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17 Abstract

18 The feasibility of a novel bioflocculant (GemFloc ) for membrane fouling mitigation 

19 in membrane bioreactor (MBR) was investigated during real municipal wastewater 

20 treatment. When compared to the conventional MBR (CMBR), suspended sludge in the 

21 MBR with GemFloc  (G-MBR) showed less soluble microbial products (SMP), higher 

22 ratios of proteins to polysaccharides in SMP (SMPP/SMPC) and loosely bound extracellular 

23 polymeric substances (LB-EPS). Adding GemFloc  also enlarged floc size (> 200 μm), 

24 and increased tightly bound EPS levels, zeta potential and relative hydrophobicity of sludge 

25 flocs, further reduced cake layer and pore blocking resistances. Moreover, more diverse 

26 microbial community and enrichment of fouling reduction microbes such as Arenimonas 
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27 and Flavihumibacter were observed in the G-MBR, together with less abundant microbes 

28 (e.g. Sphaerotilus and Povalibacter) which could aggravate membrane fouling. Therefore, 

29 GemFloc  has high capability in improving sludge characteristics, mitigating membrane 

30 fouling and increasing diversity of special functional bacterial community in MBR. 

31

32 Keywords: Submerged membrane bioreactor (MBR); Bioflocculant; Real wastewater 

33 treatment; Membrane fouling control; Microbial community

34

35 1. Introduction

36 Membrane bioreactor (MBR) has been popularly used for treatment and reclamation of 

37 various types of wastewater (e.g. municipal wastewater, industrial wastewater, domestic 

38 wastewater) since it possesses compact nature (less footprint), ensures high-quality effluent, 

39 has capability in resisting high organic loading, generates largely disinfected effluent, and 

40 limits sludge generation (Zhang et al., 2019). However, membrane fouling is the major 

41 obstacle inhibiting wide application of MBR. Therefore, it is necessary to develop effective 

42 strategy to alleviate membrane fouling.

43 Coagulation/flocculation as an effective treatment approach with various types of 

44 flocculants has been employed for membrane fouling mitigation in MBR. Inorganic 

45 flocculants, especially ferric based flocculants (e.g. FeCl3∙6H2O, Fe2(SO4)3·5H2O, 

46 FeClSO4, etc.), could enhance sludge filterability, reduce reversible fouling, and ameliorate 

47 irreversible fouling by removing soluble microbial products (SMP), leading to greater 

48 transmembrane pressure (TMP) decline (Gkotsis et al., 2017). Huang et al. (2019) explored 
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49 the feasibility of ferric hydroxide in membrane fouling mitigation in MBR during 

50 pharmaceutical wastewater treatment. After adding ferric hydroxide into MBR (Fe-MBR), 

51 the amount of larger biomass flocs increased through neutralizing negatively surface charge 

52 of activated sludge compared to a control MBR (co-MBR). The increase in bacterial 

53 activity and significant decline in relative abundance of bacteria contributing to biofilm 

54 formation (e.g. α-proteobacteria, β-proteobacteria, Flavobacteriia) reduced dissolved 

55 organic matters (DOMs) in SMP (e.g. dissolved organic carbon, carbohydrate, low 

56 molecular weight compounds and biopolymer). These effects effectively mitigated 

57 membrane fouling in the Fe-MBR (about 35% longer operational duration compared to the 

58 Co-MBR). On the other hand, organic flocculants (e.g. biopolymers, cationic polymers, 

59 etc.) can not only prolong filtration cycles, but also reduce inorganic elements (e.g. silicon, 

60 calcium, magnesium, aluminium, and iron) as well as concentrations of SMP, extracellular 

61 polymeric substances (EPS) and colloidal total organic carbon. These flocculants also 

62 enlarged mean floc size, which further increased impact resistance and enhanced floc’s 

63 adaptive capacity to changing environment, resulting in less SMP release (Alkmim et al., 

64 2015; Zhou et al., 2017a). 

65 Nevertheless, inorganic and organic flocculants can exert adverse impact on 

66 environment and human health, and may generate ‘secondary pollutants’ (e.g. metals, toxic 

67 sludge, acrylamide oligomers, etc.) during wastewater reclamation and reuse processes 

68 (Mateus et al., 2017). Therefore, bioflocculants or natural flocculants have been developed 

69 and used for fouling alleviation due to less ecological and health impact. Tan et al. (2017) 

70 employed salt-tolerant Arthrobacter as a kind of bioflocculants and slower membrane 

71 fouling development was observed in MBR when treating saline wastewater. The 
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72 bioflocculation by Arthrobacter not only facilitated the reduction of fouling-related 

73 components (e.g. EPS in sludge, SMP in supernatant solution), but also decreased the 

74 humic acid-like, fulvic acid-like and aromatic proteins components (large biomolecules). 

75 Modified starches (e.g. MGMS, CGMS) could remarkably reduce gel and cake resistances 

76 as well as concentrations of macromolecules with molecular weight (MW) ≥ 100 kDa in 

77 supernatant of MBR. Compared with MGMS, the addition of CGMS in MBR (CGMS-

78 MBR) generated larger-size sludge flocs with lower fractal dimension, thus increasing 

79 porosity of fouling layer. It also prompted detachment of flocs from membrane surface, 

80 leading to lower fouling rate in the CGMS-MBR (Ji et al., 2015). 

81 Our previous studies used a new green bioflocculant in MBR for synthetic domestic 

82 wastewater treatment. Compared to the conventional MBR, the bioflocculant could reduce 

83 energy consumption due to less backwash frequency, significantly alleviate membrane 

84 fouling (TMP increase of 2.5 kPa during 70 days of operation), improve sludge properties 

85 (e.g. less SMP, larger floc size, higher zeta potential, higher relative hydrophobicity) as 

86 well as limit cake layer formation and pore blocking (Deng et al., 2015; Ngo and Guo et al., 

87 2009). However, the application of bioflocculant in real wastewater treatment and the 

88 resulting changes in microbial community in activated sludge have yet to be explored. 

89 Hence, in this study, the performance of two lab-scale MBRs, one with the patented 

90 bioflocculant (GemFloc ) developed at University of Technology Sydney and the other 

91 without bioflocculant were compared for real municipal wastewater treatment during long-

92 term operation. More specifically, membrane fouling behaviors (TMP and fouling 

93 resistance) were evaluated together with sludge characteristics (including mixed liquor 
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94 suspended solids (MLSS), mixed liquor volatile suspended solids (MLVSS), zeta potential, 

95 relative hydrophobicity (RH), particle size distribution (PSD), EPS and SMP 

96 compositions). Given the important role of bacterial population in determining sludge 

97 characteristics and membrane fouling behaviors, this paper also analyzed microbial 

98 community structure in both MBRs.  

99

100 2. Materials and methods

101 2.1. Real wastewater

102 Real municipal wastewater taken from a local wastewater treatment plant (WWTP), 

103 Xian, China was employed as the feed for both MBRs in this study. The real wastewater 

104 contains CODCr of 400-560 mg/L, BOD5 of 198-236 mg/L, NH4-N of 26.8-37.2 mg/L, total 

105 nitrogen (TN) of 40.2-56.1 mg/L and total phosphorus (TP) of 8.63-11.91 mg/L with pH of 

106 7.52 ± 0.36. pH of MBRs was adjusted by NaHCO3 or H2SO4 to a constant value of 7.

107

108 2.2. Experimental set-up and operating conditions

109 Two lab-scale submerged MBRs with same effective working volume of 5 L, including 

110 MBR with GemFloc  addition (G-MBR) and conventional MBR (CMBR), were operated 

111 in parallel. The submerged hollow fiber membrane module in MBR was made of 

112 polyvinylidene fluoride (PVDF) membrane fibers (Tianjin Motimo Membrane Technology 

113 Co., Ltd.) with pore size of 0.03 μm and an effective surface area of 0.12 m2.  Activated 

114 sludge in both MBRs was collected from the WWTP and was acclimatized for more than 

115 two weeks using real wastewater before starting. Initial mixed liquor suspended sludge 

116 concentration was adjusted to around 5.0 g/L in both MBRs. During the experimental 

yviny

Ltd

allel. Th

yliden

GemFlo

e sub

le su

a

t-up a

bmerged

and oper

s ad

nd total ph

d by N

198

spho

s

236 mg/

n th

water trea

stud

me



6

117 period, sludge was not discharged to obtain infinite sludge retention time (SRT). 

118 GemFloc  dosage in the G-MBR was 0.5 g/d. The suction pump was employed to 

119 withdraw permeate from the membrane module at a constant filtration flux of 8 L/m2·h. 

120 Thus the hydraulic retention time (HRT) amounted to 5.21 h. An air diffuser placed below 

121 the membrane module was employed to supply aeration from an air compressor. The air 

122 flow rate was kept at 2.5 L/min. Periodical backwash at two times per day was adopted to 

123 physically clean membrane. When TMP reached above 35.0 kPa, off-line chemical 

124 membrane cleaning was conducted by immersing the membrane module in 0.8% (w/w) 

125 hydrochloric acid for 8 h, followed by 0.9% (w/w) sodium hypochlorite for 8 h and finally 

126 0.4% (w/w) sodium hydroxide for 8 h.  

127

128 2.3. Analysis methods

129 Measurements of MLSS and MLVSS were conducted according to the standard 

130 methods (APHA et al., 1998). The standard methods (APHA et al., 1998) were also 

131 adopted for determination of chemical oxygen demand (COD), ammonia (NH4-N), nitrite 

132 (NO2-N), nitrate (NO3-N) and phosphorus (PO4-P) concentrations of influent and effluent 

133 by employing a HACH DR6000 UV VIS spectrophotometer (HACH Co., USA). Sludge 

134 volume index (SVI) of suspended sludge was gauged in a 1000 mL graduated cylinder. 

135 Sludge samples were centrifuged at 3000 rpm for 30 min to obtain supernatant, which was 

136 centrifuged again and further filtered through 0.45 μm syringe filter. The final solution was 

137 collected as soluble microbial products (SMP) (Deng et al., 2015). According to Chen et al. 

138 (2017a), the sludge pellets in the centrifuge tube were re-suspended in 0.05% NaCl 
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139 solution, followed by being sonicated at 20 kHz for 2 min, shaken at 150 rpm for 10 min, 

140 sonicated again, and centrifuged at 8,000 g for 10 min to get the supernatant for loosely 

141 bound extracellular polymeric substances (LB-EPS). Extraction of supernatant for tightly 

142 bound extracellular polymeric substances (TB-EPS) was carried out by re-suspending 

143 sludge pellet left in the centrifuge tube in 0.05% NaCl solution, which was further 

144 sonicated at 20 kHz for 3 min, heated at 60 ºC for 30 min and centrifuged at 12,000 g for 20 

145 min to collect the supernatant. The aforementioned supernatants were filtered through 0.45 

146 μm syringe filter to obtain LB-EPS and TB-EPS. Proteins (LB-EPSP, TB-EPSP and SMPP) 

147 and polysaccharides (LB-EPSC, TB-EPSC and SMPC) in extracted samples were analysed 

148 by modified Lowery method (Sigma, Australia) and Anthrone-sulphuric acid method, 

149 respectively. Concentrations of proteins and polysaccharides were finally determined by the 

150 above-mentioned HACH spectrophotometer. A zeta potential meter (Zetasizer Nano ZS, 

151 Malvern Instrument, UK) was used for determining zeta potential of mixed liquor. The 

152 relative hydrophobicity (RH) of sludge flocs was analysed based on the protocol proposed 

153 by one of our previous studies (Deng et al., 2015). The determination of particle size 

154 distribution of sludge flocs was conducted using a laser granulometer (Mastersizer 2000, 

155 Malvern Instruments, UK). 

156 After terminating the experiment at TMP above 35 kPa, resistance-in-series model and 

157 Darcy’s equations were applied to determine membrane filtration characteristics (Choo and 

158 Lee, 1996):

159 J = P/μRT   (1)

160 RT = RM + RC + RP  (2)
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161 where J is the permeate flux, P is the TMP, μ is the viscosity of the permeate, RT is total 

162 resistance, RM is the intrinsic membrane resistance, RC is the cake resistance, and RP is the 

163 pore blocking resistance. 

164 The bacterial community structure of suspended sludge samples were analysed by 

165 Sangon Biotech in China using high-throughput sequencing. 

166

167 3. Results and discussion

168 3.1.  Organic and nutrient removals 

169 Both of the G-MBR and the CMBR showed good COD removal of 96.25 ± 7.81% and 

170 90.36 ± 8.36%, respectively, implying slightly enhanced organic matter removal by 

171 application of the bioflocculant. Although small difference in NH4-N removal was observed 

172 between the G-MBR (90.67 ± 6.82%) and the CMBR (85.72 ± 8.45%), the G-MBR 

173 demonstrated greater TN removal (80.36 ± 5.12%) compared to the CMBR (37.75 ± 

174 7.24%). It was ascribed to that the retention of nitrifying bacteria by the membrane in both 

175 MBRs led to high degree of biological nitrification. When compared with the CMBR, the 

176 presence of larger flocs in the G-MBR might facilitate the formation of anoxic/anerobic 

177 microenvironment at the inner layer of the flocs. Better TN removal in the G-MBR could 

178 be due to the occurrence of oxygen gradient inside these larger flocs (see Section 3.2) 

179 despite of high DO levels (5.0-7.0 mg/L). The addition of GemFloc  could also improve 

180 the accumulation of phosphorus accumulating organisms (PAOs) and biomass metabolism, 

181 which, in turn facilitated enhanced biological phosphorus removal, achieving better PO4-P 

182 removal in the G-MBR (93.61 ± 7.58%) compared to that for the CMBR (59.33 ± 8.96%). 
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183 More detailed analyses regarding microbial community structure contributing to organic 

184 and nutrient removals are presented in Section 3.4.

185

186 3.2.  Membrane fouling behaviors

187 During the entire study period, TMP of the CMBR exhibited a gradual increment from 

188 2.70 to 10.35 kPa within the first 21 days of operation followed by a sharp jump, reaching 

189 36.20 kPa on day 30 (Fig. 1). Compared to the CMBR, the G-MBR presented a slower 

190 TMP increase from 2.57 to 15.36 kPa before day 51. Subsequently, a remarkable TMP rise 

191 was observed and chemical cleaning was implemented until day 58 as TMP exceeded 35 

192 kPa (36.68 kPa). It could be inferred that the fouling rate for the CMBR (1.11 kPa/d) was 

193 almost two times higher than that for the G-MBR at 0.59 kPa/d. Hence, GemFloc  

194 addition significantly slowed down membrane fouling development, enhanced membrane 

195 permeability and extended the operational duration of MBR. 

196 Fig. 1.

197

198 At the end of experiment, fouling resistance distribution was obtained for both the G-

199 MBR and the CMBR (Table 1). The CMBR exhibited considerably higher total fouling 

200 resistance (RT) than the G-MBR (6.13 × 1012 and 3.73 × 1012 m-1, respectively). GemFloc  

201 addition significantly reduced cake layer resistance (RC) in the G-MBR by 46.78%, 

202 obtaining 2.40 × 1012 m-1. RC of both MBRs made a great contribution to RT, accounting for 

203 64.34% and 73.57% of RT for the G-MBR and the CMBR, respectively. Pore blocking 

204 resistance (RP) in the G-MBR (0.17 × 1012 m-1) was about one third of that for the CMBR 
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205 (0.46 × 1012 m-1). Thus GemFloc  could effectively retard cake layer formation and pore 

206 blocking, thus alleviating membrane fouling. 

207 Table 1.   

208

209 3.3.  Sludge properties

210 3.3.1. MLSS concentration

211 The G-MBR and CMBR possessed initial MLSS concentrations of 4.98 g/L and 5.06 

212 g/L, respectively. Since there was no sludge withdrawal during the experiment, continuous 

213 growth of suspended biomass occurred, finally reaching 11.62 g/L in the G-MBR on day 58 

214 and 11.05 g/L in the CMBR on day 30, which indicated that lower biomass growth rate 

215 ( MLSS/ t) was obtained due to GemFloc  addition (0.11 g/L·d) compared to that for the 

216 CMBR (0.19 g/L·d). The lower SVI of 71.88-129.89 mL/g for the G-MBR (91.54-151.82 

217 mL/g for the CMBR) also implied the denser and heavier settled sludge and better 

218 settleability of sludge. MLVSS concentrations ranged from 3.39 to 10.00 g/L and from 3.40 

219 to 8.21 g/L in the G-MBR and CMBR, respectively. The obtained higher MLVSS/MLSS 

220 ratio in the G-MBR in the range of 0.68-0.86 than that in the CMBR (0.67-0.74) might be 

221 owing to the presence of GemFloc  increased fraction of organic content and reduced 

222 biomass mineralization (Krzeminski et al., 2012).

223

224 3.3.2. Particle size distribution of biomass flocs

225 In the CMBR, sludge flocs showed a narrow particle size distribution from 0.4 to 600 

226 μm. The sludge flocs with size less than 150 μm and larger than 200 μm accounted for 
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227 about 64% and 21% of total sludge volume, respectively (Fig. 2). During the first 15-day 

228 operation, particle size distribution of sludge flocs in the G-MBR was in a wide range of 

229 0.4-1300 μm. Small flocs (< 150 μm) and larger flocs (> 200 μm) took 57% and 26% of 

230 total sludge volume, respectively. After that, sludge flocs in the G-MBR shifted towards a 

231 broader particle size distribution with median particle size larger than 200 μm (50% of total 

232 sludge volume) and smaller floc size < 150 μm (38% of total sludge volume). From day 50, 

233 the proportion of larger flocs declined but that of small flocs increased, as demonstrated by 

234 47% for flocs smaller than 150 μm and 39% for flocs larger 200 μm. Additionally, the floc 

235 size range was narrowed to 0.4-800 μm. The decrease in the proportions of large flocs but 

236 increase in percentages of small flocs in total sludge volume after 50 days was almost 

237 consistent with the trend of TMP development (TMP jump) in the G-MBR. It indicated that 

238 serious membrane fouling after 50 days could be partially explained by the increased 

239 amounts of small flocs. Nevertheless, the fraction of larger flocs was still higher in the G-

240 MBR than those for the CMBR throughout the whole experiment. 

241 Fig. 2.

242

243 As particle size of sludge flocs were at least ten times than that of the membrane pore 

244 size, the biomass floc size in this study might not be considered as the key factor 

245 contributing to pore blocking. Backtransport velocity of sludge flocs with smaller size was 

246 smaller due to lower physical forces on the particles (i.e. inertial lift), which increased 

247 amount of small flocs in the cake. This further reduced permeability and void fraction of 

248 cake layer (Ma et al., 2013). Thus greater proportion of smaller flocs in the CMBR 

249 accounted for the increased RC. On the other hand, GemFloc  showed its positive and 
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250 long-term effects on flocculation ability and aggregation of sludge flocs, which favored the 

251 formation of larger biomass flocs, leading to formation of more porous and higher 

252 permeable cake layer on membrane surface (Park et al., 2006). Consequently, RC was lower 

253 in the G-MBR than that in the CMBR. 

254 Compared to those in the CMBR (zeta potential of -18.6 mV – -15.1 mV, relative 

255 hydrophobicity (RH) of 32.36% – 42.76%), GemFloc  addition increased zeta potential (-

256 11.1 mV – -7.25 mV) by neutralizing or reducing negative surface charge of sludge flocs 

257 and enhanced sludge hydrophobicity by increasing RH (64.13% – 79.33%) of sludge flocs 

258 in the G-MBR. These effects increased flocculation ability of sludge flocs, which was 

259 associated with the enlarged floc size of suspended sludge in the G-MBR.

260

261 3.3.3. EPS and SMP compositions of suspended sludge

262 At relatively low TMP (< 16 kPa), the CMBR possessed higher levels of total SMP 

263 and polysaccharides in SMP (SMPC) (20.47-55.86 and 9.06-30.18 mg/L, respectively) 

264 compared to the G-MBR (14.82-44.09 and 5.33-17.36 mg/L, respectively), corresponding 

265 to lower ratios of proteins to polysaccharides (SMPP/SMPC) (0.76-1.59 in the CMBR and 

266 1.54-2.09 in the G-MBR) (Table 2). When membrane fouling became more serious (TMP 

267 16-37 kPa), total SMP remarkably increased in the CMBR (61.18-95.85 mg/L). 

268 Additionally, SMPC showed a notable ascending trend, reaching 32.39-53.67 mg/L. On the 

269 other hand, contents of SMP and SMPC in the G-MBR were lower at 53.12-62.98 and 

270 23.76-29.26 mg/L, respectively. Significantly declined SMPP/SMPC ratio was detected for 

271 the CMBR (0.79-0.89) when compared with that for the G-MBR (1.15-1.24). Greater levels 
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272 of SMP aggravated membrane fouling in the CMBR by encouraging membrane pore 

273 blocking, formation of gel layer with considerably high specific filtration resistance as well 

274 as penetration into spaces between particles and pores in cake layer. Moreover, as 

275 polysaccharides contribute to membrane fouling development (especially irreversible 

276 fouling) and gel layer formation on membrane surface (Deng et al., 2016), more serious 

277 membrane fouling, greater RP and RC in the CMBR could be partially ascribed to higher 

278 SMP levels and lower SMPP/SMPC ratio. 

279 Table 2. 

280

281 Compared to the G-MBR (LB-EPS of 43.80-123.72 mg/L and LB-EPSP/LB-EPSC of 

282 1.56-3.14 mg/L, respectively), higher concentrations of LB-EPS and lower ratio of proteins 

283 to polysaccharides in LB-EPS (LB-EPSP/LB-EPSC) were detected in the CMBR at different 

284 TMP ranges, corresponding to 62.69-180.84 and 0.89-2.06 mg/L, respectively. LB-EPS has 

285 highly hydrated matrix, possessing a dispersible and loose slime layer without an obvious 

286 edge. Thus the presence of LB-EPS at greater levels induced poor attachment between cells 

287 and floc structure, caused the production of highly porous sludge flocs at low density, and 

288 deteriorated sludge bioflocculation. This could give rise to poorer settleability of sludge 

289 flocs (higher SVI values), larger amount of fine particles and serious membrane fouling in 

290 the CMBR (Li and Yang, 2007). Hence higher RC and RP in the CMBR were also ascribed 

291 to higher LB-EPS levels.  

292 In the G-MBR, the greater LB-EPSP/LB-EPSC increased zeta potential and RH of 

293 sludge flocs as proteins provide the amino groups with positive charge and amino acids 

294 with hydrophobic side group, resulting in better flocculation ability of flocs and further 
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295 favored formation of bigger and more permeable flocs (Zhang et al., 2016). TB-EPS which 

296 attaches to peripheral capsules of cell surface favors the aggregation of cells in clusters. 

297 The increased TB-EPS levels of activated sludge helped agglomeration of sludge flocs by 

298 GemFloc  addition (85.37-121.93 mg/L for the G-MBR, 67.84-83.61 mg/L for the 

299 CMBR), which enlarged flocs in the G-MBR (Chen et al., 2017b). Furthermore, levels of 

300 proteins as major components of TB-EPS (TB-EPSP) were higher in suspended sludge of 

301 the G-MBR (54.11-78.26 mg/L) than those for the CMBR (45.36-59.51 mg/L). Proteins 

302 could keep bacterial cells together and maintain cell cohesion by forming an active gel-like 

303 matrix (Dogsa et al., 2005). Thus more TB-EPSP in activated sludge also facilitated the 

304 formation of larger flocs due to addition of GemFloc . In the G-MBR, higher LB-

305 EPSP/LB-EPSC ratio and TB-EPSP levels were responsible for the formation of larger flocs.

306

307 3.4.  Microbial community structure at genus level

308 3.4.1. Microbial community structure contributing to organic and nutrient removals

309 Higher proportion of Phaeodactylibacter was found in the G-MBR (1.27-3.01%) than 

310 that in the CMBR (< 1.21%), which might help to improve organic matter removal by 

311 application of GemFloc  throughout the entire experimental period (Xu et al., 2018). 

312 During TMP development in the range of 10-16 kPa, both of the G-MBR and CMBR 

313 possessed high relative abundance of nitrifying bacteria, including Nitrosomonas (10.88% 

314 and 9.54%, respectively) and Nitrospira (5.19% and 4.12%, respectively). More abundant 

315 denitrifying bacteria (7.92% for Defluviimonas, 4.98% for Pseudolabrys) and PAOs (1.46% 

316 for Gemmatimonas) were found due to GemFloc  addition compared to that in the CMBR 
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317 (3.52%, 1.32%, and 0.76%, respectively). When TMP reached above 35 kPa, greater 

318 abundance of nitrifying bacteria and PAOs were also found in the G-MBR compared to the 

319 CMBR (8.36% vs 4.88% for Nitrosomonas, 3.27% vs 2.36% for Nitrospira, 3.55% vs 

320 0.97% for Gemmatimonas). The declined ratios of Nitrosomonas and Nitrospira might be 

321 mainly ascribed to that the increase in diversity of microbial population decreased the 

322 proportion of nitrifying bacteria in total microbial population. These results could explain 

323 better nitrogen and phosphorus removal achieved by GemFloc  addition (Miao et al., 

324 2015; Zhang et al., 2003; Zhou et al., 2017b). 

325

326 3.4.2. Microbial community structure contributing to membrane fouling

327 Microbial community structure in the CMBR and G-MBR regarding the 

328 microorganisms associated with membrane fouling and sludge characteristics are displayed 

329 in Figs. 3 and 4. In the CMBR, majority of microbial population was associated with 

330 serious membrane fouling and poor sludge properties. At low TMP (10-16 kPa), great 

331 abundance of Haliscomenobacter (as one kind of filamentous bacteria, 7.50%) and 

332 Hyphomicrobium (8.56%) deteriorated sludge settleability and compaction, which might be 

333 responsible for the increase of SVI (Gu et al., 2018; Layton et al., 2000). The abundant of 

334 another filamentous microbe, namely Thiothrix (8.18%), indicated the generation of 

335 extracellular polymers (e.g. LB-EPS) and further aggravated membrane fouling (Gao et al., 

336 2014). More LB-EPSC and more serious membrane fouling could be associated with high 

337 abundance of Bradyrhizobium (3.62%) which could secrete extracellular polysaccharides 

338 (Friha et al., 2014). Novosphingobium is normally found in biocake or biofilm and 
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339 Chryseolinea can induce membrane fouling by fermentation of polysaccharides (Matar et 

340 al., 2017; Xu et al., 2018). Hence the enrichment of Novosphingobium (6.56%) and 

341 Chryseolinea (5.42%) might be partially relevant to membrane fouling. On the other hand, 

342 the microorganisms which are able to degrade membrane fouling-induced substances (e.g. 

343 polysaccharides (SMPC and LB-EPSC), proteins (SMPP and LB-EPSP)) and mitigate 

344 membrane fouling were detected at low levels (< 1.60%), including Reyranella, 

345 Thermogutta, Tepidisphaera and Comamonas, except for Pirellula at 2.74% and Kofleria at 

346 3.48% (Inaba et al., 2018; Lang et al., 2014; Liu et al., 2018; Peng et al., 2019; Zheng et al., 

347 2019; Zhou et al., 2017b; Zhu et al., 2017). When TMP reached above 35 kPa, serious 

348 membrane fouling in the CMBR could be induced by the enrichment of filamentous 

349 bacteria such as Sphaerotilus, Thiothrix and Haliscomenobacter at 8.95%, 8.28% and 

350 8.16%, respectively. Sphaerotilus enables production of large assemblage and more EPS, 

351 thus facilitating colonization and biofilm formation on membrane surface (Peng et al., 

352 2019). Moreover, Thiothrix and Haliscomenobacter also favor generation of extracellular 

353 polymers (i.e. LB-EPS) and negatively influence sludge settleability (Gao et al., 2014; Gu 

354 et al., 2018). In addition, the presence of high levels of Novosphingobium, Povalibacter and 

355 Chryseolinea (7.78%, 6.82% and 6.23%, respectively) might also aggravate membrane 

356 fouling (Choi et al., 2017; Matar et al., 2017; Xu et al., 2018). Furthermore, Acinetobacter, 

357 which is related to the production of extracellular polysaccharides (SMPC and LB-EPSC) 

358 (Abdel-El-Haleem et al., 2003), was detected at 6.54% at the end of the experiment. Thus 

359 membrane fouling was more severe for the CMBR. 

360 Fig. 3
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362

363 GemFloc  addition could enhance the variety of microbial community structure which 

364 helped to improve sludge properties and reduce membrane fouling in the G-MBR. The 

365 presence of Terrimonas positively affects flocculation performance of suspended sludge 

366 and promotes aggregation of sludge flocs by secreting extracellular polymers with 

367 hydrophobic components (Zhao et al., 2019). Thauera favors EPS generation, especially 

368 proteins as hydrophobic components contributing to cell aggregation and floc formation 

369 (Dong et al., 2017; Zhang et al., 2018).  When TMP was low at 10-16 kPa, great abundance 

370 of Terrimonas and Thauera (4.76% and 4.34%, respectively) might contribute to better 

371 flocculation ability and aggregation of sludge flocs through generating more TB-EPSP.  

372 Kofleria (7.72%), Pirellula (5.65%), Reyranella (4.14%), Thermogutta (2.16%) and 

373 Tepidisphaera (1.63%) were also responsible for reduced proteins (SMPP and LB-EPSP) 

374 and polysaccharides (SMPC and LB-EPSC). The high hydrophobicity of sludge flocs might 

375 be ascribed to the high presence of Pseudomonas and Rhodobacter (2.74% and 1.41%, 

376 respectively) (Chao et al., 2014; Sutherland et al., 2001). After terminating the experiment 

377 (TMP > 35 kPa), the abundance of Kofleria increased (8.22%), which could explain the 

378 evidently less SMPC and LB-EPSC, while high levels of Reyranella (4.75%) and Pirellula 

379 (4.32%) led to less SMPC, SMPP, LB-EPSC and LB-EPSP. In addition, the proportion of 

380 Flavihumibacter at 4.16% resulted in larger size of sludge flocs via providing structural 

381 network during the experiment (Luo et al., 2015). Nevertheless, the decline in Terrimonas 

382 (4.40%) and Thauera (4.26%) might deteriorate flocculation and aggregation ability of 

383 suspended sludge to some extent. The microorganisms contained greater abundance of 
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384 Thermogutta (4.03%), which might potentially induce more accumulation of SMPC and 

385 LB-EPSC. Overall, the abundant Terrimonas, Thauera and Thermogutta were the main 

386 contributor to aggravated membrane fouling in the G-MBR. 

387 Compared to the CMBR, the G-MBR contained more abundant bacterial population 

388 giving rise to better sludge properties and membrane permeability but less microorganisms 

389 aggravating membrane fouling. Additionally, more diverse microbial communities were 

390 found in the G-MBR than those in the CMBR, especially at high TMP (> 35 kPa), which 

391 also favored fouling control. As an aerobic bacterium, Arenimonas can also degrade various 

392 sugars and amino acids (Cui et al., 2019). Hence, the presence of Flavihumibacter, 

393 Reyranella, Pirellula, Thauera, Thermogutta, Arenimonas, Rhodobacter, Comamonas and 

394 Pseudomonas in the G-MBR (1.87%-4.75%) was associated with the enhanced sludge 

395 properties (i.e. less proteins and polysaccharides, higher hydrophobicity, better sludge 

396 aggregation). On the other hand, genera Povalibacter, Acinetobacter and Chryseolinea 

397 were only detected in the CMBR at great abundance (6.23%-6.82%), which were closely 

398 linked with the accumulation of SMPC and LB-EPSC and further serious membrane fouling. 

399

400 4. Conclusions

401 The effectiveness of GemFloc  on membrane fouling reduction in MBR was 

402 evaluated for real municipal wastewater treatment. Compared to the CMBR, GemFloc  

403 could alleviate membrane fouling, reduce SMP and LB-EPS, increase ratio of SMPP/SMPC 

404 and LB-EPSP/LB-EPSC, enlarge floc size, and increase TB-EPSP, zeta potential and RH, 

405 thus decreasing RC and RP. Moreover, GemFloc  addition induced higher diversity of 
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406 microbial community and greater abundance of special functional microorganisms (e.g. 

407 Arenimonas, Flavihumibacter), which enhanced sludge properties and alleviated membrane 

408 fouling. Thus GemFloc  could be a promising novel bioflocculant to control membrane 

409 fouling. 

410

411 Appendix A. Supplementary data

412 E-supplementary data associated with this article can be found in the online version. 
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Table titles

Table 1. Fouling resistance distribution in the G-MBR and the CMBR

Table 2. SMP compositions, SMP concentrations, LB-EPS compositions and LB-EPS 

concentrations in the G-MBR and the CMBR at different TMP ranges

Table 1. Fouling resistance distribution in the G-MBR and the CMBR

G-MBR CMBRResistance 
distribution m-1 % of RT m-1 % of RT

Total, RT 3.73 × 1012 6.13 × 1012

Cake layer, RC 2.40 × 1012 64.34 4.51 × 1012 73.57
Pore blocking, RP 0.17 × 1012 4.56 0.46 × 1012 7.50
Clean membrane, 
RM

1.16 × 1012 31.10 1.16 × 1012 18.921.16

46 ×

× 1012

× 1
012

% of R
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Figure captions

Fig. 1. TMP profiles for the G-MBR and the CMBR

Fig. 2. Particle size distribution as particle volume fractions for the G-MBR (a) and the CMBR 

(b)

Fig. 3. The abundance of the major bacterial genera (top 30 most relative abundances in 

activated sludge of the G-MBR and the CMBR) at low TMP (< 10-16 kPa) 

Fig. 4. The abundance of the major bacterial genera (top 35 most relative abundances in 

activated sludge of the G-MBR and the CMBR) at high TMP (> 35 kPa)5 kPPa)

bundance
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024681012 Relative abundance (%)
G

-M
B

R
C

-M
B
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0246810 Concentration (%)
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B

R
C
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