1	Application of a specific membrane fouling control enhancer in
2	membrane bioreactor for real municipal wastewater treatment: Sludge
3	characteristics and microbial community
4	
5	Lijuan Deng ^a , Wenshan Guo ^{a,*} , Huu Hao Ngo ^{a,c} , Xiaochang C. Wang ^{b,c} , Yisong Hu ^{b,c} ,
6	Rong Chen ^b , Dongle Cheng ^a , Shengquan Guo ^b , Yunyang Cao ^b
7 8 9 10 11 12 13 14 15 1	 ^a Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia ^b Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, P.R. China ^c International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, P.R. China *Corresponding author, Email: wguo@uts.edu.au (W. Guo); Tel: +61 2 95142739
16 17	Abstract
18	The feasibility of a novel bioflocculant (GemFloc™) for membrane fouling mitigation
19	in membrane bioreactor (MBR) was investigated during real municipal wastewater
20	treatment. When compared to the conventional MBR (CMBR), suspended sludge in the
21	MBR with GemFloc [™] (G-MBR) showed less soluble microbial products (SMP), higher
22	ratios of proteins to polysaccharides in SMP (SMP_P/SMP_C) and loosely bound extracellular
23	polymeric substances (LB-EPS). Adding GemFloc [™] also enlarged floc size (> 200 µm),
24	and increased tightly bound EPS levels, zeta potential and relative hydrophobicity of sludge
25	flocs, further reduced cake layer and pore blocking resistances. Moreover, more diverse
26	microbial community and enrichment of fouling reduction microbes such as Arenimonas

and Flavihumibacter were observed in the G-MBR, together with less abundant microbes
(e.g. Sphaerotilus and Povalibacter) which could aggravate membrane fouling. Therefore,
GemFloc™ has high capability in improving sludge characteristics, mitigating membrane
fouling and increasing diversity of special functional bacterial community in MBR.
Keywords: Submerged membrane bioreactor (MBR); Bioflocculant; Real wastewater
treatment; Membrane fouling control; Microbial community
1. Introduction
Membrane bioreactor (MBR) has been popularly used for treatment and reclamation of
various types of wastewater (e.g. municipal wastewater, industrial wastewater, domestic
wastewater) since it possesses compact nature (less footprint), ensures high-quality effluent,
has capability in resisting high organic loading, generates largely disinfected effluent, and
limits sludge generation (Zhang et al., 2019). However, membrane fouling is the major
obstacle inhibiting wide application of MBR. Therefore, it is necessary to develop effective
strategy to alleviate membrane fouling.
Coagulation/flocculation as an effective treatment approach with various types of
flocculants has been employed for membrane fouling mitigation in MBR. Inorganic
flocculants, especially ferric based flocculants (e.g. FeCl ₃ ·6H ₂ O, Fe ₂ (SO ₄) ₃ ·5H ₂ O,
FeClSO ₄ , etc.), could enhance sludge filterability, reduce reversible fouling, and ameliorate
irreversible fouling by removing soluble microbial products (SMP), leading to greater
transmembrane pressure (TMP) decline (Gkotsis et al., 2017). Huang et al. (2019) explored

49	the feasibility of ferric hydroxide in membrane fouling mitigation in MBR during
50	pharmaceutical wastewater treatment. After adding ferric hydroxide into MBR (Fe-MBR),
51	the amount of larger biomass flocs increased through neutralizing negatively surface charge
52	of activated sludge compared to a control MBR (co-MBR). The increase in bacterial
53	activity and significant decline in relative abundance of bacteria contributing to biofilm
54	formation (e.g. α -proteobacteria, β -proteobacteria, Flavobacteriia) reduced dissolved
55	organic matters (DOMs) in SMP (e.g. dissolved organic carbon, carbohydrate, low
56	molecular weight compounds and biopolymer). These effects effectively mitigated
57	membrane fouling in the Fe-MBR (about 35% longer operational duration compared to the
58	Co-MBR). On the other hand, organic flocculants (e.g. biopolymers, cationic polymers,
59	etc.) can not only prolong filtration cycles, but also reduce inorganic elements (e.g. silicon,
60	calcium, magnesium, aluminium, and iron) as well as concentrations of SMP, extracellular
61	polymeric substances (EPS) and colloidal total organic carbon. These flocculants also
62	enlarged mean floc size, which further increased impact resistance and enhanced floc's
63	adaptive capacity to changing environment, resulting in less SMP release (Alkmim et al.,
64	2015; Zhou et al., 2017a).
65	Nevertheless, inorganic and organic flocculants can exert adverse impact on

65 Average of the second and organic for the environment and human health, and may generate 'secondary pollutants' (e.g. metals, toxic
67 sludge, acrylamide oligomers, etc.) during wastewater reclamation and reuse processes
68 (Mateus et al., 2017). Therefore, bioflocculants or natural flocculants have been developed
69 and used for fouling alleviation due to less ecological and health impact. Tan et al. (2017)
70 employed salt-tolerant *Arthrobacter* as a kind of bioflocculants and slower membrane
71 fouling development was observed in MBR when treating saline wastewater. The

72	bioflocculation by Arthrobacter not only facilitated the reduction of fouling-related
73	components (e.g. EPS in sludge, SMP in supernatant solution), but also decreased the
74	humic acid-like, fulvic acid-like and aromatic proteins components (large biomolecules).
75	Modified starches (e.g. MGMS, CGMS) could remarkably reduce gel and cake resistances
76	as well as concentrations of macromolecules with molecular weight (MW) \ge 100 kDa in
77	supernatant of MBR. Compared with MGMS, the addition of CGMS in MBR (CGMS-
78	MBR) generated larger-size sludge flocs with lower fractal dimension, thus increasing
79	porosity of fouling layer. It also prompted detachment of flocs from membrane surface,
80	leading to lower fouling rate in the CGMS-MBR (Ji et al., 2015).
81	Our previous studies used a new green bioflocculant in MBR for synthetic domestic
82	wastewater treatment. Compared to the conventional MBR, the bioflocculant could reduce
83	energy consumption due to less backwash frequency, significantly alleviate membrane
84	fouling (TMP increase of 2.5 kPa during 70 days of operation), improve sludge properties
85	(e.g. less SMP, larger floc size, higher zeta potential, higher relative hydrophobicity) as
86	well as limit cake layer formation and pore blocking (Deng et al., 2015; Ngo and Guo et al.,
87	2009). However, the application of bioflocculant in real wastewater treatment and the
88	resulting changes in microbial community in activated sludge have yet to be explored.
89	Hence, in this study, the performance of two lab-scale MBRs, one with the patented
90	bioflocculant (GemFloc [™]) developed at University of Technology Sydney and the other
91	without bioflocculant were compared for real municipal wastewater treatment during long-
92	term operation. More specifically, membrane fouling behaviors (TMP and fouling
93	resistance) were evaluated together with sludge characteristics (including mixed liquor

94	suspended solids (MLSS), mixed liquor volatile suspended solids (MLVSS), zeta potential,
95	relative hydrophobicity (RH), particle size distribution (PSD), EPS and SMP
96	compositions). Given the important role of bacterial population in determining sludge
97	characteristics and membrane fouling behaviors, this paper also analyzed microbial
98	community structure in both MBRs.
99	
100	2. Materials and methods
101	2.1. Real wastewater
102	Real municipal wastewater taken from a local wastewater treatment plant (WWTP),
103	Xian, China was employed as the feed for both MBRs in this study. The real wastewater
104	contains COD_{Cr} of 400-560 mg/L, BOD ₅ of 198-236 mg/L, NH ₄ -N of 26.8-37.2 mg/L, total
105	nitrogen (TN) of 40.2-56.1 mg/L and total phosphorus (TP) of 8.63-11.91 mg/L with pH of
106	7.52 ± 0.36 . pH of MBRs was adjusted by NaHCO ₃ or H ₂ SO ₄ to a constant value of 7.
107	
108	2.2. Experimental set-up and operating conditions
109	Two lab-scale submerged MBRs with same effective working volume of 5 L, including
110	MBR with GemFloc [™] addition (G-MBR) and conventional MBR (CMBR), were operated
111	in parallel. The submerged hollow fiber membrane module in MBR was made of
112	polyvinylidene fluoride (PVDF) membrane fibers (Tianjin Motimo Membrane Technology
113	Co., Ltd.) with pore size of 0.03 μ m and an effective surface area of 0.12 m ² . Activated
114	sludge in both MBRs was collected from the WWTP and was acclimatized for more than
115	two weeks using real wastewater before starting. Initial mixed liquor suspended sludge
116	concentration was adjusted to around 5.0 g/L in both MBRs. During the experimental

117	period, sludge was not discharged to obtain infinite sludge retention time (SRT).
118	GemFloc [™] dosage in the G-MBR was 0.5 g/d. The suction pump was employed to
119	with draw permeate from the membrane module at a constant filtration flux of 8 L/m ² ·h.
120	Thus the hydraulic retention time (HRT) amounted to 5.21 h. An air diffuser placed below
121	the membrane module was employed to supply aeration from an air compressor. The air
122	flow rate was kept at 2.5 L/min. Periodical backwash at two times per day was adopted to
123	physically clean membrane. When TMP reached above 35.0 kPa, off-line chemical
124	membrane cleaning was conducted by immersing the membrane module in 0.8% (w/w)
125	hydrochloric acid for 8 h, followed by 0.9% (w/w) sodium hypochlorite for 8 h and finally
126	0.4% (w/w) sodium hydroxide for 8 h.
127	
128	2.3. Analysis mothods
120	2.5. Analysis methods
120	Measurements of MLSS and MLVSS were conducted according to the standard
129 130	2.5. Analysis methods Measurements of MLSS and MLVSS were conducted according to the standard methods (APHA et al., 1998). The standard methods (APHA et al., 1998) were also
120 129 130 131	Measurements of MLSS and MLVSS were conducted according to the standard methods (APHA et al., 1998). The standard methods (APHA et al., 1998) were also adopted for determination of chemical oxygen demand (COD), ammonia (NH ₄ -N), nitrite
129 130 131 132	Measurements of MLSS and MLVSS were conducted according to the standard methods (APHA et al., 1998). The standard methods (APHA et al., 1998) were also adopted for determination of chemical oxygen demand (COD), ammonia (NH ₄ -N), nitrite (NO ₂ -N), nitrate (NO ₃ -N) and phosphorus (PO ₄ -P) concentrations of influent and effluent
129 130 131 132 133	Measurements of MLSS and MLVSS were conducted according to the standard methods (APHA et al., 1998). The standard methods (APHA et al., 1998) were also adopted for determination of chemical oxygen demand (COD), ammonia (NH ₄ -N), nitrite (NO ₂ -N), nitrate (NO ₃ -N) and phosphorus (PO ₄ -P) concentrations of influent and effluent by employing a HACH DR6000 UV VIS spectrophotometer (HACH Co., USA). Sludge
 129 130 131 132 133 134 	Measurements of MLSS and MLVSS were conducted according to the standard methods (APHA et al., 1998). The standard methods (APHA et al., 1998) were also adopted for determination of chemical oxygen demand (COD), ammonia (NH ₄ -N), nitrite (NO ₂ -N), nitrate (NO ₃ -N) and phosphorus (PO ₄ -P) concentrations of influent and effluent by employing a HACH DR6000 UV VIS spectrophotometer (HACH Co., USA). Sludge volume index (SVI) of suspended sludge was gauged in a 1000 mL graduated cylinder.
 123 129 130 131 132 133 134 135 	Measurements of MLSS and MLVSS were conducted according to the standard methods (APHA et al., 1998). The standard methods (APHA et al., 1998) were also adopted for determination of chemical oxygen demand (COD), ammonia (NH ₄ -N), nitrite (NO ₂ -N), nitrate (NO ₃ -N) and phosphorus (PO ₄ -P) concentrations of influent and effluent by employing a HACH DR6000 UV VIS spectrophotometer (HACH Co., USA). Sludge volume index (SVI) of suspended sludge was gauged in a 1000 mL graduated cylinder. Sludge samples were centrifuged at 3000 rpm for 30 min to obtain supernatant, which was
 123 129 130 131 132 133 134 135 136 	Measurements of MLSS and MLVSS were conducted according to the standard methods (APHA et al., 1998). The standard methods (APHA et al., 1998) were also adopted for determination of chemical oxygen demand (COD), ammonia (NH ₄ -N), nitrite (NO ₂ -N), nitrate (NO ₃ -N) and phosphorus (PO ₄ -P) concentrations of influent and effluent by employing a HACH DR6000 UV VIS spectrophotometer (HACH Co., USA). Sludge volume index (SVI) of suspended sludge was gauged in a 1000 mL graduated cylinder. Sludge samples were centrifuged at 3000 rpm for 30 min to obtain supernatant, which was centrifuged again and further filtered through 0.45 μm syringe filter. The final solution was
 129 129 130 131 132 133 134 135 136 137 	Measurements of MLSS and MLVSS were conducted according to the standard methods (APHA et al., 1998). The standard methods (APHA et al., 1998) were also adopted for determination of chemical oxygen demand (COD), ammonia (NH ₄ -N), nitrite (NO ₂ -N), nitrate (NO ₃ -N) and phosphorus (PO ₄ -P) concentrations of influent and effluent by employing a HACH DR6000 UV VIS spectrophotometer (HACH Co., USA). Sludge volume index (SVI) of suspended sludge was gauged in a 1000 mL graduated cylinder. Sludge samples were centrifuged at 3000 rpm for 30 min to obtain supernatant, which was centrifuged again and further filtered through 0.45 µm syringe filter. The final solution was collected as soluble microbial products (SMP) (Deng et al., 2015). According to Chen et al.

139	solution, followed by being sonicated at 20 kHz for 2 min, shaken at 150 rpm for 10 min,
140	sonicated again, and centrifuged at $8,000 g$ for 10 min to get the supernatant for loosely
141	bound extracellular polymeric substances (LB-EPS). Extraction of supernatant for tightly
142	bound extracellular polymeric substances (TB-EPS) was carried out by re-suspending
143	sludge pellet left in the centrifuge tube in 0.05% NaCl solution, which was further
144	sonicated at 20 kHz for 3 min, heated at 60 °C for 30 min and centrifuged at 12,000 g for 20
145	min to collect the supernatant. The aforementioned supernatants were filtered through 0.45
146	μ m syringe filter to obtain LB-EPS and TB-EPS. Proteins (LB-EPS _P , TB-EPS _P and SMP _P)
147	and polysaccharides (LB-EPS _C , TB-EPS _C and SMP _C) in extracted samples were analysed
148	by modified Lowery method (Sigma, Australia) and Anthrone-sulphuric acid method,
149	respectively. Concentrations of proteins and polysaccharides were finally determined by the
150	above-mentioned HACH spectrophotometer. A zeta potential meter (Zetasizer Nano ZS,
151	Malvern Instrument, UK) was used for determining zeta potential of mixed liquor. The
152	relative hydrophobicity (RH) of sludge flocs was analysed based on the protocol proposed
153	by one of our previous studies (Deng et al., 2015). The determination of particle size
154	distribution of sludge flocs was conducted using a laser granulometer (Mastersizer 2000,
155	Malvern Instruments, UK).
156	After terminating the experiment at TMP above 35 kPa, resistance-in-series model and

157 Darcy's equations were applied to determine membrane filtration characteristics (Choo and158 Lee, 1996):

- 159 $J = \Delta P / \mu R_T \quad (1)$
- 160 $R_T = R_M + R_C + R_P$ (2)

161	where J is the permeate flux, ΔP is the TMP, μ is the viscosity of the permeate, R_T is total
162	resistance, R_M is the intrinsic membrane resistance, R_C is the cake resistance, and R_P is the
163	pore blocking resistance.
164	The bacterial community structure of suspended sludge samples were analysed by
165	Sangon Biotech in China using high-throughput sequencing.
166	
167	3. Results and discussion
168	3.1. Organic and nutrient removals
169	Both of the G-MBR and the CMBR showed good COD removal of $96.25 \pm 7.81\%$ and
170	$90.36 \pm 8.36\%$, respectively, implying slightly enhanced organic matter removal by
171	application of the bioflocculant. Although small difference in NH ₄ -N removal was observed
172	between the G-MBR (90.67 \pm 6.82%) and the CMBR (85.72 \pm 8.45%), the G-MBR
173	demonstrated greater TN removal (80.36 \pm 5.12%) compared to the CMBR (37.75 \pm
174	7.24%). It was ascribed to that the retention of nitrifying bacteria by the membrane in both
175	MBRs led to high degree of biological nitrification. When compared with the CMBR, the
176	presence of larger flocs in the G-MBR might facilitate the formation of anoxic/anerobic
177	microenvironment at the inner layer of the flocs. Better TN removal in the G-MBR could
178	be due to the occurrence of oxygen gradient inside these larger flocs (see Section 3.2)
179	despite of high DO levels (5.0-7.0 mg/L). The addition of GemFloc™ could also improve
180	the accumulation of phosphorus accumulating organisms (PAOs) and biomass metabolism,
181	which, in turn facilitated enhanced biological phosphorus removal, achieving better PO ₄ -P
182	removal in the G-MBR (93.61 \pm 7.58%) compared to that for the CMBR (59.33 \pm 8.96%).

183 More detailed analyses regarding microbial community structure contributing to organic184 and nutrient removals are presented in Section 3.4.

185

186

3.2. Membrane fouling behaviors

187 During the entire study period, TMP of the CMBR exhibited a gradual increment from

188 2.70 to 10.35 kPa within the first 21 days of operation followed by a sharp jump, reaching

189 36.20 kPa on day 30 (Fig. 1). Compared to the CMBR, the G-MBR presented a slower

190 TMP increase from 2.57 to 15.36 kPa before day 51. Subsequently, a remarkable TMP rise

191 was observed and chemical cleaning was implemented until day 58 as TMP exceeded 35

192 kPa (36.68 kPa). It could be inferred that the fouling rate for the CMBR (1.11 kPa/d) was

almost two times higher than that for the G-MBR at 0.59 kPa/d. Hence, GemFloc™

194 addition significantly slowed down membrane fouling development, enhanced membrane

195 permeability and extended the operational duration of MBR.

196 **Fig. 1.**

197

198 At the end of experiment, fouling resistance distribution was obtained for both the G-

199 MBR and the CMBR (Table 1). The CMBR exhibited considerably higher total fouling

200 resistance (R_T) than the G-MBR (6.13×10^{12} and 3.73×10^{12} m⁻¹, respectively). GemFlocTM

addition significantly reduced cake layer resistance (R_c) in the G-MBR by 46.78%,

obtaining 2.40×10^{12} m⁻¹. R_C of both MBRs made a great contribution to R_T, accounting for

203 64.34% and 73.57% of R_T for the G-MBR and the CMBR, respectively. Pore blocking

204 resistance (R_P) in the G-MBR ($0.17 \times 10^{12} \text{ m}^{-1}$) was about one third of that for the CMBR

205 (0.46 × 10¹² m⁻¹). Thus GemFloc[™] could effectively retard cake layer formation and pore
206 blocking, thus alleviating membrane fouling.

207 **Table 1.**

208

- 209 **3.3.** Sludge properties
- 210 **3.3.1. MLSS concentration**

The G-MBR and CMBR possessed initial MLSS concentrations of 4.98 g/L and 5.06 211 212 g/L, respectively. Since there was no sludge withdrawal during the experiment, continuous 213 growth of suspended biomass occurred, finally reaching 11.62 g/L in the G-MBR on day 58 214 and 11.05 g/L in the CMBR on day 30, which indicated that lower biomass growth rate $(\Delta MLSS/\Delta t)$ was obtained due to GemFlocTM addition (0.11 g/L·d) compared to that for the 215 CMBR (0.19 g/L·d). The lower SVI of 71.88-129.89 mL/g for the G-MBR (91.54-151.82 216 217 mL/g for the CMBR) also implied the denser and heavier settled sludge and better 218 settleability of sludge. MLVSS concentrations ranged from 3.39 to 10.00 g/L and from 3.40 219 to 8.21 g/L in the G-MBR and CMBR, respectively. The obtained higher MLVSS/MLSS 220 ratio in the G-MBR in the range of 0.68-0.86 than that in the CMBR (0.67-0.74) might be 221 owing to the presence of GemFloc™ increased fraction of organic content and reduced 222 biomass mineralization (Krzeminski et al., 2012). 223

224 **3.3.2.** Particle size distribution of biomass flocs

In the CMBR, sludge flocs showed a narrow particle size distribution from 0.4 to 600
 μm. The sludge flocs with size less than 150 μm and larger than 200 μm accounted for

227	about 64% and 21% of total sludge volume, respectively (Fig. 2). During the first 15-day
228	operation, particle size distribution of sludge flocs in the G-MBR was in a wide range of
229	0.4-1300 $\mu m.$ Small flocs (< 150 $\mu m)$ and larger flocs (> 200 $\mu m)$ took 57% and 26% of
230	total sludge volume, respectively. After that, sludge flocs in the G-MBR shifted towards a
231	broader particle size distribution with median particle size larger than 200 μ m (50% of total
232	sludge volume) and smaller floc size $< 150 \ \mu m$ (38% of total sludge volume). From day 50,
233	the proportion of larger flocs declined but that of small flocs increased, as demonstrated by
234	47% for flocs smaller than 150 μm and 39% for flocs larger 200 $\mu m.$ Additionally, the floc
235	size range was narrowed to 0.4-800 μ m. The decrease in the proportions of large flocs but
236	increase in percentages of small flocs in total sludge volume after 50 days was almost
237	consistent with the trend of TMP development (TMP jump) in the G-MBR. It indicated that
238	serious membrane fouling after 50 days could be partially explained by the increased
239	amounts of small flocs. Nevertheless, the fraction of larger flocs was still higher in the G-
240	MBR than those for the CMBR throughout the whole experiment.

241 **Fig. 2.**

242

As particle size of sludge flocs were at least ten times than that of the membrane pore size, the biomass floc size in this study might not be considered as the key factor contributing to pore blocking. Backtransport velocity of sludge flocs with smaller size was smaller due to lower physical forces on the particles (i.e. inertial lift), which increased amount of small flocs in the cake. This further reduced permeability and void fraction of cake layer (Ma et al., 2013). Thus greater proportion of smaller flocs in the CMBR accounted for the increased R_{c} . On the other hand, GemFlocTM showed its positive and

250	long-term effects on flocculation ability and aggregation of sludge flocs, which favored the
251	formation of larger biomass flocs, leading to formation of more porous and higher
252	permeable cake layer on membrane surface (Park et al., 2006). Consequently, R_C was lower
253	in the G-MBR than that in the CMBR.
254	Compared to those in the CMBR (zeta potential of -18.6 mV – -15.1 mV, relative
255	hydrophobicity (RH) of 32.36% – 42.76%), GemFloc™ addition increased zeta potential (-
256	11.1 mV – -7.25 mV) by neutralizing or reducing negative surface charge of sludge flocs
257	and enhanced sludge hydrophobicity by increasing RH (64.13% – 79.33%) of sludge flocs
258	in the G-MBR. These effects increased flocculation ability of sludge flocs, which was
259	associated with the enlarged floc size of suspended sludge in the G-MBR.
260	
261	3.3.3. EPS and SMP compositions of suspended sludge
261 262	3.3.3. EPS and SMP compositions of suspended sludge At relatively low TMP (< 16 kPa), the CMBR possessed higher levels of total SMP
261 262 263	 3.3.3. EPS and SMP compositions of suspended sludge At relatively low TMP (< 16 kPa), the CMBR possessed higher levels of total SMP and polysaccharides in SMP (SMP_c) (20.47-55.86 and 9.06-30.18 mg/L, respectively)
261262263264	 3.3.3. EPS and SMP compositions of suspended sludge At relatively low TMP (< 16 kPa), the CMBR possessed higher levels of total SMP and polysaccharides in SMP (SMP_c) (20.47-55.86 and 9.06-30.18 mg/L, respectively) compared to the G-MBR (14.82-44.09 and 5.33-17.36 mg/L, respectively), corresponding
 261 262 263 264 265 	3.3.3. EPS and SMP compositions of suspended sludge At relatively low TMP (< 16 kPa), the CMBR possessed higher levels of total SMP
 261 262 263 264 265 266 	 3.3.3. EPS and SMP compositions of suspended sludge At relatively low TMP (< 16 kPa), the CMBR possessed higher levels of total SMP and polysaccharides in SMP (SMP_C) (20.47-55.86 and 9.06-30.18 mg/L, respectively) compared to the G-MBR (14.82-44.09 and 5.33-17.36 mg/L, respectively), corresponding to lower ratios of proteins to polysaccharides (SMP_P/SMP_C) (0.76-1.59 in the CMBR and 1.54-2.09 in the G-MBR) (Table 2). When membrane fouling became more serious (TMP)
 261 262 263 264 265 266 267 	 3.3.3. EPS and SMP compositions of suspended sludge At relatively low TMP (< 16 kPa), the CMBR possessed higher levels of total SMP and polysaccharides in SMP (SMP_C) (20.47-55.86 and 9.06-30.18 mg/L, respectively) compared to the G-MBR (14.82-44.09 and 5.33-17.36 mg/L, respectively), corresponding to lower ratios of proteins to polysaccharides (SMP_P/SMP_C) (0.76-1.59 in the CMBR and 1.54-2.09 in the G-MBR) (Table 2). When membrane fouling became more serious (TMP 16-37 kPa), total SMP remarkably increased in the CMBR (61.18-95.85 mg/L).
 261 262 263 264 265 266 267 268 	3.3.3. EPS and SMP compositions of suspended sludge At relatively low TMP (< 16 kPa), the CMBR possessed higher levels of total SMP
 261 262 263 264 265 266 267 268 269 	 3.3.3. EPS and SMP compositions of suspended sludge At relatively low TMP (< 16 kPa), the CMBR possessed higher levels of total SMP and polysaccharides in SMP (SMP_C) (20.47-55.86 and 9.06-30.18 mg/L, respectively) compared to the G-MBR (14.82-44.09 and 5.33-17.36 mg/L, respectively), corresponding to lower ratios of proteins to polysaccharides (SMP_P/SMP_C) (0.76-1.59 in the CMBR and 1.54-2.09 in the G-MBR) (Table 2). When membrane fouling became more serious (TMP 16-37 kPa), total SMP remarkably increased in the CMBR (61.18-95.85 mg/L). Additionally, SMP_C showed a notable ascending trend, reaching 32.39-53.67 mg/L. On the other hand, contents of SMP and SMP_C in the G-MBR were lower at 53.12-62.98 and
 261 262 263 264 265 266 267 268 269 270 	 3.3.3. EPS and SMP compositions of suspended sludge At relatively low TMP (< 16 kPa), the CMBR possessed higher levels of total SMP and polysaccharides in SMP (SMP_C) (20.47-55.86 and 9.06-30.18 mg/L, respectively) compared to the G-MBR (14.82-44.09 and 5.33-17.36 mg/L, respectively), corresponding to lower ratios of proteins to polysaccharides (SMP_P/SMP_C) (0.76-1.59 in the CMBR and 1.54-2.09 in the G-MBR) (Table 2). When membrane fouling became more serious (TMP 16-37 kPa), total SMP remarkably increased in the CMBR (61.18-95.85 mg/L). Additionally, SMP_C showed a notable ascending trend, reaching 32.39-53.67 mg/L. On the other hand, contents of SMP and SMP_C in the G-MBR were lower at 53.12-62.98 and 23.76-29.26 mg/L, respectively. Significantly declined SMP_P/SMP_C ratio was detected for

272	of SMP aggravated membrane fouling in the CMBR by encouraging membrane pore
273	blocking, formation of gel layer with considerably high specific filtration resistance as well
274	as penetration into spaces between particles and pores in cake layer. Moreover, as
275	polysaccharides contribute to membrane fouling development (especially irreversible
276	fouling) and gel layer formation on membrane surface (Deng et al., 2016), more serious
277	membrane fouling, greater R_P and R_C in the CMBR could be partially ascribed to higher
278	SMP levels and lower SMP _P /SMP _C ratio.
279	Table 2.
280	
281	Compared to the G-MBR (LB-EPS of 43.80-123.72 mg/L and LB-EPS _P /LB-EPS _C of
282	1.56-3.14 mg/L, respectively), higher concentrations of LB-EPS and lower ratio of proteins
283	to polysaccharides in LB-EPS (LB-EPS _{P} /LB-EPS _{C}) were detected in the CMBR at different
284	TMP ranges, corresponding to 62.69-180.84 and 0.89-2.06 mg/L, respectively. LB-EPS has
285	highly hydrated matrix, possessing a dispersible and loose slime layer without an obvious
286	edge. Thus the presence of LB-EPS at greater levels induced poor attachment between cells
287	and floc structure, caused the production of highly porous sludge flocs at low density, and
288	deteriorated sludge bioflocculation. This could give rise to poorer settleability of sludge
289	flocs (higher SVI values), larger amount of fine particles and serious membrane fouling in
290	the CMBR (Li and Yang, 2007). Hence higher R_C and R_P in the CMBR were also ascribed
291	to higher LB-EPS levels.
292	In the G-MBR, the greater LB -EPS _P /LB-EPS _C increased zeta potential and RH of
293	sludge flocs as proteins provide the amino groups with positive charge and amino acids

294 with hydrophobic side group, resulting in better flocculation ability of flocs and further

295	favored formation of bigger and more permeable flocs (Zhang et al., 2016). TB-EPS which
296	attaches to peripheral capsules of cell surface favors the aggregation of cells in clusters.
297	The increased TB-EPS levels of activated sludge helped agglomeration of sludge flocs by
298	GemFloc™ addition (85.37-121.93 mg/L for the G-MBR, 67.84-83.61 mg/L for the
299	CMBR), which enlarged flocs in the G-MBR (Chen et al., 2017b). Furthermore, levels of
300	proteins as major components of TB-EPS (TB-EPS _P) were higher in suspended sludge of
301	the G-MBR (54.11-78.26 mg/L) than those for the CMBR (45.36-59.51 mg/L). Proteins
302	could keep bacterial cells together and maintain cell cohesion by forming an active gel-like
303	matrix (Dogsa et al., 2005). Thus more TB -EPS _P in activated sludge also facilitated the
304	formation of larger flocs due to addition of GemFloc™. In the G-MBR, higher LB-
305	$EPS_P/LB-EPS_C$ ratio and $TB-EPS_P$ levels were responsible for the formation of larger flocs.
306	
307	3.4. Microbial community structure at genus level
308	3.4.1. Microbial community structure contributing to organic and nutrient removals
309	Higher proportion of <i>Phaeodactylibacter</i> was found in the G-MBR (1.27-3.01%) than
310	that in the CMBR (< 1.21%), which might help to improve organic matter removal by
311	application of GemFloc [™] throughout the entire experimental period (Xu et al., 2018).
312	During TMP development in the range of 10-16 kPa, both of the G-MBR and CMBR
313	possessed high relative abundance of nitrifying bacteria, including Nitrosomonas (10.88%
314	and 9.54%, respectively) and Nitrospira (5.19% and 4.12%, respectively). More abundant
314315	and 9.54%, respectively) and <i>Nitrospira</i> (5.19% and 4.12%, respectively). More abundant denitrifying bacteria (7.92% for <i>Defluviimonas</i> , 4.98% for <i>Pseudolabrys</i>) and PAOs (1.46%

317	(3.52%, 1.32%, and 0.76%, respectively). When TMP reached above 35 kPa, greater
318	abundance of nitrifying bacteria and PAOs were also found in the G-MBR compared to the
319	CMBR (8.36% vs 4.88% for <i>Nitrosomonas</i> , 3.27% vs 2.36% for <i>Nitrospira</i> , 3.55% vs
320	0.97% for Gemmatimonas). The declined ratios of Nitrosomonas and Nitrospira might be
321	mainly ascribed to that the increase in diversity of microbial population decreased the
322	proportion of nitrifying bacteria in total microbial population. These results could explain
323	better nitrogen and phosphorus removal achieved by GemFloc™ addition (Miao et al.,
324	2015; Zhang et al., 2003; Zhou et al., 2017b).
325	
326	3.4.2. Microbial community structure contributing to membrane fouling
327	Microbial community structure in the CMBR and G-MBR regarding the
328	microorganisms associated with membrane fouling and sludge characteristics are displayed
329	in Figs. 3 and 4. In the CMBR, majority of microbial population was associated with
330	serious membrane fouling and poor sludge properties. At low TMP (10-16 kPa), great
331	abundance of <i>Haliscomenobacter</i> (as one kind of filamentous bacteria, 7.50%) and
332	Hyphomicrobium (8.56%) deteriorated sludge settleability and compaction, which might be
333	responsible for the increase of SVI (Gu et al., 2018; Layton et al., 2000). The abundant of
334	another filamentous microbe, namely Thiothrix (8.18%), indicated the generation of
335	extracellular polymers (e.g. LB-EPS) and further aggravated membrane fouling (Gao et al.,
336	2014). More LB-EPS _C and more serious membrane fouling could be associated with high
337	abundance of <i>Bradyrhizobium</i> (3.62%) which could secrete extracellular polysaccharides
338	(Friha et al., 2014). Novosphingobium is normally found in biocake or biofilm and

339	Chryseolinea can induce membrane fouling by fermentation of polysaccharides (Matar et
340	al., 2017; Xu et al., 2018). Hence the enrichment of Novosphingobium (6.56%) and
341	Chryseolinea (5.42%) might be partially relevant to membrane fouling. On the other hand,
342	the microorganisms which are able to degrade membrane fouling-induced substances (e.g.
343	polysaccharides (SMP _C and LB-EPS _C), proteins (SMP _P and LB-EPS _P)) and mitigate
344	membrane fouling were detected at low levels (< 1.60%), including <i>Reyranella</i> ,
345	Thermogutta, Tepidisphaera and Comamonas, except for Pirellula at 2.74% and Kofleria at
346	3.48% (Inaba et al., 2018; Lang et al., 2014; Liu et al., 2018; Peng et al., 2019; Zheng et al.,
347	2019; Zhou et al., 2017b; Zhu et al., 2017). When TMP reached above 35 kPa, serious
348	membrane fouling in the CMBR could be induced by the enrichment of filamentous
349	bacteria such as Sphaerotilus, Thiothrix and Haliscomenobacter at 8.95%, 8.28% and
350	8.16%, respectively. Sphaerotilus enables production of large assemblage and more EPS,
351	thus facilitating colonization and biofilm formation on membrane surface (Peng et al.,
351 352	thus facilitating colonization and biofilm formation on membrane surface (Peng et al., 2019). Moreover, <i>Thiothrix</i> and <i>Haliscomenobacter</i> also favor generation of extracellular
351 352 353	thus facilitating colonization and biofilm formation on membrane surface (Peng et al., 2019). Moreover, <i>Thiothrix</i> and <i>Haliscomenobacter</i> also favor generation of extracellular polymers (i.e. LB-EPS) and negatively influence sludge settleability (Gao et al., 2014; Gu
351352353354	thus facilitating colonization and biofilm formation on membrane surface (Peng et al., 2019). Moreover, <i>Thiothrix</i> and <i>Haliscomenobacter</i> also favor generation of extracellular polymers (i.e. LB-EPS) and negatively influence sludge settleability (Gao et al., 2014; Gu et al., 2018). In addition, the presence of high levels of <i>Novosphingobium</i> , <i>Povalibacter</i> and
 351 352 353 354 355 	thus facilitating colonization and biofilm formation on membrane surface (Peng et al., 2019). Moreover, <i>Thiothrix</i> and <i>Haliscomenobacter</i> also favor generation of extracellular polymers (i.e. LB-EPS) and negatively influence sludge settleability (Gao et al., 2014; Gu et al., 2018). In addition, the presence of high levels of <i>Novosphingobium</i> , <i>Povalibacter</i> and <i>Chryseolinea</i> (7.78%, 6.82% and 6.23%, respectively) might also aggravate membrane
 351 352 353 354 355 356 	 thus facilitating colonization and biofilm formation on membrane surface (Peng et al., 2019). Moreover, <i>Thiothrix</i> and <i>Haliscomenobacter</i> also favor generation of extracellular polymers (i.e. LB-EPS) and negatively influence sludge settleability (Gao et al., 2014; Gu et al., 2018). In addition, the presence of high levels of <i>Novosphingobium</i>, <i>Povalibacter</i> and <i>Chryseolinea</i> (7.78%, 6.82% and 6.23%, respectively) might also aggravate membrane fouling (Choi et al., 2017; Matar et al., 2017; Xu et al., 2018). Furthermore, <i>Acinetobacter</i>,
 351 352 353 354 355 356 357 	thus facilitating colonization and biofilm formation on membrane surface (Peng et al., 2019). Moreover, <i>Thiothrix</i> and <i>Haliscomenobacter</i> also favor generation of extracellular polymers (i.e. LB-EPS) and negatively influence sludge settleability (Gao et al., 2014; Gu et al., 2018). In addition, the presence of high levels of <i>Novosphingobium</i> , <i>Povalibacter</i> and <i>Chryseolinea</i> (7.78%, 6.82% and 6.23%, respectively) might also aggravate membrane fouling (Choi et al., 2017; Matar et al., 2017; Xu et al., 2018). Furthermore, <i>Acinetobacter</i> , which is related to the production of extracellular polysaccharides (SMP _C and LB-EPS _C)
 351 352 353 354 355 356 357 358 	thus facilitating colonization and biofilm formation on membrane surface (Peng et al.,2019). Moreover, <i>Thiothrix</i> and <i>Haliscomenobacter</i> also favor generation of extracellularpolymers (i.e. LB-EPS) and negatively influence sludge settleability (Gao et al., 2014; Guet al., 2018). In addition, the presence of high levels of <i>Novosphingobium</i> , <i>Povalibacter</i> and <i>Chryseolinea</i> (7.78%, 6.82% and 6.23%, respectively) might also aggravate membranefouling (Choi et al., 2017; Matar et al., 2017; Xu et al., 2018). Furthermore, <i>Acinetobacter</i> ,which is related to the production of extracellular polysaccharides (SMPc and LB-EPSc)(Abdel-EI-Haleem et al., 2003), was detected at 6.54% at the end of the experiment. Thus
 351 352 353 354 355 356 357 358 359 	 thus facilitating colonization and biofilm formation on membrane surface (Peng et al., 2019). Moreover, <i>Thiothrix</i> and <i>Haliscomenobacter</i> also favor generation of extracellular polymers (i.e. LB-EPS) and negatively influence sludge settleability (Gao et al., 2014; Gu et al., 2018). In addition, the presence of high levels of <i>Novosphingobium</i>, <i>Povalibacter</i> and <i>Chryseolinea</i> (7.78%, 6.82% and 6.23%, respectively) might also aggravate membrane fouling (Choi et al., 2017; Matar et al., 2017; Xu et al., 2018). Furthermore, <i>Acinetobacter</i>, which is related to the production of extracellular polysaccharides (SMP_C and LB-EPS_C) (Abdel-El-Haleem et al., 2003), was detected at 6.54% at the end of the experiment. Thus membrane fouling was more severe for the CMBR.

Fig. 4.

363	GemFloc [™] addition could enhance the variety of microbial community structure which
364	helped to improve sludge properties and reduce membrane fouling in the G-MBR. The
365	presence of Terrimonas positively affects flocculation performance of suspended sludge
366	and promotes aggregation of sludge flocs by secreting extracellular polymers with
367	hydrophobic components (Zhao et al., 2019). Thauera favors EPS generation, especially
368	proteins as hydrophobic components contributing to cell aggregation and floc formation
369	(Dong et al., 2017; Zhang et al., 2018). When TMP was low at 10-16 kPa, great abundance
370	of Terrimonas and Thauera (4.76% and 4.34%, respectively) might contribute to better
371	flocculation ability and aggregation of sludge flocs through generating more TB-EPS_{P} .
372	Kofleria (7.72%), Pirellula (5.65%), Reyranella (4.14%), Thermogutta (2.16%) and
373	<i>Tepidisphaera</i> (1.63%) were also responsible for reduced proteins (SMP _P and LB-EPS _P)
374	and polysaccharides (SMP _{C} and LB-EPS _{C}). The high hydrophobicity of sludge flocs might
375	be ascribed to the high presence of <i>Pseudomonas</i> and <i>Rhodobacter</i> (2.74% and 1.41%,
376	respectively) (Chao et al., 2014; Sutherland et al., 2001). After terminating the experiment
377	(TMP > 35 kPa), the abundance of <i>Kofleria</i> increased (8.22%), which could explain the
378	evidently less SMP _C and LB-EPS _C , while high levels of <i>Reyranella</i> (4.75%) and <i>Pirellula</i>
379	(4.32%) led to less SMP _C , SMP _P , LB-EPS _C and LB-EPS _P . In addition, the proportion of
380	Flavihumibacter at 4.16% resulted in larger size of sludge flocs via providing structural
381	network during the experiment (Luo et al., 2015). Nevertheless, the decline in Terrimonas
382	(4.40%) and <i>Thauera</i> (4.26%) might deteriorate flocculation and aggregation ability of
383	suspended sludge to some extent. The microorganisms contained greater abundance of

Thermogutta (4.03%), which might potentially induce more accumulation of SMP_C and

384

LB-EPS_C. Overall, the abundant *Terrimonas, Thauera* and *Thermogutta* were the main 385 386 contributor to aggravated membrane fouling in the G-MBR. 387 Compared to the CMBR, the G-MBR contained more abundant bacterial population 388 giving rise to better sludge properties and membrane permeability but less microorganisms 389 aggravating membrane fouling. Additionally, more diverse microbial communities were 390 found in the G-MBR than those in the CMBR, especially at high TMP (> 35 kPa), which also favored fouling control. As an aerobic bacterium, Arenimonas can also degrade various 391 sugars and amino acids (Cui et al., 2019). Hence, the presence of *Flavihumibacter*, 392 393 Revranella, Pirellula, Thauera, Thermogutta, Arenimonas, Rhodobacter, Comamonas and 394 Pseudomonas in the G-MBR (1.87%-4.75%) was associated with the enhanced sludge 395 properties (i.e. less proteins and polysaccharides, higher hydrophobicity, better sludge 396 aggregation). On the other hand, genera Povalibacter, Acinetobacter and Chryseolinea 397 were only detected in the CMBR at great abundance (6.23%-6.82%), which were closely 398 linked with the accumulation of SMP_C and LB-EPS_C and further serious membrane fouling. 399 400 4. Conclusions The effectiveness of GemFloc[™] on membrane fouling reduction in MBR was 401 402 evaluated for real municipal wastewater treatment. Compared to the CMBR, GemFloc™ could alleviate membrane fouling, reduce SMP and LB-EPS, increase ratio of SMP_P/SMP_C 403

- and $LB-EPS_P/LB-EPS_C$, enlarge floc size, and increase $TB-EPS_P$, zeta potential and RH,
- 405 thus decreasing R_C and R_P. Moreover, GemFloc[™] addition induced higher diversity of

406	microbial community and greater abundance of special functional microorganisms (e.g.
407	Arenimonas, Flavihumibacter), which enhanced sludge properties and alleviated membrane
408	fouling. Thus GemFloc [™] could be a promising novel bioflocculant to control membrane
409	fouling.
410	
411	Appendix A. Supplementary data
412	E-supplementary data associated with this article can be found in the online version.
413	
414	Acknowledgement
415	This research was supported by the UTS Research Services "Case studies of
416	Gemfloc [™] on membrane fouling control in a pilot-scale aerobic MBR system for
417	municipal wastewater treatment towards its full-scale application in China", with AWR
418	Environmental Research Co., Ltd., China (Project ID PRO17-3427). The authors are also
419	grateful for Tianjin Motimo Technology Co., Ltd. for supplying membrane fibers.
420	
421	References
422	1. Abdel-El-Haleem, D., 2003. Acinetobacter: environmental and biotechnological
423	applications. Afr. J. Biotechnol. 2(4), 71-75.
424	2. Alkmim, A.R., da Costa, P.R., Moser, P.B., França Neta, L.S., Santiago, V.M. J.,
425	Cerqueira, A.C., Amaral, M.C.S., 2015. Long-term evaluation of different strategies of
426	cationic polyelectrolyte dosage to control fouling in a membrane bioreactor treating
427	refinery effluent. Environmen. Technol. 37(8), 1026–1035.

428	3.	APHA, AWWA, and WEF, 1998. Standard Methods for the Examination of Water and
429		Wastewater, twentieth ed. American Public Health Association, Washington, DC.
430	4.	Chao, Y., Guo, F., Fang, H.H.P., Zhang, T., 2014. Hydrophobicity of diverse bacterial
431		populations in activated sludge and biofilm revealed by microbial adhesion to
432		hydrocarbons assay and high-throughput sequencing. Colloids Surf. B: Biointerfaces
433		114, 379–385.
434	5.	Chen, W., Gao, X., Xu, H., Cai, Y., Cui, J., 2017a. Influence of extracellular polymeric
435		substances (EPS) treated by combined ultrasound pretreatment and chemical re-
436		flocculation on water treatment sludge settling performance. Chemosphere 170, 196-
437		206.
438	6.	Chen, C., Bin, L., Tang, B., Huang, S., Fu, F., Chen, Q., Wu, L., Wu, C., 2017b.
439		Cultivating granular sludge directly in a continuous-flow membrane bioreactor with
440		internal circulation. Chem. Eng. J. 309, 108–117.
441	7.	Choi, J., Kim, E.S., Ahn, Y., 2017. Microbial community analysis of bulk sludge/cake
442		layers and biofouling-causing microbial consortia in a full-scale aerobic membrane
443		bioreactor. Bioresour. Technol. 227, 131–141.
444	8.	Choo, K.H., Lee, C.H., 1996. Membrane fouling mechanisms in the membrane coupled
445		anaerobic bioreactor. Water Res. 30, 1771–1780.
446	9.	Cui, H., Yang, Y., Ding, Y., Li, D., Zhen, G., Lu, X., Huang, M., Huang, X., 2019. A
447		novel pilot-scale tubular bioreactor enhanced floating treatment wetland (TB-EFTW)
448		for efficient in-situ nitrogen removal from urban landscape water: long term

450	10. Deng, L., Guo, W., Ngo, H.H., Mst. Zuthi, F.R., Zhang, J., Liang, S., Li, J., Wang,
451	J., Zhang, X., 2015. Membrane fouling reduction and improvement of sludge
452	characteristics by bioflocculant addition in submerged membrane bioreactor. Sep. Purif.
453	Technol. 156, 450–458.
454	11. Deng, L., Guo, W., Ngo, H.H., Zhang, H., Wang, J., Li, J., Xia, S., Wu, Y., 2016.
455	Biofouling and control approaches in membrane bioreactors. Bioresour. Technol. 221,
456	656–665.
457	12. Dogsa, I., Kriechbaum, M., Stopar, D., Laggnerz, P., 2005. Structure of bacterial
458	extracellular polymeric substances at different pH values as determined by SAXS.
459	Biophys. J. 83, 2711–2720.
460	13. Dong, J., Zhang, Z., Yu, Z., Dai, X., Xu, X., Alvarez, P.J.J., Zhu, L., 2017.
461	Evolution and functional analysis of extracellular polymeric substances during the
462	granulation of aerobic sludge used to treat p-chloroaniline wastewater. Chem. Eng. J.
463	330, 596–604.
464	14. Friha, I., Karray, F., Feki, F., Jlaiel, L., Sayadi, S., 2014. Treatment of cosmetic
465	industry wastewater by submerged membrane bioreactor with consideration of
466	microbial community dynamics. Int. Biodeter. Biodegradation 88, 125-133.
467	15. Gao, D.W., Wen, Z.D., Li, B., Liang, H., 2014. Microbial community structure
468	characteristics associated membrane fouling in A/O-MBR system. Bioresour. Technol.
469	154, 87–93.
470	16. Gkotsis, P.K., Batsari, E.L., Peleka, E.N., Tolkou, A.K., Zouboulis, A.I., 2017.
471	Fouling control in a lab-scale MBR system: Comparison of several commercially
472	applied coagulants. J. Environ. Manage. 203, 838-846.

473	17. Gu, Y.Q., Li, T.T., Li, H.Q., 2018. Biofilm formation monitored by confocal laser
474	scanning microscopy during startup of MBBR operated under different intermittent
475	aeration modes. Process Biochem. 74, 132–140.
476	18. Huang, S., Shi, X., Bi, X., Lee, L.Y., Ng, H.Y., 2019. Effect of ferric hydroxide on
477	membrane fouling in membrane bioreactor treating pharmaceutical wastewater.
478	Bioresour. Technol. 292, 121852.
479	19. Inaba, T., Hori, T., Navarro, R.R., Ogata, A., Hanajima, D., Habe, H., 2018.
480	Revealing sludge and biofilm microbiomes in membrane bioreactor treating piggery
481	wastewater by non-destructive microscopy and 16S rRNA gene sequencing. Chem.
482	Eng. J. 331, 75–83.
483	20. Ji, J., Li, J., Li, Y., Qiu, J., Li, X., 2015. Impact of modified starch on membrane
484	fouling in MBRs. Desalination Water Treat. 57(24), 11008–11018.
485	21. Jia, S., Han, H., Zhuang, H., Hou, B., Li, K., 2015. Impact of high external
486	circulation ratio on the performance of anaerobic reactor treating coal gasification
487	wastewater under thermophilic condition. Bioresour. Technol. 192, 507-513.
488	22. Krzeminski, P., Iglesias-Obelleiro, A., Madebo, G., Garrido, J.M., van der Graaf,
489	J.H.J.M., van Lier, J.B., 2012. Impact of temperature on raw wastewater composition
490	and activated sludge filterability in full-scale MBR systems for municipal sewage
491	treatment. J. Membr. Sci. 423–424, 348–361.
492	23. Lang, E., 2014. The Family Kofleriaceae. In Rosenberg, E., DeLong, E.F., Lory, S.
493	Stackebrandt, E., and Thompson, F. (eds.), The Prokaryotes: Deltaproteobacteria and
494	Epsilonproteobacteria, 183–189. Springer Berlin Heidelberg, Berlin, Heidelberg,
495	Germany.

496	24. Layton, A.C., Karanth, P.N., Lajoie, A., Meyers, J., Gregory, I.R., Stapleton, R.D.,
497	Taylor, D.E., Sayler, G.S., 2000. Quantification of Hyphomicrobium Populations in
498	Activated Sludge from an Industrial Wastewater Treatment System as Determined by
499	16S rRNA Analysis. Appl. Environ. Microbiol. 66(3), 1167–1174.
500	25. Li, X., Yang, S., 2007. Influence of loosely bound extracellular polymeric
501	substances (EPS) on the flocculation, sedimentation and dewaterability of activated
502	sludge. Water Res. 41, 1022–1030.
503	26. Liu, Y., Liu, Q., Li, J., Ngo, H.H., Guo, W., Hu, J., Gao, M., Wang, Q., Hou, Y.,
504	2018. Effect of magnetic powder on membrane fouling mitigation and microbial
505	community/composition in membrane bioreactors (MBRs) for municipal wastewater
506	treatment. Bioresour. Technol. 249, 377–385.
507	27. Luo, J., Wei, L., Hao, T., Xue, W., Mackey, H.R., Chen, G.H., 2015. Effect of L-
508	tyrosine on aerobic sludge granulation and its stability. RSC Adv. 5, 86513–86521.
509	28. Luo, G., Wang, Z., Li, Y., Li, J., Li, A.M., 2018. Salinity stresses make a difference
510	in the start-up of membrane bioreactor: performance, microbial community and
511	membrane fouling. Bioprocess and Biosyst. Eng. 42, 445–454.
512	29. Ma, C., Yu, S., Shi, W., Heijman, S.G.J., Rietveld, L.C., 2013. Effect of different
513	temperatures on performance and membrane fouling in high concentration PAC-MBR
514	system treating micro-polluted surface water. Bioresour. Technol. 141, 19–24.
515	30. Matar, G.K., Bagchi, S., Zhang, K., Oerther, D.B., Saikaly, P.E., 2017. Membrane
516	biofilm communities in full-scale membrane bioreactors are not randomly assembled
517	and consist of a core microbiome. Water Res. 123, 124–133.

518	31. Mateus, G.A.P., Formentini-Schmitt, D.M., Nishi, L., Fagundes-Klen, M.R.,
519	Gomes, R.G., Bergamasco, R., 2017. Coagulation/Flocculation with Moringa oleifera
520	and Membrane Filtration for Dairy Wastewater Treatment. Water Air Soil Pollut.
521	228(342), 1–13.
522	32. Miao, Y., Liao, R.H., Zhang, X.X., Wang, Y., Wang, Z., Shi, P., Liu, B., Li, A.M.,
523	2015. Metagenomic insights into Cr(VI) effect on microbial communities and
524	functional genes of an expanded granular sludge bed reactor treating high-nitrate
525	wastewater. Water Res. 76, 43–52.
526	33. Ngo, H.H., Guo, W.S., 2009. Membrane fouling control and enhanced phosphorus
527	removal in an aerated submerged membrane bioreactor using modified green
528	bioflocculant. Bioresour. Technol. 100, 4289-4291.
529	34. Park, P. Lee, C. Lee, S., 2006. Variation of specific cake resistance according to
530	size and fractal dimension of chemical flocs in a coagulation-microfiltration process.
531	Desalination 199, 213–215.
532	35. Peng, C., Gao, Y., Fan, X., Peng, P., Huang, H., Zhang, X., Ren, H., 2019.
533	Enhanced biofilm formation and denitrification in biofilters for advanced nitrogen
534	removal by rhamnolipid addition. Bioresour. Technol. 287, 121387.
535	36. Sutherland, I.W., 2001. Exopolysaccharides in biofilms, flocs and related structures.
536	Water Sci. Technol. 43(6), 77-86.
537	37. Tan, S., Cui, C., Chen, X., Li, W., 2017. Effect of bioflocculation on fouling-related
538	biofoulants in a membrane bioreactor during saline wastewater treatments. Bioresour.
539	Technol. 224, 285–291.

540	38.	Xu, J., He, J., Wang, M., Li, L., 2018. Cultivation and stable operation of aerobic	
541	gra	anular sludge at low temperature by sieving out the batt-like sludge. Chemosphere	
542	21	1, 1219–1227.	
543	39.	Zhang, H., Sekiguchi, Y., Hanada, S., Hugenholtz, P., Kim, H., Kamagata, Y.,	
544	Na	kamura, K., 2003. Gemmatimonas aurantiaca gen. nov., sp. nov., a Gramnegative,	,
545	aeı	robic, polyphosphate-accumulating micro-organism, the first cultured representativ	'e
546	of	the new bacterial phylum Gemmatimonadetes phyl. nov. Int. J. Syst. Evol. Microb	iol.
547	53	(4), 1155-1163.	
548	40.	Zhang, H., Fan, X., Wang, B., Song, L., 2016. Calcium ion on membrane fouling	
549	rec	duction and bioflocculation promotion in membrane bioreactor at high salt shock.	
550	Bi	oresour. Technol. 200, 535–540.	
551	41.	Zhang, S., Zhou, Z., Li, Y., Meng, F., 2018. Deciphering the core fouling-causing	5
552	mi	crobiota in a membrane bioreactor: Low abundance but important roles.	
553	Ch	nemosphere 195, 108–118.	
554	42.	Zhang, W., Jiang, F., 2019. Membrane fouling in aerobic granular sludge (AGS)-	
555	me	embrane bioreactor (MBR): Effect of AGS size. Water Res. 157, 445–453.	
556	43.	Zhao, Y., Jiang, B., Tang, X., Liu, S., 2019. Metagenomic insights into functional	1
557	tra	its variation and coupling effects on the anammox community during reactor start-	up.
558	Sc	i. Total Environ. 687, 50–60.	
559	44.	Zheng, M., Zhu, H., Han, Y., Xu, C., Zhang, Z., Han, H., 2019. Comparative	
560	inv	vestigation on carbon-based moving bed biofilm reactor (MBBR) for synchronous	
561	rer	noval of phenols and ammonia in treating coal pyrolysis wastewater at pilot-scale.	
562	Bi	oresour. Technol. 288, 121590.	
			0.5

- 563 45. Zhou, J.H., Wu, C.H., Cheng, G.F., Hong, Q.K, Li, Y.Z., Wang, H.Y., 2017a.
- 564 Impact of poly dimethyldiallylammonium chloride on membrane fouling mitigation in a
- 565 membrane bioreactor. Environ. Technol. 40(8), 1–7.
- 566 46. Zhou, J., Li, H., Chen, X., Wan, D., Mai, W., Sun, C., 2017b. Cometabolic
- 567 degradation of low-strength coking wastewater and the bacterial community revealed
- 568 by high-throughput sequencing. Bioresour. Technol. 245, 379–385.
- 569 47. Zhu, H., Han, Y., Ma, W., Han, H., Ma, W., 2017. Removal of selected nitrogenous
- 570 heterocyclic compounds in biologically pretreated coal gasification wastewater
- 571 (BPCGW) using the catalytic ozonation process combined with the two-stage
- 572 membrane bioreactor (MBR). Bioresour. Technol. 245, 786–793.

Table titles

Table 1. Fouling resistance distribution in the G-MBR and the CMBR

Table 2. SMP compositions, SMP concentrations, LB-EPS compositions and LB-EPS

concentrations in the G-MBR and the CMBR at different TMP ranges

			CLUDD	
Resistance	G-MBK		CMBR	
distribution	m ⁻¹	$\%$ of R_T	m-1	% of R_T
Total, R _T	$3.73 imes 10^{12}$		6.13×10^{12}	
Cake layer, R _C	$2.40 imes 10^{12}$	64.34	4.51×10^{12}	73.57
Pore blocking, R _P	$0.17 imes 10^{12}$	4.56	0.46×10^{12}	7.50
Clean membrane, R _M	1.16×10^{12}	31.10	1.16×10^{12}	18.92

Table 1. Fouling resistance distribution in the G-MBR and the CMBR

Table 2. SMP compositions, SMP concentrations, LB-EPS compositions and LB-EPS concentrations in the G-MBR and the CMBR atdifferent TMP ranges

Concentuation			E	MP		
		G-MBR			CMBR	
(mg/m)	< 10 kPa	10-16 kPa	16-37 kPa	< 10 kPa	10-16 kPa	16-37 kPa
SMP_C	5.33-10.78	12.34-17.36	23.76-29.26	9.06-15.26	27.36-30.18	32.39-53.67
SMP_P	9.24-18.65	22.37-26.73	29.36-33.72	11.41- 24.32	20.76-25.68	28.79-42.18
SMP _P /SMP _C	1.57-2.09	1.54-1.81	1.15-1.24	1.26-1.59	0.76-0.85	0.79-0.89
Total SMP	14.82- 29.43	34.71-44.09	53.12-62.98	20.47- 39.58	48.12-55.86	61.18-95.85
LB-EPS _C	10.57- 28.36	31.06-35.69	42.34-48.36	20.47- 35.36	35.94-45.66	64.72-85.47
LB-EPS _P	33.23- 59.26	63.75-68.71	70.69-75.36	42.22- 63.96	64.62-75.39	72.71-95.37
LB-EPS _p /LB- EPS _c	2.09-3.14	1.93-2.05	1.56-1.67	1.81-2.06	1.65-1.80	0.89-0.90
Total LB-EPS	43.80- 87.62	94.81-104.40	113.03- 123.72	62.69- 99.32	100.56- 121.05	137.43- 180.84

^a LB-EPS_c, polysaccharides based LB-EPS; LB-EPS_p, proteins based LB-EPS; SMP_c, polysaccharides based SMP; SMP_p, proteins based SMP

Figure captions

Fig. 1. TMP profiles for the G-MBR and the CMBR

Fig. 2. Particle size distribution as particle volume fractions for the G-MBR (a) and the CMBR

(b)

Fig. 3. The abundance of the major bacterial genera (top 30 most relative abundances in activated sludge of the G-MBR and the CMBR) at low TMP (< 10-16 kPa)

Fig. 4. The abundance of the major bacterial genera (top 35 most relative abundances in

activated sludge of the G-MBR and the CMBR) at high TMP (> 35 kPa)

Fig. 1.

Fig. 2.

