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Abstract: The electronic and transport properties of epitaxial graphene are dominated by the
interactions the material makes with its surroundings. Based on the transport properties of epitaxial
graphene on SiC and 3C-SiC/Si substrates reported in the literature, we emphasize that the graphene
interfaces formed between the active material and its environment are of paramount importance,
and how interface modifications enable the fine-tuning of the transport properties of graphene.
This review provides a renewed attention on the understanding and engineering of epitaxial graphene
interfaces for integrated electronics and photonics applications.
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1. Introduction

The properties of graphene as well as other members of the two-dimensional (2D) class of materials
differ fundamentally from those of typical electronic materials, which makes this class very attractive
for future device applications [1]. A particular appealing property of graphene and other 2D materials
is the possibility of dynamically tuning their electrical/electronic properties.

Yet, no matter the application under consideration, which range from light detectors to signal
modulators and switches, Hall standards, or chemical sensors, control of transport properties is
paramount, and the achievement of the sought-after tunability is not always trivial. The very attractive
physical nature of the class (i.e., the large surface to volume ratio [2]) is a double-edged sword as
interfaces between the material and its surrounding environment, e.g., substrate, interfaces, adsorbents,
and metallization, have a significant effect on conductivity [2–5]. Graphene and 2D materials are made
out of surfaces. The accurate control of surfaces and interfaces has historically always been a critical
and challenging aspect of semiconductor technology [6,7]. Hence, in order to harness the properties of
graphene in electronics, a significant shift in the technological approach needs to be made.

In this review, we explore recent advancements made in the charge transport research on epitaxial
graphene (EG) synthesized on SiC and Si substrates as these are necessary ingredients for technological
applications. Yet, the properties of EG on these substrates are very different.

For EG on 6H-SiC(0001) (the so-called silicon-terminated surface, Si-face), silicon sublimation
results in the formation of EG [8] and the properties are dominated by the 6
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reconstruction [9] of the SiC surface. The modification of this reconstruction at the interface after
graphene synthesis, often termed the buffer layer, has a profound effect on EG conductivity. In addition,
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for two or more layers, this reconstruction naturally leads to Bernal stacking [10,11]. For graphene on
SiC(0001) (aka the carbon-terminated, C-face), the surface reconstructs [9] as (1 × 1), which relaxes
the stacking constraint and likely contributes to the observed rotational disorder of the layers [12]
and weaker substrate interaction. Moreover, the enhanced Si sublimation rate at screw dislocations
likely results in some non-uniformity of thickness [13]. The transport properties of these multilayer
graphenes (sometimes termed multilayer epitaxial graphenes, MEG) are complex with at least three
conduction channels present [14]. Yet, careful control of nucleation has resulted in one to two layers of
EG on the C-face with more easily characterized properties [15].

For graphene on 3C-SiC films on Si surfaces, the synthesis route traditionally employs a modified
sublimation approach [16–20] or, more recently, a precipitation method using a metal catalyst alloy
with evidence pointing to an epitaxial ordering [21]. For the case of EG on 3C-SiC(100)/Si, no buffer
layer is formed, but the current state-of-the-art results in interface oxidation/silicates, which contribute
to the conductivity [21]. This is in contrast to EG on 3C-SiC(111)/Si, which does appear to form a
buffer layer [17,21] with similarity to that of the buffer layer formed on SiC(0001). However, silicates
formation at the EG/3C-SiC interface competes to determine the conductivity.

In the following sections, we begin with a discussion of some basic graphene properties, given in
Section 2. The main transport measurements methods are discussed in Section 3. Section 4 provides
a focus upon the properties of EG on the SiC and Si substrate components since these dominate the
charge transport. Then, we discuss the impact of various situations that modify the conductivity of EG
such as ambient adsorbents and metals contacts. Section 5 describes the fine-tuning of the impacts
from various surrounding interactions via intercalation, functionalization, and gate control.

2. Electronic Band Structure

2.1. Monolayer Graphene

The electronic properties of graphene were first described by P.R. Wallace in 1947 [22] who used
the nearest neighbour tight-binding model (involving only pz electrons perpendicular to the plane of
graphene, i.e., pz orbitals—hich result in π bands) to approximate the low energy electronic structure
of an infinite graphene lattice, which demonstrates the linear dispersion.
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The linear dispersion relation of electrons in single-layer graphene can be written using the
strong-coupling approximation by taking into account only the nearest-neighbor interaction (low-energy
approximation) as follows.

E(∆k) = crhvF ∆k (2)

where crh is the reduced Planck’s constant, the proportionality or slope is the Fermi velocity, vF is
approximately equal to 106 m s−1, and ∆k is the momentum relative to the K points of the hexagonal
reciprocal unit cell [23]. The band structure of a monolayer graphene (MLG), shown in Figure 1,
exhibits the gapless linear dispersion (in k-space known as the Dirac cone) of the π bands at the K-point.
This has two important implications. The first is the charge carriers, Dirac fermions, which are massless.
The second is semi-metallic behaviour [22,24] because when the Fermi energy, EF, is located where
the dispersion converges to a point (the Dirac point, ED), the density of states is zero, and electronic
conduction is possible only through thermally excited electrons [25]. The linear dispersion of monolayer
graphene results in several extraordinary electronic properties such as an anomalous quantum Hall
effect with Berry’s phase of π [8,26–29].
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the inset. Reprinted with permission from Reference [22]. Copyright (2008) by American Physical 

Society. 
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principles calculation, which included the buffer layer and determined the EF was about 450 meV 

above the ED due to doping of the graphene layer by charge transfer from the buffer layer. This is in 

agreement with angle-resolved photoelectron spectroscopy (ARPES) measurements [26,32–34]. 

Sprinkle et al. [35] found the average Fermi velocity, obtained from the slope of E(Δk) as vF = 1.0 (± 

0.05) × 106 ms−1 for energies down to ~500 meV above ED [19,36,37]. This value of vF is larger than the 

vF for bulk graphite (vF = 0.86 × 106 ms−1) [38].  

Ouerghi et al. measured the band structure of the monolayer EG/3C-SiC(111) using ARPES at 

room temperature [19] (see Figure 2) and found the EF. Using the linear dispersion, the charge carrier 

concentration, n, of monolayer graphene can be obtained as: 
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where h is the Planck’s constant, vF = 1.1 × 106 m s−1, and EF is 500 meV. This resulted in n ~ 2 × 1013 
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Figure 2. Electronic structure of monolayer EG on 3C-SiC(111) by ARPES. Reprinted with permission 

from Reference [19]. Copyright (2010) by American Physical Society. 

The influence of graphene-substrate interaction on vF of monolayer epitaxial graphene was 

estimated by Davydov [39] in which the substrate interaction reduces the vF of electrons. 

2.2. Bilayer Graphene  

Bilayer graphene (BLG) synthesized on SiC(0001) are generally reported to be AB (Bernal) 

stacked with a 30° rotation with respect to the substrate [11]. In BLG, the charge carriers tunnel 

Figure 1. Band structure for a monolayer graphene (dotted line), a bilayer graphene with AB stacking
(dashed line), and R30/R2+ rotational fault pair (single line). Band structure at the K-point is given in the
inset. Reprinted with permission from Reference [23]. Copyright (2008) by American Physical Society.

The tight-binding model oversimplifies the situation of EG on SiC(0001) as a buffer layer exists
between SiC and EG. Mattausch and Pankratov [30] and Varchon et al. [31] performed a first-principles
calculation, which included the buffer layer and determined the EF was about 450 meV above the ED

due to doping of the graphene layer by charge transfer from the buffer layer. This is in agreement
with angle-resolved photoelectron spectroscopy (ARPES) measurements [26,32–34]. Sprinkle et al. [35]
found the average Fermi velocity, obtained from the slope of E(∆k) as vF = 1.0 (±0.05) × 106 ms−1 for
energies down to ~500 meV above ED [19,36,37]. This value of vF is larger than the vF for bulk graphite
(vF = 0.86 × 106 ms−1) [38].

Ouerghi et al. measured the band structure of the monolayer EG/3C-SiC(111) using ARPES at
room temperature [19] (see Figure 2) and found the EF. Using the linear dispersion, the charge carrier
concentration, n, of monolayer graphene can be obtained as:

n = (EF − ED)2/(π)(hvF)2 (3)

where h is the Planck’s constant, vF = 1.1 × 106 m s−1, and EF is 500 meV. This resulted in
n ~ 2 × 1013 cm−2.
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Figure 2. Electronic structure of monolayer EG on 3C-SiC(111) by ARPES. Reprinted with permission
from Reference [19]. Copyright (2010) by American Physical Society.

The influence of graphene-substrate interaction on vF of monolayer epitaxial graphene was
estimated by Davydov [39] in which the substrate interaction reduces the vF of electrons.

2.2. Bilayer Graphene

Bilayer graphene (BLG) synthesized on SiC(0001) are generally reported to be AB (Bernal) stacked
with a 30◦ rotation with respect to the substrate [11]. In BLG, the charge carriers tunnel quantum
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mechanically between the two layers, which causes a band dispersion that is nearly parabolic [40]
(Figure 1) with an effective mass (m*) of about 0.033 me (electron mass) [41].

Ek± = ±vF
2k2t−1 (4)

Ek± describes the two bands with energies E+ and E− that lies at the K point, t ~ 3 eV is the energy
of electron transition between the nearest neighbors spaced by a = 0.142 nm (lattice constant).

In this case, the vF depends on the Fermi momentum (pF) divided by m* as pF/m* [42].
For higher energies corresponding to doping above 5 × 1012 cm−2, the linear dependence is a
good approximation [41]. Ohta et al. performed an early investigation of the band structure properties
of BLG on SiC(0001) using ARPES, and found EF to be 400 meV [34]. De Heer et al. reports vF to be
0.7–0.8 × 106 ms−1 for BLG, which is 20% to 30% smaller than that of MLG with an EF at ~300 meV
above the Dirac point [31]. However, recent measurements put vF of MLG closer to 1.2 × 106 ms−1 [43]
with an EF of ~350 meV. Bernal stacked layers exhibit Berry’s phase of 2π [40] as confirmed by the
quantum Hall effect [44].

Charge transport in BLG, thus, involves massive chiral and parabolic dispersion carriers [42]
(see Figure 1 with a zero band gap). The effect of the buffer layer is not included in contrast to the
massless chiral, linear-dispersion carrier system for MLG.

The band structure of BLG is sensitive to the lattice symmetry [34]. When the graphene layers of
a BLG are made asymmetric, a band gap forms between the low-energy bands at the former Dirac
point [34,40] (see Figure 3). This means the band gap can be varied by means of an external transverse
electrical field to control the density of electrons. The gap can be varied from 0 to 0.3 eV by changing the
doping level between the two layers or by an external gate control [34,45]. Thus, the BLG transitions
from a semi-metal to an insulator [34]. An externally controlled symmetry breaking also changes the
electronic conductivity and forms a BLG switch [34]. For this reason, digital electronic applications
have been envisioned [25].
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Figure 3. Band structure of BLG on SiC(0001) from ARPES and theoretical (solid lines). Reprinted
with permission from Reference [34]. Copyright (2006) American Association for the Advancement
of Science.

2.3. Turbostratic Multilayer Graphene

Turbostratic multilayer graphene layers are rotationally disordered and, thus, electrically
decoupled. Epitaxial graphene formed on SiC(0001) by thermal decomposition on both (0001)
and SiC(0001) by solid-phase epitaxy and on 3C-SiC/Si via the alloy mediated graphitization is reported
to be turbostratic [21,46,47]. The rotational disorder in EG/SiC(0001) was shown by low-energy
electron diffraction (LEED) investigations in which an azimuthal diffraction pattern was found, and the
strong intensity modulation in the bands denoted the rotational orientation [10,12,48]. In the case
of EG/3C-SiC, the presence of turbostratic in-plane modes in the Raman spectroscopy indicated the
rotational disorder [21]. With rotational disorder, the linear dispersion is recovered in the vicinity of
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the K-points. The ab initio calculations show that the dispersion is nearly identical to that of an isolated
MLG linear dispersion (see Figure 1), and predicts vF to be the same as that of MLG [12,22,31].

Sprinkle et al. measured the linear dispersion using ARPES, as shown in Figure 4 [35]. In the
ARPES data, the linear dispersions of adjacent decoupled layers can be readily seen as well as the
n-type conductivity, where EF is as low as ~14 meV, and the carrier density is ~1011 cm−2. Furthermore,
the vF of MLG is close to the vF of MEG formed by thermal decomposition of the SiC(0001) obtained
from infra-red measurements (1.02 (±0.01) × 106 ms−1) [49] and scanning tunneling spectroscopy
(1.07 (±0.01) × 106 ms−1) [50].
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In the next sections, we will discuss the electronic and transport properties of EG on SiC and
3C-SiC substrates with respect to the substrate, ambient, and metal contact interactions. Section 3 will
discuss the different measurement methods used for the charge carrier transport study.

3. Transport Measurement Methods

Knowledge of the transport properties of graphene such as sheet carrier concentration, mobility,
and sheet resistance and the factors affecting them are crucial for any applications of the graphene
into practical devices. These include Hall effect measurements using Hall bar devices and van der
Pauw (vdP) structures, Field-effect measurements using gated devices, Raman spectroscopy (carrier
concentration from G peak shift), and ARPES (discussed in Section 2.1).

3.1. Hall Bar Devices

The first transport measurements were performed using Hall bar structures patterned on
6H-SiC(0001) by Berger et al. [4]. In this case, low mobility values were obtained in most of the samples,
which may have been limited by the substrate step edges. Yet, the samples clearly demonstrated 2D
electron gas properties and most of the important transport features of epitaxial graphene [4].

At the step edges, a second graphene layer is often formed, which is associated with step
bunching and results in non-uniform graphene thickness [17] and unreliable transport measurement
results [51]. S-H Ji et al. demonstrated that a strong impact of substrate steps degrades the transport
properties of epitaxial graphene on SiC using scanning tunneling microscopy-based localized transport
measurements [51]. Yakes et al. reported somewhat similar results noting that conductivity anisotropy
in graphene was associated with substrate steps. The observed results were explained using a model
where a charge build-up at the substrate steps leads to scattering [52]. For these reasons, Hall bar
structures are often patterned to be parallel or perpendicular to steps (see Figure 5) to mitigate the
effects of steps, and this approach was used for quantum Hall effect [53] devices. We note that Kruskopf
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and co-workers developed an approach to form EG on SiC(0001) that is essentially free of steps [54]
and demonstrated excellent quantum Hall effect results.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 32 
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Figure 5. Scanning electron microscopy images of Hall bars fabricated on MLG (a) on a flat terrace
and (b) perpendicular to the step edges on 6H-SiC. Reprinted with permission from Reference [55].
Copyright (2011) Elsevier Ltd.

3.2. Van der Pauw and Hall Bar Structures

Transport measurements from the van der Pauw method deliver large scale measurements [21,55,56]
and provide complete information on carrier transport in EG. vdP and Hall bar-based measurements
are limited by thickness inhomogeneities and discontinuities in the epitaxial films [21,57]. Jobst et al.
demonstrated that the transport properties obtained from Hall bar measurements are almost the same
as those from van der Pauw measurements, as shown in Figure 6 [55].
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3.3. Field-Effect Measurements

The electric field-effect from an externally applied voltage to a gate enables the study of the
extraordinary electrical properties of graphene [29,58]. The first observation of the electric field-effect
in graphene (using mechanically exfoliated graphene onto SiO2/Si) was reported by K.S. Novoselov
and A.K. Geim [29], where the charge transport was switched between electron and hole gases via the
gate voltage. Berger et al. performed the first transport studies of EG on SiC(0001) and modulated
the electron density via electrostatic gating, which demonstrated the 2D electron gas properties [4].
The deleterious anisotropy effects of step bunching on SiC(0001) on gated devices has been discussed
by Lin et al. [59]. In the case of graphene on SiC(0001), the non-uniform thickness limits gate device
applications [60].
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In addition, the transport properties from field-effect measurement are dependent on geometry
and electrostatics and are affected by the substrate [61]. This transport measurement method does not
permit a systematic analysis of charge scattering within the system [21].

3.4. Raman Spectroscopy

The values of phonon frequencies of EG on SiC depend on the mechanical strain and charge
transfer between SiC and graphene [62]. The Raman G-band and the 2D band involve phonons at the
K + ∆K points in the Brillouin zone [62–64]. The influence of the doping on the Raman bands has been
studied by Das et al. [65] and Rohrl et al. [62] using a gate voltage controlled graphene transferred
onto SiO2/Si. G-peak frequency showed an upshift up to 20 cm−1 when the graphene is n-type doped
at 4 × 1013 cm−2. The influence of doping on the 2D-peak shift was shown to be weak and is ~10–30%
compared to the G-peak shift (3–5 cm−1) [66] (see Figure 7). The value of 2D to G peak intensity was
determined by the carrier concentration [65] and indicates the graphene doping level. Mueller et al. [67]
reported a method to extract the value of doping from the Raman G and 2D modes of graphene formed
on any arbitrary substrates. Furthermore, Verhagen et al. [68] estimated the temperature dependent
doping of monolayer and bilayer graphene on SiO2/Si using Raman spectral mapping between 10 K
and 300 K. More recently, in Reference [69], Shtepliuk et al. estimated the thickness dependent electron
doping of EG/SiC by silver films from the red-shift and broadening of the 2D band. The same research
group studied the temperature and time dependency of the H-intercalation on the p-type doping of
quasi-free standing monolayer graphene on EG/SiC via micro-Raman spectroscopy in Reference [70].
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Figure 7. Position of the (a) G peak and (b) 2D peak as a function of electron and hole doping in
graphene on SiO2. The solid blue line in (a) is the predicted non-adiabatic trend from Reference [71].
The solid line in (b) is from density functional theory calculation. Reprinted with permission from
Reference [65]. Copyright (2008) Springer Nature.

4. Electronic and Transport Properties: Effect of Interactions with the Surroundings

Table 1 shows a summary of electronic and transport properties of as-grown EG on SiC(0001),
SiC(0001), and 3C-SiC/Si substrates showing the effect of EG-substrate and EG-ambient interactions as
well as the properties fine-tuned via intercalation, functionalization, and gate control. These properties
are discussed throughout the following sections.
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Table 1. Summary of electronic and transport properties of as-grown epitaxial graphene on SiC(0001), SiC(0001), and 3C-SiC/Si substrates indicating the effect of
substrate and ambient and fine-tuning of properties using intercalation, functionalization, and gate control.

Transport Properties at 300 K Reference

Substrate Growth
Process No. of EG Layers Fermi Level,

EF (meV) n/p n
(cm−2)

µ

(cm2
·V−1·s−1)

Rsh (Ω/�) Measurement
Technique

EG-Substrate Interaction

6H-SiC(0001) Thermal
decomposition 1 350–500 n 1013 1000 - Hall bar [26,43]

6H-SiC(0001) Thermal
decomposition 2 300–400 n 5 × 1012 1000 - Hall bar [31,34]

6H-/4H-SiC(0001) Thermal
decomposition Multi - n/p 1013 –1014 1000–3000 Hall bar [56]

6H-/4H-SiC(0001)
Thermal

decomposition

Multi
(top)
(mid)
(first)

-
p
p
n

2 × 1013

5 × 1011

2 × 1013

1500
19,300
12,400

- Hall bar [14]

4H-SiC(0001)
Thermal

decomposition First layer 350 n 9 × 1012 ~1500 - Optical Hall effect [72,73]

4H-SiC(0001)
Thermal

decomposition Multi - p 1012 15,000 - Hall bar [15]

3C-SiC(100)
3C-SiC(111)

Alloy
mediated 3–7 450 p 3 × 1013

1012
<80
330 ~10k vdP [21]

EG-Ambient Interaction

4H-SiC(0001) Thermal
decomposition 1 p 1012 ~1550 - Optical Hall effect [74]

Fine-Tuning of Transport Properties

H-Intercalation

4H-SiC(0001)
6H-SiC(0001)

Thermal
decomposition Quasi-free-standing monolayer 340

300 p 9 × 1012

6 × 1012 - - ARPES [75]
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Table 1. Cont.

Transport Properties at 300 K Reference

Substrate Growth
Process No. of EG Layers Fermi Level,

EF (meV) n/p n
(cm−2)

µ

(cm2
·V−1·s−1)

Rsh (Ω/�) Measurement
Technique

3C-SiC(111) Thermal
decomposition Quasi-free-standing monolayer - n 1012 - - APRES [76]

6H-SiC(0001) Thermal
decomposition Quasi-free-standing bilayer 230 p 1012 - - APRES [77]

3C-SiC(111) Alloy
mediated 3–7 320 p 3 × 1012 350 6k

vdP,
density

functional theory
[21]

Oxygen Intercalation

6H-SiC(0001) Thermal
decomposition 1 300

200 n 5 × 1012

2 × 1012 - - ARPES (partial
intercalation) [78]

Magnesium Intercalation

6H-SiC(0001) Thermal
decomposition Quasi-free-standing bilayer 720 n 2 × 1014 - - APRES, density

functional theory [43]

Functionalization

F4-TCNQ/Si-face
SiC

Thermal
decomposition 1 10 n 5 × 1010 29000 - Hall bar (25 K) [55,79]

Top-gate Graphene Field-Effect Transistor

SiC(0001)
SiC(0001)

Thermal
decomposition Multilayer - n/p

600–1200
(0001)

500–3000
(0001)

- Field-effect
transistor [60]

3C-SiC(111)/Si(111) Thermal
decomposition - - n/p - 175 (n)

285 (p) - Field-effect
transistor [80]



Appl. Sci. 2020, 10, 4350 10 of 32

4.1. Epitaxial Graphene-Substrate Interaction

4.1.1. Induced Pseudo-Charge Due to Substrate Polarization Effect

As described by the ARPES results summarized in Section 2, EG on SiC(0001) exhibits an EF is
quite large, which indicates considerable n-type doping. Although some density functional theory
(DFT) calculations imply this result, the physical reasons have been clarified by the experimental work
of Ristein et al. and Mammadov et al. [75,81]. The doping originates from three effects and, in some
cases, existing simultaneously: (i) polarization induced pseudo-charge due to the hexagonal nature of
6H-SiC and 4H-SiC substrates, (ii) surface states associated with C and Si dangling bonds overlaid on
the broad density of states (DOS) of the buffer layer, which act as donor states (part of the Kopylov
model [82]), and (iii) the effect of space-charge layer in (doped) SiC or Si substrates due to band
bending at the interface. Figure 8 illustrates these effects. The referenced works [75,81] demonstrate
these reasons are in reasonable agreement with the experiment, especially for hydrogen intercalated
graphene (see Section 5.1).
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compounds, which leads to a polarization charge on the polar surface of SiC, independent to any 
interface formation [75,81]. This is induced at the inversion of the stacking sequence of the hexagonal 
double layers while it is absent in the 3C-SiC polytype due to the symmetry [75]. The spontaneous 
polarization generates a pseudo acceptor layer with a pseudo charge density (Figure 8) depending 
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Figure 8. Sketch and band diagram for monolayer EG on SiC(0001). Blue and red circles indicate
Si and C atoms, respectively. The polarization is shown at the bottom. The negative polarization
related to the discontinuity of the interface polarization is a pseudo charge (marked in circles).
D indicates the electrostatic potential between the EG and SiC. The band bending details have been
taken from Reference [83]. Adapted with permission from Reference [81]. Copyright (2012) American
Physical Society.

The implications of this understanding are significant. (1) Preparing EG on a defect-free interface
of SiC (0001) should result in n-type doping. (2) EG on 3C-SiC should lead to n-doped graphene
layers—modified only by the induced effects of substrate donor states. (3) Varying the hexagonality of
the substrate will change the doping. This has been successfully tested using 4H-SiC and 6H-SiC [75].

The spontaneous polarization has been reported as a bulk property of hexagonal semiconductor
compounds, which leads to a polarization charge on the polar surface of SiC, independent to any
interface formation [75,81]. This is induced at the inversion of the stacking sequence of the hexagonal
double layers while it is absent in the 3C-SiC polytype due to the symmetry [75]. The spontaneous
polarization generates a pseudo acceptor layer with a pseudo charge density (Figure 8) depending on
the hexagonal polytype [75]. Ristein et al. demonstrated that the sign and magnitude of SiC polarization
agree with the charge concentration of H-intercalated graphene on SiC(0001) [81]. The hexagonality of
the SiC affects the polarization proportionally, i.e., for the 4H-SiC(0001) the polarization is 6/4 times
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larger than that for the 6H-SiC(0001) [75,81] and, as mentioned above, has been shown experimentally
via the H-intercalation (Section 5.1).

4.1.2. Impact of Growth on SiC (0001)

Thermal decomposition of SiC in vacuum or argon atmosphere is the well-established process for
producing graphene on SiC [5,56,75,84]. Electronic and transport properties of EG on SiC depends
upon the type of surface termination of SiC (Si-face or C-face). Although both Si and C sublimate,
the Si flux is dominant. The differences between the graphitic layer grown on the Si-face (0001) and the
C-face (0001) were first reported by Bommel et al. [85]

Graphene grown on SiC(0001) possesses a carbon-rich amorphous interfacial layer (6
√

3 × 6
√

3)
rotated 30◦ [86] known as the buffer layer in between the SiC and graphene [31]. The buffer layer
forms strong covalent bonds with the SiC. The electronic structure of the buffer layer shows a large gap
and an EF pinned by a state with a small dispersion close to the conduction band (see Figure 9) [31].
These states are related to the dangling bonds in the buffer layer. When more than one carbon layer is
present, the graphene-related dispersions are recovered.
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Emtsev et al. used ARPES measurements to study the band structure changes starting from the
6
√

3 surface of SiC. The interaction of the buffer layer with the 6
√

3 surface results in a σ-band instead
of a π-band. Continued sublimation converts the buffer layer into graphene with π-band [86] and
simultaneously creates a new buffer layer underneath. As-grown MLG on Si-face SiC is generally
reported to be electron-doped with a carrier concentration of ~1 × 1013 cm−2 [26,37,82], 300 K mobility
of ~1000 cm2

·V−1
·s−1, and a 25 K mobility of ~2000 cm2

·V−1
·s−1 [26] [55]. The n-type conductivity

is due to the charge transfer from donor-like states at the EG/SiC interface, i.e., the buffer layer,
that overcompensates the spontaneous polarization of SiC [81], as discussed in Section 4.1.1.

The band structure for BLG on SiC(0001) was calculated using DFT by Varchon et al. [31] and is in
agreement with the ARPES results by Ohta et al. [33,34]. Additional details are in Section 2.2. The EF is
~250–400 meV above the Dirac point (n-type conductivity), which is slightly lower than that for epitaxial
monolayers. This is likely due to charge transfer from the buffer layer [31], whose cause likely has some
similarity with the effects discussed in Section 4.1.1. The carrier concentration ≈ 5 × 1012 cm−2 [65]
and the mobility is ~1000 cm2

·V−1
·s−1 [45]. The lower EF and doping level of BLG may indicate a

weaker substrate interaction as reported by Ohta et al. [34]

4.1.3. Impact of Growth on SiC (0001)

Unlike the graphene on SiC (0001), graphene formation on SiC (0001) does not involve a buffer
layer at the EG-SiC interface. This is because a different surface reconstruction occurs. Seurbet et al. [87]
analyzed the atomic structure of the (2 × 2) reconstruction on (0001) SiC using an in situ prepared
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samples and quantitative LEED intensity analysis. In this case, 3
4 of the carbon atoms on the (0001)

surface plane are bonded to a silicon adatom in a hollow site with two dangling bonds (Si adatom and
C rest atom) [5].

Using first-principles, Varchon et al. calculated the band structure incorporating the (2 × 2) surface
reconstruction (see Figure 10a) [5] and claimed that the electronegativity difference between silicon
and carbon induces a charge transfer from the Si adatom to the C rest atom that forms surface states in
the electronic band structure EG on SiC(0001) (see Figure 10b) [31]. This results in pinning of the Fermi
energy, which makes the samples n-type. Yet, Ristein et al. and Mammadov et al. argue the situation
is more complex due to the hexagonal nature of the substrate (see Section 4.1.1) even though n-type
behaviour is still predicted. This situation is clarified by detailed experimental work, which will be
described below.
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Figure 10. (a) EG/SiC(0001) interface with the (2 × 2) C surface reconstruction. Si adatoms and C rest
atoms are marked. Adapted with permission from Reference [5]. Copyright (2012) AIP Publishing.
(b) Electronic band structure of EG on SiC(0001 ). Adapted with permission from Reference [31].
Copyright (2007) American Physical Society.

The graphene layers on the C-face are thicker and randomly rotated against each other as well as
with respect to the substrate [86,88] and, thus, exhibit weaker interactions with the substrate [48,86].
This unusual rotational stacking causes multilayers of graphene on the C-face to have an electronic
structure similar to that of the monolayer graphene [8,35,88] with a well-defined Dirac cone (linear
dispersion) near the charge neutrality point [22]. Shubnikov-de Haas oscillations were observed
using Hall bars, which indicated that the transport layer has a Berry phase of π, similar to that
of a single layer graphene. This signified that it is electronically decoupled from the layer above
it [89]. Additional evidence for the decoupling is found in ARPES data of the multilayer EG (MEG)
stack, which reveals the decoupled nature of the layers [35,48] in contrast to ARPES results on Bernal
BLG on Si-face, where Dirac cones remain unperturbed and distinct from one another [90]. Infrared
spectroscopy measurements shows EF ~8 meV, doping ~1010 cm−2, and low magnetic field mobility
~106 cm2

·V−1
·s−1 [91].

Room temperature transport measurements reported on these MEG on C-face SiC samples are
typically p-type [5] with sheet density of ~1013–1014 cm−2 and mobility of ~1000–3000 cm2

·V−1
·s−1 even

though a wide range of values and even n-type measurements have been reported [14,56,72–74,92].
This seems to run counter to the n-type predictions noted in Section 4.1.1, which we will address next.

This difficulty of measured p-type properties vs. the n-type prediction situation is explained by
considering the work of Lin et al. [14] who performed variable magnetic field Hall measurements on a
series of samples. The data was best fit to a model where three types of transport regions exist in the
layers of the sample: the layers closest to the substrate (substrate interaction), the interior layers (nearly
neutral), and then the outer layers (ambient interaction). Each region has distinct sheet density and
mobility. The epitaxial layer that lies closest to the SiC is highly electron-doped with high conductivity
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(1012 cm−2, 12,400 cm2
·V−1
·s−1). This is consistent with the models of Ristein and Mammadov [75,81].

The model is also supported by an ultrafast optical spectroscopy measurement that resulted in a doping
density of 9 × 1012 cm−2 corresponding to a Fermi level of ~350 meV above the Dirac point for the
layer close to the substrate [72].

The second transport region is nearly intrinsic (p-type, 5 × 1011 cm−2, 20,000 cm2
·V−1
·s−1)

due to charge screening. Additional support for this can be found, for example, from Landau
level spectroscopy where the results are expected to be dominated by sample regions having high
mobility [90]. Measurements of MEG have resulted in exceptionally high room temperature mobilities
(>200,000 cm2

·V−1
·s−1) consistent with nearly intrinsic doping [48,50,93,94].

The third transport region is the heavily p-doped outermost layers (1013 cm−2, 1500 cm2
·V−1
·s−1)

likely due to environmental dopants [14] related to the ambient temperature [90]. Sidorov et al.
determined that the environmental factors cause a p-type behaviour in ambient exposed monolayer
and multilayer EG on SiC(0001) [5] (a detailed discussion on the influence of ambient temperature on
the transport of EG is given in Section 4.2). Lebedev et al. remarked that the outer layers of graphene,
which are p-type, play a protecting role for the interior graphene layers, preventing influence from the
atmosphere [92]. Sidorov et al. also reported that the natural conductivity state of MEG without the
influence of ambient is n-type [5,84], which is also consistent with the substrate hexagonality argument.
The difficulty in understanding the range of doping types reported by others is clarified by Lin since
many samples analyzed using a simple one-layer model will tend to be p-type even though n-type
results can occur depending upon overall thickness and uniformity. Hence, the variations in reported
results are likely due to researchers assuming a simple model of uniform charge density and mobility
when analyzing Hall data coupled with sample-to-sample variability.

A significant advancement in the transport of EG on 4H-SiC(0001) was achieved when Wu et al. [15]
synthesized a monolayer EG on the C-face, which was p-doped ~1.27 × 1012 cm−2 (likely due to
environmental doping) with mobility of 20,000 cm2

·V−1
·s−1 at 4 K and ~15,000 cm2

·V−1
·s−1 at 300 K [95].

The same group has also demonstrated that the scattering effects due to the substrate (i.e., charge
impurity, electron-phonon) are weak. This is related to the absence of a buffer layer, a weak EG-substrate
interaction, and no induced charges into the graphene or scattering centres [56,96]. The values of
MLG on 4H-SiC(0001) are an order of magnitude larger than MLG on SiC(0001) and are in line with
the values from exfoliated graphene on SiO2 [97,98], even though later studies reported two-fold
larger mobility of ~106 cm2

·V−1
·s−1 at a carrier concentration of ~108 cm−2 and EF within 1 meV for

suspended graphene devices [99–101].

4.1.4. Impact of Growth on (100) and (111) 3C-SiC/Si

Synthesis of EG on Si substrates received attention primarily due to its compatibility with
current micromachining technology and processes, low production cost, and ability to synthesize
on large areas of substrates [21,66]. Thermal decomposition of 3C-SiC was widely adopted to form
graphene on silicon substrates using 3C-SiC(111) and 3C-SiC(100) pseudo-substrates [16,18,20,66,80].
Yet, the formation EG on 3C-SiC via thermal decomposition has a limitation of inconsistent graphene
coverage [102]. Pradeepkumar et al. [21] have overcome the coverage issue of graphene on 3C-SiC by
using a liquid-phase Ni/Cu alloy-mediated graphene synthesis approach.

Similar to EG formed on SiC(0001), graphitization of (111) type 3C-SiC involves a buffer layer
at the EG/3C-SiC interface [18]. Figure 11 shows the presence of the buffer layer in EG/3C-SiC(111)
using X-ray photoelectron spectroscopy (XPS) measurements [21], which is also demonstrated in
References [103] and [17]. The existence of the buffer layer in the EG/3C-SiC(111) substrate has also
been proven by the transmission electron microscopy (TEM) measurements by Fukidome et al. [104].
Figure 11 also indicates that the EG formed on 3C-SiC(100) does not possess a buffer layer [21].
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Graphene layers formed by thermal decomposition on 3C-SiC(111) are Bernal stacked as observed
from scanning tunneling microscopy (STM) with a (6

√
3 × 6

√
3) rotated 30◦ construction at the interface

similar to the EG on SiC(0001) [86]. On the other hand, the epi-layers on 3C-SiC(100) are rotated ±15◦

with respect to the substrate from LEED measurements by Ouerghi et al. [105]. Graphene formed
by alloy-mediated graphitization on 3C-SiC(100) and 3C-SiC(111) are turbostratic, as observed from
Raman spectroscopy [21].

The band structure and electronic properties of EG/3C-SiC(111) determined using ARPES showed
linear band dispersion K point of the Brillouin zone with the EF ~500 meV above the ED indicating n-type
monolayer graphene with doping of 1013 cm−2 [19,66]. The n-type doping is also in agreement with
the DFT calculations [21]. Aristov et al. [16] determined the linear band dispersion for EG/3C-SiC(100)
using ARPES with the EF ~250 meV above ED, which indicated n-type doping. The absence of the
buffer layer in EG on 3C-SiC(100) resulted in a weak interaction with the substrate, as evident from EF

closer to ED compared to EG on 3C-SiC(111) [16].
Transport measurements of EG/3C-SiC were first obtained using field-effect transistor (FET) -based

measurements by Moon et al. [80] and Kang et al. using EG formed by thermal decomposition [20].
However, as mentioned in Section 3.3, these measurements are dependent on geometry and electrostatics,
and are influenced by the substrate as well as the graphene that has an issue of inconsistent coverage
over the substrate [61,102]. In addition, Pradeepkumar et al. reported that the EG grown on 3C-SiC on
Si wafers are prone to severe 3C-SiC/Si interface degradation and the lack of large scale continuity of
EG over 3C-SiC [106,107]. The prior attempts by Moon et al. and Kang et al. did not address these
limitations. The alloy-mediated graphitization using 3C-SiC synthesized on highly-resistive Si wafers
from Reference [21] overcame the interface degradation and continuous graphene coverage issues and
enabled the large scale transport properties of EG using vdP Hall effect measurements, as given below.

The vdP transport measurements on EG from Reference [21] indicated that the EG-substrate
interaction dominates the charge transport within EG. The graphene is strongly p-type doped (carrier
concentration ~1013 cm−2, mobility ~80 cm2

·V−1
·s−1 in EG/3C-SiC(100)) as a result of the EG-substrate

interaction, which comprises of silicates (charge transfer from EG into the silicates) produced at the
interface by the alloy-mediated synthesis. The buffer layer presence in EG/3C-SiC (111) reduces the
charge transfer and improve the mobility almost five times compared to EG/3C-SiC (100) at a value of
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330 cm2
·V−1
·s−1 and carrier concentration of 1012 cm−2 (p-type). The effect of interface silicates on the

charge transport of EG on (100) and (111) 3C-SiC are in agreement with DFT calculations [21].
The transport measurements on EG also indicated that, within the observed diffusion regime

(mean free path 3–10 nm), the grain sizes (<100 nm) and the number of graphene layers has no
effect on the charge transport of EG. Further support to the lack of correlation of the grain sizes
with the EG charge transport characteristics can also be found in the work by Ouerghi et al. [9,10].
A domain size of about 1 µm for EG/3C-SiC(111) was reported for the EG at a sheet carrier concentration
of ~2 × 1013 cm−2 via the linear dispersion of DOS [66]—a value in line with the carrier concentration
of EG/3C-SiC(111) from Reference [21] with grain sizes <100 nm.

4.2. Effect of Epitaxial Graphene-Ambient Interaction

The surface of EG is sensitive to a range of gases present in the ambient air [7–12]. Early on,
researchers realized that adsorbed atoms or molecules on a graphene device could modify the channel
conductivity. Schedin et al. [108] utilized this property to create a detector with sensitivity to very
low concentrations of NH3, NO2, H2O2, and CO2. Yet, graphene is relatively sensitive to all adsorbed
molecules, and, hence, a requirement on building any sensor requires the ability to discriminate the
target molecule from the background. An additional implication is that the surface of a graphene
sample must be prepared to mitigate the effects of adsorbed molecules on transport properties.
For example, heating the sample to temperatures ~400 ◦C in ultra-high vacuum (UHV) results in a
clean, usable surface [109].

In a similar vein, Panchal et al. prepared a reproducible graphene surface to study the effects
of adsorbed gases on work function and electrical properties. This led to several important findings.
First, there are a range of molecules in the ambient (O2, H2O, and NO2), which act as p-type dopants
and reduces the n-type sheet charge density of graphene. Yet, there are other unidentified atmospheric
contaminants, which also act as p-type dopants. It was suggested that some candidates are N2O4, CO2,
and various hydrocarbons. Lastly, it was shown that, for more than one graphene layer, the effect on
conductivity was less, and it was proposed this was due to charge screening of the outermost layer.
First-principles modeling indicates that the physical mechanism of the doping compensation (for H2O,
NH3, CO, NO2, and NO) and is due to charge transfer [110] from graphene to the molecule when the
lowest unoccupied molecular orbital is below the Dirac point.

The polarity of the Si-face SiC gives rise to high hydrophilicity, which is relatively unchanged
with the addition of a graphene monolayer [111]. Graphene’s response to water and changes in the
environment are strongly thickness dependent with a monolayer on Si-face being most sensitive to
water adsorption than the bilayer or tri-layer graphene [5,112,113].

Yet, the understanding of the exact H2O doping mechanism is not as well-understood since
chemical processes may be involved. Sidorov et al. noted that, upon ambient exposure at 300 K,
both the MEG and MLG on SiC(0001) typically exhibit p-type conduction, 4.5 × 1014 cm−2 (Figure 12).
The p-type doping is due to the ambient adsorbed film containing water vapour (H2O), O2, and NO2

on the exposed surface [5,114]. The Dirac energy of the graphene lies near the redox potential of
dissolved oxygen, which causes the surface charge transfer from graphene into the film (water/oxygen
redox couple) and results in compensation of the n-type sheet density [2,5,46,114,115]. In addition,
the conductivity state of vacuum annealed EG on SiC(0001) is n-type (Figure 10b) [112,114]. This n-type
conductivity was related to the work function considerations and EF pinning at the state related to
dangling bonds, as discussed in Section 4.1.3 [5]. Yet, we now know that the pseudo charge effect
induced by substrate hexagonality dominates the graphene charge state.
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Knight et al. exposed monolayer EG on SiC(0001) to different inert gases and performed in-situ,
contactless majority free charge carrier determination using terahertz-frequency optical Hall effect
measurements [2]. The transport properties of graphene are also sensitive to other adsorbed gas
molecules N2O4, CO2, and hydrocarbons [2,5,114,116–118]. The mechanism of ambient doping is
described as ambient-exposed graphene forms a thin film of water containing dissolved CO2 that reacts
with water forming H+ ions. The oxygen in the water film reacts with H+ ions to form additional water
molecules, and electrons are removed from the graphene by p-doping the graphene. This doping is
reversible and does not depend on the type of inert gas [2].

4.3. Effect of Epitaxial Graphene-Contact Metal Interaction

Since electronic transport measurements involve making metal contacts, understanding the
influence of metal contacts on the transport of EG is also a concern [3]. The work function difference
between graphene and a metal induces doping in graphene since the Fermi levels must equilibrate [3].

Since the EF of freestanding graphene meets the ED, the adsorption of metal can significantly
alter its electronic properties [3], as the DOS of graphene at Dirac point is much lower than that of
the metal. A tiny amount of charge transfer shifts the EF significantly [25,33,34] as it is reported that
0.01 electrons per carbon atom would shift the EF by 470 meV. The charge transfer creates a dipole
layer at the graphene-metal interface with ∆V potential. The value of ∆V depends on the strength of
the metal-graphene interaction. Even a weak interaction can cause a large shift in the EF away from
the ED [3,119].

Khomyakov et al. [119] used DFT to characterize the adsorption of graphene on various metals
and found graphene interacts more strongly to Ni, Co, Ti, and Pd (chemisorption). The chemisorption
involves hybridization between graphene pz and metal d-states that cause an opening of a band gap in
the graphene. In the case of chemisorption, the band structure is disturbed, and the doping is estimated
from the difference of work function between the graphene covered with metal and metal-free graphene.
In the case of Ni, Co, Ti, and Pd, the graphene is n-type doped [119]. Physisorption, e.g., interaction
with metals such as Ag, Al, Cu, Au, and Pt, involves only weak binding to graphene. Therefore,
the electronic structure is preserved. In the case of physisorption, the electrons transfer from the
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graphene to the metal, which causes the EF to move closer to the ED—and the hole doping is estimated
from the change. At an equilibrium distance from the metal, the graphene is reported to be p-doped
on Au and Pt and n-doped on Al, Ag, and Cu. Khomyakov et al. also reported that the graphene is
doped n-type when the metal work function <5.4 eV, while it is p-type when the work function is
>5.4 eV [119].

Using femtosecond laser-patterned microstructures (resist free, defect-free method), Nath et al. [120]
studied the graphene-metal interactions on EG synthesized on 6H-SiC(0001) via thermal decomposition.
They found that the nickel does not form bonds with EG on SiC in contrast to the Ni-C formation in
chemical vapour deposition (CVD) grown graphene on metals due to the absence of defect sites [119].
However, it was shown that the contact resistance (RC) of Ni to EG with resistance residue under the
contact is an order of magnitude greater than the intrinsic quantum-limited RC, which proposes the
requirement for both end-contacts as well as a residue-free graphene–metal interface (which can form
resistive NiCO3) as requirements to obtain quantum-limited contact resistance [120].

DeJarld et al. [121] calculated the work functions of a number of high purity noble metals such
as Cr, Cu, Rh, Ni, and Pt, and rare earth metals such as Pr, Eu, Er, Yb, and Y, in contact with MLG,
using Kelvin Probe Force Microscopy. The metals were deposited under manufacturing-like conditions
and Au (and its published work function) was used as the standard. The work functions were compared
to published values for the other metals measured under careful, i.e., UHV, conditions. For the noble
metals, a comparison showed Cr, Cu, and Rh had higher work functions (~0.5 eV) than expected
and Ni and Pt were lower than expected (also ~0.5 eV). The low work function rare earth metal set
were all affected, to various extents, by oxygen in the ambient and/or reactions to graphene rendering
most unusable. The most stable rare earth was Yb, even though protection from the ambient was
strongly recommended.

Yang et al. [122] demonstrated that the e-beam evaporated Ni on CVD graphene caused the
EG work function to be 0.34 eV below the Ni work function. This resulted in electron transfer from
graphene to Ni, which makes the graphene underneath the metal contact p-type.

4.4. Mobility and Sheet Carrier Concentration: Power-Law Relationship

A power-law relationship of mobility and sheet carrier concentration was demonstrated by several
research groups for both EG on SiC and EG on 3C-SiC [4,21,25,57,59,123]. Tedesco et al. [56] described
the functional power-law relationship between increasing mobility and decreasing carrier density as an
intrinsic property of EG. The general power-law behaviour of mobility and sheet carrier concentration
indicate that the tunability of graphene transport properties is constrained.

In Reference [21], the authors of this review demonstrate that the mobility versus sheet carrier
concentration values for EG/SiC(0001) from Reference [56], and EG/3C-SiC can be fitted with good
confidence using the same power law, which demonstrates a common conductivity of ~3 ± 1 (e2/h)
close to the minimum quantum conductivity of graphene (Figure 13). Note that the grain sizes of
EG/SiC(0001) are at least 100 nm and more [124–126] whereas the EG/3C-SiC is smaller, which indicates
that grain sizes do not determine the transport properties of EG [21].

In addition, Reference [21] demonstrated that the charge transport in EG/3C-SiC is dominated by
the EG-substrate interaction resulting in p-type graphene due to a charge transfer from the EG into the
interface silicates. The substrate interaction is stronger in EG/3C-SiC (100) and smaller in the case of
EG/3C-SiC(111) due to the presence of a buffer layer in between EG and the substrate, which screens
the charge transfer up to an extent. Figure 13 also indicates the different power-law nature of C-face EG
from that of the Si-face EG and EG on 3C-SiC, which is due to distinct levels of EG-substrate interaction,
according to Norimatsu et al. [11]. This was confirmed by Pradeepkumar et al. [21].
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Figure 13. Mobility and sheet carrier density for EG on 3C-SiC/Si combined with those of monolayer
EG on the Si-face of 4H-SiC and 6H-SiC substrates at 300 and 77 K from Tedesco et al. [36]. Reprinted
with permission from Reference [21]. Copyright (2020) American Chemical Society.

4.5. Temperature-Dependent Transport: Scattering Mechanisms

Temperature-dependent Hall effect measurements in EG/SiC and 3C-SiC are crucial to investigate
the charge transport as it provides information on the scattering mechanisms. This section summarizes
the temperature-dependent transport properties of EG on Si-face SiC, EG on C-face SiC, and EG
on 3C-SiC.

In general, Hwang et al. [93] reported that the carrier scattering mechanism dominant in MLG
(on SiO2) is Coulomb scattering by randomly charged impurities at the graphene-substrate interface,
as also reported by Chen et al. [127]. The same group determined the typical random charged
impurity concentration to be ~1012 cm2 and suggested that, by reducing this impurity concentration
to ~1010 cm2 range, it should lead to a significant increase in the EG mobility. The charge transport
in graphene dominated by the charged impurities in the substrate can be theoretically described by
the Drude-Boltzmann model [93], which is valid only in the high-density regime [128]. The Fermi
temperature of graphene is about 1300 K for n~1012 cm2, which indicates no temperature dependence
of the MLG conductivity arising from charged impurity scattering within a 0–300 K temperature range
in agreement with the experimental observation of graphene flakes [93].

In contrast to the graphene flake results, MLG on Si-face SiC shows a strong temperature
dependence of mobility and resistivity, as shown in Figure 14 [83,123,129]. At carrier concentrations
away from the charge neutrality point (above 1011 cm−2), the mobility decreases with increasing the
temperature and the resistivity increases [123]. A remote phonon scattering originating from the SiC
substrate including the buffer layer and the C-Si bonds at the interface was reported as the reason for
the strong temperature dependence of mobility and resistivity, and the limitation of both properties at
high temperatures [26,123,130,131]. Tedesco et al. [56] reported that the suppression of conductivity in
high temperatures in the case of monolayer or bilayer Si-face EG is due to the scattering from the point
defects present in the interfacial layer.
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Figure 14. (a) Temperature dependent mobility of MLG on SiC (0001). Reprinted with permission from
Reference [26]. Copyright (2009) Springer Nature. (b) Temperature dependent resistivity of MLG on
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Figure 15 indicates the sheet resistance of rotationally disordered MEG (~10 layers) formed on
SiC(0001) [132], which indicates that the sheet resistance remains nearly stable within 0–300 K. This has
been related to the weak substrate interaction of EG on the C-face SiC [11]. The mobility, in this
case, does not significantly depend on temperature [8]. The phonon scattering is suppressed, and the
scattering from impurities is weak.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 19 of 32 

 
Figure 14. (a) Temperature dependent mobility of MLG on SiC (0001). Reprinted with permission 
from Reference [26]. Copyright (2009) Springer Nature. (b) Temperature dependent resistivity of 
MLG on SiC (0001). Reprinted with permission from Reference [123]. 

Figure 15 indicates the sheet resistance of rotationally disordered MEG (~10 layers) formed on 
SiC(0001) [132], which indicates that the sheet resistance remains nearly stable within 0–300 K. This 
has been related to the weak substrate interaction of EG on the C-face SiC [11]. The mobility, in this 
case, does not significantly depend on temperature [8]. The phonon scattering is suppressed, and the 
scattering from impurities is weak. 

 
Figure 15. Temperature dependent sheet resistance of EG on SiC(000 1 ) and nitrophenyl 
functionalized graphene (NP-EG). Reprinted with permission from Reference [132]. Copyright (2009) 
American Chemical Society. 

Figure 16 shows mobility versus temperature for EG/3C-SiC substrates [21]. The mobility of 
EG/3C-SiC (100) shows only a weak temperature dependence, slowly increasing after 200 K and 
reaching a value of ~30 cm2·V−1·s−1 at 300 K. This indicates charge impurity scattering. The weak 
temperature dependence of the mobility of EG/3C-SiC(100) is consistent with Reference [83] for EG 
on SiC, and is attributed to the absence of the buffer layer. In the case of EG/3C-SiC(111), the mobility 
shows a sharp increase after 200 K up to a value of ~375 cm2·V−1·s−1 at 250 K, which, again, indicates 
charge impurity scattering, and then a decrease to ~330 cm2·V−1·s−1 at 300 K. The negative temperature 
dependence of mobility for the EG/3C-SiC(111) above 250 K has been related to scattering at the buffer 
layer in EG on 6H-SiC [133]. At low temperatures, the charge impurity scattering is dominated 
[56,127] and, since the temperature is increased, the scattering decreases [25]. In addition, the constant 

Figure 15. Temperature dependent sheet resistance of EG on SiC(0001) and nitrophenyl functionalized
graphene (NP-EG). Reprinted with permission from Reference [132]. Copyright (2009) American
Chemical Society.

Figure 16 shows mobility versus temperature for EG/3C-SiC substrates [21]. The mobility of
EG/3C-SiC (100) shows only a weak temperature dependence, slowly increasing after 200 K and
reaching a value of ~30 cm2

·V−1
·s−1 at 300 K. This indicates charge impurity scattering. The weak

temperature dependence of the mobility of EG/3C-SiC(100) is consistent with Reference [83] for EG on
SiC, and is attributed to the absence of the buffer layer. In the case of EG/3C-SiC(111), the mobility
shows a sharp increase after 200 K up to a value of ~375 cm2

·V−1
·s−1 at 250 K, which, again, indicates

charge impurity scattering, and then a decrease to ~330 cm2
·V−1
·s−1 at 300 K. The negative temperature

dependence of mobility for the EG/3C-SiC(111) above 250 K has been related to scattering at the buffer
layer in EG on 6H-SiC [133]. At low temperatures, the charge impurity scattering is dominated [56,127]
and, since the temperature is increased, the scattering decreases [25]. In addition, the constant value of
conductivity (~3 ± 1 (e2/h)) obtained for EG/3C-SiC also indicates that the charge impurity scattering
at the interface dominates the transport [21].
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5. Fine-Tuning of Transport Properties

Epitaxial graphene on SiC and 3C-SiC suffers from strong intrinsic n-type doping. The substrate-
induced n-type doping in EG/SiC and EG/3C-SiC translates into the shift in the EF, away from the ED,
such that the ambipolar properties of graphene cannot be exploited [79]. The substrate interaction
causes larger charge density and lower mobility with strong temperature dependence when compared
to freestanding graphene. Some of these issues can be compensated by tuning of the transport properties
using different methods discussed in the following section.

5.1. Intercalation

Intercalation has been performed via different elements such as hydrogen [21,75,77,81,134],
oxygen [78], fluorine [135], gold [136], and magnesium [43]. The monolayer graphene formed after
intercalation of buffer layer on SiC (0001) is called quasi-free-standing monolayer graphene (QFMLG).
Riedl et al. [134] produced QFMLG by annealing the buffer layer on Si-face SiC(0001) in atmospheric
pressure H2. The XPS C 1s and Si 2p spectra demonstrated that H saturate the Si dangling bonds and
decouples the buffer layer by forming a monolayer graphene [134]. Buffer layer decoupling in EG on
3C-SiC (111) via H-intercalation has also been demonstrated [21,76].

The QFMLG on SiC (0001) films measured by ARPES are generally p-type doped [75] (see Figure 17).
As discussed in Section 4.1.1, Mammadov et al. and Ristein et al. determined that the p-type conduction
of QFMLG is caused by the spontaneous polarization of the SiC [75,81]. QFMLG layers formed on
semi-insulating 4H-SiC (0001) indicated a hole concentration of 8.6 × 1012 cm−2 (stronger spontaneous
polarization of 4H-SiC) extracted from the Fermi surface measurement [75] at EF 340 meV below the
ED, whereas the QFMLG on 6H-SiC (0001) exhibits a p-type carrier concentration of 5.5 × 1012 cm−2

with EF 300 meV below the ED. The Fermi velocity was measured to be 0.98 × 106 ms−1 [33,75].
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Speck et al. demonstrated that the mobility of QFMLG showed reduced temperature dependence
compared with an as-grown MLG, which indicates reduced scattering from the underlying SiC
(see Figure 18). The mobility of MLG falls by more than 50% when the temperature is increased
from 25 K to 300 K whereas the change in mobility is only ~ 10% for the QFMLG across the same
temperature range (samples indicated constant carrier concentration across the entire temperature
range). The weak temperature dependence of mobility, approaching the behavior exhibited by flakes
(see Section 4.5) signifies QFMLG is effectively decoupled from substrate compared to MLG [129].
Furthermore, for T greater than 290 K, the mobility of QFMLG are generally 3–5 times larger than
EG before H-intercalation (Figure 18). The production of quasi-free-standing bilayer graphene by
H-intercalation of MLG has also been achieved [77,137]. Reference [77] reported H-intercalated BLG
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with a p-type carrier concentration of 1012 cm−2 with EF 230 meV below the ED. The Fermi velocity
was measured to be 1.04 × 106 ms−1.Appl. Sci. 2020, 10, x FOR PEER REVIEW 22 of 32 
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In contrast to the p-type polarization doping of QFMLG on bulk SiC substrates, the ARPES
data of QFMLG on 3C-SiC (111) by H-intercalation reported slight n-type doping (see Figure 17c).
This is due to the absence of spontaneous polarization in 3C-SiC [75]. The n-type doping density
of about 1012 cm−2 was estimated, which was related to the residual defects at the interface [76].
Pradeepkumar et al. reported that the p-type transport properties of EG on 3C-SiC (111) did not
improve after decoupling the buffer layer, which confirms that the interface silicates dominate the
transport properties in this instance.

The intercalation process has also attempted via an oxidation process for EG on SiC (0001). Mathieu
et al. [78] demonstrated that, through an oxidation process, the oxygen saturates Si dangling bonds and
breaks some Si–C bonds of the buffer layer. In this case, the buffer layer is only partially decoupled,
and the resulting sample had molecular oxygen intercalated between carbon layers with a (

√
3 ×
√

3)
rotated 30◦ pattern as observed with µLEED. The same group also demonstrated the possibility to tune
the charge density modulation in the graphene by controlling the oxidation parameters. The starting
sample had an n-type sheet charge of 1.4 × 1013 cm−2 corresponding to EF of 500 meV below ED.
After the first O-intercalation step, the sheet density changed to 4.6 × 1012 cm−2 (n-type) and EF

of 300 meV. The second O-intercalation step yielded 1.9 × 1012 cm−2 (n-type) and EF of 200 meV.
Quasi-free-standing bilayer graphene (QFSBLG) with p-type doping of 1013 cm−2 was achieved by
Oliveira Jr et al. via oxygen intercalation by annealing the monolayer graphene on SiC(0001) at 600 ◦C
in the air [138].

The most advanced intercalation may be magnesium intercalation of monolayer EG on SiC
(0001) creating QFSBLG [43]. For this case, ARPES measurements demonstrate a very high n-type
concentration of 2 × 1014 cm−2 at an EF of 720 meV above ED and the creation of a band gap of 0.36 eV.
The Fermi velocity was measured to be 0.97 × 106 ms−1, which is only slightly different from MLG.
This may indicate that the graphene lattice is only slightly perturbed by the magnesium intercalant.

Wong et al. [135] obtained a charge-neutral QFSG on SiC (0001) using fluorine from a fluorinated
fullerene source, which was stable under ambient conditions, whereas resistant to temperatures up to
1200 ◦C. Gierz et al. [136] demonstrated buffer-layer decoupling using gold intercalation of EG on SiC
(0001). The formation of an n-doped or a p-doped graphene layer can be controlled by varying the
gold coverage about one-third or one monolayer, respectively.

5.2. Functionalization of EG

Controlling the transport properties via surface functionalization makes use of charge compensation
from surface adsorption or attachments [139]. Coletti et al. demonstrated that the intrinsic n-type doping
of EG on SiC (0001) can be compensated by functionalizing graphene (non-covalent) with an electron
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acceptor called as tetrafluorotetracyanoquinodimethane (F4-TCNQ) [79]. Surface transfer doping results
in charge transfer from graphene into the doping molecule reducing the sheet density. A 0.8-nm-thick
layer of F4-TCNQ on monolayer EG resulted in near charge neutrality, i.e., EF = ED, Figure 19. For a
bilayer sample, the band gap more than doubled, moving from about 100 meV to 250 meV [79] with
the EF shifted into the band gap. Yet, both the compensation and band gap widening saturated near
0.8 nm, which indicated that there may be limitations with this approach. An increase of mobility
with decreasing carrier density was seen in the F4-TCNQ doped samples by Jobst et al. [55]. When the
carrier density is decreased, the mobility limited by the electron interaction with substrate phonons
rises substantially (up to 29,000 cm2

·V−1
·s−1 at 25 K), and Shubnikov–de Haas oscillations and the

graphene-like quantum Hall effect are observed [55]. The F4-TCNQ experiments demonstrate that the
effects of the substrate interaction can be mitigated by reducing the sheet density, and the quantum Hall
effect and pseudo-relativistic physics and linear band structure are possible in the epitaxial graphene.
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Bekyarova et al. [132] studied the transport properties of nitrophenylfunctionalized EG (NP-EG
formed on the C-face SiC) and suggested that it changes the graphene from near-metallic to
semiconducting (see Figure 15) [132].

Other interesting work by Lartsev et al. [140] demonstrate charge neutrality (1011 cm−2) and
p-doping (5 × 1012 cm−2) by reversible tuning of carrier density via high electrostatic potential gating
with ions produced by corona discharge in initially strongly n-doped EG/SiC devices. In this case,
the ions deposited on the dielectric layer induce a surface charge density on the graphene. The corona
effect is reversible and, depending on the ionic charge, both p-doping and n-doping are possible.
The method is utilized in graphene applications such as quantum resistance metrology where specific
fixed doping is required.

Peles-Lemli et al. [141] used DFT calculations to investigate the graphene interactions with the
adsorbed alkali metal ions such as Li+, Na+, and K+ for the applications of graphene-based chemical
sensors. In the presence of an external electric field, the positively charged ions get closer to the
graphene inducing excess charge transfer from the graphene surface to the metal ions, causing negative
charges on the ions and removal of the ions from the surface. Ludbrook et al. [142] demonstrated
first direct observation of superconductivity (critical temperature of 5.9 K) for monolayer graphene
formed on 6H-SiC (0001) decorated with a layer of lithium atoms at a low temperature, which caused
an enhanced electron-phonon coupling.

5.3. Top-Gate Graphene Field-Effect Transistors

The ability to control the graphene transport properties via an external voltage is the heart
of future electronics [29]. Graphene field-effect transistors show ambipolar field-effect due to its
unique electronic band structure with a zero band gap [58]. Under a gate voltage control, charge
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carriers in graphene can be tuned continuously between electrons and holes with the Fermi level
crossing the Dirac point [143]. Charge carriers can be tuned up to 1013 cm−2 with mobilities over
15,000 cm2

·V−1
·s−1 at 300 K [29]. The mobilities depend on temperature weakly, which indicates charge

impurity scattering and, therefore, the gate control may be able to improve those numbers further,
even up to ≈100,000 cm2

·V−1
·s−1 [58].

The first report of epitaxial graphene field-effect transistors (EG FETs) patterned on a single
epitaxial graphene chip both on the SiC (0001) and SiC (0001) was made in 2008 [60]. Figure 20
demonstrates the Id-Vg characteristics of the C-face and Si-face transistors. The results from this
work show that the gate-controlled tuning can lead to mobility as high as 5000 cm2

·V−1
·s−1 on the

C-face, and an on/off ratio up to 7 on the Si-face SiC. Moon et al. [144] measured the first small-signal
radio-frequency (RF) performance of EG FETs on 6H-SiC(0001). Lin et al. [145] fabricated high-speed
graphene RF FETs on 4H-SiC (0001) and obtained a cutoff frequency of 100 GHz for a gate length of
240 nm. He et al. [146] revealed the RF performance of bilayer GFETs up to 200 ◦C. Yu et al. [147]
formed a QFSBLG FET on 4H-SiC (0001), (100-nm gate length) with an intrinsic current gain cutoff

frequency 407 GHz. Hwang et al. [148] demonstrated the first top-gated graphene nanoribbon FETs
of 10 nm width on 6H-SiC (0001). The results exhibited exceptionally high drive currents (for fast
switching) and opening of a substantial band gap of 0.14 eV. Bianco et al. [149] determined the detection
of terahertz radiation at room temperature using antenna-coupled EG FETs on SiC, which introduced
the potential of plasmonic detectors using epitaxial graphene on silicon carbide.
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Additionally, the gate control in FET fabricated on bilayer EG enables us to selectively adjust the
carrier concentration in each layer and induce a band gap in bilayer graphene. Ohta et al. demonstrated
that, by doping the bilayer of graphene, the band gap of 200 meV could be achieved [34]. Alternatively,
Zhang et al. showed the band gap of up to 250 meV is achievable by varying the electric field and by
using an external gate control. Zhou et al. [45] reported a substrate-induced energy gap of 260 meV [37].

Moon et al. demonstrated the first ambipolar behavior of wafer-scale EG FET on 3C-SiC(111)/Si
substrates formed via thermal decomposition (see Figure 21) [80]. A comparison of the graphene
FETs fabricated on Si(110) and Si(111) substrates were reported by Kang et al. [20]. The graphene
FETs on Si(111) exhibited higher channel currents, which is an order of magnitude larger than those
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Fabrication of graphene FETs involves the challenges of selecting an appropriate gate insulator and
controlling its thickness [150]. Generally, the oxides such as SiO2, HfO2, Al2O3, and Y2O3 are used as the
gate dielectrics, but these tend to become amorphous with scaling and interactions with the graphene
can occur, which makes the high-quality defect-free interface formation difficult [150–152]. Hexagonal
boron nitride (h-BN) forms a weak van der Waals interaction with the graphene (lattice mismatch only
2% [153]) and has been utilized as an ideal insulator for the graphene FET formation [151]. Due to the
lower value of a dielectric constant (k~4), h-BN is usually combined with a high k-dielectric layer such
as Y2O3 formed via atomic layer deposition on h-BN [154]. The scaling (~1.3 nm) of h-BN results in
excessive gate leakage current within the FET. To overcome this, Illarionov et al. [150] utilized epitaxial
calcium fluoride of ~2 nm thickness as a gate insulator with low leakage current and on/off ratio up to
107. Furthermore, the epitaxial growth of graphene-h-BN heterostructures on copper via chemical
vapor deposition has been demonstrated by Geng et al. [155].

6. Conclusions

Epitaxial graphene is a practical approach for electronics and photonic applications thanks to its
wafer-scale integration compatibility [5]. The knowledge and the control of electronic and transport
properties of epitaxial graphene are crucial for graphene-based electronic and photonics applications.

This work has reviewed the impact of different interactions the epitaxial graphene makes with its
surroundings, such as substrate, ambient, and metal contacts. The review concluded that the electronic
and charge transport properties of EG on both SiC and Si substrates are always dominated by the
interfaces between graphene and its environment. Within the diffusion regime, the grain sizes do not
affect carrier transport in EG. The sheet carrier concentration and the mobility of graphene follow a
power-law dependence, which is universal for the substrate-supported graphene. Lastly, different
methods to tune the electronic and transport properties of EG are discussed, which points out that the
control of the charge transfer/doping in EG is directly linked for engineering the graphene interfaces.
Hence, it is critical for the integration of graphene into future micro-electronic or nano-electronic devices.
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78. Mathieu, C.; Lalmi, B.; Menteş, T.; Pallecchi, E.; Locatelli, A.; Latil, S.; Belkhou, R.; Ouerghi, A. Effect of

oxygen adsorption on the local properties of epitaxial graphene on SiC (0001). Phys. Rev. B 2012, 86, 035435.
[CrossRef]

79. Coletti, C.; Riedl, C.; Lee, D.S.; Krauss, B.; Patthey, L.; von Klitzing, K.; Smet, J.H.; Starke, U. Charge neutrality
and band-gap tuning of epitaxial graphene on SiC by molecular doping. Phys. Rev. B 2010, 81, 235401.
[CrossRef]

80. Moon, J.; Curtis, D.; Bui, S.; Marshall, T.; Wheeler, D.; Valles, I.; Kim, S.; Wang, E.; Weng, X.; Fanton, M.
Top-gated graphene field-effect transistors using graphene on Si (111) wafers. IEEE Electron. Device Lett.
2010, 31, 1193–1195. [CrossRef]

81. Ristein, J.; Mammadov, S.; Seyller, T. Origin of doping in quasi-free-standing graphene on silicon carbide.
Phys. Rev. Lett. 2012, 108, 246104. [CrossRef] [PubMed]

82. Kopylov, S.; Tzalenchuk, A.; Kubatkin, S.; Fal’ko, V.I. Charge transfer between epitaxial graphene and silicon
carbide. Appl. Phys. Lett. 2010, 97, 112109. [CrossRef]

83. Speck, F.; Ostler, M.; Röhrl, J.; Jobst, J.; Waldmann, D.; Hundhausen, M.; Ley, L.; Weber, H.B.; Seyller, T.
Quasi-freestanding graphene on SiC (0001). Mater. Sci. Forum 2010, 645–648, 629–632. [CrossRef]

84. De Heer, W.A.; Berger, C.; Wu, X.; Sprinkle, M.; Hu, Y.; Ruan, M.; Stroscio, J.A.; First, P.N.; Haddon, R.;
Piot, B.; et al. Epitaxial graphene electronic structure and transport. J. Phys. D Appl. Phys. 2010, 43, 374007.
[CrossRef]

http://dx.doi.org/10.1038/nnano.2008.67
http://dx.doi.org/10.1063/1.3427406
http://dx.doi.org/10.1088/2053-1583/aa90b3
http://dx.doi.org/10.1103/PhysRevB.92.125437
http://dx.doi.org/10.1016/j.physb.2019.411751
http://dx.doi.org/10.1016/j.mssp.2019.02.039
http://dx.doi.org/10.1038/nmat1846
http://www.ncbi.nlm.nih.gov/pubmed/17293849
http://dx.doi.org/10.1103/PhysRevLett.101.157402
http://www.ncbi.nlm.nih.gov/pubmed/18999638
http://dx.doi.org/10.1063/1.3548543
http://dx.doi.org/10.1016/j.apsusc.2016.10.023
http://dx.doi.org/10.1088/2053-1583/1/3/035003
http://dx.doi.org/10.1063/1.3618674
http://dx.doi.org/10.1103/PhysRevB.86.035435
http://dx.doi.org/10.1103/PhysRevB.81.235401
http://dx.doi.org/10.1109/LED.2010.2065792
http://dx.doi.org/10.1103/PhysRevLett.108.246104
http://www.ncbi.nlm.nih.gov/pubmed/23004296
http://dx.doi.org/10.1063/1.3487782
http://dx.doi.org/10.4028/www.scientific.net/MSF.645-648.629
http://dx.doi.org/10.1088/0022-3727/43/37/374007


Appl. Sci. 2020, 10, 4350 29 of 32

85. Van Bommel, A.; Crombeen, J.; Van Tooren, A. LEED and Auger electron observations of the SiC (0001)
surface. Surf. Sci. 1975, 48, 463–472. [CrossRef]

86. Emtsev, K.; Speck, F.; Seyller, T.; Ley, L.; Riley, J.D. Interaction, growth, and ordering of epitaxial graphene
on SiC {0001} surfaces: A comparative photoelectron spectroscopy study. Phys. Rev. B 2008, 77, 155303.
[CrossRef]

87. Seubert, A.; Bernhardt, J.; Nerding, M.; Starke, U.; Heinz, K. In situ surface phases and silicon-adatom
geometry of the (2 × 2) C structure on 6H-SiC (0001¯). Surf. Sci. 2000, 454, 45–48. [CrossRef]

88. Malard, L.; Pimenta, M.; Dresselhaus, G.; Dresselhaus, M. Raman spectroscopy in graphene. Phys. Rep. 2009,
473, 51–87. [CrossRef]

89. De Heer, W.A.; Berger, C.; Wu, X.; First, P.N.; Conrad, E.H.; Li, X.; Li, T.; Sprinkle, M.; Hass, J.; Sadowski, M.L.;
et al. Epitaxial graphene. Solid State Commun. 2007, 143, 92–100. [CrossRef]

90. First, P.N.; de Heer, W.A.; Seyller, T.; Berger, C.; Stroscio, J.A.; Moon, J.-S. Epitaxial graphenes on silicon
carbide. MRS Bull. 2010, 35, 296–305. [CrossRef]

91. Orlita, M.; Faugeras, C.; Grill, R.; Wysmolek, A.; Strupinski, W.; Berger, C.; de Heer, W.A.; Martinez, G.;
Potemski, M. Carrier scattering from dynamical magnetoconductivity in quasineutral epitaxial graphene.
Phys. Rev. Lett. 2011, 107, 216603. [CrossRef] [PubMed]

92. Lebedev, A.A.; Agrinskaya, N.V.; Beresovets, V.A.; Kozub, V.I.; Lebedev, S.P.; Sitnikova, A.A. Low temperature
transport properties of multigraphene structures on 6H-SiC obtained by thermal graphitization: Evidences
of a presence of nearly perfect graphene layer. arXiv Preprint, 2012; arXiv:1212.4272.

93. Hwang, E.; Adam, S.; Sarma, S.D. Carrier transport in two-dimensional graphene layers. Phys. Rev. Lett.
2007, 98, 186806. [CrossRef]

94. Jernigan, G.G.; VanMil, B.L.; Tedesco, J.L.; Tischler, J.G.; Glaser, E.R.; Davidson, A., III; Campbell, P.M.;
Gaskill, D.K. Comparison of epitaxial graphene on Si-face and C-face 4H SiC formed by ultrahigh vacuum
and RF furnace production. Nano Lett. 2009, 9, 2605–2609. [CrossRef]

95. Hu, Y.; Ruan, M.; Guo, Z.; Dong, R.; Palmer, J.; Hankinson, J.; Berger, C.; de Heer, W.A. Structured epitaxial
graphene: Growth and properties. J. Phys. D Appl. Phys. 2012, 45, 154010. [CrossRef]

96. Dimitrakopoulos, C.; Grill, A.; McArdle, T.J.; Liu, Z.; Wisnieff, R.; Antoniadis, D.A. Effect of SiC wafer miscut
angle on the morphology and Hall mobility of epitaxially grown graphene. Appl. Phys. Lett. 2011, 98, 222105.
[CrossRef]

97. Gaskill, D.K. Epitaxial Graphene. In Handbook of Crystal Growth; Elsevier: Amsterdam, The Netherlands,
2015; pp. 755–783.

98. Novoselov, K.S.; Geim, A.K.; Morozov, S.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.; Dubonos, S.; Firsov, A.A.
Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [CrossRef]
[PubMed]

99. Elias, D.; Gorbachev, R.; Mayorov, A.; Morozov, S.; Zhukov, A.; Blake, P.; Ponomarenko, L.; Grigorieva, I.;
Novoselov, K.; Guinea, F.; et al. Dirac cones reshaped by interaction effects in suspended graphene. Nat. Phys.
2011, 7, 701–704. [CrossRef]

100. Mayorov, A.S.; Elias, D.C.; Mukhin, I.S.; Morozov, S.V.; Ponomarenko, L.A.; Novoselov, K.S.; Geim, A.;
Gorbachev, R.V. How close can one approach the Dirac point in graphene experimentally? Nano Lett. 2012,
12, 4629–4634. [CrossRef]

101. Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. Ultrahigh electron
mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355. [CrossRef]

102. Aristov, V.Y.; Molodtsova, O.V.; Chaika, A.N. Graphene synthesized on Cubic-SiC(001) in Ultrahigh Vacuum:
Atomic and Electronic Structure and Transport Properties. In Growing Graphene on Semiconductors; Motta, N.,
Iacopi, F., Coletti, C., Eds.; Pan Stanford: Singapore, 2017; pp. 27–75.

103. Ago, H.; Ito, Y.; Mizuta, N.; Yoshida, K.; Hu, B.; Orofeo, C.M.; Tsuji, M.; Ikeda, K.-i.; Mizuno, S. Epitaxial
chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire.
ACS Nano 2010, 4, 7407–7414. [CrossRef]

104. Fukidome, H.; Miyamoto, Y.; Handa, H.; Saito, E.; Suemitsu, M. Epitaxial growth processes of graphene on
silicon substrates. Jpn. J. Appl. Phys. 2010, 49, 01AH03. [CrossRef]

105. Ouerghi, A.; Ridene, M.; Balan, A.; Belkhou, R.; Barbier, A.; Gogneau, N.; Portail, M.; Michon, A.; Latil, S.;
Jegou, P.; et al. Sharp interface in epitaxial graphene layers on 3 C-SiC (100)/Si (100) wafers. Phys. Rev. B
2011, 83, 205429. [CrossRef]

http://dx.doi.org/10.1016/0039-6028(75)90419-7
http://dx.doi.org/10.1103/PhysRevB.77.155303
http://dx.doi.org/10.1016/S0039-6028(00)00091-1
http://dx.doi.org/10.1016/j.physrep.2009.02.003
http://dx.doi.org/10.1016/j.ssc.2007.04.023
http://dx.doi.org/10.1557/mrs2010.552
http://dx.doi.org/10.1103/PhysRevLett.107.216603
http://www.ncbi.nlm.nih.gov/pubmed/22181904
http://dx.doi.org/10.1103/PhysRevLett.98.186806
http://dx.doi.org/10.1021/nl900803z
http://dx.doi.org/10.1088/0022-3727/45/15/154010
http://dx.doi.org/10.1063/1.3595945
http://dx.doi.org/10.1038/nature04233
http://www.ncbi.nlm.nih.gov/pubmed/16281030
http://dx.doi.org/10.1038/nphys2049
http://dx.doi.org/10.1021/nl301922d
http://dx.doi.org/10.1016/j.ssc.2008.02.024
http://dx.doi.org/10.1021/nn102519b
http://dx.doi.org/10.1143/JJAP.49.01AH03
http://dx.doi.org/10.1103/PhysRevB.83.205429


Appl. Sci. 2020, 10, 4350 30 of 32

106. Pradeepkumar, A.; Zielinski, M.; Bosi, M.; Verzellesi, G.; Gaskill, D.K.; Iacopi, F. Electrical leakage phenomenon
in heteroepitaxial cubic silicon carbide on silicon. J. Appl. Phys. 2018, 123, 215103. [CrossRef]

107. Pradeepkumar, A.; Mishra, N.; Kermany, A.R.; Boeckl, J.J.; Hellerstedt, J.; Fuhrer, M.S.; Iacopi, F. Catastrophic
degradation of the interface of epitaxial silicon carbide on silicon at high temperatures. Appl. Phys. Lett.
2016, 109, 011604. [CrossRef]

108. Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.; Blake, P.; Katsnelson, M.; Novoselov, K.S. Detection of
individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. [CrossRef]
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