I and J represent the number of categories in the
studied variables, and K the number of layer categories [6]).

It is important to note that these type of contingency tables (three-way
tables) are representations of the association between two variables if the influ-
ence of the other covariates is controlled.

Since many causal discovery algorithms (for discrete data) are used in data
sets that are composed by a mixture of binary and non-binary discrete variables,
the normal Cochran-Mantel-Haenszel test for 2×2×K contingency tables is not
enough. In such cases, the generalised version of this test can be applied instead
(Generalised Cochran-Mantel-Haenszel test Eq. (1) [15]).

QCMH = G′V ar{G|H0}−1G Gh = Bh(nh − mh)

G =
∑

h

Gh V ar{G|H0} =
∑

h

V ar{Gh|H0} Bh = Ch

⊗
Rh

(1)

In the equations presented previously, Bh represents the product of Kronecker
between Ch and Rh, V ar the co-variance matrix, (nh − mh) the difference
between the observed and the expected, Ch and Rh the columns scores and
row scores respectively, and H0

1 the null hypothesis.

3 Framework

In many machine learning problems, the application of only classification algo-
rithms might not be the answer to obtain satisfactory results [4]. The application
1 “For each of the separate levels of the co-variable set h = 1, 2, ..., q, the response
variable is distributed at random with respect to the sub-populations, i.e. the data
in the respective rows of the hth table can be regarded as a successive set of simple
random samples of sizes {Nhi.} from a fixed population corresponding to the marginal
total distribution of the response variable {Nh.j}.” [15].

382 A. R. Nogueira et al.

of feature engineering to the target data can be a way of improving such results.
There are already several methods to improve the overall performance of an
algorithm through the creation or modification of attributes, but, to the best of
our knowledge, none of them explores the potential causal relationships between
the target variable and the other variables.

The addition of these new inferred causal attributes may help improve
the performance of classification algorithms, since they encode the relationship
between the target and the other variables, thus feeding more information about
the data set and its behaviour to the model. Moreover, these features may also
aid in the generated models interpretability, since they encode the underlying
relationships between the variables, thus being possible to explain more easily
the decisions made by them.

In this section, we present a new framework to create new features using
causal probabilities retrieve from a model that represents the causal associations
between variables. This framework can be divided into four different phases:

1. Creation of the causal model (in this approach we suggest the usage of a
modified version of PC);

2. Identification of the relevant variables. These variables are directly related to
the target variable:

– They are its parents and children;
– They belong to its Markov blanket (i.e. parents, children and spouses).

3. Inference the probabilities associated with each pair {target variable, associ-
ated variable};

4. Creation of the new features using this probabilities. The number of features
should be: number of associated variables × number of classes.

In the first step, the framework starts by creating a full causal model, that
represents the causal associations between all the variables. This is done through
the application of a modified version of PC [21]. In this modified version, the state
of the art independence test (usually χ2 or G2) is replaced by the Generalised
Cochran-Mantel-Haenszel test presented in Sect. 2.2. This test has the advantage
(over χ2 and G2) of adjusting for confounding factors [22].

It is important to note that, in some cases, PC can’t direct every edge, hence
it creates a CPDAG. In those cases, we apply a method to direct such edges.
This method, proposed by Dor and Tarsi [5] searches recursively for possible
ways to direct undirected edges.

In the second step, the framework selects the relevant variables. To select
these attributes, we propose two different approaches: parents and children and
Markov blanket.

In the parents and children (P-C) approach, as the name says, the variables
selected are the ones that, in the causal graph, have an edge directed to the
target (parents) or from the target (children).

In the Markov blanket (MB) approach, both the parents and children of the
target are selected, as well as the nodes that have edges directed to the child
nodes (also called spouse nodes). It is important to note that the most common
way to select the variables that influence the target is through Markov Blanket

Improving Prediction with Causal Probabilistic Variables 383

Table 1. Example of probabilities generated by the probability queries

Attr

0 1 2

T
a
rg

et 0 0.63 0.53 0.13

1 0.34 0.29 0.67

2 0.14 0.25 0.56

(often used in causal feature selection methods [10]). However, several authors
proposed to use only parents and children, as these variables can be considered
to be the ones with the most influence in the target within its Markov blanket
[1,3,23].

In the third step, the framework infers a set of probabilities that represent
the influence of each relevant variable on the classes of the target: posterior
probability distribution (Eq. (2)). In these probabilistic queries, the objective
is to find what the influence that a evidence (particular values of the relevant
variable) has on the value of the target [14]. This is performed for all the values
in each variable and the resulting probability matrix is similar to Table 1.

P (Target = t|Attr = a) =
occurrencest∩a

ococcurrencesa
(2)

Finally, in the fourth step, the new features are created and added to the
data set. Each new feature represents the probability of the relevant variables
influence on a specific class, i.e., if we have, for example, a target variable with
two classes ({0, 1}) and a relevant variable Attr, there will be created two new
features representing the influence of Attr in each class (each instance of the
feature represent the, influence the value of Attr in that instance on the class
represented in that feature).

An overview of the framework can be seen in Fig. 1.

3.1 An Illustrative Example

To explain in more detail how this approach works, we will use as example a
data set with 6 discrete variables (A, B, C, D, E and F), with 5000 instances.
The values for variables A, B, C, D, and E can be {0, 1, 2}, while F can have the
values {0, 1}. For this example, we will use variable B as the target.

As it was explained in Step 1, the approach starts by generating the full
network with PC and Generalised Cochran Mantel Haenszel. The generated
network can be seen in Fig. 2.

After the creation of the full network, the relevant variables are selected. The
selected variables can be parents or children (P-C) of B ({A,E}) or the Markov
blanket (MB) of B ({A,E, F}).

384 A. R. Nogueira et al.

Fig. 1. Example of the operation of the proposed framework

In the third step of the framework generates inference probabilities for the
chosen variables (Table 2). Taking A = 0 and B = 0 as an example, the proba-
bilities are obtained for each one of the target values are obtained by by dividing
the number of times both A = 0 and B = 0 occur, by the number of times A =
0 occurs, or in other words P (B = 0|A = 0) = 0.86.

These probabilities are then added to the global data set. The resulting data
set is similar to Table 3. There is a difference between the number of new features
created, since the number of generated features is equal to the product between
the number of values in the target and the number of relevant variables. Since
the MB approach selects more variables than the P-C approach, in theory, the
number of generated features will be higher. So, in the case of P-C features we
have 6 new features and in the case of MB we generate 9 new features.

4 Results and Discussion

To evaluate the proposed approaches and make a comparative study, the fol-
lowing configuration of experiments was designed: the performance of Random
Forest, using the original data, as well has the versions generated by the two
proposed approaches were compared.

Improving Prediction with Causal Probabilistic Variables 385

Fig. 2. Example: network generated

Table 2. Probabilities generated for the Markov blanket variables. In parents and
children’s case, the probabilities for F are not generated.

A E F

0 1 2 0 1 2 0 1

T
a
rg

et 0 0.86 0.45 0.11 0.74 0.46 0.15 0.47 0.48

1 0.03 0.22 0.09 0.08 0.11 0.16 0.11 0.12

2 0.11 0.32 0.78 0.19 0.44 0.68 0.41 0.41

This comparative analysis was made through 10-fold cross validation, in sev-
eral public data sets (Table 4). For each fold, the two approaches are applied to
the train set and then the resulting conditional probabilities are used to create
the new features for both the train and test set (this ensures that no information
about the classes in the test set is added to the new features).

To choose the optimal parameters for the approaches presented in the fol-
lowing sections, a sensitivity analysis was performed. This analysis consisted of
obtaining the error (1 - accuracy) for the presented data sets (by dividing them
into 70% train, 30% test). In the case of PC this test was repeated for significance
levels 1% and 5%. In these tests we concluded that the error of the algorithms
in the data sets did not change much when the parameters were changed. For
this reason, for all the data sets we select and present a significance level of 5%.

The performance of this algorithm was compared in terms of error rate
(Table 5). This comparison was performed using the No new features as a refer-
ence. The classification algorithm performance, trained with causal features in
each data set were compared to the reference using the Wilcoxon signed ranked-
test. The sign +/− indicates that algorithm is significantly better/worse than
the reference with a p-value of less than 0.05. Besides this, the algorithms are
also compared in terms of average and geometric mean of the errors, average
ranks, average error ratio, win/losses, significant win/losses (number of times

386 A. R. Nogueira et al.

Table 3. Features generated with the probabilities for Markov blanket variables. In
parents and children’s case, the features related with F are not generated.

A B C D E F B=2 A B=0 A B=1 A B =2 E B=0 E B= 1 E B=2 & F B=0 & F B=1 & F

1 2 1 0 1 1 0.35 0.44 0.22 0.44 0.45 0.10 0.41 0.48 0.12

1 0 2 0 1 1 0.35 0.44 0.22 0.44 0.45 0.10 0.41 0.48 0.12

0 0 0 0 0 0 0.11 0.87 0.02 0.19 0.73 0.08 0.41 0.47 0.11

0 0 0 0 1 1 0.11 0.87 0.02 0.44 0.45 0.10 0.41 0.48 0.12

0 0 1 2 0 0 0.11 0.87 0.02 0.19 0.73 0.08 0.41 0.47 0.11

Table 4. Data set description

Data set Number of
examples

Number of
attributes

Number of classes

breast cancer 286 10 0(70%) 1(30%)

cervical 858 16 0(94%) 1(6%)

corral 160 7 0(56%) 1(44%)

earthquake 10000 5 0(2%) 1(98%)

head injury 3121 11 0(92%) 1(8%)

lucas 2000 12 0(28%) 1(72%)

medpar 1495 9 0(66%) 1(34%)

mifem 1275 10 0(25%) 1(75%)

qualitative bankruptcy 250 7 0(43%) 1(57%)

respiratory 555 5 0(51%) 1(49%)

survey 10000 6 0(56%) 1(28%) 2(16%)

titanic 1316 4 0(62%) 1(38%)

xd6 973 10 0(67%) 1(33%)

that the reference was better or worse than the algorithm, using signed ranked-
test) and the Wilcoxon signed ranked-test. For the Wilcoxon signed ranked-test
we consider also a p-value of 0.05.

If we analyse Table 5, it is possible to see that, in general, +Causal features
P-C (the addition of features representing the conditional probability of parents
and children features on the target) has a better performance than No new
features, since the value obtained in the Wilcoxon test is 0.0266 (less then the
p-value of 0.05), which means that the difference between the performance is
significant. This difference can also be seen in the values of the average and
geometric ranks. More specifically, if we look at the average ranks, we can see
that +Causal features P-C has lower ranks (in average) than No new features
(1.436 against 2.538).

If we now compare the second approach proposed (+Causal features MB)
with the reference, we can see that there is a positive difference in the results

Improving Prediction with Causal Probabilistic Variables 387

Table 5. Error rates of Random Forest for classification with causal features

Data set No new features +Causal features P-C +Causal features MB

breast cancer 28.6 ± 9.88 28.6 ± 7.49 28 ± 8.39

cervical 6.88 ± 1.51 6.65 ± 1.66 6.53 ± 1.49

corral 5.62 ± 5.47 + 0.01 ± 0.10 + 0.01 ± 0.10

earthquake 0.26 ± 0.14 0.20 ± 0.14 0.20 ± 0.14

head injury 7.08 ± 1.23 7.43 ± 0.83 7.05 ± 0.69

lucas 15.2 ± 2.02 14.5 ± 2.12 14.5 ± 2.12

medpar 32.70 ± 4.29 33.00 ± 3.91 34.10 ± 3.23

mifem 20.1 ± 4.28 20.00 ± 4.30 19.9 ± 3.63

qualitative bankruptcy 0.40 ± 1.26 0.01 ± 0.10 0.80 ± 2.53

respiratory 40.90 ± 6.79 40.20 ± 6.20 41.2 ± 6.90

survey 44.60 ± 2.26 44.4 ± 2.05 44.4 ± 2.05

titanic 21.4 ± 2.52 20.20 ± 2.19 20.5 ± 1.83

xd6 0.41 ± 0.72 0.10 ± 0.10 0.10 ± 0.10

Average Mean 17.242 16.562 16.715

Geometric Mean 7.161 2.889 4.039

Average Ranks 2.538 1.462 1.538

Average Error Ratio 1 0.764 0.914

Wicoxon test 0.0266 0.1465

Win/Losses 10/2 10/3

Significant win/losses 1/0 1/0

Table 6. AUC for Lucas data set

AUC

No new features 0.877

+Causal features P-C 0.887

+Causal features MB 0.889

(although not significant). It is possible to see this difference, once again, in the
average and geometric mean, as well as in the average rank (1.538).

In Table 6, it is possible to see the AUC values for the three analysed
approaches, for lucas data set2. The results presented in this table were obtained
by dividing this data set in train and test (70%/30%). The model scores were
then obtained for the test data (with a 50% cutoff).

In this table it is possible to see that +Causal features MB has the highest
area, meaning that, in the data set with the causal probabilistic features that rep-
resent the relations between the target and its Markov blanket, Random Forest
can distinguish better the classes than with the data from the other approaches,
thus having a better performance [7]. Although +Causal features MB was the

2 http://www.causality.inf.ethz.ch/data/LUCAS.html.

http://www.causality.inf.ethz.ch/data/LUCAS.html

388 A. R. Nogueira et al.

best approach in terms of AUC, the other proposed approach +Causal features
P-C also obtained an AUC higher than the reference.

Finally, from these results, we can conclude that there is evidence that apply-
ing causality to the creation of new features can have a positive impact on the
classification algorithms performance.

5 Conclusion

The achievement of satisfactory results in a classification problem not only
depends on the chosen classifier but also the data being processed. One possible
way to improve the performance of classifiers is to apply feature engineering,
or in other words, use the original data to infer new information, creating new
attributes and altering others, to obtain more descriptive features. Furthermore,
most of the proposed methodologies do not take into account the possible causal
relationships in the data. This information can help to create more accurate
models, since we are encoding in one variable, information about the interaction
between variables, thus reinforcing their importance.

In this paper we proposed a framework that uses causal discovery to create
new features based on posterior probabilistic analysis of the relations between
a target variable and the variables considered as relevant, being these variables
the parents and children of the Markov Blanket of the target.

In the experiments, we compared the approaches with the original data, using
Random Forest in public data sets. From these results, we can conclude that
there is evidence that the application of causality in the creation of new supposed
probabilistic features may have a positive impact on the overall performance of
the classification algorithm.

In the future, we intend to study the application of these techniques in other
classifiers, as well as in the classification of mixed data (continuous and discrete
variables).

Acknowledgments. This research was carried out in the context of the project Fail-
Stopper (DSAIPA/DS/0086/2018) and supported by the Fundação para a Ciência e
Tecnologia (FCT), Portugal for the PhD Grant SFRH/BD/146197/2019.

References

1. Aliferis, C.F., Statnikov, A., Tsamardinos, I., Mani, S., Koutsoukos, X.D.: Local
causal and Markov blanket induction for causal discovery and feature selection
for classification part I: algorithms and empirical evaluation. J. Mach. Learn. Res.
11(Jan), 171–234 (2010)

2. Birch, M.: The detection of partial association, I: the 2 × 2 case. J. Roy. Stat. Soc.:
Ser. B (Methodol.) 26(2), 313–324 (1964)

3. Bühlmann, P., Kalisch, M., Maathuis, M.H.: Variable selection in high-dimensional
linear models: partially faithful distributions and the PC-simple algorithm.
Biometrika 97(2), 261–278 (2010)

Improving Prediction with Causal Probabilistic Variables 389

4. Domingos, P.: A few useful things to know about machine learning. Commun.
ACM 55(10), 78–87 (2012)

5. Dor, D., Tarsi, M.: A simple algorithm to construct a consistent extension of a
partially oriented graph. R-185, pp. 1–4, October 1992

6. Everitt, B.S.: The Analysis of Contingency Tables. CRC Press (1992)
7. Gama, J., Carvalho, A.C.P.d.L., Faceli, K., Lorena, A.C., Oliveira, M., et al.:

Extração de conhecimento de dados: data mining. Śılabo (2015)
8. Geiger, D., Verma, T., Pearl, J.: d-separation: from theorems to algorithms. In:

Machine Intelligence and Pattern Recognition, vol. 10, pp. 139–148. Elsevier (1990)
9. Glymour, C., Zhang, K., Spirtes, P.: Review of causal discovery methods based

on graphical models. Front. Genet. 10, 524 (2019). https://doi.org/10.3389/fgene.
2019.00524

10. Guyon, I., Clopinet, C., Elisseeff, A., Aliferis, C.: Causal feature selection. Training
32, 1–40 (2007)

11. Jin, Z., Li, J., Liu, L., Le, T.D., Sun, B., Wang, R.: Discovery of causal rules
using partial association. In: Proceedings - IEEE International Conference on Data
Mining, ICDM pp. 309–318 (2012)

12. Kalisch, M., Buehlmann, P.: Estimating high-dimensional directed acyclic graphs
with the PC-algorithm. J. Mach. Learn. Res. 8, 613–636 (2005)

13. Kleinberg, S.: Why: A Guide to Finding and Using Causes. O’Reilly Media Inc.,
Newton (2015)

14. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press, Cambridge (2009)

15. Landis, J.R., Heyman, E.R., Koch, G.G.: Average partial association in three-
way contingency tables: a review and discussion of alternative tests. Int. Stat.
Rev./Revue Internationale de Statistique 46(3), 237 (2006)

16. Listl, S., Jürges, H., Watt, R.G.: Causal inference from observational data. Com-
mun. Dent. Oral Epidemiol. 44(5), 409–15 (2016)

17. Martin, W.: Making valid causal inferences from observational data. Prev. Vet.
Med. 113(3), 281–297 (2014)

18. Neapolitan, R.E., et al.: Learning Bayesian Networks, vol. 38. Pearson Prentice
Hall, Upper Saddle River (2004)

19. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Elsevier, Amsterdam (2014)

20. Pearl, J., Mackenzie, D.: The Book of Why: The New Science of Cause and Effect.
Basic Books, New York (2018)

21. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, vol. 1,
2nd edn. The MIT Press, Cambridge (2001). https://ideas.repec.org/b/mtp/titles/
0262194406.html

22. Tripepi, G., Jager, K.J., Dekker, F.W., Zoccali, C.: Stratification for confounding-
part 1: the Mantel-Haenszel formula. Nephron Clin. Pract. 116(4), c317–c321
(2010)

23. Tsamardinos, I., Aliferis, C.F., Statnikov, A.R., Statnikov, E.: Algorithms for large
scale Markov blanket discovery. In: FLAIRS Conference, vol. 2, pp. 376–380 (2003)

24. Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing Bayesian
network structure learning algorithm. Mach. Learn. 65(1), 31–78 (2006). https://
doi.org/10.1007/s10994-006-6889-7

https://doi.org/10.3389/fgene.2019.00524
https://doi.org/10.3389/fgene.2019.00524
https://ideas.repec.org/b/mtp/titles/0262194406.html
https://ideas.repec.org/b/mtp/titles/0262194406.html
https://doi.org/10.1007/s10994-006-6889-7
https://doi.org/10.1007/s10994-006-6889-7

390 A. R. Nogueira et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

DO-U-Net for Segmentation
and Counting

Applications to Satellite and Medical Images

Toyah Overton1,2(B) and Allan Tucker1

1 Department of Computer Science, Brunel University London, Uxbridge, UK
{toyah.overton,allan.tucker}@brunel.ac.uk

2 Alcis Holdings Ltd., Guildford, UK

Abstract. Many image analysis tasks involve the automatic segmenta-
tion and counting of objects with specific characteristics. However, we
find that current approaches look to either segment objects or count
them through bounding boxes, and those methodologies that both seg-
ment and count struggle with co-located and overlapping objects. This
restricts our capabilities when, for example, we require the area covered
by particular objects as well as the number of those objects present, espe-
cially when we have a large amount of images to obtain this information
for. In this paper, we address this by proposing a Dual-Output U-Net.
DO-U-Net is an Encoder-Decoder style, Fully Convolutional Network
(FCN) for object segmentation and counting in image processing. Our
proposed architecture achieves precision and sensitivity superior to other,
similar models by producing two target outputs: a segmentation mask
and an edge mask. Two case studies are used to demonstrate the capa-
bilities of DO-U-Net: locating and counting Internally Displaced People
(IDP) tents in satellite imagery, and the segmentation and counting of
erythrocytes in blood smears. The model was demonstrated to work with
a relatively small training dataset, achieving a sensitivity of 98.69% for
IDP camps of the fixed resolution, and 94.66% for a scale-invariant IDP
model. DO-U-Net achieved a sensitivity of 99.07% on the erythrocytes
dataset. DO-U-Net has a reduced memory footprint, allowing for training
and deployment on a machine with a lower to mid-range GPU, making it
accessible to a wider audience, including non-governmental organisations
(NGOs) providing humanitarian aid, as well as health care organisations.

Keywords: Convolutional neural networks · U-Net · Segmentation ·
Counting · Satellite imagery · Blood smear

1 Introduction

Over recent years, the volumes of data collected across all industries globally have
grown dramatically. As a result, we find ourselves in an ever greater need for fully
automated analysis techniques. The most common approaches to large scale data
analysis rely on the use of supervised and unsupervised Machine Learning, and,
c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 391–403, 2020.
https://doi.org/10.1007/978-3-030-44584-3_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_31&domain=pdf
http://orcid.org/0000-0002-5934-9907
http://orcid.org/0000-0001-5105-3506
https://doi.org/10.1007/978-3-030-44584-3_31

392 T. Overton and A. Tucker

increasingly, Deep Learning. Using only a small number of human-annotated
data samples, we can train models to rapidly analyse vast quantities of data
without sacrificing the quality or accuracy compared with a human analyst. In
this paper, we focus on images - a rich datatype that often requires rapid and
accurate analysis, despite its volumes and complexity. Object classification is one
of the most common types of analysis undertaken. In many cases, a further step
may be required in which the classified and segmented objects of interest need
to be accurately counted. While easily performed by humans, albeit slowly, this
task is often non-trivial in Computer Vision, especially in the cases where the
objects exist in complex environments or when objects are closely co-located and
overlapping. We look at two such case studies: locating and counting Internally
Displaced People (IDP) shelters in Western Afghanistan using satellite imagery,
and the segmentation and counting of erythrocytes in blood smear images. Both
applications have a high impact in the real world and are in a need of new rapid
and accurate analysis techniques.

1.1 Searching for Shelter: Locating IDP Tents in Satellite Imagery

Over 40 million individuals were believed to have been internally displaced glob-
ally in 2018 [1]. Afghanistan is home to 2,598,000 IDPs displaced by conflict
and violence, with the numbers growing by 372,000 in the year 2018 alone. In
the same year, an additional 435,000 individuals were displaced due to natural
disasters, 371,000 of whom were displaced due to drought.

The internally displaced population receive aid from various non-
governmental organisations (NGOs), to prevent IDPs from becoming refugees.
The Norwegian Refugee Council (NRC) is one such body, providing humanitar-
ian aid to IDPs across 31 countries, assisting 8.5 million people in 2018 [2]. In
Afghanistan, the NRC has been providing IDPs with tents as temporary living
spaces. Alcis is assisting the NRC with the analysis of the number, flow, and con-
centration of these humanitarian shelters, enabling valuable aid to be delivered
more effectively.

Existing Methods. In the past, Geographical Information System (GIS) Tech-
nicians relied mostly on industry-standard software, such as ArcGIS, for the
majority of their analysis. These tools provide the user with a small number
of built-in Machine Learning algorithms, such as the popularly used implemen-
tation of the Support Vector Machine (SVM) algorithm [3]. These generally
involve a time consuming, semi-automated process, with each step being revis-
ited multiple times as manual tuning of the model parameters is required. The
methodology does not allow for batch processing as all stages must be repeated
with human input for each image. An example of the ArcGIS process1 used by
GIS technicians is:

1. Manually segment the image by selecting a sample of objects exhibiting sim-
ilar shape, spectral and spatial characteristics.

1 Details of the process have been provided by Alcis.

DO-U-Net 393

2. Train the image classifier to identify other examples similar to the marked
sample, using a built-in machine learning model (e.g. SVM).

3. Identify any misclassified objects and repeat the above steps.

More recently, many GIS specialists have begun to look towards the latest
techniques in Data Science and Big Data analysis to create custom Machine
Learning solutions. A review paper by Quinn et al. in 2018 [4] weighed up the
merits of Machine Learning approaches used to segment and count both refugee
and IDP camps. Their work used a sample of 87,123 structures; a magnitude
which was required for training using their approach and was seen as a limitation.
Quinn et al. used the popular Mask R-CNN [5] segmentation model to analyse
their data; a model using a Region Proposal Network to simultaneously classify
and segment images. This yielded an average precision of 75%, improving to 78%
by applying a transfer learning approach.

1.2 Counting in Vein: Finding Erythrocytes in Blood Smears

The counting of erythrocytes, or red blood cells, in blood smear images, is
another application in which one must count complex objects. This is an impor-
tant task in exploratory and diagnostic medicine, as well as medical research.
An average blood smear imaged using a microscope, contains several hundred
erythrocytes of varying size, many of which are overlapping, making an accurate
manual count both difficult and time-consuming.

Existing Methods. While only a small number of analyses were able to suc-
cessfully perform an erythrocyte count, Tran et al. [6] have achieved a counting
accuracy of 93.30%. Their technique relied on locating the cells using the Seg-
Net [7] network. SegNet is an encoder-decoder style FCN architecture producing
segmentation masks as its output. Due to the overlap of erythrocyte cells, they
performed a Euclidean Distance Transform on the binary segmentation masks
to obtain the location of each cell using a connected component labelling algo-
rithm. A work by Alam and Islam [8] proposes an approach using YOLO9000 [9];
a network using a similar approach to Mask R-CNN, to locate elliptical bound-
ing regions that roughly correspond to the outer contours of the cells. Using
300 images, each containing a small number of erythrocytes, for training, they
achieve an accuracy of 96.09%. Bounding boxes acted as ground-truth for Alam
and Islam, as opposed to segmentation masks used by Tran et al.

2 Data Description

2.1 Satellite Imagery

Working on the ground, the NRC identified areas within Western Afghanistan
with known locations of IDP camps. Through their relationship with Maxar

394 T. Overton and A. Tucker

[10], Alcis has access to satellite imagery covering multiple camps, in a range
of different environments. Figure 1 shows a section of a camp in Qala’e’Naw,
Badghis.

This work uses imagery collected by the WorldView-2 and WorldView-3 satel-
lites [11], by their operator and owner Maxar. WorldView-2 has a multispectral
resolution of 1.85 m, while the multispectral resolution of WorldView-3 is 1.24 m
[12], allowing tents of approximately 7.5 m long and 4 m wide to be resolved.
The WorldView-2 images were captured on either 05/01/19 (DD/MM/YY) or
03/03/19, with the WorldView-3 images captured on 12/03/19. A further set
of images, observed between 08/08/18 and 23/09/19 by WorldView-3, became
available for some locations. This dataset can be used to show evolution in the
camps during this period, allowing for a better understanding of the changes
undergone in IDP camps. Due to the orbital position of the satellite, images
observed at different times have varying resolutions, as well as other properties,
due to differences in viewing angle and atmospheric effects.

Training Data. We developed DO-U-Net using a limited number of satellite
images, obtained over a very limited time, with a nearly identical pixel scale.
Each tent found in the training imagery has been marked with a polygon, using
a custom Graphical User Interface (GUI) tool developed by Alcis. This has been
done for a total of 6 images, covering an area of approximately 15 km2 and
containing 5,178 tents. Incidentally, this makes our training dataset nearly 17
times smaller than that used by Quinn et al. in their analysis.

The second satellite dataset includes imagery of varying quality and resolu-
tion, providing an opportunity to develop a scale-invariant version of our model.
We used 3 additional training images, distinct from the original dataset, to train
our scale-invariant DO-U-Net. These images contained 2,338 additional tents, in
an area of around 130 km2, giving a total of 7,516 tents in over 140 km2.

2.2 Blood Smear Images

We used blood smear images from the Acute Lymphoblastic Leukemia (ALL)
Image Database for Image Processing2. These images were captured using an
optical laboratory microscope, with magnification ranging from 300–500×, and
a Canon PowerShot G5 camera. We used the ALL IDB1 dataset, comprised of
108 images taken during September 2005 from both ALL and non-ALL patients.
An example blood smear image from an ALL patient can be seen in Fig. 2.

Training Data. We selected 10 images from the ALL IDB1 dataset to be
used as training data. These images are representative of the diverse nature of
the entire dataset, including the varying microscope magnifications and back-
grounds. Of the images used, 3 belong to ALL patients, with the remaining 7

2 Provided by the Department of Information Technology at Università degli Studi di
Milano, https://homes.di.unimi.it/scotti/all/.

https://homes.di.unimi.it/scotti/all/

DO-U-Net 395

Fig. 1. Left: An IDP camp in Badghis,
Afghanistan. NRC tents are clearly vis-
ible due to their uniform size and light
colour. Right: The manually created
ground-truth annotation for the image.

Fig. 2. Left: An image of a blood
smear from an Acute Lymphoblastic
Leukemia (ALL) patient. Right: The
manually created ground-truth anno-
tation for the image. The images also
contain lymphocytes, which are not
marked in the training data.

images coming from non-ALL patients. Similarly to the IDP camp dataset, all
erythrocytes in the training data have been manually labelled with a polygon
using our custom GUI tool. In the images belonging to ALL patients, a total of
1,300 erythrocytes were marked. A further 3,060 erythrocytes were marked in
the images belonging to non-ALL patients, giving a total of 4,360 erythrocytes
in the training data.

The training data does not distinguish between typical erythrocytes and
those with any forms of morphology - of the 4,360 erythrocytes, just 106 display
a clear morphology. The training data also does not contain any annotation
for leukocytes. Instead, our focus is on correctly segmenting and counting all
erythrocytes in the images.

3 Methodology

Of late, several very advanced and powerful Computer Vision algorithms have
been developed, including the popular Mask R-CNN [5] and YOLO [9] architec-
tures. While their performance is undoubtedly impressive, they rely on a large
number of images to train their complex networks, as highlighted by Quinn et al.
[5]. More recently, many more examples of FCN have been developed, including
SegNet [7], DeconvNet [13] and U-Net [14], with the latter emerging as arguably
one of the most popular encoder-decoder based architectures. Aimed at achiev-
ing a high degree of success even with sparse training datasets and developed
to tackle biological image segmentation problems, it is a clear starting block for
our architecture.

3.1 U-Net

The classical U-Net, as proposed by Ronneberger et al. has revolutionised
the field of biomedical image segmentation. Similarly to other encoder-decoder
networks, U-Net is capable of producing highly precise segmentation masks.

396 T. Overton and A. Tucker

Fig. 3. a: Sample segmentation mask in which some tent segmentations are seen to
overlap. b: Sobel filtered image. c: Local entropy filtered image. d : Otsu filtered image.
e: Image with contour ellipses applied. f : Image with gradient morphology applied. g :
Eroded image. h: Tophat filtered image. i : Blackhat filtered image.

What differentiates it from Mask R-CNN, SegNet and other similar networks is
its lack of reliance on large datasets [14]. This is achieved by the introduction of
a large number of skip connections, which reintroduce some of the early encoder
layers into the much deeper decoder layers. This greatly enriches the information
received by the decoder part of the network, and hence reduces the overall size
of the dataset required to train the network.

We have deployed the original U-Net on our dataset of satellite images of
IDP camps in Western Afghanistan. While we were able to produce segmenta-
tion masks that very accurately marked the location of the tents, the segmenta-
tion masks contained significant overlaps between tents, as seen in Fig. 3. This
overlap prevents us from carrying out an automated count, despite using several
post-processing techniques to minimise the impact of these overlaps. The most
successful post-processing approaches are shown in Fig. 3. The issues encountered
with the classical U-Net have motivated our modifications to the architecture,
as described in this work.

3.2 DO-U-Net

Driven by the need to reduce overlap in segmentation masks, we modified the
U-Net architecture to produce dual outputs, thus developing the DO-U-Net.
The idea of a contour aware network was first demonstrated by the DCAN
architecture [15]. Based on a simple FCN, DCAN was trained to use the outer
contours of the areas of interest to guide the training of the segmentation masks.
This led to improved semantic and instance segmentation of the model, which
in their case, looked at non-overlapping features in biomedical imaging.

With the aim of counting closely co-located and overlapping objects, we
are predominantly interested in the correct detection of individual objects as
opposed to the exact precision of the segmentation mask itself. An examination
of the hidden convolutional layers of the classical U-Net showed that the penulti-
mate layer of the network extracts information about the edges of our objects of

DO-U-Net 397

3 96 32 32
32 64 64

82146 821
128 256 256

256 128 128
128 64 64

3264 32

102x02

81x81881x881

881x881

681x681

29x29

32

481x481

09x09

88x88

44x44

24x24

04x04

61x61

23x23

03x03

82x82

65x 65

45x45

25x25

401x4 01

201x201

001x001

001x001

Conv 1x1, ReLU Conv 3x3, ReLU Max Pooling 2x2, stride 2 Transpose Conv 3x3, stride 2 Conv 1x1, Softmax

Concatenation 1

001x001

Fig. 4. The DO-U-Net architecture, showing two output layers that target the segmen-
tation and edge masks corresponding to the training images.

interest, without any external stimulus. We introduce a secondary output layer
to the network, targeting a mask segmenting the edges of our objects. By sub-
tracting this “edge” mask from the original segmentation mask, we can obtain
a “reduced” mask containing only non-overlapping objects.

As our objective was to identify tents of fixed scale in our image dataset, we
were able to simplify the model considerably. This reduced the computational
requirements in training of the model, allowing not only for much faster devel-
opment and training but also opening the possibility of deploying the algorithm
on a dataset covering a large proportion of the total area of Afganistan, driven
by our commercial requirements.

Architecture. Starting with the classical U-Net, we reduce the number of
convolutional layers and skip connections in the model. Simultaneously, we min-
imised the complexity of the model by looking at smaller input regions of the
images, thus minimising the memory footprint of the model. We follow the app-
roach of Ronneberger et. al. by using unpadded convolutions throughout the
network, resulting in a model with smaller output masks (100× 100 px) corre-
sponding to a central region of a larger (188× 188 px) input image region. DO-
U-Net uses two, independently trained, output layers of identical size. Figure 4
shows our proposed DO-U-Net architecture. The model can also be found in
our public online repository3. Examples of the output edge and segmentation
masks, as well as the final “reduced” mask, can be seen in Figs. 6 and 7. With
the reduced memory footprint of our model, we can produce a “reduced” seg-
mentation mask for a single 100× 100 px region in 3 ms using TensorFlow 2.0
with Intel i9-9820X CPU and a single NVIDIA RTX 2080 Ti GPU setup.

Training. The large training images were divided such that no overlap exists
between the regions corresponding to the target masks, using zero-padding at
the image borders. We train our model against both segmentation and edge
masks. The edges of the mark-up polygons, annotated using our custom tool,
were used as the “edge” masks during training. Due to the difference in a pixel

3 https://github.com/ToyahJade/DO-U-Net.

https://github.com/ToyahJade/DO-U-Net

398 T. Overton and A. Tucker

3 96 32 32
32 64 64

64 128 128
652821 652

256 512 512
512 256 256

256 128 128
64128 64

64 32 32 1

083x083

02x02

81x81

083x0 83

873x873

673x673

873x873

881x881

681x68 1

29x29

64

481x481

09x09

88x88

44x44

24x24

04x04

61x61

23x23

03x03

82x82

65x65

45x45

25x25

401x401

2 01x201

001x001

002x002

891x891

691x691

691x 691

Conv 1x1, ReLU Conv 3x3, ReLU Max Pooling 2x2, stride 2 Transpose Conv 3x3, stride 2 Conv 1x1, Softmax

Concatenation

1

691x691

Fig. 5. Scale-Invariant DO-U-Net, redesigned to work with datasets containing objects
of variable scale.

size of tents and erythrocytes, the edges were taken to span 2 px and 4 px wide
respectively in these case studies.

As our problem deals with segmentation masks covering only a small propor-
tion of the image (<1% in some satellite imagery), the choice of a loss function
was a very important factor. We use the Focal Tversky Index, which is suited for
training with sparse positive labels compared to the overall area of the training
data [16]. Our best result, obtained using the Focal Tversky loss function, gave
an improvement of 5% in the Intersect-over-Union (IoU) value compared to the
Binary Cross-Entropy loss function, as used by Ronneberger et al. [14]. We found
the training to behave most optimally when the combined loss function for the
model was heavily weighted toward the edge mask segmentation. Here, we used
a 10%/90% split for the object and edge mask segmentation respectively.

Counting. As the resulting “reduced” masks produced by our approach do
not contain any overlaps, we can use simple counting techniques, relying on
the detection of the bounding polygons for the objects of interest. We apply a
threshold to remove all negative values from the image, which may occur due to
the subtractions. We then use the Marching Squares Algorithm implemented as
part of Python’s skimage.measure image analysis library [17].

Scale-Invariant DO-U-Net. In addition to the simple DO-U-Net, we pro-
pose a scale-invariant version of the architecture with an additional encoder and
decoder block. Figure 5 shows the increased depth of the network as is required
to capture the generalised model of our objects in the scale varying dataset.
The addition of extra blocks resulted in a larger input layer of 380× 380 px,
corresponding to a segmentation mask of 196× 196 px.

4 Results

4.1 IDP Tent Results

Using our DO-U-Net architecture, we were able to achieve a very significant
improvement in the counting of IDP tents compared to the popularly used SVM

DO-U-Net 399

Fig. 6. Left: Segmentation mask produced for NRC tents in a camp near Qala’e’Naw.
Centre: Edges mask produced for the same image. Right: The final output mask.

classifier available in ArcGIS. However, due to the manually intensive nature of
the ArcGIS approach4, we were only able to directly compare a single test camp,
located in the Qala’e’Naw region of the Badghis Province. This area contains
921 tents as identified in the ground-truth masks. Using DO-U-Net, we achieved
a precision of 99.78% with a sensitivity of 99.46%. Using ArcGIS, we find a
precision of 99.86% and a significantly lower sensitivity of 79.37%. Sensitivity,
or the true positive rate, measures the probability of detecting an object and is,
therefore, the most important metric for us as we aim to locate and count all
tents in the region. The scale-invariant DO-U-Net achieved a precision of 98.48%
and a sensitivity of 98.37% on the same image.

We also apply DO-U-Net to a larger dataset of five images containing a total
of 3,447 tents and find an average precision of 97.01% and an average sensitivity
of 98.68%. Similarly, we tested the scale-invariant DO-U-Net using 10 images
with varying properties and resolutions containing a total of 5,643 tents. Here,
the average precision was reduced to 91.45%, and the average sensitivity dropped
to 94.66%. This result is not surprising as, on inspection, we find that without
the scale constraints the resulting segmenting masks are contaminated with other
structures of similar properties to NRC tents. We also find that, without scale
constraints, NRC tents which are partially covered e.g. with tarpaulin may be
missed or only partially segmented. Our DO-U-Net and scale-invariant DO-U-
Net sensitivities of 98.68% and 94.66% respectively are very strong results when
compared to the existing literature.

4.2 Erythrocyte Results

To validate the performance of DO-U-Net at counting erythrocytes, we use 3 ran-
domly selected blood smear images from ALL patients and a further 5 selected
images from non-ALL patients. While randomly selected, the images are repre-
sentative of the entire ALL IDB1 dataset. On a total of 2,775 erythrocytes, as
found in these 8 validation images, DO-U-Net achieved an average precision of
98.31% and an average sensitivity of 99.07%.

4 Results found using ArcGIS methodology can be found at https://storymaps.arcgis.
com/stories/d85e5cca27464d97ad4c1bad3da7f140.

https://storymaps.arcgis.com/stories/d85e5cca27464d97ad4c1bad3da7f140
https://storymaps.arcgis.com/stories/d85e5cca27464d97ad4c1bad3da7f140

400 T. Overton and A. Tucker

Fig. 7. Left: Segmentation mask produced for a blood smear of an ALL patient. Centre:
Edges mask produced for the same image. Right: The final output mask.

Fig. 8. Top: Blood smear images of overlapping cells. Bottom: Segmentation masks
produced by DO-U-Net. Left: An overlapped cell is counted twice when the “edges”
from neighbouring cells overlap and break up the cell. Centre: A cell is missed due to
an incomplete edge mask. Right: An uncertainty in the order of the cell overlap leads
to the intersect between two cells being counted as an additional cell.

Whilst our proposed DO-U-Net is extremely effective at producing image
and edge segmentation masks, as demonstrated in Fig. 7, we do note that the
obtained erythrocyte count may not always match the near-perfect segmenta-
tion. Figure 8 shows examples of the three most common issues found to occur
in the final “reduced” masks. These mistakes arise largely due to the translucent
nature of erythrocytes and the difficulty in differentiating between a cell which
is overlapping another and a cell which is overlapped. While these cases are rare,
this demonstrates that further improvements can be made to the architecture.

4.3 Future Work

Our current model has been designed to segment only one type of object, which
is a clear limitation of our solution. As an example, the blood smear images from
the ALL-IDP1 dataset contain normal erythrocytes as well as two clear types
of morphology: burr cells and dacryocytes. These morphologies may be signs of
disease in patients, though burr cells are common artefacts, especially known to
occur when the blood sample is aged. It is therefore important to not only count
all erythrocytes, but to also differentiate between their various morphologies.

DO-U-Net 401

Table 1. Summary of results for DO-U-Net, when tested on our two satellite imagery
datasets and the ALL IDB1 dataset.

Dataset Number of
images

Number of
objects

Average
precision

Average
sensitivity

IDP Camps (Fixed Scale) 5 3,447 97.01% 98.69%

IDP Camps (Scale-Invariant) 10 5,643 91.45% 94.66%

ALL IDB1 8 2,775 98.31% 99.07%

While our general theory can be applied to identifying different types of object,
further modifications to our proposed DO-U-Net would be required.

5 Conclusion

We have proposed a new approach to segmenting and counting closely co-located
and overlapping objects in complex image datasets. For this, we developed DO-
U-Net: a modified U-Net based architecture, designed to produce both a seg-
mentation and an “edge” mask. By subtracting the latter from the former, we
can locate and spatially separate objects of interest before automatically count-
ing them. Our methodology was successful on both of our case studies: locating
and counting IDP tents in satellite imagery, and the segmentation and count-
ing of erythrocytes in blood smear images. In the first case study, DO-U-Net
increased our sensitivity by approximately 20% compared to a popular ArcGIS
based solution, achieving an average sensitivity of 98.69% for a dataset of fixed
spatial resolution. Our network went on to achieve a precision of 91.45% and a
sensitivity of 94.66% on a set of satellite images with a varying resolution and
colour profiles. This is an impressive result when compared to Quinn et al. who
achieved a precision of 78%. We also found DO-U-Net to be extremely success-
ful at segmenting and counting erythrocytes in blood smear images, achieving a
sensitivity of 99.07% for our test dataset. This is an improvement of 6% over the
results found by Tran et al. who used the same training dataset, and 3% over
Alam and Islam who used a comparable set of images, giving us a near-perfect
sensitivity when counting erythrocytes. The results are summarised in Table 1.

Acknowledgements. We thank Harry Robson, GIS Analyst at Alcis Holdings Ltd.,
for industry knowledge shared and for performing post-processing in ArcGIS. We would
also like to show our gratitude to Richard Brittan, Tim Buckley and the Alcis team
for sharing insight with us during the course of this research.

We are also immensely grateful to the Department of Information Technology at
Università degli Studi di Milano for providing the ALL IDB1 dataset from the Acute
Lymphoblastic Leukemia Image Database for Image Processing.

402 T. Overton and A. Tucker

References

1. Global Internal Displacement Database, Internal Displacement Monitoring Cen-
tre. http://www.internal-displacement.org/database/displacement-data. Accessed
04 Nov 2019

2. We Assisted 8.5 Million People Last Year, Norwegian Refugee Council. https://
www.nrc.no/perspectives/2019/we-assisted-8.5-million-people-last-year. Accessed
04 Nov 2019

3. Train Support Vector Machine Classifier, ArcGIS Pro. https://pro.arcgis.com/en/
pro-app/tool-reference/spatial-analyst/train-support-vector-machine-classifier.
htm. Accessed 10 Nov 2019

4. Quinn, J.A., Nyhan, M.M., Navarro, C., Coluccia, D., Bromley, L., Luengo-Oroz,
M.: Humanitarian applications of machine learning with remote-sensing data:
review and case study in refugee settlement mapping. Philos. Trans. R. Soc. A
Math. Phys. Eng. Sci. 376, 20170363 (2018). https://doi.org/10.1098/rsta.2017.
0363

5. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. Facebook AI research
(FAIR). Submission Date: 24 January 2018. arXiv:1703.06870

6. Tran, T., Binh Minh, L., Lee, S., Kwon, K.: Blood cell count using deep learn-
ing semantic segmentation. Preprints 2019, 2019090075. https://doi.org/10.20944/
preprints201909.0075.v1

7. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional
encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal.
Mach. Intell. 39(12), 2481–2495 (2017). https://doi.org/10.1109/TPAMI.2016.
2644615. Dickinson, S. (ed.)

8. Alam, M.M., Islam, M.T.: Machine learning approach of automatic identification
and counting of blood cells. Healthc. Technol. Lett. 6(4), 103–108 (2019). https://
doi.org/10.1049/htl.2018.5098

9. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger, Submission Date: 25
December 2016. arXiv: 612.08242

10. Maxar Technologies. https://www.maxar.com/. Accessed 18 Nov 2019
11. WorldView-3, DigitalGlobe Inc. http://worldview3.digitalglobe.com. Accessed 04

Nov 2019
12. The DigitalGlobe Constellation, DigitalGlobe Inc. https://www.digitalglobe.com/

company/about-us. Accessed 04 Nov 2019
13. Hyeonwoo, N., Seunghoon, H., Bohyung, H.: Learning deconvolution network for

semantic segmentation. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 1520–1528, May 2015

14. Ronneberger, Olaf, Fischer, Philipp, Brox, Thomas: U-Net: Convolutional Net-
works for Biomedical Image Segmentation. In: Navab, Nassir, Hornegger, Joachim,
Wells, William M., Frangi, Alejandro F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp.
234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4 28

15. Chen, H., Qi, X., Yu, L., Heng, P.: DCAN: deep contour-aware networks for accu-
rate gland segmentation. In: Proceedings of Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2487–2496. IEEE (2016)

16. Abraham, N., Khan, N.M.: A novel focal tversky loss function with improved
attention U-Net for lesion segmentation. In: IEEE International Symposium on
Biomedical Imaging, ISBI (2019). arXiv:1810.07842

17. Contour Finding, Scikits-image. https://scikit-image.org/docs/0.5/auto
examples/plot contours.html. Accessed 11 Nov 2019

http://www.internal-displacement.org/database/displacement-data
https://www.nrc.no/perspectives/2019/we-assisted-8.5-million-people-last-year
https://www.nrc.no/perspectives/2019/we-assisted-8.5-million-people-last-year
https://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/train-support-vector-machine-classifier.htm
https://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/train-support-vector-machine-classifier.htm
https://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/train-support-vector-machine-classifier.htm
https://doi.org/10.1098/rsta.2017.0363
https://doi.org/10.1098/rsta.2017.0363
http://arxiv.org/abs/1703.06870
https://doi.org/10.20944/preprints201909.0075.v1
https://doi.org/10.20944/preprints201909.0075.v1
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1049/htl.2018.5098
https://doi.org/10.1049/htl.2018.5098
http://arxiv.org/abs/612.08242
https://www.maxar.com/
http://worldview3.digitalglobe.com
https://www.digitalglobe.com/company/about-us
https://www.digitalglobe.com/company/about-us
https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/1810.07842
https://scikit-image.org/docs/0.5/auto_examples/plot_contours.html
https://scikit-image.org/docs/0.5/auto_examples/plot_contours.html

DO-U-Net 403

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Enhanced Word Embeddings for Anorexia
Nervosa Detection on Social Media

Diana Ramı́rez-Cifuentes1(B), Christine Largeron2, Julien Tissier2,
Ana Freire1, and Ricardo Baeza-Yates1

1 Universitat Pompeu Fabra, Carrer de Tanger, 122-140, 08018 Barcelona, Spain
{diana.ramirez,ana.freire,ricardo.baeza}@upf.edu

2 Univ Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien, UMR 5516,
42023 Saint-Etienne, France

{julien.tissier,christine.largeron}@univ-st-etienne.fr

Abstract. Anorexia Nervosa (AN) is a serious mental disorder that has
been proved to be traceable on social media through the analysis of users’
written posts. Here we present an approach to generate word embeddings
enhanced for a classification task dedicated to the detection of Reddit
users with AN. Our method extends Word2vec’s objective function in
order to put closer domain-specific and semantically related words. The
approach is evaluated through the calculation of an average similarity
measure, and via the usage of the embeddings generated as features for
the AN screening task. The results show that our method outperforms
the usage of fine-tuned pre-learned word embeddings, related methods
dedicated to generate domain adapted embeddings, as well as repre-
sentations learned on the training set using Word2vec. This method can
potentially be applied and evaluated on similar tasks that can be formal-
ized as document categorization problems. Regarding our use case, we
believe that this approach can contribute to the development of proper
automated detection tools to alert and assist clinicians.

Keywords: Social media · Eating disorders · Word embeddings ·
Anorexia Nervosa · Representation learning

1 Introduction

We present models to identify users with AN based on the texts they post
on social media. Word embeddings previously learned in a large corpus, have
provided good results on predictive tasks [3]. However, in the case of writings
generated by users living with a mental disorder such as AN, we observe specific
vocabulary exclusively related with the topic. Terms such as: “cw”, used to refer
to the current weight of a person, or “ow” referring to the objective weight,

This work was supported by the University of Lyon - IDEXLYON and the Spanish Min-
istry of Economy and Competitiveness under the Maria de Maeztu Units of Excellence
Program (MDM-2015-0502).

c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 404–417, 2020.
https://doi.org/10.1007/978-3-030-44584-3_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_32&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_32

Anorexia Risk Assessment on Social Media 405

are elements that are not easily found in large yet general collections extracted
from Wikipedia, social media and news websites. Therefore, using pre-learned
embeddings may not be the most suitable approach for the task.

We propose a method based on Dict2vec [15] to generate word embeddings
enhanced for our task domain. The main contributions of our work are the
following: (1) a method that modifies Dict2vec [15] in order to generate word
embeddings enhanced for our classification task, this method has the power to
be applied on similar tasks that can be formulated as document categorization
problems; (2) different ways to improve the performance of the embeddings gen-
erated by our method corresponding to four embeddings variants; and (3) a
set of experiments to evaluate the performance of our generated embeddings in
comparison to pre-learned embeddings, and other domain adaptation methods.

2 Related Work

In previous work related to detection of mental disorders [8], documents were
represented using bag of words (BoW) models, which involve representing words
in terms of their frequencies. As these models do not consider contextual infor-
mation or relations between the terms, other models have been proposed based
on word embeddings [3]. These representations are generated considering the dis-
tributional hypothesis, which assumes that words appearing in similar contexts
are related, and therefore should have close representations [11,13].

Embedding models allow words from a large corpus to be encoded as vectors
in a high-dimensional space. The vectors are defined by taking into account the
context in which the words appear in the corpus in such a way that two words
having the same neighborhood should be close in the vector space.

Among the methods used for generating word embeddings we find
Word2vec [11], which generates a vector for each word in the corpus consid-
ering it as an atomic entity. To build the embeddings, Word2vec defines two
approaches: one known as continuous bag of words (CBOW) that uses the con-
text to predict a target word; and another one called skip-gram, which uses a
word to predict a target context. Another method is fastText [2], which takes into
account the morphology of words, having each word represented as a bag of char-
acter n-grams for training. There is also GloVe [13], which proposes a weighted
least squares model that does the training on global word-word co-occurrence
counts.

In contrast to the previous methods, we can also mention recent methods
like Embeddings from Language Models (ELMo) [14] and Bidirectional Encoder
Representations from Transformers (BERT) [6] that generate representations
which are aware of the context they are being used at. These approaches are
useful for tasks where polysemic terms are relevant, and when there are enough
sentences to learn these from the context. Regarding our use case, we observe
that the vocabulary used by users with AN is very specific and contains almost no
polysemic terms, which is why these methods are not addressed in our evaluation
framework.

406 D. Ramı́rez-Cifuentes et al.

All the methods already mentioned are generally trained over large general
purpose corpora. However, for certain domain specific classification tasks we
have to work with small corpora. This is the case of mental disorders screening
tasks given that the annotation phase is expensive, and requires the intervention
of specialists. There are some methods that address this issue by either enhanc-
ing the embeddings learned over small corpora with external information, or
adapting embeddings learned on large corpora to the task domain.

Among the enhancement methods we find Zhang’s et al. [17] work. They
made use of word embeddings learned in different health related domains to
recognize symptoms in psychiatry. They designed approaches to combine data
of the source and target to generate word embeddings, which are considered in
our experimental results.

Kuang et al. [9] propose learning weights based on the words’ relative impor-
tance for the classification task (predictive terms). This method proposes weight-
ing words according to their χ2 [12] statistics to represent the context. However,
this method differs from ours as we generate our embeddings through a different
approach, which takes into account the context terms, introduces new domain
related vocabulary, considers the predictive terms to be equally important, and
moves apart the vectors of terms that are not predictive for the main target
class.

Faruqui et al. [7] present an alternative, known as a retrofitting method,
which makes use of relational information from semantic lexicons to improve
pre-built word vectors. The main disadvantage is that no external new terms
representations can be introduced to the enhanced embeddings, and that despite
related embeddings are put closer, the embeddings of terms that should not be
related (task-wise) cannot be put apart from each other. In our experimental
setup, this method is used to define a baseline and to enhance the embeddings
generated through our approach.

Our proposal is based on Dict2vec [15], which is an extension of the Word2vec
approach. Dict2vec uses the lexical dictionary definitions of words in order to
enrich the semantics of the embeddings generated. This approach has proved
to perform well on small corpora because in addition to the context defined by
Word2vec, it introduces a (1) positive sampling, which moves closer the vector
of words co-occurring in their mutual dictionary definitions, and a (2) controlled
negative sampling which prevents to move apart the vectors of words that appear
in the definition of others, as the authors assume that all the words in the
definition of a term from a dictionary are semantically related to the word they
define.

3 Method Proposed

Our method generates word embeddings enhanced for a classification task dedi-
cated to the detection of users with AN over a small size corpus. In this context,
users are represented by documents that contain their writings concatenated,
and that are labeled as anorexic (positive) or control (negative) cases. These
labels are known as the classes to predict for our task.

Anorexia Risk Assessment on Social Media 407

Our method is based on Dict2vec’s general idea [15]. We extend the Word2vec
model with both a positive and a negative component, but our method differs
from Dict2vec because both components are designed to learn vectors for a
specific classification task. Within the word embeddings context, we assume that
word-level n-grams’ vectors, which are predictive for a class, should be placed
close to each other given their relation with the class to be predicted. Therefore
we first define sets of what we call predictive pairs for each class, and use them
later for our learning approach.

3.1 Predictive Pairs Definition

Prior to learning our embeddings, we use χ2 [12] to identify the predictive n-
grams. This is a method commonly used for feature reduction, being capable to
identify the most predictive features, in this case terms, for a classification task.

Based on the χ2 scores distribution, we obtain the n terms with the high-
est scores (most predictive terms) for each of the classes to predict (positive
and negative). Later, we identify the most predictive term for the positive class
denoted as t1 or pivot term. Depending on the class for which a term is predic-
tive, two types of predictive pairs are defined, so that every time a predictive
word is found, it will be put close or far from t1. These predictive pair types are:
(1) positive predictive pairs, where each predictive term for the positive class is
paired with the term t1 in order to get its vector representation closer to t1; and
(2) negative predictive pairs, where each term predictive for the negative class
is also paired with t1, but with the goal of putting it apart from t1.

In order to define the positive predictive terms for our use case, we con-
sider: the predictive terms defined by the χ2 method, AN related vocabulary
(domain-specific) and the k most similar words to t1 obtained from pre-learned
embeddings, according to the cosine similarity. Like this, information coming
from external sources that are closely related with the task could be introduced
to the training corpus. The terms that were not part of the corpus were appended
to it, providing us an alternative to add new vocabulary of semantic significance
to the task.

Regarding the negative predictive terms, no further elements are considered
asides from the (χ2) predictive terms of the negative class as for our use case and
similar tasks, control cases do not seem to share a vocabulary strictly related
to a given topic. In other words, and as observed for the anorexia detection use
case, control users are characterized by their discussions on topics unrelated to
anorexia.

For the χ2 method, when having a binary task, the resulting predictive fea-
tures are the same for both classes (positive and negative). Therefore, we have
proceeded to get the top n most predictive terms based on the distribution of
the χ2 scores for all the terms. Later, we decided to take a look at the number of
documents containing the selected n terms based on their class (anorexia or con-
trol). Given a term t, we calculated the number of documents belonging to the
positive class (anorexia) containing t, denoted as PCC; and we also calculated
the number of documents belonging to the negative class (control) containing t,

408 D. Ramı́rez-Cifuentes et al.

named as NCC. Then, for t we calculate the respective ratio of both counts in
relation to the total amount of documents belonging to each class: total amount
of positive documents (TPD) and total amount of negative documents (TND),
obtaining like this a positive class count ratio (PCCR) and a negative class count
ratio (NCCR).

For a term to be part of the set of positive predictive terms its PCCR value
has to be higher than the NCCR, and the opposite applies for the terms that
belong to the set of negative predictive pairs. The positive and negative class
count ratios are defined in Eqs. 1a and 1b as:

PCCR(t) =
PCC(t)
TPD

(1a)

NCCR(t) =
NCC(t)
TND

(1b)

3.2 Learning Embeddings

Once the predictive pairs are defined, the objective function for a target term
ωt (Eq. 2) is defined by the addition of a positive sampling cost (Eq. 3) and a
negative sampling cost (Eq. 4a) in addition to Word2vec’s usual target, context
pair cost given by �(ωt, ωc) where � represents the logistic loss function, and vt,
and vc are the vectors associated to ωt and ωc respectively.

J(ωt, ωc) = �(vt, vc) + Jpos(ωt) + Jneg(ωt) (2)

Unlike Dict2vec, Jpos is computed for each target term where P (ωt) is the
set of all the words that form a positive predictive pair with the word ωt, and vt

and vi are the vectors associated to ωt and ωi respectively. βP is a weight that
defines the importance of the positive predictive pairs during the learning phase.
Also, as an aspect that differs from Dict2vec, the cost given by the predictive
pairs is normalized by the size of the predictive pairs set, |P (ωt)|, considering
that all the terms from the predictive pairs set of ωt are taken into account for
the calculations, and therefore when t1 is found, the impact of trying to move it
closer to a big amount of terms is reduced, and it remains as a pivot element to
which other predictive terms get close to:

Jpos(ωt) = βP

∑

ωiεP (ωt)

�(vt · vi)
|P (ωt)| (3)

On the negative sampling, we modify Dict2vec’s approach. We not only make
sure that the vectors of the terms forming a positive predictive pair with ωt are
not put apart from it, but we also define a set of words that are predictive for
the negative class and define a cost given by the negative predictive pairs. In
this case, as explained before, the main goal is to put apart these terms from
t1, so this cost is added to the negative random sampling cost Jn r (Eq. 4b), as
detailed in Eq. 4a.

Anorexia Risk Assessment on Social Media 409

Jneg(ωt) = Jn r(ωt) + βN

∑

ωj∈N(ωt)

�(−vt · vj)
|N (ωt)| (4a)

Jn r(ωt) =
∑

ωi∈F(ωt)

ωi /∈P(ωt)

�(−vt · vi) (4b)

The negative sampling cost considers, as on Word2vec, a set F (ωt) of k words
selected randomly from the vocabulary. These words are put apart from ωt as
they are likely to not be semantically related. Considering Dict2vec’s approach,
we make sure as well that any term belonging to the set of positive predictive
pairs of ωt ends up being put apart. In addition to this, we add another negative
sampling cost which corresponds to the cost of putting apart from t1 the most
predictive terms from the negative class. In this case, N(ωt) represents the set
of all the words that form a negative predictive pair with the word ωt. βN is
a weight to define the importance of the negative predictive pairs during the
learning phase.

The global objective function (Eq. 5) is given by the sum of every pair’s cost
across the whole corpus:

J =
C∑

t=1

n∑

c=−n

J(ωt, ωt+c) (5)

where C is the corpora size, and n represents the size of the window.

3.3 Enhanced Embeddings Variations

Given a pre-learned embedding which associates for a word ω a pre-learned rep-
resentation vpl, and an enhanced embedding v obtained through our approach
for ω with the same length m as vpl, we generate variations of our embeddings
based on existing enhancement methods. First, we denote the embeddings gen-
erated exclusively by our approach (predictive pairs) as Variation 0, v is an
instance of the representation of ω for this variation.

For the next variations, we address ways to combine the vectors of pre-
learned embeddings (i.e., vpl) with the ones of our enhanced embeddings (i.e.,
v). For Variation 1 we concatenate both representations vpl + v, obtaining a 2m
dimensions vector [16]. Variation 2 involves concatenating both representations
and applying truncated SVD as a dimensionality reduction method to obtain
a new representation given by SV D(vpl + v). Variation 3 uses the values of
the pre-learned vector vpl as starting weights to generate a representation using
our learning approach. This variation is inspired in a popular transfer learning
method that was successfully applied on similar tasks [5]. For these variations
(1–3) we take into account the intersection between the vocabularies of both
embeddings types (pre-learned and Variation 0). Finally, Variation 4 implies
applying Faruqui’s retrofitting method [7] over the embeddings of Variation 0.

410 D. Ramı́rez-Cifuentes et al.

4 Evaluation Framework

4.1 Data Set Description

We used a Reddit data set [10] that consists on posts of users labeled as anorexic
and control cases. This data set was defined in the context of an early risk detec-
tion shared task, and the training and test sets were provided by the organizers
of the eRisk task.1 Table 1 provides a description of the training and testing data
sets statistics. Given the incidence of Anorexia Nervosa, for both sets there is a
reduced yet significant amount of AN cases compared to the control cases.

Table 1. Collection description as described on [10].

Train Test

Anorexia Control Anorexia Control

Users count 20 132 41 279

Writings count 7,452 77,514 17,422 151,364

Avg. writings count 372.6 587.2 424.9 542.5

Avg. words per writing 41.2 20.9 35.7 20.9

4.2 Embeddings Generation

The training corpus used to generate the embeddings, named anorexia corpus,
consisted on the concatenation of all the writings from all the training users. A
set of stop-words were removed. This resulted on a training corpus with a size of
1,267,208 tokens and a vocabulary size of 87,197 tokens. In order to consider the
bigrams defined by our predictive pairs, the words belonging to a bigram were
paired and formatted as if they were a single term.

For the predictive pairs generation with χ2, each user is an instance rep-
resented by a document composed by all the user’s posts concatenated. χ2 is
applied over the train set considering the users classes (anorexic or control) as
the possible categories for the documents. The process described in Sect. 3.1 is
followed in order to obtain a list of 854 positive (anorexia) and 15 negative (con-
trol) predictive terms. Some of these terms can be seen on Table 2, which displays
the top 15 most predictive terms for both classes. Anorexia itself resulted to be
the term with the highest χ2 score, denoted as t1 in Sect. 3.

The anorexia domain related terms from [1] were added as the topic related
vocabulary, and the top 20 words with the highest similarity to anorexia coming
from a set of pre-learned embeddings from GloVe [13] were also paired to it to
define the predictive pairs sets. The GloVe’s pre-learned vectors considered are
the 100 dimensions representations learned over 2B tweets with 27B tokens, and
with 1.2M vocabulary terms.

1 eRisk task: https://early.irlab.org/2018/index.html.

https://early.irlab.org/2018/index.html

Anorexia Risk Assessment on Social Media 411

Table 2. List of some of the most predictive terms for each class.

Positive Terms (Anorexia class) Negative terms (Control class)

anorexia diagnosed binges war sky song

anorexic macros calories don’t bro plot master

meal plan cal relapsed Trump game Russian

underweight weight gain restriction players Earth video

eating disorder(s) anorexia nervosa caffeine gold America trailer

The term anorexia was paired to 901 unique terms and, likewise, each of these
terms was paired to anorexia. The same approach was followed for the negative
predictive terms (15), which were also paired with anorexia. An instance of a
positive predictive pair is (anorexia, underweight), whereas an instance of a neg-
ative predictive pair is (anorexia, game). For learning the embeddings through
our approach, and as it extends Word2vec, we used as parameters a window size
of 5, the number of random negative pairs chosen for negative sampling was 5,
and we trained with one thread/worker and 5 epochs.

4.3 Evaluation Based on the Average Cosine Similarity

This evaluation is done over the embeddings generated through Variation 0 over
the anorexia corpus. It averages the cosine similarities (sim) between t1 and all
the terms that were defined either as its p positive predictive pairs, obtaining a
positive score denoted as PS on Eq. 6a; or as its n negative predictive pairs, with
a negative score denoted as NS on Eq. 6b. On these equations va represents the
vector of the term anorexia; vPPTi

represents the vector of the positive predictive
term (PPT) i belonging to the set of positive predictive pairs of anorexia of size
p; and vNPTi

represents the vector of the negative predictive term (NPT) i
belonging to the set of negative predictive pairs of anorexia of size n:

PS(a) =
∑p

i=1 sim(va, vPPTi
)

p
(6a)

NS(a) =
∑n

i=1 sim(va, vNPTi
)

n
(6b)

We designed our experiments using PS and NS in order to analyze three
main aspects: (1) we verify that through the application of our method, the
predictive terms for the positive class are closer to the pivot term representation,
and that the predictive terms for the negative class were moved away from it;
(2) we evaluate the impact of using different values of the parameters βP and
βN to obtain the best representations where PS has the highest possible value,
keeping NS as low as possible; and (3) we compare our generation method with
Word2vec as baseline since this is the case for which our predictive pairs would
not be considered (βP = 0 and βN = 0). We expect for our embeddings to obtain
higher values for PS and lower values for NS in comparison to the baseline.

412 D. Ramı́rez-Cifuentes et al.

Results. Table 3 shows first the values for PS and NS obtained by what we
consider our baseline, Word2vec (βP = 0 and βN = 0), and then the values
obtained by embeddings models generated using our approach (Variation 0),
with different yet equivalent values given to the parameters βP and βN , as they
proved to provide the best results for PS and PN. We also evaluated individually
the effects of varying exclusively the values for βP , leaving βN = 0, and then
the effects of varying only the values of βN , with βP = 0. On the last row of
the table we show a model corresponding to the combination of the parameters
with the best individual performance (βP = 75 and βN = 25).

After applying our approach the value of PS becomes greater than NS for
most of our generated models, meaning that we were able to obtain a represen-
tation where the positive predictive terms are closer to the pivot term anorexia,
and the negative predictive terms are more apart from it. Then, we can also
observe that the averages change significantly depending on the values of the
parameters βP and βN , and for this case the best results according to PS are
obtained when βP = 50 and βN = 50. Finally, when we compare our scores
with Word2vec, we can observe that after applying our method, we can obtain
representations where the values of PS and NS are respectively higher and lower
than the ones obtained by the baseline model.

Table 3. Positive Scores (PS) and Negative Scores (NS) for Variation 0. Different
values for βP and βN are tested.

Values for βP and βN Positive score (PS) Negative score (NS)

βP = 0, βN = 0 (baseline) 0.8861 0.8956

βP = 0.25, βN = 0.25 0.7878 0.7424

βP = 0.5, βN = 0.5 0.7916 0.5158

βP = 1, βN = 1 0.7996 0.5879

βP = 10, βN = 10 0.8495 0.4733

βP = 50, βN = 50 0.9479 0.6009

βP = 100, βN = 100 0.9325 0.6440

4.4 Evaluation Based on Visualization

We focus on the comparison of embeddings generated using word2vec (baseline),
Variation 0 of our enhanced embeddings, and Variation 4. In order to plot over
the space the vectors of the embeddings generated (see Fig. 1), we performed
dimensionality reduction, from the original 200 dimensions to 2, through Prin-
cipal Component Analysis (PCA) over the vectors of the terms in Table 2 for
the embeddings generated with these three representations. We focused over
the embeddings representing the positive and negative predictive terms. For
the resulting embeddings of our method (Variation 0), we selected βP =50 and
βN=50 as parameter values.

Anorexia Risk Assessment on Social Media 413

Fig. 1. Predictive terms sample represented on two dimensions after PCA was applied
on their embeddings as dimensionality reduction method. From left to right each plot
shows the vectorial representation of the predictive terms according to the embeddings
obtained through (1) Word2vec (baseline), (2) Variation 0, and (3) Variation 4.

The positive predictive terms representations are closer after applying our
method (Variation 0), and the negative predictive terms are displayed farther, in
comparison to the baseline. The last plot displays the terms for the embeddings
generated through Variation 4. For this case, given the input format for the
retrofitting method, anorexia was linked with all the remaining predictive terms
of the anorexia class (901), and likewise, each of these predictive terms was linked
to the term anorexia. Notice that the retrofitting approach converges to changes
in Euclidean distance of adjacent vertices, whereas the closeness between terms
for our approach is given by the cosine distance.

4.5 Evaluation Based on the Predictive Task

In order to test our generated embeddings for the classification task dedicated to
AN screening, we conduct a series of experiments to compare our method with
related approaches. We define 5 baselines for our task: the first one is a BoW
model based on word level unigrams and bigrams (Baseline 1), this model is
kept mainly as a reference since our main focus is to evaluate our approach com-
pared to other word embedding based models. We create a second model using
GloVe’s pre-learned embeddings (Baseline 2), and a third model that uses word
embeddings learned on the training set with the Word2vec approach (Baseline
3). We evaluate a fourth approach (Baseline 4) given by the enhancement of the
Baseline 3 embeddings, with Faruqui’s et al. [7] retrofitting method. Baseline
5 uses the same retrofitting method over GloVe’s pre-learned embeddings, as
we expected that a domain adaptation of the embeddings learned on a external
source could be achieved this way.

Predictive Models Generation. To create our predictive models, again, each
user is an instance represented by their writings (see Sect. 4.2). For Baseline 1
we did a tf · idf vectorization of the users’ documents, by using the TfIdfVec-
torizer provided by the Scikit-learn Python library, with a stop-words list and

414 D. Ramı́rez-Cifuentes et al.

the removal of the n-grams that appeared in less than 5 documents. The repre-
sentation of each user through embeddings was given by the aggregation of the
vector representations of the words in the concatenated texts of the users, nor-
malized by the size (words count) of the document. Then, an L2 normalization
was applied to all the instances.

Given the reduced amount of anorexia cases on the training set, we used
SMOTE [4] as an over-sampling method to deal with the unbalanced classes. The
Scikit learn’s Python library implementations for Logistic regression (LR), Ran-
dom Forest (RF), Multilayer Perceptron (MLP), and Support Vector Machines
(SVM) were tested as classifiers over the training set with a 5-fold cross valida-
tion approach. A grid search over each method to find the best parameters for
the models was done.

Results. The results of the baselines are compared to models with our varia-
tions. For Variation 4 and baselines 4 and 5 we use the 901 predictive terms of
Sect. 4.4. To define the parameters of Variation 3, we test different configura-
tions, as on Sect. 4.3, and chose the ones with the best results according to PS.

Precision (P), Recall (R), F1-Score (F1) and Accuracy (A) are used as evalu-
ation measures. The scores for P, R and F1 reported over the test set on Table 4
correspond to the Anorexia (positive) class, as this is the most relevant one,
whereas A corresponds to the accuracy computed on both classes. Seeing that
there are 6 times more control cases than AN and that false negative (FN) cases
are a bigger concern compared to false positives, we prioritize R and F1 over P
and A. This is done because as with most medical screening tasks, classifying a
user at risk as a control case (FN) is worst than the opposite (FP), in particular
on a classifier that is intended to be a first filter to detect users at risk and
eventually alert clinicians, who are the ones that do an specialized screening of
the user profile. Table 4 shows the results for the best classifiers. The best scores
are highlighted for each measure.

Comparing the baselines, we can notice that the embeddings based
approaches provide an improvement on R compared to the BoW model, however
this is given with a significant loss on P.

Regarding the embeddings based models, our variations outperform the
results obtained by the baselines. The model with the embeddings generated
with our method (Variation 0) provides significantly better results compared to
the Word2vec model (Baseline 3), and even the model with pre-learned embed-
dings (Baseline 2), with a wider vocabulary.

The combination of pre-learned embeddings and embeddings learned on our
training set, provide the best results in terms of F1 and R. They also provide
a good accuracy considering that most of the test cases are controls. We can
also observe that using the weights of pre-learned embeddings (Variation 3) to
start our learning process over our corpus improves significantly the R score in
comparison to Word2vec’s generated embeddings (Baseline 3).

The worst results for our variations are given by Variation 1 that obtains
equivalent results to Baseline 2. The best model in terms of F1 corresponds to

Anorexia Risk Assessment on Social Media 415

Variation 2. Also, better results are obtained for P when the embeddings are
enhanced by the retrofitting approach (Variation 4).

Table 4. Baselines and enhanced embeddings evaluated in terms of Precision (P),
Recall (R), F1-Score (F1) and Accuracy (A).

Model Description P R F1 A Classifier

Baseline 1 BoW Model 90.00% 65.85% 76.06% 94.69% MLP

Baseline 2 GloVe’s pre-learned
embeddings

69.57% 78.05% 73.56% 92.81% MLP

Baseline 3 Word2vec embeddings 70.73% 70.73% 70.73% 92.50% SVM

Baseline 4 Word2vec retrofitted
embeddings

71.79% 68.29% 70.00% 92.50% SVM

Baseline 5 GloVe’s pre-learned
embeddings retrofitted

67.35% 80.49% 73.33% 92.50% MLP

Variation 0 Predictive pairs embeddings
(βP = 50 βN = 50)

77.50% 75.61% 76.54% 94.03% MLP

Variation 1 Predictive pairs embeddings
+ GloVe embeddings

69.57% 78.05% 73.56% 92.81% MLP

Variation 2 Predictive pairs embeddings
(βP = 50 βN = 50) + GloVe
embeddings

75.00% 80.49% 77.65% 94.06% MLP

Variation 3 Predictive pairs embeddings
+ GloVe embeddings
starting weights (βP = 0.25
βN = 50)

72.73% 78.05% 75.29% 93.44% MLP

Variation 4 Predictive pairs (βP = 50 βN

= 50) retrofitted embeddings
82.86% 70.73% 76.32% 94.37% SVM

5 Conclusions and Future Work

We presented an approach for enhancing word embeddings towards a classifica-
tion task on the detection of AN. Our method extends Word2vec considering
positive and negative costs for the objective function of a target term. The
costs are added by defining predictive terms for each of the target classes. The
combination of the generated embeddings with pre-learned embeddings is also
evaluated. Our results show that the usage of our enhanced embeddings outper-
forms the results obtained by pre-learned embeddings and embeddings learned
through Word2vec regardless of the small size of the corpus. These results are
promising as they might lead to new research paths to explore.

Future work involves the evaluation of the method on similar tasks, which can
be formalized as document categorization problems, addressing small corpora.
Also, ablation studies will be performed to assess the impact of each component
into the results obtained.

416 D. Ramı́rez-Cifuentes et al.

References

1. Arseniev, A., Lee, H., McCormick, T., Moreno, M.: Proana: pro-eating disorder
socialization on twitter. J. Adolesc. Health 58, 659–664 (2016)

2. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

3. Çano, E., Morisio, M.: Word embeddings for sentiment analysis: a comprehensive
empirical survey. CoRR abs/1902.00753 (2019)

4. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

5. Coppersmith, G., Leary, R., Crutchley, P., Fine, A.: Natural language processing
of social media as screening for suicide risk. Biomed. Inform. Insights 10 (2018)

6. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidi-
rectional transformers for language understanding. CoRR abs/1810.04805 (2018)

7. Faruqui, M., Dodge, J., Jauhar, S.K., Dyer, C., Hovy, E., Smith, N.A.: Retrofitting
word vectors to semantic lexicons. In: Proceedings of the 2015 Conference of the
North American Chapter of the Association for Computational Linguistics, pp.
1606–1615. Association for Computational Linguistics (2015)

8. Guntuku, S.C., Yaden, D.B., Kern, M.L., Ungar, L.H., Eichstaedt, J.C.: Detecting
depression and mental illness on social media: an integrative review. Curr. Opin.
Behav. Sci. 18, 43–49 (2017)

9. Kuang, S., Davison, B.D.: Learning word embeddings with chi-square weights for
healthcare tweet classification. Appl. Sci. 7(8), 846 (2017)

10. Losada, D.E., Crestani, F., Parapar, J.: Overview of eRisk: early risk prediction on
the internet. In: Bellot, P., et al. (eds.) CLEF 2018. LNCS, vol. 11018, pp. 343–361.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98932-7 30

11. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. CoRR abs/1301.3781 (2013)

12. Mowafy, M., Rezk, A., El-Bakry, H.: An efficient classification model for unstruc-
tured text document. Am. J. Comput. Sci. Inf. Technol. 06, 16 (2018)

13. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word represen-
tation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543. Association for Computational
Linguistics (2014)

14. Peters, M.E., et al.: Deep contextualized word representations. In: Proceedings of
NAACL (2018)

15. Tissier, J., Gravier, C., Habrard, A.: Dict2vec : learning word embeddings using
lexical dictionaries. In: Proceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 254–263. Association for Computational
Linguistics, Copenhagen, September 2017

16. Yin, W., Schütze, H.: Learning word meta-embeddings. In: Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics, pp. 1351–1360.
Association for Computational Linguistics, Berlin, August 2016

17. Zhang, Y., Li, H.J., Wang, J., Cohen, T., Roberts, K., Xu, H.: Adapting word
embeddings from multiple domains to symptom recognition from psychiatric notes.
In: AMIA Joint Summits on Translational Science Proceedings. AMIA Joint Sum-
mits on Translational Science (2018)

https://doi.org/10.1007/978-3-319-98932-7_30

Anorexia Risk Assessment on Social Media 417

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Event Recognition Based on Classification
of Generated Image Captions

Andrey V. Savchenko1,2(B) and Evgeniy V. Miasnikov1

1 Samsung-PDMI Joint AI Center, St. Petersburg Department of Steklov Institute
of Mathematics, Fontanka Street, St. Petersburg, Russia

2 National Research University Higher School of Economics,
Laboratory of Algorithms and Technologies for Network Analysis,

Nizhny Novgorod, Russia
avsavchenko@hse.ru

Abstract. In this paper, we consider the problem of event recognition
on single images. In contrast to conventional fine-tuning of convolutional
neural networks (CNN), we proposed to use image captioning, i.e., a gen-
erative model that converts images to textual descriptions. The motiva-
tion here is the possibility to combine conventional CNNs with a com-
pletely different approach in an ensemble with high diversity. As event
recognition task has nothing serial or temporal, obtained captions are
one-hot encoded and summarized into a sparse feature vector suitable
for the learning of an arbitrary classifier. We provide the experimen-
tal study of several feature extractors for Photo Event Collection, Web
Image Dataset for Event Recognition and Multi-Label Curation of Flickr
Events Dataset. It is shown that the image captions trained on the Con-
ceptual Captions dataset can be classified more accurately than the fea-
tures from an object detector, though they both are obviously not as
rich as the CNN-based features. However, an ensemble of CNN and our
approach provides state-of-the-art results for several event datasets.

Keywords: Image captioning · Event recognition · Ensemble of
classifiers · Convolutional neural network (CNN)

1 Introduction

Nowadays, social networks and mobile devices create a vast stream of multimedia
data because people are taking more photos in recent years than ever before [1].
To organize a large gallery of personal photos, they may be assigned to albums
according to some events. Social events are happenings that are attended and
shared by the people [2,3] and take place in a specific environment [4], e.g.,
holidays, sports events, weddings, various activities, etc. The album labels are
usually assigned either manually or by using locations from EXIF data if the
GPS tags in a camera are switched on. However, content-based image analysis
has been recently introduced in photo organizing systems. Such analysis can be

c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 418–430, 2020.
https://doi.org/10.1007/978-3-030-44584-3_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_33&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_33

Event Recognition Based on Classification of Generated Image Captions 419

used to selectively look for photos for a particular event in order to keep nice
memories of some episodes of our lives [4] or to gather our specific interests for
personalized recommender systems.

There exist two different event recognition tasks [2]. In the first task, the event
categories are recognized for the whole album (a sequence of photos). However,
the assignments of images of the same event into albums may be unknown in
practice. Hence, in this paper, we focus on the second task, namely, event recogni-
tion in single images from social media. As an event here is a complex scene with
large variations in visual appearance [4], deep learning techniques [5] are widely
used. It is typical to fine-tune existing convolutional neural networks (CNNs)
on event datasets [4]. Sometimes CNN-based object detection is applied [6] for
discovering particular categories, e.g., interior objects, food, transport, sports
equipment, animals, etc. [7,8].

However, in this paper, a slightly different approach is considered. Despite the
conventional usage of a CNN as a discriminative model in a classifier design [9],
we propose to borrow generative models to represent an input image in the
other domain. In particular, we use existing methods of image captioning [10]
that generate textual descriptions of images. Our main contribution is a demon-
stration that the generated descriptions can be fed to the input of a classifier in
an ensemble in order to improve the event recognition accuracy of traditional
methods. Though the proposed visual representation is not as rich as features
extracted by fine-tuned CNNs, they are better than the outputs of object detec-
tors [8]. As our approach is completely different than traditional CNNs, it can
be combined with them into an ensemble that possesses high diversity and, as a
consequence, high accuracy.

The rest of the paper is organized as follows. In Sect. 2, the survey of image
captioning models is given. In Sect. 3, we introduce the proposed pipeline for
event recognition based on generated captions. Experimental results for several
event datasets are presented in Sect. 4. Finally, concluding comments and future
works are discussed in Sect. 5.

2 Literature Survey

Most existing methods of event recognition on single photos tend to applica-
tions of the CNN-based architectures [2]. Four layers of fine-tuned CNN were
used to extract features for LDA (Linear Discriminant Analysis) classifier in
the ChaLearn LAP 2015 cultural event recognition challenge [11]. The iterative
selection method [4] identifies the most relevant subset of classes for transfer-
ring representations from CNN learned from the object (ImageNet) and scene
(Places2) datasets. The bounding boxes of detected objects are projected onto
multi-scale spatial maps in the paper [6]. An ensemble of scene classifiers and
object detectors provided the high accuracy [12] for the Photo Event Collection
(PEC) [13]. Unfortunately, there is a significant gap in the accuracies of event
classification in still photos [4] and albums [14], so that there is a huge demand
in all-the-more accurate methods of single image processing.

420 A. V. Savchenko and E. V. Miasnikov

That is why in this paper, we proposed to concentrate on other suitable
visual features extracted with the generative models and, in particular, image
captioning techniques. There is a wide range of applications of image captioning:
from the automatic generation of descriptions for photos posted in social net-
works to image retrieval from databases using generated text descriptions [15].
The image captioning methods are usually based on an encoder-decoder neural
network, which first encodes an image into a fixed-length vector representation
using pre-trained CNN, and then decodes the representation into captions (a
natural language description). During the training of a decoder (generator), the
input image and its ground-truth textual description are fed as inputs to the
neural network, while one hot encoded description presents the desired network
output. The description is encoded using text embeddings in the Embedding
(look-up) layer [5]. The generated image and text embeddings are merged using
concatenation or summation and form the input to the decoder part of the net-
work. It is typical to include the recurrent neural network (RNN) layer followed
by a fully connected layer with the Softmax output layer.

One of the first successful models, “Show and Tell” [16], won the first MS
COCO Image Captioning Challenge in 2015. It uses RNN with long short-term
memory (LSTM) units in a decoder part. Its enhancement “Show, Attend and
Tell” [17] incorporates a soft attention mechanism to improve the quality of
the caption generation. The “Neural Baby Talk” image captioning model [18]
is based on generating the template with slot locations explicitly tied to spe-
cific image regions. These slots are then filled in by visual concepts identified
in the object detectors. The foreground regions are obtained using the Faster-
RCNN network [19], and LSTM with attention mechanism serves as a decoder.
The “Multimodal Recurrent Neural Network” (mRNN) [20] is based on the
Inception network for image features extraction and deep RNN for sentence
generation. One of the best models nowadays is the Auto-Reconstructor Net-
work (ARNet) [21], which uses the Inception-V4 network [22] in an encoder, and
the decoder is based on LSTM. There exist two pre-trained models with greedy
search (ARNet-g) and beam search (ARNet-b) with size 3 to generate the final
caption for each input image.

3 Proposed Approach

Our task can be formulated as a typical image recognition problem [9]. It is
required to assign an input photo X from a gallery to one of C > 1 event cate-
gories (classes). The training set of N ≥ 1 images X = {Xn|n ∈ {1, ..., N}} with
known event labels cn ∈ {1, ..., C} is available for classifier learning. Sometimes
the training photos of the same event are associated with an album [13,14]. In
such a case, the training albums are unfolded into a set X so that the collection-
level label of the album is assigned to labels of each photo from this album.
This task possesses several characteristics that makes it extremely challenging
compared to album-based event recognition. One of these characteristics is the
presence of irrelevant images or unimportant photos that can be associated with

Event Recognition Based on Classification of Generated Image Captions 421

any event [2]. These images can be detected by attention-based models when the
whole album is available [1] but may have a significant negative impact on the
quality of event recognition in single images.

As N is usually rather small, transfer learning may be applied [5]. A deep
CNN is firstly pre-trained on a large dataset, e.g., ImageNet or Places [23]. Sec-
ondly, this CNN is fine-tuned on X, i.e., the last layer is replaced to the new
layer with Softmax activations and C outputs. An input image X is classified by
feeding it to the fine-tuned CNN to compute C scores from the output layer, i.e.,
the estimates of posterior probabilities for all event categories. This procedure
can be modified by the extraction of deep image features (embeddings) using
the outputs of one of the last layers of the pre-trained CNN [5,24]. The input
image X and each training image Xn, n ∈ {1, ..., N} are fed to the input of the
CNN, and the outputs of the last-but-one layer are used as the D-dimensional
feature vectors x = [x1, ..., xD] and xn = [xn;1, ..., xn;D], respectively. Such deep
learning-based feature extractors allow training of a general classifier Cemb, e.g.,
k-nearest neighbor, random forest (RF), support vector machine (SVM) or gra-
dient boosting [9,25]. The C-dimensional vector of pemb = Cemb(x) confidence
scores is predicted given the input image in both cases of fine-tuning with the
last Softmax layer in a role of classifier Cemb and feature extraction with general
classifier. The final decision is made in favor of a class with maximal confidence.

In this paper, we use another approach to event recognition based on gener-
ative models and image captioning. The proposed pipeline is presented in Fig. 1.
At first, the conventional extraction of embeddings x is implemented using pre-
trained CNN. Next, these visual features and a vocabulary V are fed to a spe-
cial RNN-based neural network (generator) that produces the caption, which
describes the input image. Caption is represented as a sequence of L > 0 tokens

Fig. 1. Proposed event recognition pipeline based on image captioning

422 A. V. Savchenko and E. V. Miasnikov

t = {t0, t1..., tL+1} from the vocabulary (tl ∈ V, l ∈ {0, ..., L}). It is generated
sequentially, word-by-word starting from t0 =< START > token until a special
tL+1 =< END > word is produced [21].

The generated caption t is fed into an event classifier. In order to learn its
parameters, every n-th image from the training set is fed to the same image
captioning network to produce the caption tn = {tn;0, tn;1..., tn;Ln+1}. Since the
number of tokens Ln is not the same for all images, it is necessary to either
train a sequential RNN-based classifier or transform all captions into feature
vectors with the same dimensionality. As the number of training instances N is
not very large, we experimentally noticed that the latter approach is as accurate
as the former, though the training time is significantly lower. This fact can be
explained by the absence of anything temporal or serial in the initial task of
event recognition in single images. Hence, we decided to use one-hot encoding
and convert the sequences t and {tn} into vectors of 0s and 1s as described in [26].
In particular, we select a subset of vocabulary Ṽ ⊂ V by choosing the top most
frequently occurring words in the training data {tn} with the optional exclusion
of stop words. Next, the input image is represented as the |Ṽ |-dimensional sparse
vector t̃ ⊂ {0, 1}|Ṽ |, where |Ṽ | is the size of reduced vocabulary Ṽ and the v-th
component of vector t̃ is equal to 1 only if at least one of L words in the caption
t is equal to the v-th word from vocabulary Ṽ . This would mean, for instance,
turning the sequence {1, 5, 10, 2} into a Ṽ -dimensional sparse vector that would
be all 0s except for indices 1, 2, 5 and 10, which would be 1s [26]. The same
procedure is used to describe each n-th training image with Ṽ -dimensional sparse
vector t̃n. After that an arbitrary classifier Ctxt of such textual representations
suitable for sparse data can be used to predict C confidence scores ptxt = Ctxt(̃t).
It is known [26] that such an approach is even more accurate than conventional
RNN-based classifiers (including one layer of LSTMs) for the IMDB dataset.

In general, we do not expect that classification of short textual descriptions is
more accurate than the conventional image recognition methods. Nevertheless,
we believe that the presence of image captions in an ensemble of classifiers can
significantly improve its diversity [27]. Moreover, as the captions are generated
based on the extracted feature vector x, only one inference in the CNN is required
if we combine the conventional general classifier of embeddings from pre-trained
CNN and the image captions. In this paper, the outputs of individual classifiers
are combined in simple voting with soft aggregation. In particular, we compute
aggregated confidences as the weighted sum of outputs of individual classifier:

pensemble = [p1, ..., pC] = w · pemb + (1 − w)ptxt. (1)

The decision is taken in favor of the class with maximal confidence:

c∗ = argmax
c∈{1,...,C}

pc. (2)

The weight w ∈ [0, 1] in (1) can be chosen using a special validation subset
in order to obtain the highest accuracy of criterion (2).

Event Recognition Based on Classification of Generated Image Captions 423

Let us provide qualitative examples for the usage of our pipeline (Fig. 1). The
results of (correct) event recognition using our ensemble are presented in Fig. 2.
Here the first line of the title contains the generated image caption. In addition,
the title displays the result of event recognition using captions t (second line),
embeddings xemb (third line), and the whole ensemble (last line). As one can
notice, the single classification of captions is not always correct. However, our
ensemble is able to obtain a reliable solution even when individual classifiers
make wrong decisions.

Fig. 2. Sample results of event recognition

424 A. V. Savchenko and E. V. Miasnikov

4 Experimental Results

In the experimental study, we examined the following event datasets:

1. PEC [13] with 61,000 images from 807 collections of C = 14 social event
classes (birthday, wedding, graduation, etc.).

2. WIDER (Web Image Dataset for Event Recognition) [6] with 50,574 images
and C = 61 events (parade, dancing, meeting, press conference, etc.).

3. ML-CUFED (Multi-Label Curation of Flickr Events Dataset) [14] contains
C = 23 common event types. Each album is associated with several events,
i.e., it is a multi-label classification task.

We used standard train/test split for all datasets proposed by their creators.
In PEC and ML-CUFED, the collection-level label is directly assigned to each
image contained in this collection. Moreover, we completely ignore any metadata,
e.g., temporal information, except the image itself similarly to the paper [4]. As
a result, the training and validation sets are not ideally balanced. The majority
classes in each dataset contains 5-times higher number of training images when
compared to the minority classes. However, the class distribution in the training
and validation sets remains more or less identical, so that the number of valida-
tion images for majority classes is also 5-times higher than the number of testing
examples for minority classes.

As we mainly focus on the possibility of implementing offline event recog-
nition on mobile devices [12], in order to compare the proposed approach with
conventional classifiers, we used MobileNet v2 with α = 1 [28] and Inception
v4 [22] CNNs. At first, we pre-trained them on the Places2 dataset [23] for fea-
ture extraction. The linear SVM classifier from the scikit-learn library was used
because it has higher accuracy than other classifiers from this library (RF, k-NN,
and RBF SVM) on the considered datasets. Moreover, we fine-tuned these CNNs
using the given training set as follows. At first, the weights in the base part of
the CNN were frozen, and the new head (fully connected layer with C outputs
and Softmax activation) was learned using the ADAM optimizer (learning rate
0.001) for 10 epochs with an early stop in the Keras 2.2 framework with the Ten-
sorFlow 1.15 backend. Next, the weights in the whole CNN were learned during
5 epochs using the ADAM. Finally, the CNN was trained using SGD during 3
epochs with 10-times lower learning rate.

In addition, we used features from object detection models that are typical
for event recognition [6,12]. As many photos from the same event sometimes
contain identical objects (e.g., ball in the football), they can be detected by
contemporary CNN-based methods, i.e., SSDLite [28] or Faster R-CNN [19].
These methods detect the positions of several objects in the input image and
predict the scores of each class from the predefined set of K > 1 types. We
extract the sparse K-dimensional vector of scores for each type of object. If
there are several objects of the same type, the maximal score is stored in this
feature vector [8]. This feature vector is either classified by the linear SVM or
used to train a feed-forward neural network with two hidden layers containing
32 units. Both classifiers were learned using the training set from each event

Event Recognition Based on Classification of Generated Image Captions 425

dataset. In this study, we examined SSD with the MobileNet backbone and
Faster R-CNN with the InceptionResNet backbone. The models pre-trained on
the Open Images Dataset v4 (K = 601 objects) were taken from the TensorFlow
Object Detection Model Zoo.

Our preliminarily experimental study with the pre-trained image captioning
models discussed in Sect. 2 demonstrated that the best quality for MS COCO
captioning dataset is achieved by the ARNet model [21]. Thus, in this exper-
iment, we used ARNet’s encoder-decoder model. However, it can be replaced
with any other image captioning technique without modification of our event
recognition algorithm.

Unfortunately, event datasets do not contain captions (textual descriptions),
which are required to train or fine-tune the image captioning model. Due to
this reason, the image captioning model was trained on the Conceptual Cap-
tions dataset. Today this dataset is the largest dataset used for image caption-
ing. It contains more than 3.3M image-URL and caption pairs in the training
set, and about 15 thousand pairs in the validation set. While there exist other
smaller datasets, such as MS COCO and Flickr, in our preliminary experiments,
the image captioning model, which were trained on the Conceptual Captions
Dataset, provided better worse-case performance in the cross-dataset evaluation.

The feature extraction in the encoder is implemented not only with the same
CNNs (Inception and MobileNet v2). We extracted |Ṽ | = 5000 most frequent
words except special tokens < START > and < END >. They are classified by
either linear SVM or a feed-forward neural network with the same architecture
as for the object detection case. Again, these classifiers are trained from scratch,
given each event training set. The weight w in our ensemble (Eq. 1) was estimated
using the same set.

The results of the lightweight mobile (MobileNet and SSD object detector)
and deep models (Inception and Faster R-CNN) for PEC, WIDER and ML-
CUFED are presented in Tables 1, 2, 3, respectively. Here we added the best-
known results for the same experimental setups.

Certainly, the proposed recognition of image captions is not as accurate as
conventional CNN-based features. However, the classification of textual descrip-
tions is much better than the random guess with accuracy 100%/14 ≈ 7.14%,
100%/61 ≈ 1.64% and 100%/23 ≈ 4.35% for PEC, WIDER and ML-CUFED,
respectively. It is important to emphasize that our approach has a lower error
rate than the classification of the features based on object detection in most
cases. This gain is especially noticeable for lightweight SSD models, which are
1.5–13% less accurate than the proposed classification of image captions due to
the limitations of SSD-based models to detect small objects (food, pets, fashion
accessories, etc.). The Faster R-CNN-based detection features can be classified
more accurately, but the inference in Faster R-CNN with the InceptionResNet
backbone is several times slower than the decoding in the image captioning model
(6–10 s vs. 0.5–2 s on MacBook Pro 2015).

426 A. V. Savchenko and E. V. Miasnikov

Table 1. Event recognition accuracy (%), PEC

Classifier Features Lightweight models Deep models

SVM Embeddings 59.72 61.82

Objects 42.18 47.83

Texts 43.77 47.24

Proposed ensemble (1), (2) 60.56 62.87

Fine-tuned CNN Embeddings 62.33 63.56

Objects 40.17 47.42

Texts 43.52 46.89

Proposed ensemble (1), (2) 63.38 65.12

Aggregated SVM [13] 41.4

Bag of Sub-events [13] 51.4

SHMM [13] 55.7

Initialization-based transfer learning [4] 60.6

Transfer learning of data and knowledge [4] 62.2

Table 2. Event recognition accuracy (%), WIDER

Classifier Features Lightweight models Deep models

SVM Embeddings 48.31 50.48

Objects 19.91 28.66

Texts 26.38 31.89

Proposed ensemble (1), (2) 48.91 51.59

Fine-tuned CNN Embeddings 49.11 50.97

Objects 12.91 21.27

Texts 25.93 30.91

Proposed ensemble (1), (2) 49.80 51.84

Baseline CNN [6] 39.7

Deep channel fusion [6] 42.4

Initialization-based transfer learning [4] 50.8

Transfer learning of data and knowledge [4] 53.0

Finally, the most appropriate way to use image captioning in event classifica-
tion is its fusion with conventional CNNs. In such case, we improved the previous
state-of-the-art for PEC from 62.2% [4] even for the lightweight models (63.38%)
if the fine-tuned CNNs are used in an ensemble. Our Inception-based model is
even better (accuracy 65.12%). We have not still reached the state-of-the-art
accuracy 53% [4] for the WIDER dataset, though our best accuracy (51.84%)
is up to 9% higher when compared to the best results (42.4%) from original
paper [6]. Our experimental setup for the ML-CUFED dataset is studied for the

Event Recognition Based on Classification of Generated Image Captions 427

Table 3. Event recognition accuracy (%), ML-CUFED

Classifier Features Lightweight models Deep models

SVM Embeddings 53.54 57.27

Objects 34.21 40.94

Texts 37.24 41.52

Proposed ensemble (1), (2) 55.26 58.86

Fine-tuned CNN Embeddings 56.01 57.12

Objects 32.05 40.12

Texts 36.74 41.35

Proposed ensemble (1), (2) 57.94 60.01

first time here because this dataset is developed mostly for album-based event
recognition. We should highlight that our preliminary experiments in the lat-
ter task with this dataset and simple averaging of MobileNet features extracted
from all images from an album slightly improved the state-of-the-art accuracy for
this dataset, though it is necessary to study more complex feature aggregation
techniques [1].

In practice, it is preferable to use pre-trained CNN as a feature extractor in
order to prevent additional inference in fine-tuned CNN when it differs from the
encoder in the image captioning model. Unfortunately, the accuracies of SVM
for pre-trained CNN features are 1.5–3% lower when compared to the fine-tuned
models for PEC and ML-CUFED. In this case, an additional inference may be
acceptable. However, the difference in error rates between pre-trained and fine-
tuned models for the WIDER dataset is not significant, so that the pre-trained
CNNs are definitely worth being used here.

5 Conclusion

In this paper, we have proposed to apply generative models in the classical
discriminative task [9]; namely, image captioning in event recognition in still
images. We have presented the novel pipeline of visual preference prediction
using image captioning with the classification of generated captions and retrieval
of images based on their textual descriptions (Fig. 1). It has been experimentally
demonstrated that our approach is more accurate than the widely-used image
representations obtained by object detectors [6,8]. Moreover, our approach is
much faster than Faster R-CNNs, which do not implement one-shot detection.
What is especially useful for ensemble models [27] generated caption provides
additional diversity to conventional CNN-based recognition.

The motivation behind the study of image captioning techniques in this
paper is connected not only with generating compact informative descriptions
of images, but also with the wide possibilities to ensure the privacy of user data
if further processing at remote servers is necessary. Moreover, as the vocabulary

428 A. V. Savchenko and E. V. Miasnikov

of generated captions is restricted, such techniques are considered as effective
anonymization methods. Since the textual descriptions can be easily perceived
and understood by the user (as opposed to a vector of numeric features), his or
her attitude to the use of such methods will be more trustworthy.

Unfortunately, short conceptual textual descriptions are obviously not
enough to classify event categories with high accuracy even for a human due
to errors and lack of specificity (see an example of generated captions in Fig. 2).
Another disadvantage of the proposed approach is the need to repeat inference
if fine-tuned CNN is applied in an ensemble. Hence, the decision-making time
will be significantly increased, though the overall accuracy also becomes higher
in most cases (Tables 1 and 3).

In the future, it is necessary to make the classification of generated cap-
tions more accurate. At first, though our preliminary experiments of LSTMs did
not decrease the error rate of our simple approach with linear SVM and one-
hot encoded words, we strongly believe that a thorough study of the RNN-based
classifiers of generated textual descriptors is required. Second, the comparison of
image captioning models trained on the Conceptual Captions dataset is needed
to choose the best model for caption generation. Here the impact on event recog-
nition accuracy arising from erroneous captions being generated should be exam-
ined. Third, additional research is needed to check if we can fine-tune a CNN
on an event dataset and use it as an encoder for the caption generation without
loss of quality. In this case, a more compact and fast solution can be achieved.
Finally, the proposed pipeline should be extended for the album-based event
recognition [2,13] with, e.g., attention models [12].

Acknowledgements. This research is based on the work supported by Samsung
Research, Samsung Electronics. The work of A.V. Savchenko was conducted within
the framework of the Basic Research Program at the National Research University
Higher School of Economics (HSE).

References

1. Guo, C., Tian, X., Mei, T.: Multigranular event recognition of personal photo
albums. IEEE Trans. Multimedia 20(7), 1837–1847 (2017)

2. Ahmad, K., Conci, N.: How deep features have improved event recognition in
multimedia: a survey. ACM Trans. Multimedia Comput. Commun. Appl. 15(2),
39 (2019)

3. Papadopoulos, S., Troncy, R., Mezaris, V., Huet, B., Kompatsiaris, I.: Social event
detection at MediaEval 2011: challenges, dataset and evaluation. In: MediaEval
(2011)

4. Wang, L., Wang, Z., Qiao, Y., Van Gool, L.: Transferring deep object and scene
representations for event recognition in still images. Int. J. Comput. Vis. 126(2–4),
390–409 (2018)

5. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

6. Xiong, Y., Zhu, K., Lin, D., Tang, X.: Recognize complex events from static images
by fusing deep channels. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1600–1609 (2015)

Event Recognition Based on Classification of Generated Image Captions 429

7. Grechikhin, I., Savchenko, A.V.: User modeling on mobile device based on facial
clustering and object detection in photos and videos. In: Morales, A., Fierrez, J.,
Sánchez, J.S., Ribeiro, B. (eds.) IbPRIA 2019. LNCS, vol. 11868, pp. 429–440.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31321-0 37

8. Savchenko, A.V., Rassadin, A.G.: Scene recognition in user preference prediction
based on classification of deep embeddings and object detection. In: Lu, H., Tang,
H., Wang, Z. (eds.) ISNN 2019. LNCS, vol. 11555, pp. 422–430. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-22808-8 41

9. Prince, S.J.: Computer Vision: Models, Learning and Inference. Cambridge Uni-
versity Press, Cambridge (2012)

10. Hossain, M., Sohel, F., Shiratuddin, M.F., Laga, H.: A comprehensive survey of
deep learning for image captioning. ACM Comput. Surv. 51(6), 1–36 (2019)

11. Escalera, S., et al.: ChaLearn looking at people 2015: apparent age and cultural
event recognition datasets and results. In: Proceedings of the IEEE International
Conference on Computer Vision Workshops (ICCVW), pp. 1–9 (2015)

12. Savchenko, A.V., Demochkin, K.V., Grechikhin, I.S.: User preference prediction in
visual data on mobile devices. arXiv preprint arXiv:1907.04519 (2019)

13. Bossard, L., Guillaumin, M., Van Gool, L.: Event recognition in photo collections
with a stopwatch HMM. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 1193–1200 (2013)

14. Wang, Y., Lin, Z., Shen, X., Mech, R., Miller, G., Cottrell, G.W.: Recognizing
and curating photo albums via event-specific image importance. In: Proceedings
of British Conference on Machine Vision (BMVC) (2017)

15. Vijayaraju, N.: Image retrieval using image captioning. Master’s Projects, p. 687
(2019). https://doi.org/10.31979/etd.vm9n-39ed

16. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: lessons learned from
the 2015 MSCOCO image captioning challenge. IEEE Trans. Pattern Anal. Mach.
Intell. 39(4), 652–663 (2017)

17. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual
attention. In: Proceedings of the International Conference on Machine Learning
(ICML), pp. 2048–2057 (2015)

18. Lu, J., Yang, J., Batra, D., Parikh, D.: Neural baby talk. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

19. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: Advances in Neural Information Pro-
cessing Systems (NIPS), pp. 91–99 (2015)

20. Mao, J., Xu, W., Yang, Y., Wang, J., Yuille, A.L.: Deep captioning with multi-
modal recurrent neural networks (m-RNN). In: Proceedings of the International
Conference on Learning Representations (ICLR) (2015)

21. Chen, X., Ma, L., Jiang, W., Yao, J., Liu, W.: Regularizing RNNs for caption
generation by reconstructing the past with the present. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

22. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-ResNet
and the impact of residual connections on learning. In: Proceedings of the Inter-
national Conference on Learning Representations (ICLR) Workshop (2016)

23. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million
image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell.
40(6), 1452–1464 (2018)

24. Savchenko, A.V.: Sequential three-way decisions in multi-category image recogni-
tion with deep features based on distance factor. Inf. Sci. 489, 18–36 (2019)

https://doi.org/10.1007/978-3-030-31321-0_37
https://doi.org/10.1007/978-3-030-22808-8_41
http://arxiv.org/abs/1907.04519
https://doi.org/10.31979/etd.vm9n-39ed

430 A. V. Savchenko and E. V. Miasnikov

25. Savchenko, A.V.: Probabilistic neural network with complex exponential activation
functions in image recognition. IEEE Trans. Neural Netw. Learn. Syst. 31(2), 651–
660 (2020)

26. Chollet, F.: Deep Learning with Python. Manning Publications Company, Shelter
Island (2017)

27. Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. Chapman and
Hall/CRC, London (2012)

28. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.: MobileNetV2:
inverted residuals and linear bottlenecks. In: Proceedings of the Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 4510–4520. IEEE (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Human-to-AI Coach:
Improving Human Inputs to AI Systems

Johannes Schneider(B)

Institute of Information Systems, University of Liechtenstein,
Vaduz, Liechtenstein

johannes.schneider@uni.li

Abstract. Humans increasingly interact with Artificial intelligence (AI)
systems. AI systems are optimized for objectives such as minimum com-
putation or minimum error rate in recognizing and interpreting inputs
from humans. In contrast, inputs created by humans are often treated as
a given. We investigate how inputs of humans can be altered to reduce
misinterpretation by the AI system and to improve efficiency of input
generation for the human while altered inputs should remain as similar as
possible to the original inputs. These objectives result in trade-offs that
are analyzed for a deep learning system classifying handwritten digits.
To create examples that serve as demonstrations for humans to improve,
we develop a model based on a conditional convolutional autoencoder
(CCAE). Our quantitative and qualitative evaluation shows that in many
occasions the generated proposals lead to lower error rates, require less
effort to create and differ only modestly from the original samples.

1 Introduction

Human-to-AI information flow is increasing rapidly in importance and extent
across multiple modalities. For example, voice-machine interaction is becom-
ing more and more popular with deep learning networks recognizing text from
speech. Similar, the progress in image recognition has lowered error rates in ges-
ture and optical character recognition. Still, key technologies in AI such as deep
learning are not perfect. They might also error given ambiguous inputs created
by humans. Errors might be more likely by humans being in a hurry, being
unaware of the AI’s recognition mechanism, sloppiness or lack of skill. Safety
critical application areas such as autonomous driving or medical applications,
where an AI might depend on inputs from humans in one way or another, are
becoming more and more prominent. Thus, mistakes in recognizing and pro-
cessing inputs should be avoided. Apart from avoiding errors, humans might
also have an incentive to provide inputs with less effort, e.g. “Why try to speak
clearly and loudly in the presence of noise, if mumbling works just as well? Why
doing that extra stroke in writing a character, if detection works just as well
without it?” In this work, we do not focus on how to improve AI systems that
recognize and interpret human information. We aim at strategies how humans

c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 431–443, 2020.
https://doi.org/10.1007/978-3-030-44584-3_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_34&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_34

432 J. Schneider

can convey information better to such a system by adjusting their behavior.
Identifying potential improvements becomes more difficult when deep learning
is involved. Improvements are often based on a deep understanding of mecha-
nisms of the task at hand, i.e. how an AI system processes inputs. Deep learning
is said to follow a black-box behavior. Even worse, deep learning is well-known
to reason very differently from humans: Deep learning models might astonish
due to their high accuracy rates, but disappoint at the same time by failing
on simple examples that were just slightly modified as well-documented by so
called “adversarial examples”. As such, humans might depend even more on
being shown opportunities for generating better data that serves as input to an
AI. In this work, we formalize the aforementioned partially conflicting goals such
as minimizing wrongly recognized human inputs and reducing effort for humans
– both in terms of need to adjust their behavior as well as to interact effort-
lessly. We focus on the classification problem of digits, where we aim to provide
suggestions to humans by altering their generated inputs as illustrated in Fig. 1.
We express the problem in terms of a multi-objective optimization problem, i.e.
as a linear weighted sum. As model we use a conditional convolutional autoen-
coder. Our qualitative and quantitative evaluation highlights that the generated
samples are visually appealing, easy to interpret and also lead to a lower error
rate in recognition.

Fig. 1. “Human-to-AI” (H2AI) coach: From misunderstandings to understanding

2 Challenges of Human-to-AI Communication

We consider the problem of improving human generated inputs to an AI illus-
trated in Fig. 1. A human wants to convey information to an AI using some mode,

Human-to-AI Coach: Improving Human Inputs to AI Systems 433

e.g. speech, writing, or gestures. The processing of the received signals by the AI
often involves two steps: (i) recognition, i.e. identifying and extracting relevant
information in the input signal, and (ii) interpretation, i.e. deriving actions by
utilizing the information in a specific context. For recognition, the information
has to be extracted from a physical (analog) signal, e.g. using speech recognition,
image recognition, etc. In case information is communicated in a digital manner
using structured data, recognition is commonly obsolete. Often the extracted
information has to be further processed by the AI using some form of sense-
making or interpretation. The AI requires potentially semantic understanding
capabilities and might rely on the use of context such as prior discourse or sur-
rounding. We assume that the human interacts frequently with such a system,
so that it is reasonable for the human to improve on objectives such as errors
and efficiency in communication. In this paper, we consider the challenge of dis-
covering variations of the original inputs that might help a human to improve.

More formally, we consider a classification problem, where a user provides
data D = (X,Y). Each sample X should be recognized as class Y by a classifier
CH . We denote by Xi the i-th feature of sample X. For illustration, for the case
of handwritten digits a sample X is a gray-tone scan of a digit and Y ∈ [0 − 9]
the digitized number. Xi ∈ [0, 1] gives the brightness of the i-th pixel in the scan.
The classification model CH was trained to optimize classification performance
of human samples, i.e. maximize PCH

(Y |X). We regard the model CH as a given,
i.e. we do not alter it in any way, but use it in our optimization process. The
Human-to-AI coach “H2AI” takes as input one sample X with its label Y . It
returns at least one proposal X̂, i.e. X̂ := H2AI(X,Y). The suggestion X̂ should
be superior to X according to some objective, e.g. we might demand higher
certainty in recognition PCH

(Y |X) < PCH
(Y |X̂). In a handwriting scenario a

human might use a proposal X̂ based on an input X to adjust her strokes.

3 Model and Objectives

An essential requirement is that the modified samples are similar to the given
input, otherwise a trivial solution is to always return “the perfect sample” that
is the same for any input. This motivates utilizing an auto-encoder (Sect. 3.1)
and adding multiple loss terms to handle various objectives (Sect. 3.2).

3.1 Architecture

Two approaches that allow to create (modified) samples are generative adverse-
rial networks (GANs) and autoencoders (AEs). There are also combinations
thereof, e.g. the pix2pix architecture [10] or conditional variational autoencoder
[2]. [10] and [2] contain an AE which has a decoder serving as a generator based
on a latent representation from the encoder and, additionally, a discriminator.
AE tend to generate outcomes that are closer to the inputs. But they are often
smoother and less realistic looking. In our application staying close to the input
is a key requirement, since we only want to show how a sample can be modified

434 J. Schneider

rather than generating completely new samples. Thus, we decided to focus on an
AE-based architecture. We also investigate including a discriminator to improve
generated samples. More precisely, we utilize conditional AE with extra loss
terms for regularization covering not only a discriminator loss but also losses for
efficiency and classification of modified samples as shown in Fig. 3. Conditional
AE are given as input the class of a sample in addition to the sample itself. This
often improves generated samples, in particular for samples that are ambiguous,
i.e. samples that seem to match multiple classes well.

Fig. 2. H2AI implementation using a convolutional conditional autoencoder (CCAE)

Convolutional AE are known to work well on image data. Therefore, we
propose convolutional conditional AE (CCAE) as shown in Fig. 2, where the NN-
upsample layers in the decoder denote nearest-neighbor upsampling. After each
convolutional layer, there is a ReLU layer that is not shown in Fig. 2. Compared
to transposed convolutional layers, NN-upsampling with convolutional layers
prevents checkerboard artifacts in the resulting images.

Fig. 3. Human-to-AI (H2AI) model with its components and regularizers

Human-to-AI Coach: Improving Human Inputs to AI Systems 435

3.2 Objectives and Loss Terms

The generated input samples should meet multiple criteria, each of which is
implemented as a loss term. The loss terms and their weighted sum (with param-
eters α·) are given in Eq. 1 and illustrated in Fig. 3. The total loss LTot(X,Y)
contains four parameters αRE , αCL, αEF and αD. It is possible to keep αRE and
use the other three to control the relative importance of the following objectives:

X̂ := CCAE(X, Y) Sample proposed by H2AI-coach

LRE(X, X̂) :=
∑

i

|Xi − X̂i| Reconstruction or Change Loss

LCL(X̂, Y) Classification Loss

LEF (X̂) :=
∑

i

|X̂i| Efficiency Loss

LD(X̂) := log(1 − D(X̂)) Discriminator Loss

LTot(X, Y) := αRELRE(X, X̂) + αCLLCL(X̂, Y) + αEF LEF (X̂) + αDLD(X̂)

(1)

Minimal Effort to Change: Change might be difficult and tedious for humans.
Thus, the effort for humans to adjust their behavior should be minimized. This
implies that the original samples X created by humans and the newly gener-
ated variations X̂ should be similar. This is covered by the reconstruction loss
LRE(X, X̂) of the AE (see Eq. (1)). It enforces the output and the input to be
similar. But parts of the input might be changed fairly drastically, i.e. for hand-
written digits pixels might change from 0(black) to 1(white) and vice versa.
For that reason, we do not employ an L2-metric, which heavily penalizes such
differences, but rather opt for an L1-metric.

Reduce Mis-understanding: The amount of wrongly extracted or interpreted
information by the AI should be reduced. AEs are known to have a denoising,
averaging effect. They are also known to improve performance in some cases
in conjunction with classification tasks [11]. To further foster a reduction in
mis-understandings we minimize the classification loss LCH

(X̂, Y) for generated
examples X̂ for the model CH the human communicates with.

Realistic Samples: The generated samples X̂ should still be comprehensible
for humans or other systems, i.e. look realistic. It can happen that a generated
proposal X̂ is so optimized for the given AI model CH that it is not meaning-
ful in general. That is, the proposal X̂ might appear not only very different
from prototypical examples of its class but very different from any example
occurring in reality. While AEs partially counteract this, AEs do not enforce
that samples look real, but tend to create smooth (averaged) samples. Thus, we
add a discriminator D resulting in a GAN architecture that should distinguish
between real and generated samples and make them look crispier. The added
discriminator loss LD(X̂) is log(1 − D(X̂)), where X̂ is the generated sample
X̂ := CCAE(X,Y) for an input sample X of a human of class Y .

Minimal Effort to Create Samples: Interaction should be effortless for the
human (and AI). To quantify effort of a human to create a sample, time might

436 J. Schneider

be a good option if available. If not, application specific measures might be more
appropriate. For measuring effort in handwriting, the amount (and length) of
strokes can be used. A good approximation can be the total amount of needed
“ink”, which corresponds to the L1-loss of the proposal X̂, i.e. LEF (X̂) :=∑

i |X̂i|. We chose the L1 over the L2-metric, since having many low intensity
pixels (as fostered by L2) is generally discouraged.

4 Evaluation

We conducted both a qualitative and quantitative evaluation on the MNIST
dataset, since it has been used by recent work in similar contexts [6,8]. It consists
of 50000 handwritten digits from 0 to 9 for training and 10000 digits for testing.
The classification model CH , i.e. the system a user is supposed to communicate
well with, is a simple convolutional neural network (CNN) consisting of two
convolutional layers (8 and 16 channels) that are both followed by a ReLU and
2 × 2 Max-Pooling Layer. The last layer is a fully connected layer. The network
achieved a test accuracy of 95.97%. While this could be improved, it is not of
prime relevance for our problem, since the classifier CH is treated as a given. The
architecture of the H2AI coach is shown in Fig. 3 with details of the AE in Fig. 2
and loss terms in Eq. 1. We did not employ any data augmentation. We used
the AdamOptimizer with learning rate 1e−4 for all models. Training lasted for
10 epochs with a batchsize of 8. We trained 5 networks for each hyperparameter
setting. We perform statistical analysis of our results using t-tests.

For the ablation study we consider adding each of the losses in isolation to
the baseline with just the AE by varying parameters αCL, αEF , αD that control
their impact. For the AE we used αRE = 32 for all experiments.1 Finally, we
consider a model, where we add all losses. There are no fixed ranges for the
parameters α, but they should be chosen so that all loss terms have a noticeable
impact on the total loss – at least in the early phases of training.2

Our qualitative analysis is a visual assessment of the generated images. We
investigate images that were improved (in terms of each of the metrics), worsened
and remained roughly the same. As quantitative measures we used the losses
as defined in Eq. 1 except for classification, where we used the more common
accuracy metric.

4.1 Qualitative Analysis

Figure 4 shows unmodified samples (left most column) and various configurations
of loss weights α. We use R.x to denote “row x”. The AE (2nd column, αRE = 32)
on its own already has overall a positive impact yielding smoother images than
the original ones. It tends to improve efficiency by removing “exotic” strokes,
1 αRE is not needed (could be set to 1). But, in practice, it is easier to vary αRE than

changing αCL, αEF , αD since they behave non-linearly.
2 We found that altering α during training requires much more tuning, but yields only

modest improvements.

Human-to-AI Coach: Improving Human Inputs to AI Systems 437

e.g. for the 2 in R.6 and the 5 in the last row, and sometimes helps also in
improving readability (e.g. ease of classification), e.g. the 8 in R.1 row and the 6
in the 2nd last row both become more readable. Other digits might seem more
readable but are actually worsened, e.g. the 6 in R.6 appears to become a 0 (it is
actually a 6) and the 7 in R.7 appears to become more of a 9. When optimizing
in addition for efficiency (3rd column), some parts of digits get deleted, which
is sometimes positive and sometimes negative. Some benefits of the AE seem
to get undone, e.g. the 6 in the 2nd last row now looks again more like the
original with missing parts. The same holds for the 8 in R.1, though for both
some improvement in shape remains. More interestingly, the digits in R.6 both
get changed to 0, which is incorrect. On the positive side, several figures become
more readable through subtle changes, e.g. removals of parts like the 5 in the
last row, the 2 in the 2nd last row or the 3 in R.3. When using the AE and the
discriminator (4th column in Fig. 4), we can observe that the samples become
slightly more realistic, i.e. crispier. We can see clear improvements for the 7 in
R.7 and the 6 in R.9. Many digits remain the same. When using the AE and the
classification loss (last column) smoothness increases and digits appear blurry.
Readability worsens for a few digits, i.e. the left 4 in R.2 can now be easily
confused with a 9, the 6 in R.9 is no better than the original and worse than the
one using a discriminator. Overall, the classification loss helps to improve many
other samples. Some only now become readable, e.g. the 5 and 3 in R.8. Also
some digits become simpler, e.g. the 1 R.1 and the 7 s in R.3, R.4 and R.7.

Fig. 4. Original and generated samples using a subset of all loss terms

438 J. Schneider

When combining all losses (Fig. 5) it can be observed that for some param-
eters α larger values are possible to get reasonable results, since the objectives
might counteract each other. For example, the discriminator loss pushes pixels
to become brighter, whereas the efficiency loss pushes them to be darker. We
noticed that the strong smoothing effect due to the classification loss is essen-
tially removed mainly due to the discriminator loss but also partially due to the
efficiency loss. The benefits of the classification loss, however, mainly remain and
are also improved: The 4 in the R.2 and the 6 in R.9 become more readable.
There are also differences in quality among the three configurations. Interest-
ingly, the original images show somewhat more contrast, in particular compared
to the second column. A careful observer will notice a few bright points in the
upper part of both 4 in R.2. These seem to be artifacts of the optimization.
It is well-known that training GANs might lead to non-convergence or mode-
collapse. The former was observed for (too) large discriminator loss αD. We also
noticed mode collapse for large values of αCL (not shown) and bad outcomes
for large values of αEF as shown in the last column. Degenerated examples still
score high in some of the metrics, but are very poor in others, e.g. in the last
column accuracy and efficiency loss are good, but reconstruction loss is large.
Still, overall combining all losses leads to best results.

Fig. 5. Original and generated samples using all loss terms

Human-to-AI Coach: Improving Human Inputs to AI Systems 439

4.2 Quantitative Analysis

Table 1 shows the loss terms (with accuracy instead of classification loss) for all
loss configurations also shown in Fig. 4 for our ablation study with the recon-
struction loss (AE only) as baseline. We first discuss accuracy. The AE on its
own leads to a small gain in accuracy compared to the baseline classifier CH

of 95.97%. Not surprisingly, optimizing accuracy directly (using a classification
loss, i.e. αCL > 0) leads to best results: even for a seemingly small αCL accuracy
exceeds .999%. While it appears that differences in accuracy between various
values of αCL are not significant, from a statistical perspective (using a t-test)
they are (p-value < .001). For any αCL, the network tends to always fail to learn
the same samples, leading to very low variance in accuracy. The large accuracy
values are no surprise, since also for the test set, the network is fed the correct
label and therefore could in principle always return a “prototypical” class sam-
ple, ignoring all other information. When varying the efficiency loss weight αEF ,
accuracy decreases, but the decrease was only statistically significant for αEF ≥ 8
(p-value < .001). Adding a discriminator also negatively impacts accuracy with
αD ≥ 0.64 showing statistically significant worse results (p-value < .01).

Table 1. Results varying one loss term weight αCL, αEF ,αD

Loss αCL αEF αD Accuracy LRE LEF

Baseline (AE only) 0.0 0.0 0.0 0.9609 0.00018 0.00097

Classific. loss 0.03 0.0 0.0 0.9994 0.00027 0.00096

0.08 0.0 0.0 0.9997 0.00041 0.00096

0.1 0.0 0.0 0.9998 0.00042 0.00092

0.24 0.0 0.0 1.0 0.00062 0.00085

Efficiency loss 0.0 1.0 0.0 0.9587 0.00019 0.00095

0.0 4.0 0.0 0.9607 0.00018 0.00093

0.0 8.0 0.0 0.9578 0.00019 0.00091

0.0 16.0 0.0 0.9458 0.00023 0.00081

0.0 32.0 0.0 0.1135 0.00098 <1e−5

Discrim. loss 0.0 0.0 0.03 0.9608 0.00019 0.00099

0.0 0.0 0.16 0.96 0.0002 0.00096

0.0 0.0 0.64 0.9318 0.00032 0.00096

The reconstruction loss LRE is most tightly correlated with the visual qual-
ity of the outcomes. In particular, large AE loss is likely to imply poor visual
outcomes, despite the fact that other metrics such as accuracy are indicating
good results. This can be observed in Table 1 for αCL = 0.24. Generally, the
reconstruction loss worsens when optimizing for accuracy αCL > 0 or adding a
discriminator αD ≥ 0. Differences to the baseline are significant (p-value < .01).
For adding an efficiency loss differences are only significant for values αEF ≥ 8
(p-value < .01).

440 J. Schneider

The efficiency loss decreases when adding other losses. For the discriminator
differences are not significant compared to the baseline, while for all other losses
they are for any value αEF and αCL ≥ 0.1 (p-value< .01).

5 Related Work

There are numerous types of AE. Related to our applications are denoising
AE that are typically used through intentional noise injection with the goal of
weight regularization. In contrast, we assume that noise is part of the input data
and its removal is thus not motivated by regularization. The idea to combine
AEs and GANs for image generation has been explored previously, e.g. [2] uses
a conditional variational AE and applies it for image inpainting and attribute
morphing. In this work, we consider a novel application of this architecture type.
Our work is a form of image-to-image translation [10]. Typically, input and out-
puts are fairly different, e.g. the input could be a colored segmentation of an
image not showing any details and the output could be a photo like image with
many details. In contrast, in our scenario in- and outputs are fairly similar. For
image in-painting or completion [9,16] a network learns to fill in blank spaces
of an image. In contrast, we might both in-paint and erase. Image manipula-
tion based on user edits has been studied in [18]. They learn the natural image
manifold using a generative adversarial network and express manipulations as
constraint optimization problem. They apply both spatial and channel, i.e. color,
flow regularization. Their primary goal is to obtain realistically looking images
after manipulations. Thus, their problem and approach is fairly different. Fur-
thermore, in contrast to the mentioned prior works [2,9,10,16,18] our work can
be classified as unsupervised learning. That is, we do not know the final out-
puts, i.e. the images that should be proposed to the human. Prior work trains
by comparing their outcome to a target. In our case, we do not have pairs of
human input (images) and improved input (images) in our training data.

The field of human-AI interaction is fairly broad. The effect of various user
and system characteristics has been extensively studied [13]. There has been lit-
tle work on how to improve communication and prevent misunderstandings. [12]
discusses high level, non-technical strategies to deal with errors in communica-
tion using speech that originate either from humans or from machines. [4] lists
some errors that occur when interacting with a robot using natural language,
such as grammatical, geometrical misunderstandings as well as ambiguities. [5]
highlighted the impact of nonverbal communication on efficiency and robustness
in communication. It is shown that nonverbal communication can reduce errors.
Our work also relates to the field of personalized explanations [15]. It aims to
explain to a user how she might improve interaction with an AI. Explainabil-
ity in the context of machine learning is generally more focused on interpreting
decisions and models (see [1,15] for recent surveys). Counterfactual explana-
tions also seek to identify some form of modification of the input. [6] explains
by answering “How to modify an input to get classification Y?” and “What
is minimally needed?”. The former focuses on mis-classified examples with the

Human-to-AI Coach: Improving Human Inputs to AI Systems 441

goal of changing them with minimal effort to the correct class. For the latter
all objectives except efficiency are ignored and there is only the constraint of
maintaining classification confidence above a threshold. Thus, [6] discusses spe-
cial cases of our work. Technically, [6] generates a perturbation added to the
sample such that the perturbation is minimal given a threshold confidence of
the prediction (either as the correct class or as an alternative class) has been
achieved. They use an ordinary AE as an optional element on the perturbation,
which does only slightly alter results. In contrast, we use a CCAE on the inputs,
which is essential. We optimize for multiple linear weighted objectives without
thresholds. [8] aims at explaining counterfactuals, i.e. showing how to change
a class to another by combining images of both classes. That is, given a query
image and a distractor image they generate a composite image that essentially
uses parts of each input. For instance, in the right part of Fig. 6 the “7” in the
second row serves as query image, the “2” in the middle as distractor and the
right most column shows the outcome. The implementation relies on a gating
mechanism to select image parts. Differences are also noticeable in the outcomes
as shown in Fig. 6. The highlighted differences appear noisy in [6] and are not
necessarily intuitive, e.g. for column CEM-PP for digit “3” a stroke on top is
missing, but [6] finds a miniature “3” within the given digit. The generated
images in [8] appear more natural, but do have artifacts, e.g. the “2” being a
composition of a “7” and a “2” has a “dot” in the bottom originating from
the “7”. In conclusion, while counterfactual explanations [6,8] are related to our
work, the objectives differ, e.g. we include efficiency, as well as methodology and
outcomes. While we also make recommendations to a user, there are only weak
ties to recommender systems. Even for interpretable recommendation systems
[7] users typically primarily seek to understand decisions but do not commonly
aim to alter their behavior to obtain better recommendations.

Fig. 6. Left digits are taken from [6]. Right digits stem from [8].

6 Discussion and Conclusions

Input from human to AI is likely to gain further in importance. This paper
investigated improving information flow from human to AI by proposing adjust-
ments to human generated examples based on optimizing multiple objectives.
Our evaluation highlights that such an automatic approach is indeed feasible for
handwriting. While we believe that our approach is suitable for other domains

442 J. Schneider

such as speech recognition, details of the network architecture, definition of loss
terms and the loss weights likely need to be adjusted. Furthermore, our work
focused on generating altered input samples fulfilling specific metrics, but it
leaves many questions unanswered when applying it. For instance, it did not
investigate how these samples are best shown or explained to users, e.g. by
highlighting differences or, maybe, even in textual form. These points and more
advanced multi-objective optimization, i.e. exploring the set of (Pareto) optimal
solutions rather than manually adjusting parameters α, are subject to future
work. Furthermore, one might include more objectives, e.g. generating proposals
that require little energy to process by the AI [14] or taking into account behav-
ioral norms expected by people as common for social robots [3,17]. We hope that
in the future human-to-AI coaches will help non-experts to better interact with
AI systems.

References

1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable
artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

2. Bao, J., Chen, D., Wen, F., Li, H., Hua, G.: CVAE-GAN: fine-grained image gener-
ation through asymmetric training. In: Proceeding of the International Conference
on Computer Vision (2017)

3. Bartneck, C., Forlizzi, J.: A design-centred framework for social human-robot inter-
action. In: Workshop on Robot and Human Interactive Communication (2004)

4. Bisk, Y., Yuret, D., Marcu, D.: Natural language communication with robots. In:
Proceedings of Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (2016)

5. Breazeal, C., Kidd, C.D., Thomaz, A.L., Hoffman, G., Berlin, M.: Effects of non-
verbal communication on efficiency and robustness in human-robot teamwork. In:
International Conference on Intelligent Robots and Systems (2005)

6. Dhurandhar, A., et al.: Explanations based on the missing: towards contrastive
explanations with pertinent negatives. In: Advances in Neural Information Pro-
cessing Systems (2018)

7. Fusco, F., Vlachos, M., Vasileiadis, V., Wardatzky, K., Schneider, J.: RecoNet:
an interpretable neural architecture for recommender systems. In: Proceedings of
International Joint Conference on Artificial Intelligence (IJCAI) (2019)

8. Goyal, Y., Wu, Z., Ernst, J., Batra, D., Parikh, D., Lee, S.: Counterfactual visual
explanations. arXiv preprint arXiv:1904.07451 (2019)

9. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image com-
pletion. ACM Trans. Graph. (ToG) 36(4), 107 (2017)

10. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.: Image-to-image translation with condi-
tional adversarial networks. In: Proceedings of CVPR (2017)

11. Makhzani, A., Frey, B.: K-sparse autoencoders. arXiv:1312.5663 (2013)
12. Niculescu, A.I., Banchs, R.E.: Strategies to cope with errors in human-machine

spoken interactions: using chatbots as back-off mechanism for task-oriented dia-
logues. In: Proceedings of the Errors by Humans and Machines in Multimedia,
Multimodal and Multilingual Data Processing (ERRARE) (2015)

13. Rzepka, C., Berger, B.: User interaction with AI-enabled systems: a systematic
review of IS research. In: International Conference on Information Systems (ICIS)
(2018)

http://arxiv.org/abs/1904.07451
http://arxiv.org/abs/1312.5663

Human-to-AI Coach: Improving Human Inputs to AI Systems 443

14. Schneider, J., Basalla, M., Seidel, S.: Principles of green data mining. In: Proceed-
ings of Hawaii International Conference on System Sciences (HICSS) (2019)

15. Schneider, J., Handali, J.: Personalized explanation in machine learning. In: Euro-
pean Conference on Information Systems (ECIS) (2019)

16. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting
with contextual attention. In: Computer Vision and Pattern Recognition (2018)

17. Zhao, S.: Humanoid social robots as a medium of communication. New Media Soc.
8, 401–419 (2006)

18. Zhu, J.-Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipu-
lation on the natural image manifold. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) ECCV 2016. LNCS, vol. 9909, pp. 597–613. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46454-1 36

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-46454-1_36
https://doi.org/10.1007/978-3-319-46454-1_36
http://creativecommons.org/licenses/by/4.0/

Aleatoric and Epistemic Uncertainty
with Random Forests

Mohammad Hossein Shaker(B) and Eyke Hüllermeier

Heinz Nixdorf Institute and Department of Computer Science,
Paderborn University, Paderborn, Germany

{mhshaker,eyke}@upb.de

Abstract. Due to the steadily increasing relevance of machine learn-
ing for practical applications, many of which are coming with safety
requirements, the notion of uncertainty has received increasing attention
in machine learning research in the last couple of years. In particular,
the idea of distinguishing between two important types of uncertainty,
often refereed to as aleatoric and epistemic, has recently been studied in
the setting of supervised learning. In this paper, we propose to quantify
these uncertainties, referring, respectively, to inherent randomness and a
lack of knowledge, with random forests. More specifically, we show how
two general approaches for measuring the learner’s aleatoric and epis-
temic uncertainty in a prediction can be instantiated with decision trees
and random forests as learning algorithms in a classification setting. In
this regard, we also compare random forests with deep neural networks,
which have been used for a similar purpose.

Keywords: Machine learning · Uncertainty · Random forest

1 Introduction

The notion of uncertainty has received increasing attention in machine learn-
ing research in the last couple of years, especially due to the steadily increas-
ing relevance of machine learning for practical applications. In fact, a trustwor-
thy representation of uncertainty should be considered as a key feature of any
machine learning method, all the more in safety-critical application domains
such as medicine [9,22] or socio-technical systems [19,20].

In the general literature on uncertainty, a distinction is made between two
inherently different sources of uncertainty, which are often referred to as aleatoric
and epistemic [4]. Roughly speaking, aleatoric (aka statistical) uncertainty refers
to the notion of randomness, that is, the variability in the outcome of an exper-
iment which is due to inherently random effects. The prototypical example of
aleatoric uncertainty is coin flipping. As opposed to this, epistemic (aka sys-
tematic) uncertainty refers to uncertainty caused by a lack of knowledge, i.e.,
it relates to the epistemic state of an agent or decision maker. This uncertainty
can in principle be reduced on the basis of additional information. In other
c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 444–456, 2020.
https://doi.org/10.1007/978-3-030-44584-3_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_35&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_35

Aleatoric and Epistemic Uncertainty with Random Forests 445

words, epistemic uncertainty refers to the reducible part of the (total) uncer-
tainty, whereas aleatoric uncertainty refers to the non-reducible part.

More recently, this distinction has also received attention in machine learn-
ing, where the “agent” is a learning algorithm [18]. In particular, a distinction
between aleatoric and epistemic uncertainty has been advocated in the literature
on deep learning [6], where the limited awareness of neural networks of their own
competence has been demonstrated quite nicely. For example, experiments on
image classification have shown that a trained model does often fail on specific
instances, despite being very confident in its prediction. Moreover, such models
are often lacking robustness and can easily be fooled by “adversarial examples”
[14]: Drastic changes of a prediction may already be provoked by minor, actually
unimportant changes of an object. This problem has not only been observed for
images but also for other types of data, such as natural language text [17].

In this paper, we advocate the use of decision trees and random forests, not
only as a powerful machine learning method with state-of-the-art predictive per-
formance, but also for measuring and quantifying predictive uncertainty. More
specifically, we show how two general approaches for measuring the learner’s
aleatoric and epistemic uncertainty in a prediction (recalled in Sect. 2) can be
instantiated with decision trees and random forests as learning algorithms in a
classification setting (Sect. 3). In an experimental study on uncertainty-based
abstention (Sect. 4), we compare random forests with deep neural networks,
which have been used for a similar purpose.

2 Epistemic and Aleatoric Uncertainty

We consider a standard setting of supervised learning, in which a learner is given
access to a set of (i.i.d.) training data D ..= {(xi, yi)}N

i=1 ⊂ X ×Y, where X is an
instance space and Y the set of outcomes that can be associated with an instance.
In particular, we focus on the classification scenario, where Y = {y1, . . . , yK}
consists of a finite set of class labels, with binary classification (Y = {0, 1}) as
an important special case.

Suppose a hypothesis space H to be given, where a hypothesis h ∈ H is a
mapping X −→ P(Y), i.e., a hypothesis maps instances x ∈ X to probability
distributions on outcomes. The goal of the learner is to induce a hypothesis
h∗ ∈ H with low risk (expected loss)

R(h) ..=
∫

X×Y
�(h(x), y) dP (x, y), (1)

where P is the (unknown) data-generating process (a probability distribution
on X × Y), and � : Y × Y −→ R a loss function. This choice of a hypothesis is
commonly guided by the empirical risk

Remp(h) ..=
1
N

N∑
i=1

�(h(x), y), (2)

446 M. H. Shaker and E. Hüllermeier

i.e., the performance of a hypothesis on the training data. However, since
Remp(h) is only an estimation of the true risk R(h), the empirical risk mini-
mizer (or any other predictor)

ĥ ..= argmin
h∈H

Remp(h) (3)

favored by the learner will normally not coincide with the true risk minimizer
(Bayes predictor)

h∗ ..= argmin
h∈H

R(h). (4)

Correspondingly, there remains uncertainty regarding h∗ as well as the approx-
imation quality of ĥ (in the sense of its proximity to h∗) and its true risk R(ĥ).

Eventually, one is often interested in the predictive uncertainty, i.e., the uncer-
tainty related to the prediction ŷq for a concrete query instance xq ∈ X . In other
words, given a partial observation (xq, ·), we are wondering what can be said
about the missing outcome, especially about the uncertainty related to a pre-
diction of that outcome. Indeed, estimating and quantifying uncertainty in a
transductive way, in the sense of tailoring it to individual instances, is arguably
important and practically more relevant than a kind of average accuracy or
confidence, which is often reported in machine learning.

Fig. 1. Different types of uncertainties related to different types of discrepancies and
approximation errors: f∗ is the pointwise Bayes predictor, h∗ is the best predictor
within the hypothesis space, and ̂h the predictor produced by the learning algorithm.

As the prediction ŷq constitutes the end of a process that consists of different
learning and approximation steps, all errors and uncertainties related to these
steps may also contribute to the uncertainty about ŷq (cf. Fig. 1):

– Since the dependency between X and Y is typically non-deterministic, the
description of a new prediction problem in the form of an instance xq gives
rise to a conditional probability distribution

p(y |xq) =
p(xq, y)
p(xq)

(5)

Aleatoric and Epistemic Uncertainty with Random Forests 447

on Y, but it does normally not identify a single outcome y in a unique way.
Thus, even given full information in the form of the measure P (and its
density p), uncertainty about the actual outcome y remains. This uncertainty
is of an aleatoric nature. In some cases, the distribution (5) itself (called the
predictive posterior distribution in Bayesian inference) might be delivered
as a prediction. Yet, when having to commit to a point estimate, the best
prediction (in the sense of minimizing the expected loss) is prescribed by the
pointwise Bayes predictor f∗, which is defined by

f∗(x) ..= argmin
ŷ∈Y

∫
Y

�(y, ŷ) dP (y |x) (6)

for each x ∈ X .
– The Bayes predictor (4) does not necessarily coincide with the pointwise

Bayes predictor (6). This discrepancy between h∗ and f∗ is connected to the
uncertainty regarding the right type of model to be fit, and hence the choice
of the hypothesis space H. We refer to this uncertainty as model uncertainty.
Thus, due to this uncertainty, one can not guarantee that h∗(x) = f∗(x), or,
in case the hypothesis h∗ delivers probabilistic predictions p(y |h∗,x) instead
of point predictions, that p(· |h∗,x) = p(· |x).

– The hypothesis ĥ produced by the learning algorithm, for example the empir-
ical risk minimizer (3), is only an estimate of h∗, and the quality of this esti-
mate strongly depends on the quality and the amount of training data. We
refer to the discrepancy between ĥ and h∗, i.e., the uncertainty about how
well the former approximates the latter, as approximation uncertainty.

As already said, aleatoric uncertainty is typically understood as uncertainty that
is due to influences on the data-generating process that are inherently random,
that is, due to the non-deterministic nature of the sought input/output depen-
dency. This part of the uncertainty is irreducible, in the sense that the learner
cannot get rid of it. Model uncertainty and approximation uncertainty, on the
other hand, are subsumed under the notion of epistemic uncertainty, that is,
uncertainty due to a lack of knowledge about the perfect predictor (6). Obvi-
ously, this lack of knowledge will strongly depend on the underlying hypothesis
space H as well as the amount of data seen so far: The larger the number N = |D|
of observations, the less ignorant the learner will be when having to make a new
prediction. In the limit, when N → ∞, a consistent learner will be able to iden-
tify h∗. Moreover, the “larger” the hypothesis pace H, i.e., the weaker the prior
knowledge about the sought dependency, the higher the epistemic uncertainty
will be, and the more data will be needed to resolve this uncertainty.

How to capture these intuitive notions of aleatoric and epistemic uncertainty
in terms of quantitative measures? In the following, we briefly recall two pro-
posals that have recently been made in the literature.

2.1 Entropy Measures

An attempt at measuring and separating aleatoric and epistemic uncertainty on
the basis of classical information-theoretic measures of entropy is made in [2].

448 M. H. Shaker and E. Hüllermeier

This approach is developed in the context of neural networks for regression, but
the idea as such is more general and can also be applied to other settings. A
similar approach was recently adopted in [10].

Given a query instance x, the idea is to measure the total uncertainty in a
prediction in terms of the (Shannon) entropy of the predictive posterior distri-
bution, which, in the case of discrete Y, is given as

H
[
p(y |x)

]
= Ep(y |x)

{ − log2 p(y |x)
}

= −
∑
y∈Y

p(y |x) log2 p(y |x). (7)

Moreover, the epistemic uncertainty is measured in terms of the mutual infor-
mation between hypotheses and outcomes (i.e., the Kullback-Leibler divergence
between the joint distribution of outcomes and hypotheses and the product of
their marginals):

I(y, h) = Ep(y,h)

{
log2

(
p(y, h)

p(y)p(h)

)}
, (8)

Finally, the aleatoric uncertainty is specified in terms of the difference between
(7) and (8), which is given by

Ep(h | D)H
[
p(y |h,x)

]
= −

∫
H

p(h | D)

⎛
⎝∑

y∈Y
p(y |h,x) log2 p(y |h,x)

⎞
⎠ d h (9)

The idea underlying (9) is as follows: By fixing a hypothesis h ∈ H, the epis-
temic uncertainty is essentially removed. Thus, the entropy H[p(y |h,x)], i.e.,
the entropy of the conditional distribution on Y predicted by h for the query
instance x, is a natural measure of the aleatoric uncertainty. However, since h
is not precisely known, aleatoric uncertainty is measured in terms of the expec-
tation of this entropy with regard to the posterior probability p(h | D).

The epistemic uncertainty (8) captures the dependency between the prob-
ability distribution on Y and the hypothesis h. Roughly speaking, (8) is high
if the distribution p(y |h,x) varies a lot for different hypotheses h with high
probability. This is plausible, because the existence of different hypotheses, all
considered (more or less) probable but leading to quite different predictions, can
indeed be seen as a sign for high epistemic uncertainty.

Obviously, (8) and (9) cannot be computed efficiently, because they involve
an integration over the hypothesis space H. One idea, therefore, is to approx-
imate these measures by means of ensemble techniques [10], that is, to rep-
resent the posterior distribution p(h | D) by a finite ensemble of hypotheses
H = {h1, . . . , hM}. An approximation of (9) can then be obtained by

ua(x) ..= − 1
M

M∑
i=1

∑
y∈Y

p(y |hi,x) log2 p(y |hi,x), (10)

Aleatoric and Epistemic Uncertainty with Random Forests 449

an approximation of (7) by

ut(x) ..= −
∑
y∈Y

(
1
M

M∑
i=1

p(y |hi,x)

)
log2

(
1
M

M∑
i=1

p(y |hi,x)

)
, (11)

and finally and approximation of (8) by ue(x) ..= ut(x) − ua(x).

2.2 Measures Based on Relative Likelihood

Another approach, put forward in [18], is based on the use of relative likelihoods,
historically proposed by [1] and then justified in other settings such as possibility
theory [21]. Here, we briefly recall this approach for the case of binary classifica-
tion, i.e., where Y = {0, 1}; see [13] for an extension to the case of multinomial
classification.

Given training data D = {(xi, yi)}N
i=1 ⊂ X × Y, the normalized likelihood of

h ∈ H is defined as

πH(h) ..=
L(h)

L(hml)
=

L(h)
maxh′∈H L(h′)

, (12)

where L(h) =
∏N

i=1 p(yi |h,xi) is the likelihood of h, and hml ∈ H the maximum
likelihood estimation. For a given instance x, the degrees of support (plausibility)
of the two classes are defined as follows:

π(1 |x) = sup
h∈H

min
[
πH(h), p(1 |h,x) − p(0 |h,x)

]
, (13)

π(0 |x) = sup
h∈H

min
[
πH(h), p(0 |h,x) − p(1 |h,x)

]
. (14)

So, π(1 |x) is high if and only if a highly plausible hypothesis supports the
positive class much stronger (in terms of the assigned probability) than the
negative class (and π(0 |x) can be interpreted analogously). Given the above
degrees of support, the degrees of epistemic and aleatoric uncertainty are defined
as follows:

ue(x) = min
[
π(1 |x), π(0 |x)

]
, (15)

ua(x) = 1 − max
[
π(1 |x), π(0 |x)

]
. (16)

Thus, epistemic uncertainty refers to the case where both the positive and the
negative class appear to be plausible, while the degree of aleatoric uncertainty
(16) is the degree to which none of the classes is supported. More specifically,
the above measures have the following properties:

– ue(x) will be high if class probabilities strongly vary within the set of plau-
sible hypotheses, i.e., if we are unsure how to compare these probabilities. In
particular, it will be 1 if and only if we have h(x) = 1 and h′(x) = 0 for two
totally plausible hypotheses h and h′;

450 M. H. Shaker and E. Hüllermeier

– ua(x) will be high if class probabilities are similar for all plausible hypotheses,
i.e., if there is strong evidence that h(x) ≈ 0.5. In particular, it will be close to
1 if all plausible hypotheses allocate their probability mass around h(x) = 0.5.

As can be seen, the measures (15) and (16) are actually quite similar in spirit
to the measures (8) and (9).

3 Random Forests

Our basic idea is to instantiate the (generic) uncertainty measures presented in
the previous section by means of decision trees [15,16], that is, with decision
trees as an underlying hypothesis space H. This idea is motivated by the fact
that, firstly, decision trees can naturally be seen as probabilistic predictors [7],
and secondly, they can easily be used as an ensemble in the form of a random
forest—recall that ensembling is needed for the (approximate) computation of
the entropy-based measures in Sect. 2.1.

3.1 Entropy Measures

The approach in Sect. 2.1 can be realized with decision forests in a quite straight-
forward way. Let H = {h1, . . . , hM} be a classifier ensemble in the form of a
random forest consisting of decision trees hi. Moreover, recall that a decision
tree hi partitions the instance space X into (rectangular) regions Ri,1, . . . , Ri,Li

(i.e.,
⋃Li

l=1 Ri,l = X and Ri,k ∩ Ri,l = ∅ for k 	= l) associated with corresponding
leafs of the tree (each leaf node defines a region R). Given a query instance x,
the probabilistic prediction produced by the tree hi is specified by the Laplace-
corrected relative frequencies of the classes y ∈ Y in the region Ri,j
 x:

p(y |hi,x) =
ni,j(y) + 1
ni,j + |Y| ,

where ni,j is the number of training instances in the leaf node Ri,j , and ni,j(y)
the number of instances with class y. With probabilities estimated in this way,
the uncertainty degrees (10) and (11) can directly be derived.

3.2 Measures Based on Relative Likelihood

Instantiating the approach in Sect. 2.2 essentially means computing the degrees
of support (13–14), from which everything else can easily be derived.

As already said, a decision tree partitions the instance space into several
regions, each of which can be associated with a constant predictor. More specif-
ically, in the case of binary classification, the predictor is of the form hθ,
θ ∈ Θ = [0, 1], where hθ(x) ≡ θ is the (predicted) probability p(1 |x ∈ R)
of the positive class in the region. If we restrict inference to a local region, the
underlying hypothesis space is hence given by H = {hθ | 0 ≤ θ ≤ 1}.

Aleatoric and Epistemic Uncertainty with Random Forests 451

With p and n the number of positive and negative instances, respectively,
within a region R, the likelihood and the maximum likelihood estimate of θ are
respectively given by

L(θ) =
(

n + p
n

)
θn(1 − θ)p and θml =

n

n + p
. (17)

Therefore, the degrees of support for the positive and negative classes are

π(1 |x) = sup
θ∈[0,1]

min

(
θp(1 − θ)n(
p

n+p

)p(n
n+p

)n , 2θ − 1

)
, (18)

π(0 |x) = sup
θ∈[0,1]

min

(
θp(1 − θ)n(
p

n+p

)p(n
n+p

)n , 1 − 2θ

)
. (19)

Solving (18) and (19) comes down to maximizing a scalar function over a
bounded domain, for which standard solvers can be used. From (18–19), the
epistemic and aleatoric uncertainty associated with the region R can be derived
according to (15) and (16), respectively. For different combinations of n and p,
these uncertainty degrees can be pre-computed.

Note that, for this approach, the uncertainty degrees (15) and (16) can be
obtained for a single tree. To leverage the ensemble H, we average both uncer-
tainties over all trees in the random forest.

4 Experiments

The empirical evaluation of methods for quantifying uncertainty is a non-trivial
problem. In fact, unlike for the prediction of a target variable, the data does
normally not contain information about any sort of “ground truth” uncertainty.
What is often done, therefore, is to evaluate predicted uncertainties indirectly,
that is, by assessing their usefulness for improved prediction and decision mak-
ing. Adopting an approach of that kind, we produced accuracy-rejection curves,
which depict the accuracy of a predictor as a function of the percentage of rejec-
tions [5]: A classifier, which is allowed to abstain on a certain percentage p of
predictions, will predict on those (1 − p)% on which it feels most certain. Being
able to quantify its own uncertainty well, it should improve its accuracy with
increasing p, hence the accuracy-rejection curve should be monotone increasing
(unlike a flat curve obtained for random abstention).

4.1 Implementation Details

For this work, we used the Random Forest Classifier from SKlearn. The number
of trees within the forest is set to 50, with the maximum level of tree grows set
to 10. We use bootstrapping to create diversity between the trees of the forest.

As a baseline to compare with, we used the DropConnect model for deep
neural networks as introduced in [10]. The idea of DropConnect is similar to

452 M. H. Shaker and E. Hüllermeier

Dropout, but here, instead of randomly deleting neurons, we randomly delete the
connections between neurons. In this model, the act of dropping the connections
is also active in the test phase. In this way, the data passes through a different
network on each iteration, and therefore we can compute Monte Carlo samples
for each query instance. The DropConnect model is a feed forward neural network
consisting of two DropConnect layers with 32 neurons and a final softmax layer
for the output. The model is trained for 20 epochs with mini batch size of 32.
After the training is done, we take 50 Monte Carlo samples to create an ensemble,
from which the uncertainty values can be calculated.

4.2 Results

Due to space limitations, we show results in the form of accuracy-rejection curves
for only two exemplary data sets from the UCI repository1, spect and diabetes—
yet, very similar results were obtained for other data sets. The data is randomly
split into 70% for training and 30% for testing, and accuracy-rejection curves
are computed on the latter (the curves shown are averages over 100 repetitions).
In the following, we abbreviate the aleatoric and epistemic uncertainty degrees
produced by the entropy-based approach (Sect. 2.1) and the approach based on
relative likelihood (Sect. 2.2) by AU-ent, EU-ent, AU-rl, and EU-rl, respectively.

Fig. 2. Accuracy-rejection curves for aleatoric (above) and epistemic (below) uncer-
tainty using random forests. The curve for random rejection is included as a baseline.

1 https://archive.ics.uci.edu/ml/datasets/.

https://archive.ics.uci.edu/ml/datasets/

Aleatoric and Epistemic Uncertainty with Random Forests 453

As can be seen from Figs. 1, 2, 3 and 4, both approaches to measuring uncer-
tainty are effective in the sense of producing monotone increasing accuracy-
rejection curves, and on the data sets we analyzed so far, we could not detect
any systematic differences in performance. Besides, rejection seems to work well
on the basis of both criteria, aleatoric as well as epistemic uncertainty. This is
plausible, since both provide reasonable reasons for a learner to abstain from
a prediction. Likewise, there are no big differences between random forests and
neural networks, showing that the former are indeed a viable alternative to the
latter—this was actually a major concern of our study.

Fig. 3. Scatter plot for test set on diabetes data, showing the relationship between the
uncertainty degrees (aleatoric left, epistemic right) estimated by the two approaches.

Fig. 4. Comparison between random forests and neural networks (DropConnect) for
aleatoric (above) and epistemic (below) in the entropy-based uncertainty approach.

454 M. H. Shaker and E. Hüllermeier

5 Conclusion

The distinction between aleatoric and epistemic uncertainty has recently received
a lot of attention in machine learning, especially in the deep learning community
[6]. Roughly speaking, the approaches in deep learning are either based on the
idea of equipping networks with a probabilistic component, like in Bayesian deep
learning [11], or on using ensemble techniques [8], which can be implemented
(indirectly) through techniques such as Dropout [3] or DropConnect. The main
purpose of this paper was to show that the use of decision trees and random
forests is an interesting alternative to neural networks.

Indeed, as we have shown, the basic ideas underlying the estimation of
aleatoric and epistemic uncertainty can be realized with random forests in a
very natural way. In a sense, they even appear to be simpler and more flexi-
ble than neural networks. For example, while the approach based on relative
likelihood (Sect. 2.2) could be realized efficiently for random forests, a neural
network implementation is far from obvious (and was therefore not included in
the experiments).

There are various directions for future work. For example, since the hyper-
parameters of random forests have an influence on the hypothesis space we
are (indirectly) working with, they also influence the estimation of uncertainty
degrees. This relationship calls for a thorough investigation. Besides, going
beyond a proof of principle with statistics such as accuracy-rejection curves,
it would be interesting to make use of uncertainty quantification with random
forests in applications such as active learning, as recently proposed in [12].

References

1. Birnbaum, A.: On the foundations of statistical inference. J. Am. Stat. Assoc.
57(298), 269–306 (1962)

2. Depeweg, S., Hernandez-Lobato, J., Doshi-Velez, F., Udluft, S.: Decomposition of
uncertainty in Bayesian deep learning for efficient and risk-sensitive learning. In:
Proceedings of the ICML, 35th International Conference on Machine Learning,
Stockholm, Sweden (2018)

3. Gal, Y., Ghahramani, Z.: Bayesian convolutional neural networks with Bernoulli
approximate variational inference. In: Proceedings of the ICLR Workshop Track
(2016)

4. Hora, S.: Aleatory and epistemic uncertainty in probability elicitation with an
example from hazardous waste management. Reliab. Eng. Syst. Saf. 54(2–3), 217–
223 (1996)

5. Hühn, J., Hüllermeier, E.: FR3: a fuzzy rule learner for inducing reliable classifiers.
IEEE Trans. Fuzzy Syst. 17(1), 138–149 (2009)

6. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for
computer vision? In: Proceedings of the NIPS, pp. 5574–5584 (2017)

7. Kruppa, J., et al.: Probability estimation with machine learning methods for
dichotomous and multi-category outcome: theory. Biometrical J. 56(4), 534–563
(2014)

Aleatoric and Epistemic Uncertainty with Random Forests 455

8. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive
uncertainty estimation using deep ensembles. In: Proceedings of the NeurIPS, 31st
Conference on Neural Information Processing Systems, Long Beach, California,
USA (2017)

9. Lambrou, A., Papadopoulos, H., Gammerman, A.: Reliable confidence measures for
medical diagnosis with evolutionary algorithms. IEEE Trans. Inf. Technol. Biomed.
15(1), 93–99 (2011)

10. Mobiny, A., Nguyen, H., Moulik, S., Garg, N., Wu, C.: DropConnect is effective in
modeling uncertainty of Bayesian networks. CoRR abs/1906.04569 (2017). http://
arxiv.org/abs/1906.04569

11. Neal, R.: Bayesian Learning for Neural Networks, vol. 118. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-1-4612-0745-0

12. Nguyen, V., Destercke, S., Hüllermeier, E.: Epistemic uncertainty sampling. In:
Proceedings of the DS 2019, 22nd International Conference on Discovery Science,
Split, Croatia (2019)

13. Nguyen, V.L., Destercke, S., Masson, M.H., Hüllermeier, E.: Reliable multi-class
classification based on pairwise epistemic and aleatoric uncertainty. In: Proceedings
of the IJCAI, pp. 5089–5095. AAAI Press (2018)

14. Papernot, N., McDaniel, P.: Deep k-nearest neighbors: towards confident, inter-
pretable and robust deep learning. CoRR abs/1803.04765v1 (2018). http://arxiv.
org/abs/1803.04765

15. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
16. Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology.

IEEE Trans. Syst. Man Cybern. 21(3), 660–674 (1991)
17. Sato, M., Suzuki, J., Shindo, H., Matsumoto, Y.: Interpretable adversarial pertur-

bation in input embedding space for text. In: Proceedings IJCAI 2018, Stockholm,
Sweden, pp. 4323–4330 (2018)

18. Senge, R., et al.: Reliable classification: learning classifiers that distinguish aleatoric
and epistemic uncertainty. Inf. Sci. 255, 16–29 (2014)

19. Varshney, K.: Engineering safety in machine learning. In: Proceedings of the Infor-
mation Theory and Applications Workshop, La Jolla, CA (2016)

20. Varshney, K., Alemzadeh, H.: On the safety of machine learning: cyber-physical sys-
tems, decision sciences, and data products. CoRR abs/1610.01256 (2016). http://
arxiv.org/abs/1610.01256

21. Walley, P., Moral, S.: Upper probabilities based only on the likelihood function. J.
R. Stat. Soc.: Ser. B (Stat. Methodol.) 61(4), 831–847 (1999)

22. Yang, F., Wanga, H.Z., Mi, H., de Lin, C., Cai, W.W.: Using random forest for
reliable classification and cost-sensitive learning for medical diagnosis. BMC Bioin-
form. 10, S22 (2009)

http://arxiv.org/abs/1906.04569
http://arxiv.org/abs/1906.04569
https://doi.org/10.1007/978-1-4612-0745-0
http://arxiv.org/abs/1803.04765
http://arxiv.org/abs/1803.04765
http://arxiv.org/abs/1610.01256
http://arxiv.org/abs/1610.01256

456 M. H. Shaker and E. Hüllermeier

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Master Your Metrics with Calibration

Wissam Siblini(B) , Jordan Fréry, Liyun He-Guelton, Frédéric Oblé,
and Yi-Qing Wang

Worldline, 53 avenue Paul Krüger, 69100 Villeurbanne, France
{wissam.siblini,jordan.frery,liyun.he-guelton,frederic.oble,

yi-qing.wang}@worldline.com

Abstract. Machine learning models deployed in real-world applications
are often evaluated with precision-based metrics such as F1-score or
AUC-PR (Area Under the Curve of Precision Recall). Heavily dependent
on the class prior, such metrics make it difficult to interpret the variation
of a model’s performance over different subpopulations/subperiods in a
dataset. In this paper, we propose a way to calibrate the metrics so that
they can be made invariant to the prior. We conduct a large number of
experiments on balanced and imbalanced data to assess the behavior of
calibrated metrics and show that they improve interpretability and pro-
vide a better control over what is really measured. We describe specific
real-world use-cases where calibration is beneficial such as, for instance,
model monitoring in production, reporting, or fairness evaluation.

Keywords: Performance metrics · Class imbalance · Precision-recall

1 Introduction

In real-world machine learning systems, the predictive performance of a model is
often evaluated on multiple datasets, and comparisons are made. These datasets
can correspond to sub-populations in the data, or different periods in time [15].
Choosing the best suited metrics is not a trivial task. Some metrics may prevent
a proper interpretation of the performance differences between the sets [8,14],
especially because different datasets generally not only have a different likelihood
P(x|y) but also a different class prior P(y). A metric dependent on the prior (e.g.
precision) will be affected by both differences indiscernibly [3] but a practitioner
could be interested in isolating the variation of performance due to likelihood
which reflects the intrinsic model’s performance (see illustration in Fig. 1). Take
the example of comparing the performance of a model across time periods: At
time t, we receive data drawn from Pt(x, y) = Pt(x|y)Pt(y) where x are the
features and y the label. Hence the optimal scoring function (i.e. model) for this
dataset is the likelihood ratio [11]:

st(x) :=
Pt(x|y = 1)
Pt(x|y = 0)

(1)

In particular, if Pt(x|y) does not vary with time, neither will st(x). In this case,
even if the prior Pt(y) varies, it is desirable to have a performance metric M(·)
c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 457–469, 2020.
https://doi.org/10.1007/978-3-030-44584-3_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_36&domain=pdf
http://orcid.org/0000-0002-4193-2061
https://doi.org/10.1007/978-3-030-44584-3_36

458 W. Siblini et al.

satisfying M(st,Pt) = M(st+1,Pt+1),∀t so that the model maintains the same
metric value over time. That being said, this does not mean that dependence to
prior is an intrinsically bad behavior. Some applications seek this property as it
reflects a part of the difficulty to classify on a given dataset (e.g. the performance
of the random classifier evaluated with a prior-dependent metric is more or less
high depending on the skew of the dataset).

Fig. 1. Evolution of the AUC-PR of a fraud detection system and of the fraud ratio (π,
i.e. the empirical Pt(y)) over time. Both decrease, but, as the AUC-PR is dependent
on the prior, it does not allow to tell if the performance variation is only due to the
variation of π or if there was a drift in Pt(x|y)

In binary classification, researchers often rely on the AUC-ROC (Area Under
the Curve of Receiver Operating Characteristic) to measure a classifier’s perfor-
mance [6,9]. While this metric has the advantage of being invariant to the class
prior, many real-world applications, especially when data are imbalanced, have
recently begun to favor precision-based metrics such as AUC-PR and F-Score
[12,13]. The reason is that AUC-ROC suffers from giving false positives too lit-
tle importance [5] although the latter strongly deteriorate user experience and
waste human efforts with false alerts. Indeed AUC-ROC considers a tradeoff
between TPR and FPR whereas AUC-PR/F1-score consider a tradeoff between
TPR (Recall) and Precision. With a closer look, the difference boils down to the
fact that it normalizes the number of false positives with respect to the number
of true negatives whereas precision-based metrics normalize it with respect to
the number of true positives. In highly imbalanced scenarios (e.g. fraud/disease
detection), the first is much more likely than the second because negative exam-
ples are in large majority.

Precision-based metrics give false positives more importance, but they are
tied to the class prior [2,3]. A new definition of precision and recall into preci-
sion gain and recall gain has been recently proposed to correct several drawbacks
of AUC-PR [7]. But, while the resulting AUC-PR Gain has some advantages
of the AUC-ROC such as the validity of linear interpolation between points,
it remains dependent on the class prior. Our study aims at providing metrics
(i) that are precision-based to tackle problems where the class of interest is highly
under-represented and (ii) that can be made independent of the prior for com-
parison purposes (e.g. monitoring the evolution of the performance of a classifier
across several time periods). To reach this objective, this paper provides: (1) A

Master Your Metrics with Calibration 459

formulation of calibration for precision-based metrics. It compute the value of
precision as if the ratio π of the test set was equal to a reference class ratio π0.
We give theoretical arguments to explain why it allows invariance to the class
prior. We also provide a calibrated version for precision gain and recall gain [7].
(2) An empirical analysis on both synthetic and real-world data to confirm our
claims and show that new metrics are still able to assess the model’s performance
and are easier to interpret. (3) A large scale experiments on 614 datasets using
openML [16] to (a) give more insights on correlations between popular metrics
by analyzing how they rank models, (b) explore the links between the calibrated
metrics and the regular ones.

Not only calibration solves the issue of dependence to the prior but also
allows, with parameter π0, anticipating a different ratio and controlling what
the metric precisely reflects. This new property has several practical interests
(e.g. for development, reporting, analysis) and we discuss them in realistic use-
cases in Sect. 5.

2 Popular Metrics for Binary Classification: Advantages
and Limits

We consider a usual binary classification setting where a model has been trained
and its performance is evaluated on a test dataset of N instances. yi ∈ {0, 1} is
the ground-truth label of the ith instance and is equal to 1 (resp. 0) if the instance
belongs to the positive (resp. negative) class. The model provides si ∈ R, a score
for the ith instance to belong to the positive class. For a given threshold τ ∈ R,
the predicted label is ŷi = 1 if si > τ and 0 otherwise. Predictive performance
is generally measured using the number of true positives (TP =

∑N
i=1 1(ŷi =

1, yi = 1)), true negatives (TN =
∑N

i=1 1(ŷi = 0, yi = 0)), false positives (FP =
∑N

i=1 1(ŷi = 1, yi = 0)), false negatives (FN =
∑N

i=1 1(ŷi = 0, yi = 1)). One can
compute relevant ratios such as the True Positive Rate (TPR) also referred to
as the Recall (Rec = TP

TP+FN), the False Positive Rate (FPR = FP
TN+FP) also

referred to as the Fall-out and the Precision (Prec = TP
TP+FP). As these ratios

are biased towards a specific type of error and can easily be manipulated with the
threshold, more complex metrics have been proposed. In this paper, we discuss
the most popular ones which have been widely adopted in binary classification:
F1-Score, AUC-ROC, AUC-PR and AUC-PR Gain. F1-Score is the harmonic
average between Prec and Rec:

F1 =
2 ∗ Prec ∗ Rec

Prec + Rec
. (2)

The three other metrics consider every threshold τ from the highest si to the
lowest. For each one, they compute TP, FP, TN and FN. Then, they plot one
ratio against another and compute the Area Under the Curve (Fig. 2). AUC-ROC
considers the Receiver Operating Characteristic curve where TPR is plotted
against FPR. AUC-PR considers the Precision vs Recall curve. Finally, in AUC-
PR Gain, the precision gain (PrecG) is plotted against the recall gain (RecG).

460 W. Siblini et al.

They are defined in [7] as follows (π =
∑N

i=1 yi

N is the positive class ratio and we
always consider that it is the minority class in this paper):

PrecG =
Prec − π

(1 − π)Prec
(3)

RecG =
Rec − π

(1 − π)Rec
(4)

Fig. 2. ROC, PR and PR gain curves for the same model evaluated on an extremely
imbalanced test set from a fraud detection application (π = 0.003, in the top row) and
on a balanced sample (π = 0.5, in the bottom row).

PR Gain enjoys many properties of the ROC that the regular PR analysis does
not (e.g. the validity of linear interpolations or the existence of universal baselines)
[7]. However, AUC-PR Gain becomes hardly usable in extremely imbalanced set-
tings. In particular, we can derive from (3) and (4) that PrecG/RecG will be mostly
close to 1 if π is close to 0 (see top right chart in Fig. 2).

Fig. 3. Illustration of the impact of π on precision, recall, and the false positive rate.
Instances are ordered from left to right according to their score given by the model.
The threshold is illustrated as a vertical line between the instances: those on the left
(resp. right) are classified as positive (resp. negative)

Master Your Metrics with Calibration 461

As explained in the introduction, precision-based metrics (F1, AUC-PR) are
more adapted than AUC-ROC for problems with class imbalance. On the other
hand, only AUC-ROC is invariant to the positive class ratio. Indeed, FPR and
Rec are both unrelated to the class ratio because they only focus on one class
but it is not the case for Prec. Its dependency on the positive class ratio π
is illustrated in Fig. 3: when comparing a case (i) with a given ratio π and
another case (ii) where a randomly selected half of the positive examples has
been removed, one can visually understand that both recall and false positive
rate are the same but the precision is lower in the second case.

3 Calibrated Metrics

We seek a metric that is based on Prec to tackle problems where data are
imbalanced and the minority (positive) class is the one of interest but we want
it to be invariant w.r.t. the class prior to be able to interpret its variation across
different datasets (e.g. different time periods). To obtain such a metric, we will
modify those based on Prec (AUC-PR, F1-Score and AUC-PR Gain) to make
them independent of the positive class ratio π.

3.1 Calibration

The idea is to fix a reference ratio π0 and to weigh the count of TP or FP in
order to calibrate them to the value that they would have if π was equal to π0.
π0 can be chosen arbitrarily (e.g. 0.5 for balanced) but it is preferable to fix
it according to the task at hand (we analyze the impact of π0 in Sect. 4 and
describe simple guidelines to fix it in Sect. 5).

If the positive class ratio is π0 instead of π, the ratio between negative exam-
ples and positive examples is multiplied by π(1− π0)

π0(1− π) . In this case, we expect the

ratio between false positives and true positives to be multiplied by π(1− π0)
π0(1− π) .

Therefore, we define the calibrated precision Precc as follows:

Precc =
TP

TP + π(1− π0)
π0(1− π)FP

=
1

1 + π(1− π0)
π0(1− π)

FP
TP

(5)

Since 1− π
π is the imbalance ratio N−

N+
where N+ (resp. N−) is the number of

positive (resp. negative) examples, we have: π
1− π

FP
TP = FP/N−

TP/N+
= FPR

TPR which is
independent of π.

Based on the calibrated precision, we can also define the calibrated F1-score,
the calibrated PrecG and the calibrated RecG by replacing Prec by Precc and
π by π0 in Eqs. (2), (3) and (4). Note that calibration does not change precision
gain. Indeed, calibrated precision gain Precc − π0

(1− π0)Precc
can be rewritten as Prec − π

(1− π)Prec

which is equal to the regular precision gain. Also, the interesting properties of
the recall gain were proved independently of the ratio π in [7] which means that
calibration preserves them.

462 W. Siblini et al.

3.2 Robustness to Variations in π

In order to evaluate the robustness of the new metrics to variations in π, we
create a synthetic dataset where the label is drawn from a Bernoulli distribution
with parameter π and the feature is drawn from Normal distributions:

p(x|y = 1;μ1) = N (x;μ1, 1), p(x|y = 0;μ0) = N (x;μ0, 1) (6)

Fig. 4. Evolution of AUC-PR, AUC-PR Gain, F1-score and their calibrated version
(AUC-PcR, AUC-PcR Gain, F1-scorec) as π decreases. We arbitrarily set π0 = 0.5 for
the calibrated metrics. The curves are obtained by averaging results over 30 runs and
we show the confidence intervals.

For several values of π, data points are generated from (6) with μ1 = 2 and
μ0 = 1.8. We consider a large number of points (106) so that the empirical class
ratio π is approximately equal to the Bernouilli parameter π. We empirically
study the evolution of several metrics (F1-score, AUC-PR, AUC-PR Gain and
their calibrated version) for the optimal model (as defined in (1)) as π decreases
from π = 0.5 (balanced) to π = 0.001. We observe that the impact of the class
prior on the regular metrics is important (Fig. 4). It can be a serious issue for
applications where π sometimes vary by one order of magnitude from one day
to another (see [4] for a real world example) as it leads to a significant variation
of the measured performance (see the difference between AUC-PR when π = 0.5
and when π = 0.05) even if the optimal model remains the same. On the contrary,
the calibrated versions remain very robust to changes in the class prior π even
for extreme values. Note that we here experiment with synthetic data to have
a full control over the distribution/prior and make the analysis easier but the
conclusions are exactly the same on real world data.1

1 See appendix in https://figshare.com/articles/Calibrated metrics IDA Supplement-
ary material pdf/11848146.

https://figshare.com/articles/Calibrated_metrics_IDA_Supplement-ary_material_pdf/11848146
https://figshare.com/articles/Calibrated_metrics_IDA_Supplement-ary_material_pdf/11848146

Master Your Metrics with Calibration 463

3.3 Assessment of the Model Quality

Besides the robustness of the calibrated metrics to changes in π, we also want
them to be sensitive to the quality of the model. If this latter decreases regardless
of the π value, we expect all metrics, calibrated ones included, to decrease in
value. Let us consider an experiment where we use the same synthetic dataset as
defined the previous section. However, instead of changing the value of π only,
we change (μ1, μ0) to make the problem harder and harder and thus worsen the
optimal model’s performance. This can be done by reducing the distance between
the two normal distributions in (6), because this would result in more overlapping
between the classes and make it harder to discriminate between them. As a
distance, we consider the KL-divergence that boils down to 1

2 (μ1 − μ0)2.

Fig. 5. Evolution of AUC-PR, AUC-PR Gain, F1-score and their calibrated version as
KL(p1, p0) tends to 0 and as π randomly varies. This curve was obtained by averaging
results over 30 runs.

Figure 5 shows how the values of the metrics evolve as the KL-divergence
gets closer to zero. For each run, we randomly chose the prior π in the interval
[0.001, 0.5]. As expected, all metrics globally decrease as the problem gets harder.
However, we can notice an important difference: the variation in the calibrated
metrics are smooth and monotonic compared to those of the original metrics
which are affected by the random changes in π. In that sense, variations of the
calibrated metrics across the different generated datasets are much easier to
interpret than the original metrics.

4 Link Between Calibrated and Original Metrics

4.1 Meaning of π0

Let us first remark that for test datasets in which π = π0, Precc is equal to the
regular precision Prec since π(1− π0)

π0(1− π) = 1 (this is observable in Fig. 4 with the
intersection of the metrics for π = π0 = 0.5).

464 W. Siblini et al.

Fig. 6. Comparison between heuristic-based calibrated AUC-PR (red line) and our
closed-form calibrated AUC-PR (blue dots). The red shadow represents the stan-
dard deviation of the heuristic-based calibrated AUC-PR over 1000 runs. (Color figure
online)

If π �= π0, the calibrated metrics essentially have the value that the original
ones would have if the positive class ratio π was equal to π0. To further demon-
strate that, we compare our proposal for calibration (5) with the only proposal
from the past [10] that was designed for the same objective: a heuristic-based
calibration. The approach from [10] consists in randomly undersampling the test
set to make the positive class ratio π equal to a chosen ratio (let us refer to it
as π0 for the analogy) and then computing the regular metrics on the sampled
set. Because of the randomness, sampling may remove more hard examples than
easy examples so the performance can be over-estimated, and vice versa. To
avoid that, the approach performs several runs and computes a mean estima-
tion. In Fig. 6, we compare the results obtained with our formula and with their
heuristic, for several reference ratio π0, on a highly unbalanced (π = 0.0017)
credit card fraud detection dataset available on Kaggle [4].

We can observe that our formula and the heuristic provide really close val-
ues. This can be theoretically explained (See Footnote 1) and confirms that our
formula really computes the value that the original metric would have if the
ratio π in the test set was π0. Note that our closed-form calibration (5) can be
seen as an improvement of the heuristic-based calibration from [10] as it directly
provides the targeted value without running a costly Monte-Carlo simulation.

4.2 Do the Calibrated Metrics Rank Models in the Same Order
as the Original Metrics?

Calibration results in evaluating the metric for a different prior. In this section,
we analyze how this impacts the task of selectioning the best model for a given
dataset. To do this, we empirically analyze the correlation of several metrics
in terms of model ordering. We use OpenML [16] to select the 602 supervised
binary classification datasets on which at least 30 models have been evaluated
with a 10-fold cross-validation. For each one, we randomly choose 30 models,
fetch their predictions, and evaluate their performance with the metrics. This
leaves us with 614 × 30 = 18, 420 different values for each metric. To analyze

Master Your Metrics with Calibration 465

whether they rank the models in the same order, we compute the Spearman
rank correlation coefficient between them for the 30 models for each of the 614
problems.2 Most datasets roughly have balanced classes (π > 0.2 in more than
90% of the datasets). Therefore, to also specifically analyze the imbalance case,
we run the same experiment with only the subset of 4 highly imbalanced datasets
(π < 0.01). The compared metrics are AUC-ROC, AUC-PR, AUC-PR Gain
and the best F1-score over all possible thresholds. We also add the calibrated
version of the last three. In order to understand the impact of π0, we use two
different values: the arbitrary π0 = 0.5 and another value π0 ≈ π (for the first
experiment with all datasets, π0 ≈ π corresponds to π0 = 1.01π and for the
second experiment where π is very small, we go further and π0 ≈ π corresponds
to π0 = 10π which remains closer to π than 0.5). The obtained correlation
matrices are shown in Fig. 7. Each individual cell corresponds to the average
Spearman correlation over all datasets between the row metric and the column
metric.

A
U

C
-P

R

A
U

C
-P

R
0

A
U

C
-P

R
0
=

0.
5

A
U

C
-P

R
 G

ai
n

A
U

C
-P

R
 G

ai
n

0

A
U

C
-P

R
 G

ai
n

0
=

0.
5

F1
 s

co
re

F1
 s

co
re

0

F1
 s

co
re

0
=

0.
5

A
U

C
-R

O
C

AUC-PR

AUC-PR 0

AUC-PR 0 = 0.5

AUC-PR Gain

AUC-PR Gain 0

AUC-PR Gain 0 = 0.5

F1 score

F1 score 0

F1 score 0 = 0.5

AUC-ROC

1 1 0.99 0.91 0.91 0.86 0.92 0.92 0.9 0.94

1 1 0.99 0.91 0.91 0.86 0.92 0.92 0.9 0.94

0.99 0.99 1 0.91 0.91 0.86 0.91 0.9 0.91 0.95

0.91 0.91 0.91 1 1 0.93 0.86 0.86 0.84 0.94

0.91 0.91 0.91 1 1 0.93 0.86 0.86 0.84 0.94

0.86 0.86 0.86 0.93 0.93 1 0.82 0.82 0.81 0.91

0.92 0.92 0.91 0.86 0.86 0.82 1 1 0.96 0.89

0.92 0.92 0.9 0.86 0.86 0.82 1 1 0.96 0.89

0.9 0.9 0.91 0.84 0.84 0.81 0.96 0.96 1 0.9

0.94 0.94 0.95 0.94 0.94 0.91 0.89 0.89 0.9 1

A
U

C
-P

R

A
U

C
-P

R
0

A
U

C
-P

R
0
=

0.
5

A
U

C
-P

R
 G

ai
n

A
U

C
-P

R
 G

ai
n

0

A
U

C
-P

R
 G

ai
n

0
=

0.
5

F1
 s

co
re

F1
 s

co
re

0

F1
 s

co
re

0
=

0.
5

A
U

C
-R

O
C

1 0.9 0.57 0.46 0.45 0.34 0.98 0.86 0.54 0.53

0.9 1 0.8 0.53 0.58 0.25 0.9 0.96 0.75 0.77

0.57 0.8 1 0.39 0.5 0.095 0.59 0.78 0.97 0.98

0.46 0.53 0.39 1 0.95 0.5 0.5 0.58 0.28 0.4

0.45 0.58 0.5 0.95 1 0.46 0.48 0.6 0.39 0.52

0.34 0.25 0.095 0.5 0.46 1 0.35 0.29 0.05 0.13

0.98 0.9 0.59 0.5 0.48 0.35 1 0.89 0.53 0.55

0.86 0.96 0.78 0.58 0.6 0.29 0.89 1 0.72 0.76

0.54 0.75 0.97 0.28 0.39 0.05 0.53 0.72 1 0.96

0.53 0.77 0.98 0.4 0.52 0.13 0.55 0.76 0.96 1

Fig. 7. Spearman rank correlation matrices between 10 metrics over 614 datasets for
the left figure and the 4 highly imbalanced datasets for the right figure.

A general observation is that most metrics are less correlated with each other
when classes are unbalanced (right matrix in Fig. 7). We also note that the best
F1-score is more correlated to AUC-PR than to AUC-ROC or AUC-PR Gain. In
the balanced case (left matrix in Fig. 7), we can see that metrics defined as area
under curves are generally more correlated with each other than with the thresh-
old sensitive classification metric F1-score. Let us now analyze the impact of cal-
ibration. As expected, in general, when π0 ≈ π, calibrated metrics have a behav-
ior really close to that of the original metrics because π(1− π0)

π0(1− π) ≈ 1 and therefore

2 The implementation of the paper experiments can be found at https://github.com/
wissam-sib/calibrated metrics.

https://github.com/wissam-sib/calibrated_metrics
https://github.com/wissam-sib/calibrated_metrics

466 W. Siblini et al.

Precc ≈ Prec. In the balanced case (left), since π is close to 0.5, calibrated metrics
withπ0 = 0.5 are also highly correlatedwith the originalmetrics. In the imbalanced
case (on the right matrix of Fig. 7), when π0 is arbitrarily set to 0.5 the calibrated
metrics seem to have a low correlation with the original ones. In fact, they are less
correlated with them than with AUC-ROC. And this makes sense given the rela-
tive weights that each of the metric applies to FP and TP. The original precision
gives the same weight to TP and FP , although false positives are 1− π

π times more
likely to occur (1− π

π > 100 if π < 0.01). The calibrated precision with the arbi-
trary value π0 = 0.5 boils down to TP

TP+ π
(1− π)FP

and gives a weight 1− π
π times

smaller to false positives which counterbalances their higher likelihood. ROC, like
the calibrated metrics with π0 = 0.5, gives 1− π

π less weight to FP because it is com-
puted from FPR and TPR which are linked to TP and FP with the relationship

π
1− π

FP
TP = FPR

TPR .
To sum up the results, we first emphasize that the choice of the metrics to

rank classifiers when datasets are rather balanced seems to be much less sensitive
than in the extremely imbalanced case. In the balanced case the least correlated
metrics have an average rank correlation of 0.81. For the imbalanced datasets,
on the other hand, many metrics have low correlations which means that they
often disagree on the best model. The choice of the metric is therefore very
important here. Our experiment also seems to reflect that rank correlations are
mainly a matter of how much weight is given to each type of error. Choosing
these “weights” generally depends on the application at hand. An this should be
remembered when using calibration. To preserve the nature of a given metrics,
π0 has to be fixed to a value close to π and not arbitrarily. The user still has the
choice to fix it to another value if his purpose is to specifically place the results
into a different reference with a different prior.

5 Guidelines and Use-Cases

Calibration could benefit ML practitioners when analyzing the performance of a
model across different datasets/time periods. Without being exhaustive, we give
four use-cases where it is beneficial (setting π0 depends on the target use-case):

Comparing the Performance of a Model on Two Populations/Classes:
Consider a practitioner who wants to predict patients with a disease and evalu-
ate the performance of his model on subpopulations of the dataset (e.g. children,
adults and elderly people). If the prior is different from one population to another
(e.g. elderly people are more likely to have the disease), precision will be affected,
i.e. population with a higher disease ratio will be more likely to have a higher
precision. In this case, the calibrated precision can be used to obtain the preci-
sion of each population set to the same reference prior (for instance, π0 can be
chosen as the average prior over all populations). This would provide an addi-
tional balanced point of view and make the analysis richer to draw more precise
conclusions and perhaps study fairness [1].

Master Your Metrics with Calibration 467

Model Performance Monitoring in an Industrial Context: In systems
where a model’s performance is monitored over time with precision-based met-
rics like F1-score, using calibration in addition to the regular metrics makes it
easier to understand the evolution especially when the class prior can evolve (cf.
application in Fig. 1). For instance, it can be useful to analyze the drift (i.e. dis-
tinguish between variations linked to π or P (X|y)) and design adapted solutions;
either updating the threshold or completely retraining the model. To avoid dena-
turing too much the F1-score, here π0 has to be fixed based on realistic values
(e.g. average π in historical data).

Establishing Agreements with Clients: As shown in previous sections, π0

can be interpreted as the ratio to which we refer to compute the metric. This
can be useful to establish a guarantee, in an agreement, that will be robust
to uncontrollable events. Indeed, if we take the case of fraud detection, the
real positive class ratio π can vary extremely from one day to another and on
particular events (e.g. fraudster attacks, holidays) which significantly affects the
measured metrics (see Fig. 4). Here, after having both parties to agree beforehand
on a reasonable value for π0 (based on their business knowledge), calibration will
always compute the performance relative to this ratio and not the real π and
thus be easier to guarantee.

Anticipating the Deployment of a Model in Production: Imagine one
collects a sample of data to develop an algorithm and reaches an acceptable AUC-
PR for production. If the prior in the collected data is different from reality,
the non-calibrated metric might have given either a pessimistic or optimistic
estimation of the post-deployment performance. This can be extremely harmful
if the production has strict constraints. Here, if the practitioner uses calibration
with π0 equal to the minimal prior envisioned for the application at hand, he/she
would be able to anticipate the worst case scenario.

6 Conclusion

In this paper, we provided a formula of calibration, empirical results, and guide-
lines to make the values of metrics across different datasets more interpretable.
Calibrated metrics are a generalization of the original ones. They rely on a refer-
ence π0 and compute the value that we would obtain if the positive class ratio π
in the evaluated test set was equal to π0. If the user chooses π0 = π, this does not
change anything and he retrieves the regular metrics. But, with different choices,
the metrics can serve several purposes such as obtaining robustness to variation
in the class prior across datasets, or anticipation. They are useful in both aca-
demic and industrial applications as explained in the previous section: they help
drawing more accurate comparisons between subpopulations, or study incremen-
tal learning on streams by providing a point of view agnostic to virtual concept
drift [17]. They can be used to provide more controllable performance indicators

468 W. Siblini et al.

(easier to guarantee and report), help preparing deployment in production, and
prevent false conclusions about the evolution of a deployed model. However, π0

has to be chosen with caution as it controls the relative weights given to FP and
TP and, consequently, can affect the selection of the best classifier.

References

1. Barocas, S., Hardt, M., Narayanan, A.: Fairness in machine learning. NIPS Tutorial
(2017)

2. Branco, P., Torgo, L., Ribeiro, R.P.: A survey of predictive modeling on imbalanced
domains. ACM Comput. Surv. (CSUR) 49(2), 31 (2016)

3. Brzezinski, D., Stefanowski, J., Susmaga, R., Szczech, I.: On the dynamics of clas-
sification measures for imbalanced and streaming data. IEEE Trans. Neural Netw.
Learn. Syst. (2019)

4. Dal Pozzolo, A., Boracchi, G., Caelen, O., Alippi, C., Bontempi, G.: Credit card
fraud detection: a realistic modeling and a novel learning strategy. IEEE Trans.
Neural Netw. Learn. Syst. 29(8), 3784–3797 (2018)

5. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves.
In: Proceedings of the 23rd International Conference on Machine Learning, pp.
233–240. ACM (2006)

6. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–
874 (2006)

7. Flach, P., Kull, M.: Precision-recall-gain curves: PR analysis done right. In:
Advances in Neural Information Processing Systems, pp. 838–846 (2015)

8. Garcıa, V., Sánchez, J.S., Mollineda, R.A.: On the suitability of numerical per-
formance measures for class imbalance problems. In: International Conference in
Pattern Recognition Applications and Methods, pp. 310–313 (2012)

9. Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology 143(1), 29–36 (1982)

10. Jeni, L.A., Cohn, J.F., De La Torre, F.: Facing imbalanced data-recommendations
for the use of performance metrics. In: 2013 Humaine Association Conference on
Affective Computing and Intelligent Interaction, pp. 245–251. IEEE (2013)

11. Neyman, J., Pearson, E.S.: IX. On the problem of the most efficient tests of statis-
tical hypotheses. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys.
Character 231(694–706), 289–337 (1933)

12. Saito, T., Rehmsmeier, M.: The precision-recall plot is more informative than the
ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE
10(3), e0118432 (2015)

13. Sajjadi, M.S., Bachem, O., Lucic, M., Bousquet, O., Gelly, S.: Assessing generative
models via precision and recall. In: Advances in Neural Information Processing
Systems, pp. 5228–5237 (2018)

14. Santafe, G., Inza, I., Lozano, J.A.: Dealing with the evaluation of supervised clas-
sification algorithms. Artif. Intell. Rev. 44(4), 467–508 (2015). https://doi.org/10.
1007/s10462-015-9433-y

https://doi.org/10.1007/s10462-015-9433-y
https://doi.org/10.1007/s10462-015-9433-y

Master Your Metrics with Calibration 469

15. Tatbul, N., Lee, T.J., Zdonik, S., Alam, M., Gottschlich, J.: Precision and recall for
time series. In: Advances in Neural Information Processing Systems, pp. 1920–1930
(2018)

16. Vanschoren, J., Van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science
in machine learning. ACM SIGKDD Explor. Newslett. 15(2), 49–60 (2014)

17. Widmer, G., Kubat, M.: Effective learning in dynamic environments by explicit
context tracking. In: Brazdil, P.B. (ed.) ECML 1993. LNCS, vol. 667, pp. 227–243.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56602-3 139

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/3-540-56602-3_139
http://creativecommons.org/licenses/by/4.0/

Supervised Phrase-Boundary Embeddings

Manni Singh(B), David Weston, and Mark Levene

Department of Computer Science and Information Systems,
Birkbeck, University of London, London WC1E 7HX, UK

{manni,dweston,mark}@dcs.bbk.ac.uk

Abstract. We propose a new word embedding model, called SPhrase,
that incorporates supervised phrase information. Our method modifies
traditional word embeddings by ensuring that all target words in a phrase
have exactly the same context. We demonstrate that including this infor-
mation within a context window produces superior embeddings for both
intrinsic evaluation tasks and downstream extrinsic tasks.

Keywords: Phrase embeddings · Named entity recognition · Natural
language processing

1 Introduction

Word embeddings represent words with multidimensional vectors that are used
in various models for applications such as, named entity recognition [9], query
expansion [13], and sentiment analysis [21]. These embeddings are usually gen-
erated from a huge corpus with unsupervised learning models [3,16,18,23,24].
These models are based on describing target words by their neighbouring words
which are also considered as contexts. The selection of these context words is
generally linear (i.e. n words surrounding the target). Alternatively, arbitrary
context words were used in [16] where context selection is based on the syntactic
dependencies to the target word.

These models treat words as lexical units and create a context window sur-
rounding a target word. This approach can be problematic when the context
window for a target word contains only part of a phrase. For example, consider
a scenario where a target word is close to (and to the right of) the named entity
“George W. Bush” but the context window only retains the word “George”.
Clearly this will generate ambiguity as the independent word “George” may
refer another person (George Washington), location (George Street, Oxford) or
a music band (George). To deal with the issue described above, [19] used a data-
driven approach to identify and treat these phrases as individual tokens. While
this technique may learn a phrase representation it cannot learn a representation
of the individual words that comprise the phrase.

In our approach we obtain phrase information directly from Wikipedia. Terms
from Wikipedia articles are formatted as hyperlinks to relevant articles. In a
related method [22] these terms are extracted as named entities. This paper
c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 470–482, 2020.
https://doi.org/10.1007/978-3-030-44584-3_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_37&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_37

Supervised Phrase-Boundary Embeddings 471

interprets these terms as phrases. By using Wikipedia for phrase information
(unlike [16]) we avoid needing additional grammatical information. This also
gives us the potential to generate multi-lingual embeddings, although we do not
pursue this here.

In this work, we are using phrase boundary information to generate word
embedding in a non-compositional manner rather than a phrase embedding. We
consider each of the words in the phrase as a part of the unit, where a unit
can either be single word (i.e. not a link in the Wikipedia) or otherwise a bag
of words. The embeddings are then learned for each of the unit members by
considering surrounding units in the context.

In the following section we present related work in this domain, Sect. 3
presents our model and in Sects. 4 to 6 we give details of the implementation
and the experiments.

2 Related Work

Word representations can be obtained from a language model where the goal is
to predict a future word based on some previously observed information such
as, a sentence, a sequence, or a phrase. For this task, various models can be
utilised including: joint probabilities of observation that may include the Markov
assumption. Under this assumption, we may say that the immediate future is
independent of the entire past given the present. N-gram language models [4]
use this assumption to predict token(s) using the previous N − 1 tokens [17].
This can be constructed efficiently for very large datasets using neural network
based language modelling (NNLM) [2].

The NNLM of [2] used a non-linear hidden layer between the input and
output layers. A simpler network named the log bi-linear model was introduced
in [20] by dropping the hidden layer between input and output layer. Instead
of the hidden layer, context vectors were summed and projected to the output
layer. This model was later used by [18] and named CBOW (Continuous Bag-
of-words model), with a symmetric context (i.e. context words on both sides of
the target word).

In addition, the Skip-gram model, was introduced in this work by reversing
CBOW to predict context from the target word. Given a context range c and
target word wt the objective is to maximise the average log probability,

∑

−c≤j≤c

log p(wt+j |wt)

The model defines p(wt+j |wt) using the softmax function,

p(wO|wI) =
exp

(
v′
wO

�
vwI

)

∑W
w=1 exp

(
v′
w

�vwI

)

472 M. Singh et al.

where vw and v′
w are the “input” and “output” vector representations of w, and

W is the number of words in the vocabulary. However, due to the large vocabu-
lary, the computation becomes impractical. Thus, Noise Contrastive Estimation
(NCE) [7] was used that performs the same operation by sampling a very small
amount of words k from the vocabulary as noise.

A similar technique is called Candidate Sampling [10] that combines noise sam-
ples with the true class, denoted as the set S, with the objective to predict the true
class from it, where Y is a set of true classes. Embeddings are scored as,

Ŷs = (Xs ∗ Ws + bs) − log(E(s)).

Where Xs is a vector (embedding) corresponding to a word s ∈ S, Ws is
the corresponding weight, bs is the bias, and E(s) is the expectation for s. Each
score is approximated to a probability using the softmax function,

Softmax(Ŷs) =
exp Ŷs∑

s′∈S exp Ŷs′
.

In addition to words, phrases may also be considered. In [18], the words
comprising a phrase were joined using the delimiter ‘ ’ between them, and their
joint embedding was learned. This scheme is called non-compositional embedding
[8,26]. Alternatively, compositional embeddings [8] are generated by merging
word embeddings of phrase components using a composition function. The main
difference in these schemes is that the previous learns the phrase embeddings
while the latter just merges already learned word embeddings to make the phrase
embeddings. Similarly, [3] introduced an extension of the Skip-gram model [18]
that composes sub-word embeddings to make word embeddings with summation
as the composition function.

3 The SPhrase Model

The proposed model uses information about which words belong to which
phrases. This information can be conveniently represented as simply the loca-
tions for where phrases start and end, hence the name, Supervised Phrase Bound-
ary Representations model (SPhrase).

The key assumption is that each word that comprises a phrase has the same
context. This will produce an embedding where words that occur in the same
phrase are likely to be close in the vector space. For example consider the sen-
tence:

British Airways to New York has Departed
This sentence includes the (noun) phrase ‘New York’. Following the procedure
for Word2vec we focus on the target word ‘New’ using a context window of
size 1. The target, context pairs are (New, to) and (New, York). Repeating this
procedure for the target word ‘York’, yields the target, context pairs (York, New)
and (York, has).

Supervised Phrase-Boundary Embeddings 473

For SPhrase, the context differs from Word2vec, both target words in ‘New
York’ will have the same context based on the words immediately surrounding
the phrase, hence the SPhrase target context pairs are (New, to), (New, has),
(York, to), (York, has). Figure 1 highlights the context words for the word ‘New’
for both Word2vec and SPhrase.

Word2vec

British airways to New York has departed

SPhrase

British airways to New York has departed

Fig. 1. Context words for the target word New using Word2vec and SPhrase. The
context words are in bold. The context size is 1.

In the above, we demonstrated the target context pairs induced by a target
word that is a member of a phrase, where its context are individual words. In the
following, we generalise the approach to handle the situation where phrases are
part of a context. We do this by introducing the concept of a unit, where a unit
consist of a sequence of words. A unit of length 1 represents individual words, a
unit of length 2 represents two word phrases and so on for larger phrases.

Thus we measure the context simply in terms of units. Figure 2 provides an
example of a context of size 2 each side. Note that the left context for SPhrase
contains 3 words. Thus the context size measured in words will be larger for
SPhrase than Word2vec if there is a phrase within the context window.

Word2vec

British airways to Rome has departed

SPhrase

British airways to Rome has departed

Fig. 2. Context words for the target word Rome using Word2vec and SPhrase. The
context words are in bold. The context size is 2.

474 M. Singh et al.

3.1 SPhrase Context Sampling

A standard approach to reduce the computation involved in generating embed-
dings is to shorten the effective context length by using only a sample of words
from a context [18]. For SPhrase this can be achieved in several ways. First it
can be done at the level of units not words, this is denoted unit context sampling
(SPhrase). Second random word context sampling (R)1 involves first performing
unit context sampling, then for each unit that has a length greater than one only
one word is sampled uniformly at random. This yields an effective context length
that matches the context length of Word2vec. In addition to that, we generate
embeddings named without unit context sampling (NU) where the target still is
a unit but the context comprises individual words.

4 Methods and Datasets

4.1 Dataset

In order to generate an embedding using our approach, we require a corpus that
has phrases annotated. Unfortunately this is not readily available, so we use a
proxy for phrase annotation. In datasets that include hyperlinks we assume that
the hyperlink displayed text is a phrase. One such data set is Wikipedia; we use
the English Wikipedia dump version 20180920 that contains over 3 billion tokens.
The proportion of tokens in phrases of length 2 is 2.5%; of length 3, 4, 5, and
greater is respectively 0.8%, 0.3%, 0.2%, and less than 0.1%. Obviously not all
phrases are represented as hyperlink text and not all hyperlink texts are phrases.
Indeed the longest hyperlink text in our data set is of length 16,382 (it included
internal formatting of Wikipedia). For our study we restricted maximum length
to 10. The embedding vocabulary contained tokens with a frequency of at least
100 which gave us a total of 400,919 distinct tokens.

4.2 Parameter Settings

Training is performed in mini-batches of 60,000 tokens per batch with candidate
sampling of 5000 classes per batch (value dictated by the available computational
resource). The remaining parameters use standard values, the learning rate is ini-
tialised to 0.001 and optimisation is based on Adam optimiser [12] for stochastic
learning. The learning decay is set to 10% (i.e. learning rate * 0.9) after each epoch.
The total number of the epochs is set to 20. The weighting scheme for selecting
words in the context sampling is the same as for Word2vec [18].

5 Evaluation

There are two types of evaluation tasks commonly accepted: intrinsic and extrin-
sic. Intrinsic evaluation tasks determine the quality of embeddings. Under this
1 Pretrained embeddings are available at: https://github.com/ManniSingh/SPhrase.

https://github.com/ManniSingh/SPhrase

Supervised Phrase-Boundary Embeddings 475

class, word similarity/relatedness tasks are generally based on cosine distance as
a metric to find similarity between two word vectors. Extrinsic evaluation tasks,
on the other hand, are based on specific downstream tasks such as, named entity
recognition (NER), sentiment classification, topic detection. In this work, we are
doing similarity based intrinsic evaluation and NER based extrinsic evaluation.

6 Experimental Design

6.1 Intrinsic Evaluation

The following experiments fit into the so-called intrinsic category of embedding
evaluation. We aim to demonstrate that although the total number of phrases in
our dataset is small compared to the number of words, they do have a positive
impact on the resulting embeddings. In order to determine an optimal configu-
ration of the method, intrinsic evaluation is done on embeddings trained on the
first 10% of the corpus; see Fig. 3, As a result, the extrinsic evaluation described
Sect. 6.2, the performance of the optimal configuration in this evaluations is:
SPhrase (R) with window size 5. For the extrinsic evaluation only the optimal
configuration is used and the embeddings are trained on the full corpus.

In the following experiments we compare SPhrase embeddings with the ones
generated by Word2vec. It is known that increasing the context window size gen-
erally improves the quality of the embedding. Recall that the expected context
size for each target word is the same for Word2vec and SPhrase due to word
context sampling.

We expect that words in phrases should be mapped to similar locations in
the embedding, i.e. words within a phrase should be closer together than words
that are not in the same phrase. In the following we first perform experiment
on pairwise similarity and then we investigate further structure with an analogy
task.

Pairwise Similarity. For pairwise similarity experiments we use phrases from
three datasets.

– CoNLL-2003 English dataset [25]. From this dataset multi-word named enti-
ties were extracted. These are used as phrases, in total there are 12,999. The
maximum phrase length is 7 in this dataset, so we restricted the following
two datasets to this as well.

– From our Wikipedia training corpus we obtained 16,470 phrases from the first
1,000000 tokens. This dataset comes from our training data, so we assume we
should obtain good results in this case.

– Bristol [15] - from this dataset we selectively used the entity list and found
87,209 phrases.

476 M. Singh et al.

Fig. 3. Similarity scores comparison for the phrases relative to 100 random words
representing: unit context sampling (SPhrase), Without unit context sampling (NU)
and, with random word context sampling (R). Where SPhrase (in bold) and Word2vec
(dashed) are compared on phrase lengths 2–7 (in horizontal axis) with higher the score
the better it performed.

In order to investigate how the distances of words within a phrase compare to
distances of words with random words in the datasets we use the following,

Similarity Score =
1

Nl(l − 1)

l−1∑

i=1

b(wi, wi+1, r)

where,

b(wi, wi+1, r) =
{

1 s(wi, wi+1) > s(wi, r),
0 otherwise,

Supervised Phrase-Boundary Embeddings 477

where r is a word selected at random from another phrase. A new word is drawn
for each phrase pair comparison. The similarity score is calculated 100 times and
the overall average is taken in order to reduce the noise generated by selecting
only one word for each comparison. The interpretation of this is similar to the
cosine score in that the larger the value the better.

We computed scores for phrase lengths up to and including length 7. We
have used context window sizes 3, 5 and 10. Figure 3 shows these scores for
the context sampling regimes: with unit context sampling, without unit context
sampling, and word context sampling.

We can see that regardless of the embedding, the scores in general reduce as
the phrase gets longer. However, the larger the window size the more Word2vec
and SPhrase agree. This is what we should expect, since there will be greater
overlap in the context words between SPhrase and Word2vec. Nevertheless we
see that, overall, SPhrase performs better.

Google Analogy Test Set. Analogy based tasks are widely used, e.g. [5,6,11]
to evaluate the quality of word embeddings. One well known test set is the
Google analogy test set [18]. This dataset comprises rows of four words, such
as known unknown informed uninformed. The analogy task is to predict the
final word using the first three using simple vector addition/subtraction of their
vector representations. Informally the task attempts to show how well words
follow the vector relationship
unknown - known = uninformed - informed

Table 1. Scores on Google analogy dataset with unit context sampling (SPhrase), here
accuracy is the total correct count on the total count of instances.

Accuracy - displayed to 3 decimal places Count

Window size 3 Window size 5 Window size 10

SPhrase Word2vec SPhrase Word2vec SPhrase Word2vec

capital-world 0.727 0.628 0.746 0.658 0.815 0.782 4524

capital-common-countries 0.872 0.848 0.941 0.856 0.976 0.941 506

city-in-state 0.660 0.480 0.715 0.583 0.647 0.677 2467

gram3-comparative 0.848 0.806 0.758 0.813 0.643 0.670 1332

gram2-opposite 0.223 0.220 0.220 0.222 0.206 0.204 812

gram8-plural 0.755 0.736 0.715 0.744 0.641 0.727 1332

gram4-superlative 0.379 0.396 0.345 0.366 0.279 0.262 1122

gram9-plural-verbs 0.639 0.559 0.536 0.546 0.453 0.521 870

gram6-nationality-adjective 0.846 0.784 0.838 0.815 0.854 0.853 1599

family 0.603 0.595 0.595 0.638 0.581 0.543 506

gram7-past-tense 0.472 0.515 0.474 0.492 0.441 0.470 1560

currency 0.047 0.042 0.021 0.021 0.018 0.016 866

gram1-adjective-to-adverb 0.104 0.087 0.119 0.121 0.132 0.148 992

gram5-present-participle 0.517 0.520 0.509 0.486 0.479 0.455 1056

all 0.601 0.545 0.597 0.565 0.581 0.587 19544

478 M. Singh et al.

Table 2. Scores on Google analogy dataset without unit context sampling (NU), here
accuracy is the total correct count on the total count of instances.

Accuracy - displayed to 3 decimal places Count

Window size 3 Window size 5 Window size 10

SPhrase Word2vec SPhrase Word2vec SPhrase Word2vec

capital-world 0.671 0.628 0.725 0.658 0.744 0.782 4524

capital-common-countries 0.881 0.848 0.935 0.856 0.929 0.941 506

city-in-state 0.653 0.480 0.645 0.583 0.652 0.677 2467

gram3-comparative 0.706 0.806 0.696 0.813 0.519 0.670 1332

gram2-opposite 0.217 0.220 0.197 0.222 0.172 0.204 812

gram8-plural 0.726 0.736 0.712 0.744 0.661 0.727 1332

gram4-superlative 0.273 0.396 0.298 0.366 0.269 0.262 1122

gram9-plural-verbs 0.577 0.559 0.548 0.546 0.477 0.521 870

gram6-nationality-adjective 0.855 0.784 0.821 0.815 0.827 0.853 1599

family 0.569 0.595 0.553 0.638 0.502 0.543 506

gram7-past-tense 0.453 0.515 0.483 0.492 0.414 0.470 1560

currency 0.039 0.042 0.024 0.021 0.028 0.016 866

gram1-adjective-to-adverb 0.130 0.087 0.173 0.121 0.168 0.148 992

gram5-present-participle 0.511 0.520 0.509 0.486 0.492 0.455 1056

all 0.565 0.545 0.576 0.565 0.553 0.587 19544

The dataset is divided into categories, some of which are inherently phrase-
based. In the category capital-common-countries a typical line is:
Athens Greece Baghdad Iraq
Both Athens Greece and Baghdad Iraq can be reasonably construed to be phrases,
unlike in the first example above. Two other categories have this same character,
namely capital-world and city-in-state.
Example rows are: Athens Greece Canberra Australia and
Chicago Illinois Houston Texas respectively.

With this in mind we show the accuracy of SPhrase and Word2vec stratified
by category, in addition to the overall accuracy that is usually reported. The
categories that have a phrasal quality are italicised in Tables 1, 2 and 3. We see
that, overall, SPhrase performs better in these categories.

6.2 Extrinsic Evaluation

We use Conll2003 English [25] and Wikigold [1] to evaluate the performance of
the embeddings generated. The Conll dataset is widely used to evaluate various
NER based models. It contains 203,621 tokens in the training set, while valida-
tion and test set contains 51,362 and 46,435 tokens respectively. On the other
hand, Wikigold provides a single data file of 39,007 tokens that we used for test-
ing while the NER models were trained with Conll train and validation data.
We used SPhrase (R) model with window size 5 since this configuration demon-
strated significant improvements over Word2vec as shown in Fig. 3. We recreated
the BLSTMs and CRF based model [14] but without any feature engineering.

Supervised Phrase-Boundary Embeddings 479

Table 3. Scores on Google analogy dataset with random word context sampling (R),
here accuracy is the total correct count on the total count of instances.

Accuracy - displayed to 3 decimal places Count

Window size 3 Window size 5 Window size 10

SPhrase Word2vec SPhrase Word2vec SPhrase Word2vec

capital-world 0.637 0.628 0.718 0.658 0.766 0.782 4524

capital-common-countries 0.858 0.848 0.903 0.856 0.953 0.941 506

city-in-state 0.664 0.480 0.623 0.583 0.663 0.677 2467

gram3-comparative 0.845 0.806 0.803 0.813 0.682 0.670 1332

gram2-opposite 0.224 0.220 0.245 0.222 0.196 0.204 812

gram8-plural 0.772 0.736 0.731 0.744 0.655 0.727 1332

gram4-superlative 0.373 0.396 0.392 0.366 0.257 0.262 1122

gram9-plural-verbs 0.575 0.559 0.586 0.546 0.474 0.521 870

gram6-nationality-adjective 0.818 0.784 0.824 0.815 0.831 0.853 1599

family 0.615 0.595 0.581 0.638 0.595 0.543 506

gram7-past-tense 0.479 0.515 0.520 0.492 0.460 0.470 1560

currency 0.040 0.042 0.024 0.021 0.023 0.016 866

gram1-adjective-to-adverb 0.090 0.087 0.127 0.121 0.172 0.148 992

gram5-present-participle 0.526 0.520 0.455 0.486 0.479 0.455 1056

all 0.576 0.545 0.588 0.565 0.576 0.587 19544

Table 4. Comparison of Word2vec with SPhrase(NU) on Conll2003 English and
Wikigold dataset

Model Conll2003Eng Wikigold

Word2Vec 83.82 ± 0.3831 55.49 ± 0.4708

SPhrase 88.93± 0.1115 66.01± 0.4172

We trained this in 20 epochs with evaluating on validation data each time. We
performed 10 instances for each of these models and presented the range of F1
scores (using Conll2003 evaluation script). Table 4 displays the results that show
a significant improvement over the Word2vec model trained on the same corpus.

7 Concluding Remarks

This investigation demonstrates that using phrasal information can directly
enrich word embeddings. In this work, we presented an alternative context sam-
pling technique to that used in skip-gram Word2vec. We note that the SPhrase
approach is not limited to augmenting Word2Vec, it can also be applied to mor-
phological extensions such as Fasttext [3].

We used the displayed text from hyperlinks as a proxy for phrases, and in
this sense SPhrase is supervised. We are, however, planning to generalise the
methodology by investigating whether we can identify useful phrase boundaries
in a completely unsupervised fashion.

480 M. Singh et al.

References

1. Balasuriya, D., Ringland, N., Nothman, J., Murphy, T., Curran, J.R.: Named entity
recognition in Wikipedia. In: Proceedings of the 2009 Workshop on the People’s
Web Meets NLP: Collaboratively Constructed Semantic Resources. People’s Web
2009, pp. 10–18. Association for Computational Linguistics, Stroudsburg, PA, USA
(2009). http://dl.acm.org/citation.cfm?id=1699765.1699767

2. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language
model. J. Mach. Learn. Res. 3(Feb), 1137–1155 (2003)

3. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Trans. Assoc. Comput. Linguist. (TACL) 5(1), 135–146
(2017). http://www.aclweb.org/anthology/Q17-1010

4. Brants, T., Popat, A.C., Xu, P., Och, F.J., Dean, J.: Large language models in
machine translation. In: Proceedings of the Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning,
pp. 858–867 (2007)

5. Bruni, E., Tran, N.K., Baroni, M.: Multimodal distributional semantics. J.
Arti. Intell. Res. 49(1), 1–47 (2014). http://dl.acm.org/citation.cfm?id=2655713.
2655714

6. Finkelstein, L., et al.: Placing search in context: the concept revisited. In: Proceed-
ings of the 10th International Conference on World Wide Web, WWW 2001, pp.
406–414. ACM, New York (2001). https://doi.org/10.1145/371920.372094

7. Gutmann, M.U., Hyvärinen, A.: Noise-contrastive estimation of unnormalized sta-
tistical models, with applications to natural image statistics. J. Mach. Learn. Res.
13(Feb), 307–361 (2012)

8. Hashimoto, K., Tsuruoka, Y.: Adaptive joint learning of compositional and
non-compositional phrase embeddings. In: Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 205–215. Association for Computational Linguistics, Berlin, Germany,
August 2016 (2016). https://doi.org/10.18653/v1/P16-1020, http://www.aclweb.
org/anthology/P16-1020

9. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging.
arXiv preprint arXiv:1508.01991 abs/1508.01991 (2015)

10. Jean, S., Cho, K., Memisevic, R., Bengio, Y.: On using very large target vocabu-
lary for neural machine translation. In: Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 1–10.
Association for Computational Linguistics (2015)

11. Jurgens, D.A., Turney, P.D., Mohammad, S.M., Holyoak, K.J.: Semeval-2012 task
2: measuring degrees of relational similarity. In: Proceedings of the First Joint
Conference on Lexical and Computational Semantics - Volume 1: Proceedings of
the Main Conference and the Shared Task, and Volume 2: Proceedings of the
Sixth International Workshop on Semantic Evaluation, SemEval 2012, pp. 356–
364. Association for Computational Linguistics, Stroudsburg, PA, USA (2012),
http://dl.acm.org/citation.cfm?id=2387636.2387693

12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv
abs/1412.6980 (2014)

13. Kuzi, S., Shtok, A., Kurland, O.: Query expansion using word embeddings. In:
Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management, CIKM 2016, pp. 1929–1932. ACM, New York (2016)

http://dl.acm.org/citation.cfm?id=1699765.1699767
http://www.aclweb.org/anthology/Q17-1010
http://dl.acm.org/citation.cfm?id=2655713.2655714
http://dl.acm.org/citation.cfm?id=2655713.2655714
https://doi.org/10.1145/371920.372094
https://doi.org/10.18653/v1/P16-1020
http://www.aclweb.org/anthology/P16-1020
http://www.aclweb.org/anthology/P16-1020
http://arxiv.org/abs/1508.01991
http://dl.acm.org/citation.cfm?id=2387636.2387693

Supervised Phrase-Boundary Embeddings 481

14. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural
architectures for named entity recognition. In: NAACL HLT 2016, the 2016 Con-
ference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, San Diego California, USA, 12–17 June
2016, pp. 260–270 (2016)

15. Lansdall-Welfare, T., Sudhahar, S., Thompson, J., Lewis, J., Team, F.N., Cristian-
ini, N.: Content analysis of 150 years of british periodicals. Proc. Nat. Acad. Sci.
114(4), E457–E465 (2017)

16. Levy, O., Goldberg, Y.: Dependency-based word embeddings. In: Proceedings of
the 52nd Annual Meeting of the Association for Computational Linguistics (Vol-
ume 2: Short Papers), vol. 2, pp. 302–308 (2014)

17. Martin, J.H., Jurafsky, D.: Speech and Language Processing: an Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition.
Pearson/Prentice Hall, Upper Saddle River (2009)

18. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word rep-
resentations in vector space. arXiv abs/1301.3781 (2013). http://arxiv.org/abs/
1301.3781

19. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: Proceedings of the
26th International Conference on Neural Information Processing Systems (NIPS),
NIPS 2013, vol. 2, pp. 3111–3119. Curran Associates Inc., USA (2013)

20. Mnih, A., Hinton, G.: Three new graphical models for statistical language mod-
elling. In: Proceedings of the 24th International Conference on Machine Learning.
ICML 2007, pp. 641–648. ACM, New York (2007)

21. Nakov, P., Ritter, A., Rosenthal, S., Sebastiani, F., Stoyanov, V.: SemEval-2016
task 4: sentiment analysis in Twitter. In: Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016), pp. 1–18, USA (2016)

22. Nothman, J., Curran, J.R., Murphy, T.: Transforming Wikipedia into named
entity training data. In: Proceedings of the Australasian Language Technology
Association Workshop 2008, pp. 124–132, Hobart, Australia, December 2008.
http://www.aclweb.org/anthology/U08-1016

23. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: Empirical Methods in Natural Language Processing (EMNLP), pp.
1532–1543 (2014). http://www.aclweb.org/anthology/D14-1162

24. Salle, A., Villavicencio, A., Idiart, M.: Matrix factorization using window sampling
and negative sampling for improved word representations. In: Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics, ACL 2016,
Berlin, Germany, 7–12 August 2016, vol. 2, Short Papers (2016)

25. Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the CoNLL-2003 shared
task: language-independent named entity recognition. In: Proceedings of the Sev-
enth Conference on Natural Language Learning at HLT-NAACL 2003, vol. 4, pp.
142–147. Association for Computational Linguistics, Japan (2003)

26. Yu, M., Dredze, M.: Learning composition models for phrase embeddings. Trans.
Assoc. Comput. Linguist. (TACL) 3(1), 227–242 (2015). http://www.aclweb.org/
anthology/Q15-1017

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://www.aclweb.org/anthology/U08-1016
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/Q15-1017
http://www.aclweb.org/anthology/Q15-1017

482 M. Singh et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Predicting Remaining Useful Life with
Similarity-Based Priors

Youri Soons1, Remco Dijkman2(B), Maurice Jilderda3,
and Wouter Duivesteijn2

1 Sitech Services B.V., Geleen, The Netherlands
youri.soons@sitech.nl

2 Technische Universiteit Eindhoven, Eindhoven, The Netherlands
{r.m.dijkman,w.duivesteijn}@tue.nl

3 Perfact Group, Munstergeleen, The Netherlands
mauricejilderda@perfact-group.com

Abstract. Prognostics is the area of research that is concerned with
predicting the remaining useful life of machines and machine parts. The
remaining useful life is the time during which a machine or part can
be used, before it must be replaced or repaired. To create accurate pre-
dictions, predictive techniques must take external data into account on
the operating conditions of the part and events that occurred during its
lifetime. However, such data is often not available. Similarity-based tech-
niques can help in such cases. They are based on the hypothesis that if a
curve developed similarly to other curves up to a point, it will probably
continue to do so. This paper presents a novel technique for similarity-
based remaining useful life prediction. In particular, it combines Bayesian
updating with priors that are based on similarity estimation. The paper
shows that this technique outperforms other techniques on long-term
predictions by a large margin, although other techniques still perform
better on short-term predictions.

Keywords: Remaining useful life · Trajectory based similarity
prediction · Bayesian updating · Similarity estimation · Prognostics ·
Prediction

1 Introduction

Prognostics is the area of research that concerns the prediction of the remaining
useful life (RUL) of machines or machine parts. A RUL prediction is a prediction
of the time until a machine or machine part must be replaced or repaired. It is
important that such predictions are accurate: early predictions lead to unneces-
sarily frequent maintenance with associated costs, while late predictions increase
the risk of a machine break down with associated loss of production time and
possibly sales.

Data-driven RUL prediction is based on run to failure data, i.e., observations
on what happened to a part or machine in a run from the last maintenance
c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 483–495, 2020.
https://doi.org/10.1007/978-3-030-44584-3_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_38&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_38

484 Y. Soons et al.

activity to the next. Figure 1 shows a typical example of run to failure data,
in this case data of a filter in a chemical plant. The figure shows condition
measurements on the filter over time, in terms of the difference in pressure before
and after the filter. It shows that this difference is close to zero for some time.
Then, the filter starts to clog up and the pressure builds up, until the filter is
replaced and the pressure difference returns to normal. The resulting ‘sawtooth’
shape is frequently observed in run to failure data.

Fig. 1. Example run to failure data.

RUL prediction on run to failure data can be done by fitting a model, such
as a regression model or a probability distribution, on the data. Many differ-
ent techniques exist for those purposes [1]. However, as is evident from Fig. 1,
different runs may have very different durations or shapes, and RUL prediction
techniques rely on additional data to accurately predict the duration and shape
of a particular run. Unfortunately, additional data is often unavailable or hard to
relate to the run to failure data [2]. If additional data is unavailable, it is unclear
which condition measurements are reliable and of course what their influence
is on the RUL. One way to overcome these problems is to use similarity-based
techniques, which work based on the hypothesis that, if a curve has developed
similarly to some collection of other curves until now, it will likely continue to
develop like that, and have a similar remaining useful life.

This paper explores the performance of two similarity-based techniques:
trajectory-based similarity prediction, and Bayesian updating. It then adds its
own: Bayesian updating with similarity-based priors. The contribution of this
paper consists of this technique, described in Sect. 3.4, as well as a detailed eval-
uation of all three techniques in a case study from practice, described in Sect. 4.

Against this background, the remainder of this paper is structured as follows.
Section 2 presents related work on remaining useful life prediction. Section 3
presents similarity-based remaining useful life prediction techniques, including
the new technique. Section 4 compares the performance of the various techniques
in a case study and Sect. 5 presents the conclusions.

Predicting Remaining Useful Life with Similarity-Based Priors 485

2 Related Work

RUL prediction can be considered a specialized form of survival analysis [10].
Essentially, two types of techniques exist for predicting RUL: model-based and
data-driven techniques. Model-based techniques use physical models to accu-
rately represent the wear and tear of a component over time [5]. Data-driven
techniques do not presume any knowledge about how a component wears out
over time, but merely predicts the RUL based on past observations. Hybrid mod-
els, which are a combination of physical and data-driven techniques, also exist
[9]. This paper focuses on data-driven models, which are most suited when the
physical mechanisms that cause a component to fail are too complex to model
cost-effectively, or if they are not sufficiently understood.

A large number of data-driven techniques is available that fall into two classes
depending on whether or not a probability distribution of the RUL must be
obtained or a point-estimate is sufficient [1]. A probability distribution of the
RUL has several benefits [16,17,20]. For example, it facilitates stochastic decision
making, where maintenance is done when the probability that a part will fail
exceeds a certain threshold, which is in line with the way in which maintenance
decisions are made. When it is not necessary to produce a probability density
function, several models can be used. The most obvious choices include regression
models that use time as the primary independent variable and time-series models.
However, regression models require that the behavior of the curve is predictable
over time [4,13] and time-series [12] models are only suitable for short-term
predictions [3,16] or when the behavior of the curve is predictable over time.
Regression models that take other variables into account can also be used [6].
Such models have the benefit that they do not only consider the dependency
of the RUL on the time that the part has been in operation, but also on other
relevant factors, such as the operational temperature or vibration of the part.

When the RUL depends on other factors beyond time, but data on such
factors is not available, one can include them as a black box. While we may
not know the values of relevant factors, we can still find historical runs that are
similar to the current run. If we assume that the factors that influenced histor-
ically similar runs are also similar to the current run, then the future behavior
of the current run will also be similar to the behavior of the historically similar
runs. This is called Trajectory Based Similarity Prediction (TBSP) [11,18,19].
Bayesian updating techniques use a similar principle [7,8]. Such techniques cre-
ate a prior probability distribution of the RUL (based on data from historical
runs to failure), which updates as more data of the current run is revealed.

3 Prediction Techniques

This section presents similarity-based techniques that can be used for RUL pre-
diction: TBSP and Bayesian updating, which are defined in related work as
explained in Sect. 2. Subsequently, Sect. 3.4 presents a novel technique, Bayesian
updating with similarity-based prior estimation, which is a combination of TBSP
and Bayesian updating.

486 Y. Soons et al.

3.1 Preliminaries

The remaining useful life of a part is defined as follows.

Definition 1 (Remaining Useful Life (RUL)). Let t be a moment in a run
and tE be the moment in the run at which the part fails. The Remaining Useful
Life (RUL) at time t, r(t), is defined as r(t) = tE − t.

Note that ‘failure’ can be interpreted broadly. It does not have to be the
point at which the part breaks, but can also be the point at which the part
reaches a condition in which it is not considered suitable for operation anymore,
or a condition in which maintenance is considered necessary. Over time, multiple
runs to failure will be observed, such as the runs to failure shown in Fig. 1.

Definition 2 (Run to failure library). L is the library of past runs to failure.
For each l ∈ L, tlE is the moment in the run at which the part fails, and gl(t) is
the function that returns the condition of the part at time t of the run.

The function gl(t) is created by fitting a curve on the condition measurements
of the run. We consider the one-dimensional case here (i.e., the case in which
we only measure the condition of the part), but this can easily be extended
to a multi-dimensional case (i.e., the case in which we not only measure the
condition of the part, but also external factors (i.e., other variables than the
condition variable itself), such as the operating temperature or pressure) by
considering the observations as vectors over multiple variables. We will also omit
the superscript l if there can be no confusion about the run to which we refer.

3.2 Trajectory-Based Similarity Prediction

0 20 40 60 120 140 160 180
0

0.5

1

1.5

2

2.5

80 100
Lifetime (days)

D
iff

er
en

tia
l P

re
ss

ur
e

(b
ar

)

Fig. 2. Example library of runs.

Figure 2 shows a different
(cf. Fig. 1) representation of
a run to failure library. It
shows all runs in the library,
starting from the moment at
which the condition variable
starts to increase from the
base condition. It also shows
a ‘current’ run as a thicker,
unfinished curve. The idea
of trajectory-based similar-
ity prediction is to find some
number k of runs that are
most similar to the current
run. For each of these k sim-
ilar runs, we know the time
it took until the part failed.
Trajectory-based Similarity Prediction (TBSP) estimates the time until failure
as the mean failure time of the similar runs.

Predicting Remaining Useful Life with Similarity-Based Priors 487

Definition 3 (Distance of current run to library run). At a moment in
time t, let I be the number of observations made in the current run, with values
z1, . . . , zI observed at times t1, . . . , tI , and let l ∈ L be a library run. We denote
by dl(t) any distance measure contrasting z1, . . . , zI with gl(t1), . . . , gl(tI). Let
El(t) and M l(t) denote Euclidean and Manhattan distance, respectively.

Clearly other distance functions can and indeed have been used as well in the
context of remaining useful life prediction [21]. An in-depth analysis of the dis-
tance function that performs best for TBSP is beyond the scope of this work.

Definition 4 (Fit of current run to library run). For each library run
l ∈ L, let dl(t) be defined as in Definition 3. The fit of the current run to l is:

Sl(t) = e−|dl(t)|

When, at time t of the current run, the library run l is found that fits the
current run best, the remaining useful life of the current run can be predicted
as the remaining useful life of that run l: r(t) = tlE − t. It is also possible to base
the prediction of the remaining useful life on the best k runs; sensitivity to k
is part of our experiments. If k > 1, we can also aggregate RUL predictions by
weighted average, where the weights are the goodness of fit of the library runs
to the current run.

Definition 5 (Trajectory-based Similarity Prediction). For each library
run l ∈ L, let Sl(t) be the fit of the run to the current run as per Definition 4
and let rl(t) be the RUL of the run. Let L′ ⊆ L be the subset of past runs on
which we want to base our RUL prediction. The predicted RUL of the current
run, r̂(t), is:

r̂(t) =
∑

l∈L′ Sl(t) · rl(t)
∑

l∈L′ Sl(t)

3.3 Bayesian Updating

A Bayesian updating method has also been proposed to create a probability dis-
tribution of the remaining useful life [7,8]. The probability distribution can be
updated with each observation of the condition variable that is obtained. The
method works by fitting an exponential model to the library runs and subse-
quently updating that model with observations of the current run.

Intuitively, looking at Fig. 2, Bayesian updating works by fitting a curve to
each of the library runs or to a selection of library runs. Based on the resulting
collection of curves, a prior probability distribution of the time until the part fails
can be created, which represents the ‘probable’ curve that the current run —or
in fact any run—will follow. The prior probability distribution can be updated
each time a condition value is observed in the current run. This update leads to
a posterior probability distribution that represents the curve that the current
run will follow with a higher precision (smaller confidence interval).

488 Y. Soons et al.

Definition 6 (RUL probability density). For each library run l ∈ L, let
gl(t) be the function that returns the condition of the part at time t of the run.
The condition function can be fitted as an exponential model that has the form:

gl(t) = φ + θeβt+ε(t)− 1
2σ2

Here, φ is the intercept, ε(t) is the error term with mean 0 and variance σ2, and
θ and β are random variables.

If we set φ = 0 and take the natural logarithm of both sides, we get:

ln(gl(t)) = θ′ + βt + ε(t)

where θ′ = ln(θ) + 1
2σ2. Considering that we have multiple runs l ∈ L, it is

possible to fit this equation multiple times to those runs and calculate values for
θ′, β and σ for each run. With these values, we can compute the prior probability
distributions of θ′ and β. We assume these distributions are normal distributions
with means μ′

0 and μ1 and variances σ2
0 and σ2

1 . While the prior distributions are
created based on observations from library runs, the distribution can be updated
as more observations become available in the current run.

Proposition 1 (RUL probability density updating). Let π(θ′) and π(β)
be the prior distributions of the random variables from Definition 6 with means
μ′
0 and μ1 and variances σ2

0 and σ2
1, where θ′ = ln(θ)+ 1

2σ2 and σ2 is the variance
of the error term. Furthermore, let there be I observed values, z1, . . . , zI , in the
current run, made at times t1, . . . , tI , and for i ∈ I, let Li = ln(zi) the natural
logarithm of each observation. The posterior distribution is a bivariate normal
distribution with θ′ and β, whose means μθ′ and μβ, variances σ2

θ′ and σ2
β, and

correlation coefficient ρ can be calculated as follows:

μθ′ =

(∑
i∈I

Liσ
2
0 + μ′

0σ
2

) (∑
i∈I

t2i σ
2
1 + σ2

)
−

(∑
i∈I

tiσ
2
0

) (∑
i∈I

Litiσ
2
1 + μ1σ

2

)

(|I|σ2
0 + σ2)

(∑
i∈I

t2i σ
2
1 + σ2

)
−

(∑
i∈I

tiσ2
1

) (∑
i∈I

tiσ2
0

)

μβ =

(|I|σ2
0 + σ2

) (∑
i∈I

Litiσ
2
1 + μ1σ

2

)
−

(∑
i∈I

tiσ
2
1

) (∑
i∈I

Liσ
2
0 + μ′

0σ
2

)

(|I|σ2
0 + σ2)

(∑
i∈I

t2i σ
2
1 + σ2

)
−

(∑
i∈I

tiσ2
1

) (∑
i∈I

tiσ2
0

)

σ2
θ′ = σ2σ2

0

∑
i∈I

t2i σ
2
1 + σ2

(|I|σ2
0 + σ2)

(∑
i∈I

t2i σ
2
1 + σ2

)
−

(∑
i∈I

ti

)2

σ2
0σ2

1

σ2
β = σ2σ2

1
|I|σ2

0 + σ2

(|I|σ2
0 + σ2)

(∑
i∈I

t2i σ
2
1 + σ2

)
−

(∑
i∈I

ti

)2

σ2
0σ2

1

ρ =

−σ0σ1

∑
i∈I

ti

√|I|σ2
0 + σ2

√
σ2
1

∑
i∈I

t2i + σ2

Predicting Remaining Useful Life with Similarity-Based Priors 489

The proof of this proposition is given in [8]. Consequently, ln(gl(t)) for the cur-
rent run to failure l is normally distributed with mean and variance:

μ(t) ∼= μθ′ + μβt − 1

2
σ2 σ(t) ∼= σ2

θ′ + σ2
βt2 + σ2 + 2ρtσθ′σβ

With this information, the probability that future values of ln(gl(t)) exceed the
maximum acceptable condition at some time t can be computed.

3.4 Bayesian Updating with Similarity-Based Prior Estimation

The RUL probability density function in Definition 6 depends on estimated prior
distributions of θ and β. These priors can be set through analyzing previous runs
to failure, either based on the complete library of runs, or on a subset of the
runs. More precisely, we can determine prior distributions as follows.

Definition 7 (Prior distributions). For each library run l ∈ L, let gl(t) be
the exponential curve that is fitted to the observations in that run with parameters
θ′l and βl as in Definition 6. For a subset M ⊆ L of runs, we can determine the
mean and standard deviation of θ′ and β over all θ′m and βm.

Consequently, our priors depend on the subset M ⊆ L of runs that we use.
For example, we can determine our priors based on M = L, the complete set of
runs. Here, we consider a variant of the Bayesian updating method in which the
priors are set based on the runs that are most similar to the current run, using
Definition 4 for similarity and thresholds to select the most similar runs. More
precisely, we select our priors as follows.

Definition 8 (Similarity-based prior distributions). Let t be the moment
in time at which we determine our prior distributions and k be the number of
similar runs on which we base them. Furthermore, let Sl(t) be the similarity of
a run l to the observations in the current run until time t as per Definition 4.
The set of k most similar runs M ⊆ L at moment t is then defined as the set in
which, for all runs m ∈ M , there is no run l ∈ L − M , such that Sl(t) > Sm(t).

Note that this definition depends on variables t and k, which can therefore
be expected to influence the performance of the technique. In our evaluation, we
will explore the performance of the technique for different values of t and k.

4 Evaluation

In this section, we put the RUL prediction techniques introduced in Sect. 3 to
the test, in a case study with data from practice.

490 Y. Soons et al.

4.1 Case Study

Our data originates from a chemical plant on the Chemelot Industrial Site1. The
plant we investigate produces a steady flow of various chemical products; what-
ever the product happens to be, an unwanted byproduct is always generated.
Filters have been installed to obtain an untainted final product. These filters
have a variable service life, ranging between two and eight days. When the fil-
ter performs its function, it withholds residue of the unwanted byproduct. This
residue gradually builds up, forming a cake which increases the resistance of the
filter. The additional resistance is measured through an increase in differential
pressure (δP), as illustrated in Fig. 1. An unclogged filter has a δP of 0.2 bar.
When δP reaches a threshold of 2.4 bar, a valve in front of the filter is switched
to let the product run through a parallel, clean filter, which returns δP to 0.2
bar and enables engineers to maintain the clogged filter.

Sensor data, including δP , is stored in a NoSQL database as time series.
Preprocessing is needed in several aspects. First, the data has many missing val-
ues, which we replace by the last observed value. Second, the sensors generate
a data point every second. We established experimentally that resampling the
data to the minute barely loses any information from the signal, while still sub-
stantially reducing the size of the dataset. Third, to avoid the amplification of
clear outliers, they are removed with a Hampel filter [14]. Fourth, we focus on the
‘exponential deterioration stage’ of the filter’s life cycle [5], because—according
to the company—the start of that stage is early enough to be able to act on time,
and because it provides us with a dataset that is suitable for similarity-based
RUL prediction techniques. The start and end of the exponential deterioration
stage must be derived from data. We do that by comparing the average pressure
over the last hour with its preceding hour. To ensure that every run has only one
start per stop, a detected start is ignored if another start was already detected
in the same run.

4.2 Results

We quantify our results using an α−λ graph. Intuitively, this graph represents the
probability that, at a certain moment in the run to failure, the RUL prediction
(λ) is within a pre-defined level of precision (α) [15]. We will use a concise
representation of the α − λ quality: rather than time into the run, we put the
RUL on the x-axis, while the y-axis displays the probability. This representation
allows us to visually compare different techniques. All analysis is done using 5-
fold cross validation. The results presented in the graphs are the averages over
the 5 folds.

Figures 3a, b, and c show the performance of the TBSP technique for various
parameter settings. Figure 3a compares the performance of TBSP when fitting
various types of curves (second (‘poly2’) and third (‘poly3’) order polynomials,

1 An anonymized version of the data is made available at: https://surfdrive.surf.nl/
files/index.php/s/1dTFFXfZ7woeSUA.

https://surfdrive.surf.nl/files/index.php/s/1dTFFXfZ7woeSUA
https://surfdrive.surf.nl/files/index.php/s/1dTFFXfZ7woeSUA

Predicting Remaining Useful Life with Similarity-Based Priors 491

0 20 40 60 80 100 120 140 160 180 200

RUL (hour)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

ro
ba

bi
lit

y
Probability within bound, = 20%

poly2
poly3
exp1
exp2

(a) Performance across curve types.

0 20 40 60 80 100 120 140 160 180 200

RUL (hour)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

Probability within bound, = 20%

Manhattan distance
Euclidean distance

(b) Performance across distance metrics.

0 20 40 60 80 100 120 140 160 180 200

RUL (hour)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

Probability within bound, = 20%

k=1
k=2
k=3
k=4
k=5
k=10

(c) Performance across # similar models.

0 20 40 60 80 100 120 140 160 180 200

RUL (hour)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

ro
ba

bi
lit

y

Probability within bound, = 20%

No prior
Fitted on whole library
Fitted on average with custom variance
Fitted on extremities subset

(d) Performance across priors.

Fig. 3. Comparison of hyperparameter settings.

exponential curves (‘exp1’), and the sum of two exponential curves (‘exp2’)),
Fig. 3b compares Manhattan and Euclidean distance, and Fig. 3c shows the sen-
sitivity to the number of similar curves k. The graphs show that TBSP performs
best for an exponential curve in short term (<48 h) predictions, and for k = 2, 3,
or 4, while there is little to no performance difference between Manhattan and
Euclidean distance and between k = 2, 3, or 4. For those reasons, we param-
eterize TBSP with exponential curves, using Euclidean distance as a distance
metric, and using 3 similar curves to make the prediction.

Figure 3d shows the performance of the Bayesian updating technique for var-
ious prior sets of runs on which the prior is based. We consider four alternatives.
In the first alternative, no prior is defined and the prediction is only computed
based on the current run. In the second alternative, the prior distribution is
based on all runs in the library. In the third alternative, we create a prior dis-
tribution by fitting the run with the (closest to) average run to failure time. In
the fourth alternative, we create a prior distribution by fitting the shortest, the

492 Y. Soons et al.

longest, and the average run. The figure shows that for long term predictions, a
prior fitted on the ‘average’, the shortest and longest run performs best, while
for short term predictions, a prior fitted on the whole library performs best.

Fig. 4. Performance across moments for setting priors.

Figure 4 shows the performance of Bayesian updating with similarity-based
priors for various settings of the moment at which the priors are determined. The
best performance is obtained when priors are determined 5 h into the current run
to completion; 10, 15, and 20 h were also considered. The number of similar runs
on which the priors are based is also a parameter for Bayesian updating with
similarity-based priors. The priors are based on the 3 most similar runs. This
led to the best results when comparing results for priors based on 1, 2, 3, 4, 5,
and 10 similar runs.

Figure 5 shows the results for the various prediction techniques: TBSP,
Bayesian Updating, and Bayesian updating with similarity-based priors. The
results show a clear distinction in the performance of the different techniques.
TBSP performs best for short-term (<48 h before failure) predictions, while
Bayesian updating with similarity-based priors performs best in the long term
(150–200 h before failure). This is expected, because for long-term prediction,
Bayesian updating with similarity-based priors benefits from being based both
on similar runs and on general Bayesian behavior, while after some updates
the impact of the priors is reduced and the behavior approaches that of nor-
mal Bayesian updating. TBSP on the other hand benefits from having a better
estimate of the runs to which it is close as time progresses.

Predicting Remaining Useful Life with Similarity-Based Priors 493

0 20 40 60 80 100 120 140 160 180 200
RUL (hour)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

Probability within bound, = 20%

Trajectory-based similarity prediction
Bayesian updating
Bayesian updating w. similarity-based priors

Fig. 5. Overall comparison of techniques.

5 Conclusions

In a case study, we show how techniques from literature can be combined
and parameterized to accurately predict the Remaining Useful Life (RUL) of
a machine or part. While curves of the degradation of a machine or part over
time typically have a similar shape, the challenge is that operational constraints,
which may be unknown, influence the exact parameterization of that curve, as
evidenced by the real-life runs displayed in Figs. 1 and 2. Therefore, we propose
a similarity-based prediction technique: while it makes no sense to compare the
current run with all previously observed runs, it is quite likely that there are
some historical runs that are similar to the current run, because they have similar
operational constraints, hence providing us with powerful predictive information.

This paper proposes a new similarity-based prediction technique, in which we
obtain a probability distribution of the RUL through Bayesian updating, where
the priors of the Bayesian distribution are calculated based on a careful selection
of previously seen runs. As evidenced by Fig. 5, our technique outperforms alter-
native techniques in a case study by a large margin within the long-term region.
If we strive to predict the RUL shorter in advance, Fig. 5 clearly indicates that
other methods work better.

While we studied the performance of RUL prediction techniques in the con-
text of a particular case study, in many other domains degradation patterns have
similar properties. In particular, in many other domains: run to failure data has
a ‘sawtooth’ shape as in Fig. 1, degradation depends on operational conditions

494 Y. Soons et al.

that are unknown (e.g., because they are not measured), and long-term predic-
tions are of interest (e.g., for planning maintenance activities). In such situations
our technique can also be expected to work well.

References

1. Aizpurua, J.I., Catterson, V.M.: Towards a methodology for design of prognos-
tic systems. In: Annual Conference of the Prognostics and Health Management
Society, pp. 1–13, October (2015)

2. Arif-Uz-Zaman, K., Cholette, M.E., Ma, L., Karim, A.: Extracting failure time
data from industrial maintenance records using text mining. Adv. Eng. Inform.
33, 388–396 (2017)

3. Bleakie, A., Djurdjanovic, D.: Analytical approach to similarity-based prediction
of manufacturing system performance. Comput. Ind. 64(6), 625–633 (2013)

4. Coble, J.B.: Merging data sources to predict remaining useful life-an automated
method to identify prognostic parameters. Ph.D. thesis, University of Tennessee
(2010)

5. Eker, O.F., Camci, F., Jennions, I.K.: Physics-based prognostic modelling of filter
clogging phenomena. Mech. Syst. Sig. Process. 75, 395–412 (2016)

6. Fink, O., Zio, E., Weidmann, U.: Predicting component reliability and level of
degradation with complex-valued neural networks. Reliab. Eng. Syst. Saf. 121,
198–206 (2014)

7. Gebraeel, N.: Sensory-updated residual life distributions for components with expo-
nential degradation patterns. IEEE Trans. Autom. Sci. Eng. 3(4), 382–393 (2006)

8. Gebraeel, N., et al.: Residual life distributions from component degradation sig-
nals: a Bayesian approach residual-life distributions from component degradation
signals: A Bayesian approach. IIE Trans. 37(6), 543–557 (2005). Research Collec-
tion Lee Kong Chian School of Business

9. Goebel, K., Eklund, N.: Prognostic fusion for uncertainty reduction. Soft Comput.
(2007)

10. Kleinbaum, D.G., Klein, M.: Survival Analysis, 3rd edn. Springer, New York
(2012). https://doi.org/10.1007/978-1-4419-6646-9

11. Lam, J., Sankararaman, S., Stewart, B.: Enhanced trajectory based similarity pre-
diction with uncertainty quantification. In: Proceedings of the PHM, pp. 623–634
(2013)

12. Ling, Y.: Uncertainty quantification in time-dependent reliability analysis. Ph.D.
thesis, Vanderbilt University (2013)

13. Liu, J., Djurdjanovic, D., Ni, J., Casoetto, N., Lee, J.: Similarity based method for
manufacturing process performance prediction and diagnosis. Comput. Ind. 58(6),
558–566 (2007)

14. Pearson, R.K., Neuvo, Y., Astola, J., Gabbouj, M.: Generalized hampel filters.
EURASIP J. Adv. Sig. Process. 2016(1), 1–18 (2016). https://doi.org/10.1186/
s13634-016-0383-6

15. Saxena, A., Celaya, J., Saha, B., Saha, S., Goebel, K.: Metrics for offline evaluation
of prognostic performance. Int. J. Progn. Health Manag. 1, 1–20 (2010)

16. Si, X.S., Wang, W., Hu, C.H., Chen, M.Y., Zhou, D.H.: A Wiener-process-based
degradation model with a recursive filter algorithm for remaining useful life esti-
mation. Mech. Syst. Sig. Process. 35(1–2), 219–237 (2013)

https://doi.org/10.1007/978-1-4419-6646-9
https://doi.org/10.1186/s13634-016-0383-6
https://doi.org/10.1186/s13634-016-0383-6

Predicting Remaining Useful Life with Similarity-Based Priors 495

17. Tobon-Mejia, D.A., Medjaher, K., Zerhouni, N., Tripot, G.: A data-driven failure
prognostics method based on mixture of Gaussian hidden Markov models. IEEE
Trans. Reliab. 61(2), 491–503 (2012)

18. Wang, T.: Trajectory similarity based prediction for remaining useful life estima-
tion. Ph.D. thesis, University of Cincinnati (2010)

19. Wang, T., Yu, J., Siegel, D., Lee, J.: A similarity-based prognostics approach for
remaining useful life estimation of engineered systems. In: 2008 International Con-
ference on Prognostics and Health Management, pp. 1–6. IEEE, October 2008

20. Yildirim, M., Sun, X.A., Gebraeel, N.Z.: Sensor-driven condition-based generator
maintenance scheduling - part I: maintenance problem. IEEE Trans. Power Syst.
31(6), 4253–4262 (2016)

21. You, M.Y.: A predictive maintenance system for hybrid degradation processes. Int.
J. Qual. Reliab. Manag. 34(7), 1123–1135 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Orometric Methods in Bounded
Metric Data

Maximilian Stubbemann1,2(B) , Tom Hanika2 , and Gerd Stumme1,2

1 L3S Research Center, Leibniz University of Hannover, Hannover, Germany
{stubbemann,stumme}@l3s.de

2 Knowledge and Data Engineering Group, University of Kassel, Kassel, Germany
{stubbemann,hanika,stumme}@cs.uni-kassel.de

Abstract. A large amount of data accommodated in knowledge graphs
(KG) is metric. For example, the Wikidata KG contains a plenitude
of metric facts about geographic entities like cities or celestial objects.
In this paper, we propose a novel approach that transfers orometric
(topographic) measures to bounded metric spaces. While these meth-
ods were originally designed to identify relevant mountain peaks on the
surface of the earth, we demonstrate a notion to use them for metric
data sets in general. Notably, metric sets of items enclosed in knowledge
graphs. Based on this we present a method for identifying outstand-
ing items using the transferred valuations functions isolation and promi-
nence. Building up on this we imagine an item recommendation pro-
cess. To demonstrate the relevance of the valuations for such processes,
we evaluate the usefulness of isolation and prominence empirically in
a machine learning setting. In particular, we find structurally relevant
items in the geographic population distributions of Germany and France.

Keywords: Metric spaces · Orometry · Knowledge graphs ·
Classification

1 Introduction

Knowledge graphs (KG), such as DBpedia [15] or Wikidata [24], are the state
of the art for storing information and to draw knowledge from. They represent
knowledge through graphs and consist essentially of items which are related
through properties and values. This enables them to fulfill the task of giving
exact answers to exact questions. However, their ability to present a concise
overview over collections of items with metric distances is limited. The number
of such data sets in Wikidata is tremendous, e.g., the set of all cities of the world,
including their geographic coordinates. Further examples are celestial bodies and
their trajectories or, more general, feature spaces of data mining tasks.

One approach to understand such metric data is to identify outstanding ele-
ments, i.e., outstanding items. Based on such elements it is possible to compose
or enhance item recommendations to users. For example, such recommenda-
tions could provide a set of the most relevant cities in the world with respect
c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 496–508, 2020.
https://doi.org/10.1007/978-3-030-44584-3_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_39&domain=pdf
http://orcid.org/0000-0003-1579-1151
http://orcid.org/0000-0002-4918-6374
http://orcid.org/0000-0002-0570-7908
https://doi.org/10.1007/978-3-030-44584-3_39

Orometric Methods in Bounded Metric Data 497

Fig. 1. Isolation: minimal horizontal distance to another point of at least equal height.
Prominence: minimal vertical descent to reach a point of at least equal height.

to being outstanding in their local surroundings. However, it is a challenging
task to identify outstanding items in metric data sets. In cases where the metric
space is equipped with an additional valuation function, this task becomes more
feasible. Such functions, often called scores or height functions, are often natu-
rally provided: cities may be ranked by population; the importance of scientific
authors by the h-index [12]. A näıve approach for recommending relevant items
in such settings would be: items with higher scores are more relevant items. As
this method seems reasonable for many applications, some obstacles arise if the
“highest” items concentrate into a specific region of the underlying metric space.
For example, representing the cities of the world by the twenty most populated
ones would include no western European city.1 Recommending the 100 highest
mountains would not lead to knowledge about the mountains outside of Asia.2

Our novel approach shall overcome this problem: we combine the valuation
measure (e.g., “height”) and distances, to provide new valuation functions on the
set of items, called prominence and isolation. These functions do rate items based
on their height in relation to the valuations of the surrounding items. This results
in valuation functions on the set of items that reflect the extend to which an item
is locally outstanding. The basic idea is the following: the prominence values an
item based on the minimal descent (w.r.t. the height function) that is needed
to get to another point of at least same height. The isolation, sometimes also
called dominance radius, values the distance to the next higher point w.r.t. the
metric (Fig. 1). These measures are adapted from the field of topography where
isolation and prominence are used in order to identify outstanding mountain
peaks. We base our approach on [22], where the authors proposed prominence
and dominance for networks. We generalize these to the realm of bounded metric
space.

We provide insights to the novel valuation functions and demonstrate their
ability to identify relevant items for a given topic in metric knowledge graph
applications. The contributions of this paper are as follows: • We propose promi-
nence and isolation for bounded metric spaces. For this we generalize the results
in [22] and overcome the limitations to finite, undirected graphs. • We demon-
strate an artificial machine learning task for evaluating our novel valuation func-
tions in metric data. • We introduce an approach for using prominence and iso-

1 https://en.wikipedia.org/wiki/List of largest cities on 2019-06-16.
2 https://en.wikipedia.org/wiki/List of highest mountains on Earth on 2019-06-16.

https://en.wikipedia.org/wiki/List_of_largest_cities
https://en.wikipedia.org/wiki/List_of_highest_mountains_on_Earth

498 M. Stubbemann et al.

lation to enrich metric data in knowledge graphs. We show empirically that this
information helps to identify a set of representative items.

2 Related Work

Item recommendations for knowledge graphs is a contemporary topic of high
interest in research. Investigations cover for example music recommendation
using content and collaborative information [17] or movie recommendations using
PageRank like methods [5]. The former is based on the common notion of embed-
ding, i.e., embedding of the graph structure into d-dimensional real vector spaces.
The latter operates on the relational structure itself. Our approach differs from
those as it is based on combining a valuation measure with the metric of the
data space. Nonetheless, given an embedding into an finite dimensional real vec-
tor space, one could apply isolation and prominence in those as well.

The novel valuation functions prominence and isolation are inspired by topo-
graphic measures, which have their origin in the classification of mountain peaks.
The idea of ranking peaks solely by their absolute height was already deprecated
in 1978 by Fry in his work [8]. The author introduced prominence for geographic
mountains, a function still investigated in this realm, e.g., in Torres et al. [23],
where the authors used deep learning methods to identify prominent mountain
peaks. Another recent step for this was made in [14], where the authors inves-
tigated methods for discovering new ultra-prominent mountains. Isolation and
more valuations functions motivated in the orometric realm are collected in [11].
A well-known procedure for identifying peaks and saddles in 3D terrain data
is described in [6]. However, these approaches rely on data that approximates
a continuous terrain surface via a regular square grid or a triangulation. Our
data cannot fulfill this requirement. Recently the idea of transferring orometric
functions to different realms of research gained attention: The authors of [16]
used topographic prominence to identify population areas in several U.S. States.
In [22] the authors Schmidt and Stumme transferred prominence and dominance,
i.e., isolation, to co-author graphs in order to evaluate their potential of identi-
fying ACM Fellows. We build on this for proposing our valuation functions on
bounded metric data. This generalization results in a wide range of applications.

3 Mathematical Modeling

While the Wikidata knowledge graph itself could be analyzed with the promi-
nence and isolation measures for networks, this paper focuses on bounded metric
data sets. To analyze such data sets is more sufficient, since real world networks
often suffer from a small average shortest path length [26]. This leads to a low
amount of outstanding items: an item is outstanding if it is “higher” than the
items that have a low distance to it. This leads to a strict measure for many real-
world network data when the shortest path length is used as the metric function.
Hence, we model our functions for bounded metric data instead of networks.

Orometric Methods in Bounded Metric Data 499

We consider the following scenario: We have a data set M , consisting of a set
of items, in the following called points, equipped with a metric d and a valuation
function h, in the following called height function. The goal of the orometric
(topographic) measures prominence and isolation is, to provide measures that
reflect the extent to which a point is locally outstanding in its neighborhood.

More precisely, let M be a non-empty set and d : M × M → R≥0. We call
d a metric on the set M iff • ∀x, y ∈ M : d(x, y) = 0 ⇐⇒ x = y, and
• d(x, y) = d(y, x) for all x, y ∈ M , called symmetry, and • ∀x, y, z ∈ M :
d(x, z) ≤ d(x, y) + d(y, z), called triangle inequality. If d is a metric on M , we
call (M,d) a metric space and if M is finite we call (M,d) a finite metric space.
If there exists a C ∈ R≥0 such that we have d(m,n) ≤ C for all m,n ∈ M , we
call (M,d) bounded. For the rest of our work we assume that |M | > 1 and (M,d)
is a bounded metric space. Additionally, we have that M is equipped with a
height function (valuation/score function) h : M → R≥0,m �→ h(m).

Definition 1 (Isolation). Let (M,d) be a bounded metric space and let h :
M → R≥0 be a height function on M. The isolation of a point x ∈ M is then
defined as follows:

– If there is no point with at least equal height to m, than iso(m) :=
sup{d(m,n) | n ∈ M}. The boundedness of M guarantees the existence of
this supremum.

– If there is at least one other point in M with at least equal height to m, we
define its isolation by:

iso(m) := inf{d(m,n) | n ∈ M \ {m} ∧ h(n) ≥ h(m)}.

The isolation of a mountain peek is often called the dominance radius or
sometimes the dominance. Since the term orometric dominance of a mountain
sometimes refers to the quotient of prominence and height, we will stick to the
term isolation to avoid confusion. While the isolation can be defined within
the given setup, we have to equip our metric space with some more structure
in order to transfer the notion of prominence. Informally, the prominence of
a point is given by the minimal vertical distance one has to descend to get
to a point of at least the same height. To adapt this measure to our given
setup in metric spaces with a height function, we have to define what a path
is. Structures that provide paths in a natural way are graph structures. For
a given graph G = (V,E) with vertex set V and edge set E ⊆ (

V
2

)
, walks

are defined as sequences of nodes {vi}n
i=0 which satisfy {vi−1, vi} ∈ E for all

i ∈ {1, ..., n}. If we also have vi �= vj for i �= j, we call such a sequence a path.
For v, w ∈ V we say v and w are connected iff there exists a path connecting
them. Furthermore, we denote by G(v) the connected component of G containing
v, i.e., G(v) := {w ∈ V | v is connected with w}.

To use the prominence measure as introduced by Schmidt and Stumme
in [22], which is indeed defined on graphs, we have to derive an appropriate
graph structure from our metric space. The topic of graphs embedded in finite
dimensional vector spaces, so called spatial networks [2], is a topic of current

500 M. Stubbemann et al.

interest. These networks appear in real world scenarios frequently, for example
in the modeling of urban street networks [13]. Note that our setting, in contrast
to the afore mentioned, is not based on a priori given graph structure. In our
scenario the graph structure must be derived from the structure of the given
metric space.

Our approach is, to construct a step size graph or threshold graph, where we
consider points in the metric space as nodes and connect two points through an
edge, iff their distance is smaller then a given threshold δ.

Definition 2 (δ-Step Graph). Let (M,d) be a metric space and δ > 0. We
define the δ-step graph or δ-threshold graph, denoted by Gδ, as the tuple (M,Eδ)
via

Eδ := {{m,n} ∈
(

M

2

)
| d(m,n) ≤ δ}. (1)

This approach is similar to the one found in the realm of random geometric
graphs, where it is common sense to define random graphs by placing points
uniformly in the plane and connect them via edges if their distance is less than
a given threshold [21]. Since we introduced a possibility to derive a graph that
just depends on the metric space, we use a slight modification of the definition
of prominence compared to [22] for networks.

Definition 3 (Prominence in Networks). Let G = (V,E) be a graph and
let h : V → R≥0 be a height function. The prominence promG(v) of v ∈ V is
defined by

promG(v) := min{h(v),mindescG(v)} (2)

where mindescG(v) := inf{max{h(v) − h(u) | u ∈ p} | p ∈ Pv}. The set Pv

contains of all paths to vertices w with h(w) ≥ h(v), i.e., Pv := {{vi}n
i=0 ∈ P |

v0 = v ∧ vn �= v ∧ h(vn) ≥ h(v)}, where P denotes the set of all paths of G.

Informally, mindescG(v) reflects on the minimal descent in order to get to a
vertex in G which has a height of at least h(v). For this the definition makes use
of the fact that inf ∅ = ∞. This case results in promG(v) being the height of v.
A distinction to the definition in [22] is, that we now consider all paths and not
just shortest paths. This change better reflects the calculation of the prominence
for mountains. Based on this we transfer the notions above to metric spaces.

Definition 4 (δ-Prominence). Let (M,d) be a bounded metric space and h :
M → R≥0 be a height function. We define the δ-prominence promδ(m) of m ∈ M
as promGδ

(v), i.e., the prominence of m in Gδ from Definition 2.

We now have a prominence term for all metric spaces that depends on a
parameter δ to choose. For all knowledge procedures, choosing such a parameter
is a demanding task. Hence, we want to provide in the following a natural choice
for δ. We consider only those values for δ such that corresponding Gδ does not
exhibit noise, i.e., there is no element without a neighbor.

Orometric Methods in Bounded Metric Data 501

Definition 5 (Minimal Threshold). For a bounded metric space (M,d) with
|M | > 1 we define the minimal threshold δM of M as

δM := sup{inf{d(m,n) | n ∈ M \ {m}} | m ∈ M}.

Based on this definition a natural notion of prominence for metric spaces
(equipped with a height function) emerges via a limit process.

Lemma 1. Let M be a bounded metric space and δM as in Definition 5. For
m ∈ M the following descending limit exists:

lim
δ↘δM

promδ(m). (3)

Proof. Fix any δ̂ > δM and consider on the open interval from δM to δ̂ the
function that maps δ to promδ(m): prom(.)(m) :]δM , δ̂[→ R, δ �→ promδ(m). It
is known that it is sufficient to show that prom(.)(m) is monotone decreasing and
bounded from above. Since we have for any δ that promδ(m) ≤ h(m) holds, we
need to show the monotony. Let δ1, δ2 be in]δM , δ̂[with δ1 ≤ δ2. If we consider
the corresponding graphs (M,Eδ1) and (M,Eδ2), it easy to see Eδ1 ⊆ Eδ2 . Hence,
we have to consider more paths in Eq. (2) for Eδ2 , resulting in a not larger value
for the infimum. We obtain promδ1(m) ≥ promδ2(m), as required.

Definition 6 (Prominence in Metric Spaces). If M is a bounded metric
space with |M | > 1 and a height function h, the prominence prom(m) of m is
defined as:

prom(m) := lim
δ↘δM

promδ(m).

Note, if we want to compute prominence on a real world finite metric data
set, it is possible to directly compute the prominence values: in that case the
supremum in Definition 5 can be replaced by a maximum and the infimum by a
minimum, which leads to prom(m) being equal to promδM

(m). There are results
for efficiently creating such step graphs [3]. However, for our needs in this work,
in particular in the experiment section, a quadratic brute force approach for
generating all edges is sufficient. We want to show that our prominence definition
for bounded metric spaces is a natural generalization of Definition 3.

Lemma 2. Let G = (V,E) be a finite, connected graph with |V | ≥ 2. Consider
V equipped with the shortest path metric as a metric space. Then the prominence
promG(·) from Definition 3 and prom(·) from Definition 6 coincide.

Proof. Let M := V be equipped with the shortest path metric d on G. As G
is connected and has more than one node, we have δM = 1. Hence, (M,EδM

)
from Definition 2 and G are equal. Therefore, the prominence terms coincide.

502 M. Stubbemann et al.

4 Application

Score Based Item Recommending. As an application we envisage a general app-
roach for a score based item recommending process. The task of item recom-
mending with knowledge graphs is a current research topic [17,18]. However,
most approaches are solely based on knowledge about preferences of the user
and graph structural properties, often accessed through KG embeddings [19].
The idea of the recommendation process we imagine differs from those. We stip-
ulate on a procedure that is based on the information entailed in the connection
of the metric aspects of the data together with some (often naturally present)
height function. We are aware that this limits our approach to metric data in
KGs. Nonetheless, given the large amounts of metric item sets in prominent KGs,
we claim the existence of a plenitude of applications. For example, while consid-
ering sets of cities, such a system could recommend a relevant subset, based on
a height function, like population, and a metric, like geographical distances. By
doing so, we introduce a source of information for recommending metric data in
relational structures, like KGs. A common approach for analyzing and learning
in KGs is embedding. There is an extensive amount of research about that, see
for example [4,25]. Since our novel methods rely solely on bounded metric spaces
and some valuation function, one may apply those after the embedding step as
well. In particular, one may use isolation and prominence for investigating or
completing KG embeddings. This constitutes our second envisioned application.
Finally, common item recommending scores/ranks can also be used as height
functions in our sense. Hence, computing prominence and isolation for already
setup recommendation systems is another possibility. Here, our valuation func-
tions have the potential to enrich the recommendation process with additional
information. In such a way our measures can provide a novel additional aspect to
existing approaches. The realization and evaluation of our proposed recommen-
dation approach is out of scope of this paper. Nonetheless, we want to provide
some first insights for the applicability of valuation functions for item sets based
on empirical experiments. As a first experiment, we will evaluate if isolation and
prominence help to separate important and unimportant items in specific item
sets in Wikidata. In detail, we evaluate if the valuation functions help to differen-
tiate important and unimportant municipalities in France and Germany, solely
based on their geographic metric properties and their population as height.

4.1 Resulting Questions

Given a bounded metric space M which represents the data set and a given
height h. The following questions shall evaluate if our functions isolation and
prominence provide useful information about the relevance of given points in the
metric space. If (M,d, h) is a metric space equipped with an additional height
function, let c : M → {0, 1} be a binary function that classifies the points in the
data set as relevant (1) or not (0). We connect this to our running example using
a function that classifies municipalities having a university (1) and municipalities
that do not have an university (0). We admit that the underlying classification

Orometric Methods in Bounded Metric Data 503

is not meaningful in itself. It treats a real geographic case while our model could
also handle more abstract scenarios. However, since this setup is essentially a
benchmark framework (in which we assume cities with universities to be more
relevant) we refrain from employing a more meaningful classification task in favor
of a controllable classification scenario. Our research questions are now: 1. Are
prominence and isolation alone characteristical for relevance? We use
isolation and/or prominence for a given set of data points as features. To which
extend do these features improve learning a classification function for relevance?
2. Do prominence and isolation provide additional information, not
catered by the absolute height? Do prominence and isolation improve the
prediction performance of relevance compared to just using the height? Does
a classifier that uses prominence and isolation as additional features produce
better results than a classifier that just uses the height? We will evaluate the
proposed setup in the realm of a KG and take on the questions stated above in
the following section and present some experimental evidence.

5 Experiments

We extract information about municipalities in the countries of Germany and
France from the Wikidata KG. This KG is a structure that stores knowledge
via statements, linking entities via properties to values. A detailed description
can be found in [24], while [9] gives an explicit mathematical structure to the
Wikidata graph and shows how to use the graph for extracting implicational
knowledge from Wikidata subsets. We investigate if prominence and isolation of
a given municipality can be used as features to predict university locations in a
classification setup. We use the query service of Wikidata3 to extract points in
the country maps from Germany and France and to extract all their universities.
We report all necessary SPAQRL queries employed on GitHub.4

– Wikidata provides different relations for extracting items that are instances
of the notion city. The obvious choice is to employ the instance of (P31)
property for the item city (Q515). Using this, including subclass of (P279),
we find insufficient results. More specific, we find only 102 French cities and
2215 German cities.5 For Germany, there exists a more commonly used item
urban municipality of Germany (Q42744322) for extracting all cities, while
to the best of our knowledge, a counterpart for France is not provided.

– The preliminary investigation leads us to use municipality (Q15284), again
including the subclass of (P279) property, with more than 5000 inhabitants.

– Since there are multiple french municipalities that are not located in the
mainland of France, we encounter problems for constructing the metric space.
To cope with that we draw a basic approximating square around the mainland
of France and consider only those municipalities inside.

3 https://query.wikidata.org/.
4 https://github.com/mstubbemann/Orometric-Methods-in-Bounded-Metric-Data.
5 Queried on 2019-08-07.

https://query.wikidata.org/
https://github.com/mstubbemann/Orometric-Methods-in-Bounded-Metric-Data

504 M. Stubbemann et al.

– We find the class of every municipality, i.e, university location or non-
university location as follows. We use the properties located in the admin-
istrative territorial entity (P131) and headquarters location (P159) on the
set of all universities and checked if these are set in Germany or France. An
example of a University that has not set P131 is TU Dortmund (Q685557).6

– We match the municipalities with the university properties. This is necessary
because some universities are not related to municipalities through P131, e.g.,
Hochschule Niederrhein (Q1318081) is located in the administrative location
North Rhine-Westphalie (Q1198) (See footnote 6), which is a federal state
containing multiple municipalities. For these cases we check the university
locations manually. This results in 2064 municipalities (89 university loc.) in
France and 2986 municipalities (160 university loc.) in Germany.

– While constructing the data set we encounter twenty-two universities that are
associated to a country having neither located in the administrative territorial
entity (P131) nor headquarters location (P159). We check them manually and
are able to discard them all for different reasons.

5.1 Binary Classification Task

Setup. We compute prominence and isolation for all data points and normalize
them as well as the height. The data that is used for the classification task
consists of the following information for each city: The height, the prominence,
the isolation and the binary information whether the city has a university. Since
our data set is highly imbalanced, common classifiers tend to simply predict the
majority class. To overcome the imbalance, we use inverse penalty weights with
respect to the class distribution. We want to stress out again that the goal for the
to be introduced classification task is not to identify the best classifier. Rather
we want to produce evidence for the applicability of employing isolation and
prominence as features for learning a classification function. We decide to use
logistic regression with L2 regularization and Support Vector Machines [7] with
a radial kernel. For our experiment we use Scikit-Learn [20]. As penalty factor for
the SVC we set C = 1, and experiment with C ∈ {0.5, 1, 2, 5, 10, 100}. For γ we
rely on previous work by [1] and set it to one. For all combinations of population,
isolation and prominence we use 100 iterations of 5-fold-cross-validation.

Evaluation. We use the g-mean (i.e., geometric mean) as evaluation function.
Consider for this denotations TN (True Negative), FP (False Positive), FN (False
Negative), and TP (True Positive). Overall accuracy is highly misleading for
heavily imbalanced data. Therefore, we evaluate the classification decisions by
using the geometric mean of the accuracy on the positive instances, acc+ :=

TP
TP+FN and the accuracy on the negative instances acc− := TN

TN+FP . Hence,
the g-mean score is then defined by the formula gmean :=

√
acc+ · acc−. The

evaluation function g-mean is established in the topic of imbalanced data mining.
It is mentioned in [10] and used for evaluation in [1]. We compare the values for

6 Last checked on 2019-10-26.

Orometric Methods in Bounded Metric Data 505

Table 1. Results of the classification task. We do 100 rounds of 5-fold-cross-validation
and shuffle the data between the rounds. For all rounds we compute the g-mean value
and then compute the average over the 100 rounds.

Country France Germany

Classifier SVM LR SVM LR

Mean Std Mean Std Mean Std Mean Std

iso 0.7416 0.0059 0.7703 0.0034 0.7463 0.0028 0.7761 0.0035

pro 0.4861 0.0053 0.6362 0.0055 0.3998 0.0068 0.5750 0.0049

pop 0.6940 0.0031 0.7593 0.0086 0.5982 0.0038 0.7134 0.0043

iso+pro 0.7329 0.0067 0.7657 0.0066 0.7320 0.0042 0.7642 0.0041

iso+pop 0.7668 0.0086 0.7812 0.0039 0.7971 0.0041 0.8068 0.0038

pro+pop 0.7011 0.0040 0.7496 0.0051 0.6134 0.0050 0.7108 0.0065

iso+pro+pop 0.7653 0.0078 0.7778 0.0052 0.7947 0.0042 0.8006 0.0042

po = population, pr = prominence, is = isolation
SVM = Support Vector Machine, LR = Logistic Regression

g-mean for the following cases. First, we train a classifier function purely on
the features population, prominence or isolation. Secondly, we try combinations
of them for the training process. We consider the classifier trained using the
population feature as baseline. An increase in g-mean while using prominence
or isolation together with the population function is evidence for the utility of
the introduced valuation functions. Even stronger evidence is a comparison of
isolation/prominence trained classifiers versus baseline.

In our experiments, we are not expecting high g-mean values, since the place-
ment of university locations depends on many additional features, including
historical evolution of the country and political decisions. Still, the described
evaluation setup is sufficient to demonstrate the potential of the novel features.

Results. The results of the computations are depicted in Table 1. • Isolation is
a good indicator for structural relevance. For both countries and classifiers iso-
lation outperforms population. • Combining absolute height with our valuation
functions leads to better results. • Prominence is not useful as a solo indicator.
We draw from our result that prominence solely is not a useful indicator. Promi-
nence is a very strict valuation function: recall that we constructed the graphs by
using distance margins as indicators for edges, leading to a dense graph structure
in more dense parts of the metric space. Hence, a point in a more dense part
has many neighbors and thus many potential paths that may lead to a very low
prominence value. From Definition 3 we see that having a higher neighbor always
leads to a prominence value of zero. This threshold is about 34 km for Germany
and 54 km for France. Thus, a municipality has a not vanishing prominence if it
is the most populated point in a radius of over 34 km, respectively 54 km. Only
75 municipalities of France have non zero prominence, with 40 of them being
university locations. Germany has 104 municipalities with positive prominence

506 M. Stubbemann et al.

with 72 of them being university locations. Thus, prominence alone as a feature
is insufficient for the prediction of university locations. • Support vector machine
and logistic regression lead to similar results. To the question, whether our valu-
ation functions improve the classification compared with the population feature,
support vector machines and logistic regressions provide the same answer: iso-
lation always outperforms population, a combination of all features is always
better then using just the plain population feature. • Support vector machine
penalty parameter. Finally, for our last test we check the different results for
support vector machines using the penalty parameters C ∈ {0.5, 1, 2, 5, 10, 100}.
We observe that increasing the penalty results in better performance using the
population feature. However, for lower values of C, i.e., less overfitting models,
we see better performance in using the isolation feature. In short, the more the
model overfits due to C, the less useful are the novel valuation functions we
introduced in this paper.

6 Conclusion and Outlook

In this work, we presented a novel approach to identify outstanding elements in
item sets. For this we employed orometric valuation functions, namely promi-
nence and isolation. We investigated a computationally reasonable transfer to
the realm of bounded metric spaces. In particular, we generalized previously
known results that were researched in the field of finite networks.

The theoretical work was motivated by the observation that KGs, like Wiki-
data, do contain huge amounts of metric data. These are often equipped with
some kind of height functions in a natural way. Based on this we proposed in
this work the groundwork for a locally working item recommending scheme.

To evaluate the capabilities for identifying locally outstanding items we
selected an artificial classification task. We identified all French and German
municipalities from Wikidata and evaluated if a classifier can learn a meaningful
connection between our valuation functions and the relevance of a municipal-
ity. To gain a binary classification task and to have a benchmark, we assumed
that universities are primarily located at relevant municipalities. In consequence,
we evaluated if a classifier can use prominence and isolation as features to pre-
dict university locations. Our results showed that isolation and prominence are
indeed helpful for identifying relevant items.

For future work we propose to develop the conceptualized item recommender
system and to investigate its practical usability in an empirical user study. Fur-
thermore, we urge to research the transferability of other orometric based valu-
ation functions.

Acknowledgement. The authors would like to express thanks to Dominik
Dürrschnabel for fruitful discussions. This work was funded by the German Fed-
eral Ministry of Education and Research (BMBF) in its program “Quantitative Wis-
senschaftsforschung” as part of the REGIO project under grant 01PU17012.

Orometric Methods in Bounded Metric Data 507

References

1. Akbani, R., Kwek, S., Japkowicz, N.: Applying support vector machines to imbal-
anced datasets. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.)
ECML 2004. LNCS (LNAI), vol. 3201, pp. 39–50. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30115-8 7

2. Barthélemy, M.: Spatial networks. Phys. Rep. 499(1), 1–101 (2011)
3. Bentley, J.L.: A survey of techniques for fixed radius near neighbor searching. Tech-

nical report, SLAC, SCIDOC, Stanford, CA, USA (1975). SLAC-R-0186, SLAC-
0186

4. Bordes, A., Weston, J., Collobert, R., Bengio, Y.: Learning structured embeddings
of knowledge bases. In: Burgard, W., Roth, D. (eds.) Proceedings of the 25th
Conference on Artificial Intelligence, pp. 301–306. AAAI Press, Palo Alto (2011)

5. Catherine, R., Cohen, W.: Personalized recommendations using knowledge graphs:
a probabilistic logic programming approach. In: Proceedings of the 10th ACM Con-
ference on Recommender Systems, RecSys, pp. 325–332. ACM, New York (2016)

6. Čomić, L., De Floriani, L., Papaleo, L.: Morse-smale decompositions for model-
ing terrain knowledge. In: Cohn, A.G., Mark, D.M. (eds.) COSIT 2005. LNCS,
vol. 3693, pp. 426–444. Springer, Heidelberg (2005). https://doi.org/10.1007/
11556114 27

7. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

8. Fry, S.: Defining and sizing-up mountains. Summit, pp. 16–21, January-February
1987

9. Hanika, T., Marx, M., Stumme, G.: Discovering implicational knowledge in wiki-
data. In: Cristea, D., Le Ber, F., Sertkaya, B. (eds.) ICFCA 2019. LNCS (LNAI),
vol. 11511, pp. 315–323. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-21462-3 21

10. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data
Eng. 21(9), 1263–1284 (2009)

11. Helman, A.: The Finest Peaks-Prominence and Other Mountain Measures. Traf-
ford, Victoria (2005)

12. Hirsch, J.E.: An index to quantify an individual’s scientific research output. Proc.
Nat. Acad. Sci. 102(46), 16569–16572 (2005)

13. Jiang, B., Claramunt, C.: Topological analysis of urban street networks. Environ.
Plan. B: Plan. Des. 31(1), 151–162 (2004)

14. Kirmse, A., de Ferranti, J.: Calculating the prominence and isolation of every
mountain in the world. Prog. Phys. Geogr.: Earth Environ. 41(6), 788–802 (2017)

15. Lehmann, J., et al.: DBpedia - a large-scale, multilingual knowledge base extracted
from wikipedia. Semant. Web 6(2), 167–195 (2015)

16. Nelson, G.D., McKeon, R.: Peaks of people: using topographic prominence as a
method for determining the ranked significance of population centers. Prof. Geogr.
71(2), 342–354 (2019)

17. Oramas, S., Ostuni, V.C., Noia, T.D., Serra, X., Sciascio, E.D.: Sound and music
recommendation with knowledge graphs. ACM Trans. Intell. Syst. Technol. 8(2),
21:1–21:21 (2016)

18. Palumbo, E., Rizzo, G., Troncy, R.: Entity2rec: learning user-item relatedness from
knowledge graphs for top-n item recommendation. In: Proceedings of the Eleventh
ACM Conference on Recommender Systems, pp. 32–36. ACM (2017)

https://doi.org/10.1007/978-3-540-30115-8_7
https://doi.org/10.1007/11556114_27
https://doi.org/10.1007/11556114_27
https://doi.org/10.1007/978-3-030-21462-3_21
https://doi.org/10.1007/978-3-030-21462-3_21

508 M. Stubbemann et al.

19. Palumbo, E., Rizzo, G., Troncy, R., Baralis, E., Osella, M., Ferro, E.: Knowl-
edge graph embeddings with node2vec for item recommendation. In: Gangemi, A.,
et al. (eds.) ESWC 2018. LNCS, vol. 11155, pp. 117–120. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98192-5 22

20. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. JMLR 12, 2825–
2830 (2011)

21. Penrose, M.: Random Geometric Graphs. Oxford Studies in Probability, vol. 5.
Oxford University Press, Oxford (2003)

22. Schmidt, A., Stumme, G.: Prominence and dominance in networks. In: Faron
Zucker, C., Ghidini, C., Napoli, A., Toussaint, Y. (eds.) EKAW 2018. LNCS
(LNAI), vol. 11313, pp. 370–385. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03667-6 24

23. Torres, R.N., Fraternali, P., Milani, F., Frajberg, D.: A deep learning model for
identifying mountain summits in digital elevation model data. In: First IEEE Inter-
national Conference on Artificial Intelligence and Knowledge Engineering, AIKE
2018, Laguna Hills, CA, USA, 26–28 September 2018, pp. 212–217. IEEE Com-
puter Society (2018)

24. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledge base. Com-
mun. ACM 57, 78–85 (2014)

25. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by trans-
lating on hyperplanes. In: Brodley, C.E., Stone, P. (eds.) Proceedings of the 28th
Conference on Artificial Intelligence, pp. 1112–1119. AAAI Press (2014)

26. Watts, D.J.: Six Degrees: The Science of a Connected Age. W. W. Norton, New
York (2003)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-98192-5_22
https://doi.org/10.1007/978-3-030-03667-6_24
https://doi.org/10.1007/978-3-030-03667-6_24
http://creativecommons.org/licenses/by/4.0/

Interpretable Neuron Structuring
with Graph Spectral Regularization

Alexander Tong1, David van Dijk2, Jay S. Stanley III2, Matthew Amodio1,
Kristina Yim2, Rebecca Muhle2, James Noonan2, Guy Wolf3,

and Smita Krishnaswamy1,2(B)

1 Yale Department of Computer Science, New Haven, USA
smita.krishnaswamy@yale.edu

2 Yale Department of Genetics, New Haven, USA
3 Department of Mathematics and Statistics,

Université de Montréal, Mila, Montreal, Canada

Abstract. While neural networks are powerful approximators used to
classify or embed data into lower dimensional spaces, they are often
regarded as black boxes with uninterpretable features. Here we pro-
pose Graph Spectral Regularization for making hidden layers more inter-
pretable without significantly impacting performance on the primary
task. Taking inspiration from spatial organization and localization of neu-
ron activations in biological networks, we use a graph Laplacian penalty
to structure the activations within a layer. This penalty encourages acti-
vations to be smooth either on a predetermined graph or on a feature-
space graph learned from the data via co-activations of a hidden layer
of the neural network. We show numerous uses for this additional struc-
ture including cluster indication and visualization in biological and image
data sets.

Keywords: Neural Network Interpretability · Graph learning ·
Feature saliency

1 Introduction

Common intuitions and motivating explanations for the success of deep learning
approaches rely on analogies between artificial and biological neural networks,
and the mechanism they use for processing information. However, one aspect
that is overlooked is the spatial organization of neurons in the brain. Indeed,
the hierarchical spatial organization of neurons, determined via fMRI and other
technologies [13,16], is often leveraged in neuroscience works to explore, under-
stand, and interpret various neural processing mechanisms and high-level brain
functions. In artificial neural networks (ANN), on the other hand, hidden layers
offer no organization that can be regarded as equivalent to the biological one.
This lack of organization poses great difficulties in exploring and interpreting

A. Tong, D. Dijk, G. Wolf and S. Krishnaswamy—Equal contribution.

c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 509–521, 2020.
https://doi.org/10.1007/978-3-030-44584-3_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_40&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_40

510 A. Tong et al.

the internal data representations provided by hidden layers of ANNs and the
information encoded by them. This challenge, in turn, gives rise to the com-
mon treatment of ANNs as black boxes whose operation and data processing
mechanisms cannot be easily understood. To address this issue, we focus on the
problem of modifying ANNs to learn more interpretable feature spaces without
degrading their primary task performance.

While most neural networks are treated as black boxes, we note that there are
methods in ANN literature for understanding the activations of filters in convo-
lutional neural networks (CNNs) [11], either by examining trained networks [24],
or by learning a better representation [12,17,18,22,25], but such methods rarely
apply to other types of networks, in particular dense neural networks (DNNs)
where a single activation is often not interpretable on its own. Furthermore, con-
volutions only apply to datatypes where we know the feature structure apriori,
as in the case of images and natural language. In layers of a DNN, there is no
enforced structure between neurons. The correspondence between neurons and
concepts is only determined based on the random initialization of the network.
In this work, we encourage structure between neurons in the same layer, creating
more localized and interpretable layers in dense architectures.

More specifically we propose a Graph Spectral Regularization to encourage
arbitrary graph structure between neurons within a layer. The internal layers of
a neural network are constrained to take the structure of a graph, with graph
neighbors activating on similar inputs. This allows us to map the activations of
a given layer over the graph and interpret new input by examining the activa-
tions. We show that graph-structuring a hidden layer causes useful, interpretable
features to emerge. For instance, we show that grid-structuring a layer of a clas-
sification network creates a structure over which convolution can be applied, and
local receptive fields can be traced to understand classification decisions.

While a majority of the time imposing a known graph structure gives inter-
pretable results, there are circumstances where we would like to learn the graph
structure from data. In such cases we can learn and emphasize the natural graph
structure of the feature space. We do this by an iterative process of encoding
the data, and modifying the graph based on the feature co-activation patterns.
This procedure reinforces existing patterns in the data. This allows us to learn
an abstracted graph structure of features in high-dimensional domains such as
single-cell RNA sequencing.

The main contributions of this work are as follows: (1) Demonstration of
hierarchical, spatial, and smoothed feature maps for interpretability in dense
networks. (2) A novel method for learning and reinforcing the natural graph
structure for complex feature spaces. (3) Demonstration of graph learning and
abstraction on single-cell RNA-sequencing data.

2 Related Work

Disentangled Representation Learning: While there is no precise definition of
what makes for a disentangled representation, the aim is to learn a representa-
tion that axis aligns with the generative factors of the data [2,8]. [9] suggest a

Interpretable Neuron Structuring with Graph Spectral Regularization 511

way to disentangle the representation of variational autoencoders [10] with β-
VAE. Subsequent work has generalized this to discrete representations [5], and
simple hierarchical representations [6]. These works focus on learning a single
vector representation of the data, where each element represents a single con-
cept. In contrast, our work learns a representation where groups of neurons may
be involved in representing a single concept. Moreover, disentangled represen-
tation learning can only be applied to unsupervised models and only the most
compressed level of either an autoencoder [9] or generative adversarial network
as in [4], whereas graph spectral regularization (GSR) can be applied to any or
all layers of the network.

Graph Structure in ANNs: Graph based penalties have been used in the graph
signal processing literature [3,21,26], but are rarely used in an ANN setting. In
the biological data setting, [14] used a graph penalty in sparse logistic regression
on gene expression data. Another way of utilizing graph structure is through
graph convolutional networks (GCN). GCNs are a related body of work intro-
duced by [7], and expanded on by [19], but focus on a different set of problems
(For an overview see [23]). GCNs require a known graph structure. We focus on
learning a graph representation of general data. This learned graph representa-
tion could be used as the input to a GCN similar to our MNIST example.

3 Enforcing Graph Structure

We consider the intra-layer relationships between neurons or larger structures
such as capsules. For a given layer of neurons we construct a graph G = (V,E)
with V = {v1, . . . , vN} the set of vertices and E ⊆ V ×V the set of edges. Let W
be the weighted symmetric adjacency matrix of size N ×N with Wij = Wji ≥ 0
representing the weight of the edge between vi and vj . The graph Laplacian L
is then defined as L = D − W where Dii =

∑
j Wij and Dij = 0 for i �= j.

To enforce smoothing we use the Laplacian smoothing loss. On some activa-
tion vector z and fixed Laplacian L we formulate the graph spectral regulariza-
tion function G as:

G(z,L) = zTLz =
∑

ij

Wij ||zi − zj || (1)

where || · || denotes the Frobenius norm. We add it to the reconstruction or
classification loss with a weighting term α. This adds an additional objective that
activations should be smooth along the graph defined by L. This optimization
procedure applies to any multi-layer model and valid graph Laplacian. We apply
this algorithm to grid, and hierarchical graph structures on both autoencoder
and classification dense architectures.

512 A. Tong et al.

Algorithm 1. Graph Learning
Input batches xi, model M with latent layer activations zi, regularization weight α.
Pre-train M on xi with α = 0
for i = 1 to T do

Create Graph Laplacian Li from activations zi
for j = 1 to m do

Train M on xi with α = w and L = Li with MSE + loss in eq. 1
end for

end for

3.1 Learning and Reinforcing an Abstracted Feature-Space Graph

Instead of enforcing smoothness over a fixed graph, we can learn a feature
graph from the data (See Algorithm 1) using neural network activations them-
selves to bootstrap the process. Note, that most graph and kernel-based methods
are applied over the space of observations but not over the space of features. One
of the reasons is because it is even more difficult to define a distance between
features than it is between observations. To circumvent this problem, we propose
to learn a feature graph in the latent space of a neural network using feature
co-activations as a measure of similarity.

We proceed by creating a graph using feature activation similarity, then
applying this graph using Laplacian smoothing for a number of iterations. This
converges to a graph of a latent feature space at the level of granularity of the
number of dimensions in the corresponding layer.

Our algorithm for learning the graph consists of two phases. First, a pretrain-
ing phase where the model is learned with no graph regularization. Second, we
alternate between constructing the graph from the similarities of the embedding
layer features and further training the network for reconstruction and smooth-
ness on the graph. There are many ways to create a graph from the feature ×
datapoint activation matrix. We use an adaptive Gaussian kernel,

K(zi, zj) =
1
2
exp

(

− ||zi − zj ||22
σ2
i

)

+
1
2
exp

(

− ||zi − zj ||22
σ2
j

)

where σi is the adaptive bandwidth for node i which we set as the distance to
the kth nearest neighbor of feature. An adaptive bandwidth Gaussian kernel is
necessary for general architectures as the scale of the activations is not fixed.
Batch normalization can also be used to limit the activation scale.

Since we are smoothing on the graph then constructing a new graph from the
smoothed signal the learned graph converges to a steady state where the mean
squared error acts as a repulsive force to stop the graph collapsing any further.
We present the results of graph learning a biological dataset and show that the
learned structure adds interpretability to the activations.

Interpretable Neuron Structuring with Graph Spectral Regularization 513

4 Experiments

Through examples, we show that visualizing the activations of data on the reg-
ularized layer highlights relationships in the data that are not easily visible
without it. We establish this with two examples on fixed graphs, then move to
graphs learned from the structure of the data with two examples of hierarchical
structure and two with progression structure.

4.1 Fixed Structure

Enforcing fixed graph structure localizes activations for similar datapoints to a
region of the graph. Here we show that enforcing a 8×8 grid graph on a layer of a
dense MNIST classifier causes receptive fields to form, where each digit occupies
a localized group of neurons on the grid. This can, in principle, be applied to
any neural network layer to group neurons activating to similar features. Like
in FMRI data or a convolutional neural network, we can examine the activation
patterns for each localized group of neurons. For a second example, we show the
usefulness in encouraging localized structure on a capsulenet architecture [18].
Where we are able to create globally consistent structure for better alignment
of features between capsules.

Fig. 1. Shows average activation by digit over an (8×8) 2D grid using graph spectral
regularization and convolutions following the regularization layer. Next, we segment
the embedding space by class to localize portions of the embedding associated with
each class. Notice that the digit 4 here serves as the null case and does not show up
in the segmentation. Finally, we show the top 10% activation on the embedding of
some sample images. For two digits (9 and 3) we show a normal input, a correctly
classified but transitional input, and a misclassified input. The highlighted regions of
the embedding space correlate with the semantic description of the input.

514 A. Tong et al.

Enforcing Grid Structure on Mnist. Without GSR, activations are unstruc-
tured and as a result are difficult to interpret, in that it is difficult to visually
identify even which class a digit comes from based on the activation pattern
(See Fig. 1). With GSR we can organize the activations making this representa-
tion more visually distinguishable. Since we can now take this embedding as an
image, it is possible to use a standard convolutional architecture in subsequent
layers in order to further filter the encodings. When we add 3 layers of 3×3 2D
convolutions with 2×2 max pooling we see that representations for each digit
are compressed into specific areas of the image. This leads to the formation of
receptive fields over the network pertaining to similar datapoints. Using these
receptive fields, we can now extract the features responsible for digit classifica-
tion. For example, features that contribute to the activation of the top right of
our grid we can associate with those features that contribute to being the digit 9.

The activation patterns on the embedding layer correspond well to a human
perception of the digit type. The 9 that is misclassified as 7 both has significant
activation in the 7 region of the embedding layer, and looks visually close to a
7. We can now interpret the embedding layer as a sort of brain map, where the
map can map regions of activations, to types of inputs. This is not possible in a
standard neural network, where activations are not spatially organized.

Fig. 2. (a) shows the regularization structure between capsules. (b–c) Show recon-
struction when one of the 16 dimensions in the DigitCaps representation is tweaked
by 0.05 ∈ [−0.25, 0.25]. (b) Without GSR each digit responds differently to perturba-
tion of the same dimension. With GSR (c) a single dimension represents line thickness
across all digits.

Enforcing Node Consistency on Capsule Networks. Capsule net-
works [18] represent the input as a set of vectors where norm denotes activa-
tion and each component corresponds to some abstract feature. These elements
are generally unordered. Here we use GSR to order these features consistently
between digits. We train a capsule net on MNIST with GSR on 16 fully connected
graphs between the 10 digit capsules. In the standard capsule network, each
capsule orders features randomly based on initialization. However, with GSR we
obtain a consistent feature ordering, e.g. node 1 corresponds to line thickness
across all digits. GSR enforces a more ordered and interpretable encoding where
localized regions are similarly organized, and the global line thickness feature is

Interpretable Neuron Structuring with Graph Spectral Regularization 515

consistently learned between digits. More generally, GSR can be used to order
nodes such that features common across capsules appear together. Finally, GSR
does not degrade performance much, as can be seen by the digit reconstructions
in Fig. 2.

In these examples the goal was to enforce a specified structure on unstruc-
tured features, but next we will examine the case where the goal is to learn the
structure of the reduced feature space.

4.2 Learning Graph Structure

Using the procedure defined in Sect. 3.1, we can learn a graph structure. We first
show that depending on the data, the learned graph exhibits either cluster or
trajectory structure. We then show that our framework can learn structures that
are hierarchical, i.e. subclusters within clusters or trajectories within clusters.
Hierarchies are a difficult structure for other interpretability methods to learn [6].
However, our method naturally captures this by allowing for arbitrary graph
structure among neurons in a layer.

Fig. 3. We show the structure of the training data and snapshots of the learned graph
for (a) three modules and (b) eight modules. (c) shows we have the mean and 95% CI
of the number of connected components in the trained graph for over 50 trials.

Cluster Structure on Generated Data. We structure our nth dataset to
have exactly n feature clusters. We generate the data with n clusters by first cre-
ating 2n data points representing the binary numbers from 0 to 2n−1, then added
gaussian noise N(0, 0.1). This creates a dataset with a ground truth number of
feature clusters. In the nth dataset the learned graph should have n connected
components for n independent features. In Fig. 3 (a–b) we can see how this graph
evolves over time for 3 and 8 modules. (c) shows how the learned graph learns
the correct number of connected components for each ground truth number of
clusters.

516 A. Tong et al.

Fig. 4. Shows (a) graph structure over training iterations (b) feature activations of
parts of the trajectory. PHATE [15] embedding plots colored by (c) branch number
and (b) inferred trajectory location showing the branching structure of the data.

Trajectory Structure on T Cell Development Data. Next, we test graph
learning on biological mass cytometry data, which is a high dimensional, single-
cell protein dataset, measured on differentiating T cells from the Thymus [20].
The T cells lie along a bifurcating progression where the cells eventually diverge
into two lineages (CD4+ and CD8+). Here, the structure of the data is a trajec-
tory (as opposed to a pattern of clusters). We can see in Fig. 4 how the activated
nodes in the graph embedding layer correspond to locations along the data tra-
jectory, and importantly, the learned graph is a single connected component. The
activated nodes (yellow) move from the bottom of the embedding to the top as
T-cells develop into CD8+ cells. The CD4+ lineage is also CD8- and thus looks
like a mixture between the CD8+ branch and the naive T cells. The learned
graph structure here has captured the transitioning structure of the underlying
data.

Fig. 5. Graph architecture, PCA plot, activation heatmaps of a standard autoencoder,
β-VAE [9] and a graph regularized autoencoder. With relu activations normalized to
[0, 1] for comparison. In the model with graph spectral we are able to clearly decipher
the hierarchical structure of the data, whereas with the standard autoencoder or the
β-VAE the structure of the data is not clear.

Interpretable Neuron Structuring with Graph Spectral Regularization 517

Clusters Within Clusters on Generated Data. We demonstrate graph
spectral regularization on data that is generated with a structure containing
sub-clusters. Our data contains three large-scale structures, each comprising
two Gaussian sub clusters generated in 15 dimensions (See Fig. 5). We use this
dataset as it has both global and local structure. We demonstrate that our graph
spectral regularized model is able to pick up on both the global and local struc-
ture of this dataset where disentangling methods such as β-VAE cannot. We
use a graph-structure layer with six nodes with three connected node pairs and
employ the graph spectral regularization. After training, we find that each node
pair acts as a “super node” that detects each large-scale cluster. Within each
super node, each of the two nodes encodes one of each of the two Gaussian sub-
structures. Thus, this specific graph topology is able to extract the hierarchical
topology of the data.

Fig. 6. Shows correlation between a set of marker genes for specific cell types and
embedding layer activations. First with the standard autoencoder, then our autoen-
coder with graph spectral regularization. The left heatmap is biclustered, the right
heatmap is grouped by connected components in the learned graph. We can see pro-
gression especially in the largest connected component where features on the right of
the component correspond to less developed neurons.

Hierarchical Cluster and Trajectory Structure on Developing Mouse
Cortex Data. In Fig. 6 we learn a graph on a single-cell RNA-sequencing
dataset of over 4000 cells and over 8000 genes. The data contains a set of cells
in the process of developing from neural stem cells to full neurons in the mouse
brain. While there are many gene modules that contribute to the neuronal devel-
opment, there are some states that have been studied. We use a list of cell type
marker genes to validate our method. We use 1000 PCA components of the
data in an autoencoder with a 20-dimensional embedding space. We learn the
graph using an adaptive bandwidth gaussian kernel with the bandwidth for each
feature set to the Euclidean distance to the nearest neighboring feature.

Our graph learns six components that represent meta features over the gene
space. We can identify each with a specific type of cell or related types of cells.

518 A. Tong et al.

For example, the light green component (cluster 2) represents the very early stage
neural stem cells as it is highly correlated with increased Aldoc, Pax6 and Sox2
gene expression. Most interesting to examine is cluster 6, the largest component,
which represents development into mature neurons. Within this component we
can see a progression from just after intermediate progenitors on the left (show-
ing Eomes expression) to more mature neurons with higher expression of Tbr1
and Sox5. With a standard autoencoder we cannot see progression structure of
this dataset. While some of the more global structure is captured, we fail to see
the data progression from intermediate progenitors to mature neurons. Learning
a graph allows us to create receptive fields e.g. clusters of neurons that corre-
spond to specific structures within the data, in this case cell types. Within these
neighborhoods, we can pick up on the substructure within a single cell type, i.e.
their developmental trajectory.

4.3 Computational Cost

Our method can be used to increase interpretability without much loss in represen-
tation power. At low levels, GSR can be thought of as rearranging the activations
so that they become spatially coherent. As with other interpretability methods,
GSR is not meant to increase representation power, but create useful representa-
tions with low cost in power. Since GSR does not require an information bottleneck
such as in β-VAE, a GSR layer can be very wide, while still being interpretable. In
comparing loss of representation power, GSR should be compared to other regu-
larization methods, namely L1 and L2 penalties (See Table 1). In all three cases we
can see that a higher penalty reduces the model capacity. GSR affects performance
in approximately the same way as L1 and L2 regularizations do. To confirm this,
we ran a MNIST classifier and measured train and test accuracy with 10 replicates.
Graph spectral regularization adds a bit more overhead than elementwise activa-
tion penalties. However, the added cost can be seen as containing one matrix vec-
tor operation per pass. Empirically,GSR shows similar computational cost as other
simple regularizations such as L1 and L2. To compare costs, we used a Keras model
with Tensorflow backend [1] on a Nvidia Titan X GPU and a dual Intel(R) Xeon(R)
CPU E5-2697 v4 @ 2.30 GHz, and with batchsize 256. we observed during training
233 milliseconds (ms) per step with no regularization, 266 ms for GSR, and 265 ms
for L2 penalties.

Table 1. MNIST classification training and test accuracies for coefficient selected
using cross validation over regularization weights in [10−7, 10−6, . . . , 10−2] for various
regularization methods with standard deviation over 10 replicates.

Regularization Training accuracy Test accuracy Coefficient

None 99.1 ± 0.3 97.5 ± 0.3 N/A

L1 98.9 ± 0.3 97.4 ± 0.4 10−4

L2 98.3 ± 0.3 98.0 ± 0.2 10−4

GSR (ours) 99.3 ± 0.3 98.0 ± 0.3 10−3

Interpretable Neuron Structuring with Graph Spectral Regularization 519

5 Conclusion

We have introduced a novel biologically inspired method for regularizing features
of the internal layers of dense neural networks to take the shape of a graph. We
show that coherent features emerge and can be used to interpret the underlying
structure of the dataset. Furthermore, when the intended graph is not known
apriori, we have presented a method for learning the graph structure, which
learns a graph relevant to the data. This regularization framework takes a step
towards more interpretable neural networks, and has applicability for future
work seeking to reveal important structure in real-world biological datasets as
we have demonstrated here.

Acknowledgements. This research was partially funded by IVADO (l’institut de val-
orisation des données) [G.W.]; Chan-Zuckerberg Initiative grants 182702 & CZF2019-
002440 [S.K.]; and NIH grants R01GM135929 & R01GM130847 [G.W.,S.K.].

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI,
p. 21 (2016)

2. Achille, A., Soatto, S.: Emergence of invariance and disentanglement in deep rep-
resentations (2017). arXiv:1706.01350 [cs, stat]

3. Belkin, M., Matveeva, I., Niyogi, P.: Regularization and semi-supervised learning
on large graphs. In: Shawe-Taylor, J., Singer, Y. (eds.) COLT 2004. LNCS (LNAI),
vol. 3120, pp. 624–638. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-27819-1 43

4. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.:
InfoGAN: interpretable representation learning by information maximizing gen-
erative adversarial nets (2016). arXiv:1606.03657 [cs, stat]

5. Dupont, E.: Learning disentangled joint continuous and discrete representations.
In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems vol. 31,
pp. 710–720. Curran Associates, Inc. (2018)

6. Esmaeili, B., et al.: Structured disentangled representations. In: AISTATS, p. 10
(2019)

7. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains.
In: Proceedings. 2005 IEEE International Joint Conference on Neural Networks,
2005. vol. 2, pp. 729–734. IEEE, Montreal (2005). https://doi.org/10.1109/IJCNN.
2005.1555942

8. Higgins, I., et al.: Towards a definition of disentangled representations (2018).
arXiv:1812.02230 [cs, stat]

9. Higgins, I., et al.: β-VAE: learning basic visual concepts with a constrained varia-
tional framework. In: ICLR, p. 22 (2017)

10. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2013).
arXiv:1312.6114 [Cs, Stat]

11. LeCun, Y., et al.: Backpropogation applied to handwritten zip code recognition.
In: Neural Computation (1989)

http://arxiv.org/abs/1706.01350
https://doi.org/10.1007/978-3-540-27819-1_43
https://doi.org/10.1007/978-3-540-27819-1_43
http://arxiv.org/abs/1606.03657
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1109/IJCNN.2005.1555942
http://arxiv.org/abs/1812.02230
http://arxiv.org/abs/1312.6114

520 A. Tong et al.

12. Liao, R., Schwing, A., Zemel, R.S., Urtasun, R.: Learning deep parsimonious rep-
resentations. In: NeurIPS (2016)

13. Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., Oeltermann, A.: Neurophys-
iological investigation of the basis of the fMRI signal. Nature 412(6843), 150–157
(2001). https://doi.org/10.1038/35084005

14. Min, W., Liu, J., Zhang, S.: Network-regularized sparse logistic regression models
for clinical risk prediction and biomarker discovery. IEEE/ACM Trans. Comput.
Biol. Bioinf. 15(3), 944–953 (2018). https://doi.org/10.1109/TCBB.2016.2640303

15. Moon, K.R., et al.: Visualizing transitions and structure for high dimensional
data exploration. bioRxiv (2017). https://doi.org/10.1101/120378, https://www.
biorxiv.org/content/early/2017/12/01/120378

16. Ogawa, S., Lee, T.M.: Magnetic resonance imaging of blood vessels at high fields:
in vivo and in vitro measurements and image simulation. Mag. Reson. Med. 16(1),
9–18 (1990). https://doi.org/10.1002/mrm.1910160103

17. Ross, A.S., Hughes, M.C., Doshi-Velez, F.: Right for the right reasons: training
differentiable models by constraining their explanations (2017). arXiv:1703.03717
[cs, stat]

18. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: 31st
Conference on Neural Information Processing Systems (2017)

19. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2009). https://
doi.org/10.1109/TNN.2008.2005605

20. Setty, M., et al.: Wishbone identifies bifurcating developmental trajectories from
single-cell data. Nat. Biotechnol. 34(6), 637 (2016)

21. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The
emerging field of signal processing on graphs: extending high-dimensional data
analysis to networks and other irregular domains. IEEE Sign. Process. Mag. 30(3),
83–98 (2013)

22. Stone, A., Wang, H., Stark, M., Liu, Y., Phoenix, D.S., George, D.: Teaching
compositionality to CNNs. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 732–741. IEEE, Honolulu (2017). https://doi.
org/10.1109/CVPR.2017.85

23. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey
on graph neural networks (2019). arXiv:1901.00596 [cs, stat]

24. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks
(2013). arXiv:1311.2901 [cs]

25. Zhang, Q., Wu, Y.N., Zhu, S.C.: Interpretable convolutional neural networks. In:
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
8827–8836. IEEE, Salt Lake City (2018). https://doi.org/10.1109/CVPR.2018.
00920

26. Zhou, D., Schölkopf, B.: A regularization framework for learning from graph data.
In: ICML Workshop on Statistical Relational Learning and Its Connections to
Other Fields, vol. 15, pp. 67–78 (2004)

https://doi.org/10.1038/35084005
https://doi.org/10.1109/TCBB.2016.2640303
https://doi.org/10.1101/120378
https://www.biorxiv.org/content/early/2017/12/01/120378
https://www.biorxiv.org/content/early/2017/12/01/120378
https://doi.org/10.1002/mrm.1910160103
http://arxiv.org/abs/1703.03717
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/CVPR.2017.85
https://doi.org/10.1109/CVPR.2017.85
http://arxiv.org/abs/1901.00596
http://arxiv.org/abs/1311.2901
https://doi.org/10.1109/CVPR.2018.00920
https://doi.org/10.1109/CVPR.2018.00920

Interpretable Neuron Structuring with Graph Spectral Regularization 521

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Comparing the Preservation of Network
Properties by Graph Embeddings

Rémi Vaudaine1(B), Rémy Cazabet2, and Christine Largeron1

1 Univ Lyon, UJM-Saint-Etienne, CNRS, Institut d Optique Graduate School
Laboratoire Hubert Curien UMR 5516, 42023 Saint-Etienne, France

{remi.vaudaine,christine.largeron}@univ-st-etienne.fr
2 Univ Lyon, UCBL, CNRS, LIRIS UMR 5205, 69621 Lyon, France

remy.cazabet@gmail.com

Abstract. Graph embedding is a technique which consists in finding a
new representation for a graph usually by representing the nodes as vec-
tors in a low-dimensional real space. In this paper, we compare some of
the best known algorithms proposed over the last few years, according to
four structural properties of graphs: first-order and second-order proxim-
ities, isomorphic equivalence and community membership. To study the
embedding algorithms, we introduced several measures. We show that
most of the algorithms are able to recover at most one of the properties
and that some algorithms are more sensitive to the embedding space
dimension than some others.

Keywords: Graph embedding · Network properties

1 Introduction

Graphs are useful to model complex systems in a broad range of domains. Among
the approaches designed to study them, graph embedding has attracted a lot of
interest in the scientific community. It consists in encoding parts of the graph
(node, edge, substructure) or a whole graph into a low dimensional space while
preserving structural properties. Because it allows all the range of data mining
and machine learning techniques that require vectors as input to be applied to
relational data, it can benefit a lot of applications.

Several surveys have been recently published [5,6,8,20,21], some of them
including a comparative study of the performance of the methods to solve spe-
cific tasks. Among them, Cui et al. [6] propose a typology of network embedding
methods into three families: matrix factorization, random walk and deep learn-
ing methods. Following the same typology, Goyal et al. [8] compare state of
the art methods on few tasks such as link prediction, graph reconstruction or
node classification and analyze the robustness of the algorithms with respect

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-44584-3 41) contains supplementary material, which is
available to authorized users.

c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 522–534, 2020.
https://doi.org/10.1007/978-3-030-44584-3_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_41&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_41
https://doi.org/10.1007/978-3-030-44584-3_41
https://doi.org/10.1007/978-3-030-44584-3_41

Network Properties Captured by Graph Embeddings 523

to hyper-parameters. Recently, Cai et al. [5] extended the typology by adding
deep learning based methods without random walks but also two other families:
graph kernel based methods notably helpful to represent the whole graph as a
low-dimensional vector and generative models which provide a latent space as
embedding space. For their part, Zhang et al. [21] classify embedding techniques
into two types: unsupervised network representation learning or semi-supervised
and they list a number of embedding methods depending on the information
sources they use to learn. Like Goyal et al. [8], they compare the methods on
different tasks. Finally, Hamilton et al. [10] introduce an encoder-decoder frame-
work to describe representative embedding algorithms from a methodological
perspective. In this framework, the encoder corresponds to the function which
maps the elements of a graph as vectors. The decoder is a function which asso-
ciates a specific graph statistic to the obtained vectors, for instance for a pair
of node embeddings the decoder can give their similarity in the vector space,
allowing the similarity of the nodes in the original graph to be quantified.

From this last work, we retained the encoder-decoder framework and we pro-
pose to use it for evaluating the different embedding methods. To that end, we
compare, using metrics that we introduce, the value computed by the decoder
with the value associated to the corresponding nodes in the graph for the equiv-
alent function. Thus, in this paper, we adopt a different point of view from
the previous task-oriented evaluations. Indeed, all of them consider embeddings
as a black box, i.e., using obtained features without considering their proper-
ties. They ignore the fact that embedding algorithms are designed, explicitly
or implicitly, to preserve some particular structural properties and their useful-
ness for a given task depends on how they succeed to capture it. Thus, in this
paper, through an experimental comparative study, we compare the ability of
embedding algorithms to capture specific properties, i.e., first-order proximity of
nodes, structural equivalence (second-order proximity), isomorphic equivalence
and community structure.

In Sect. 2, these topological properties are formally defined and measures
are introduced to evaluate to what extent embedding methods encode them.
Section 3 presents the studied embedding methods. Section 4 describes the
datasets used for the experiments, while Sect. 5 presents the results.

2 Structural Properties and Metrics

There is a wide range of graph properties that are of interest. We propose to
study several of them which are at the basis of network analysis and are directly
linked with usual learning and mining tasks on graphs [13]. First, we measure
the ability of an embedding method to recover the set of neighbors of the nodes
which is the first-order proximity (P1). This property is important for several
downstream tasks: clustering where vectors of the same cluster represent nodes of
the same community, graph reconstruction where two similar vectors represent
two nodes that are neighbors in the graph, and node classification based for
instance on majority vote of the neighbors. Secondly, we evaluate the ability of

524 R. Vaudaine et al.

embedding methods to capture the second-order proximity (P2) which is the
fact that two nodes have the same set of neighbors. This property is especially
interesting when dealing with link prediction since, in social graphs, it is assumed
that two nodes that share the same friends are likely to become friends too.
Thirdly, we measure how much an embedding method is able to capture the roles
of nodes in a graph which is the isomorphic equivalence (P3). This property is
interesting when looking for specific nodes like leaders or outsiders. Finally, we
evaluate the ability of an embedding method to detect communities (P4) in a
graph which has been an on going field of research for the last 20 years. Next,
we define both properties and measures we use in order to quantify how much
an embedding method is able to capture those properties.

Let G(V,E) be an unweighted and undirected graph where V = {v0, ..., vn−1}
is the set of n vertices, E = {eij}n−1

i,j=0 the set of m edges and A is its binary
adjacency matrix. Graph embedding consists in encoding the graph into a low-
dimensional space Rd, where d is the dimension of the real space, with a function
f : V �→ Y which maps vertices to vector embeddings while preserving some
properties of the graph. We note Y ∈ R

n×d the embedding matrix and Yi its
i-th row representing the node vi.

Neighborhood or first-order proximity (P1): capturing the neighbor-
hood for an embedding method means that it aims at keeping any two nodes vi
and vj that are linked in the original graph (Aij = 1) close in the embedding
space. The measure S designed for this property is based on the comparison
between the set N(vi) of neighbors in the graph of every node vi and the set
NE (vi) of its |N (vi) | nearest neighbors in the embedding space where |N (vi) |
is its degree. Finally, by averaging over all nodes, S quantifies the ability of an
embedding to respect the neighborhood. The higher S, the more P1 is preserved.

S (vi) =
|N (vi)

⋂
NE (vi) |

|N (vi) | , S =
1
n

∑

i

S (vi) (1)

Structural equivalence or second-order proximity (P2): two vertices
are structurally equivalent if they share many of the same neighbors [13]. To
measure the efficiency of an embedding method to recover the structural equiv-
alence, we define the distance distA (Ai, Aj) between the lines of the adjacency
matrix corresponding to each pair of nodes (vi, vj), and distE (Yi, Yj) the dis-
tance between their representative vectors in the embedding space. The metric
for P2 is defined by the correlation coefficient (Spearman or Pearson) Struct eq
between those values for all pairs of nodes. The higher Struct eq (close to 1),
the better P2 is preserved by the algorithm.

LA (vi, vj) = distA (Ai, Aj) , LE (vi, vj) = distE (Yi, Yj) (2)

with distA the distance in the adjacency matrix (cosine or euclidean) and distE ,
the embedding similarity which is indicated in Table 1. Finally,

Struct eq = pearson(LA, LE) (3)

Network Properties Captured by Graph Embeddings 525

Isomorphic equivalence (P3): two nodes are isomorphically equivalent,
i.e they share the same role in the graph, if their ego-networks are isomorphic
[4]. The ego-network of node vi is defined as the subgraph ENi made up of
its neighbors and the edges between them (without vi itself). To go beyond a
binary evaluation, for each pair of nodes (vi, vj), we compute the Graph Edit
Distance GED (ENi, ENj) between their ego-networks ENi and ENj thanks
to the Graph Matching Toolkit [16] and the distance between their representa-
tive vectors in the embedding space distE (Yi, Yj). distE is indicated in Table 1.
Finally, the Pearson and Spearman correlation coefficients between those values
computed on all pairs of nodes are used to have an indicator for the whole graph.
A negative correlation means that if the distance in the embedding space is large
then exp(-GED), as in [15], is small. So, to ease one’s reading, we take the oppo-
site of the correlation coefficient such that, for all measures, the best result is 1.
Thus, the higher Isom eq, the better P3 is preserved by the algorithm.

LEgonet (vi, vj) = exp(−GED (ENi, ENj)), LE (vi, vj) = distE (Yi, Yj) (4)

Isom eq = −pearson(LEgonet, LE) (5)

Community/cluster membership (P4): communities can be defined as
“groups of vertices having higher probability of being connected to each other
than to members of other groups” [7]. On the other hand, clusters can be defined
as sets of elements such that elements in the same cluster are more similar to
each other than to those in other clusters. We propose to study the ability of
an embedding method to transfer a community structure to a cluster structure.
Given a graph with k ground-truth communities, we cluster, using KMeans (since
k, the number of communities, is known), the node embeddings into k clusters.
Finally, we compare this partition with the ground-truth partition using the
adjusted mutual information (AMI). We also used the normalized mutual infor-
mation (NMI) but both measures showed similar results. Let LCommunity be the
ground-truth labeling and LClusters the one found by KMeans.

Score = AMI(LCommunity, LClusters) (6)

3 Embeddings

There are many different graph embedding algorithms. We present a non-
exhaustive list of recent methods, representative of the different families pro-
posed in the state-of-the-art. We refer the reader to the full papers for more
information. In Table 1 we mention all the embedding methods we used in our
comparative study with the graph similarity they are supposed to preserve and
the distance that is used in the embedding space to relate any pair of nodes of
the graph. Two versions of N2V are used (A: p = 0.5, q = 4 for local random
walks, B: p = 4, q = 0.5 for deeper random walks).

526 R. Vaudaine et al.

Table 1. Studied methods with complexity, their graph similarity (encoder) and their
distance in the embedding space (decoder)

Name of the method Graph sim. Embedding sim.

Laplacian Eigenmaps (LE) [1] - O(N2) 1st-order prox Euclidean

Locally Linear Emb. (LLE) [17] - O(N2) 1st-order prox Euclidean

HOPE [14] - O(N2) Katz-Index Dot-product

SVD of the adjacency matrix - O(N2) 2nd-order prox Dot-product

struc2vec (S2V) [15] - O(Nlog(N)) Co-occurence proba Dot-product

node2vec (N2V) [9] - O(N) Co-occurence proba Dot-product

Verse [18] - O(N) Perso. Page-Rank Dot-product

Kamada-Kawai layout (KKL) [11] - O(N2) Euclidean

Multi-dim Scaling (MDS) [12] 1st-order prox Euclidean

SDNE [19] - O(N) 1st & 2nd-order prox Euclidean

4 Graphs

To evaluate embedding algorithms, we choose real graphs and generated graphs
having different sizes and types: random (R), with preferential attachment (PA),
social (S), social with community structure (SC) as shown in Table 2. While real
graphs correspond to common datasets, generators allow to control the charac-
teristics of the graphs. Thus, we have prior knowledge which makes evaluation
easier and more precise. Table 2 gives the characteristics of these graphs divided
in three groups: small, medium and large graphs.

Table 2. Dataset characteristics. All graphs are provided in our GitHub

Name of the graph Number of nodes Number of edges Type

Zachary Karate Club (ZKC) 34 77 SC

Erdos-Renyi (Gnp100) 100 474 R

Barabasi-Albert (BA100) 100 900 PA

Dancer (Dancer 100) 100 243 SC

Email network (Email) 1133 5452 S

Erdos-Renyi (Gnp1000) 1 000 4985 R

Barabasi-Albert (BA1000) 1000 9900 PA

Dancer (Dancer 1k) 1 000 3627 SC

PGP 10 680 24316 S

Erdos-Renyi (Gnp10000) 10 000 49722 R

Barabasi-Albert (BA10k) 10 000 99900 PA

Dancer (Dancer 10k) 10 000 189886 SC

https://github.com/vaudaine/Comparing_embeddings
http://deim.urv.cat/~alexandre.arenas/data/welcome.htm
http://deim.urv.cat/~alexandre.arenas/data/welcome.htm

Network Properties Captured by Graph Embeddings 527

5 Results

We used the metrics presented in Sect. 2 to quantify the ability of the embed-
ding algorithms described in Sect. 3 to recover four properties of the graphs:
first order proximity (P1), structural and isomorphic equivalences (P2 and P3),
community membership (P4). Due to lack of space, we show only the most rep-
resentative results and provide the others as additional materials1. For the same
reason, to evaluate P2 and P3, both Pearson and Spearman correlation coef-
ficients have been computed but we only show results for Pearson as they are
similar with Spearman. For readability, every algorithm successfully captures a
property when its corresponding score is at 1 and 0 means unsuccessful. More-
over, a dash (-) in a Table indicates that a method has not been able to provide
a result. Note that due to high complexity, KKL and MDS are not computed for
every graph. Finally, the code and datasets are available online on our GitHub
(see footnote 1).

5.1 Neighborhood (P1)

(a) BA100 (b) Dancer 100

(c) Gnp100 (d) ZKC

Fig. 1. Neighborhood (P1) as a function of embedding dimension.

1 https://github.com/vaudaine/Comparing embeddings.

https://github.com/vaudaine/Comparing_embeddings

528 R. Vaudaine et al.

Table 3. Neighborhood (P1) Italic: Best in row. Bold: best.

Dimensions 2 10 100 1128

LE 0.086 0.196 0.371 0.007

LLE 0.193 0.352 0.589 0.021

HOPE 0.022 0.104 0.177 0.018

S2V 0.02 0.022 0.021 0.022

N2VA 0.044 0.245 0.37 0.437

N2VB 0.04 0.29 0.414 0.45

SDNE 0.024 0.047 0.055 0.041

SVD 0.054 0.138 0.134 0.026

Verse 0.019 0.021 0.021 0.021

MDS 0.104 0.287 0.793 0.919

(a) Email

Dimensions 2 10 100 1000

LE 0.004 0.097 0.72 0.933

LLE - - 0.045 0.117

HOPE 0.002 0.01 0.226 0.094

S2V 0.001 0.001 0.001 0.001

N2VA 0.002 0.032 0.914 0.945

N2VB 0.002 0.045 0.935 0.935

SDNE 0.001 0.001 0.001 0.001

SVD 0.001 0.001 0.001 0.0

Verse 0.002 0.052 0.961 0.854

(b) Gnp10000

For the first order proximity (P1), we measure the similarity S as a function of
the dimension d for all the embedding methods. For computational reasons, for
large graphs, the measure is computed on 10% of the nodes. Results are shown in
Fig. 1 and Table 3, for d varying from 2 until approximately the number of nodes.
We can make several observations: for networks with communities (Dancer and
ZKC), only LE and LLE reasonably capture this property. For Barabasi Albert
graph and Erdos-Renyi networks, Verse, MDS and LE reach scores higher than
LLE. It means that those algorithms are able to capture this property, but are
fooled by complex meso-scopic organizations. These results can be generalized
as shown in additional materials. MDS can show good performance for instance
on email dataset, Verse works only on our random graphs, LLE works only for
ZKC and Dancer while LE seems to show good performance on every graph
when the right dimension is chosen. In the cases of LE and LLE, there is an
optimal dimension: the increase of the similarity as the dimension grows can be
explained by the fact that enough information is learned; the decrease is due to
eigen-value computation in high-dimension which is very noisy. To conclude, LE
seems to be the best option to recover neighborhood but the right dimension
has to be found.

5.2 Structural Equivalence (P2)

Concerning the second-order proximity (P2), we compute the Pearson correlation
coefficient, as indicated in Sect. 2, as a function of the embedding space dimension
d and we use the same sampling strategy as for property P1.

The results are shown in Fig. 2 and Table 4. Two methods are expected to
have good results, because they explicitly embed the structural equivalence: SVD
and SDNE. HOPE does not explicitly embed this property but a very similar one
which is Katz-Index. On every small graph, SVD effectively performs the best
and with the lowest dimension. HOPE still has very good results. The Pearson
coefficient grows as the dimension of the embedding grows which implies that
the best results are obtained when the dimension of the space is high enough.
The other algorithms fail to recover the structural equivalence. For medium

Network Properties Captured by Graph Embeddings 529

(a) BA100 (b) Dancer 100

(c) Gnp100 (d) ZKC

Fig. 2. Structural equivalence (P2) as a function of embedding dimension.

and large graphs as presented in Table 4, SVD and HOPE still show very good
performance and the higher the dimension of the embedding space, the higher
the correlation. For large graphs, SDNE shows also very good results but it
seems to need more data to be able to learn properly. In the end, SVD seems
to be the best algorithm to capture the second order proximity. It computes a
singular value decomposition which is fast and scalable but SDNE performs also
very well on the largest graphs and, in that case, it can outperform SVD.

5.3 Isomorphic Equivalence (P3)

With the property P3, we investigate the ability of an embedding algorithm to
capture roles in a graph. To do so, we compute the graph edit distance (GED)
between every pair of nodes in the graph and the distance between the vec-
tors of the embedding. Moreover, we sample nodes at random and compute the
GED only between every pair of the sampled nodes thus reducing the computing
time drastically. We sample 10% of the nodes for medium graphs and 1% of the
nodes for large graphs. Experiments have demonstrated that results are robust to
sampling. We present, in Fig. 3 and Table 5, the evolution of the correlation coef-
ficient according to the dimension of the embedding space. The only algorithm
that is supposed to perform well for this property is Struc2vec. Note also that
algorithms which capture the structural equivalence can also give results since
two nodes that are structurally equivalent are also isomorphically equivalent

530 R. Vaudaine et al.

Table 4. Structural equivalence (P2). Italic: Best in row. Bold: best.

Dimensions 2 10 100 995

LE 0.593 0.281 0.052 0.044

LLE 0.079 −0.069 −0.244 -0.441

HOPE 0.726 0.909 0.967 0.947

S2V 0.041 0.134 0.137 0.131

N2VA 0.043 −0.038 −0.018 -0.033

N2VB 0.05 −0.055 −0.042 -0.036

SDNE 0.174 0.037 0.034 0.626

SVD 0.823 0.933 0.987 1.0

Verse 0.036 −0.038 0.023 0.141

MDS −0.053 −0.015 −0.048 -0.079

(a) Dancer 1k

Dimensions 2 10 100 1000

LE 0.06 0.077 0.189 0.192

LLE - - -0.724 -0.785

HOPE 0.844 0.723 0.799 0.967

S2V 0.003 0.457 0.744 0.717

N2VA 0.438 0.144 −0.289 0.297

N2VB 0.445 −0.175 −0.342 0.402

SDNE 0.678 0.787 0.952 0.954

SVD 0.795 0.621 0.873 0.983

Verse −0.036 −0.386 −0.186 0.642

(b) BA10k

but the converse is not true. For small graphs, as illustrated in Fig. 3, Struc2vec
(S2V) is nearly always the best. It performs well on medium and large graphs
too as shown in Table 5. However results obtained on other graphs (available in
supplementary material) indicate that Stru2vec is not always much better than
the other algorithms. As a matter of fact, Struc2vec remains the best algorithm
for this measure but it is not totally accurate since the correlation coefficient is
not close to 1 on every graph e.g on Dancer10k in Table 5(b).

(a) BA100 (b) Dancer 100

(c) Gnp100 (d) ZKC

Fig. 3. Isomorphic equivalence (P3) as a function of embedding dimension.

Network Properties Captured by Graph Embeddings 531

Table 5. Isomorphic equivalence (P3). Italic: Best in row. Bold: best.

Dimensions 2 10 100 995

LE 0.058 0.053 0.023 0.023

LLE 0.004 −0.055 −0.05 −0.111

HOPE 0.687 0.295 0.299 0.126

S2V 0.468 0.761 0.759 0.753

N2VA 0.18 0.08 −0.119 −0.107

N2VB 0.327 0.041 −0.053 −0.03

SDNE nan 0.088 −0.057 0.004

SVD 0.39 0.295 0.284 0.165

Verse 0.077 −0.017 0.006 0.101

MDS 0.018 −0.011 0.001 0.01

(a) Gnp1000

Dimensions 2 10 100 1000

LE −0.068 0.072 0.05 -0.052

LLE −0.088 0.009 −0.008 -0.102

HOPE 0.086 0.075 0.108 0.103

S2V 0.11 0.258 0.431 0.401

N2VA 0.123 0.166 0.38 0.203

N2VB 0.123 0.161 0.204 0.081

SDNE 0.057 0.083 0.035 0.086

SVD 0.053 0.076 0.1 0.102

Verse 0.036 −0.032 −0.071 −0.148

(b) Dancer 10k

5.4 Community Membership (P4)

To study the ability of an embedding to recover the community structure of a
graph (P4), we compare, using Adjusted Mututal Information (AMI) and Nor-
malized (NMI), the partition given by KMeans on the node embeddings and
the ground-truth partition. The results are given only for PPG (averaged over
3 instances) and Dancer graphs (for 20 different graphs) for which the commu-
nity structure (ground truth) is provided by the generators. To obtain them, we
generated planted partition graphs (PPG) with 10 communities and 100 nodes

(a) Embedding in 2 dimensions (b) Embedding in 128 dimensions

(c) Embedding in 2 dimensions (d) Embedding in 128 dimensions

Fig. 4. AMI for community detection on PPG (top) and Dancer (bottom)

532 R. Vaudaine et al.

per community. We set the probability of an edge existing between communities
pout = 0.01 and vary the probability of an edge existing within a community pin
from 0.01 (no communities) to 1 (clearly defined communities), thus varying the
modularity of the graph from 0 to 0.7. For Dancer, we generate 20 graphs with
varying community structure by adding between-community edges and remov-
ing within-community edges. Moreover, we apply also usual community detec-
tion algorithms such as Louvain’s modularity maximisation (maxmod) [2] and
Infomap [3] on the graphs. Results are shown in Fig. 4. In low dimension (d = 2,
left of the Figure), every embedding is less efficient than the usual community
detection algorithms. In higher dimension (d = 128, right of the Figure), many
embedding techniques, Verse, MDS, N2V (both versions) and HOPE (on PPG),
are able to have the same results as the best community detection algorithm:
Louvain and obvioulsly for all the methods, AMI increases with the modularity.

6 Conclusion

In this paper, we studied how a wide range of graph embedding techniques pre-
serve essential structural properties of graphs. Most of recent works on graph
embeddings focused on the introduction of new methods and on task-oriented
evaluation but they ignore the rationale of the methods, and only focus on their
performance on a specific task in a particular setting. As a consequence, methods
that have been designed to embed local structures are compared with methods
that should embed global structures on tasks as diverse as link prediction or
community detection. In contrast, we focused on (i) The structural properties
for which each algorithm has been designed, and (ii) How well these proper-
ties are effectively preserved in practice, on networks having diverse topological
properties. As a result, we have shown that no method embed efficiently all
properties, and that most methods embed effectively only one of them. We have
also shown that most of recently introduced methods are outperformed or at
least challenged by older methods specifically designed for that purpose, such
as LE/LLE for P1, SVD for P2, and modularity optimization for P4. Finally,
we have shown that, even when they have been designed to embed a particular
property, most methods fail to do so in every setting. In particular, some algo-
rithms (particularly LE and LLE) have shown an important, non-monotonous
sensibility to the number of dimensions which can be difficult to choose in a non
supervised context.

In order to improve graph embedding methods, we believe that we need to
better understand the nature of produced embeddings. We wish to pursue this
work in two directions, (1) Understanding how those methods can obtain good
results on tasks depending mainly on local structures, such as link prediction,
when they do not encode efficiently local properties, and (2) study how well the
meso-scale structure is preserved by such algorithms.

Acknowledgement. This work has been supported by BITUNAM Project ANR-18-
CE23-0004 and IDEXLYON ACADEMICS Project ANR-16-IDEX-0005 of the French
National Research Agency.

Network Properties Captured by Graph Embeddings 533

References

1. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data
representation. Neural Comput. 15(6), 1373–1396 (2003)

2. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008
(2008)

3. Bohlin, L., Edler, D., Lancichinetti, A., Rosvall, M.: Community detection and
visualization of networks with the map equation framework. In: Ding, Y., Rousseau,
R., Wolfram, D. (eds.) Measuring Scholarly Impact, pp. 3–34. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10377-8 1

4. Borgatti, S., Everett, M., Freeman, L.: Software for social network analysis. Ucinet
for windows (2002)

5. Cai, Z., Chang, K.: A comprehensive survey of graph embedding: problems, tech-
niques, and applications. TKDE 30(9), 1616–1637 (2018)

6. Cui, P., Wang, X., Pei, J., Zhu, W.: A survey on network embedding. CoRR,
abs/1711.08752 (2017)

7. Fortunato, S., Hric, D.: Community detection in networks: a user guide. CoRR,
abs/1608.00163 (2016)

8. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and perfor-
mance: a survey. Knowl.-Based Syst. 151, 78–94 (2018)

9. Grover, A., Leskovec, J.: Node2vec: acalable feature learning for networks. In:
Proceedings of the 22nd ACM SIGKDD Conference. ACM (2016)

10. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: meth-
ods and applications. CoRR, abs/1709.05584 (2017)

11. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf.
Process. Lett. 31(7), 7–15 (1989)

12. Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a non-
metric hypothesis. Psychometrika (1964)

13. Lorrain, F., White, H.C.: Structural equivalence of individuals in social networks.
J. Math. Sociol. 1(1), 49–80 (1971)

14. Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserv-
ing graph embedding. In: Proceedings of the 22Nd ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (2016)

15. Ribeiro, L.F., Saverese, P.H., Figueiredo, D.R.: Struc2vec: learning node represen-
tations from structural identity. In: ACM SIGKDD, New York, NY, USA (2017)

16. Riesen, K., Emmenegger, S., Bunke, H.: A novel software toolkit for graph edit
distance computation. In: Graph-Based Representations in Pattern Recognition
(2013)

17. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear
embedding. Science 290(5500), 2323–2326 (2000)

18. Tsitsulin, A., Mottin, D., Karras, P., Müller, E.: Verse: versatile graph embeddings
from similarity measures. In: WWW 2018 (2018)

19. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: SIGKDD
(2016)

20. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey
on graph neural networks. CoRR, abs/1901.00596 (2019)

21. Zhang, D., Yin, J., Zhu, X., Zhang, C.: Network representation learning: a survey.
CoRR, abs/1801.05852 (2018)

https://doi.org/10.1007/978-3-319-10377-8_1

534 R. Vaudaine et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Making Learners (More) Monotone

Tom Julian Viering1(B) , Alexander Mey1 , and Marco Loog1,2

1 Delft University of Technology, Delft, The Netherlands
{t.j.viering,a.mey,m.loog}@tudelft.nl

2 University of Copenhagen, Copenhagen, Denmark

Abstract. Learning performance can show non-monotonic behavior.
That is, more data does not necessarily lead to better models, even on
average. We propose three algorithms that take a supervised learning
model and make it perform more monotone. We prove consistency and
monotonicity with high probability, and evaluate the algorithms on sce-
narios where non-monotone behaviour occurs. Our proposed algorithm
MTHT makes less than 1% non-monotone decisions on MNIST while
staying competitive in terms of error rate compared to several baselines.
Our code is available at https://github.com/tomviering/monotone.

Keywords: Learning curve · Model selection · Learning theory

1 Introduction

It is a widely held belief that more training data usually results in better gener-
alizing machine learning models—cf. [11,17] for instance. Several learning prob-
lems have illustrated, however, that more training data can lead to worse gen-
eralization performance [3,9,12]. For the peaking phenomenon [3], this occurs
exactly at the transition from the underparametrized to the overparametrized
regime. This double-descent behavior has found regained interest in the context
of deep neural networks [1,18], since these models are typically overparametrized.
Recently, also several new examples have been found, where in quite simple set-
tings more data results in worse generalization performance [10,19].

It can be difficult to explain to a user that machine learning models can
actually perform worse when more, possibly expensive to collect data has been
used for training. Besides, it seems generally desirable to have algorithms that
guarantee increased performance with more data. How to get such a guarantee?
That is the question we investigate in this work and for which we use learning
curves. Such curves plot the expected performance of a learning algorithm versus
the amount of training data.1 In other words, we wonder how we can make
learning curves monotonic.

The core approach to make learners monotone is that, when more data is
gathered and a new model is trained, this newly trained model is compared to
1 Not to be confused with training curves, where the loss versus epochs (optimization

iterations) is plotted.

c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 535–547, 2020.
https://doi.org/10.1007/978-3-030-44584-3_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_42&domain=pdf
http://orcid.org/0000-0002-7337-8624
http://orcid.org/0000-0003-0528-3081
http://orcid.org/0000-0002-1298-8461
https://github.com/tomviering/monotone
https://doi.org/10.1007/978-3-030-44584-3_42

536 T. J. Viering et al.

the currently adopted model that was trained on less data. Only if the new model
performs better should it be used. We introduce several wrapper algorithms for
supervised classification techniques that use the holdout set or cross-validation
to make this comparison. Our proposed algorithm MTHT uses a hypothesis test
to switch if the new model improves significantly upon the old model. Using
guarantees from the hypothesis test we can prove that the resulting learning
curve is monotone with high probability. We empirically study the effect of the
parameters of the algorithms and benchmark them on several datasets including
MNIST [8] to check to what degree the learning curves become monotone.

This work is organized as follows. The notion of monotonicity of learning
curves is reviewed in Sect. 2. We introduce our approaches and algorithms in
Sect. 3, and prove consistency and monotonicity with high probability in Sect. 4.
Section 5 provides the empirical evaluation. We discuss the main findings of our
results in Sect. 6 and end with the most important conclusions.

2 The Setting and the Definition of Monotonicity

We consider the setting where we have a learner that now and then receives data
and that is evaluated over time. The question is then, how to make sure that the
performance of this learner over time is monotone—or with other words, how
can we guarantee that this learner over time improves its performance?

We analyze this question in a (frequentist) classification framework. We
assume there exists an (unknown) distribution P over X × Y, where X is the
input space (features) and Y is the output space (classification labels). To sim-
plify the setup we operate in rounds indicated by i, where i ∈ {1, . . . , n}. In
each round, we receive a batch of samples Si that is sampled i.i.d. from P . The
learner L can use this data in combination with data from previous rounds to
come up with a hypothesis hi in round i. The hypothesis comes from a hypothe-
sis space H. We consider learners L that, as subroutine, use a supervised learner
A : S → H, where S is the space of all possible training sets.

We measure performance by the error rate. The true error rate on P equals

ε(hi) =
∫

x∈X

∑
y∈Y

l0-1(hi(x), y)dP (x, y) (1)

where l0-1 is the zero-one loss. We indicate the empirical error rate of h on a
sample S as ε̂(h, S). We call n rounds a run. The true error of the returned hi

by the learner L in round i is indicated by εi, all the εi’s of a run form a learning
curve. By averaging multiple runs one obtains the expected learning curve, ε̄i.

The goal for the learner L is twofold. The error rates of the returned mod-
els εi’s should (1) be as small as possible, and (2) be monotonically decreasing.
These goals can be at odds with another. For example, always returning a fixed
model ensures monotonicity but incurs large error rates. To measure (1), we
summarize performance of a learning curve using the Area Under the Learn-
ing Curve (AULC) [6,13,16]. The AULC averages all εi’s of a run. Low AULC
indicates that a learner manages to quickly reduce the error rate.

Making Learners (More) Monotone 537

Monotone in round i means that εi+1 ≤ εi. We may care about monotonicity
of the expected learning curve or individual learning curves. In practice, how-
ever, we typically get one chance to gather data and submit models. In that
case, we rather want to make sure that then any additional data also leads to
better performance. Therefore, we are mainly concerned with monotonicity of
individual learning curves. We quantify monotonicity of a run by the fraction of
non-monotone transitions in an individual curve.

3 Approaches and Algorithms

We introduce three algorithms (learners L) that wrap around supervised learners
with the aim of making them monotone. First, we provide some intuition how
to achieve this: ideally, during the generation of the learning curve, we would
check whether ε(hi+1) ≤ ε(hi). A fix to make a learner monotone would be to
output hi instead of hi+1 if the error rate of hi+1 is larger. Since learners do
not have access to ε(hi), we have to estimate it using the incoming data. The
first two algorithms, MTSIMPLE and MTHT, use the holdout method to this end;
newly arriving data is partitioned into training and validation sets. The third
algorithm, MTCV, makes use of cross validation.

MTSIMPLE: Monotone Simple. The pseudo-code for MTSIMPLE is given by
Algorithm 1 in combination with the function UpdateSimple. Batches Si are split
into training (Si

t) and validation (Si
v). The training set St is enlarged each round

with Si
t and a new model hi is trained. Si

v is used to estimate the performance of
hi and hbest. We store the previously best performing model, hbest, and compare
its performance to that of hi. If the new model hi is better, it is returned and
hbest is updated, otherwise hbest is returned.

Because hi and hbest are both compared on Si
v the comparison is more accu-

rate because the comparison is paired. After the comparison Si
v can safely be

added to the training set (line 7 of Algorithm 1).
We call this algorithm MTSIMPLE because the model selection is a bit naive:

for small validation sets, the variance in the performance measure could be quite
large, leading to many non-monotone decisions. In the limit of infinitely large
Si

v, however, this algorithm should always be monotone (and very data hungry).

MTHT: Monotone Hypothesis Test. The second algorithm, MTHT, aims
to resolve the issues of MTSIMPLE with small validation set sizes. In addition,
for this algorithm, we prove that individual learning curves are monotone with
high probability. The same pseudo-code is used as for MTSIMPLE (Algorithm 1),
but with a different update function UpdateHT. Now a hypothesis test HT
determines if the newly trained model is significantly better than the previous
model. The hypothesis test makes sure that the newly trained model is not better
due to chance (such as an unlucky sample). The hypothesis test is conservative,
and only switches to a new model if we are reasonably sure it is significantly
better, to avoid non-monotone decisions. Japkowicz and Shah [7] provide an
accessible introduction to understand the frequentist hypothesis testing.

538 T. J. Viering et al.

Algorithm 1. MSIMPLE and MHT

input: supervised learner A, rounds n, batches Si

u ∈ {updateSimple, updateHT}
if u = updateHT: confidence level α, hypothesis test HT

1 St = {}
2 for i = 1, . . . , n do
3 Split Si in Si

t and Si
v

4 Append to St : St = [St; S
i
t]

5 hi ← A(St)

6 Updatei ← u(Si
v, hi, hbest, α, HT) // see below

7 Append to St : St = [St; S
i
v]

8 if Updatei or i = 1 then
9 hbest ← hi

10 end
11 Return hbest in round i

12 end

Function UpdateSimple
input: Si

v, hi, hbest

1 Pcurrent ← ε̂(hi, S
i
v)

2 Pbest ← ε̂(hbest, S
i
v)

3 return (Pcurrent ≤ Pbest)

Function UpdateHT
input: Si

v, hi, hbest, confidence level α,
hypothesis test HT

1 p = HT (Si
v, hi, hbest)// p-value

2 return (p ≤ alpha)

The choice of hypothesis test depends on the performance measure. For the
error rate the McNemar test can be used [7,14]. The hypothesis test should use
paired data, since we evaluate two models on one sample, and it should be one-
tailed. One-tailed, since we only want to know whether hi is better than hbest (a
two tailed test would switch to hi if its performance is significantly different). The
test compares two hypotheses: H0 : ε(hi) = ε(hbest) and H1 : ε(hi) < ε(hbest).

Several versions of the McNemar test can be used [4,7,14]. We use the McNe-
mar exact conditional test which we briefly review. Let b be the random variable
indicating the number of samples classified correctly by hbest and incorrectly by
hi of the sample Si

v, and let Nd be the number of samples where they disagree.
The test conditions on Nd. Assuming H0 is true, P (b = x|H0, Nd) =

(
Nd

x

)
(12)Nd .

Given x b’s, the p-value for our one tailed test is p =
∑x

i=0 P (b = i|H0, Nd).
The one tailed p-value is the probability of observing a more extreme sample

given hypothesis H0 considering the tail direction of H1. The smaller the p-value,
the more evidence we have for H1. If the p-value is smaller than α, we accept H1,
and thus we update the model hbest. The smaller α, the more conservative the
hypothesis test, and thus the smaller the chance that a wrong decision is made
due to unlucky sampling. For the McNemar exact conditional test [4] the False
Positive Rate (FPR, or the probability to make a Type I error) is bounded by
α: P (p ≤ α|H0) ≤ α. We need this to prove monotonicity with high probability.

Making Learners (More) Monotone 539

MTCV: Monotone Cross Validation. In practice, often K-fold cross valida-
tion (CV) is used to estimate model performance instead of the holdout. This
is what MTCV does, and is similar to MTSIMPLE. As described in Algorithm 2,
for each incoming sample an index I maintains to which fold it belongs. These
indices are used to generate the folds for the K-fold cross validation.

During CV, K models are trained and evaluated on the validation sets. We
now have to memorize K previously best models, one for each fold. We average
the performance of the newly trained models over the K-folds, and compare
that to the average of the best previous K models. This averaging over folds is
essential, as this reduces the variance of the model selection step as compared
to selecting the best model overall (like MTSIMPLE does).

In our framework we return a single model in each iteration. We return the
model with the optimal training set size that performed best during CV. This
can further improve performance.

Algorithm 2. MCV

input: K folds, learner A, rounds n, batches Si

1 b ← 1 // keeps track of best round
2 S = {}, I = {}
3 for i = 1, . . . , n do
4 Generate stratified CV indices for Si and put in Ii. Each index i

indicates to which validation fold the corresponding sample belongs.
5 Append to S: S ← [S;Si]
6 Append to I: I ← [I; Ii]
7 for k = 1, . . . , K do
8 hk

i ← A(S[I �= k]) // training set of kth fold

9 P k
i ← ε̂(hk

i , S[I = k]) // validation set of kth fold

10 P k
b ← ε̂(hk

b , S[I = k]) // update performance of prev. models

11 end
12 Updatei ← (mean(P k

i) ≤ mean(P k
b)) // mean w.r.t. k

13 if Updatei or i = 1 then
14 b ← i
15 end
16 k ← arg mink P k

b // break ties

17 Return hk
b in round i

18 end

4 Theoretical Analysis

We derive the probability of a monotone learning curve for MTSIMPLE and
MTHT, and we prove our algorithms are consistent if the model updates enough.

Theorem 1. Assume we use the McNemar exact conditional test (see Sect. 3)
with α ∈ (0, 1

2], then the individual learning curve generated by Algorithm MTHT

with n rounds is monotone with probability at least (1 − α)n.

540 T. J. Viering et al.

Proof. First we argue that the probability of making a non-monotone decision
in round i is at most α. If H1 : ε(hi) < ε(hbest) or H0 : ε(hi) = ε(hbest) is
true, we are monotone in round i, so we only need to consider a new alternative
hypothesis H2 : ε(hi) > ε(hbest). Under H0 we have [4]: P (p ≤ α|H0) ≤ α.
Conditioned on H2, b is binomial with larger mean than in the case of H0, thus
we observe larger p-values if α ∈ (0, 1

2], thus P (p ≤ α|H2) ≤ P (p ≤ α|H0) ≤ α.
Therefore the probability of being non-monotone in round i is at most α. This
holds for any model hi, hbest and anything that happened before round i. Since
Si

v are independent samples, being non-monotone in each round can be seen as
independent events, resulting in (1 − α)n. ��

If the probability of being non-monotone in all rounds is at most β, we can
set α = 1 − β

1
n to fulfill this condition. Note that this analysis also holds for

MTSIMPLE, since running MTHT with α = 1
2 results in the same algorithm as

MTSIMPLE for the McNemar exact conditional test.
We now argue that all proposed algorithms are consistent under some con-

ditions. First, let us revisit the definition of consistency [17].

Definition 1 (Consistency [17]). Let L be a learner that returns a hypothesis
L(S) ∈ H when evaluated on S. For all εexcess ∈ (0, 1), for all distributions D
over X × Y , for all δ ∈ (0, 1), if there exists a n(εexcess,D, δ), such that for all
m ≥ n(εexcess,D, δ), if L uses a sample S of size m, and the following holds with
probability (over the choice of S) at least 1 − δ,

ε(L(S)) ≤ min
h∈H

ε(h) + εexcess, (2)

then L is said to be consistent.

Before we can state the main result, we have to introduce a bit of notation.
Ui indicates the event that the algorithm updates hbest (or in case of MCV it
updates the variable b). Hi+z

i to indicates the event that ¬Ui ∩ ¬Ui+1 ∩ . . . ∩
¬Ui+z, or in words, that in round i to i + z there has been no update. To fulfill
consistency, we need that when the number of rounds grows to infinity, the
probability of updating is large enough. Then consistency of A makes sure that
hbest has sufficiently low error. For this analysis it is assumed that the number
of rounds of the algorithms is not fixed.

Theorem 2. MTSIMPLE, MTHT and MTCV are consistent, if A is consistent
and if for all i there exists a zi ∈ N \ 0 and Ci > 0 such that for all k ∈ N \ 0 it
holds that P (Hi+kzi

i) ≤ (1 − Ci)k.

Proof. Let A be consistent with nA(εexcess,D, δ) samples. Let us analyze round
i where i is big enough such that2 |St| > nA(εexcess,D, δ

2). Assume that

ε(hbest) > min
h∈H

ε(h) + εexcess, (3)

2 In case of MTCV, take |St| to be the smallest training fold size in round i.

Making Learners (More) Monotone 541

otherwise the proof is trivial. For any round j ≥ i, since A produces hypothesis
hj with |St| > nA(εexcess,D, δ

2) samples,

ε(hj) ≤ min
h∈H

ε(h) + εexcess (4)

holds with probability of at least 1 − δ
2 . Now L should update. The probability

that in the next kzi rounds we don’t update is, by assumption, bounded by
(1−Ci)k. Since Ci > 0, we can choose k big enough so that (1−Ci)k ≤ δ

2 . Thus
the probability of not updating after kzi more rounds is at most δ

2 , and we have
a probability of δ

2 that the model after updating is not good enough. Applying
the union bound we find the probability of failure is at most δ. ��

A few remarks about the assumption. It tells us, that an update is more and
more likely if we have more consecutive rounds where there has been no update.
It holds if each zi rounds the update probability is nonzero. A weaker but also
sufficient assumption is ∀i : limz→∞ P (Hi+z

i) → 0.
For MTSIMPLE and MTCV the assumption is always satisfied, because these

algorithms look directly at the mean error rate—and due to fluctuations in the
sampling there is always a non-zero probability that ε̂(hi) ≤ ε̂(hbest). However,
for MTHT this may not always be satisfied. Especially if the validation batches
Nv are small, the hypothesis test may not be able to detect small differences in
error—the test then has zero power. If Nv stays small, even in future rounds the
power may stay zero, in which case the learner is not consistent.

5 Experiments

We evaluate MTSIMPLE and MTHT on artificial datasets to understand the influ-
ence of their parameters. Afterward we perform a benchmark where we also
include MTCV and a baseline that uses validation data to tune the regulariza-
tion strength. This last experiment is also performed on the MNIST dataset
to get an impression of the practicality of the proposed algorithms. First we
describe the experimental setup in more detail.

Experimental Setup. The peaking dataset [3] and dipping dataset [9] are
artificial datasets that cause non-monotone behaviour. We use stratified sam-
pling to obtain batches Si for the peaking and dipping dataset, for MNIST we
use random sampling. For simplicity all batches have the same size. N indicates
batch size, and Nv and Nt indicate the sizes of the validation and training sets.

As model we use least squares classification [5,15]. This is ordinary linear
least squares regression on the classification labels {−1,+1} with intercept. For
MNIST one-versus-all is used to train a multi-class model. In case there are
less samples for training than dimensions, the required inverse of the covariance
matrix is ill-defined and we resort to the Moore-Penrose Pseudo-Inverse.

Monotonicity is calculated by the fraction of non-monotone iterations per
run. AULC is also calculated per run. We do 100 runs with different batches

542 T. J. Viering et al.

and average to reduce variation from the randomness in the batches. Each run
uses a newly sampled test set consisting of 10000 samples. The test set is used
to estimate the true error rate and is not accessible by any of the algorithms.

We evaluate MSIMPLE, MHT and MCV and several baselines. The standard
learner just trains on all received data. A second baseline, λS , splits the data in
train and validation like MSIMPLE and uses the validation data to select the opti-
mal L2 regularization parameter λ for the least square classifier. Regularization
is implemented by adding λI to the estimate of the covariance matrix.

In the first experiment we investigate the influence of Nv and α for MTSIMPLE

and MTHT on the decisions. A complicating factor is that if Nv changes, not
only decisions change, but also training set sizes because Sv is appended to the
training set (see line 7 of Algorithm 1). This makes interpretation of the results
difficult because decisions are then made in a different context. Therefore, for
the first set of experiments, we do not add Sv to the training sets, also not for
the standard learner. For this set of experiment We use Nt = 4, n = 150, d = 200
for the peaking dataset, and we vary α and Nv.

For the benchmark, we set Nt = 10, Nv = 40, n = 150 for peaking and
dipping, and we set Nt = 5, Nv = 20, n = 40 for MNIST. We fix α = 0.05
and use d = 500 for the peaking dataset. For MNIST, as preprocessing step we
extract 500 random Fourier-features as also done by Belkin et al. [1]. For MTCV

we use K = 5 folds. For λS we try λ ∈ {10−5, 10−4.5, . . . , 104.5, 105} for peaking
and dipping, and we try λ ∈ {10−3, 10−2, . . . , 103} for MNIST.

Results. We perform a preliminary investigation of the algorithms MSIMPLE

and MHT and the influence of the parameters Nv and α. We show several learning
curves in Fig. 1a and d. For small Nv and α we observe MTHT gets stuck: it does
not switch models anymore, indicating that consistency could be violated.

In Fig. 1b and e we give a more complete picture of all tried hyperparameters
in terms of the AULC. In Fig. 1c and f we plot the fraction of non-monotone
decisions during a run (note that the legends for the subfigures are different).
Observe that the axes are scaled differently (some are logarithmic). In some cases
zero non-monotone decisions were observed, resulting in a missing value due to
log(0). This occurs for example if MTHT always sticks to the same model, then
no non-monotone decisions are made. The results of the benchmark are shown
in Fig. 2. The AULC and fraction of monotone decisions are given in Table 1.

6 Discussion

First Experiment: Tuning α and Nv . As predicted MTSIMPLE typically
performs worse than MTHT in terms of AULC and monotonicity unless Nv is
very large. The variance in the estimate of the error rates on Si

v is so large
that in most cases the algorithm doesn’t switch to the correct model. However,
MTSIMPLE seems to be consistently better than the standard learner in terms
of monotonicity and AULC, while MTHT can perform worse if badly tuned.

Making Learners (More) Monotone 543

0 100 200 300 400 500 600
0.2

0.25

0.3

0.35

0.4

0.45

0.5

(a) Peaking learning curve

5 15 25 50 100 1000
0.22

0.24

0.26

0.28

0.3

0.32

0.34

(b) Peaking AULC

5 15 25 50 100 1000

0.005

0.05

0.1

0.25

0.45

(c) Peaking Monotonicity

0 100 200 300 400 500 600
0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

(d) Dipping learning curve

5 15 25 50 100 1000
0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

(e) Dipping AULC

5 15 25 50 100 1000

0.005

0.05

0.1

0.25
0.45

(f) Dipping Monotonicity

Fig. 1. Influence of Nv and α for MTSIMPLE and MTHT on the Peaking and Dipping
dataset. Note that some axes are logarithmic and b, c, e, f have the same legend.

Larger Nv leads typically to improved AULC for both. α ∈ [0.05, 0.1] seems
to work best in terms of AULC for most values of Nv. If α is too small, MTHT

can get stuck, if α is too large, it switches models too often and non-monotone
behaviour occurs. If α → 1

2 , MTHT becomes increasingly similar to MTSIMPLE

as predicted by the theory.
The fraction of non-monotone decisions of MTHT is much lower than α.

This is in agreement with Theorem 1, but could indicate in addition that the
hypothesis test is rather pessimistic. The standard learner and MTSIMPLE often
make non-monotone decisions. In some cases almost 50% of the decisions are
not-monotone.

0 1000 2000 3000 4000 5000 6000 7000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(a) Peaking

0 1000 2000 3000 4000 5000 6000 7000
0.25

0.3

0.35

0.4

0.45

0.5

(b) Dipping

0 200 400 600 800 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) MNIST

Fig. 2. Expected learning curves on the benchmark datasets.

544 T. J. Viering et al.

Table 1. Results of the benchmark. SL is the Standard Learner. AULC is the Area
Under the Learning Curve of the error rate. Fraction indicates the average fraction
of non-monotone decisions during a single run. Standard deviation shown in (braces).
Best monotonicity result is underlined.

Peaking Dipping MNIST

AULC Fraction AULC Fraction AULC Fraction

SL 0.198 (0.003) 0.31 (0.02) 0.49 (0.01) 0.50 (0.03) 0.44 (0.01) 0.27 (0.04)

MTS 0.195 (0.005) 0.23 (0.03) 0.45 (0.06) 0.37 (0.15) 0.42 (0.02) 0.11 (0.04)

MTHT 0.208 (0.009) 0.00 (0.00) 0.38 (0.08) 0.00 (0.00) 0.45 (0.02) 0.00 (0.00)

MTCV 0.208 (0.005) 0.34 (0.03) 0.28 (0.02) 0.19 (0.08) 0.45 (0.01) 0.30 (0.06)

λS 0.147 (0.003) 0.43 (0.03) 0.49 (0.01) 0.50 (0.03) 0.36 (0.02) 0.46 (0.05)

Second Experiment: Benchmark on Peaking, Dipping, MNIST. Inter-
estingly, for peaking and MNIST datasets any non-monotonicity (double descent
[1]) in the expected learning curve almost completely disappears for λS , which
tunes the regularization parameter using validation data (Fig. 2). We wonder if
regularization can also help reducing the severity of double descent in other set-
tings. For the dipping dataset, regularization doesn’t help, showing that it cannot
prevent non-monotone behaviour. Furthermore, the fraction of non-monotone
decisions per run is largest for this learner (Table 1).

For the dipping dataset MCV has a large advantage in terms of AULC. We
hypothesize that this is largely due to tie breaking and small training set sizes due
to the 5-folds. Surprisingly on the peaking dataset it seems to learn quite slowly.
The expected learning curves of MTHT look better than that of MTSIMPLE,
however, in terms of AULC the difference is quite small.

The fraction of non-monotone decisions for MTHT per run is very small as
guaranteed. However, it is interesting to note that this does not always translate
to monotonicity in the expected learning curve. For example, for peaking and
dipping the expected curve doesn’t seem entirely monotone. But MTCV, which
makes many non-monotone decisions per run, still seems to have a monotone
expected learning curve. While monotonicity of each individual learning curves
guarantees monotonicity in the expected curve, this result indicates monotonicity
of each individual curve may not be necessary. This raises the question: under
what conditions do we have monotonicity of the expected learning curve?

General Remarks. The fraction of non-monotone decisions of MTHT being
so much smaller than α could indicate the hypothesis test is too pessimistic.
Fagerland et al. [4] note that the asymptotic McNemar test can have more
power, which could further improve the AULC. For this test the guarantee
P (p ≤ α|H0) ≤ α can be violated, but in light of the monotonicity results
obtained, practically this may not be an issue.

Making Learners (More) Monotone 545

MTHT is inconsistent at times, but this does not have to be problematic. If
one knows the desired error rate, a minimum Nv can be determined that ensures
the hypothesis test will not get stuck before reaching that error rate. Another
possibility is to make the size Nv dependent on i: if Nv is monotonically increas-
ing this directly leads to consistency of MTHT. It would be ideal if somehow Nv

could be automatically tuned to trade off sample size requirements, consistency
and monotonicity. Since for CV Nv automatically grows and thus also directly
implies consistency, a combination of MTHT and MTCV is another option.

Devroye et al. [2] conjectured that it is impossible to construct a consistent
learner that is monotone in terms of the expected learning curve. Since we look
at individual curves, our work does not disprove this conjecture, but some of
the authors on this paper believe that the conjecture can be disproved. One step
to make is to get to an essentially better understanding of the relation between
individual learning curves and the expected one.

Currently, our definition judges any decision that increases the error rate, by
however small amount, as non-monotone. It would be desirable to have a broader
definition of non-monotonicity that allows for small and negligible increases of
the error rate. Using a hypothesis test satisfying such a less strict condition could
allow us to use less data for validation.

Finally, the user of the learning system should be notified that non-
monotonicity has occurred. Then the cause can be investigated and mitigated
by regularization, model selection, etc. However, in automated systems our algo-
rithm can prevent any known and unknown causes of non-monotonicity (as long
as data is i.i.d.), and thus can be used as a failsafe that requires no human
intervention.

7 Conclusion

We have introduced three algorithms to make learners more monotone. We
proved under which conditions the algorithms are consistent and we have shown
for MTHT that the learning curve is monotone with high probability. If one
cares only about monotonicity of the expected learning curve, MTSIMPLE with
very large Nv or MTCV may prove sufficient as shown by our experiments. If
Nv is small, or one desires that individual learning curves are monotone with
high probability (as practically most relevant), MTHT is the right choice. Our
algorithms are a first step towards developing learners that, given more data,
improve their performance in expectation.

Acknowledgments. We would like to thank the reviewers for their useful feedback
for preparing the camera ready version of this paper.

546 T. J. Viering et al.

References

1. Belkin, M., Hsu, D., Ma, S., Mandal, S.: Reconciling modern machine-learning
practice and the classical bias-variance trade-off. Proc. Nat. Acad. Sci. 116(32),
15849–15854 (2019)

2. Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recogni-
tion. Stochastic Modelling and Applied Probability. Springer, Heidelberg (1996).
https://doi.org/10.1007/978-1-4612-0711-5

3. Duin, R.: Small sample size generalization. In: Proceedings of the Scandinavian
Conference on Image Analysis, vol. 2, pp. 957–964 (1995)

4. Fagerland, M.W., Lydersen, S., Laake, P.: The McNemar test for binary matched-
pairs data: mid-p and asymptotic are better than exact conditional. BMC Med.
Res. Methodol. 13, 91 (2013). https://doi.org/10.1186/1471-2288-13-91

5. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS.
Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

6. Huijser, M., van Gemert, J.C.: Active decision boundary annotation with deep
generative models. In: ICCV, pp. 5286–5295 (2017)

7. Japkowicz, N., Shah, M.: Evaluating Learning Algorithms: A Classification Per-
spective. Cambridge University Press, Cambridge (2011)

8. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

9. Loog, M., Duin, R.: The dipping phenomenon. In: S+SSPR, Hiroshima, Japan,
pp. 310–317 (2012)

10. Loog, M., Viering, T., Mey, A.: Minimizers of the empirical risk and risk mono-
tonicity. In: NeuRIPS, vol. 32, pp. 7476–7485 (2019)

11. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning.
MIT Press, Cambridge (2012)

12. Opper, M., Kinzel, W., Kleinz, J., Nehl, R.: On the ability of the optimal perceptron
to generalise. J. Phys. A: Math. General 23(11), L581 (1990)

13. O’Neill, J., Jane Delany, S., MacNamee, B.: Model-free and model-based active
learning for regression. In: Angelov, P., Gegov, A., Jayne, C., Shen, Q. (eds.)
Advances in Computational Intelligence Systems. AISC, vol. 513, pp. 375–386.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46562-3 24

14. Raschka, S.: Model evaluation, model selection, and algorithm selection in machine
learning (2018). arXiv preprint arXiv:1811.12808

15. Rifkin, R., Yeo, G., Poggio, T.: Regularized least-squares classification. Nato Sci.
Ser. Sub Ser. III Comput. Syst. Sci. 190, 131–154 (2003)

16. Settles, B., Craven, M.: An analysis of active learning strategies for sequence label-
ing tasks. In: EMNLP, pp. 1070–1079 (2008)

17. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory
to Algorithms. Cambridge University Press, Cambridge (2014)

18. Spigler, S., Geiger, M., D’Ascoli, S., Sagun, L., Biroli, G., Wyart, M.: A jamming
transition from under- to over-parametrization affects loss landscape and general-
ization (2018). arXiv preprint arXiv:1810.09665

19. Viering, T., Mey, A., Loog, M.: Open problem: monotonicity of learning. In: Con-
ference on Learning Theory, COLT, pp. 3198–3201 (2019)

https://doi.org/10.1007/978-1-4612-0711-5
https://doi.org/10.1186/1471-2288-13-91
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-3-319-46562-3_24
http://arxiv.org/abs/1811.12808
http://arxiv.org/abs/1810.09665

Making Learners (More) Monotone 547

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Combining Machine Learning and Simulation
to a Hybrid Modelling Approach:
Current and Future Directions

Laura von Rueden1,2(B), Sebastian Mayer1,3, Rafet Sifa1,2,
Christian Bauckhage1,2, and Jochen Garcke1,3,4

1 Fraunhofer Center for Machine Learning, Sankt Augustin, Germany
2 Fraunhofer IAIS, Sankt Augustin, Germany
3 Fraunhofer SCAI, Sankt Augustin, Germany

4 Institute for Numerical Simulation, University of Bonn, Bonn, Germany
laura.von.rueden@iais.fraunhofer.de

Abstract. In this paper, we describe the combination of machine learn-
ing and simulation towards a hybrid modelling approach. Such a com-
bination of data-based and knowledge-based modelling is motivated by
applications that are partly based on causal relationships, while other
effects result from hidden dependencies that are represented in huge
amounts of data. Our aim is to bridge the knowledge gap between the
two individual communities from machine learning and simulation to
promote the development of hybrid systems. We present a conceptual
framework that helps to identify potential combined approaches and
employ it to give a structured overview of different types of combinations
using exemplary approaches of simulation-assisted machine learning and
machine-learning assisted simulation. We also discuss an advanced pair-
ing in the context of Industry 4.0 where we see particular further poten-
tial for hybrid systems.

Keywords: Machine learning · Simulation · Hybrid approaches

1 Introduction

Machine learning and simulation have a similar goal: To predict the behaviour
of a system with data analysis and mathematical modelling. On the one side,
machine learning has shown great successes in fields like image classification [21],
language processing [24], or socio-economic analysis [7], where causal relation-
ships are often only sparsely given but huge amounts of data are available. On the
other side, simulation is traditionally rooted in natural sciences and engineering,
e.g. in computational fluid dynamics [35], where the derivation of causal rela-
tionships plays an important role, or in structural mechanics for the performance
evaluation of structures regarding reactions, stresses, and displacements [6].

However, some applications can benefit from combining machine learning
and simulation. Such an hybrid approach can be useful when the processing
c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 548–560, 2020.
https://doi.org/10.1007/978-3-030-44584-3_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_43&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_43

Combining Machine Learning and Simulation 549

capabilities of classical simulation computations can not handle the available
dimensionality of the data, for example in earth system sciences [30], or when
the behaviour of a system that is supposed to be predicted is based on both
known, causal relationships and unknown, hidden dependencies, for example
in risk management [25]. However, such challenges are in practice often still
approached distinctly with either machine learning or simulation, apparently
because they historically originate from distinct fields. This raises the question
how these two modelling approaches can be combined into a hybrid approach
in order to foster intelligent data analysis. Here, a key challenge in developing
a hybrid modelling approach is to bridge the knowledge gap between the two
individual communities, which are mostly either experts for machine learning or
experts for simulation. Both groups have extremely deep knowledge about the
methods used in their particular fields. However, the respectively used termi-
nologies are different, so that an exchange of ideas between both communities
can be impeded.

Related work that describes a combination of machine learning with simula-
tion can roughly be divided in two groups, not surprisingly, either from a machine
learning or a simulation point of view. The first group frequently describes the
integration of simulation into machine learning as an additional source for train-
ing data, for example in autonomous driving [23], thermodynamics [19], or bio-
medicine [13]. A typical motivation is the augmentation of data for scenarios
that are not sufficiently represented in the available data. The second group of
related works describes the integration of machine learning techniques in sim-
ulation, often for a specific application, such as car crash simulation [6], fluid
simulation [38], or molecular simulation [26]. A typical motivation is to iden-
tify surrogate models [16], which offer an approximate but cheaper to evaluate
model to replace the full simulation. Another technique that is used to adapt
a dynamical simulation model to new measurements is data assimilation, which
is traditionally used in weather forecasting [22]. Related work that considers an
equal combination of machine learning and simulation is quite rare. A work that
is closest to describing such a hybrid, symbiotic modelling approach is [4].

More general, the integration of prior knowledge into machine learning can be
described as informed machine learning [34] or theory-guided data science [18].
The paper [34] presents a survey with a taxonomy that structures approaches
according to the knowledge type, representation, and integration stage. We reuse
those categories in this paper. However, that survey considers a much broader
spectrum of knowledge representations, from logic rules over simulation results
to human interaction, while this paper puts an explicit focus on simulations.

Our goal is to make the key components of the two modelling approaches
machine learning and simulation transparent and to show the versatile, potential
combination possibilities in order to inspire and foster future developments of
hybrid systems. We do not intend to go into technical details but rather give a
high-level methodological overview. With our paper we want to outline a vision
of a stronger, more automated interplay between data- and simulation-based
analysis methods. We mainly aim our findings at the data analysis and machine

550 L. von Rueden et al.

Machine
Learning Simulation

Sim-
assisted ML

ML-assisted
Sim

Hybrid

Fig. 1. Subfields of Combining Machine Learning and Simulation. The fields
of machine learning and simulation have an intersecting area, which we partition into
three subfields: 1. Simulation-assisted machine learning describes the integration of
simulations into machine learning. 2. Machine-learning assisted simulation describes
the integration of machine learning into simulation. 3. A hybrid combination describes
a combination of machine learning and simulation with a strong mutual interplay.

learning community, but also those from the simulation community are welcome
to read on. Generally, our target audience are researchers and users of one of the
two modelling approaches who want to learn how they can use the other one.

The contributions of this paper are: 1. A conceptual framework serving as an
orientation aid for comparing and combining machine learning and simulation,
2. a structured overview of combinations of both modelling approaches, 3. our
vision of a hybrid approach with a stronger interplay of data- and simulation
based analysis.

The paper is structured as follows: In Sect. 2 we give a brief overview of the
subfields that result from combining machine learning and simulation. In Sect. 3
we present these two separate modelling approaches along our conceptual frame-
work. In Sect. 4 we describe the versatile combinations by giving exemplary refer-
ences and applications. In Sect. 5 we further discuss our observations in Industry
4.0 projects that lead us to a vision for the advanced pairing of machine learning
and simulation. Finally we conclude in Sect. 6.

2 Overview

In this section, we give a short overview about the subfields that result from a
combination of machine learning with simulation. We view the combination with
equal focus on both fields, driving our vision of a hybrid modelling approach
with a stronger and automated interplay. Figure 1 illustrates our view on the
fields’ overlap, which can be partitioned into the three subfields simulation-
assisted machine learning, machine-learning assisted simulation, and a hybrid
combination. Even though the first two can be regarded as one-sided approaches
because they describe the integration with a point of view from one approach,
the last one can be regarded as a two-sided approach. Although the term hybrid

Combining Machine Learning and Simulation 551

Machine Learning

1. Model Generation Phase: Learning an Inductive Model

2. Model Application Phase: Inference / Prediction

Model

Data Training Data

Hypothesis Set

Algorithm

Final Hypothesis

Fig. 2. Components of Machine Learning. Machine Learning consists of two
phases 1. model generation, and 2. model application, where the focus is usually made
on the first phase, in which an inductive model is learned from data. The compo-
nents of this phase are the training data, a hypothesis set, a learning algorithm, and
a final hypothesis [1,34]. It describes the finding of patterns in an initially large data
space, which are finally represented in a condensed form by the final hypothesis. This
is illustrated by the reversed triangle and can be described as a “bottom-up approach”.

is in the literature often used for the above one-sided approaches, we prefer to
use it only for the two-sided approach where machine learning and simulation
have a strong mutual, symbiotic-like interplay.

3 Modelling Approaches

In this section, we describe the two modelling approaches by means of a concep-
tual framework that aims to make them and their components transparent and
comparable.

3.1 Machine Learning

The main goal of machine learning is that a machine automatically learns a
model that describes patterns in given data. The typical components of machine
learning are illustrated in Fig. 2. In the first, main phase an inductive model is
learned. Inductive means that the model is built by drawing conclusions from
samples and is thus not guaranteed to depict causal relationships, but can instead
identify hidden, previously unknown patterns, meaning that the model is usually
not knowledge-based but rather data-based. This inductive model can finally be
applied to new data in order to predict or infer a desired target variable.

The model generation phase can be roughly split into four sub-phases or
respective components [1,34]. Firstly, training data is prepared that depicts his-
torical records of the investigated process or system. Secondly, a hypothesis set

552 L. von Rueden et al.

Simulation

1. Model Generation Phase: Identifying a Deductive Model

2. Model Application Phase: Running a Simulation

Data

Model

Simulation Result

Numerical Method

Parameter

Model

Fig. 3. Components of Simulation. Simulation comprises the two phases 1. model
generation, and 2. model application, where the focus often is on the second phase, in
which an earlier identified deductive model is used in order to create simulation results.
The components of this phase are the simulation model, input parameters, a numerical
method, and the simulation result. It describes the unfolding of local interactions from
a compactly represented initial model into an expanded data space. This is supposed
be illustrated by the triangle and can be described as a “top-down approach”.

is defined in the form of a function class or network architecture that is assumed
to map input features to the target variables. Thirdly, a learning algorithm
tunes the parameters of the hypothesis set so that the performance of the map-
ping is maximized by using optimization algorithms like gradient descent and
results in, fourthly, the final hypothesis, which is the desired inductive model.
This model generation phase is often repeated in a loop-like manner by tuning
hyper-parameters until a sufficient model performance is achieved.

3.2 Simulation

The goal of a simulation is to predict the behaviour of a system or process
for a particular situation. There are different types of simulations, ranging
from cellular automata, over agent-based simulations, to equation-based sim-
ulations [9,15,36]. In the following we concentrate on the last type, which is
based on mathematical models and is especially used in science and engineer-
ing. The first, required stage preceding the actual simulation is the identification
of a deductive model, often in the form of differential equations. Deductive in
this context means that the model describes causal relationships and can thus
be called knowledge-based. Such models are often developed through extensive
research, starting with a derivation, for example in theoretical physics, and con-
tinuing with plentiful experimental validations. Some recent research exists of
proof-of-concepts for identifying models directly from data [8,33].

The main phase of a simulation is the application of the identified model
for a specific scenario, often called running a simulation. This phase can be
described in four typical main components or sub-phases, which are, as illus-
trated in Fig. 3, the mathematical model, the input parameters, the numerical

Combining Machine Learning and Simulation 553

Simulation-Assisted Machine Learning

Integration of Simulation Results in:

or

a) Training Data b) Hypothesis Set c) L. Algorithm d) Final Hypothesis

Fig. 4. Types of Simulation-Assisted Machine Learning. Simulations, in par-
ticular the simulation results, can be generally integrated into the four different com-
ponents of machine learning. The triangles illustrate the machine learning (blue/dark
gray) or the simulation (orange/light gray) approach and their components, which are
themselves presented in Figs. 2 and 3. The simulation results can be used to (a) aug-
ment the training data, (b) define parts of the hypothesis set in the form of empirical
functions, (c) steer the training algorithm in generative adversarial networks, or (d)
verify the final hypothesis against scientific consistency. (Color figure online)

method, and finally the simulation result [36]. After the selection of a math-
ematical model, the input parameters that describe the specific scenario are
defined in the second sub-phase. They can comprise general parameters such
as the spatial domain or time of interest, as well as initial conditions quanti-
fying the systems’ or processes’ initial status and boundary conditions defining
the behaviour at domain borders. In the third sub-phase, a numerical method
computes the solution of the given model observing the constraints resulting
from the input parameters. Examples for numerical methods are finite differ-
ences, finite elements or finite volume methods for spatial discretization [36], or
particle methods based on interaction forces [26]. These form the basis for an
approximate solution, which is the final simulation result. This model application
phase is often repeated in a loop-like manner, e.g., by tuning the discretization
to achieve a desired approximation accuracy and stability of the solution.

4 Combining Machine Learning and Simulation

In this section, we describe combinations of machine learning and simulation
by using our conceptual framework from Sect. 3. Here, we focus on simulation-
assisted machine learning and machine-learning assisted simulation. For each of
the methodical combination types, we give exemplary application references.

4.1 Simulation-Assisted Machine Learning

Simulation offers an additional source of information for machine learning that
goes beyond typically available data and that is rich of knowledge. This addi-
tional information can be integrated into the four components of machine learn-
ing as illustrated in Fig. 4. In the following, we will give an overview about these

554 L. von Rueden et al.

integration types by giving for each an illustrative example and refer for a more
detailed discussion to [34].

Simulations are particularly useful for creating additional training data in
a controlled environment. This is for example applied in autonomous driving,
where simulations such as physics engines are employed to create photo-realistic
traffic scenes, which can be used as synthetic training data for learning tasks like
semantic segmentation [14], or for adversarial test generation [40]. As another
example, in systems biology, simulations can be integrated in the training data
of kernelized machine learning methods [13].

Moreover, simulations can be integrated into the hypothesis set, either
directly as the solvers or through deduced, empirical functions that compactly
describe the simulations results. These functions can be built into the architec-
ture of a neural network, as shown for the application of finding an optimal
design strategy for a warm forming process [20].

The integration of simulations into the learning algorithm can for example
be realized by generative adversarial networks (GANs), which learn a prediction
function that obeys constraints, which might be unknown but are implicitly
given through a simulation [31].

Another important integration type is in the validation of the final hypothesis
by simulations. An example for this comes from material discovery, where first
a machine learning model suggests new compounds based on patterns in a data
basis, and second the physical properties are computed and thus checked by a
density functional theory simulation [17].

An approach that uses simulations along the whole machine learning pipeline
is reinforcement learning (RL), when the model is learned in a simulated envi-
ronment [2]. Studies under the keyword “sim-to-real” are often concerned with
robots learning to grip or move unknown objects in simulations and usually
require retraining in reality. An application for controlling the temperature of
plasma follows the analogous approach, i.e., a training based on a software-
physics model, where the learned RL model is then further adapted for use in
reality [41].

4.2 Machine-Learning Assisted Simulation

Machine learning is often used in simulation with the intention to support the
solution process or to detect patterns in the simulation data. With respect to our
conceptual framework presented in Sect. 3, machine learning techniques can be
used for the initial model, the input parameters, the numerical method, and the
final simulation results, as illustrated in Fig. 4. In the following we will give an
overview about the integration types. Again, we do not intend to cover the full
spectrum of machine-learning assisted simulation, we rather want to illustrate
its diverse approaches through representative examples.

A prominent integration type of machine learning techniques into simulation
is the identification of simpler models, such as surrogate models [11,12,16,26].

Combining Machine Learning and Simulation 555

Machine-Learning Assisted Simulation

Integration of Machine Learning Model in:

a) Model b) Inp. Parameter c) Numerical M. d) Simulation Results

or

Fig. 5. Types of Machine-Learning Assisted Simulation. Machine learning tech-
niques, in particular the final hypothesis, can be used in different simulation compo-
nents. The triangles illustrate the machine learning (blue/dark gray) or the simulation
(orange/light gray) approach and their components, which are themselves explained
in Figs. 2 and 3. Exemplary use cases for machine learning models in simulation are
(a) model order reduction and the development of surrogate models that offer approxi-
mate but simpler solutions, (b) the automated inference of an intelligent choice of input
parameters for a next simulation run, (c) a partly trainable solver for differential equa-
tions, or d) the identification of patterns in simulation results for scientific discovery.
(Color figure online)

These are approximate and cheap to evaluate models that are particularly of
interest when the solution of the original, more precise model is very time- or
resource-consuming. The surrogate model can then be used to analyse the over-
all behaviour of the system in order to reveal scenarios that should be further
investigated with the detailed original simulation model. Such surrogate models
can be developed with machine-learning techniques either with data from real-
world experiments, or with data from high-fidelity simulations. One application
example is the optimization of process parameters using deep neural networks
as surrogate models [27]. Kernel-based approaches are also commonly used as
surrogate models for simulations, an example to improve the energetic efficiency
of a gas transport network is shown in [10]. A well-established approach for sur-
rogate modelling is model order reduction, for example with proper orthogonal
decomposition, which is closely related to principal component analysis [5,37].

Data assimilation, which includes the calibration of constitutive models and
the estimation of system states, is another area where machine learning tech-
niques enhance simulations. Data assimilation problems can be modelled using
dynamic Bayesian networks with continuous physically interpretable state spaces
where the evaluation of transition kernels and observation operators requires
forward-simulation runs [29].

Machine learning techniques can also be used to study the parameter depen-
dence of simulation results. For example, after an engineer executes a sequence of
simulations, a machine learning model can detect different behavioral modes in
the results and thus reduce the analysis effort during the engineering process [6].
This supports the selection of the parameter setting for the next simulation, for
which active learning techniques can also be employed. For example, [39] studied

556 L. von Rueden et al.

it for selecting the molecules for which the internal energy shall be determined
by computationally expensive quantum-mechanical calculations, as well as for
determining a surrogate model for the fluid flow in a well-bore while drilling.

The integration of machine learning techniques into the numerical method
can support to obtain the numerical solution. One approach is to exchange parts
of the model that are resource-consuming to solve, with learned models that can
be computed faster, for example with machine learning generated force fields in
molecular dynamics simulations [26]. Another approach that is recently investi-
gated are trainable solvers for partial differential equations that determine the
complete solution through a neural network [28].

A further, very important integration type is the application of machine
learning techniques on the simulation results in order to detect patterns, often
motivated by the goal of scientific discovery. While there are plenty of applica-
tion domains, two exemplary representatives are particle physics [3] and earth-
sciences, for example with the use of convolutional neural networks for the detec-
tion of weather patterns on climate simulation data [30]. For further examples we
refer to a survey about explainable machine learning for scientific discovery [32].

5 Advanced Pairing of Machine Learning and Simulation

Section 4 gave a brief overview of the versatile existing approaches that integrate
aspects of machine learning into simulation and vice versa, or that combine sim-
ulation and machine learning sequentially. Yet, we think that the integration of
these two established worlds is only at the beginning, both in terms of modelling
approaches and in terms of available software solutions.

In the following, we describe a number of observations from our project expe-
rience in the development of cyber-physical systems for Industry 4.0 applications
that support this assessment. Note that the key technical goal of Industry 4.0 is
the flexibilization of production processes. In addition to the broad integration of
digital equipment in the production machinery, a key provider of flexibilization
is a decrease of process design and dimensioning times and ideally, a merging
of planning and production phase that are today still strictly separated. This
requires a new generation of computer-aided engineering (CAE) software sys-
tems that allow for very fast process optimization cycles with real time feedback
loops to the production machinery. An advanced pairing of machine learning
and simulation will be key to realize such systems by addressing the following
issues:

– Simulation results are not fully exploited: Especially in the indus-
trial practice, simulations are run with a very specific analysis goal based
on expert-designed quantities of interest. This ignores that the simulation
result might reveal more patterns and regularities, which might be irrelevant
for the current analysis goal but useful in other contexts.

– Selective surrogate modelling: Even if modern machine learning
approaches are used, surrogate models are built for very specific purposes
and the decision when and where to use a surrogate model is left to domain

Combining Machine Learning and Simulation 557

experts. In this way, it is exploited too little that similar underlying systems
might lead to similar surrogate models and in consequence, too many costly
high-fidelity simulations are run to generate the data basis, although parts of
the learned surrogate models could be transferred.

– Parameter studies and simulation engines: Parameter and design stud-
ies are well-established tools in many fields of engineering. Surprisingly, the
frameworks to conduct these studies and to build the surrogate models are
third-party solutions that are separated from the core simulation engines. For
the parameter study framework, the simulation engine is a black box, which
does not know that it is currently used for a parameter study. In turn, the
standard rules to generate sampling points in the parameter space are not
aware about the internals of the simulation engine. This raises the question
how much more efficient parameter studies could be conducted so that both
software systems were stronger connected to each other.

These observations lead us to a research concept that we propose in this
paper and call it learning simulation engines. A learning simulation engine
is a hybrid system that combines machine learning and simulation in an opti-
mal way. Such an engine can automatically decide when and where to apply
learned surrogate models or high-fidelity simulations. Surrogate models are effi-
ciently organized and re-used through the use of transfer learning. Parameter and
design optimization is an integral component of the learning simulation engine
and active learning methods allow the efficient re-use of costly high-fidelity com-
putations.

Of course, the vision of a learning simulation engine raises numerous research
questions. We describe some of them in view of Fig. 1. First of all, the question
is how learning and simulation can be technically combined to such an advanced
hybrid approach, especially, if they can only be integrated into each other by
using the final simulation results and the final hypothesis (as shown in Figs. 4
and 5), or if they can also be combined at an earlier sub-phase. Moreover, the
counterparts of the learning’s model generation phase and the simulation’s model
application phase (see Figs. 2 and 3) should be investigated further in order
to better understand the similarities and differences to the simulation’s model
generation phase and a learning’s model application phase.

6 Conclusion

In this paper, we described the combination of machine learning and simulation
motivated by fostering intelligent analysis of applications that can benefit from
a combination of data- and knowledge-based solution approaches.

We categorized the overlap between the two fields into three sub-fields,
namely, simulation-assisted machine learning, machine-learning assisted simu-
lation, and a hybrid approach with a strong and mutual interplay. We presented
a conceptual framework for the two separate approaches, in order to make them
and their components transparent for the development of a potential combined
approach. In summary, it describes machine learning as a bottom-up approach

558 L. von Rueden et al.

that generates an inductive, data-based model and simulation as a top-down
approach that applies a deductive, knowledge-based model. Using this concep-
tual framework as an orientation aid for their integration into each other, we
gave a structured overview about the combination of machine learning and sim-
ulation. We showed the versatility of the approaches through exemplary methods
and use cases, ranging from simulation-based data augmentation and scientific
consistency checking of machine learning models, to surrogate modelling and
pattern detection in simulations for scientific discovery. Finally, we described
the scenario of an advanced pairing of machine learning and simulation in the
context of Industry 4.0 where we see particular further potential for hybrid
systems.

References

1. Abu-Mostafa, Y.S., Magdon-Ismail, M., Lin, H.T.: Learning From Data (2012)
2. Akkaya, I., et al.: Solving rubik’s cube with a robot hand (2019). arXiv:1910.07113
3. Albertsson, K., Altoe, P., Anderson, D., Andrews, M., Espinosa, J.P.A., Aurisano,

A., Basara, L., Bevan, A., Bhimji, W., et al.: Machine learning in high energy
physics community white paper. J. of Phys.: Conf. Ser. 1085, 022008 (2018)

4. Baker, R.E., Pena, J.M., Jayamohan, J., Jérusalem, A.: Mechanistic models versus
machine learning, a fight worth fighting for the biological community? Biol. Lett.
14(5), 20170660 (2018)

5. Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction
methods for parametric dynamical systems. SIAM Rev. 57(4), 483–531 (2015)

6. Bohn, B., Garcke, J., Iza-Teran, R., Paprotny, A., Peherstorfer, B., Schepsmeier,
U., Thole, C.A.: Analysis of car crash simulation data with nonlinear machine
learning methods. Proc. Comput. Sci. 18, 621–630 (2013)

7. Bollen, J., Mao, H., Pepe, A.: Modeling public mood and emotion: Twitter sen-
timent and socio-economic phenomena. In: AAAI Conference Weblogs and Social
Media (2011)

8. Brunton, S.L., Proctor, J.L., Kutz, J.N.: Discovering governing equations from
data by sparse identification of nonlinear dynamical systems. Proc. Nat. Acad.
Sci. 113(15), 3932–3937 (2016)

9. Bungartz, H.J., Zimmer, S., Buchholz, M., Pflger, D.: Modeling and Simulation
(2014)

10. Clees, T., Hornung, N., Nikitin, I., Nikitina, L., Steffes-lai, D.: RBF-metamodel
driven multi-objective optimization and its applications. Int. J. Adv. Intell. Syst.
9(1), 19–24 (2016)

11. Cozad, A., Sahinidis, N.V., Miller, D.C.: Learning surrogate models for simulation-
based optimization. AIChE J. 60(6), 2211–2227 (2014)

12. Cranmer, K., Brehmer, J., Louppe, G.: The frontier of simulation-based inference
(2019). arXiv:1911.01429

13. Deist, T.M., Patti, A., Wang, Z., Krane, D., Sorenson, T., Craft, D.: Simulation-
assisted machine learning. Bioinformatics 35(20), 4072–4080 (2019)

14. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: Carla: An open
urban driving simulator (2017). arXiv:1711.03938

15. Durán, J.M.: Computer Simulations in Science and Engineering. TFC. Springer,
Heidelberg (2018). https://doi.org/10.1007/978-3-319-90882-3

http://arxiv.org/abs/1910.07113
http://arxiv.org/abs/1911.01429
http://arxiv.org/abs/1711.03938
https://doi.org/10.1007/978-3-319-90882-3

Combining Machine Learning and Simulation 559

16. Forrester, A., Sobester, A., Keane, A.: Engineering Design via Surrogate Modelling:
A Practical Guide. John Wiley, Hoboken (2008)

17. Hautier, G., Fischer, C.C., Jain, A., Mueller, T., Ceder, G.: Finding natures missing
ternary oxide compounds using machine learning and density functional theory.
Chem. Mater. 22(12), 3762–3767 (2010)

18. Karpatne, A., Atluri, G., Faghmous, J.H., Steinbach, M., Banerjee, A., Ganguly,
A., Shekhar, S., Samatova, N., Kumar, V.: Theory-guided data science: a new
paradigm for scientific discovery from data. IEEE Trans. Knowl. Data Eng. 29(10),
2318–2331 (2017)

19. Karpatne, A., Watkins, W., Read, J., Kumar, V.: Physics-guided neural networks
(pgnn): an application in lake temperature modeling (2017). arXiv:1710.11431

20. Kim, H.S., Koc, M., Ni, J.: A hybrid multi-fidelity approach to the optimal design
of warm forming processes using a knowledge-based artificial neural network. Int.
J. Mach. Tools Manuf. 47(2), 211–222 (2007)

21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: NIPS (2012)

22. Lahoz, W., Khattatov, B., Menard, R. (eds.): Data Assimilation. Making Sense
of Observations. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-540-
74703-1

23. Lee, K.H., Li, J., Gaidon, A., Ros, G.: Spigan: Privileged adversarial learning from
simulation. In: ICLR (2019)

24. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: NIPS (2013)

25. Mitchell-Wallace, K., Foote, M., Hillier, J., Jones, M.: Natural Catastrophe Risk
Management and Modelling: A practitioner’s Guide. John Wiley, Hoboken (2017)

26. Noé, F., Tkatchenko, A., Müller, K.R., Clementi, C.: Machine learning for molec-
ular simulation (2019). arXiv:1911.02792

27. Pfrommer, J., Zimmerling, C., Liu, J., Kärger, L., Henning, F., Beyerer, J.: Opti-
misation of manufacturing process parameters using deep neural networks as sur-
rogate models. Proc. CIRP 72(1), 426–431 (2018)

28. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed deep learning
(part i): Data-driven solutions of nonlinear partial differential equations (2017).
arXiv:1711.10561

29. Reich, S., Cotter, C.: Probabilistic Forecasting and Bayesian Data Assimilation.
Cambridge University Press, Cambridge (2015)

30. Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais,
N., et al.: Deep learning and process understanding for data-driven earth system
science. Nature 566(7743), 195–204 (2019)

31. Ren, H., Stewart, R., Song, J., Kuleshov, V., Ermon, S.: Adversarial constraint
learning for structured prediction. In: IJCAI (2018)

32. Roscher, R., Bohn, B., Duarte, M.F., Garcke, J.: Explainable machine learning for
scientific insights and discoveries (2020). IEEE Access

33. Rudy, S.H., Brunton, S.L., Proctor, J.L., Kutz, J.N.: Data-driven discovery of
partial differential equations. Sci. Adv. 3(4), e1602614 (2017)

34. von Rueden, L., Mayer, S., Beckh, K., Georgiev, B., Giesselbach, S., Heese, R.,
Kirsch, B., Pfrommer, J., Pick, A., Ramamurthy, R., Walczak, M., Garcke, J.,
Bauckhage, C., Schuecker, J.: Informed machine learning - a taxonomy and survey
of integrating knowledge into learning systems (2020). arXiv:1903.12394v2

35. Shaw, C.T.: Using Computational Fluid Dynamics (1992)
36. Strang, G.: Computational Science and Engineering, vol. 791 (2007)

http://arxiv.org/abs/1710.11431
https://doi.org/10.1007/978-3-540-74703-1
https://doi.org/10.1007/978-3-540-74703-1
http://arxiv.org/abs/1911.02792
http://arxiv.org/abs/1711.10561
http://arxiv.org/abs/1903.12394v2

560 L. von Rueden et al.

37. Swischuk, R., Mainini, L., Peherstorfer, B., Willcox, K.: Projection-based model
reduction: formulations for physics-based machine learning. Comput. Fluids 179,
704–717 (2019)

38. Tompson, J., Schlachter, K., Sprechmann, P., Perlin, K.: Accelerating Eulerian
fluid simulation with convolutional networks. In: ICML (2017)

39. Tsymbalov, E., Makarychev, S., Shapeev, A., Panov, M.: Deeper connections
between neural networks and gaussian processes speed-up active learning (2019).
arXiv:1902.10350

40. Tuncali, C.E., Fainekos, G., Ito, H., Kapinski, J.: Simulation-based adversarial test
generation for autonomous vehicles with machine learning components. In: IEEE
Intelligent Vehicles Symposium (2018)

41. Witman, M., Gidon, D., Graves, D.B., Smit, B., Mesbah, A.: Sim-to-real transfer
reinforcement learning for control of thermal effects of an atmospheric pressure
plasma jet plasma sources. Sci. Technol. 28(9), 095019 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/1902.10350
http://creativecommons.org/licenses/by/4.0/

LiBRe: Label-Wise Selection of Base
Learners in Binary Relevance for

Multi-label Classification

Marcel Wever1(B), Alexander Tornede1, Felix Mohr2, and Eyke Hüllermeier1

1 Heinz Nixdorf Institut, Paderborn University, Paderborn, Germany
{marcel.wever,alexander.tornede,eyke}@upb.de

2 Universidad de La Sabana, Chia, Cundinamarca, Colombia
felix.mohr@unisabana.edu.co

Abstract. In multi-label classification (MLC), each instance is associ-
ated with a set of class labels, in contrast to standard classification, where
an instance is assigned a single label. Binary relevance (BR) learning,
which reduces a multi-label to a set of binary classification problems,
one per label, is arguably the most straight-forward approach to MLC.
In spite of its simplicity, BR proved to be competitive to more sophisti-
cated MLC methods, and still achieves state-of-the-art performance for
many loss functions. Somewhat surprisingly, the optimal choice of the
base learner for tackling the binary classification problems has received
very little attention so far. Taking advantage of the label independence
assumption inherent to BR, we propose a label-wise base learner selection
method optimizing label-wise macro averaged performance measures. In
an extensive experimental evaluation, we find that or approach, called
LiBRe, can significantly improve generalization performance.

Keywords: Multi-label classification · Algorithm selection · Binary
relevance

1 Introduction

By relaxing the assumption of mutual exclusiveness of classes, the setting of
multi-label classification (MLC) generalizes standard (binary or multinomial)
classification—subsequently also referred to as single-label classification (SLC).
MLC has received a lot of attention in the recent machine learning literature [23,
29]. The motivation for allowing an instance to be associated with several classes
simultaneously originated in the field of text categorization [19], but nowadays
multi-label methods are used in applications as diverse as image processing [4,26]
and video annotation [14], music classification [18], and bioinformatics [2].

Common approaches to MLC either adapt existing algorithms (algorithm
adaptation) to the MLC setting, e.g., the structure and the training procedure
for neural networks, or reduce the original MLC problem to one or multiple SLC
problems (problem transformation). The most intuitive and straight-forward
c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 561–573, 2020.
https://doi.org/10.1007/978-3-030-44584-3_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_44&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_44

562 M. Wever et al.

problem transformation is to decompose the original task into several binary
classification tasks, one per label. More specifically, each task consists of train-
ing a classifier that predicts whether or not a specific label is relevant for a query
instance. This approach is called binary relevance (BR) learning [3]. Beyond BR,
many more sophisticated strategies have been developed, most of them trying
to exploit correlations and interdependencies between labels [28]. In fact, BR
is often criticized for ignoring such dependencies, implicitly assuming that the
relevance of one label is (statistically) independent of the relevance of another
label. In spite of this, or perhaps just because of this simplification, BR proved to
achieve state-of-the-art performance, especially for so-called decomposable loss
functions, for which its optimality can even be corroborated theoretically [7,9].

Techniques for reducing MLC to SLC problems involve the choice of a
base learner for solving the latter. Somewhat surprisingly, this choice is often
neglected, despite having an important influence on generalization performance
[10–12,15]. Even in more extensive studies [10,12], a base learner is fixed a
priori in a more or less arbitrary way. Broader studies considering multiple
base learners, such as [6,22], are relatively rare and rather limited in terms
of the number of base learners considered. Only recently, greater attention to
the choice of the base learner has been paid in the field of automated machine
learning (AutoML) [17,24,25], where the base learner is considered as an impor-
tant “hyper-parameter” to tune. Indeed, while optimizing the selection of base
learners is laborious and computationally expensive in general, which could be
one reason for why it has been tackled with reservation, AutoML now offers new
possibilities in this direction.

Motivated by these opportunities, and building on recent AutoML methodol-
ogy, we investigate the idea of base learner selection for BR in a more systematic
way. Instead of only choosing a single base learner to be used for all labels simul-
taneously, we even allow for selecting an individual learner for each label (i.e.,
each binary classification task) separately. In an extensive experimental study,
we find that customizing BR in a label-wise manner can significantly improve
generalization performance.

2 Multi-label Classification

The setting of multi-label classification (MLC) allows an instance to belong to
several classes simultaneously. Consequently, several class labels can be assigned
to an instance at the same time. For example, a single image could be tagged
with labels Sun and Beach and Sea and Yacht.

2.1 Problem Setting

To formalize this learning problem, let X denote an instance space and L =
{λ1, . . . , λm} a finite set of m class labels. An instance x ∈ X is then (non-
deterministically) associated with a subset of class labels L ∈ 2L. The subset L
is often called the set of relevant labels, while its complement L\L is considered

LiBRe: Label-Wise Selection of Base Learners in BR for MLC 563

irrelevant for x. Furthermore, a set L of relevant labels can be identified by a
binary vector y = (y1, . . . , ym) where yi = 1 if λi ∈ L and yi = 0 otherwise (i.e.,
if λi ∈ L \ L). The set of all label combinations is denoted by Y = {0, 1}m.

Generally speaking, a multi-label classifier h is a mapping h : X −→ Y
returning, for a given instance x ∈ X , a prediction in the form of a vector

h(x) =
(
h1(x), h2(x), . . . , hm(x)

)
.

The MLC task can be stated as follows: Given a finite set of observations as
training data Dtrain

..= (Xtrain, Ytrain) =
{
(xi,yi)

}N

i=1
⊂ XN × Y N , the goal is

to learn a classifier h : X −→ Y that generalizes well beyond these observations
in the sense of minimizing the risk with respect to a specific loss function.

2.2 Loss Functions

A wide spectrum of loss functions has been proposed for MLC, many of which are
generalizations or adaptations of losses for single-label classification. In general,
these loss functions can be divided into two major categories: instance-wise and
label-wise. While the latter first compute a loss for each label and then aggregate
the values obtained across the labels, e.g., by taking the mean, instance-wise loss
functions first compute a loss for each instance and subsequently aggregate the
losses over all instances in the test data. As an obvious advantage of label-wise
loss functions, note that they can be optimized by optimizing a standard SLC loss
for each label separately. In other words, label-wise losses naturally harmonize
with label-wise decomposition techniques such as BR. Since this allows for a
simpler selection of the base learner per label, we focus on two such loss functions
in the following. For additional details on MLC and loss functions, especially
instance-wise losses, we refer to [23,29].

Let Dtest
..= (Xtest, Ytest) = {(xi,yi)}Si=1 ⊂ XS × YS be a test set of size S.

Further, let H = (h(x1), . . . ,h(xS)) ⊂ YS . Then, the Hamming loss, which can
be seen as a generalized form of the error rate, is defined1 as

LH(Ytest,H) ..=
1
m

m∑

j=1

1
S

S∑

i=1

�
yi,j �= hj(xi))

�
. (1)

Moreover, the label-wise macro-averaged F-measure (which is actually a measure
of accuracy, not a loss function, and thus to be maximized) is given by

F(Ytest,H) ..=
1
m

m∑

j=1

2
∑S

i=1 yi,jhj(xi)
∑S

i=1 yi,j +
∑S

i=1 hj(xi)
. (2)

Obviously, to optimize the measures (1) and (2), it is sufficient to optimize each
label individually, which corresponds to optimizing the inner term of the (first)
sum.
1 �·� is the indicator function.

564 M. Wever et al.

2.3 Binary Relevance

As already said, binary relevance learning decomposes the MLC task into several
binary classification tasks, one for each label. For every such task, a single-label
classifier, such as an SVM, random forest, or logistic regression, is trained. More
specifically, a classifier for the jth label is trained on the dataset {(xi, yi,j)}Ni=1.
Formally, BR induces a multi-label predictor

BRb : X −→ Y, x �→ (
b1(x), b2(x), . . . , bm(x)

)
,

where bj : X −→ {0, 1} represents the prediction of the base learner for the jth

label.

3 Related Work

Binary relevance has been subject to modifications in various directions, an
excellent overview of which is provided in a recent survey [28]. Extensions of
BR mainly focus on its inability to exploit label correlations, due to treating
all labels independently of each other. Three types of approaches have been
proposed to overcome this problem. The first is to use classifier chains [15]. In
this approach, one first defines a total order among the m labels and then trains
binary classifiers in this order. The input of the classifier for the ith label is the
original data plus the predictions of all classifiers for labels preceding this label in
the chain. Similarly, in addition to the binary classifiers for the m labels, stacking
uses a second layer of m meta-classifiers, one for each label, which take as input
the original data augmented by the predictions of all base learners [11,21]. A
third approach seeks to capture the dependencies in a Bayesian network, and
to learn such a network from the data [1,20]. One can then use probabilistic
inference to compute the probability for each possible prediction.

Another line of research looks at how the problem of imbalanced classes can
be addressed using BR. Class imbalance constitutes an important challenge in
multi-label classification in general, since most labels are usually irrelevant for
an instance, i.e., the overwhelming majority of labels in a binary task is negative.
Using BR, the imbalance can be “repaired” in a label-wise manner, using tech-
niques for standard binary classification, such as sampling [5] or thresholding
the decision boundary [13]. An approach taking dependencies among labels into
account (and hence applied prior to splitting the problem) is presented in [27].

To the best of our knowledge, this is the first approach in which the base
learner used for the different labels is subject to optimization itself. In fact,
except for AutoML tools, we are not even aware of an approach optimizing a
single base learner applied to all labels. In all the above approaches, the choice
of the base learners is an external decision and not part of the learning problem
itself.

LiBRe: Label-Wise Selection of Base Learners in BR for MLC 565

4 Label-Wise Selection of Base Learners

As already stated before, while various attempts at improving binary relevance
learning by capturing label dependencies have been made, the choice of the
base learner for tackling the underlying binary problems—as another potential
source of improvement—has attracted much less attention in the literature so
far. If considered at all, this choice has been restricted to the selection of a single
learner, which is applied to all m binary problems simultaneously.

We proceed from a portfolio of base learners

A ..=
{
a | a : (Xn × {0, 1}n) −→ (X −→ {0, 1})

}
.

Then, given training data Dtrain = (Xtrain, Ytrain), the objective is to find the
base learner a for which BR performs presumably best on test data Dtest =
(Xtest, Ytest) with respect to some loss function L:

arg min
a∈A

L(
Ytest,BRb(Xtest)

)
, with bj ..= a

(
Xtrain, Y

(j)
train

)
, (3)

where Y
(i)
train denotes the jth column of the label matrix Ytrain.

Moreover, we propose to leverage the independence assumption underlying
BR to select a different base learner for each of the labels, and refer to this
variant as LiBRe. We are thus interested in solving the following problem:

arg min
a∈Am

L(
Ytest,BRb(Xtest)

)
, with bj ..= aj

(
Xtrain, Y

(j)
train

)
. (4)

Compared to (3), we thus significantly increase flexibility. In fact, by taking
advantage of the different behavior of the respective base learners, and the ability
to model the relationship between features and a class label differently for each
binary problem, one may expect to improve the overall performance of BR. On
the other side, the BR learner as a whole is now equipped with many degrees of
freedom, namely the choice of the base learners, which can be seen as “hyper-
parameters” of LiBRe. Since this may easily lead to undesirable effects such
as over-fitting of the training data, an improvement in terms of generalization
performance (approximated by the performance on the test data) is by no means
self-evident. From this point of view, the restriction to a single base learner in (3)
can also be seen as a sort of regularization. Such kind of regulation can indeed
be justified for various reasons. In most cases, for example, the binary problems
are indeed not completely different but share important characteristics.

Computationally, (4) may appear more expensive than choosing a single base
learner jointly for all the labels, at least at first sight. However, the complexity in
terms of the number of base learners to be evaluated remains exactly the same.
In fact, just like in (3), we need to fit a BR model for every base learner exactly
once. The only difference is that, instead of picking one of the base learners for
all labels in the end, LiBRe assembles the base learners performing best for the
respective labels (recall that we head for label-wise decomposable performance
measures).

566 M. Wever et al.

5 Experimental Evaluation

This section presents an empirical evaluation of LiBRe, comparing it to the
use of a single base learner as a baseline. We first describe the experimental
setup (Sect. 5.1), specify the baseline with the single best base learner (Sect. 5.2),
and define the oracle performance (Sect. 5.3) for an upper bound. Finally, the
experimental results are presented in Sect. 5.4.

5.1 Experimental Setup

For the evaluation, we considered a total of 24 MLC datasets. These datasets
stem from various domains, such as text, audio, image classification, and biology,
and range from small datasets with only a few instances and labels to larger
datasets with thousands of instances and hundreds of labels. A detailed overview
is given in Table 1, where, in addition to the number of instances (#I) and
number of labels (#L), statistics regarding the label-to-instance ratio (L2IR), the
percentage of unique label combinations (ULC), and the average label cardinality
(card.) are given.

The train and validation folds were derived by conducting a nested 2-fold
cross validation, i.e., to assess the test performance we have an outer loop of 2-
fold cross validation. To tune the thresholds and select the base learner, we again
split the training fold of the outer loop into train and validation sets by 2-fold
cross validation. The entire process is repeated 5 times with different random
seeds for the cross validation. Throughout this study, we trained and evaluated
a total of 14,400 instances of BR and 649,800 base learners accordingly.

Furthermore, we consider two performance measures, namely the Hamming
loss LH and the macro-averaged label-wise F-measure as defined in (1) and (2),
respectively. A binary prediction is obtained by thresholding the prediction of
an underlying scoring classifier, which produces values in the unit interval (the
higher the value, the more likely a label is considered relevant). The thresholds
τ = (τ1, τ2, . . . , τm) are optimized by a grid search considering values for τi ∈
[0, 1] and a step size of 0.01. When optimizing the thresholds, we either allow for
label-wise optimization or constrain the threshold to be the same for all labels
(uniform τ), i.e., τi = τj for all i, j ∈ {1, . . . , m}.

In order to determine significance of results, we apply a Wilcoxon signed rank
test with a threshold for the p-value of 0.05. Significant improvements of LiBRe
are marked by • and significant degradations by ◦.

We executed the single BR evaluation runs, i.e., training and evaluating either
on the validation or test split, on up to 300 nodes in parallel, each of them
equipped with 8 CPU cores and 32 GB of RAM, and a timeout of 6 h. Due to
the limitation of the memory and the runtime, some of the evaluations failed
due to memory overflows or timeouts.

The implementation is based on the Java machine learning library WEKA [8]
and an extension for multi-label classification called MEKA [16]. In our study, we
consider a total of 20 base learners from WEKA: BayesNet (BN), DecisionStump
(DS), IBk, J48, JRip (JR), KStar (KS), LMT, Logistic (L), MultilayerPerceptron

LiBRe: Label-Wise Selection of Base Learners in BR for MLC 567

Table 1. The datasets used in this study. Furthermore, the number of instances (#I),
the number of labels (#L), the label-to-instance ratio (L2IR), the percentage of unique
label combinations (ULC), and the label cardinality (card.) are given.

Dataset #I #L L2IR ULC card. Dataset #I #L L2IR ULC card.

arts1 7484 26 0.0035 0.08 1.65 bibtex 7395 159 0.0215 0.39 2.40

birds 645 19 0.0295 0.21 1.01 bookmarks 87856 208 0.0024 0.21 2.03

business1 11214 30 0.0027 0.02 1.60 computers1 12444 33 0.0027 0.03 1.51

education1 12030 33 0.0027 0.04 1.46 emotions 593 6 0.0101 0.05 1.87

enron-f 1702 53 0.0311 0.44 3.38 entertainment1 12730 21 0.0016 0.03 1.41

flags 194 12 0.0619 0.53 4.12 genbase 662 27 0.0408 0.05 1.25

health1 9205 32 0.0035 0.04 1.64 llog-f 1460 75 0.0514 0.21 1.18

mediamill 43907 101 0.0023 0.15 4.38 medical 978 45 0.0460 0.10 1.25

recreation1 12828 22 0.0017 0.04 1.43 reference1 8027 33 0.0041 0.03 1.17

scene 2407 6 0.0025 0.01 1.07 science1 6428 40 0.0062 0.07 1.45

social1 12111 39 0.0032 0.03 1.28 society1 14512 27 0.0019 0.07 1.67

tmc2007 28596 22 0.0008 0.05 2.16 yeast 2417 14 0.0058 0.08 4.24

(MlP), NaiveBayes (NB), NaiveBayesMultinomial (NBM), OneR (1R), PART
(P), REPTree (REP), RandomForest (RF), RandomTree (RT), SMO, SimpleL-
ogistic (SL), VotedPerceptron (VP), ZeroR (0R). All the data and source code
is made available via GitHub (https://github.com/mwever/LiBRe).

5.2 Single Best Base Learner

To figure out how much we can benefit from selecting a base learner for each label
individually, and whether this flexibility is beneficial at all, we define the single
best base learner, subsequently referred to as SBB, as a baseline. In principle,
SBB is nothing but a grid search over the portfolio of base learners (3).

When considering a base learner a, it is chosen to be employed as a base
learner for every label. After training and validating the performance, we pick
the base learner that performs best overall. This baseline thus gives an upper
bound on the performance of what can be achieved when the base learner is
not chosen for each label individually. As simple and straight-forward as it is,
this baseline represents what is currently possible in implementations of MLC
libraries, and already goes beyond what is most commonly done in the literature.

5.3 Optimistic Versus Validated Optimization

In addition to the results obtained by selecting the base learner(s) according
to the validation performance (obtained in the inner loop of the nested cross
validation), we consider optimistic performance estimates, which are obtained
as follows: After having trained the base learners on the training data, we select
the presumably best one, not on the basis of their performance on validation
data, but based on their actual test performance (as observed in the outer loop

https://github.com/mwever/LiBRe

568 M. Wever et al.

Fig. 1. The heat map shows the average share of each base learner being employed
for a label with respect to the optimized performance measure: Hamming (LH) or the
label-wise macro averaged F-measure (F).

of the nested cross-validation). Intuitively, this can be understood as a kind of
“oracle” performance: Given a set of candidate predictors to choose from, the
oracle anticipates which of them will perform best on the test data.

Although these performances should be treated with caution, and will cer-
tainly tend to overestimate the true generalization performance of a classifier,
they can give some information about the potential of the optimization. More
specifically, these optimistic performance estimates suggest an upper bound on
what can be obtained by the nested optimization routine.

5.4 Results

In Fig. 1, the average share of a base learner per label is shown. From this
heatmap, it becomes obvious that for the SBB baseline only a subset of base
learners plays a role. However, one can also notice that the distribution of the
shares varies when different performance measures are optimized. Furthermore,
although random forest (RF) achieves significant shares of 0.8 for the Hamming
loss and around 0.6 for the F-measure, it is not best on all the datasets. To put
it differently, one still needs to optimize the base learner per dataset. This is
especially true, when different performance measures are of interest.

In the case of LiBRe, it is clearly recognizable how the shares are distributed
over the base learners, in contrast to SBB. For example, the shares of RF decrease
to 0.29 for F-measure and to 0.25 for Hamming, respectively. Moreover, base
learners that did not even play any role in SBB are now gaining in importance
and are selected quite often. Although there are significant differences in the
frequency of base learners being picked, there is not a single base learner in the
portfolio that was never selected.

In Table 2, the results for optimizing Hamming loss are presented. The opti-
mistic performance estimates already indicate that there is not much room for
improvement. This comes at no surprise, since the datasets are already pretty
much saturated, i.e., the loss is already close to 0 for most of the datasets. While
LiBRe performs competitively to SBB for the setting with uniform τ , SBB com-
pares favourably to LiBRe in the case where the thresholds can be tuned in a
label-wise manner. Apparently, the additional degrees of freedom make LiBRe
more prone to over-fitting, especially on smaller datasets.

In contrast to the previous results, for the optimization of the F-measure,
the optimistic performance estimates already give a promising outlook on the

LiBRe: Label-Wise Selection of Base Learners in BR for MLC 569

Table 2. Results obtained for minimizing LH optimistically resp. with validation per-
formances. Thresholds are optimized either jointly for all the labels (uniform τ) or
label-wise. Best performances per setting and dataset are highlighted in bold. Signifi-
cant improvements of LiBRe are marked by a • and degradations by ◦.

Dataset Optimistic uniform τ Validated uniform τ Optimistic label-wise τ Validated label-wise τ

LiBRe SBB LiBRe SBB LiBRe SBB LiBRe SBB

arts1 0.0515 0.0536 0.0531 0.0538 0.0504 0.0513 0.0526 0.0525

bibtex 0.0118 0.0126 0.0126 0.0127 0.0115 0.0120 0.0151 0.0139

birds 0.0357 0.0397 0.0476 0.0420 ◦ 0.0329 0.0352 0.0470 0.0422 ◦
bookmarks 0.0085 0.0087 0.0086 0.0087 • 0.0085 0.0086 0.0105 0.0114 •
business1 0.0233 0.0248 0.0241 0.0249 • 0.0218 0.0223 0.0227 0.0228

computers1 0.0313 0.0334 0.0329 0.0335 0.0301 0.0306 0.0323 0.0312

education1 0.0352 0.0365 0.0359 0.0369 • 0.0340 0.0344 0.0354 0.0349 ◦
emotions 0.1762 0.1800 0.1926 0.1856 ◦ 0.1684 0.1712 0.1961 0.1875 ◦
enron-f 0.0447 0.0474 0.0481 0.0477 0.0437 0.0445 0.0485 0.0469 ◦
entertainment1 0.0432 0.0466 0.0440 0.0469 • 0.0414 0.0434 0.0430 0.0443 •
flags 0.1732 0.1979 0.2134 0.2088 0.1635 0.1799 0.2105 0.2158

genbase 7.0E-4 0.0014 0.0069 0.0016 ◦ 6.0E-4 7.0E-4 0.0070 0.0023 ◦
health1 0.0305 0.0344 0.0313 0.0347 • 0.0282 0.0297 0.0303 0.0302

llog-f 0.0149 0.0153 0.0202 0.0157 ◦ 0.0145 0.0149 0.0230 0.0178 ◦
mediamill 0.0268 0.0270 0.0271 0.0270 0.0261 0.0262 0.0265 0.0265

medical 0.0084 0.0103 0.0115 0.0109 0.0078 0.0093 0.0136 0.0116

recreation1 0.0459 0.0472 0.0472 0.0473 0.0446 0.0453 0.0468 0.0462

reference1 0.0244 0.0264 0.0267 0.0268 0.0230 0.0245 0.0255 0.0251

scene 0.0781 0.0788 0.0817 0.0794 ◦ 0.0757 0.0762 0.0816 0.0800 ◦
science1 0.0281 0.0311 0.0311 0.0317 0.0269 0.0291 0.0304 0.0302

social1 0.0197 0.0208 0.0227 0.0210 0.0188 0.0196 0.0223 0.0200

society1 0.0474 0.0495 0.0479 0.0496 • 0.0444 0.0455 0.0455 0.0461 •
tmc2007 0.0601 0.0611 0.0600 0.0611 • 0.0590 0.0611 0.0613 0.0611

yeast 0.1914 0.1926 0.2002 0.1930 ◦ 0.1886 0.1890 0.1940 0.1929 ◦

potential for improving the generalization performance through the label-wise
selection of the base learners. More precisely, they indicate that performance
gains of up to 11% points are possible. Independent of the threshold optimization
variant, LiBRe outperforms the SBB baseline, yielding the best performance on
two third of the considered datasets, 13 improvements of which are significant in
the case of uniform τ , and 11 in the case of label-wise τ . Significant degradations
of LiBRe compared to SBB can only be observed for 2 respectively 3 datasets.
Hence, for the F-measure, LiBRe compares favorably to the SBB baseline.

In summary, we conclude that LiBRe does indeed yield performance improve-
ments. However, increasing the flexibility of BR also makes it more prone to
over-fitting. Furthermore, these results were obtained by conducting a nested
2-fold cross validation. While keeping the computational costs of this evaluation
reasonable, this implies that, for the purpose of validation, the base learners were
trained on only one fourth of the original dataset. Therefore, considering nested
5-fold or 10-fold cross validation could help to reduce the observed over-fitting.

570 M. Wever et al.

Table 3. Results for maximizing the F-measure optimistically resp. with validation
performances. Thresholds are optimized either jointly for all the labels (uniform τ) or
label-wise. Best performances per setting and dataset are highlighted in bold. Signifi-
cant improvements of LiBRe are marked by a • and degradations by ◦.

Dataset Optimistic uniform τ Validated uniform τ Optimistic label-wise τ Validated label-wise τ

LiBRe SBB LiBRe SBB LiBRe SBB LiBRe SBB

arts1 0.3445 0.2749 0.3018 0.2684 • 0.3680 0.3211 0.3184 0.3001 •
bibtex 0.4020 0.3027 0.3391 0.2998 • 0.4194 0.3516 0.3378 0.3041 •
birds 0.5404 0.4424 0.3707 0.3961 ◦ 0.5832 0.5310 0.3843 0.3981 ◦
bookmarks 0.2495 0.2244 0.2347 0.2239 • 0.2646 0.2516 0.2435 0.2416

business1 0.3692 0.2854 0.2970 0.2659 • 0.3874 0.3197 0.3006 0.2790 •
computers1 0.3646 0.2861 0.3099 0.2810 • 0.3833 0.3486 0.3224 0.3190

education1 0.3346 0.2468 0.2594 0.2437 • 0.3591 0.3022 0.2652 0.2612

emotions 0.7068 0.6946 0.6670 0.6779 0.7186 0.7135 0.6761 0.6859 ◦
enron-f 0.2870 0.2192 0.2056 0.2096 0.3138 0.2773 0.2077 0.2069

entertainment1 0.4470 0.3673 0.3929 0.3500 • 0.4639 0.4049 0.3950 0.3774 •
flags 0.6280 0.5634 0.5230 0.5098 0.6474 0.5981 0.5150 0.5145

genbase 0.8126 0.7798 0.6039 0.7421 ◦ 0.8141 0.8119 0.6201 0.6390

health1 0.4203 0.3259 0.3486 0.3208 • 0.4312 0.3582 0.3464 0.3225 •
llog-f 0.1569 0.0808 0.0730 0.0689 0.1834 0.1264 0.0744 0.0741

mediamill 0.3766 0.3499 0.3481 0.3483 0.4010 0.3898 0.3543 0.3600 ◦
medical 0.4960 0.3852 0.3560 0.3639 0.5251 0.4523 0.3547 0.3208 •
recreation1 0.4964 0.4224 0.4669 0.4160 • 0.5093 0.4675 0.4670 0.4494 •
reference1 0.3185 0.2254 0.2477 0.2021 • 0.3393 0.2860 0.2587 0.2418 •
scene 0.7831 0.7816 0.7734 0.7776 0.7909 0.7897 0.7759 0.7812

science1 0.3824 0.2724 0.2928 0.2637 • 0.4033 0.3240 0.3036 0.2662 •
social1 0.3629 0.3073 0.3046 0.3060 0.3737 0.3119 0.3103 0.2769 •
society1 0.3437 0.2807 0.3180 0.2688 • 0.3597 0.3382 0.3215 0.3238

tmc2007 0.5659 0.5342 0.5467 0.5342 0.5782 0.5525 0.5656 0.5484 •
yeast 0.4970 0.4750 0.4800 0.4731 • 0.5145 0.5084 0.4922 0.4947

6 Conclusion

In this paper, we have not only demonstrated the potential of binary relevance
to optimize label-wise macro averaged measures, but also the importance of
the base learner as a hyper-parameter for each label. Especially for the case of
optimizing for F1 macro-averaged over the labels, we could achieve significant
performance improvements by choosing a proper base learner in a label-wise
manner. Compared to selecting the best single base learner, choosing the base
learner for each label individually comes at no additional cost in terms of base
learner evaluations. Moreover, the label-wise selection of base learners can be
realized by a straight-forward grid search.

As the label-wise choice of a base learner has already led to considerable
performance gains, we plan to examine to what extent the optimization of the
hyper-parameters of those base learners can lead to further improvements. Fur-
thermore, we want to increase the efficiency of the tuning by replacing the grid
search with a heuristic approach.

LiBRe: Label-Wise Selection of Base Learners in BR for MLC 571

Another direction of future work concerns the avoidance of over-fitting effects
due to an overly excessive flexibility of LiBRe. As already explained, the restric-
tion to a single base learner can be seen as a kind of regularization, which, how-
ever, appears to be too strong, at least according to our results. On the other
side, the full flexibility of LiBRe does not always pay off either. An interesting
compromise could be to restrict the number of different base learners used by
LiBRe to a suitable value k ∈ {1, . . . , m}. Technically, this comes down to finding
the arg min in (4), not over a ∈ Am, but over {a ∈ Am |#{a1, . . . , am} ≤ k}.

Acknowledgement. This work was supported by the German Research Founda-
tion (DFG) within the Collaborative Research Center “On-The-Fly Computing” (SFB
901/3 project no. 160364472). The authors also gratefully acknowledge support of this
project through computing time provided by the Paderborn Center for Parallel Com-
puting (PC2).

References

1. Antonucci, A., Corani, G., Mauá, D.D., Gabaglio, S.: An ensemble of Bayesian net-
works for multilabel classification. In: IJCAI 2013, Proceedings of the 23rd Interna-
tional Joint Conference on Artificial Intelligence, Beijing, China, 3–9 August 2013,
pp. 1220–1225 (2013)

2. Barutcuoglu, Z., Schapire, R.E., Troyanskaya, O.G.: Hierarchical multi-label pre-
diction of gene function. Bioinformatics 22(7), 830–836 (2006). https://doi.org/10.
1093/bioinformatics/btk048

3. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classifica-
tion. Pattern Recogn. 37(9), 1757–1771 (2004). https://doi.org/10.1016/j.patcog.
2004.03.009

4. Cabral, R.S., la Torre, F.D., Costeira, J.P., Bernardino, A.: Matrix completion for
multi-label image classification. In: 25th Annual Conference on Neural Information
Processing Systems 2011, Advances in Neural Information Processing Systems,
Granada, Spain, vol. 24, pp. 190–198 (2011)

5. Charte, F., Rivera, A.J., del Jesús, M.J., Herrera, F.: Addressing imbalance in
multilabel classification: measures and random resampling algorithms. Neurocom-
puting 163, 3–16 (2015). https://doi.org/10.1016/j.neucom.2014.08.091

6. Cherman, E.A., Metz, J., Monard, M.C.: Incorporating label dependency into the
binary relevance framework for multi-label classification. Exp. Syst. Appl. 39(2),
1647–1655 (2012). https://doi.org/10.1016/j.eswa.2011.06.056

7. Dembczynski, K., Waegeman, W., Cheng, W., Hüllermeier, E.: On label depen-
dence and loss minimization in multi-label classification. Mach. Learn. 88(1–2),
5–45 (2012). https://doi.org/10.1007/s10994-012-5285-8

8. Frank, E., Hall, M.A., Witten, I.H.: The Weka workbench. Online appendix. In:
Frank, E., Hall, M.A., Witten, I.H. (eds.) Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann, Cambridge (2016)

9. Luaces, O., Dı́ez, J., Barranquero, J., del Coz, J.J., Bahamonde, A.: Binary rele-
vance efficacy for multilabel classification. Prog. AI 1(4), 303–313 (2012). https://
doi.org/10.1007/s13748-012-0030-x

10. Madjarov, G., Kocev, D., Gjorgjevikj, D., Dzeroski, S.: An extensive experimental
comparison of methods for multi-label learning. Pattern Recogn. 45(9), 3084–3104
(2012). https://doi.org/10.1016/j.patcog.2012.03.004

https://doi.org/10.1093/bioinformatics/btk048
https://doi.org/10.1093/bioinformatics/btk048
https://doi.org/10.1016/j.patcog.2004.03.009
https://doi.org/10.1016/j.patcog.2004.03.009
https://doi.org/10.1016/j.neucom.2014.08.091
https://doi.org/10.1016/j.eswa.2011.06.056
https://doi.org/10.1007/s10994-012-5285-8
https://doi.org/10.1007/s13748-012-0030-x
https://doi.org/10.1007/s13748-012-0030-x
https://doi.org/10.1016/j.patcog.2012.03.004

572 M. Wever et al.

11. Montañés, E., Senge, R., Barranquero, J., Quevedo, J.R., del Coz, J.J., Hüllermeier,
E.: Dependent binary relevance models for multi-label classification. Pattern
Recogn. 47(3), 1494–1508 (2014). https://doi.org/10.1016/j.patcog.2013.09.029

12. Moyano, J.M., Galindo, E.L.G., Cios, K.J., Ventura, S.: Review of ensembles of
multi-label classifiers: models, experimental study and prospects. Inf. Fusion 44,
33–45 (2018). https://doi.org/10.1016/j.inffus.2017.12.001

13. Pillai, I., Fumera, G., Roli, F.: Threshold optimisation for multi-label classifiers.
Pattern Recogn. 46(7), 2055–2065 (2013). https://doi.org/10.1016/j.patcog.2013.
01.012

14. Qi, G., Hua, X., Rui, Y., Tang, J., Mei, T., Zhang, H.: Correlative multi-label video
annotation. In: Proceedings of the 15th International Conference on Multimedia
2007, Augsburg, Germany, 24–29 September 2007, pp. 17–26 (2007). https://doi.
org/10.1145/1291233.1291245

15. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-
label classification. Mach. Learn. 85(3), 333–359 (2011). https://doi.org/10.1007/
s10994-011-5256-5

16. Read, J., Reutemann, P., Pfahringer, B., Holmes, G.: MEKA: a multi-label/multi-
target extension to Weka. J. Mach. Learn. Res. 17(21), 667–671 (2016)

17. de Sá, A.G.C., Freitas, A.A., Pappa, G.L.: Automated selection and configuration
of multi-label classification algorithms with grammar-based genetic programming.
Parallel Prob. Solving Nat. - PPSN XV 2018, 308–320 (2018). https://doi.org/10.
1007/978-3-319-99259-4 25

18. Sanden, C., Zhang, J.Z.: Enhancing multi-label music genre classification through
ensemble techniques. In: Proceeding of the 34th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, Beijing, China, pp.
705–714 (2011). https://doi.org/10.1145/2009916.2010011

19. Schapire, R.E., Singer, Y.: BoosTexter: a boosting-based system for text cat-
egorization. Mach. Learn. 39(2/3), 135–168 (2000). https://doi.org/10.1023/A:
1007649029923

20. Sucar, L.E., Bielza, C., Morales, E.F., Hernandez-Leal, P., Zaragoza, J.H.,
Larrañaga, P.: Multi-label classification with bayesian network-based chain clas-
sifiers. Pattern Recogn. Lett. 41, 14–22 (2014). https://doi.org/10.1016/j.patrec.
2013.11.007

21. Tahir, M.A., Kittler, J., Bouridane, A.: Multi-label classification using stacked
spectral kernel discriminant analysis. Neurocomputing 171, 127–137 (2016).
https://doi.org/10.1016/j.neucom.2015.06.023

22. Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. IJDWM 3(3),
1–13 (2007). https://doi.org/10.4018/jdwm.2007070101

23. Tsoumakas, G., Katakis, I., Vlahavas, I.P.: Mining multi-label data. In: Maimon,
O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 667–
685. Springer, Boston (2010). https://doi.org/10.1007/978-0-387-09823-4 34

24. Wever, M., Mohr, F., Hüllermeier, E.: Automated multi-label classification based
on ML-Plan. CoRR abs/1811.04060 (2018)

25. Wever, M.D., Mohr, F., Tornede, A., Hüllermeier, E.: Automating multi-label clas-
sification extending ML-Plan (2019)

26. Xue, X., Zhang, W., Zhang, J., Wu, B., Fan, J., Lu, Y.: Correlative multi-label
multi-instance image annotation. In: IEEE International Conference on Computer
Vision, pp. 651–658 (2011). https://doi.org/10.1109/ICCV.2011.6126300

27. Zhang, M., Li, Y., Liu, X.: Towards class-imbalance aware multi-label learning. In:
Proceedings of the 24th International Joint Conference on Artificial Intelligence,
IJCAI 2015, Buenos Aires, Argentina, 2015, pp. 4041–4047 (2015)

https://doi.org/10.1016/j.patcog.2013.09.029
https://doi.org/10.1016/j.inffus.2017.12.001
https://doi.org/10.1016/j.patcog.2013.01.012
https://doi.org/10.1016/j.patcog.2013.01.012
https://doi.org/10.1145/1291233.1291245
https://doi.org/10.1145/1291233.1291245
https://doi.org/10.1007/s10994-011-5256-5
https://doi.org/10.1007/s10994-011-5256-5
https://doi.org/10.1007/978-3-319-99259-4_25
https://doi.org/10.1007/978-3-319-99259-4_25
https://doi.org/10.1145/2009916.2010011
https://doi.org/10.1023/A:1007649029923
https://doi.org/10.1023/A:1007649029923
https://doi.org/10.1016/j.patrec.2013.11.007
https://doi.org/10.1016/j.patrec.2013.11.007
https://doi.org/10.1016/j.neucom.2015.06.023
https://doi.org/10.4018/jdwm.2007070101
https://doi.org/10.1007/978-0-387-09823-4_34
https://doi.org/10.1109/ICCV.2011.6126300

LiBRe: Label-Wise Selection of Base Learners in BR for MLC 573

28. Zhang, M.-L., Li, Y.-K., Liu, X.-Y., Geng, X.: Binary relevance for multi-label
learning: an overview. Frontiers Comput. Sci. 12(2), 191–202 (2018). https://doi.
org/10.1007/s11704-017-7031-7

29. Zhang,M.,Zhou,Z.:Areviewonmulti-label learningalgorithms. IEEETrans.Knowl.
Data Eng. 26(8), 1819–1837 (2014). https://doi.org/10.1109/TKDE.2013.39

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/s11704-017-7031-7
https://doi.org/10.1007/s11704-017-7031-7
https://doi.org/10.1109/TKDE.2013.39
http://creativecommons.org/licenses/by/4.0/

Angle-Based Crowding Degree Estimation
for Many-Objective Optimization

Yani Xue1(B), Miqing Li2, and Xiaohui Liu1

1 Department of Computer Science, Brunel University London,
Uxbridge, Middlesex UB8 3PH, UK

ynxue6219@gmail.com
2 CERCIA, School of Computer Science, University of Birmingham,

Edgbaston, Birmingham B15 2TT, UK

Abstract. Many-objective optimization, which deals with an optimiza-
tion problem with more than three objectives, poses a big challenge to
various search techniques, including evolutionary algorithms. Recently,
a meta-objective optimization approach (called bi-goal evolution, BiGE)
which maps solutions from the original high-dimensional objective space
into a bi-goal space of proximity and crowding degree has received
increasing attention in the area. However, it has been found that BiGE
tends to struggle on a class of many-objective problems where the search
process involves dominance resistant solutions, namely, those solutions
with an extremely poor value in at least one of the objectives but with
(near) optimal values in some of the others. It is difficult for BiGE to get
rid of dominance resistant solutions as they are Pareto nondominated and
far away from the main population, thus always having a good crowd-
ing degree. In this paper, we propose an angle-based crowding degree
estimation method for BiGE (denoted as aBiGE) to replace distance-
based crowding degree estimation in BiGE. Experimental studies show
the effectiveness of this replacement.

Keywords: Many-objective optimization · Evolutionary algorithm ·
Bi-goal evolution · Angle-based crowding degree estimation

1 Introduction

Many-objective optimization problems (MaOPs) refer to the optimization of
four or more conflicting criteria or objectives at the same time. MaOPs exist
in many fields, such as environmental engineering, software engineering, control
engineering, industry, and finance. For example, when assessing the performance
of a machine learning algorithm, one may need to take into account not only
accuracy but also some other criteria such as efficiency, misclassification cost,
interpretability, and security.

There is often no one best solution for an MaOP since the performance
increase in one objective will lead to a decrease in some other objectives.

c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 574–586, 2020.
https://doi.org/10.1007/978-3-030-44584-3_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_45&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_45

Angle-Based Crowding Degree Estimation for Many-Objective Optimization 575

In the past three decades, multi-objective evolutionary algorithms (MOEAs)
have been successfully applied in many real-world optimization problems with
low-dimensional search space (two or three conflicting objectives) to search for
a set of trade-off solutions.

The major purpose of MOEAs is to provide a population (a set of opti-
mal individuals or solutions) that balance proximity (converging a population
to the Pareto front) and diversity(diversifying a population over the whole
Pareto front). By considering the two goals above, traditional MOEAs, such
as SPEA2 [13] and NSGA-II [1] mainly focus on the use of Pareto dominance
relations between solutions and the design of diversity control mechanisms.

However, compared with a low-dimensional optimization problem, well-
known Pareto-based evolutionary algorithms lose their efficiency in solving
MaOPs. In MaOPs, most solutions in a population become equally good solu-
tions, since the Pareto dominance selection criterion fails to distinguish between
solutions and drive the population towards the Pareto front. Then the density
criterion is activated to guide the search, resulting in a substantial reduction of
the convergence of the population and the slowdown of the evolution process.
This is termed the active diversity promotion (ADP) phenomenon in [11].

Some studies [6] observed that the main reason for ADP phenomenon is the
preference of dominance resistant solutions (DRSs). DRSs refer to those solutions
that are extremely inferior to others in at least one objective but have near-
optimal values in some others. They are considered as Pareto-optimal solutions
despite having very poor performance in terms of proximity. As a result, Pareto-
based evolutionary algorithms could search a population that is widely covered
but far away from the true Pareto front.

To address the difficulties of MOEAs in high-dimensional search space, one
approach is to modify the Pareto dominance relation. Some powerful algorithms
in this category include: ε-MOEA [2] and fuzzy Pareto dominance [5]. These
methods work well under certain circumstances but they often involve extra
parameters and the performance of these algorithms often depends on the setting
of parameters. The other approach, without considering Pareto dominance rela-
tion, may be classified into two categories: aggregation-based algorithms [15] and
indicator-based algorithms [14]. These algorithms have been successfully applied
to some applications, however, the diversity performance of these aggregation-
based algorithms depends on the distribution of weight vectors. The latter defines
specific performance indicators to guide the search.

Recently, a meta-objective optimization algorithm, called Bi-Goal Evolution
(BiGE) [8] for MaOPs is proposed and becomes the most cited paper published
in the Artificial Intelligence journal over the past four years. BiGE was inspired
by two observations in many-objective optimization: (1) the conflict between
proximity and diversity requirement is aggravated when increasing the number
of objectives and (2) the Pareto dominance relation is not effective in solving
MaOPs. In BiGE, two indicators were used to estimate the proximity and crowd-
ing degree of solutions in the population, respectively. By doing so, BiGE maps
solutions from the original objective space to a bi-goal objective space and deals

576 Y. Xue et al.

with the two goals by the nondominated sorting. This is able to provide suffi-
cient selection pressure towards the Pareto front, regardless of the number of
objectives that the optimization problem has.

However, despite its attractive features, it has been found that BiGE tends to
struggle on a class of many-objective problems where the search process involves
DRSs. DRSs are far away from the main population and always ranked as good
solutions by BiGE, thus hindering the evolutionary progress of the population.
To address this issue, this paper proposes an angle-based crowding degree esti-
mation method for BiGE (denoted as aBiGE). The rest of the paper is organized
as follows. Section 2 gives some concepts and terminology about many-objective
optimization. In Sect. 3, we present our angle-based crowding degree estimation
method and its incorporation with BiGE. The experimental results are detailed
in Sect. 4. Finally, the conclusions and future work are set out in Sect. 5.

2 Concepts and Terminology

When dealing with optimization problems in the real world, sometimes it may
involve more than three performance criteria to determine how “good” a certain
solution is. These criteria, termed as objectives (e.g., cost, safety, efficiency) need
to be optimized simultaneously, but usually conflict with each other. This type of
problem is called many-objective optimization problem (MaOP). A minimization
MaOP can be mathematically defined as follows:

minimize F (x) = (f1(x), f2(x), ..., fN (x))
subject to gj(x) ≤ 0, j = 1, 2, ..., J

hk(x) = 0, k = 1, 2, ...,K

x = (x1, x2, ..., xM), x ∈ Ω

(1)

where x denotes an M -dimensional decision variable vector from the feasible
region in the decision space Ω, F (x) represents an N -dimensional objective vec-
tor (N is larger than three), fi(x) is the i-th objective to be minimized, objec-
tive functions f1, f2, ..., fN constitute N -dimensional space called the objective
space, gj(x) ≤ 0 and hk(x) = 0 define J inequality and K equality constraints,
respectively.

Definition 1 (Pareto Dominance). Given two decision vectors x, y ∈ Ω of
a minimization problem, x is said to (Pareto) dominate y (denoted as x ≺ y),
or equivalently y is dominated by x, if and only if [4]

∀ i ∈ (1, 2, ..., N) : fi(x) ≤ fi(y) ∧ ∃ i ∈ (1, 2, ..., N) : fi(x) < fi(y). (2)

Namely, given two solutions, one solution is said to dominate the other solu-
tion if it is at least as good as the other solution in any objective and is strictly
better in at least one objective.

Angle-Based Crowding Degree Estimation for Many-Objective Optimization 577

Definition 2 (Pareto Optimality). A solution x ∈ Ω is said to be Pareto
optimal if and only if there is no solution y ∈ Ω dominates it. Those solutions
that are not dominated by any other solutions is said to be Pareto-optimal (or
non-dominated).

Definition 3 (Pareto Set). All Pareto-optimal (or non-dominated) solutions
in the decision space constitute the Pareto set (PS).

Definition 4 (Pareto Front). The Pareto front (PF) is referred to corre-
sponding objective vectors to a Pareto set.

Definition 5 (Dominance Resistant Solution). Given a solution set, dom-
inance resistant solution (DRS) is referred to the solution with an extremely poor
value in at least one objective, but with near-optimal value in some other objective.

3 The Proposed Algorithm: aBiGE

3.1 A Brief Review of BiGE

Algorithm 1 shows the basic framework of BiGE. First, a parent population with
M solutions is randomly initialized. Second, proximity and crowding degree for
each solution is estimated, respectively. Third, in the mating selection, individ-
uals that have better quality with regards to the proximity and crowding degree
tend to become parents of the next generation. Afterward, variation operators
(e.g., crossover and mutation) are applied to these parents to produce an off-
spring population. Finally, the environmental selection is applied to reduce the
expanded population of parents and offspring to M individuals as the new parent
population of the next generation.

Algorithm 1. Basic Framework of BiGE
Require: P (current population), M (population size)
1: P = Initialization(P)
2: while termination criterion not fulfilled do
3: Proximity Estimation(P)
4: Crowding Degree Estimation(P)
5: P ′ = Mating Selection(P)
6: P ′′ = V ariation(P ′)
7: Q = P ′ ⋃ P ′′

8: P = Environmental Selection(Q)
9: end while

10: return P

578 Y. Xue et al.

In particular, a simple aggregation function is adopted to estimate the prox-
imity of an individual. For an individual x in a population, denoted as fp(x), its
aggregation value is calculated by the sum of each normalized objective value in
the range [0, 1] (lines 3 in Algorithm1), formulated as [8]:

fp(x) =
N∑

j=1

f̃j(x). (3)

where f̃j(x) denotes the normalized objective value of individual x in the j-th
objective, and N is the number of objectives. A smaller fp value of an individual
usually indicates a good performance on proximity. In particular, for a DRS, it
is more likely to obtain a significantly large fp value in comparison with other
individuals in a population.

In addition, the crowding degree of an individual x (lines 4 in Algorithm1)
is defined as follows [8]:

fc(x) = (
∑

y∈Ω,x �=y

sh(x, y))1/2. (4)

where sh(x, y))1/2 denotes a sharing function. It is a penalized Euclidean distance
between two individuals x and y by using a weight parameter, defined as follows:

sh(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

(0.5(1 − d(x,y)
r

))2, if d(x, y) < r, fp(x) < fp(y)

(1.5(1 − d(x,y)
r

))2, if d(x, y) < r, fp(x) > fp(y)
rand(), if d(x, y) < r, fp(x) = fp(y)
0, otherwise

(5)

where r is the radius of a niche, adaptively calculated by r = 1/ N
√

M (M is the
population size and N is the number of objectives). The function rand() means to
assign either sh(x, y) = (0.5(1−[d(x, y)/r]))2 and sh(y, x)=(1.5(1−[d(x, y)/r]))2

or sh(x, y)=(1.5(1−[d(x, y)/r]))2 and sh(y, x)=(0.5(1−[d(x, y)/r]))2 randomly.
Individuals with lower crowding degree imply better performance on diversity.

It is observed that BiGE tends to struggle on a class of MaOPs where the search
process involves DRSs, such as DTLZ1 and DTLZ3 (in a well-known benchmark
test suite DTLZ [3]). Figure 1 shows the true Pareto front of the eight-objective
DTLZ1 and the final solution set of BiGE in one typical run on the eight-objective
DTLZ1 by parallel coordinates. The parallel coordinates map the original many-
objective solution set to a 2D parallel coordinates plane. Particularly, Li et al. in
[9] systematically explained how to read many-objective solution sets in parallel
coordinates, and indicates that parallel coordinates can partly reflect the quality
of a solution set in terms of convergence, coverage, and uniformity.

Clearly, there are some solutions that are far away from the Pareto front in
BiGE, with the solution set of eight-objective DTLZ1 ranging from 0 to around
450 compared to the Pareto front ranging from 0 to 0.5 on each objective. Such
solutions always have a poor proximity degree and a good crowding degree (esti-
mated by Euclidean distance)in bi-goal objective space (i.e., convergence and

Angle-Based Crowding Degree Estimation for Many-Objective Optimization 579

1 2 3 4 5 6 7 8
Objective No.

0

100

200

300

400

500

O
bj

ec
tiv

e
Va

lu
e

(a) The true Pareto front (b) The final solution set of BiGE

Fig. 1. The true Pareto front and the final solution set of BiGE on the eight-objective
DTLZ1, shown by parallel coordinates.

diversity), and will be preferred since there is no solution in the population that
dominates them in BiGE. These solutions are detrimental for BiGE to converge
the population to the Pareto front considering their poor performance in terms
of convergence. A straightforward method to remove DRSs is to change the
crowding degree estimation method.

3.2 Basic Idea

The basic idea of the proposed method is based on some observations of DRSs.
Figure 2 shows one typical situation of a non-dominated set with five individuals
including two DRSs (i.e, A and E) in a two-dimensional objective minimization
scenario.

As seen, it is difficult to find a solution that could dominate DRSs by esti-
mating the crowding degree using Euclidean distance. Take individual A as an
example, it performs well on objective f1 (slightly better than B with a near-
optimal value 0) but inferior to all the other solutions on objective f2. It is
difficult to find a solution with better value than A on objective f1, same as
individual E on objective f2. A and E (with poor proximity degree and good
crowding degree) are considered as good solutions and have a high possibility
to survive in the next generation in BiGE. However, the results would be dif-
ferent if the distance-based crowding degree estimation is replaced by a vector
angle. It can be observed that (1) an individual in a crowded area would have
a smaller vector angle to its neighbor compared to the individual in a sparse
area, e.g., C and D, (2) a DRS would have an extremely small value of vector
angle to its neighbor, e.g., the angle between A and B or the angle between E
and D. Namely, these DRSs would be assigned both poor proximity and crowd-
ing degrees, and have a high possibility to be deleted during the evolutionary
process. Therefore, vector angles have the advantage to distinguish DRSs in the
population and could be considered into crowding degree estimation.

580 Y. Xue et al.

5

10

5

0 10

A

D E

10

0

 f2

f1

B

C

15

15

Fig. 2. An illustration of a population of five solutions with two DRSs - A and E. They
have good crowding degrees estimated by the Euclidean distance, but poor crowding
degrees calculated by the vector angle between two neighbors.

3.3 Angle-Based Crowding Degree Estimation

Inspired by the work in [12], we propose a novel angle-based crowding degree esti-
mation method, and integrate it into the BiGE framework (line 4 in Algorithm1),
called aBiGE. Before estimating the diversity of an individual in a population in
aBiGE, we first introduce some basic definitions.

Norm. For individual xi, its norm, denoted as norm(xi) in the normalzied
objective space defined as [12]:

norm(xi) =

√√√√
N∑

j=1

f̃j(xi)2. (6)

Vector Angles. The vector angle between two individuals xi and xk is defined
as follows [12]:

angle xi→xk
= arccos

∣∣∣∣
F ′(xi) • F ′(xk)

norm(xi) · norm(xk)

∣∣∣∣ . (7)

Angle-Based Crowding Degree Estimation for Many-Objective Optimization 581

where F ′(xi) • F ′(xk) is the inner product between F ′(xi) and F ′(xk) defined
as:

F ′(xi) • F ′(xk) =
N∑

j=1

f̃j(xi) · f̃j(xk). (8)

Note that angle xi→xk
∈ [0, π/2].

The vector angle from an individual xi ∈ Ω to the population is defined as
the minimum vector angle between xi and another individual in a population
P : θ(xi) = anglexi→P

When an individual x is selected into archive in the environmental selection,
respectively, θ(x) value will be punished. There are several factors need to be
considered in order to achieve a good balance between proximity and diversity.

– A severe penalty should be imposed on individuals that have more adjacent
individuals in a niche. Inspired by the punishment method of crowding degree
estimation, a punishment to an individual x is based on the number of indi-
viduals that have a lower proximity degree compared to x is counted (denote
as c). The punishment is aggravated with an increase of c.

– In order to avoid the situation that some individuals have the same vector
angle value to the population, individuals should be further punished. There-
fore, the penalty is implemented according to the proportion value of θ(x) to
all the individuals in the niche, denoted as p.

Keep the above factors in mind, in aBiGE, the diversity estimation of individual
x ∈ Ω based on vector angles is defined as

fa(x) =
c + 1

θ(x) · (p + 1) +
π

90

. (9)

By applying the angle-based crowding degree estimation method to BiGE
framework in minimizing many-objective optimization problems, we aim to
enhance the selection pressure on those non-dominated solutions in the pop-
ulation of each generation and avoid the negative influence of DRSs in the opti-
mization process. Note that, a smaller value of fa(x) is preferred.

4 Experiments

4.1 Experimental Design

To test the performance of the proposed aBiGE on those MaOPs where the
search process involves DRSs, the experiments are conducted on nine DTLZ
test problems. For each test problem (i.e., DTLZ1, DTLZ3, and DTLZ7), five,
eight, and ten objectives will be considered, respectively.

To make a fair comparison with the state-of-the-art BiGE for MaOPs, we
kept the same settings as [8]. Settings for both BiGE and aBiGE are:

– The population size of both algorithms is set to 100 for all test problems.

582 Y. Xue et al.

– 30 runs for each algorithm per test problem to decrease the impact of their
stochastic nature.

– The termination criterion of a run is a predefined maximum of 30, 000 eval-
uations, namely 300 generations for test problems.

– For crossover and mutation operators, crossover and mutation probability are
set to 1.0 and 1/M (where M represents the number of decision variables)
respectively. In particular, uniform crossover and polynomial mutation are
used.

Algorithms performance is assessed by performance indicators that consider
both proximity and diversity. In this paper, a modified version of the original
inverted generational distance indicator (IGD) [15], called (IGD+) [7] is chosen
as the performance indicator. Although IGD has been widely used to evaluate
the performance of MOEAs on MaOPs, it has been shown [10] that IGD needs
to be replaced by IGD+ to make it compatible with Pareto dominance. IGD+
evaluates a solution set in terms of both convergence and diversity, and a smaller
value indicates better quality.

4.2 Performance Comparison

Test Problems with DRSs. Table 1 shows the mean and standard deviation
of IGD+ metric results on nine DTLZ test problems with DRSs. For each test
problem, among different algorithms, the algorithm that has the best result
based on the IGD+ metric is shown in bold. As can be seen from the table,
for MaOPs with DRSs, the proposed aBiGE performs significantly better than
BiGE on all test problems in terms of convergence and diversity.

Table 1. Mean and standard deviation of IGD+ metric on nine DTLZ test problems.
The best result for each test problem is highlighted in boldface.

Problem Obj. BiGE aBiGE

DTLZ1 5 8.4207E−01 (3.59E−01) 1.1768E−01 (3.41E−02)

8 1.9350E+00 (1.27E+00) 1.9495E−01 (9.44E−02)

10 1.9653E+00 (1.36E+00) 2.2763E−01 (9.57E−02)

DTLZ3 5 1.5705E+01 (5.87E+00) 6.0008E+00 (3.50E+00)

8 3.3434E+01 (1.17E+01) 9.6401E+00 (6.30E+00)

10 3.5720E+01 (1.58E+01) 1.2780E+01 (5.40E+00)

DTLZ7 5 4.6666E−01 (1.52E−01) 3.1701E−01 (6.48E−02)

8 3.0415E+00 (6.03E−01) 2.6350E+00 (8.59E−01)

10 5.6152E+00 (7.41E−01) 4.0059E+00 (4.53E−01)

Angle-Based Crowding Degree Estimation for Many-Objective Optimization 583

To visualize the experimental results, Figs. 3 and 4 plot, by parallel coordi-
nate, the final solutions of one run with respect to five-objective DTLZ1 and five-
objective DTLZ7, respectively. This run is associated with the particular run with
the closest results to the mean value of IGD+. As shown in Fig. 3(a), the approx-
imation set obtained by BiGE has an inferior convergence on the five-objective
DTLZ1, with the range of its solution set is between 0 and about 400 in contrast
to the Pareto front ranging from 0 to 0.5 on each objective. From Fig. 3 (b), it can
be observed that the obtained solution set of the proposed aBiGE converge to the
Pareto front and only a few individuals do not converge.

1 2 3 4 5
Objective No.

0

100

200

300

400

500

O
bj

ec
tiv

e
Va

lu
e

1 2 3 4 5
Objective No.

0

0.5

1

1.5

2

O
bj

ec
tiv

e
Va

lu
e

EGiBa)b(EGiB)a(

Fig. 3. The final solution sets of the two algorithms on the five-objective DTLZ1,
shown by parallel coordinates.

1 2 3 4 5
Objective No.

0

2

4

6

8

10

12

O
bj

ec
tiv

e
Va

lu
e

1 2 3 4 5
Objective No.

0

2

4

6

8

10

12

O
bj

ec
tiv

e
Va

lu
e

EGiBa)b(EGiB)a(

Fig. 4. The final solution sets of the two algorithms on the five-objective DTLZ7,
shown by parallel coordinates.

For the solutions of the five-objective DTLZ7, the boundary of the first four
objectives is in the range [0, 1], and the boundary of the last objective is in the
range [3.49, 10] according to the formula of DTLZ7. As can be seen from (Fig. 4),

584 Y. Xue et al.

all solutions of the proposed aBiGE appear to converge into the Pareto front.
In contrast, some solutions (with objective value beyond the upper boundary in
5th objective) of BiGE fail to reach the Pareto front. In addition, the solution
set of the proposed aBiGE has better extensity than BiGE on the boundaries.
In particular, the solution set of BiGE fails to cover the region from 3.49 to 6
of the last objective and the solution set of the proposed aBiGE does not cover
the range of Pareto front below 4 on 5th objective.

Test Problem Without DRSs. Figure 5 gives the final solution set of both
algorithms on the ten-objective DTLZ2 in order to visualize their distribution on
the MaOPs without DRSs. As can be seen, the final solution sets of both algo-
rithms could coverage the Pareto front with lower and upper boundary within
[0,1] of each objective. Moreover, refer to [9], parallel coordinates in Fig. 5 partly
reflect the diversity of solutions obtained by aBiGE is sightly worse than BiGE.
This observation can be assessed by the IGD+ performance indicator where
BiGE obtained a slightly lower (better) than the proposed aBiGE.

1 2 3 4 5 6 7 8 9 10
Objective No.

0

0.2

0.4

0.6

0.8

1

1.2

O
bj

ec
tiv

e
Va

lu
e

1 2 3 4 5 6 7 8 9 10
Objective No.

0

0.2

0.4

0.6

0.8

1

1.2

O
bj

ec
tiv

e
Va

lu
e

EGiBa)b(EGiB)a(

Fig. 5. The final solution sets of BiGE and aBiGE on the ten-objective DTLZ2 and
evaluated by IGD+ indicator, shown by parallel coordinates. (a) BiGE (IGD+ =
2.4319E−01) (b) aBiGE (IGD+ = 2.5021E−01).

5 Conclusion

In this paper, we have addressed an issue of a well-established evolutionary many-
objective optimization algorithm BiGE on the problems with high probability to
produce dominance resistant solutions during the search process. We have pro-
posed an angle-based crowding distance estimation method to replace distance-
based estimation in BiGE, thus significantly reducing the effect of dominance
resistant solutions to the algorithm. The effectiveness of the proposed method has
been well evaluated on three representative problems with dominance resistant
solutions. It is worth mentioning that for problems without dominance resistant
solutions the proposed method performs slightly worse than the original BiGE.

Angle-Based Crowding Degree Estimation for Many-Objective Optimization 585

In the near future, we would like to focus on the problems without dominance
resistant solutions, aiming at a comprehensive improvement of the algorithm on
both types of problems.

References

1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

2. Deb, K., Mohan, M., Mishra, S.: Evaluating the ε-domination based multi-objective
evolutionary algorithm for a quick computation of pareto-optimal solutions. Evol.
Comput. 13(4), 501–525 (2005)

3. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolu-
tionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.)
Evolutionary Multiobjective Optimization. Advanced Information and Knowledge
Processing. Springer, London (2005). https://doi.org/10.1007/1-84628-137-7 6

4. Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiob-
jective optimization. Evol. Comput. 3(1), 1–16 (1995)

5. He, Z., Yen, G.G., Zhang, J.: Fuzzy-based pareto optimality for many-objective
evolutionary algorithms. IEEE Trans. Evol. Comput. 18(2), 269–285 (2014)

6. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimiza-
tion: a short review. In: 2008 IEEE Congress on Evolutionary Computation. IEEE
World Congress on Computational Intelligence, pp. 2419–2426. IEEE (2008)

7. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation
in generational distance and inverted generational distance. In: Gaspar-Cunha,
A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp.
110–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1 8

8. Li, M., Yang, S., Liu, X.: Bi-goal evolution for many-objective optimization prob-
lems. Artif. Intell. 228, 45–65 (2015)

9. Li, M., Zhen, L., Yao, X.: How to read many-objective solution sets in parallel
coordinates (educational forum). IEEE Comput. Intell. Mag. 12(4), 88–100 (2017)

10. Li, M., Yao, X.: Quality evaluation of solution sets in multiobjective optimisation:
a survey. ACM Comput. Surv. (CSUR) 52(2), 1–38 (2019)

11. Purshouse, R.C., Fleming, P.J.: On the evolutionary optimization of many con-
flicting objectives. IEEE Trans. Evol. Comput. 11(6), 770–784 (2007)

12. Xiang, Y., Zhou, Y., Li, M., Chen, Z.: A vector angle-based evolutionary algorithm
for unconstrained many-objective optimization. IEEE Trans. Evol. Comput. 21(1),
131–152 (2017)

13. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evo-
lutionary algorithm. TIK-report 103 (2001)

14. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30217-9 84

15. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1007/978-3-319-15892-1_8
https://doi.org/10.1007/978-3-540-30217-9_84

586 Y. Xue et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Author Index

Alazizi, Ayman 14
Amodio, Matthew 509
Artelt, André 235
Atamna, Asma 27

Baeza-Yates, Ricardo 404
Bahri, Maroua 40
Baratchi, Mitra 313
Bariatti, Francesco 54
Battaglia, Elena 67
Bauckhage, Christian 548
Bendimerad, Anes 80
Beyer, Christian 1
Bifet, Albert 40
Bioglio, Livio 67
Borgelt, Christian 93
Boulicaut, Jean-François 339

Cazabet, Rémy 339, 522
Cellier, Peggy 54, 197
Clémençon, Stephan 287
Cohen, Eldan 106
Cornuéjols, Antoine 119
Couceiro, Miguel 132
Crivello, Jean-Claude 27

Dalleau, Kevin 132
De Bie, Tijl 80
Dijkman, Remco 483
Duivesteijn, Wouter 483

Faas, Micky 158
Febrissy, Mickael 171
Ferré, Sébastien 54
Ferreira, Carlos Abreu 379
Freire, Ana 404
Fréry, Jordan 457

Gabrielli, Lorenzo 274
Gabrys, Bogdan 352
Galindez Olascoaga, Laura Isabel 184
Gama, João 379
Garcke, Jochen 548

Gautrais, Clément 197
Gharaghooshi, Shiva Zamani 210, 300
Ghoshal, Biraja 223
Giannotti, Fosca 274
Göpfert, Jan Philip 235
Gross-Amblard, David 261

Habrard, Amaury 14
Hammer, Barbara 235
Hanika, Tom 496
He-Guelton, Liyun 14, 457
Höppner, Frank 248
Hüllermeier, Eyke 444, 561

Jacquenet, François 14
Jahnke, Maximilian 248
Jeantet, Ian 261
Jilderda, Maurice 483

Kim, Jisu 274
Krishnaswamy, Smita 509

Largeron, Christine 210, 300, 404, 522
Larroche, Corentin 287
Levene, Mark 470
Li, Miqing 574
Lijffijt, Jefrey 80
Lindskog, Cecilia 223
Liu, Chang 210, 300
Liu, Xiaohui 574
Loog, Marco 326, 535

Mandal, Avradip 106
Maniu, Silviu 40
Maszczyk, Tomasz 352
Mathonat, Romain 339
Mayer, Sebastian 548
Mazel, Johan 287
Meert, Wannes 184
Mendes-Moreira, João 313
Menkovski, Vlado 145
Mey, Alexander 326, 535
Miasnikov, Evgeniy V. 418

Miklós, Zoltán 261
Millot, Alexandre 339
Mohr, Felix 561
Muhle, Rebecca 509
Murena, Pierre-Alexandre 119
Musial, Katarzyna 352

Nadif, Mohamed 171
Nguyen, Tien-Dung 352
Ninevski, Dimitar 366
Nogueira, Ana Rita 379
Noonan, James 509

O’Leary, Paul 366
Oblé, Frédéric 14, 457
Olivier, Raphaël 119
Overton, Toyah 391

Pensa, Ruggero G. 67
Pfahringer, Bernhard 40
Plantevit, Marc 80

Ramírez-Cifuentes, Diana 404
Robardet, Céline 80
Roy, Arnab 106

Safi, Abdullah Al 1
Savchenko, Andrey V. 418
Schneider, Johannes 431
Shah, Nimish 184
Shaker, Mohammad Hossein 444
Siblini, Wissam 457
Sifa, Rafet 548
Singh, Manni 470
Sîrbu, Alina 274
Smail-Tabbone, Malika 132
Sokolovska, Nataliya 27

Soons, Youri 483
Spiliopoulou, Myra 1
Stanley III, Jay S. 509
Stubbemann, Maximilian 496
Stumme, Gerd 496

Termier, Alexandre 197
Tissier, Julien 404
Tong, Alexander 509
Tornede, Alexander 561
Tucker, Allan 223, 391

Unnikrishnan, Vishnu 1
Ushijima-Mwesigwa, Hayato 106

van Dijk, David 509
van Doorenmalen, Jeroen 145
van Leeuwen, Matthijs 158, 197
Van den Broeck, Guy 184
Vaudaine, Rémi 522
Verhelst, Marian 184
Viering, Tom Julian 326, 535
von Rueden, Laura 548

Wang, Yi-Qing 457
Wersing, Heiko 235
Weston, David 470
Wever, Marcel 561
Wolf, Guy 509

Xue, Yani 574

Yim, Kristina 509

Zafarmand, Mohammadmahdi 210
Zaïane, Osmar R. 210, 300
Zöller, Marc-André 352

588 Author Index

	Preface
	Organization
	Contents
	Multivariate Time Series as Images: Imputation Using Convolutional Denoising Autoencoder
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Simulating Missing Data
	3.2 Translating Time Series into Images
	3.3 Convolutional Denoising Autoencoder
	3.4 Competitor Models

	4 Experiments
	4.1 Datasets and Data Preprocessing
	4.2 Model Architecture and Hyperparameters
	4.3 Competitor Model's Architecture and Hyperparameters
	4.4 Training
	4.5 Evaluation Criteria

	5 Results
	6 Conclusion
	References

	Dual Sequential Variational Autoencoders for Fraud Detection
	1 Introduction
	2 Preliminaries
	2.1 Autoencoder (AE)
	2.2 Variational Autoencoder (VAE)
	2.3 Negative Learning
	2.4 Mixture-of-Experts Layer (MoE)

	3 The DuSVAE Model
	3.1 Model Architecture
	3.2 The Training Strategy

	4 Experiments
	4.1 Dataset
	4.2 Metrics
	4.3 Comparison with the State of the Art

	5 Conclusion
	References

	A Principled Approach to Analyze Expressiveness and Accuracy of Graph Neural Networks
	1 Introduction
	2 Related Work
	3 Some Graph Concepts
	3.1 Graph Neural Networks

	4 Simple Permutation-Invariant Graph Convolutional Network (SPI-GCN)
	4.1 Graph Convolution Module
	4.2 Sum-Pooling Layer
	4.3 Prediction Module

	5 Investigating Expressiveness of SPI-GCN
	5.1 Practical Measure of Expressiveness
	5.2 Penalized Cross Entropy Loss

	6 Experiments
	6.1 Data Sets
	6.2 Architecture of SPI-GCN
	6.3 Comparison with Other Methods
	6.4 Expressiveness Experiments

	7 Conclusion
	References

	Efficient Batch-Incremental Classification Using UMAP for Evolving Data Streams
	1 Introduction
	2 Related Work
	3 Batch-Incremental Classification
	3.1 Prior Work
	3.2 Algorithm Description

	4 Experiments
	4.1 Datasets
	4.2 Results and Discussions

	5 Concluding Remarks and Future Work
	References

	GraphMDL: Graph Pattern Selection Based on Minimum Description Length
	1 Introduction
	2 Background Knowledge
	2.1 The MDL Principle
	2.2 Graphs and Graph Patterns

	3 GraphMDL: MDL for Graphs
	3.1 Model: A Code Table for Graph Patterns
	3.2 Encoding the Data with a Code Table
	3.3 Description Lengths
	3.4 The GraphMDL Algorithm

	4 Experimental Evaluation
	4.1 Datasets
	4.2 Quantitative Evaluation
	4.3 Qualitative Evaluations

	5 Conclusion
	References

	Towards Content Sensitivity Analysis
	1 Introduction
	2 Related Work
	3 Content Sensitivity Analysis
	3.1 Motivating Example
	3.2 Definitions
	3.3 Fine-Grained Content Sensitivity Analysis
	3.4 Challenges and Possible Solutions

	4 Preliminary Experiments
	4.1 Annotated Corpus
	4.2 Datasets
	4.3 Experimental Settings
	4.4 Results and Discussion

	5 Conclusions
	References

	Gibbs Sampling Subjectively Interesting Tiles
	1 Introduction
	2 Problem Formulation
	2.1 Notation
	2.2 The Interestingness of a Tile
	2.3 Problem Statement

	3 Gibbs Sampling
	4 Gibbs Sampling of Tiles with Respect to SI
	5 Experiments
	6 Discussion
	7 Conclusions
	References

	Even Faster Exact k-Means Clustering
	1 Introduction
	2 k-Means Clustering
	3 Bounds-Based Exact k-Means Clustering
	4 Experiments
	5 Conclusion
	References

	Ising-Based Consensus Clustering on Specialized Hardware
	1 Introduction
	2 Background
	2.1 Problem Definition
	2.2 Existing Criteria and Methods
	2.3 Ising Models

	3 Ising Approach for Consensus Clustering on Specialized Hardware
	3.1 Pairwise Similarity-Based Ising Model
	3.2 Partition Difference Ising Model
	3.3 Solving Consensus Clustering on the Fujitsu Digital Annealer

	4 Empirical Evaluation
	4.1 Results

	5 Conclusion
	References

	Transfer Learning by Learning Projections from Target to Source
	1 Introduction
	2 A New Algorithm for Transfer Learning
	3 Theoretical Analysis
	3.1 Generalization Error Bounds When Using a Single Projection
	3.2 Boosting Projections from Target to Source

	4 Design of the Experiments
	4.1 The Main Dimensions of Experiments in Transfer Learning
	4.2 Experimental Setup
	4.3 Description of the Experiments
	4.4 Additional Experiments

	5 Comparison to Previous Works
	6 Conclusion
	References

	Computing Vertex-Vertex Dissimilarities Using Random Trees: Application to Clustering in Graphs
	1 Introduction
	2 Related Work
	3 Method
	4 Evaluation
	4.1 Graph Trees on Simple Graphs
	4.2 Graph Trees on Attributed Graphs

	5 Discussion and Future Work
	References

	Evaluation of CNN Performance in Semantically Relevant Latent Spaces
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Semantically Relevant Latent Space
	3.2 Decision Validation
	3.3 Generating (contrastive) Explanations

	4 Results
	5 Conclusion
	References

	Vouw: Geometric Pattern Mining Using the MDL Principle
	1 Introduction
	2 Related Work
	3 Geometric Pattern Mining Using MDL
	3.1 Patterns and Instances
	3.2 The Problem and Its Solution Space
	3.3 Encoding Models and Instances

	4 The Vouw Algorithm
	4.1 Finding Candidates
	4.2 Gain Computation
	4.3 Mining a Set of Patterns
	4.4 Improvements

	5 Experiments
	6 Conclusions
	References

	A Consensus Approach to Improve NMF Document Clustering
	1 Introduction
	2 Nonnegative Matrix Factorization
	3 Cluster Ensembles (CE)
	4 Experiments
	4.1 Datasets
	4.2 NMF Raw Performances and Initialization
	4.3 Consensus Clustering
	4.4 Consensus Multinomial

	5 Conclusion
	References

	Discriminative Bias for Learning Probabilistic Sentential Decision Diagrams
	1 Introduction
	2 Background
	3 A Discriminative Bias for PSDD Learning
	3.1 Discriminative Bias
	3.2 Generative Bias
	3.3 Obtaining the Vtree

	4 Experiments
	4.1 Setup
	4.2 Evaluation of DG-LearnPSDD
	4.3 Impact of the Vtree on Discriminative Performance
	4.4 Robustness to Missing Features

	5 Related Work
	6 Conclusion
	References

	Widening for MDL-Based Retail Signature Discovery
	1 Introduction
	2 Preliminaries
	3 Problem Definition
	4 An Encoding for Signatures
	4.1 Model Encoding: L(S)
	4.2 Data Encoding: L(|S)

	5 Algorithms
	5.1 Widening for Signatures

	6 Experiments
	6.1 Algorithm Runtime and Code Length Analysis
	6.2 Qualitative Analysis

	7 Conclusions
	References

	Addressing the Resolution Limit and the Field of View Limit in Community Mining
	1 Introduction
	2 Notations and Definitions
	2.1 Strong and Weak Links
	2.2 Edge Strength
	2.3 SIWO Measure
	2.4 Community Definition

	3 The SIWO Method
	4 The Resolution Limit of SIWO
	5 Experimental Results
	5.1 Real Networks
	5.2 Synthetic Networks

	6 Scalability
	7 Conclusion
	References

	Estimating Uncertainty in Deep Learning for Reporting Confidence: An Application on Cell Type Prediction in Testes Based on Proteomics
	1 Introduction
	2 Multi-label Cell-Type Recognition and Localization with Estimated Uncertainty
	2.1 Problem Definition
	2.2 Solution Approach

	3 Estimating Bias-Corrected Uncertainty Using Jackknife Resampling Method
	3.1 Bayesian Deep Learning and Estimating Uncertainty
	3.2 Dataset
	3.3 Results and Discussions

	4 Conclusion and Discussion
	References

	Adversarial Attacks Hidden in Plain Sight
	1 Introduction
	2 Adversarial Attacks
	2.1 Localized Attacks
	2.2 Entropy-Based Attacks

	3 A Study of How Humans Perceive Adversarial Examples
	3.1 Generation of Adversarial Examples
	3.2 Study Design
	3.3 Hypotheses Tests

	4 Discussion
	References

	Enriched Weisfeiler-Lehman Kernel for Improved Graph Clustering of Source Code
	1 Motivation
	2 Related Work
	2.1 Measuring Similarity Directly
	2.2 Measuring Similarity Indirectly
	2.3 Discussion

	3 Enriching WL Subtree Kernels
	3.1 Subtree Similarity
	3.2 Updating Vector Representations
	3.3 Compensating Superfluous Nodes
	3.4 Complexity

	4 Application
	4.1 Effect on Distances
	4.2 Dimensionality
	4.3 Code Graph Clustering

	5 Conclusions
	References

	Overlapping Hierarchical Clustering (OHC)
	1 Introduction
	2 Overlapping Hierarchical Clustering
	2.1 Intuition and Basic Definitions
	2.2 Computing Hierarchies with Overlaps

	3 Experimental Evaluation
	3.1 Experimental Methodology
	3.2 A Hierarchy Similarity Measure
	3.3 Experimental Results

	4 Related Work
	5 Conclusion and Future Work
	References

	Digital Footprints of International Migration on Twitter
	1 Introduction
	2 Related Work
	3 Experimental Setting for Data Collection
	4 Identifying Migrants
	4.1 Assigning Residence
	4.2 Assigning Nationality

	5 Evaluation
	5.1 Internal Validation: Gold Standards Derived from Our Data
	5.2 External Validations: Validation with Ground Truth Data

	6 Case Study: Topics on Twitter
	7 Conclusion and Future Work
	References

	Percolation-Based Detection of Anomalous Subgraphs in Complex Networks
	1 Introduction
	2 Problem Formulation and Related Work
	2.1 Problem Formulation – Statistical Hypothesis Testing
	2.2 Related Work – Scan Statistics and Beyond

	3 Local Anomaly Detection and Percolation Theory
	3.1 Some Notions of Percolation Theory
	3.2 Application to Anomalous Subgraph Detection
	3.3 Putting It All Together – Description of Our Test

	4 Experiments
	4.1 Generation of the Dataset
	4.2 Detectability Conditions – Empirical Study

	5 Discussion and Future Work
	6 Conclusion
	References

	A Late-Fusion Approach to Community Detection in Attributed Networks
	1 Introduction
	2 Related Work
	3 The Late-Fusion Method
	4 Experiments
	4.1 Synthetic Networks with Numeric Attributes
	4.2 Real Network with Numeric Attributes
	4.3 Real Network with Binary Attributes
	4.4 Effect of Parameter
	4.5 Complexity of Late Fusion

	5 Conclusion and Future Direction
	References

	Reconciling Predictions in the Regression Setting: An Application to Bus Travel Time Prediction
	1 Introduction
	2 Literature Review
	3 The R4R Method
	3.1 Problem Definition
	3.2 Methodology

	4 Case Study
	5 Comparative Study
	5.1 Can Reconciliation Be Achieved Using R4R?
	5.2 How Does R4R Perform Against Baselines Made for Time Series Data?

	6 Conclusion
	References

	A Distribution Dependent and Independent Complexity Analysis of Manifold Regularization
	1 Introduction
	2 Related Work
	3 The Semi-supervised Setting
	4 A Framework for Semi-supervised Learning
	5 Analysis of the Framework
	5.1 Sample Complexity Bounds
	5.2 Comparison to the Supervised Solution
	5.3 The Limits of Manifold Regularization

	6 Rademacher Complexity of Manifold Regularization
	7 Experiment: Concentric Circles
	8 Discussion and Conclusion
	References

	Actionable Subgroup Discovery and Urban Farm Optimization
	1 Introduction
	2 Problem Definition
	3 Related Work
	4 Optimization with Subgroup Discovery
	4.1 An Efficient Algorithm for Optimal Subgroup Discovery
	4.2 Leveraging Subgroups to Optimize Recipes

	5 Experiments
	5.1 MinIntChange4SD vs SD-Map*
	5.2 Empirical Evaluation of the Model Hyperparameters
	5.3 Comparison with Alternative Methods

	6 Conclusion
	References

	AVATAR - Machine Learning Pipeline Evaluation Using Surrogate Model
	1 Introduction
	2 Related Work
	3 Evaluation of ML Pipelines Using Surrogate Models
	3.1 The AVATAR Knowledge Base
	3.2 Evaluation of ML Pipelines

	4 Experiments
	4.1 Experimental Settings
	4.2 Experiments to Investigate the Impact of Invalid Pipelines
	4.3 Experiments to Compare the Performance of AVATAR and the Existing Methods

	5 Conclusion
	References

	Detection of Derivative Discontinuities in Observational Data
	1 Introduction
	1.1 State of the Art
	1.2 The New Approach

	2 Detecting Cn Discontinuities
	3 Constrained and Coupled Polynomial Approximation
	3.1 Covariance Propagation

	4 Error Analysis
	4.1 Approximation Error
	4.2 Combined Error
	4.3 Extrapolation Error

	5 Numerical Testing
	5.1 Synthetic Data
	5.2 Sensor Data

	6 Conclusion and Future Work
	References

	Improving Prediction with Causal Probabilistic Variables
	1 Introduction
	2 Background
	2.1 PC
	2.2 Cochran-Mantel-Haenszel Test

	3 Framework
	3.1 An Illustrative Example

	4 Results and Discussion
	5 Conclusion
	References

	DO-U-Net for Segmentation and Counting
	1 Introduction
	1.1 Searching for Shelter: Locating IDP Tents in Satellite Imagery
	1.2 Counting in Vein: Finding Erythrocytes in Blood Smears

	2 Data Description
	2.1 Satellite Imagery
	2.2 Blood Smear Images

	3 Methodology
	3.1 U-Net
	3.2 DO-U-Net

	4 Results
	4.1 IDP Tent Results
	4.2 Erythrocyte Results
	4.3 Future Work

	5 Conclusion
	References

	Enhanced Word Embeddings for Anorexia Nervosa Detection on Social Media
	1 Introduction
	2 Related Work
	3 Method Proposed
	3.1 Predictive Pairs Definition
	3.2 Learning Embeddings
	3.3 Enhanced Embeddings Variations

	4 Evaluation Framework
	4.1 Data Set Description
	4.2 Embeddings Generation
	4.3 Evaluation Based on the Average Cosine Similarity
	4.4 Evaluation Based on Visualization
	4.5 Evaluation Based on the Predictive Task

	5 Conclusions and Future Work
	References

	Event Recognition Based on Classification of Generated Image Captions
	1 Introduction
	2 Literature Survey
	3 Proposed Approach
	4 Experimental Results
	5 Conclusion
	References

	Human-to-AI Coach: Improving Human Inputs to AI Systems
	1 Introduction
	2 Challenges of Human-to-AI Communication
	3 Model and Objectives
	3.1 Architecture
	3.2 Objectives and Loss Terms

	4 Evaluation
	4.1 Qualitative Analysis
	4.2 Quantitative Analysis

	5 Related Work
	6 Discussion and Conclusions
	References

	Aleatoric and Epistemic Uncertainty with Random Forests
	1 Introduction
	2 Epistemic and Aleatoric Uncertainty
	2.1 Entropy Measures
	2.2 Measures Based on Relative Likelihood

	3 Random Forests
	3.1 Entropy Measures
	3.2 Measures Based on Relative Likelihood

	4 Experiments
	4.1 Implementation Details
	4.2 Results

	5 Conclusion
	References

	Master Your Metrics with Calibration
	1 Introduction
	2 Popular Metrics for Binary Classification: Advantages and Limits
	3 Calibrated Metrics
	3.1 Calibration
	3.2 Robustness to Variations in
	3.3 Assessment of the Model Quality

	4 Link Between Calibrated and Original Metrics
	4.1 Meaning of 0
	4.2 Do the Calibrated Metrics Rank Models in the Same Order as the Original Metrics?

	5 Guidelines and Use-Cases
	6 Conclusion
	References

	Supervised Phrase-Boundary Embeddings
	1 Introduction
	2 Related Work
	3 The SPhrase Model
	3.1 SPhrase Context Sampling

	4 Methods and Datasets
	4.1 Dataset
	4.2 Parameter Settings

	5 Evaluation
	6 Experimental Design
	6.1 Intrinsic Evaluation
	6.2 Extrinsic Evaluation

	7 Concluding Remarks
	References

	Predicting Remaining Useful Life with Similarity-Based Priors
	1 Introduction
	2 Related Work
	3 Prediction Techniques
	3.1 Preliminaries
	3.2 Trajectory-Based Similarity Prediction
	3.3 Bayesian Updating
	3.4 Bayesian Updating with Similarity-Based Prior Estimation

	4 Evaluation
	4.1 Case Study
	4.2 Results

	5 Conclusions
	References

	Orometric Methods in Bounded Metric Data
	1 Introduction
	2 Related Work
	3 Mathematical Modeling
	4 Application
	4.1 Resulting Questions

	5 Experiments
	5.1 Binary Classification Task

	6 Conclusion and Outlook
	References

	Interpretable Neuron Structuring with Graph Spectral Regularization
	1 Introduction
	2 Related Work
	3 Enforcing Graph Structure
	3.1 Learning and Reinforcing an Abstracted Feature-Space Graph

	4 Experiments
	4.1 Fixed Structure
	4.2 Learning Graph Structure
	4.3 Computational Cost

	5 Conclusion
	References

	Comparing the Preservation of Network Properties by Graph Embeddings
	1 Introduction
	2 Structural Properties and Metrics
	3 Embeddings
	4 Graphs
	5 Results
	5.1 Neighborhood (P1)
	5.2 Structural Equivalence (P2)
	5.3 Isomorphic Equivalence (P3)
	5.4 Community Membership (P4)

	6 Conclusion
	References

	Making Learners (More) Monotone
	1 Introduction
	2 The Setting and the Definition of Monotonicity
	3 Approaches and Algorithms
	4 Theoretical Analysis
	5 Experiments
	6 Discussion
	7 Conclusion
	References

	Combining Machine Learning and Simulation to a Hybrid Modelling Approach: Current and Future Directions
	1 Introduction
	2 Overview
	3 Modelling Approaches
	3.1 Machine Learning
	3.2 Simulation

	4 Combining Machine Learning and Simulation
	4.1 Simulation-Assisted Machine Learning
	4.2 Machine-Learning Assisted Simulation

	5 Advanced Pairing of Machine Learning and Simulation
	6 Conclusion
	References

	LiBRe: Label-Wise Selection of Base Learners in Binary Relevance for Multi-label Classification
	1 Introduction
	2 Multi-label Classification
	2.1 Problem Setting
	2.2 Loss Functions
	2.3 Binary Relevance

	3 Related Work
	4 Label-Wise Selection of Base Learners
	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Single Best Base Learner
	5.3 Optimistic Versus Validated Optimization
	5.4 Results

	6 Conclusion
	References

	Angle-Based Crowding Degree Estimation for Many-Objective Optimization
	1 Introduction
	2 Concepts and Terminology
	3 The Proposed Algorithm: aBiGE
	3.1 A Brief Review of BiGE
	3.2 Basic Idea
	3.3 Angle-Based Crowding Degree Estimation

	4 Experiments
	4.1 Experimental Design
	4.2 Performance Comparison

	5 Conclusion
	References

	Author Index

