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Abstract. Powder-based 3D printing is one of the most promising techniques in 

additive manufacturing. The speed, resolution of the printed part and complicated 

geometries are important features in this technique and these features are usually 

not experienced in traditional construction techniques. This study aims to discuss 

the concept of using a custom-made powder (cement mortar) instead of a com-

mercial (gypsum) powder in 3DP. Therefore, broad investigations are required to 

study and understand the details of the cement mortar 3D printed scaffold. This 

paper discovers the effect of heat-curing and addition of E6-glass fibres as rein-

forcement for the printed specimens. The results show that the mechanical prop-

erties of the cement mortar are improved through a heat-curing procedure. Addi-

tion of fibre reinforcement enhances powder flowability consistency and surface 

roughness throughout. Experiments are conducted on printed 50mm cubic speci-

mens, cured in an oven at different temperatures. The optimum heat-curing tem-

perature is found to be 80°C to achieve the highest compressive strength in ce-

ment mortar specimens. Detailed 3D laser scanning of the printed cement mortar 

specimens is conducted. The 3D laser scanning results found rougher surface in 

cement mortar when it is not reinforced with glass fibre. 

Keywords: powder-based 3DP; cement mortar; glass fibre; compressive 

strength; surface roughness. 

1 Introduction 

The increasing need for speed, quality and adapted design in the construction indus-

try, pushes the additive manufacturing to another level of applications. The proce-

dures for constructing structural members should be reconsidered and advanced for 

robust structures in the construction field [1]. 

Earlier studies have recognized three main techniques for the 3DP powder-bed pro-

cess [2]: (i) selective cement activation; (ii) binder jetting; and (iii) selective paste 

intrusion. The selective binder activation process is usually known as powder-bed 

printing (binder/inkjet printing) [3, 4] and it has been used in many applications for 

medical and biomedical purposes [5]. The key mechanism of the inkjet technique is to 

allow a drop of binder (water) to fall through a certain height on the bedded dry pow-

der. The particular binder, that is used, has a major effect on the resolution, dimen-

sional accuracy and surface finish of the printed parts [6, 7]. The printer that is used in 

this study is a commercial printer, ProJet CJP 360, developed by Z-corp. However, all 
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types of powder-based 3DP adopt a similar process. This printer has a maximum reso-

lution of (300×450) Dots Per Inch (DPI) [8]. The resolution is highly dependant on 

changes of the powder particle sizes and binder content.  

According to Aydın and Baradan [9], alkali activated slag mortar is more suitable to 

cure in autoclave when it has low Na2O. Another study investigated the composition 

of inner C-S-H products and the hydration of the Portland cement mortar [10]. The 

mortar was cured at 4 hours or 28 days pre-cure at 20°C before heated at 90°C for 

approximate 12 hours and then stored in water at 20°C. Their results showed that the 

C-S-H formed was denser and contained high sulfate at 90°C than the C-S-H formed 

at 20°C. This has motivated significant research efforts on the application of different 

types of cement (for example, Calcium Aluminate cement and ordinary Portland ce-

ment) at different temperatures so as to find the optimum strength and optimum heat 

resistance of cementitious materials for 3DP. Research is also being conducted into 

the use of fibre reinforcement to enable the mortar to exhibit improved mechanical 

properties [11]. There are only a few studies particularly related to fibre reinforced 

gypsum and cement mortar for 3DP technology. Feng, Meng [12] used Fibre Rein-

forced Polymer (FRP) sheeting to reinforce the external surface of the printed gypsum 

prism by bonding it with resin. Christ, Schnabel [13] used chopped glass fibres with a 

length of 1-2 mm to prepare a gypsum reinforced scaffold which is very short fila-

ments and is not convenient for reinforcement. Farina, Fabbrocino [14] also utilised 

the 3D printed rebars, made from polymeric and metallic fibres, embedded manually, 

in the cast-in-place mortar to compare reinforced specimens. Hence, the use of glass 

fibre as reinforcement in 3D printed components appears to be more feasible than 

using other types of fibre. In the present study, E6-Glass fibre with a length of 6 mm 

was used to print mortar specimens in the powder-based 3DP technique.      

 

In addition, former studies on surface roughness and resolution are conducted on cast-

in-place mortar prisms with different surface roughnesses 3DP polymer rebars [15]. 

Their study found that the smooth surface rebar could not be held by the mortar parti-

cles, whereas the rebar with a rough surface had improved performance. On the other 

hand, the surface roughness of the printed cementitious object has been found to be 

directly related to the powder particle sizes and the powder bed in the build-chamber 

[16]. Another factor which affects the resolution of the object is the flowability of the 

powder and the spreading of the powder particles on the build-chamber (build bin) 

[16, 17]. Overall, there is not enough investigation on the surface roughness of ce-

ment mortar powder-based 3DP. In this paper, the surface roughness of glass fibre 

reinforced and unreinforced 3DP mortars are measured and compared.      

The objective of this study is to experimentally examine the performance of 3DP 

mortar in the powder-based printing technique under heat cured conditions and in the 

presence/absence of fibres to reinforce the printed specimens. The compressive 

strengths of the 3DP mortar at various curing temperatures are evaluated until the 

optimised maximum compressive strength of the printed specimen was found.   
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2 Materials  

2.1 Material properties 

The modified cement powder was formulated based on the commercial powder, ZP 

151, whose major chemical composition was calcium sulphate hemihydrate 

(CaSO4.0.5H2O) (80-90%) produced by the 3DSystems [18]. The particle sizes were 

produced to be as close as possible to the commercial material. For further detail and 

relationship between particle sizes refer to earlier studies [3, 4]. 

The modified mix that was used for powder-based 3DP in this research contained 

67.8% of Calcium Aluminate Cement (CAC) using a ranging sieve of 75- 150 μm, 

32.2% of Ordinary Portland Cement (OPC) and 5% of fine sand as a percentage of 

total weight. The selection of materials was based on the particle size flowability and 

quick setting properties of the materials. For example, CAC had good resistance for 

abrasion, acid resistance and quick setting. In the 1950s, the CAC mortar was used as 

lining for the Portland concrete pipes in Kuala Lumpur. It has also been used in many 

other countries such as Egypt and South Africa [19].  

The physical properties of the E6-glass fibres used in printing fabrication are shown 

in Table 1.  

  
Table 1. Physical properties of chopped E6-glass fibre filament 

Fibre type 
Length 

(mm) 

Filament 

diameter 

(µm) 

Specific 

gravity 

(g/cm3) 

Tensile 

strength 

(MPa) 

Tensile 

modulus 

(GPa) 

Expansion 

coefficient (10-

6K-1)  

E6-Glass fibre 

(Trojan) 

6 ±1 13±1 2.62-2.63 2500-2700 81 6 

 

2.2 Powder mixing  

After selecting the type of materials and their mix proportions, the materials were 

blended homogeneously. The modified powder was thoroughly mixed using a Hobart 

mixer at a speed of 1450 rpm.  

The homogeneity and consistency of the powder were significant factors that must be 

controlled when in pursuit of superior surface roughness and strength results. Hence, 

the speed of the mixer and the blending time were found to be the main contributors 

to the homogeneity of the powder and for production efficiency of 3DP objects [20]. 
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3 Methods 

3.1 Specimen preparation  

Specimens with dimensions of 50×50×50 mm were tested for compressive strength. 

As shown in Table 2, three specimens for each group were prepared for each test, 

based on 6 different curing conditions. 
Table 2. Detailed number and dimension of specimens 

Specimen description 
CAD dimensions (mm) Number of specimens Printed plane 

Plain cube 50×50×50 18 XY 

Fibre-reinforced cube 50×50×50 18 XY 

 

Fig. 1 provides all details of the planes (XY, XZ, YZ) and the applied loads on the 

XY plane. Fig. 1 also displays the green part for a 3DP mortar cube ( the green part is 

defined as the fabricated part after printing and removal from the build-chamber of 

the printer, prior to commencing any post-processing procedure such as curing). 

 

 
Fig. 1. The green part of the 3DP cement mortar cube 50×50×50 mm and illustration of a 

cube tested on the plane (XY) 

 

3.2 Post-processing of specimen 

After a specimen was printed, it was left in the printer for approximately 2 hours be-

fore curing. The post-processing consists of (a) curing one group of specimens for 28-

days in tap water; (b) curing another group of specimens in the oven for 3-hours, stor-

ing in water for 28 days and then drying in the oven for 3-hours. This same basic 
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post-processing sequence was used for all specimens, but at various temperatures. 

Specimens were cured under the following different conditions: cured in tap water 

only, (cured for 3-hours  at 40°C, 28-days water, 3-hours at 40°C), (cured for 3-hours 

at 60°C, 28-days water, 3-hours at 60°C), (cured for 3-hours at 80°C, 28-days water, 

3-hours at 80°C), (cured 3-hours at 90°C, 28-days water, 3-hours at 90°C) and (cured 

for 3-hours at 100°C, 28-days water, 3-hours at 100°C).  

3.3 Compressive strength test  

Cubic specimens were subjected to the compressive strength test. The compressive 

strength test was performed for the 3DP specimens according to the ASTM standard 

[21]. A total of 36 specimens were printed and tested, including 3 specimens for each 

curing process and 3 specimens with the presence/absence of glass fibre. The rate of 

loading in the compressive strength test was fixed at 0.833 kN/s.  
 

4 Results and discussion 

4.1 Compressive strength 

Influence of the strength of material is significant to measure the ability of materials 

behaviour to resist the applied load.  

Fig. 2 presents the compression strength of the printed mortar using 1% E6-glass fibre 

as reinforcement and curing at different temperatures. Specimens curing at 80°C at-

tained the optimum compressive strength for the printed mortar. The compressive 

strength of mortar with 1% glass fibre was recorded as 37.88 MPa, which is quite 

suitable for the construction industry and precast construction applications.  
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Fig. 2. Compressive strength of mortar specimen 50×50×50mm with/without glass fibre using 

different curing media 

The increased strength in the cement mortar proportional to the increase in tempera-

tures was due to the greater reaction level of the cement mortar at the raised tempera-

tures at early ages. Curing in an oven accelerated the reaction of the cementitious 

process. Fast hydration and a high early compressive strength were observed as the 

temperature was increased [22]. 

These results are positive for the construction industry and precast construction appli-

cations. This study used optimal saturation levels that are detailed in the earlier stud-

ies [3, 4] to show the strongest plane and direction in addition to the optimised elevat-

ed temperature, which is the optimum to attain the highest compressive strength. For 

long term durability and checking the quality of the materials, it is necessary to con-

duct further investigations, such as monitoring the surface quality of the printed struc-

ture in harsh environments and checking the serviceability limit state of the printed 

structural members.  

 

4.2 Surface roughness  

Abbreviation  “Ra” is a value used to describe the surface textures of the materials. 

Ra expresses as arithmetic mean deviation of the roughness profile which is deter-

mined by height deviation of the surface from a mean line within the evaluation 

length. A substantial change has been observed when glass fibre was added to the 

cement mortar.  
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Adding fibres into printed specimens significantly affect the porosity and surface 

roughness. The porosity of the composite materials has an impact on the mechanical 

properties of the specimens. The porosity of the printed scaffold reduced by fibre 

reinforcement due to the well-distributed fibres on the powder-bed chamber before 

the printing process.  Fig. 3 shows the surface roughness profile of printed specimens 

in the presence and absence of glass fibre. That figure clearly shows a reduction in the 

roughness of the surface morphology of the cubic specimen. Overall, the surface 

roughness of the cubic cement mortar specimen with 1% glass fibre is 18.57±1.35 µm 

and that of the specimen without glass fibre is 22.31±3.72 µm.  

 

 
Fig. 3. Comparison of printed cement mortar specimens in the presence/absence of glass fibre 

 

Fig. 4 shows the 3D laser scanner capture of the fibre filaments in the printed speci-

mens. It clearly shows the approximate length at the edge of the specimen and the 

diameter of the specimen. The approximate length of the filaments extending beyond 

the edge is approximately 400 µm, with the rest of fibre’s length inside the printed 

mortar. The diameter is approximately 13.49 µm. Consequently, this is proof that the 

filament is not damaged during printing and solidifying. 
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Fig. 4. Filament diameter and length of the fibre in the printed specimens. In the top left image 

(1) fibre filament extends 445µm beyond the edge of the specimen; (2) fibre filament length of 

606µm in the specimen, (3) fibre filament length of 217µm beyond the edge of the specimen.  

5  Conclusions 

From this study the following conclusions can be achieved: 

 

  3DP technology is emerging as an advanced technique to construct highly de-

tailed complicated geometries, which are conventionally difficult to con-

struct  

  The maximum compressive strength was recorded at 80°C in the pres-

ence/absence of 1% E6-glass fibres 

  The surface roughness measurements showed that cement mortar specimen 

with fibre had an even and uniform surface compared to specimens without 

fibres  

 

Further research on powder-based 3DP is required, specifically on post-processing, 

curing, and infiltration, early age shrinkage of the printed specimens such as autoge-

nous shrinkage, chemical shrinkage and plastic shrinkage. Ideally, that research 

should focus on broader applications for construction purposes, such as an investiga-

tion of larger-scale 3DP in real-life.  
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