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Abstract

Chlamydia trachomatis is a bacterial pathogen that can cause serious
reproductive harm. We describe a class of stochastic branching processes
and their application in modelling the growth of an infection by Chlamy-
dia. Using simulations we show that the model can reproduce biological
phenomena of interest, and we show the variability in outcomes of infec-
tions under the same parameter conditions. We further speculate how this
model might be used to explain long-term adverse reproductive sequelae.
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1 Introduction

Chlamydia trachomatis is a bacterial pathogen and the cause of the most com-
mon notifiable sexually transmitted infection. There is considerable evidence to
indicate that a Chlamydial infection in women may cause Pelvic Inflammatory
Disease (PID), and that these women are more likely to experience tubal factor
infertility [4]. The development of tubal pathology is hypothesised to be a re-
sult of a Chlamydial infection ascending beyond the cervix and into the upper
reproductive tract, combined with a pro inflammatory response to the pathogen
[7].

The low rate of pathology development in women with infections suggests
that a number of host response and pathogen factors moderates ascension. The
immune system response is particularly critical in determining the development
of pathology [6].

An infection develops by extracellular Elementary Bodies (EBs) entering into
a cell. Inclusions may have many bacteria per cell. Once within the host cell,
the metabolically inert EB differentiates into the Reticulate Body (RB) form
of Chlamydia. The RBs replicate by binary fission for some cycles of division,
until some RBs convert back into EBs while others begin to replicate. The cycle
of development continues until approximately 40-48 hours post infection, after
which EBs continually exit the cell in an extrusion, which leaves the host cell
intact, or via the lytic cycle in which the host cell releases a burst of EBs. The
burst of EBs released can then go on to infect new cells, thus beginning the
cycle again [1].

The micro-population dynamics of a bacterial infection and the associated
host cell response have been represented by a system of ordinary differential
equations [10]. More realistic behaviour was represented with a spatial dimen-
sion (represented with a set of partial differential equations) [5]. Host response
scenarios can be modelled by changing parameter values of a particular equa-
tions, which in turn yields insights into the long-term behaviour of the system
under different conditions. However, this modelling approach does not capture
the randomness of the initial phase of an infection.

As a precursor to explaining PID and infertility, we must describe the re-
quirements for an infection to become established and to survive in the mucosal
layer of the cervix for a sufficient period of time until ascension can occur and
pathology can develop. In the model we describe here, we explicitly keep track
of the count of infected cells and account for the stochastic elements present in
the development of an infection.

2 Branching process

Let Nt be the number of infected host cells at time t ≥ 0, with initial conditions
Nt = N0. At time t, for the ith infected cell, with i = 1, . . . , Nt, let Y i

t be a
t-measurable random variable that represents the number of infected progeny
a particular cell generates. We assume that Y i

t is independent and identically
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distributed according to some distribution F that is not a function of time, nor
of the current state of the process Nt. We then model the number of infected
cells from previous incidences as

Nt =

Nt−1∑
i=1

Y i
t .

This defines the basic single-type branching process [2].
The progeny distribution f has mean and variance µ and σ2 respectively.

These two moments characterise the main properties of the process. The tra-
jectories of the process either die out or explode, such that

P({ lim
t→∞

Nt =∞} ∪ { lim
t→∞

Nt = 0}) = 1.

The mean number of progeny µ acts as the bifurcation parameter of the process,
in that µ ≤ 1 implies the almost sure extinction of the process. As a point of
interest, the deterministic model Nt = µNt−1 has the same bifurcation param-
eter. However, in the deterministic model the population persists to Nt = N0.
The stochastic model with µ = 1 goes extinct almost surely.

In the supercritical case µ > 1, the probability of the extinction of the
process is given as the fixed point q = f(q), where f(z) := E(zY

i
t ). That is, the

probability generating function of the infectious progeny distribution gives an
expression for the probability of extinction of an infection.

For the critical and sub-critical cases, define T to be the extinction time of
the process. Then NT =

∑T
k=0Nk follows a power series distribution when Y i

t

follows a power series distribution. That is, P(Y i
t = k) = αkλ

k. In particular,
if the progeny random variable follows a Poisson distribution, with parame-
ter λ, then the total infectious load follows a Borel-Tanner distribution, with
parameters λ and N0 [3].

3 Modelling infectious outcomes

The branching process model tracks the randomness in the size of each burst,
along with the chances these bacteria that go on to infect another cell. The
primary entities in this setup are the number of infected host cells. Changes in
the amount of extracellular infectious material are represented in the model to
support a mechanistic interpretation of the results.

The model is generated with events occurring in time according to a Poisson
process with parameter λ = 0.25. When a lysis or extrusion event occurs,
a random draw is made from a Binomial distribution with parameters n =
200, p = 0.004, to represent the burst size and chance of each bacteria infecting
a new cell respectively. The random draw quantity is then added to the total
number of infected cells, with one subtracted to represent the original cell’s
demise, so that there is a significant chance of no infectious progeny being
produced and the population total decreasing in size. The value of parameters in
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Figure 1: Simulation of a branching process with event times according to a
Poisson Process and Binomially distributed offspring distribution

these simulations were chosen for illustrative purposes, but are mostly consistent
with other models in the literature [10] [5].

3.1 Given an initial infectious load, what are the chances
the infection will develop?

In Figure 1, we can observe the qualitative difference between realisations of a
branching process under the same parameter conditions. Simulation four dies
out almost immediately, whereas simulation three has a similar infected cell
counts to the initial starting population. It is interesting to note that while the
survival time in simulation one and two is approximately similar, the total cell
count over time is significantly greater in two than in one. This represents a
scenario in which the infectious burden is greater for one realisation compared
to another, conditional on survival until a particular time.

3.2 Given an initial infectious load, what are the chances
the infection will last until a given stopping time?

In Figure 2, we simulate the branching process under the same conditions as in
Figure 1. We expect that the proportion of zeroes is a function of the stopping
time, since the zero is an absorbing state of the process. At time 72, less than
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Figure 2: A comparison of cell count distributions for stopping times of A) 24,
B) 72, C) 168 and D) 240 hours respectively

a tenth of processes have a cell count of zero, whereas a majority have a cell
count of zero at time 240. Alternatively, the closer the stopping time to the
initial time, the more processes we expect to observe with a positive population
count. Figure 2 shows the change in the distribution of cell counts for varying
stopping times.

We count the number of cells at a stopping time t = 240, as this represents
sufficient time for an infection to clear in most cases. The simulation is repeated
1000 times, to give an empirical density of the population count at a stopping
time. The histogram in Figure 2 D) shows the normalised density.

The histogram shows that the distribution of cell counts is dominated by
zeroes. In this simulation approximately two-thirds of the simulations had gone
extinct by the stopping time.

The other implication of this example is that the distribution of positive
cell counts have a long right-tail. Although we expect a significant proportion
of processes to have a cell count of zero by a defined stopping time, there is
still some significant probability of observing a large population count at the
same stopping time. These unlikely but possible may explain in part why some
infections cause no observable harm, whilst others persist.

3.3 Given an initial infectious load, what are the chances
the infection will be above a certain threshold at a
given stopping time?

Whilst the previous question is concerned with the quantity P(NT | t = T ),
this question asks P(NT > N∗ | t = T ) for any arbitrary threshold N∗ ≥ 0.
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Figure 3: Histogram of time to extinction

We would like to know not only if an infection will be present at a certain
point in time, but that it will be present in large enough quantities to cause
inflammatory damage. This is crudely addressed with each of the subfigures in
Figure 2. For a particular stopping time, the proportion of cell counts above
a particular threshold corresponds to a region under the empirical distribution.
The figures shows that the smaller stopping times are seen to correspond to a
greater region of probability density compared to larger stopping times.

3.4 Given an initial infectious load and subcritical/critical
reproduction, when will extinction occur?

We are interested in the time to extinction of a branching process with critical
or subcritical reproduction, as this is a factor for total infectious load. A longer
time to extinction will imply a greater infectious load. It is a straightforward
consequence of the results above that most processes will go extinct in a short
amount of time. We observe the existence of a long right-tail in the distribution
of extinction times in Figure 3.

3.5 Given an initial infectious load and subcritical/critical
reproduction, what will the total infectious load be?

The total infectious load is defined as the total cell population count multiplied
by the length of each cell’s lifetime. It is the metric that gives the best sense of
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Figure 4: A) Histogram of total infectious load B) The relationship between
the time to extinction and total infectious load, where the plotted line is least
squares best fit

how severe a particular infection may be, as inflammation due to the immune
response is a function of total infectious load. Figure 4 A) shows a similar
density type to that of the extinction time, with a majority of processes causing
a small amount of total load and a long right-tail.

Figure 4 B) also shows the relationship between the time to extinction and
total infectious load. The two are linearly related, since total infectious load
is defined as a the product of extinction times and population count. It is
interesting to note that there is a large degree of variability around this mean
relationship. There exist some cases where the stopping time of the process is
short, but the total infectious load is quite high. Conversely, there are some
processes where the extinction time is long but the total infectious load is much
lower.

In all of the above examples, it appears that a majority of processes will
result in a small impact for the given measure of interest (stopping cell count,
extinction time, total infectious load). However, for a number of processes this
will not be the case, and the impact (for the given measure of interest) will
be large. When considering the chances of a particular infection to progress to
further disease, we recognise that most infections do not progress to disease at
all, but those that do may have a large impact.
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Figure 5: Density of total infectious load for three different immune system
responses, where the red densities represents a high immune response, green a
medium response and blue representing no immune response. A) Macrophage
Engulfment B) Clearance prior to lysis C) Reduction in burst size.

4 Modelling the immune system

We map different responses of the immune system onto parameters of the model.
For example, a larger adaptive immune system response may reduce the tail of
the progeny distribution. This allows us to use our model to determine how
the immune system plays a role in modifying particular outcomes, such as the
stopping time of a sub-critical infection or the total infectious load. We describe
three specific immune system responses and the outcomes of the model they
produce.

4.1 Macrophage engulfment

Macrophages are components of the innate immune system that migrate within
tissue and detect the presence of pathogens. Chlamydia are cleared by macrophage
engulfment prior to host cell infection [8]. We model this immune system re-
sponse by varying the success probability of an extra-cellular bacteria infecting
a new host cell. Figure 5 plots the total infectious load (as defined above) for
three scenarios, where p = 0.04 representing no immune response of this type
and p = 0.03, p = 0.02 representing medium and high responses of this type,
respectively.

4.2 Cell-mediated immune response

The T helper cells, particularly TH1 cells (also known as CD4+ cells) are com-
ponents of the adaptive immune system that are capable of detecting damaged
cells of the host, which increases the hosts ability to clear an infection by remov-
ing an infected cell prior to lysis or extrusion occurring [9]. This is equivalent
to the burst size of the infected cell being equal to zero. We introduce an extra
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parameter p0 to our model, that represents the probability a cell will be cleared
prior to lysis or extrusion. To model medium and high immune responses, we
simulate the total infectious load for p0 = 0.1, 0.5.

4.3 Burst size

The burst size may also be impacted by a varying immune response [10]. We
model this by first assuming that the burst size of an infected cell is drawn from
a Poisson distribution with parameter λ = 200, as opposed to a fixed burst size
as above. To represent a medium and high immune response of this type, we
then modify the mean of the burst distribution to λ = 150, 100 respectively.

Figure 5 shows a comparison between no response, medium and high re-
sponses of each of the three types described above. This exercise constitutes
a sensitivity analysis of the model, however it does give some sense of the im-
pact of the response by each component of the immune system. It should be
noted that each response is considered independently of the others, and assumed
constant over time, which is a biological oversimplification.

The comparison above demonstrates that for this model, an effective immune
response that neutralises free extra-cellular particles has the greatest impact on
the distribution of total infectious load, as the behaviour of the model is most
sensitive to changes in the success probability parameter.

5 Concluding remarks

In this article we consider a class of stochastic processes for modelling chlamy-
dial infections, and show that realisations of a branching process that has a
mechanistic definition reproduce biological phenomena. We demonstrate how
this class of models permit large variability in outcomes. The model is a signif-
icant first step in work to best elucidate the mechanism by which an infection
will result in severe reproductive sequelae.
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