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28 Abstract 

29 In this study, mixed culture (microalgae:activated sludge) of a photobioreactor (PBR) were 

30 investigated at different inoculation ratios (1:0, 9:1, 3:1, 1:1, 0:1 wt/wt). This work was not 

31 only to determine the optimal ratio for pollutant remediation and biomass production but also 

32 to explore the role of microorganisms in the co-culture system. The results showed high total 

33 biomass concentrations were obtained from 1:0 and 3:1 ratio being values of 1.06, 1.12 g L-1, 

34 respectively. Microalgae played a dominant role in nitrogen removal via biological 

35 assimilation while activated sludge was responsible for improving COD removal. Compared 

36 with the single culture of microalgae, the symbiosis between microalgae and bacteria 

37 occurred at 3:1 and 1:1 ratio facilitated a higher COD removal by 37.5-45.7 %. In general, 

38 combined assessment based on treatment performance and biomass productivity facilitated to 

39 select an optimal ratio of 3:1 for the operation of the co-culture PBR.

40

41 Keywords: Co-culture system; Activated sludge; Microalgae; Wastewater treatment; 

42 Biomass production.

43

44 1. Introduction 

45 Domestic and industrial activities have discharged wastewater (WW) possessing concerned 

46 nitrogen and phosphorus level. Those nutrient compounds are the main cause of 

47 eutrophication in the receiving water reservoir because they diminish oxygen concentration 

48 for aquatic living and trigger algae bloom. Consequently, excessive nitrogen and phosphorus 

49 imbalance the function of ecosystem. It is a critical need to phase out nutrient elements in 

50 WW prior to discharging to avoid eutrophication and guarantee healthy water quality for 

51 community consumption. Generally, activated sludge processes (ASPs) are favorite ones 

52 which have been applied widely to target nutrient in the discharged WW stream (Mujtaba and 
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53 Lee, 2017). Such processes are sequencing batch, anaerobic, anoxic, oxic reactors and hybrid 

54 systems of those given single technology. However, ASPs are restrained by high energy 

55 consumption which is mandatory to provide oxygen for bacteria respiration and nutrient 

56 metabolism process. Energy for aeration accounts for 60% to 80% total used energy as a 

57 whole of wastewater treatment process using ASPs (Clarens et al., 2010).  Another one-

58 hybrid system (e.g., anaerobic-anoxic-oxic) is a viable option but goes along the high capital 

59 cost. It is essential to propose a robust single-stage process for dual purposes of nutrient 

60 remediation and energy-efficient. This process aims to apply for various types of wastewaters 

61 as municipal wastewater, winery wastewater, piggery and, fermentation wastewater (Godos 

62 et al., 2009; Mujtaba and Lee, 2017; Qi et al., 2018; Higgins et al., 2018a). 

63

64 Microalgae have demonstrated their feasibility for wastewater remediation thanks to their low 

65 cost, easy operation and revenue-raising potential (e.g., bioenergy production and pigment 

66 extraction) (Rittmann, 2008; Mata et al., 2010). They are prominent candidate to develop the 

67 above-mentioned single-stage technology. Microalgae can assimilate high load of nutrient 

68 and start producing biomass in a short time (< 24 h) (Godos et al., 2009; Zhang et al., 2011). 

69 Concurrently, photosynthesis of microalgae generates oxygen given a good chance to provide 

70 oxygen for ASPs process (Mata et al., 2010). Therefore, microalgae can serve as an “aeration 

71 device” and ideally replace the mechanical aeration system and cut off energy cost for 

72 aeration in ASPs (Jia and Yuan, 2018). Based on this concept, microalgae and bacteria can 

73 mutually support each other. Studies on the symbiosis of microalgae–bacteria have been 

74 accelerating as a mean for domestic and industrial wastewater remediation (Lee and Lei, 

75 2019). Given a single-stage technology, microalgae consumes nitrogen and phosphorus in 

76 WW for biomass production whilst bacteria metabolize organic matters in a greater extent. 

77

ration

ually 

and id

n in ASP

Ps pr

deally re

osy

roces

ynthesis of

s in a short

chno

ng poten

al., 20

ntial (

r wastew

ns et al.,

enta

201

us ty

tion was

es of n

ypes of w

the

f nutri

igh capit

ent



4

78 As reported for the co-culture system, nutrient remediation and biomass growth are 

79 influenced by several factors, encompassing different inoculum ratio, operating condition, 

80 wastewater composition and reactor configuration (Zhu et al., 2019). The effects of 

81 wastewater matrix and inoculum ratio has been reported in several studies (Ji et al., 2018a) 

82 (Huo et al., 2020a). The former reported that 1:3 inoculation ratio (microalgae:bacteria wt/wt 

83 from now on) was an appropriate one for both nutrient remediation and biomass production 

84 amongst a range of ratio (1:0, 1:1, 1:2, 1:3, 2:1, 3:1 wt/wt) (Ji et al., 2018a). The latter study 

85 indicated that COD, total nitrogen (TN), and total phosphorus (TP) in vinegar production 

86 wastewater were removed more significantly by adding either 1% (v/v) or 10% (v/v) of 

87 Bacillus firmus and Beijerinckia species into the real WW-cultivated microalgae (Huo et al., 

88 2020a). Compared to a single microalgae culture, COD, TN and TP assimilation efficiency in 

89 co-culture system increased by 22.1%, 20%, and 8.1%, respectively (Huo et al., 2020a). The 

90 ratio of mixed microalgae-bacteria could affect performance of nutrient remediation. 

91 However, the co-culture system of microalgae and bacteria still faces inherent obstacles in 

92 term of biomass harvest (Mallick, 2002). The traditional technologies for biomass harvest are 

93 coagulation and centrifugation/separation. The efficiency of those traditional technologies 

94 remains insignificant and operation cost is still high (Su et al., 2012). The drawback in 

95 settling and biomass harvest of microalgae could be tackled by adding activated sludge. 

96 Activated sludge performs better settling ability compared to microalgae and exhibits 

97 extensive COD removal than the available bacteria in wastewater (Gutzeit et al., 2005). 

98 Therefore, several studies have integrated microalgae and ASPs to be co-culture system 

99 based on the above-mentioned co-benefits for WW remediation (Su et al., 2012); Mujtaba 

100 and Lee, 2017; Zhu et al., 2019). For instance, the 5:1 ratio was found for sufficient nitrogen 

101 and phosphorus removal (91.0% and 93.5% respectively)  (Su et al., 2012) . In turn, their 

102 findings indicated the inoculum ratio did not impact on COD removal (Su et al., 2012). 
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103 In another study, an optimal ratio primed to 2:1 to attain the highest efficiency of municipal 

104 wastewater treatment (Mujtaba and Lee, 2017). High removal of COD (82.7%), TN (75.5%) 

105 and TP (100%) could be obtained under an inoculum ratio of 1:1 (Zhu et al., 2019). It can be 

106 seen the optimal microalgae:sludge ratio of the previous studies varied due to the 

107 discrepancies of wastewater composition. For instance, Su et al. (2012) studied high loading 

108 concentration of COD (380 mg L-1), TN (50 mg L-1) and PO4
3- (8 mg L-1) while (Mujtaba and 

109 Lee, 2017) experimented low concentration level of COD (60 mg L-1), NH4
+-N (50 mg L-1) 

110 and TP (1.3 mg L-1). Also, COD: N ratio could affect bacteria and microalgae growth. A 

111 4.3:1 ratio could enrich microalgae biomass and nutrient recovery (Zhu et al., 2019). It is 

112 important to note that the previous works did not explore thoroughly an optimal ratio for 

113 simultaneous nutrient remediation and biomass production. In addition, the role and 

114 contribution of microalgae and activated sludge in the co-culture system have not been 

115 addressed adequately. A minor change in microalgae:activated sludge ratio could influence 

116 the whole performance. Therefore, biomass fraction of both microalgae and bacteria needs to 

117 be quantified, and thus to elaborate their role on organic and nutrient remediation. Given the 

118 research gaps indicated above, this study was built to explore the following objectives: i) To 

119 determine optimum microalgae-activated sludge inoculum ratio (wt:wt) for simultaneous 

120 nutrient/organic matter remediation and biomass production; ii) To investigate the 

121 mechanism of nutrient remediation and (iii) to validate the role of microalgae and activated 

122 sludge incorporated in a symbiotic system.

123

124 2. Materials and methods

125 2.1. Microorganism and synthetic wastewater

126 The microalgae strain used in this study was taken from Aquaculture Research Institute 2- 

127 Ministry of Agriculture and Rural Development, Vietnam. This strain is Chlorella sp., which 
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128 is capable of nitrogen and phosphorus uptake as nutrient sources. The strain was cultivated 

129 and maintained in a sterilized Bold´s Basal Medium (BBM). Chlorella sp. was incubated in a 

130 bubble column photobioreactor (PBR) (20 cm diameter, 60 cm height) under typical 

131 conditions: the light intensity of 100 μmol m-2 s-1 and at room temperature and air aeration, 

132 which has been fully described previously (Nguyen et al., 2016; Vo et al., 2018). The pre-

133 cultured algae cells were taken during the log growth phase. Such action was firstly settled 

134 down for 12 h to remove the supernatants, followed by centrifuged at 3600 rpm for 10 min 

135 and washed twice with deionized water before it was used for inoculation in the following 

136 experiments. 

137 Activated sludge was collected from the aerobic reactor in a local CASP wastewater 

138 treatment system. Mixed liquid suspended solids (MLSS) has a concentration of about 4000 

139 mg L-1. Prior to experiments, the activated sludge was also settled down for 3 h to remove the 

140 suspended solids, followed by centrifugation at 3600 rpm for 10 min. The settled solids 

141 washed twice with the distilled water before it was used as a source of bacterial consortium.

142 The synthetic wastewater was prepared with the particular components denoted in Table S-1. 

143 The main components are acetate (medium A), NH4CL (medium B), KH2P04 (medium C) 

144 used as the carbon and nutrient sources for cultivation. As prepared the synthetic wastewater 

145 contains COD 500 mg L-1, NH4
+-N 200 mg L-1, TP 45 mg L-1, and is remained at pH 7.6. A 

146 low COD/N ratio remained about 2.5, which facilitates for microalgae biomass enrichment 

147 and nutrient recovery. 

148

149 2.2. Experimental design

150 The stirred photobioreactors (PBRs) were used for all batch experiments. The transparent 

151 glass reactors have a working volume of 14 L and the dimension of length x diameter = 60 

152 cm x 20 cm. Led lamps were rolled around the PBRs to provide a specific light intensity of 
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153 100 μmol m-2 s-1. All batch reactors were operated under a cycle of 12 h light–12 h dark. 

154 Constant mixing was maintained using a stirrer (100 rpm) to avoid algae sedimentation. 

155 Detail schematic diagram of the PBRs system is illustrated in Fig. S-1. 

156 Five reactors were prepared with different inoculum ratios: the pure culture of microalgae 

157 (1:0 wt/wt), co-culture of microalgae:activated sludge under the ratios of (9:1, 3:1, 1:1 

158 wt/wt), and only activated sludge (0:1 wt/wt). The total initial biomass concentration has 

159 remained about 400 mg L-1 for all reactors. Detailed initial concentrations of microalgae and 

160 activated sludge were presented in Table 1.

161 Insert Table 1.

162

163 2.3. Analytical parameters

164 Prior to analyses, a 200 mL sample was filtered using a filter with a pore size of 0.45 μm 

165 (Fisher Whatman puradisc-25 mm). Such parameters as COD, TP, TKN, NH4
+-N, NO3

--N, 

166 NO2
--N and TSS were analyzed according to standard methods (APHA, 2005). The dissolved 

167 oxygen (DO) concentration was measured using a DO meter and the pH was measured by a 

168 pH meter. Light intensity was directly measured using a submersible spherical light sensor 

169 (US-SQS/L, ULM-500, FA Walz, Germany). 

170

171 2.4. Microbial biomass analyses

172 The total biomass in reactors was defined through measuring the dry weight. In detail, 10 mL 

173 of mixed liquid samples for all reactors were taken every day for analyses. All samples were 

174 filtered using a membrane with a pore size of 0.45 μm (Fisher Whatman puradisc-25 mm), 

175 followed by being dried at 105 °C for 2 hours and then weighed. Dry biomass was defined 

176 based on a change in weight between before and after filtered samples. For the co-culture 

177 system, the dry biomass includes microalgae and activated sludge features (C = Cm + Cb). 
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178 Where C is the total biomass concentration (g L-1), Cm is the microalgae biomass 

179 concentration (g L-1), Cb is the activated sludge concentration.

180 For the microalgae biomass (Cm), it was measured through Chlorophyll-a content extracted 

181 from the microalgae cell. Chlorophyll-a concentration was defined based on the previous 

182 method (Tang et al., 2018). Such concentration was then converted to dry weight through a 

183 standard curve with the equation: y = 4216.4 x – 302.43. This equation performs the 

184 correlation between Chlorophyll-a concentration and the dry weight of microalgae. The 

185 standard curve was presented in Fig. S-2. Where y is the concentration of Chlorophyll-a, and 

186 x is the dry weight of microalgae.

187 Chlorophyll-a content was extracted using an acetone solution (Lee et al., 2015). Firstly, a 40 

188 mL sample taken from either pure culture or co-culture systems was centrifuged at 4000 rpm 

189 for 10 minutes. After supernatants were discarded, the residual features were mixed with 90% 

190 acetone solution and 0.05 g CaCO3 and then was sheared using a vortex mixer for 1 minute. 

191 Secondly, such suspension was stored at 4 °C for 24 h in darkness before it was centrifuged 

192 at 4000 rpm for 10 minutes for supernatant recovery. These supernatants were used to 

193 determine the Chlorophyll-a content. In detail, Chlorophyll-a concentration was measured 

194 using ultraviolet spectrophotometry under different wavelengths: 630, 645, 663, 750, 772, 

195 and 850 nm. 90%. Acetone solution was used as the blank. As reported the Chlorophyll-a 

196 concentration of microalgae in a co-culture system was defined as Eq. (1) (Lee et al., 2015):

197   (1)Cm = [11.64(OD663 ― OD750) ― 2.16(OD645 ― OD750) + 0.10(OD630 ― OD750) ― 25.2(OD772 ― OD850)]V1V.σ
198 Where V is the sample volume (L), V1 is the volume of acetone-based extract (mL), OD 

199 (Optical Density) is the absorbance of the light at a corresponding wavelength, and σ is the 

200 optical path of the cuvette (cm). Also, such parameters as total biomass productivity, specific 

201 growth rate, and specific uptake rate were expressed as Eq. (2), (3), (4). 

202 Total biomass productivity (β, mg L-1 day-1): (2)� =  � ― ���� 
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203 Specific growth rate (μ, d-1): (3)μ =   !� ―  !���� 
204 Specific uptake rate (ɳ, g gbiomass-1 d-1): (4)ɳ =  #� ― # (� ― ��)��
205 Where, X0, X are total biomass at the initial and final time of the log phase; C0 and C 

206 represent for the substrate concentration at the initial and final time of phase; Δt is the interval 

207 days e.g., from the initial time to a time which total biomass reach steady state.

208

209 2.5. Nitrogen mass balance

210 Removal mechanism of nitrogen was defined according to a mass balance. The contributions 

211 to nitrogen mass include TN uptake by biomass, TN stripping, TN-denitrification, and 

212 residual TN. Since all batch reactors were operated under the stirred condition and remained 

213 a pH of 7.5-9.0, TN stripping has a negligible contribution. Thus, total nitrogen mass balance 

214 can be defined as follows:

215 Initial TN = Residual TN + TN-denitrification + TN uptake by biomass (5)

216 Whilst TN uptake by biomass might be due to contributions of either biological assimilation 

217 of microalgae or bacteria, TN-denitrification is obtained from bacteria metabolism. The 

218 nitrogen content in biomass was referred from a past work that used synthetic wastewater for 

219 cultivation (Zhu et al., 2019). As reported the nitrogen content was 8.25% for the co-culture 

220 system. Such values were used to calculate the TN uptake by biomass.

221 2.6. Statistical analysis

222 Results were showed as the average value ± standard deviation. Parametric one-way analysis 

223 of variance (ANOVA) was used to examine significant differences among groups of samples 

224 using the IBM SPSS statistics software 20. p < 0.05 indicated significance at 95% 

225 confidence.

226

227 3. Results and discussion
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228 3.1. Effect of inoculum ratios on biomass growth and variation of dissolved oxygen and 

229 pH

230 As denoted in Fig. 1, after 5 d total biomass concentration increased from 0.4 g L-1 to 1 g L-1 

231 for either single microalgae culture or co-culture systems i.e., inoculum ratios of 1:0, 9:1 and 

232 3:1 wt/wt (Fig. 1a, b, c). For 1:1 ratio, the total biomass concentration reached to 1 g L-1 after 

233 10 d. On the other hand, the experiment with a 0:1 ratio resulted in a slight increase of the 

234 total biomass concentration to 0.6 g L-1. The maximum total biomass concentrations were 

235 obtained at day 6th yielding 1.12 g L-1 and 1.07 g L-1 for 1:0 and 3:1 ratios, respectively. 

236 However, this fact occurred a later stage i.e., on day 7th for 9:1 ratio (1.1 g L-1), on day 11th 

237 for 1:1 ratio (1.08 g L-1). Such findings indicate the initial inoculum ratio impacted on 

238 biomass growth in some certain extent. Higher initial fraction of microalgae in co-culture 

239 system could contribute to shorten acclimatization period.

240 The biomass fractions of microalgae and activated sludge also changed following the 

241 inoculum ratios (Fig. 1). Only the fractions of 9:1 ratio were unchanged, being around 90%, 

242 during experimental period (Fig. 1b). It is important to note that a major change of biomass 

243 fraction was observed between the initial and final stage of experiment for 3:1 and 1:1 ratios 

244 (Fig. 1c, d). Especially for the latter ratio, the fraction of activated sludge remained stable at 

245 50% for the first 4 d, then it decreased gradually to 18% on the last day. The reason laid on 

246 the composition of feeding wastewater for microalgae and sludge which comprised a low 

247 COD/N ratio (2.5:1). This low COD/N ratio could augment biomass yield of microalgae 

248 rather than bacteria (Zhu et al., 2019). Microalgae could also assimilate organic carbon 

249 competitively with bacteria in photoheterotrophic condition (Guo and Tong, 2019). Thus, 

250 upon organic matter in feeding wastewater exhausted since day 4th, bacteria growth depleted 

251 and their fraction in total biomass decreased (Fig. 4).

252 Insert Table 2.
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253

254 Another point, it was found that the PBRs operated with higher initial activate sludge 

255 concentration could render to decrease the maximum microalgae biomass. This fact implies 

256 suspended activated sludge would interfere photosynthesis process of microalgae by reducing 

257 light intensity for microalgae cells. As a result, photosynthesis yield was diminished and 

258 biomass yield of microalgae dropped. Our calculation showed that the specific growth rates 

259 of microalgae decreased proportionally with the decrease of microalgae:sludge ratios (Table 

260 2). In practice, high specific growth rates of microalgae in 1:0, 9:1 and 3:1 ratios offered 

261 benefit as this fact reduced retention time and reactor volume. To further define a proper 

262 inoculum ratio for biomass production, total biomass productivity of all ratios was calculated 

263 and compared (Fig. 1f). The result showed that all pure microalgae culture (ratio 1:0) or co-

264 culture (ratios 9:1, 3:1, 1:1) possessed superior total biomass productivity than the single 

265 activated sludge culture (ratio 0:1) (One-way ANOVA, p < 0.05). Such findings reinforce the 

266 vital role of microalgae on the biomass production under the following typical conditions: 

267 feed wastewater having low COD/N (2.5:1), photoheterotrophic, stirred condition and light: 

268 dark cycle of 12:12. The ratio of 3:1 showed comparable total biomass productivity with 1:0 

269 ratio (p > 0.05), being 136 ± 10 mg L-1 d-1 and 144 ± 10 mg L-1 d-1, respectively. However, 

270 3:1 ratio exhibited significant higher total biomass productivity than other ratios i.e., 9:1 (88 

271 ± 20 mg L-1 d-1) and 1:1 (58 ± 20 mg L-1 d-1) (p < 0.05). The findings suggested that ratio 1:0 

272 and ratio 3:1 were the optimal one for total biomass production. The pure microalgae culture 

273 (ratio 1:0) could produce high biomass when feeding wastewater for cultivation (Gao et al., 

274 2014; Jaatinen et al., 2016; Wang et al., 2017). As previously reported microalgae biomass 

275 has been utilized for biofuel production ( Rittmann, 2008; Mata et al., 2010). Therefore, for 

276 the co-culture system, the 3:1 ratio might be an alternative way to attain beneficial biomass 

277 production, with microalgae biomass attaining 0.95 g L-1. To come up with the conclusion 
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278 which inoculum ratios was optimal in this study, we further investigated performance of 

279 those ratios for pollutant remediation in section 2.2.1 and 3.2.2.

280 Insert Fig. 1

281

282 Regarding DO, it is an indicator for microalgae biomass growth (Morales et al., 2018; Kazbar 

283 et al., 2019) and thus it was recorded for all the studied ratios (Fig. 2a,b). For 0:1 ratio 

284 (sludge only), DO concentration always stayed below 0.5 mg L-1 since day 1 for the whole 

285 studied period (Fig. 2a). This happened because the stirred condition of the experiment 

286 favored anoxic condition and consequently dropped DO level significantly (Su et al., 2012). 

287 Such condition prefers to slow-growing microorganism, which resulted in longer 

288 acclimatization and  consequently  restrained microorganism growing  (Nguyen et al., 2016). 

289 Meanwhile, the single microalgae system (ratio 1:0) performed differently and such DO 

290 concentration rose two-fold from 4 mg L-1 to 8 mg L-1, indicating substantial microalgae 

291 growth. Notably, compared to 1:0 ratio, ratios in co-culture systems (i.e., 9:1, 3:1, and 1:1 

292 wt/wt) exhibited lower DO concentration during the light phase. Furthermore, DO 

293 concentration is expected to be lower during the dark phase, being 0.5 mg L-1, as observed in 

294 Fig. 2b. This meant that bacteria consortium in activated sludge consumed oxygen which 

295 released from photosynthesis of microalgae in both light and dark phases. Thus, co-culture 

296 system which having higher initial fraction of activated sludge (3:1 and 1:1 ratios) possessed 

297 lower DO level (Fig. 2a). These facts can be regarded as mutualism of microalgae and 

298 bacteria under the photoautotrophic condition (Guo and Tong, 2019). Given the 

299 aforementioned conditions, DO concentration started decreasing gradually from day 5 and 

300 this is attributed to the reduction of microalgae biomass (Fig. S-5b, d) during the death phase 

301 occurred. Meanwhile, DO of 1:1 ratio decreased to approximately 0 mg L-1 on day 3. This 

302 can probably be subjected to oxygen released from photosynthesis of microalgae being 
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303 consumed quickly by aerobic bacteria (Muñoz and Guieysse, 2006). Then, DO increased 

304 gradually and remained unchanged from day 6 to 11. The result was consistent with the 

305 augment of microalgae fraction in those ratios (Fig. 1d). 

306

307 Apart from biomass production and DO, pH variation of the microalgae: sludge ratios is 

308 presented in Fig. 2c. Since the initial stage, pH value of around 7.7 was set for all culture 

309 systems. For both 1:0 and 3:1 ratios, pH increased more than 1 unit in log phase, 

310 subsequently decreased slightly in death phase. pH increased due to the intensive CO2 

311 consumption from the medium by microalgae. If the released CO2 from the respiration of 

312 bacteria is not sufficient for microalgae photosynthesis, the balance between CO2 from the 

313 air and CO2 uptake by microalgae tended to occur and render pH stability (Su et al., 2012). 

314 This fact was consistent with the case of 1:1 ratio which pH was stable from 7.6 to 8.0. The 

315 pH change might be attributed to either autotrophic microalgae and/or nitrifying bacteria 

316 existed in the reactor. As reported, photosynthesis of microalgae increased pH whilst the 

317 nitrification process of bacteria decreased pH (Gutzeit et al., 2005; Muñoz and Guieysse, 

318 2006) . In a co-culture system, pH is a dependent factor on biomass growth of microalgae, 

319 alkalinity and DO concentration of the media themselves (Muñoz and Guieysse, 2006). 

320 Notably, pH in the activated system alone dropped from 7.7 to 6.5 at ratio of 0:1. This 

321 happened due to the occurrence of nitrification given it utilized oxygen, produced H+ and 

322 thus reduced pH (Higgins et al., 2018b; Mujtaba et al., 2018).

323 Insert Fig. 2

324

325 3.2. Effect of inoculation ratio on the performance of PBRs 

326 3.2.1. Nutrient removal
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327 Fig. 3a shows that TN concentration of 1:0 ratio decreased 50-fold from 200 mg L-1 to 4 

328 mg L-1, meant 95% TN have been removed in 6 d of operation. For 0:1 ratio, TN 

329 concentration was removed slightly of 14 % in 12 d, which was due to a minor reduction of 

330 NH4
+-N concentration (Fig. S6-a). As mentioned, DO concentration of 0:1 ratio stayed 

331 below 0.5 mg L-1, which did not favor nitrification process. This further caused low NO2
--N 

332 and NO3
--N concentration in this ratio (Fig. S-6c, e). After 5 d, TN removal of the co-

333 culture ratios differed i.e., 9:1 (67%), 3:1 (86%), and 1:1 (42%), and such results indicated 

334 a co-culture system having higher microalgae fraction provided sufficient TN removal. As 

335 a result (Fig. S7-a), under co-culture ratios of 1:0, 9:1, 3:1 wt/wt, such TN removal rates 

336 were significant higher compared to the other ratios (i.e., 1:1 and 0:1) (One-way ANOVA, 

337 p < 0.05). Notably, for the initial 4 d, although the TN removal rates obtained 40 mg L-1 d-1, 

338 36 mg L-1 d-1, and 35 mg L-1 d-1 for the inoculum ratios of 1:0, and 9:1, 3:1 respectively, 

339 overall removal rates between these ratios had no significant difference based on statistical 

340 analysis (p > 0.05). As reported in literature, the following conditions were essential to 

341 obtain TN removal rate of 4.06 mg L-1 d-1: alone C. vulgaris cultivation (similar to 1:0 ratio 

342 of this study) and low COD:N ratio of 0.125 (Gao et al., 2015). Likewise, 2:1 ratio of co-

343 culture system improved TN removal rate to 19 mg L-1 d-1 (Mujtaba and Lee, 2017). Such 

344 findings indicated the pivotal role of microalgae for TN assimilation in most ratios (e.g., 

345 1:0, 9:1, 3:1). However, to select a proper ratio, an evaluation for phosphorus removal 

346 needs to be considered, and such results are discussed later.

347 Insert Fig. 3

348

349 To obtain an insightful evaluation for optimal microalgae:sludge ratio and understand 

350 nitrogen transformation, concentrations of NH4
+-N, NO2

--N and NO3
--N were measured for 

351 the whole course of experimental assay (Fig. S-6a, c, e). In general, concentrations of NO2
--N 
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352 and NO3
--N were very low for the first 2 d. Later on, the concentrations started increasing 

353 gradually for all co-cultures and this might contribute to nitrification occurred. The maximum 

354 concentrations of NO2
--N and NO3

--N were obtained in 3:1 ratio of the co-culture system. For 

355 0:1 ratio, low NH4
+-N assimilation was denoted as well as the concentrations of NO2

--N and 

356 NO3
--N appeared very minor (Fig. S-6a) which was due to insufficient dissolved oxygen 

357 concentration (DO < 0.5 mg L-1) (Fig. 2a, b). Through literature, it has been indicated that 

358 adequate nitrification requires DO level higher than 2.5 mg L-1 (Nguyen et al., 2016). In 

359 contrast, NH4
+-N concentration of 1:0 ratio decreased eight-fold from 200 mg L-1 to 25 mg L-

360 1 in 4 d (Fig. S-6a) indicated that assimilation was the main pathway for nitrogen remediation 

361 (Fig. 3b). The symbiosis of microalgae and bacteria occurred in the co-culture systems; 

362 thereby the released oxygen from photosynthesis of microalgae was consumed by bacteria 

363 towards the nitrification process. However, NO3
--N concentration was not high, and this fact 

364 was caused by either NO3
--N denitrification or NO3

--N assimilation of microalgae. As 

365 reported microalgae also used NO3
--N as a nutrient source for cell built-up upon exhausted 

366 NH4
+-N source (Kim et al., 2010). The mechanism of nitrogen removal could be described 

367 using the results in Fig. 3b. Generally, assimilation process contributed dominantly for 

368 overall nitrogen removal. Table 3 exhibits the results of TN specific uptake rates for all 

369 microalgae:sludge ratios. Higher microalgae fraction in a co-culture system resulted in higher 

370 biological assimilation of nitrogen (Fig. 3b). Compared to activated sludge, microalgae 

371 played a dominant role in biological assimilation of nitrogen. It can be seen that, for ratio 1:0, 

372 TN denitrification and assimilation fractions were minor and marked 9.3% and 13.5%, 

373 respectively. It rendered low TN removal. Among the co-culture systems, inoculation ratios 

374 having higher sludge fraction provided better denitrification pattern. As observed in Fig. 2a, 

375 DO concentration in the light phase was over 4 mg L-1, which hindered the denitrification 

376 process. It is anticipated that denitrification was possible to occur in the dark phase with DO 
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377 lower than 0.5 mg L-1. However, this fact was activated in a weak manner for 9:1 and 3:1 

378 ratios. Given these conditions, visualization of the outcomes was made by microscopic 

379 images. Our results confirmed a spatially adjacent microcosmic structure forming in between 

380 activated sludge and microalgae cells (Fig. S-4a, b). Such structure supported bacteria to 

381 obtain adequate O2 released by microalgae, it also potentially hinder bacteria from contacting 

382 the anoxic zone in the reactor and inhibited denitrification (Guo and Tong, 2014). As reported 

383 from past work (González-Fernández et al., 2011), while the substrate extent strongly 

384 influenced nitrogen formation, their study indicated denitrification was the main contribution 

385 in a co-culture system for pig slurry wastewater having high COD:N ratio of 7.7:1 (González-

386 Fernández et al., 2011). Another one reported that with the COD:N ratio of 3.5:1, 80% 

387 nitrogen removal was obtained from nitrification-denitrification (Wang et al., 2015). 

388 Therefore, a low COD:N ratio (2.5:1) of feed wastewater used in this study might be a final 

389 explanation for a low denitrification. Overall findings indicate that the COD:N ratio and 

390 inoculum ratio posed certain effects on the nitrogen removal mechanism.

391 Insert Table 3

392

393 Apart from nitrogen, phosphorus also played a key role for microalgae growth as it was a 

394 vital element for cell metabolism. Polyphosphate-accumulating organisms (PAOs) are a vital 

395 group in activated sludge which functioned phosphorus removal (Gutzeit et al., 2005; ; Ji et 

396 al., 2018b; Huo et al., 2020b). The data showed that ratios of pure microalgae and co-culture 

397 systems remediated TP in a greater extent than single bacteria culture (p < 0.05). In general, 

398 TP was removed increasingly with the fraction of microalgae in co-culture systems (Fig. 3-c). 

399 For 0:1 ratio, TP was removed insignificantly and this fact can probably be attributed to the 

400 poor presence of PAOs in the experimented cultures (Church et al., 2017). In microalgae 

401 cultivation, TP could be assimilated to form algae biomass which was the key mechanism (Su 
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402 et al., 2012). Therefore, in this study, the highest TP removal attributed to single microalgae 

403 culture (1:0 ratio) which remediated 98% TP after 9 d. Meanwhile, for the co-culture 

404 systems, the removal efficiencies of 9:1, 3:1 and 1:1 ratios were 98%, 93% and 62%, 

405 respectively. Such results indicated that bacteria did not contribute effectively in phosphorus 

406 removal rather than microalgae. Another study reported that pH and DO could also impact 

407 TP remediation. Phosphorus could be precipitated at pH beyond 8 and high DO level (Godos 

408 et al., 2009). In this study, pH was higher than 8 and DO exceeded 4 mg L-1 for 1:0, 9:1, and 

409 3:1 ratios during the growth phase. This implied that phosphate precipitation joined to 

410 decrease phosphorus concentration; however, this mechanism appeared very minor in the co-

411 culture system (Zhu et al., 2019). Fig. S7-b shows that TP removal rates ranged from 1.6 to 

412 7.2 mg L-1 d-1 being higher than that of 1.3 mg L-1 d-1 of  (Mujtaba and Lee, 2017) who co-

413 cultured microalgae and activated sludge (1:1) with low-strength municipal wastewater (COD 

414 = 60 mg L-1, TP = 1.3 mg L-1). Higher TP removal rate in our study could be explained due to 

415 higher COD concentration of the feed wastewater (COD = 500 mg L-1 and TP = 45 mg L-1). 

416 Although single microalgae culture has been noticed for high TP removal (Delgadillo-

417 Mirquez et al., 2016), the obtained results suggested that 3:1 and 9:1 ratios of co-culture 

418 systems were highly feasible for total phosphorus remediation in practice.

419

420 3.2.2. Organic matter removal

421 Together with nitrogen and phosphorus, organic matter supply carbon source for cells to 

422 synthesize materials and store energy. Co-culture could also assimilate carbon from COD 

423 for those purposes. Fig. 4 indicates that COD removal by microalgae culture alone was 

424 much better than activated sludge culture. This is attributed to the experimental conditions 

425 given that PBRs were operated under photoheterotrophic mode which favored microalgae 

426 growth and COD uptake (Sforza et al., 2018). For 3:1 and 1:1 ratio, COD concentration 
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427 decreased by 85 - 96% after 4 d and residual COD concentrations were 19 and 74 mg L-1, 

428 respectively. Acetate substrate used in this study is a readily biodegradable compound; thus 

429 it could be a substrate for both aerobic sludge and microalgae in a co-culture system (Zhu 

430 et al., 2019). COD concentration of 3:1 ratio increased gradually after biomass growth 

431 curve reached death phase because of endogenous respiration of bacteria and microalgae. 

432 The highest COD removal rate belonged to 3:1 ratio possessing specific uptake rate of 

433 132.7 mgCOD gbiomass-1 d-1 (Fig. S7-c). This ratio is a proper one to promote cooperation 

434 between the microalgae and activated sludge. The ratios of 3:1 and 1:1 exhibited 

435 significantly higher COD removal rate than other ratios (p < 0.05) (Fig. S7-c), being 131 

436 and 118 mg L-1 d-1, respectively. However, those values were lower than COD removal rate 

437 in the results of Zhu et al., 2019 (930 mg L-1 d-1). Compared to our work, the study of Zhu 

438 et al., 2019 used wastewater containing higher COD:N (4.3:1), 2% CO2 aeration and 1:1 

439 inoculum ratio. Such findings indicated COD removal rate depended on several factors 

440 such as COD loading, microalgae:activated sludge fraction and agitating condition of the 

441 co-culture system. Although aeration was not provided in the PBRs, COD was still 

442 eliminated sufficiently in 3:1 and 1:1 ratios. It potentially helps save operating cost. The 

443 ratio of 1:1 showed lower COD removal rate than that of 3:1 (Fig. S7-c). DO of the 1:1 

444 ratio was low (< 1 mg L-1) and it was probably inadequate for bacterial respiration to 

445 mineralize organic matters. Likewise, the 0:1 ratio was more severe as its DO concentration 

446 was lower than that of 1:1 ratio (DO < 0.5 mg L-1) and thus resulted in low COD removal. 

447 DO concentration from 2 to 4 mg L-1 in the mixed liquor of the aeration tank of the 

448 activated sludge process was an important requirement to attain sufficient COD removal 

449 (Metcalf and Eddy, 2003). For 1:0 ratio, although COD was eliminated from 496 to 156 mg 

450 L-1 after 8 d, the COD removal efficiency was relatively low. That is, lacking of bacteria 

451 and microalgae joined insufficiently in COD removal. Overall findings reinforced the 
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452 pivotal cooperation of microalgae and bacteria to increase COD remediation efficacy once 

453 the co-culture system was employed.

454 Insert Fig. 4

455

456 3.3. Role of microalgae and activated sludge under different co-culture systems

457 Insert Fig. 5

458 To explore the role of microalgae and activated sludge on the pollutant’s removal, 

459 correlation analysis between residual pollutant concentration and biomass concentration in 

460 the reactor was conducted for different co-culture ratios (9:1, 3:1 and 1:1 wt/wt). 

461 Microalgae/activated sludge biomass concentration obtained in the log growth phase was 

462 plotted with the corresponded residual concentrations of TP, TN and COD so as to define 

463 the correlation factors through linear regression. As a result, for the TP removal (Fig. 5-a, 

464 b), for all ratios, R2 values of 0.91-0.96 obtained from the microalgae scenario were higher 

465 compared to the activated sludge scenario (R2 = 0.54-0.93), which signifies a stronger 

466 correlation between TP removal and microalgae biomass concentration. As a final point on 

467 the role of activated sludge, the low R2 values of residual TP concentration and activated 

468 biomass concentration (0.64 and 0.67) were found in the co-culture condition of minimal 

469 activated sludge fraction (the ratio of 9:1). In contrast, for the ratio of 1:1, high activated 

470 sludge fraction, a higher R2 value of residual COD concentration and activated sludge 

471 biomass was observed (Fig. 5-c, d), indicated the role of bacteria consortium in activated 

472 sludge on organic removal. For the ratio of 3:1, it is noted no significant difference in R2 

473 values was found between microalgae and activated sludge cases. Such results thus 

474 indicated a certain symbiosis between microalgae and activated sludge that occurred in the 

475 co-culture system operated under the ratio of 3:1. As reported microalgae has ability of 

476 high nitrogen uptake (Cai et al., 2013; Boonchai and Seo, 2015; Jia and Yuan, 2016); 
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477 thereby the high R2 values (0.93-0.97) of residual TN concentration and microalgae 

478 biomass obtained is inevitable. As discussed in section 3.2.1, for the ratio of 1:1, although 

479 bacteria consortium in activated sludge contributed to nitrogen removal through 

480 assimilation and denitrification, such contribution was not major and thereby resulted in 

481 insufficient TN removal. These facts were consistent with a low R2 value of residual TN 

482 concentration and activated sludge biomass concentration (0.51). To sum up, such ratios of 

483 1:0, 9:1, 3:1 were considered for selection based on adequate nutrient removal obtained. 

484 Meanwhile, the co-culture system with ratios of 3:1 and 1:1 facilitated a certain symbiotic 

485 between microalgae and bacteria and thus improved significant COD removal. However, as 

486 a final point on biomass productivity, it is important to propose the inoculation ratio of 3:1 

487 for the co-culture system to ensure both nitrogen and organic removal.

488

489 3.4. Implication works

490 In the current study, a summary of nutrient and organic removal rate, and biomass 

491 production were presented in comparison with the previous studies (Table S-2). Such 

492 factors as different feed wastewater compositions (COD:N ratio, N:P ratio), microalgae 

493 strain, light:dark cycle and mixing/aeration condition were summarized to give an 

494 evaluation on pollutant removal and biomass productivity. A series of inoculation ratios 

495 (i.e., 1:1, 2:1, 3:1, 5:1, 9:1 wt/wt of microalgae:activated sludge) was investigated into the 

496 co-culture systems. It was generally accepted that for the co-culture systems these factors 

497 had certain impacts on treatment performance and biomass production. For instance, whilst 

498 our works explored an optimal ratio of 3:1 for both nutrient/organic removal and biomass 

499 productivity, such a ratio of 5:1 was found in a past study (Su et al., 2012). This fact is 

500 attributed to that their co-culture system was operated under other typical conditions: 

501 wastewater-born microalgae, COD:N = 7.6:1, and N:P = 5.7:1, which is distinct for our 
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502 work (Chlorella sp. microalgae, COD:N = 2.5:1 and, N:P = 4.4:1). In our study, under the 

503 optimal ratio of 3:1, biomass productivity achieved 144 mg L-1 d-1, and such value is 

504 significantly higher compared to the past work (40 mg L-1 d-1). A limited phosphorus 

505 concentration due to a high N:P ratio (22.1:1) in the co-culture system from a past work 

506 might be critical points on inhibited microalgae biomass growth whereas an operation of 

507 light-dark cycle (24h:0h) could cause an influence on bacteria growth (Mujtaba and Lee, 

508 2017). Due to a low COD:N ratio (2.5:1) wastewater, low activated sludge biomass was 

509 always maintained in this study. This condition leads to be favorable for microalgae 

510 enrichment. Such findings, together with the results that with a past study (Zhu et al., 2019) 

511 indicates that COD:N ratio wastewater is a key factor to yield high microalgae biomass in a 

512 co-culture system. Finally, it is important to note that microalgae and activated sludge 

513 could assist together, leading to benefits associated with wastewater treatment. 

514

515 Table S-2 highlights that choosing an optimal inoculation ratio of microalgae:activated 

516 sludge is strictly dependent on types of wastewater (e.g., different COD:N and N:P ratios). 

517 If the co-culture system is implemented in a continuous mode, it should be noted that 

518 influence of the factors such as wastewater compositions (COD:N and N:P ratios), 

519 microalgae/bacteria strain, light:dark cycle, light intensity, and mixing/aeration condition 

520 on pollutant removal and biomass production need to be considered for evaluation. Because 

521 of the complexity of wastewater composition, it is essential to adopt different operating 

522 strategies i.e., inoculation ratios and light:dark cycles for the co-culture system. To apply 

523 for wastewater possessing a low COD:N ratio (2.5:1), overall findings suggested that a 

524 typical inoculation ratio of 2:1-3:1 wt/wt (microalgae: activated sludge) and a light:dark 

525 cycle of 12:12 is a sound guideline for attaining sufficient treatment and high biomass 

526 production. This fact probably brings practical application for the municipal wastewater 
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527 (COD:N ratio of 1.5-5.0), winery wastewater (COD:N ratio of 2.1), etc. It is noted that 

528 choosing design and operating parameters need to be considered if a large-scale system is 

529 implemented in reality. For a continuous mode, controlling biomass retention time (BRT) 

530 plays a pivotal role in retaining the biomass concentration in a reactor. Based on the results 

531 of the maximum specific growth rate, this works can provide an estimation on biomass 

532 retention time (BRT) which is calculated equal to inverse of maximum specific growth rate.  

533 To retain an inoculation ratio of 3:1 in continuous mode, it is suggested that the BRT of 5 d 

534 corresponding to maximum specific growth rate of 0.206 d-1 should be maintained in the 

535 photobioreactor by controlling excess biomass. Such biomass can probably be utilized for 

536 bioenergy production. Several studies reported that added-value products can be obtained 

537 concomitantly with wastewater treatment by microalgae-activated sludge symbiotic. Such 

538 products are biofuels, lipids obtained from harvesting biomass in the co-culture of 

539 microalgae-activated sludge (Leong et al., 2018; Choi et al., 2020).

540

541 4. Conclusion 

542 This work investigated the influence of different microalgae-activated sludge ratios on 

543 nutrients and organic matter removal and biomass production. This study confirmed a certain 

544 symbiosis between microalgae and activated sludge in the co-culture PBRs of 3:1 and 1:1 

545 ratio. However, the 3:1 ratio of microalgae:activated sludge was proposed to attain 

546 simultaneously organic/nutrient removal and biomass production for low COD:N wastewater. 

547 This condition performed sufficient removal of TN (86%), TP (79%) and COD (99%) and 

548 total biomass concentration of 1.12 g L-1. Microalgae played a pivotal role in nutrient 

549 assimilation while activated sludge contributed to TN assimilation, denitrification and COD 

550 removal. 
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552 Appendix A. Supplementary data
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710
711 Figure 1. Total biomass, biomass fraction of microalgae and activated sludge under different 
712 inoculation ratios (microalgae: bacteria wt/wt): (a) 1:0, (b) 9:1, (c) 3:1, (d) 1:1, (e) 0:1 and (f) 
713 Total biomass productivity under ratio conditions
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714
715
716 Figure 2. DO concentration and pH change at different microalgae-activated sludge 
717 inoculation ratios: (a) DO in the light phase, (b) DO in the dark phase, and (c) pH
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718
719 Figure 3. Nutrient removal in the PBRs operated under different inoculum ratios. (a) TN 
720 concentration as a function of time, (b) Mechanisms of nitrogen removal, (c) TP 
721 concentration as a function of time
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722
723 Figure 4. COD removal in the PBRs operated under different inoculum ratios: COD 
724 concentration as a function of time
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725

726
727 Figure 5. Correlation analysis between residual pollutant concentration and biomass 
728 concentration under different co-culture system. Residual TP, COD, TN concentration was 
729 plotted with microalgae biomass (a, c, d). Residual TP, COD, TN concentration was plotted 
730 with activated sludge biomass (b, e, f)
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731 Table 1. Initial concentration of microalgae and bacteria under different inoculation ratios 

732

Microalgae:activated sludge inoculation ratios 
(wt/wt) 1:0 9:1 3:1 1:1 0:1

Initial conc. of microalgae (mg L-1) 400 360 300 200 0

Initial conc. of activated sludge (mg L-1) 0 40 100 200 400

Initial conc. of inoculum biomass (mg L-1) 400 400 400 400 400
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733 Table 2. Specific growth rate of microalgae and activated sludge under different inoculum 
734 ratios

Inoculum ratios
Specific growth rate (d-1)

1:0 9:1 3:1 1:1 0:1

Microalgae 0.254 0.191 0.187 0.131 -

Activated sludge - 0.101 0.084 0.078 0.049

Microalgae and activated sludge - 0.210 0.206 0.092 -
735
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736 Table 3. Specific uptake rate for different inoculum ratios

Inoculum ratiosSpecific uptake rate (mg 
gbiomass-1 day-1) 1:0 9:1 3:1 1:1 0:1

TN specific uptake rate 53.0 31.3 43.3 17.4 11.1

TP specific uptake rate 10.6 7.7 7.6 6.0 4.7

COD specific uptake rate 61.8 63.3 132.7 68.8 23.6

737

738
739 Highlights

740 Microalgae:activated sludge ratio (3:1) was the optimum co-culture operation.

741 Microalgae played a vital role in biomass production and nutrient removal.

742 Under the optimum ratio, COD removal was obtained 98% in 4 days.

743 Biological assimilation majorly contributed to nutrient removal in the co-culture PBR.
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