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Highlights 

 Water polluted by swine wastes contains higher levels of antibiotics and hormones. 

 Contaminated water pose high threat to the organisms and human health. 

 Developing antibiotic alternatives is necessary to eliminate antibiotic risks. 

 Enhancing vaccination technology and biosecurity application are essential. 

 Combination of bioprocesses and AOPs is expected to be a promising technology. 
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Abstract 

Swine wastewater (SW) is an important source of antibiotics and hormones (A&H) in 

the environment due to their large-scale application in swine industry. A&H in SW can be 

released into the water environment through the direct discharge of SW, effluent from SW 

treatment plants, and runoff and leaching from farmland polluted by swine wastes. The 

presence of A&H in the water environment has become an increasing global concern 

considering their adverse effects to the aquatic organism and human. This review critically 

discusses: (i) the occurrence of A&H in global water environment and their potential risks to 

water organisms and human; (ii) the management and technical approaches for reducing the 

emission of A&H in SW to the water environment. The development of antibiotic alternatives 

and the enhanced implementation of vaccination and biosecurity are promising management 

approaches to cut down the consumption of antibiotics during swine production. Through the 

comparison of different biological treatment technologies for removing A&H in SW, 

membrane-based bioprocesses have relatively higher and more stable removal efficiencies. 

Whereas, the combined system of bioprocesses and AOPs is expected to be a promising 

technology for elimination and mineralization of A&H in swine wastewater. Further study on 

this system is therefore necessary. 

Abbreviations: Swine wastewater (SW); Antibiotics and hormones (A&H); Sulfonamide 

antibiotics (SMs); Tetracycline antibiotics (TCs); Sulfamethoxazole (SMX); Sulfamethazine 

(SMZ); Sulfadiazine (SDZ); Tetracycline (TC); Oxytetracycline (OTC); Chlortetracycline 

(CTC); Doxycycline (DC); Estrone (E1); 17β-Estradiol (E2); Estriol (E3); 17β-Estradiol 

(EE2); Antibiotic resistant bacteria (ARB); Antibiotic resistant genes (ARGs); Endocrine 

disrupting chemicals (EDCs); Confined animal feeding operations (CAFOs); Extracellular 

polymeric substances (EPS); Sludge retention time (SRT); Advanced oxidation processes 

(AOPs) 
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1. Introduction 

Antibiotics are widely used in swine industry to treat and prevent the diseases caused by 

bacterial infections. They can either kill the bacteria or inhibit their growth or reproduction 

based on their modes of action [1]. Thus, antibiotics are important tools to prevent, control 

and treat diseases in food animal production [2]. Hormones are essential for the normal 

development, maturation and physiological functioning of many vital organs and processes in 

the body [3]. Both antibiotics and hormones have been proved effective for promoting the 

growth of pigs [4-6]. Since the 1950s, livestock producers use A&H regularly as the 

supplements in animal feed and water to increase animal production, and prevent or treat 

their diseases [6-8]. According to the report by Food and Drug Administration (FDA), 80% 

of antibiotics were sold in the United States for livestock production, the amount and route of 

different classes of antibiotics used in livestock in 2017 was displayed in Fig. 1 [9, 10]. The 

consumption of antibiotics can increase by 67% globally and nearly double in Brazil, Russia, 

India, China, and South Africa, between 2010 and 2030 [11]. In comparison with other 

livestock, antibiotics are commonly used as the growth promoter in swine farming [12]. Van 

Boeckel et al. [11] indicated that the global average annual consumption of antimicrobials per 

kilogram of animal produced was 45 mg/kg, 148 mg/kg, and 172 mg/kg for cattle, chicken, 

and pigs, respectively. Specifically, tetracycline and sulfonamide antibiotics are the most 

common antibiotics used in swine production worldwide [13]. 
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Fig. 1 The amount and route of different classes of antibiotics used in livestock in the United 

States in 2017, in 1000 kilograms [10].  

Pork has been reported as the most widely consumed meat worldwide, with the annual 

consumption of 110 million tons [14]. Especially in China, 65% of the meat consumed is 

pork [15]. The increasing pork demand has prompted the shift of swine production from 

smaller, family-owned farms to larger, industrialized confined animal feeding operations 

(CAFOs) [16]. To prevent and treat diseases caused by the high hog population density in 

CAFOs, increasing amount of antibiotics are routinely used in swine industries [17]. As 

predicted by Liu et al. [18], the usage of antibiotics in China by 2030 will be more than 30 

thousands of tons, which is two times higher than the amount used in 2010. Moreover, the 

development of concentrated swine feeding operations results in large quantities of SW 

production. For example, more than 460 million tons of SW was generated in 2011 in China 

[18]. 

In fact, A&H are not well absorbed by pigs, about 70-90 % of them can be excreted via 

urine or feces as intact bioactive substances or metabolites [19]. That is why high 

concentrations of antibiotics and hormones are detected in SW. Due to their wide usage, 

tetracycline and sulfonamide antibiotics are the most frequently detected antibiotics in SW, 
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with the concentrations up to 685.60 and 324.4 μg/L, respectively. Estrogenic hormones, 

including Estrone (E1), 17β-Estradiol (E2) and 17β-Estradiol (EE2), are also highly detected 

in SW at concentrations ranging from 17.2 - 4728 ng/L, 8 - 542 ng/L and 182 - 357 ng/L, 

respectively [19, 20]. A&H are only partially removed in SW treatment systems because of 

their persistence and continuous introduction, leading to their continuous emission into the 

aquatic environment [21]. In addition, swine wastes are commonly applied to farmland as 

fertilizers or for irrigation in most developing countries and some developed countries, which 

results in nonpoint source pollution of ground or surface waters [22]. Actually, multiple 

classes of A&H have been detected at high levels in surface and groundwater samples 

collected from the sites close to swine farms [23, 24]. 

The presence of these A&H in water environment can cause serious risk to human health 

and eco-environmental security, due to their selective pressure on antibiotic resistance and 

endocrine disrupting effects in the environment [20]. In order to mitigate the potential risks 

caused by such A&H in the environment, not only strategies have to be implemented to 

reduce the use of A&H in swine industries, effective technologies are also crucial for 

removing A&H from SW before their final release into the environment. Therefore, this 

review comprehensively discussed the occurrence and risk of A&H in water environment 

firstly, and then summarized the control approaches of A&H in SW, including their 

management and technical strategies.  

2. Occurrence and risks of A&H in water environment 

Antibiotics in SW have been highly detected in surface water and groundwater 

worldwide. Although a wide range of concentrations of antibiotics was detected in the water 

environment, relatively high levels of antibiotics were detected in the surface water adjacent 

to the livestock farms. For example, high concentrations of sulfonamide antibiotics (560 - 

4660 ng/L) and tetracycline antibiotics (810-2420 ng/L) were detected in surface water 
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around the livestock farms in Jiangsu Province, China [25]. Up to 68000 ng/L of 

oxytetracycline (OTC) were detected in stream water in the vicinity of a livestock farm [26]. 

Jiang et al. [27] also indicated that the overall contaminations of antibiotics were more 

serious in suburban sites than those in unban, due to the intensive livestock activities in 

suburban area along the river. Moreover, the variety of antibiotic concentrations in water 

environment is consistent with their change in SW, which vary with seasonal changes. 

Generally, the detectable frequencies and mean concentrations in winter are higher than those 

in summer [28-30]. Thus, livestock farming wastewater mainly contributes to the high levels 

of residual antibiotics in the downstream water environment [31]. The review by Fekadu et 

al. [32] also confirmed that the direct discharge of livestock animal farm wastewater was one 

of the major reasons for the high concentrations of pharmaceuticals in aquatic environments 

in the African and European. 

The occurrence of antibiotics in the water environment is recognized as an emerging 

issue due to the potential adverse effects of these compounds posed to the aquatic life and 

human [20]. Previous reports indicated that antibiotics had toxic effects on the microbial 

structure, growth, respiration and enzyme activity of aquatic microorganisms, including 

proteobacteria, cyanobacteria, algae, daphnia and fish [67, 68]. For instance, Park and Choi 

[69] investigated the acute and chronic toxicity of veterinary antibiotics to microbes, 

invertebrates, and fish. Through the comparison between the predicted no effect 

concentrations (PNECs) and the measured environmental concentrations (MECs) of those 

compounds, the author indicated that SMX, sulfathiazole, CTC, OTC, and amoxicillin 

showed high potential to affect the aquatic ecosystems. Algae are the basis of the food 

chain, even slight decreases in the algal population may affect the balance in an aquatic 

system [70]. Tetracycline and sulfonamide antibiotics have been discovered inhibiting the 

growth of algae by affecting their chloroplast replication, transcription/ translation and 
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metabolic pathways [71-73]. Fish seems less sensitive to antibiotics than algae [45, 74]. 

However, considering the bioaccumulation of antibiotics in invertebrate and fish muscles 

after long-term exposure, there are high risks to human who consume the aquatic organisms 

with bio-accumulated antibiotics [75].  The toxicity of antibiotics can be affected by their 

concentrations, exposure time, aquatic species and the co-occurrence of other antibiotics 

and/or other contaminants [76]. As concluded by previous researches, the antibiotics mixture 

could arise much stronger toxicological risk to the aquatic organisms than individual 

compounds [38, 67, 77, 78]. 

Long-term exposure to low doses of antibiotics in the water environments exerts a 

selective pressure on autochthonous bacterial communities, which not only poses a threat on 

aquatic organisms, but also contributes to the development of antibiotic resistant bacteria 

(ARB) and antibiotic resistant genes (ARGs) [38, 79, 80]. ARB and ARGs are regarded as 

emerging pollutants, and their presence in the water environment has become an increasing 

global concern [81]. ARGs encoding resistance to a broad range of antibiotics have been 

detected in the water environment, especially in the water impacted by swine wastes [82-

85]. ARGs in surface water and soils (fertilized or irrigated by SW) can leach into 

groundwater [84, 86]. For example, Sapkota et al. [84] observed that high levels of 

erythromycin, tetracycline, and clindamycin resistance in Enterococcus spp. recovered from 

surface water and groundwater situated down gradient of a swine CAFO compared with 

surface water and groundwater located up gradient of the facility. Tetracycline resistance 

genes encoding both ribosomal protection proteins and efflux pumps have also been 

detected in wells near swine lagoons and the groundwater as far as 250 m downstream from 

waste lagoons of swine farms [81]. 

ARGs can transfer among different bacteria through horizontal gene transfer. 

Eventually, ARGs in the water environment can easily transfer to both human and animal 
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pathogens, creating a severe health risk to both human and animals by greatly limiting the 

antibiotics used to treat the infectious diseases [87]. Such antibiotic resistance is a huge threat 

to human and animals when common infectious diseases were untreatable. A new antibiotic 

resistance superbug, Staphylococcus epidermidis - which can resist all known antibiotics - 

has been discovered by Australian scientists in 2018 [88]. As reported by the United State 

Centre for Disease Control and Prevention (US CDC), about 2 million people infected by 

antibiotic resistant-bacteria annually, resulting in at least 23000 death per year. In Europe, the 

death number caused by antibiotic resistance was up to 25,000 each year according to the 

reports by the European Centre for Disease Prevention and Control (ECDC). If antibiotic-

resistant infections are not tackled, 10 million people could die every year worldwide by 

2050 [89]. The research by Hsu et al. [90] concluded that the development of better 

management strategies for livestock farming would help to decrease antibiotic resistance in 

the surrounding environment. 

In addition to antibiotics, SW is also a major source of estrogenic hormones pollution to 

the water environment [91]. Estrogenic hormones have been frequently detected in surface 

water and groundwater [92]. The evaluation by Xu et al. [93] found that antibiotics were the 

most ubiquitously organic contaminants in aquatic environment of China, and more than half 

of the non-antibiotic pharmaceuticals were hormones. As reviewed by Aris et al. [92], 

estrogenic hormones in the global water environment ranged from not detected (ND) to 180 

ng/L for E1, ND to 134 ng/L for E2, ND to 94 ng/L for E3, and ND to 133.64 ng/L for EE2, 

respectively. Higher concentrations of hormones are also been detected in the environment 

influenced by livestock wastes. For instance, the concentrations of E1, E2, and E3 in 

receiving river discharge from a concentrated livestock feedlot were up to 1267, 313.6, and 

210 ng/L, respectively [94]. The surface water in China has been reported containing the 

maximum concentration of E1, E2 and E3 [92]. This could be explained by the abuse and 
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illegal use of hormones as animal-feed additives in China [94, 95].  Hormones also have been 

highly and frequently detected in the groundwater and drinking water in China [96]. Fan et al. 

[97] stated that E1 and E2 have been detected in 53 out of 62 drinking water treatment works 

and 31 out of 62 drinking water treatment works from 31 major cities in China. The 

maximum detected concentrations were 0.1 ng/L and 1.7 ng/L for E1 and E2, respectively. 

Hormones can cause significant biological responses even at very low concentrations 

[98].  Steroidal hormones in SW are also known as endocrine disrupting chemicals (EDCs), 

which can affect the endocrine system of aquatic species by altering sex determination, 

delaying sexual maturity,  and decreasing secondary sexual characteristics even at low 

concentrations (ng/L) [19, 92, 95]. Specifically, the occurrence of EDCs in the water 

environment can result in abnormal reproductive and physiological behaviours of non-

targeted aquatic organisms [99]. Prolonged exposure to hormones can cause 

demasculinization of male fish via lowering testicular testosterone synthesis, reducing testis 

size, increasing vitellogenin (vtg) concentration [95, 100]. Hormones including E1, E2 and 

EE2 have been implicated in the feminization of male fish at concentrations as low as 1 ng/L 

[101, 102]. Meanwhile, the female fish could be defeminised by exposure to hormones 

through decreasing the ratio of estrogen: androgen [92]. Leet et al. [103] reported that lower 

fish species richness was detected in the water environment affected by livestock wastes. 

Fishes in such influenced water exhibit faster somatic growth and lower reproductive 

condition compared to individuals from the reference site. Orlando et al. [104] investigated 

the influence of EDCs on feral fish inhabited in streams receiving feedlot effluent; the result 

demonstrated a reduced reproductive fitness in male fathead minnows.  The changes in male 

fish characteristics strongly affect the fish population and cause an imbalance in the aquatic 

environment. Even worse, the accumulation of hormones in the environment and the human 
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food chain can have serious adverse effects to human health, such as causing the potential 

cancer diseases and a reduction in the fertility system [95].  

3. Control approaches for A&H in SW  

The use of antibiotics in food animal industries are applied for four main purposes, as 

shown in Fig. 2. A&H were reported as the most effective agents for improving growth and 

feed efficiency in the entire growing-finishing period of pigs, and reducing mortality and 

morbidity, particularly in young pigs [105]. The extremely intensive swine operation with 

high population density results in high disease risk of pigs and rapid dissemination of 

infectious agents. In this case, increasing amounts of antibiotics in swine husbandry are 

applied as the therapeutics to treat clinical diseases; as the biosecurity to control the spread of 

illness in a herd or flock, and as the vaccination to prevent infectious disease by stimulating 

an individual's immune system [106]. In the meantime, sub-therapeutic dose of antibiotics are 

added in swine feed and water to improve the daily weight gain and feed efficiency of pigs 

mainly by alterations in digestion and disease suppression [107]. Antibiotics may also help to 

make more energy and nutrients available for animals through reduction of total bacterial 

burden in the gut, and increase nutrient absorption by thinning of the gut mucosal layer [108, 

109]. Hormones can contribute to control the extent of growth, muscle and fat production, 

feed consumption [110]. Therefore, A&H are effective tools for swine health control and 

production performance, which facilitate the development of intensive and large-scale 

farming industry [111]. However, considering the risks of A&H in SW to the environment 

and human health, the management and treatment of such additives in swine industries has 

raised great public concern.  JJJoJoJo
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Fig. 2 Potential trends for controlling the use of antibiotics in animal husbandry [112]. 

3.1 Management approaches 

To mitigate the environmental and health risk of A&H, many countries have already 

taken action to reduce the use of A&H in food-producing animals [113]. For example, in 

Europe, hormone growth promoters were banned in the 1980s over food safety concerns, the 

routine use of antibiotics for growth promotion also has banned since 2006 [114]. The U.S. 

Food and Drug Administration (FDA) placed restrictions on antibiotic use in animals in 2016, 

antibiotics can only be used in food animals to assure animal health [9]. The Australian 

Government has released its first National Antimicrobial Resistance Strategy (AMR) 2015-

2019 to guide Australia’s response to the threat of antibiotic misuse and resistance [115]. 

World Health Organization (WHO) strongly recommends an overall reduction in the use of 
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all classes of medically important antibiotics in food-producing animals, including complete 

restriction of these antibiotics for growth promotion and disease prevention without diagnosis 

[116]. However, antibiotics are still in use for growth promotion of food animals in several 

large livestock producing and exporting countries, such as China and Brazil [117].  

It should be noted that a complete ban on antimicrobial-use in swine production is likely 

at the cost of lower production and poorer swine health outcomes. Following the withdrawal 

of antibiotics from feeds in Denmark during the late 1990s, many pig herds suffered from 

enteric infections and diarrhoea among weaner pigs, leading to the reduction of pig 

production and the increase of farming costs (at least from 1 to 3 US dollars per pig) [118, 

119]. Therefore, the challenge for swine farmers is to reduce antibiotics while keeping high 

performance. To meet such aims, management approaches should focus on discovering 

antibiotic alternatives to substitute the role of antibiotics in relation to growth promotion and 

disease prevention.  Meanwhile, the development of vaccination and the application of 

biosecurity are also essential for diseases prevention and control. 

3.1.1 Replace growth-promoting antibiotics with feed additives 

In recent years, extensive research has been focusing on the development of antibiotic 

alternatives to ensure the swine health and production [107, 108, 120, 121]. The antibiotic 

alternatives are expected to: 1) enhance the immune response of pigs, 2) reduce the pathogen 

load in their gut, 3) stimulate the establishment of beneficial gut microbes, and 4) stimulate 

the digestive function of pigs [120]. Based on previous review reports, the most promising 

alternatives are essential oil, enzymes, organic acids, prebiotics, probiotics and clays. The 

characteristics and functions of these antibiotic alternatives are listed below, see Table 1.  

Table 1 

Characteristics and major functions of selected antibiotic alternativesa 

Promising 

alternatives 
Characteristics Major functions 
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Essential oils  

Essential oils have 

antimicrobial, anti-

inflammatory, 

antioxidative, and 

coccidiostatic properties 

1) Enhancing digestibility and immunity; 2) 

Promoting gut health by minimizing the 

effect of the pathogenic bacteria; and 3) 

Controlling  inflammation, oxidative stress, 

microbiome, gut chemosensing and bacterial 

quorum sensing (QS), to generate better 

production performance of animals odor and 

ammonia emission. 

Organic and 

inorganic 

acids 

Organic and inorganic 

acids can be both 

bacteriostatic and 

bacteriocidal and these 

actions depend on the 

levels of their inclusion 

1) Lowering digesta pH in the stomach in 

particular and aiding protein digestion; 2) 

Reducing microbial competition with the pig 

for nutrients; 3) Stimulating (pancreatic) 

enzyme production and activity in the small 

intestine; 4) Providing nutrients preferred by 

intestinal tissue to enhance the mucosal 

integrity and function; and 5) Stimulating 

secretion of pancreatic enzymes. 

Enzymes 

Enzymes can breakdown 

proteins, fats and 

carbohydrates by 

proteases, lipases and 

several carbohydrases, 

making them to be better 

digested and absorbed as 

energy sources 

1) Improving nutrient utilization, gut health, 

gastrointestinal health and metabolic profile; 

2) Minimizing proliferation of pathogenic 

bacteria; and 3) Altering the gastrointestinal 

bacteria ecology of swine. 

Probiotics 

Probiotics are designed to 

encourage certain benign 

strains or species of 

bacteria in the gut at the 

expense of less desirable 

ones 

1) Stimulating the development of a healthy 

microbiota-predominated by beneficial 

bacteria; 2) Preventing enteric pathogens 

from colonization; 3) Increasing digestive 

capacity and lowering the pH; 4) Improving 

mucosal immunity; and 5) Enhancing gut 

tissue maturation and integrity. 
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Prebiotics 

Prebiotics are non-

digestible food ingredient 

that alters the composition 

or metabolism of the gut 

microbiota in a beneficial 

manner. They are cheaper, 

less risky, and easier to be 

handled and incorporated 

into diets than probiotics 

1) Reducing the load of bacteria in pig’s gut; 

2) Reducing inflammation when 

supplemented into pig diets; 3) Improving 

resistance to bacterial colonisation; and 4) 

Enhancing the intestinal barrier function 

against invading pathogens. 

Clays  

Clays added to the diet can 

bind and immobilize toxic 

materials in the 

gastrointestinal tract of 

animals and reduce their 

toxicity. 

1) Increasing nutrient digestibility; 2) 

Reducing the incidence, severity and 

duration of diarrhea in pigs; and 3) Help 

mitigate the effects of mycotoxins. 

a: [108, 120-125] 

These additives all have great potential as the alternatives of antibiotics for swine 

growth performance and enhancement. It is difficult to recommend a special one due to their 

variable outcomes under different conditions [107]. Several previous studies believed that a 

combination of different alternatives had better effects on the production and health of pigs, 

compared with that of individual compounds [108, 126, 127]. The main reason might be that 

the combined additives cover the shortage of the individuals, and their synergistic effect 

enhances efficiency to combat pathogens [108, 128]. However, the modes of action of these 

alternatives, their effects on pig growth and economic efficiencies are still unclear which 

requires further study. 

3.1.2 Implement vaccination and biosecurity in diseases prevention and control.  

Vaccines and vaccination can provide cost-effective and long-term protection against 

disease by stimulating the natural defence system of the host to generate sufficient immunity. 

Previous studies have proved that vaccines can be used to prevent and control the infection 
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disease in animal production [129]. Their use can lead to great reductions in antibiotic 

consumption and mitigate the adverse effects of antibiotics to the environment. To be widely 

used in food producing animals, vaccines have to be safe, effective against a broad range of 

pathogens, easy to use, and cost-effective [130]. Therefore, the development of vaccination 

technologies and their application in swine industries for disease prevention and control are 

significant.  

In addition, limiting the spread of infectious disease and minimising the level of disease 

within the herd can also dramatically reduce the use of antibiotics, vaccines and other 

chemicals. The application of high standards of biosecurity, including internal and external 

biosecurity, is crucial to maintain swine health [131, 132]. Internal biosecurity is to prevent 

the spread of pathogens within a herd [132, 133]. The factors related to internal biosecurity 

mainly focus on the pig farming density, disease management, cleaning, disinfection, and 

management of pigs in the farrowing, nursery and fattening units [134]. External biosecurity 

relates to the prevention of pathogens entering a herd through purchase and transport of pigs, 

supply of feed, water and equipment, entry of visitors, and sanitary period between batches 

[134]. Laanen et al. [131] investigated the relationship between the implementation of 

biosecurity in pig herds and the pig production as well as the use of antimicrobials, and 

concluded that both external and internal biosecurity were positively associated with daily 

weight gain of pigs. The overall and internal biosecurity scores were negatively associated (P 

= 0.05 for both, respectively) with the incidence of disease treatment, indicating improved 

biosecurity might help to reduce the use of antibiotics in pig farms. Fig. 3 summarizes the 

SWOT analysis for the replacement of growth-promoting antibiotics with feed additives and 

the implement of vaccination and biosecurity in diseases prevention and control. 
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Moreover, improving training to swine farmers is also important, considering their 

overuse and illegal use of antibiotics in pigs. The farmers should know the regulations and 

guidelines of the use of antibiotics, the additive dose and the withdrawal time provided by the 

manufacturer or indicated by the veterinarian, for instance, antibiotics should only be 

employed to treat bacterial infections [13]. Furthermore, antibiotics used in animals should be 

the “least important” ones to human health listed by WHO, not those “highest priority 

critically important” ones. Therefore, enhanced biosecurity, vaccination programs and better 

management practices are necessary for swine disease prevention and control, and reducing 

their reliance on antibiotics.  

3.2 Technique approaches 

3.2.1 Bioprocesses 

In addition to the management approaches, technologies toward eliminating A&H from 

SW are equally important to mitigate the adverse effect of those toxicants to the aquatic 

environment. Biological treatment is the most common technology for livestock wastewater 

treatment due to their proven robustness, high cost-effectiveness and low environmental 

impact [19]. Extensive research has focused on the removal of those toxicants from SW by 

various biological technologies [19, 135-137].  

Removal mechanisms, including biodegradation, biosorption, photo-degradation and 

volatilization, are responsible for removing trace organic pollutants [19]. Biosorption and 

biodegradation are believed to be the main mechanism for removing A&H from SW by 

biological processes [138]. The removal via volatilization mechanism is negligible 

considering the low Henry’s law constant (kH) (< 10-6 mol /(m3·Pa) of target A&H (Table 3) 

[139, 140]. Removal by photo-degradation can also be ignored because of the high suspended 

solid concentration in SW, which blocks the penetration of sunlight in the top layer [19]. 
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Table 3 

Key physical-chemical properties of target antibiotics and hormones 

Class Core structure Compounds pKa 

Solubility 

in water  

(mg/l) 

Log 

Kow 

Henry’s 

law 

constant        

(atm m3 

mol−1) 

TCs 

Amphoteric 

molecules 

having 

multiple 

ionized groups, 

such as 

hydroxyl, 

amino and 

ketone 

TC 

3.3; 

7.7; 

9.70 

231 -1.47 4.66 × 10-24 

OTC 

3.3; 

7.3; 

9.10 

313 -1.501 
3.971×10 
−21 

CTC 

3.3; 

7.4; 

9.30 

1000 -0.325 1.7 × 10−23 

DC 

3.5; 

7.7; 

9.50 

630 -0.54 4.66 × 10-24 

SMs 

Amphoteric 

molecules 

characterized 

by sulfonyl 

and amine 

group at 

different pH 

SMZ 
2.07; 

7.65 
2846 0.19 1.3×10-14 

SMX 
1.85; 

5.60 
3942 0.89 6.4×10-13 

SD 
1.57; 

6.5 
77 0.76 1.6×10-13 

Hormones 

Hydroxyl 

group or 

ketone group 

 

E1 10.23 30 
3.13-

3.43 
3.8×10-10 

E2 10.23 3.6 
3.1-

4.01 
3.6×10-11 

E3 10.4 441 2.6-2.8 / 

EE2 10.23 11.3 
3.67-

4.15 
7.9×10-12 
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Biosorption is a physico-chemical and metabolically-independent process that happens 

between organic/inorganic pollutants and biosorbents [141]. Biosorption mechanisms mainly 

include absorption, adsorption, ion exchange, surface complexation and precipitation [142]. 

Therefore, the biosorption removal of A&H from wastewater highly depends on their 

physical-chemical properties, such as charge, solubility, hydrophobicity and chemical 

structures. The value of octanol–water partition coefficients (KOW) is usually used by 

previous studies to characterize the hydrophobicity of compounds and their sorption tendency 

to the solid phase [143, 144]. As reviewed by Luo et al. [145], the values of log KOW < 2.5, 

between 2.5 and 4, and > 4 correspond to the low, medium and high sorption potentials of 

compounds, respectively. Thereby, the hydrophobic biosorption of tetracycline and 

sulfonamide antibiotics show lower potential than that of hormones (Table 3). Electrostatic 

interaction is another mechanism to explain the biosorption of organic compounds onto solid 

phase [146]. Antibiotic compounds can exist in positive, neutral, and negative forms 

according to the pH condition of the solutions and pKa value of compounds, so the solution 

pH is critical for the electrostatic interaction between antibiotics and charged biosorbents 

[19]. However, the biosorption process can be highly complex due to the different 

compositions of wastewater and the variety of functional groups in biomass [142]. Tolls 

[147] indicated that a number of hydrophobicity-independent mechanisms, such as cation 

exchange, cation bridging, surface complexation, and hydrogen bonding, play significant 

roles in biosorption removal of antibiotics from wastewater. In addition, microorganisms in 

biological processes can produce extracellular polymeric substances (EPS) composed of 

polysaccharide and protein. The EPS can facilitate the biosorption of micropollutants, due to 

the presence of diverse functional groups, such as carboxyl, amine and hydroxyl groups, and 

hydrophobic regions [148, 149]. 
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Biodegradation is the principal removal mechanism of micropollutants in wastewater. 

The optimal outcome of biological technologies is to degrade pollutants by microorganism 

effectively [150]. Mechanisms, including metabolic and co-metabolic pathways by 

microorganisms, may contribute to the biodegradation removal of A&H in biological 

treatment processes [19, 151]. For example, Müller et al. [152] indicated that activated sludge 

communities could utilize SMX as carbon and/or nitrogen source for growth, and the 

biodegradation was enhanced when a readily degradable energy supply (acetate) was 

provided which fostered metabolic activity. Other previous research also indicated that A&H 

in wastewater mainly removed by co-metabolic biodegradation, because their concentrations 

could be too low to serving as a sole carbon and nitrogen source for the growth of 

microorganisms [153]. Previous reports about microorganism strains responsible for the 

degradation of A&H indicated that autotrophic ammonia oxidizers and nitrifying bacteria 

played a key role in cometabolizing micropollutants, while heterotrophic microbes degraded 

them via cometabolism and/or metabolism [19, 98, 151, 154]. 

Different bioprocesses have been investigated for the treatment of A&H in wastewater 

and their removal efficiencies are summarized in Table 3. There is a wide range of removal 

efficiency of A&H depending on bioreactor types, compound concentrations and different 

operating conditions. As shown in Table 4, the removal efficiency of sulfonamide antibiotics 

(SMs), tetracycline antibiotics (TCs) and hormones in conventional aerobic and anaerobic 

processes was in the range of 0 - 92.1%, 0 - 100%, and 19% - 81%, respectively. 

Comparatively, higher and stable removal efficiencies of these compounds were found in the 

MBR-based processes, with 67.8% - 99% for SMs, 45.7% - 94% for TCs and 94.5% - 99% 

for hormones. The CWs system also showed effective removal efficiency of SMs, TCs and 

hormones, with the value of 40% - 87%, 90% - 97% and 31.8% - 95.2%, respectively. 

Therefore, the MBR-based processes and CWs systems are more effective for removing 
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A&H from swine wastewater than the conventional activated sludge and anaerobic digestion 

processes. 

  

Table 4  

Removal of A&H  by different bioprocesses[19, 155-159]. 

Compound Initial 

concentrations 

(μg/L) 

Bioreactor type Removal 

efficiencies 

SMX 100 CAS 92.10 

0.029 CSTR 31.00 

N/A AnMBR 67.80 

1.62 AnMBR 95.20 

1.62 PAC + AnMBR >99 

SMZ N/A A/O 29.60 

100, 500, 

3000 
SBR 0.00 

40 VFCW 68-73 

30 CWs 40-87 

SD 98.8 A/O 0.00 

98.8 CSTR 8.30 

SMs 6.27 MBR 87.40 

6.27 BFMBR 90.30 

N/A IASBR 96.20 

TC 41.6 A/O 27-97 

250 SBR 78.4-86.4 
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41.6 CSTR 48.90 

250 ASBR 14.97-67.97 

100 VFCW  94.00 

30 CWs 92-99 

N/A MBR 94.00 

3.83 MBR 80.20 

2500 MBR 89.00 

3.83 BFMBR 81.70 

OTC 23.8 A/O 94.1-100 

23.8 CSTR 96.70 

N/A MBR 93.20 

0.67 MBR 85.10 

0.67 BFMBR 88.10 

40 VFCW 91-95 

250 VSSF-CWs >90 

0.22 SFCW 97.00 

CTC 13.7 A/O 82.8-90.2 

N/A MBR 78.60 

0.35 MBR 45.70 

0.35 BFMBR 71.40 

TCs 16.21 MBR 86.80 

N/A IASBR 87.90 

16.21 BFMBR 86.80 

Antibiotics 196 BAF > 82 

E1 N/A UASB 31.00 
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0.13 A2/O-MBR >90 

5 MBR-UF/NF/RO 99.60 

N/A Fungus-augmented MBR >90 

E2 16 CSTR 54-81 

0.19 SFCW 95.20 

E3 N/A UASB 19.00 

0.16 SFCW 76.60 

0.14 A2/O-MBR >90 

5 MBR-UF/NF/RO 96.1-98.3 

N/A Fungus-augmented MBR >90 

EE2 97 MBR 99.00 

0.0258 SFCW 31.80 

0.16 A2/O-MBR 97.60 

5 MBR-UF/NF/RO 93.6-95.5 

Hormones 3.44 CSTR 21.80 

Note: CAS – Conventional anativated sludge, CSTR - Continuously stirred tank reactor, AnMBR -

Anaerobic membrane bioreactor, PAC - Powdered activated carbon, SBR - Sequencing batch reactor, 

VFCW - Vertical flow constructed wetland, CWs - Constructed wetlands, MBR – Membrane 

bioreactor, BFMBR - Biofilm membrane bioreactor, IASBR - Intermittently aerated sequencing batch 

reactor, ASBR - Anaerobic sequencing batch reactor, VSSF - Vertical subsurface flow, SFCW - 

Surface flow constructed wetland, BAF - Biological aerated filter, UASB - Upflow anaerobic sludge 

blanket,  UF - Ultrafiltration, NF - Nanofiltration, RO - Reverse osmosis. 

 

As reviewed by Cheng et al. [19], the biosorption mechanism plays a more important 

role than biodegradation for removing A&H in conventional activated sludge (CAS) and 

anaerobic digestion (AD)processes, resulting in high residues of A&H in waste sludge of AS 
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and AD processes. Commonly, liquids and solids from SW treatment plants are commonly 

applied to farmland [19]. Thus, after the treatment by those conventional processes, the 

aquatic environment still can be affected via the direct discharge of treated SW, and the 

farmland run-off and leaching. The low biodegradability of A&H in these conventional 

bioprocesses is partly attributed to the short sludge retention time (SRT), which limits the 

growth of antibiotic - biodegrading bacterium [24]. 

By contrast, high biomass concentration and long SRT can be offered by MBR-based 

process, which are not only positive to the growth of slow growing microorganisms 

(nitrification), but also benefit for the increase of biodiversity [160]. Therefore, 

biodegradation mechanism was reported as the main removal mechanism in advanced MBR-

based processes [19]. Furthermore, the high biomass concentration in MBR-based processes 

makes the process more stable and persistent to the toxic effect of high concentrations of 

antibiotics. For example, Prado et al. [161] indicated that the toxic effect of TC on 

microorganisms was less in MBR than that in AS. Hence, the advanced MBR-based 

processes might be promising technologies for the treatment of A&H in wastewater, such as 

anaerobic fluidized membrane bioreactor (AFMBR), anaerobic membrane bioreactor 

(AnMBR) with granular activated carbon (GAC) or powder activated carbon (PAC), or 

hybrid membrane bioreactors (MBRs). They can achieve effective removal efficiencies (> 

90%) [19, 157, 158, 162]. However, membrane fouling in MBR- based processes is a major 

challenge for their cost-effective application [163]. In addition, the presence of antibiotics in 

MBR-based processes aggravated the membrane fouling problems [148]. Therefore, more 

studies on MBR-based processes have to be conducted to reduce the risk of A&H and control 

membrane fouling. 

Constructed wetlands (CWs) also show a great potential for the treatment of antibiotics 

and hormones. The removal of A&H in CWs is the combined action of aquatic plants, 
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substrates and microorganisms [164]. Aquatic plants can uptake, transport and metabolize 

antibiotics through glycosylation and glutathione pathways [156, 165]. Substrates play an 

important role in the biosorption removal of A&H from SW, mainly via hydrophobic 

partitioning, van der Waals interaction, electrostatic interaction, ion exchange, and 

surface complexation [17, 164].  Cheng et al. [19] indicated that the removal contribution of 

plants and substrates in CWs is highly depended on the concentration and physicochemical 

property of antibiotics, species of plants and substrates, and the environmental conditions. 

Different types of CWs, including free water surface constructed wetlands (SF-CWs), 

horizontal subsurface flow constructed wetlands (HSSF-CWs) and vertical subsurface flow 

constructed wetlands (VSSF-CWs), have different removal capacities. VSSF-CWs has been 

regarded as the most efficient type in removing antibiotics and hormones [166]. However, the 

application of CWs is restricted by their large land requirement and local climate sensitivity 

[167]. 

 

3.2.2 Advanced oxidation processes (AOPs) 

Except for advanced MBR-based processes, the removal of A&H in most of 

conventional biological processes was only partly successful or unsuccessful, suggesting a 

need of new advanced technologies. Advanced oxidation processes (AOPs), which includes 

different treatment technologies such as ozonation (O3), UV/H2O2, Fenton (Fe2+/H2O2), 

photo-Fenton processes (Fe2+/H2O2/UV) and other methods (ultrasonic, radiation), have 

been considered as promising technologies for effectively or even completely eliminating 

antibiotics, hormones, herbicides and  antiviral compounds from wastewater [168, 169]. 

Highly reactive free radicals, especially hydroxyl radicals (•OH) generated via  oxidizing 

agents such as ozone (O3) or hydrogen peroxide(H2O2), serve as strong oxidizing tools for 
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oxidization of organic compounds into less refractory intermediate species or even 

mineralization of them into CO2 and H2O [170, 171].  

Anjali and Shanthakumar [169] showed that the removal efficiency of SMs by Solar 

Photo Fenton, UV/H2O2, UV/H2O2/Fe2+ and Ozonation was 90% - 97%, 97.3% - 100%, 

99.6% - 100% and 100%, respectively. By using UV/H2O2 and UV/H2O2/Fe2+ technologies, 

TCs also achieved high removal efficiencies with the value of 97.2% - 99% and 99.4% - 

99.5%, respectively. Ahmed et al. [172] also demonstrated that the removal efficiency of 

pharmaceuticals by ozonation/H2O2, UV photolysis/H2O2 and photo-Fenton processes was up 

to 100%. Hormones can also be effectively removed by ozonation and UV photocatalysis. 

Thus, in comparison with the conventional biological treatment process, AOPs showed 

advantages of higher removal efficiency and potentially complete mineralization of A&H.  

However, applying AOPs directly to the removal of A&H from swine wastewater could 

consume large amounts of energy (radiation, ozone, etc.) and chemical reagents (catalysts 

and oxidizers) [173]. Especially for swine wastewater with high concentrations of chemical 

oxygen demand and nutrients (COD, 3000–15000 mg/L; NH3-N, 400–1400 mg/L; TN, 600–

2100 mg/L; TP, 100–250 mg/L), which can compete with the chemical oxidation of the target 

A&H [19, 174]. For example, as reported by Doǧruel et al. [175], unnecessary consumption 

of ozone was caused by the selective preference of ozone for simpler readily biodegradable 

soluble COD fractions. Qiang et al. [176] indicated that high dose of free chlorine was 

required to achieve complete removal of antibiotics from swine wastewater due to the rapid 

competition of ammonia in the wastewater for free chlorine to form monochloramine. The 

use of such high dose of chlorine could not only increase costs, but also create high 

concentrations of chlorinated disinfection byproducts with potential toxicity to the 

environmental and human health. 
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One potential alternative to reduce operating costs is the combination of AOPs with 

biological technologies [171]. The pre-treatment of biological processes can reduce the 

highly degradable part in swine wastewater, thereby minimizing their competitive oxidation 

with A&H [177]. Meanwhile, the recalcitrant contaminants can be degraded by the post-

treatment of AOPs. For instance, the research by Ben et al. [174] and Ben et al. [178] 

concluded the combination of SBR with Fenton's reagent and ozone could achieve effective 

removal of antibiotics from swine wastewater. The pre-treatment of SBR can remove COD, 

nutrients and SS from the swine wastewater effectively, thus providing favorable conditions 

for the following advanced oxidation post-treatment processes. 

4. Future perspectives 

The development and implementation of guidelines for the discharge of A&H-

containing wastewater to the environment is necessary to control the uses of A&H in swine 

farms and to develop the SW treatment technologies. For this reason, fundamental data about 

the effect of A&H on the environment and human health is essential. Similarly, the clear 

criteria about the reuse of SW and manual in farmland is also required considering the runoff 

and leaching of A&H from land to the water environment. 

It is widely known that the application of antibiotics to swine can control swine disease 

and promote growth, but their mechanisms of such action is still unclear. To develop 

effective antibiotic alternatives, the mode of action of antibiotics as swine therapeutic and 

growth promoter needs to be investigated in future. Although several additives have been 

suggested to be promising antibiotic alternatives, it is still challenging to evaluate their 

efficacy, cost-effectiveness, and safety in swine production. Moreover, a deep understanding 

of the function mechanisms of such alternatives on swine health and growth is also necessary 

before their application to swine production. Other challenges in reducing the use of 
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antibiotics in swine farm are developing effective vaccine to enhance pig’s immune system 

and the application of biosecurity to limit the spread of infectious disease. 

The effective removal of A&H from SW is significant for reducing their adverse effects 

on the environment. By comparison, MBR-based processes and the integration of biological 

processes with AOPs are promising technologies for removing A&H from wastewater. 

However, only few studies focus on SW so as more work should be done in future. For 

MBR-based technologies, membrane fouling is the main challenge for full-scale application. 

The contribution of A&H to membrane fouling and strategies for fouling control should be 

the key research direction in future. As for the integrated system of biological processes and 

AOPs, the most important issue is to optimize the process for the performance of economy 

and ecology. 

5. Conclusion 

SW is an important source of A&H pollution considering high levels of these toxicants 

detected in the adjacent water environment of swine farms. Under long-term exposure, the 

potential risk caused by the presence of A&H in the water environment cannot be ignored. 

Thereby, it is strongly necessary to control the use of A&H in swine industry, though they are 

important for swine health and production. Feed additives, including essential oil, enzymes, 

organic acids, prebiotics, probiotics and clays have been reported as promising antibiotic 

alternatives, but further research is required to explore their modes of action and track their 

effects on pigs under different conditions. Additionally, the development of vaccination 

technologies to enhance pig’s immune system and application of biosecurity to limit the 

spread of infectious disease can dramatically reduce the use of antibiotics. Meanwhile, 

technologies toward eliminating A&H from SW are equally important to mitigate the adverse 

effect of such toxicants to the aquatic environment. In biological treatment processes, the 

removal of A&H from wastewater by MBR-based technologies and CWs are more efficient 
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and stable than that in conventional AS and AD processes. The combined system of 

bioprocesses and AOPs is expected to be a promising technology for elimination and 

mineralization of A&H in swine wastewater. Further research on this system is therefore 

necessary. 
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