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Abstract 

Water deficiency due to climate change and the world’s population growth increases 

the demand for the water industry to carry out vulnerability assessments. Although 

many studies have been done on climate change vulnerability assessment, a specific 

framework with sufficient indicators for water vulnerability assessment is still lacking. 

This highlights the urgent need to devise an effective model framework in order to 

provide water managers and authorities with the level of water exposure, sensitivity, 

adaptive capacity and water vulnerability to formulate their responses in implementing 

water management strategies. The present study proposes a new approach for water 

quantity vulnerability assessment based on remote sensing satellite data and GIS 

ModelBuilder. The developed approach has three layers: (1) data acquisition mainly 

from remote sensing datasets and statistical sources; (2) calculation layer based on the 

integration of GIS-based model and the Intergovernmental Panel on Climate Change’s 

vulnerability assessment framework; and (3) output layer including the indices of 

exposure, sensitivity, adaptive capacity and water vulnerability and spatial distribution 

of remote sensing indicators and these indices in provincial and regional scale. In total 

27 indicators were incorporated for the case study in Vietnam based on their 

availability and reliability. Results show that the most water vulnerable is the South 

Central Coast of the country, followed by the Northwest area. The novel approach is 

based on reliable and updated spatial-temporal datasets (soil water stress, aridity 

index, water use efficiency, rain use efficiency and leaf area index), and the 

incorporation of the GIS-based model. This framework can then be applied effectively 

for water vulnerability assessment of other regions and countries. 
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1. Introduction 

Water is a vital resource for people and many industries including agricultural, 

industrial and domestic applications (Anandhi & Kannan, 2018; Vorosmarty et al., 

2010). It helps to sustain ecosystems but it causes disasters like floods or droughts for 

human communities (Brown et al., 2015). The excessive and inappropriate use of 

water resources has increased considerably throughout the world. According to the 

Global International Geosphere-Biosphere Programme (IGB), total water global 

freshwater withdrawals amounted to 4 trillion m
3
 in 2014, representing a six-fold 

increase over the period 1900-2014 (Alcamo et al., 2003; aus der Beek et al., 2010; 

Flörke et al., 2013). Water use per capita throughout world varies greatly depending 

on the latitude, climate and level of countries’ or regions’ development.  

Water stress levels vary greatly in the world’s regions and countries. The Middle East 

and North Africa regions have experienced extremely high rates of water stress when 

their freshwater withdrawals are greater than 80% (Ritchie and Roser, 2020). Several 

countries throughout South Asia and East Asia are experiencing medium to high 

levels of water stress (Ritchie and Roser, 2020). Nearly 80% of people on our planet 

have suffered high threats regarding water security (Vörösmarty et al., 2010). Water 

security has been influenced by abiotic factors like climate, and anthropogenic factors 

such as population and changes in land cover. Their relationships are explored when a 

water vulnerability assessment is conducted (Plummer et al., 2012). Identifying 

appropriately the list of indicators with sufficient input data is crucial and these 

contribute to a proper vulnerability assessment. Figure 1 illustrates a summary of 
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water vulnerability components and sub-components. There are five main 

components, namely water resources, physical environment, economic, social and 

institution with several sub-components which are also depicted in this figure. Those 

sub-components or indicators are then categorized into three vulnerability assessment 

components (Exposure, Sensitivity and Adaptive Capacity). In general, the assessment 

of vulnerability is a very complicated process due to the multi-disciplinary nature of 

the problem, lack of knowledge and understanding of vulnerability theoretical 

frameworks and input data for required indicators related problems (Anandhi and 

Kannan, 2018; Gain et al., 2012).  
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Figure 1. List of potential water vulnerability indicators (modified from (Plummer et 

al., 2012)) 

Previous studies have applied econometric methods by collecting information from 

surveys and questionnaires or index-based methods. These are derived from indicators 

and quantitative analyses of water vulnerability assessments (Bär et al., 2015). 

Indicators are identified by systems thinking approaches developed by experts in 

working in the water sector. The variables of vulnerability assessment can be selected 

through the Driver – Pressure – State - Impact –  Response (DPSIR) framework (Jun et 

al., 2011). Satellite remote sensing datasets like MODIS, Sentinel or Landsat have 

been utilized to monitor water resources and to acquire input data for water 

assessment over the world (Khosravi et al., 2018; Sheffield et al., 2018). 

A variety of methods and frameworks for vulnerability assessment have been 

proposed and applied in many studies. For example, the DRASTIC model and 

Catastrophe Theory have been used to assess groundwater vulnerability (Khosravi et 

al., 2018; Sadeghfam et al., 2016). However, there are several challenges associated 

with these methods: (1) not enough variables for water vulnerability assessment, (2) 

the unavailability and inaccurately input data for indicators, (3) limitations in applying 

spatial and temporal data from satellite images, (4) the practical applications of the 

framework, and (5) tools being limited in supporting water managers with their 

required water planning and management needs. This study aims to address these 

issues. Specifically, the research attempts to build a new spatial approach framework 

for water quantity vulnerability assessment based on mainly time series remote 
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sensing data. Those spatial data were integrated with statistical data for water quantity 

vulnerability assessment. The novelties of the study are: (1) applying updated spatial -

temporal satellite images from reliable datasets as important vulnerability indicators 

such as elevation from ASTER GDEM version 3, leaf area index and net primary 

production from MODIS datasets, and soil water stress from Consortium for Spatial 

Information; (2) utilizing GIS-based model for assessment; (3) incorporating different 

satellite datasets and statistical datasets in the ArcGIS 10.4 platform to construct 

spatial distribution of water vulnerability across ecological and provincial contexts. 

Overall, the evaluation of water quantity vulnerability is of vital importance for 

water managers in making the best decisions that improve the sustainability of 

water resource withdrawals.  

2. Materials and methods 

2.1. Study area 

The study area is the country of Vietnam. Vietnam’s  climate is strongly influenced by 

a monsoon-influenced tropical system with average temperature, precipitation and 

humidity ranging from 22-27
o
C, 1500-3300 mm, and 70% - 85%, respectively. Based 

on the similarity of geographical and climatic conditions, Vietnam comprises eight 

ecological zones and these are the Northeast (NE), Northwest (NW), Red River Delta 

(RRD), South Central Coast (SCC), North Central Coast (NCC), Central Highland 

(CH), South West (SW) and Mekong Delta (MD) (Figure 2). Water sources in 

Vietnam mainly originate from its river basin system. There are 2,360 rivers in 

Vietnam with a length greater than 10km. Red River, Mekong River and Dong Nai 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

8 
 

 

River are the three main river watersheds where about 65% of the country’s 

population living along these rivers (Le Luu, 2019). Water resources management  in 

Vietnam has historically focused on freshwater conservation for agricultural 

production for hundreds of years. According to the data of FAOSTAT, Vietnam is one 

of the world’s main agricultural water users with around 77.75 billion m
3
 per year and, 

importantly, water stress reached a medium-to-high level in 2007 (Ritchie and Roser, 

2020). In recent years there has been no data for water stress in Vietnam yet. 

 

Figure 2. Location map of the study area 

Since the late 1980s, Vietnam has experienced many water-related problems like 

water pollution, flood disasters and water shortages which have compromised the  
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economic transition process and highlighted the dangers posed by climate change  

(Dang et al., 2019; Ngo et al., 2018; Norrman et al., 2008) . A comprehensive 

understanding of water vulnerability not only minimizes the future vulnerabilities but 

also reduces the damage caused by water disasters on fragile ecosystems. Specially, it 

contributes to implementing an effective integrated water management system for 

Vietnam which not only addresses water problems but also introduces other 

environmental benefits like recognition of climate change and being prepared for 

natural disasters. 

2.2. Data acquisition 

Recent decades have experienced a substantial growth in openly available remote 

sensing data with a high resolution. Such data is increasingly playing an important 

role in many studies. These data also provide a vital input for this study. Six global 

gridded geographic datasets, specifically GADM, ASTER GDEM, CHIRPS, Terra 

MODIS, Global Aridity datasets and Global Soil Water Balance datasets were used to 

conduct the water vulnerability assessment (Table 1).  The property characteristics of 

these data differ widely, so it is vital to harmonize data layers so that detailed spatial 

variables that appropriately constructing the indices of water vulnerability can be 

properly processed. 

Table 1. Spatial variables and datasets used in water quantity vulnerability 

assessment 

Variable Scene ID Dataset Spatial 

Resolution 

Temporal 

Resolution 
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Variable Scene ID Dataset Spatial 

Resolution 

Temporal 

Resolution 

Administrative 

boundaries ( all levels of 

sub-division) 

GADM Gadm36_VNM 

version 3.6 

  2018 

Elevation ASTERGD

EMV003 

ASTER GDEM 

v3 

30m 2000 

Precipitation CHIRPS-

v2.0  

Climate Hazards 

Group InfraRed 

Precipitation 

4.8-km 

grid (1/20 

degree) 

Yearly, 

1981-2018 

Net Evapo-transpiration MOD16A3

GF.006 

Terra MODIS 500m  Yearly, 

2000-2019 

Soil Water Stress SWC_fr Global Soil-

Water Balance 

datasets 

1000m Montly,19

70-2000 

Priestley–Taylor 

alpha coefficient 

alpha Global Soil-

Water Balance 

datasets 

1000m Yearly, 

1970-2000 

Aridity Index Ai_et0 Global-Aridity 

datasets 

1000m,  Yearly, 

1970-2000 

Leaf Area Index MOD15A2

H.006;  

Terra MODIS 500m 8 day, 

2000-2019 

Net Primary Production MOD17A3

HGF.006 

Terra MODIS 500m yearly, 

2000-2019 

The study also used data from statistical sources and other documents. Administration 

unit, land use types, education, socioeconomic conditions and water supply systems 

were collected from Vietnam’s national statistical yearbook for 2018. Water damage 

data, economic loss and flood risk index were recently provided by Luu et al. (2019) 

and the Central Committee for Flood and Storm Control (CCFSC) of Vietnam. The 

total human affected by  

2.3. Data analysis  
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2.3.1. Images processing 

ESRI ArcMap v10.4 was employed to process spatial data. Administrative boundaries 

from GADM served to clip or extract elevation, precipitation and other remote sensing 

data to the GADM country codes. ModelBuilder in ArcGIS 10.4 helped to convert 

spatial datasets to Excel datasets for further calculations. All spatial and statistical 

datasets were compiled according to the study site’s provincial and ecological areas 

(Figure 3).  

 

Figure 3. Incorporation of spatial datasets, statistical data set and the study site  

2.3.2. Vulnerability assessment  

One of the most popular concepts of vulnerability was presented in the 2001 IPCC 

report (Thornes, 2002). There are six steps in the vulnerability assessment process. 
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The most important step is to determine appropriate indicators or variables through 

consultations with experts, conducting a literature review or  a field survey. Next is the 

collection of input data for those indicators by a variety of sources such as field 

survey, statistical data and remote sensing datasets. The third step is normalization of 

input datasets via the formula involving the UNDP’s Human Development Index 

(HDI) (Duong et al., 2017; McNicoll, 2007).  

    
          

             
                                                                                                   (1) 

Where     represents for normalized score of the j indicator for the i
th

 area. 

The next one is to calculate the indicators’ weight according to the Iyengar and 

Sudarshan method (Iyengar and Sudarshan, 1982) method as stated here: 

   
 

         
                                                                                                       

(2) 

  ∑
 

         

 
                                                                                                 (3) 

Where K is the number of indicators, C is a normalizing constant,  and    is the 

weight of indicator j (0<1<  ) 

The index for each indicator for in each area was estimated with the calculated 

weight in the previous step via the following formula:  

                                                                                                              (4) 
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Where     is the index of j factor in i
th

 area 

After establishing the indices of indicators, the index of exposure, sensitivity, 

adaptive capacity and water vulnerability are estimated using the equations 

below: 

   = 
∑    

 
 

 
                                                                                                          (5) 

    
(             )

 
⁄                                                                       (6) 

Where    is the index of E, S and AC component (h=E, S, AC); n is the total 

number of indicators for each E, S and AC; and WVI represents the water 

vulnerability index. 

All vulnerability indicators are integrated and visualized by ArcGIS 10.4 

software. Vulnerability maps are constructed according to ecological and 

provincial scale. There are five level of vulnerability including: very low, low, 

medium, high and very high. 

3. Results and Discussion  

3.1. Water quantity vulnerability assessment framework 

The new water vulnerability assessment framework is built based on the general 

vulnerability assessment of IPCC, while the quantitative vulnerability assessment is 

devised by applying the index calculation method, normalization method, and weight 

evaluation method devised by Iyengar and Sudanrshan (Duong et al., 2017). The 
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availability and accurately of input data for identified indicators is an integral part of 

this framework. The calculated results will help researchers in water resource 

management strategies to develop models for mitigating or adapting to climate change 

in the context of population growth and the drivers of economic development. 

The water quantity vulnerability assessment framework is divided into three main 

layers (Figure 4): a data collection layer, a calculation layer and an output layer. The 

data collection layer will provide input data for the calculation layer. The major 

sources including satellite data, national or regional statistical data and information 

from experts, journals and regional documents will be used to collect data for their 

variables. Collected input data are stored in a database system, while statistical data 

can be displayed in Microsoft Excel and spatial data is processed by ArcGIS 10.4. 
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Figure 4. The framework of water vulnerability assessment 

The calculation layer comprises five steps. The first step is to process satellite images 

by a GIS-based ModelBuilder function. The other steps including normalization of 

input data, calculating the weight of these data and the calculation of components and 

indications follow the vulnerability assessment method. The output layer will display 

results of the water vulnerability assessment in the form of tables, maps and graphs; 

this entails integration with Excel program and ArcGIS 10.4. This module is able to 

demonstrate the calculated outputs of exposure, sensitivity and adaptive indices for 

each province or each ecological zone. It also makes it possible to present calculated 

water quantity vulnerability index (WVI) of the study site for specific time periods. 
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The results can be illustrated by maps so that policy-makers or local authorities can 

easily identify the degree of water vulnerability for their regions in order to implement 

the best strategies for water management. 

3.2. Selection of water vulnerability indicators  

Indicators collected are divided into three groups, i.e. Exposure (E), Sensitivity (S) 

and Adaptive Capacity (AC) (Table 2). A greater number of indicators which can be 

acquired will create more appropriate results for understanding vulnerability 

assessment. Through a literature review and the limitation of data at the study site, the 

total number of variables is 27 indicators including 9 for exposure components, 6 for 

sensitivity components and 12 for adaptive components. These indicators originate 

from many sources. Spatial data are collected from satellite datasets such as MODIS 

images, ASTER GDEM and Consortium for Spatial Information. Other data are 

derived from national and provincial statistical yearbooks and relevant journal papers.  

Table 2.  The selected indicators for water vulnerability assessment  

Component Indicator Code Unit Period Data Source 

Exposure  Evapotranspiration  E1 mm 1981-

2018 

Trabucco and 

J.Zomer, 2018 

Annual rainfall  E2 mm 1981-

2018 

Climate Hazards 

Group InfraRed 

Precipitation 

(CHIRPS) 

Aridity index E3   1970-

2000 

Consortium for 

Spatial Information 

Flood index E4   1989-

2015 

(Luu et al., 2019) 
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Component Indicator Code Unit Period Data Source 

Elevation  E5 m 2016 ASTER GDEM 

version 3 

Priestley–Taylor 

alpha coefficient 

E6   1970-

2000 

Consortium for 

Spatial Information 

Impervious surface 

ratio 

E7 % 2000-

2018 

Vietnam statistical 

yearbook  

Population density  E8 person/k

m
2
 

2000-

2019 

Vietnam statistical 

yearbook  

Population growth 

rate  

E9 % 2000-

2020 

Vietnam statistical 

yearbook  

Sensitivity Irrigation -Eroded 

earth, rock 

S1 m
3
 1989-

2015 

(Luu et al., 2019) 

 

Economic loss S2 Million 

VND 

1989-

2015 

(Luu et al., 2019) 

Soil Water Stress S3   1970-

2000 

Consortium for 

Spatial Information 

Agricultural 

production land 

S4 km
2
 2000-

2018 

Vietnam statistical 

yearbook  

Female  S5 Thousand 

people 

2000-

2018 

Vietnam statistical 

yearbook  

Poverty rate S6 % 2000-

2018 

Vietnam statistical 

yearbook  

Adaptive 

Capacity 

Water Use 

Efficiency 

AC1 g/Cm
2
 

mm 

2000-

2019 

Calculated from 

NPP and 

evapotranspiration 

Rain Use 

Efficiency 

AC2 g/Cm
2 

mm 

2000-

2019 

Calculated from 

NPP and 

precipitation 

Leaf area index 

(LAI) 

AC3 m
2
/m

2
 2000-

2019 

MODIS data 

(MOD15A2) 
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Component Indicator Code Unit Period Data Source 

River density  AC4 m/km
2
 2010 Hanoi University 

of Science 

Road density  AC5 m/km
2
 2010 Hanoi University 

of Science 

Pervious surface AC6 % 2000-

2018 

Vietnam statistical 

yearbook  

Percentage of 

trained employed 

workers at 15 years 

of age and above 

AC7 % 2000-

2018 

Vietnam statistical 

yearbook  

Total foreign direct 

investment until 

2018  

AC8 Mil.USD 2000-

2018 

Vietnam statistical 

yearbook  

Number of health 

establishments 

AC9 Establish-

ments 

2000-

2018 

Vietnam statistical 

yearbook  

Percentage of 

urban population 

provided with 

clean water by 

centralized water 

supply system 

AC10 % 2000-

2018 

Vietnam statistical 

yearbook  

Percentage of 

household having 

hygienic water 

AC11 % 2000-

2018 

Vietnam statistical 

yearbook  

Annual income  AC12 Thousand 

VND 

2000-

2018 

Vietnam statistical 

yearbook  

The water vulnerability assessment was determined by combining important spatial 

indicators that include the evapotranspiration, annual precipitation, aridity index, soil 

water stress, Priestley–Taylor alpha coefficient, leaf area index, water use efficiency 

and rain use efficiency. Annual precipitation data was collected from Climate Hazards 

Group Infrared Precipitation with Station data (CHIRPS) for the years 1981-2018 
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when floods and droughts were studied (Isundwa and Mourad, 2019). Aridity index 

(AI) was evaluated from mean annual precipitation and mean annual reference evapo-

transpiration (Trabucco and J. Zomer, 2018). It can be acquired from the Consortium 

for Spatial Information. Higher aridity index indicates less aridity and this data can be 

applied for research on environmental conservation, sustainable water development 

and climate change projects. 

The annual soil water stress was estimated by the average of monthly soil water stress.  

Soil stress coefficient (Ksoil) represents soil water stress (SWS) which was calculated 

by the ratio of monthly soil water content (SWCm) and the maximum amount of soil 

water content for evapotranspiration process (SWCmax) according to this formulation 

(Trabucco, 2010):  

Ksoil = SWCm/ SWCmax 

SWS = Ksoil  * 100 

Leaf Area Index (LAI) is defined as the leaf occupied area in a unit of land (Fang and 

Liang, 2014). The research used the annual LAI values in standard deviation of the 

leaf area index (LAI) for the 19 years from February 2000 to December 2019, which 

processed the MODIS images – MOD15A2 version 6 product. This dataset is the 

acquisition of the Terra sensor in an 8-day composite dataset with a 500m resolution. 

The version 6 product is of superior quality compared to other versions of 1000m 

resolution. MODIS land products were validated by the MODIS Land Team and Earth 

Observing System Validation Program Office (Justice et al., 2002; Morisette et al., 

2002). 
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Water Use Efficiency (WUE) is presented as the amount of biomass produced (gram 

of carbon mass per m
2
) per mm of water used by crops (Hatfield and Dold, 2019). 

Annual water use efficiency is calculated as the ratio of net primary production (g 

C/m
2
/mm) per amount of water loss which were defined by units of annual 

evapotranspiration (mm). Rain Use Efficiency (RUE) is identified by the ratio of the 

net primary production and amount of annual precipitation (Dardel et al., 2014). Net 

primary production (NPP) is identified as total amount the carbon which ecosystems 

receive through the photosynthetic reduction of CO2
 
discounted for plant autotrophic 

respiration (Chapin and Eviner, 2007; Running et al., 2000). Photosynthesis is 

affected by droughts, floods and other types of extreme climate patterns (Zhang et al., 

2017). NPP has the negative correlation with water disasters. So, the estimation of 

NPP plays an important role in predicting climate change and its impact on water 

issues that increasingly threaten the ecosystem. This paper used NPP as an indicator to 

assess water vulnerability index. NPP datasets were acquired from Terra MODIS 

17A3H with a resolution of 500m for the study site covering the period 2000-2019. 

3.3. Mapping of satellite data 

Spatial data after collecting were processed in ArcGIS 10.4 using ModelBuilder 

function. Leaf Area Index, Precipitation or Net Primary Production are displayed as 

time series spatial raster image. ModelBuilder makes it possible to analyse these data 

through analytical procedures. The model created from this function can be transferred 

into the tool and then allowed to share and be applied in other studies that examined 

different regions. ModelBuilder is a visual programming tool that serves to build 

workflows with a sequence. Figure 5 presents the explicit modelling process of 
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extracting precipitation from remote sensing datasets. Other spatial data are analysed 

with a similar process. The blue blocks are primary input data, the yellows ones are 

geo-processing tools and the green blocks are the results of one geo-processing tool 

and subjected to the input of another tool in the model. The model in Figure 5 consists 

of five steps each one using a processing tool: (1) evaluating the world’s average 

precipitation from 1970 to 2018 by raster calculation tool or cell calculation tool; (2) 

extracting data for study area by extract by mask tool; (3) determining statistic values 

for each region or area by zonal statistic tool; (4) reporting the results on a table by 

zonal statistic; and (5) converting these data into an Excel spreadsheet. Extracted data 

from satellite images are analysed in the following steps using Excel and R 

programming. 
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Figure 5. The example of a GIS-based model for precipitation data processing  

Yearly actual evapotranspiration data was estimated by the average of 

evapotranspiration from 1950 to 2000 (Trabucco, 2010). The annual precipitation in 

Vietnam ranges from about 1480 mm to 3270 mm and the mean annual 

evapotranspiration is about 810 mm to 1220 mm (Figure 6). While annual 

precipitation is higher in the central region and lower in the north area of Vietnam, the 

provinces in the country’s south west region represent have more annual 

evapotranspiration. Figure 6 illustrates the Vietnam aridity index which is extracted 

from the Global Aridity Index dataset with high-resolution (30 arc-seconds) global 

raster climate data from 1970 to 2000. The aridity index for all provinces in Vietnam 

is higher than 0.65 which means Vietnam belongs to the humid climate class 

according to Table 3. The most humid area in Vietnam is the central coast region with 

an aridity index of nearly 1.5. 
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Table 3. The Classification of climate types based on aridity index (adapted from 

(Trabucco and J. Zomer, 2018))   

Aridity Index Climate type 

< 0.03 Hyper Arid 

0.03-0.2 Arid 

0.2-0.5 Semi-Arid 

0.5-0.65 Dry sub-humid 

> 0.65 Humid 

Provinces in Vietnam’s south central coast region have the highest value of soil water 

stress with more than 80% of water available for evapotranspiration, indicating high 

water content in soil so there is less water vulnerability in this area. In contrast , Khanh 

Hoa and Ninh Thuan provinces experience less soil water stress and higher water 

vulnerability with SWS value ranging from 61% to 67%. The Priestley–Taylor alpha 

coefficient (PAC) was calculated by the fraction of annual actual evapotranspiration 

and the annual potential evapotranspiration (Trabucco, 2010). The value of PAC 

ranges from 0-100%. The higher value of PAC illustrates lower water vulnerability so 

consequently, PAC was selected as one of the indicators for assessing water 

vulnerability. It can be seen in the figures below that while the north of Vietnam has 

higher PAC values than other regions, the central highland and south central coast 

experience lower PAC values.  

Low values of LAI can be seen in the southeast area and Mekong Delta, followed by 

the Central Highlands zone.  Hau Giang and Long An provinces had a LAI index 

below 30 m
2
/m

2
, while in comparison, Ca Mau and Bac Kan experienced higher LAI 

values with nearly 115 m
2
/m

2 
(Figure 6). LAI are influenced by natural factors, for 
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example climate but there are also human factors involved such as farming and 

deforestation activities. LAI is deemed to be an indicator which impacts on water 

resources. This is due to the processes of evapotranspiration, water flow and 

infiltration, and aquifer recharge (Taugourdeau et al., 2014). Higher level of LAI 

value results in a much reduced water risk (Isundwa and Mourad, 2019). 
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(d) 
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Figure 6. Mapping of spatial distribution for Vietnam’s provincial remote sensing 

indicators 
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Higher WUE and RUE values can be observed in the Mekong Delta. In contrast, the 

Central Coast area and Central Highlands have experienced lower levels of WUE and 

RUE. The country’s northwest region also suffered from poor water use efficiency. 

The provinces Lam Dong, Kon Tum and Dak Nong in the Central Highlands area 

have the lowest value of NPP; about 50 g C/m
2
 resulting in lower WUE and RUE. In 

contrast, Mekong Delta and Red River Delta experienced higher levels of NPP. Ca 

Mau province witnessed the highest value of NPP with 230 g C/m
2 

and it had the 

highest level of WUE and RUE, followed by Bac Lieu province.   

3.4. The weights of indicators 

The weights of selected indicators are identified in Table 4 that represent their 

contribution to the issue of water quantity vulnerability. There are four main methods 

to evaluate indicators’ weights: (1) identifying the weights by expert consultants and 

interviews; (2) assumption of the equal weight for all variables; (3) applying 

multivariate statistical techniques; and (4) using the Iyengar and Sudarshan  method. 

The fourth method is the easiest to apply and the most feasible for this study. The 

indicators’ weights were determined by the Iyengar and Sudarshan method via the 

Excel function. These weights were calculated independently for each component of 

exposure, sensitivity and adaptive capacity that are illustrated in Table 4. Impervious 

surface ratio, female ratio, population density and river density were identified as 

having higher relative importance compared to other indicators in this vulnerability 

assessment. 
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Table 4. Results of the weight calculation 

Component Indicator Code Weight 

Exposure  Evaporation  E1 0.135 

Annual rainfall  E2 0.0951 

Aridity index E3 0.0908 

Flood index E4 0.0877 

Elevation  E5 0.079 

Priestley–Taylor alpha coefficient E6 0.1013 

Impervious surface ratio E7 0.1709 

Population density  E8 0.1433 

Population growth rate  E9 0.097 

Sensitivity Irrigation -Eroded earth, rock S1 0.1666 

Economic loss S2 0.1482 

Soil Water Stress S3 0.1851 

Agricultural production land S4 0.1276 

Female ratio S5 0.215 

Poverty rate S6 0.1575 

 

 

 

 

Adaptive 

Capacity 

Water Use Efficiency AC1 0.0833 

Rain Use Efficiency AC2 0.0939 

Leaf area index (LAI) AC3 0.0703 

River density  AC4 0.1325 

Road density  AC5 0.1062 

Pervious surface AC6 0.0665 

Percentage of trained employed workers at 15 

years of age and above 

AC7 0.079 

Total foreign direct investment until 2018  AC8 0.0816 

Number of health establishments AC9 0.0897 

Percentage of urban population provided with 

clean water by centralized water supply 

AC10 0.0729 
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Component Indicator Code Weight 

system 

Percentage of household having hygienic 

water 

AC11 0.0468 

Annual income  AC12 0.0773 

 

3.5. Spatial distribution of water vulnerability  

The indices of E, S, AC and WVI were then calculated and ranked for ecological 

zones and provincial areas as well. Of the eight ecological zones, the northeast area 

experienced both the lowest level of exposure, sensitivity and adaptive capacity which 

are indicated in Table 5. Very low vulnerability occurs in Southeast area. The Mekong 

Delta although has the highest level of sensitivity, it exposes low vulnerability due to 

exhibiting very high level of adaptive capacity compared to the other ecological 

zones. The South Central Coast area is greatly influenced by flood disasters and 

extreme climate events (Luu et al., 2019). It is one reason causing the highest level of 

water vulnerability sensitivity in the South Central Coast (Table 5). The study results 

suggest that the very high vulnerable area are the South Central Coast and Northeast, 

followed by Red River Delta and Central Highlands. 

Table 5.  Results of water quantity vulnerability assessment for the ecological zones 

EZ Exposure Sensitivity 
Adaptive 

Capacity 
WVI 

Vulnerability 

level 

Northeast 0.3193 0.1671 0.1671 0.4398 Medium 

Northwest 0.3323 0.1698 0.1764 0.4419 Very high 

Red River Delta 0.3229 0.1681 0.1701 0.4403 High 
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North Central Coast 0.3270 0.1795 0.1885 0.4393 Low 

South Central Coast 0.3401 0.1763 0.1861 0.4435 Very high 

Central Highlands 0.3280 0.1695 0.1757 0.4406 High 

Southeast 0.3202 0.1713 0.1816 0.4366 Very low 

Mekong Delta 0.3269 0.1801 0.1891 0.4393 Low 

The indices for exposure, sensitivity and adaptive capacity at the provincial level were 

also established (see Figure 7). The most vulnerable provinces are Yen Bai, Binh 

Dinh, Khanh Hoa, Ho Chi Minh, Ninh Thuan, Da Nang and Quang Nam. In contrast, 

Binh Duong, Hoa Binh, Tay Ninh, Nghe An, An Giang, Ha Tinh experienced a low 

level of water vulnerability (Figure 8a). Results concerning provincial water 

vulnerability indices can help local authorities with their water systems planning and 

deciding on what is the best strategy to implement. 

(c) 
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Figure 7. Spatial distribution for provincial exposure index (a), sensitivity index (b) and adaptive capacity index (c) 
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Figure 8. Spatial distribution of provincial water quantity vulnerability index (a), and 

ecological water quantity vulnerability index (b)  

The vulnerability index is influenced by all three components of exposure, sensitivity 

and adaptive capacity. The spatial distribution of water quantity vulnerability for 

Vietnam’s eight ecological zone is provided in Figure 8b. This picture clearly 

indicates the most vulnerable ecological zones which are the South Central Coast  and 

the North West. Those areas also experienced poor water use efficiency levels. The 

South Central Coast area has a higher exposure index with lower adaptive capacity 

and it suffers the highest vulnerability index. It is also evident that the South East is 

the least vulnerable due to the lower level of exposure and the fact that the Mekong 

Delta is highly resilient because adaptive capacity there is very high.  
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4. Overall discussion  

The approach can be applied easily for other studies and regions with freely accessible 

spatial data sources. Assessing water quantity vulnerability is to identify regions and 

communities that need to prioritize planning and implementing water strategies in 

terms of water stress across the world. The finding indicates the South Central Coast 

has very high level of water quantity vulnerability. The South Central Coast area also 

was identified as the highest vulnerable area to typhoons and floods (Nguyen et al., 

2019; Luu et al., 2019). The Northwest region was illustrated as very high vulnerable 

area in the study due to the lower level of community’s resilience which was 

presented in the other studies of vulnerability assessment for Vietnam (Few & Tran, 

2010; Thanh Thi Pham et al., 2020). The framework employed 27 important spatial-

temporal indicators, however; it did not explore other influential factors such as 

freshwater availability, water stress, water withdrawal for different reasons or other 

institutional indicators due to the unavailability of data in the study area.  In addition, 

water related hazards like water pollution and contamination should be undertaken in 

the research. These aspects should be incorporated in further water vulnerability 

assessment studies. 

Uncertainties in the study should be addressed through verification processes by 

survey, questionaries and a communication between experts from different fields such 

as social, technical and political fields. For example, indicator’s selection and  

indicator’s weight should be cross-checked through consultations with scientists and 

local officials so that it will help the current framework become more refined. In the 
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scope of this study, the verification of the results were carried out on the total number 

of human affected (deaths, injured, missing) by flood, flash-flood, rain, storm and 

typhoon and water quality vulnerability index using a multiple linear regression 

analysis in R. Human affected data were collected from Sendai Framework for 

Disaster Risk Reduction the Central Committee for Flood and Storm Control 

(CCFSC) of Vietnam from 1989 to 2015. The coefficient of determination (R
2
) is one 

of statistical measures, which is applied to assess the model performance ( Anandhi 

and Kannan, 2018).  If the R-squared is greater than 60%, it is considered acceptable 

for hydrological simulation and prediction (Anandhi and Kannan, 2018; Moriasi et al., 

2007; Santhi et al., 2001). There was a linear relationship between the water quantity 

vulnerability and the observations of human affected by water related hazards with the 

multiple coefficient of determination (R-squared) of 0.6463 and residual standard 

error of 0.6406. Figure 9 indicates that the results of new approach are reasonable as 

residuals are close to straight dashed lines. 

 

Figure 9. Linear regression plots 
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Furthermore, the further water vulnerability assessment should consider the concept of 

sustainability in the DPSIR (Driver-Pressure-State-Impact-Response) framework for 

the selection of vulnerability’s indicators. Moreover, it should be applied machine 

learning methods like Analytical Hierarchy Process (AHP), the Fuzzy Logic, Weights 

of Evidence (WOE) and Logistic Model Tree (LMT) to improve the results of the 

framework (Khosravi et al., 2018). Finally, the accepted framework should integrate 

climate change and population growth scenarios so that a future water vulnerability 

index can be predicted. 

The results of the study are still beneficial although its limitations and uncertainties. 

Firstly, it can be used for water quantity vulnerability adaptation and mitigation 

research by providing standardized input data for site selection of alternative water 

practices. Secondly, it helps practitioners and administrators identify influencing 

factors to water quantity vulnerability in order to support them more understanding the 

water system. In addition, it allows policy makers appreciate baseline data and wide 

range of information for water implementation practices. Finally, the water quantity 

vulnerability framework of the study employing updated spatial datasets is an 

indispensable approach for countries where lack of efficient data for conducting 

vulnerability and impact analyses. 

5. Conclusions 

Appropriate evaluation of water vulnerability is vital if we are to understand the 

impact of climate change and human activities on water resources . Water managers 

must have the most effective water management strategies in the future where climate 

change will influence much of what human societies do. Several methods and 
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frameworks of vulnerability assessment are available, but their performance can be 

compromised by several obstacles due to the unfeasibility and unavailability of input 

data. This study developed a new assessment framework that considered the  

contribution of satellite datasets like Terra MODIS and the utilization of GIS-based 

model. The integration is very useful and flexible for the complexity of vulnerability 

assessment. Moreover, this study calculated the indices of water quantity vulnerability 

components and constructed spatial distribution maps of water exposure, sensitivity 

and adaptive capacity in different scales for a case study. This part of the study was  

based on 27 chosen time series indicators. The findings indicated that the South 

Central Coast experiences extremely vulnerable, while the South East region is the 

least vulnerable region. Yen Bai, Binh Dinh, Khanh Hoa, Ho Chi Minh, Ninh Thuan, 

Da Nang and Quang Nam provinces are classified as very high vulnerability. Through 

the calculation of indicators’ weight, it can be concluded that more responsible 

variables for high level of water vulnerability are impervious surface ratio, population 

density, healthcare establishment, water use efficiency and river density. Vietnam’s  

growing population is accompanied by an increase in the impervious surface 

infrastructures like high-rise building and deforestation. These activities are triggering 

a high rate of water quantity vulnerability. A future work should be considered 

scenarios namely population, water availability, climate change to enhance water 

vulnerability evaluation and increase the resolution of the framework in identifying 

vulnerable hotspots. In addition, the machine learning methods and field observations 

should be integrated to increase the accuracy of such framework. 
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