
“© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.”

1

Consensus learning for distributed fuzzy neural
network in big data environment

Ye Shi, Member, IEEE, Chin-Teng Lin, Fellow, IEEE, Yu-Cheng Chang, Student Member, IEEE,
Weiping Ding, Senior Member, IEEE, Yuhui Shi, Fellow, IEEE, and Xin Yao, Fellow, IEEE

Abstract—Uncertainty and distributed nature inherently exist
in big data environment. Distributed fuzzy neural network
(D-FNN) that not only employs fuzzy logics to alleviate the
uncertainty problem but also deal with data in a distributed
manner, is effective and crucial for big data. Existing D-FNNs
always avoided consensus for their antecedent layer due to
computational difficulty. Hence such D-FNNs are not really
distributed since a single model can not be agreed by multiple
agents. This paper proposes a real D-FNN model to handle
the uncertainty and distributed challenges in the big data
environment. The proposed D-FNN model considers consensus
for both the antecedent and consequent layers. A novel consensus
learning, which involves a distributed structure learning and a
distributed parameter learning, is proposed to handle the D-
FNN model. The proposed consensus learning algorithm is built
on the well-known alternating direction method of multipliers,
which does not exchange local data among agents. The major
contribution of this paper is to propose the real D-FNN model
for the big data and the novel consensus learning algorithm for
this D-FNN model. Simulation results on widespread datasets
demonstrate the superiority and effectiveness of the proposed
D-FNN model and consensus learning algorithm.

Index Terms—big data, distributed fuzzy neural network,
consensus learning, distributed structure learning, distributed
parameter learning, alternating direction method of multipliers.

I. INTRODUCTION

In the last decade, emerging technology and breakthroughs
have driven the boom of big data in a wide variety of

Ye Shi and Chin-Teng Lin contributed equally to this work. This work was
supported in part by the Australian Research Council (ARC) under discovery
grants DP180100670 and DP180100656. We also thank the NSW Defence
Innovation Network and NSW State Government of Australia for financial
support of this project through grant DINPP2019 S1-03/09. Research was
also sponsored in part by the Office of Naval Research Global, US, and
was accomplished under Cooperative Agreement Number ONRG-NICOP-
N62909-19-1-2058. The work was also supported in part by the National
Natural Science Foundation of China under Grant 61976120, in part by the
Natural Science Foundation of Jiangsu Province under Grant BK20191445,
in part by the Six Talent Peaks Project of Jiangsu Province under Grant
XYDXXJS-048, and in part by the Qing Lan Project of Jiangsu Province.

Ye Shi, Chin-Teng Lin, and Yu-Cheng Chang are with CIBCI lab, Centre for
Artificial Intelligence, the School of Computer Science, University of Technol-
ogy Sydney, Broadway, NSW 2007, Australia (email: Ye.Shi-1@uts.edu.au,
Chin-Teng.Lin@uts.edu.au and Yu-Cheng.Chang@student.uts.edu.au)

Weiping Ding is with School of Information Science and Technology,
Nantong University, Nantong 226019, China (e-mail: dwp9988@163.com)

Yuhui Shi is with Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen, China (e-mail:
shiyh@sustc.edu.cn)

Xin Yao is with Shenzhen Key Laboratory of Computational Intelligence,
Department of Computer Science and Engineering, Southern University of
Science and Technology, Shenzhen 518055, China, and CERCIA, School of
Computer Science, University of Birmingham, Birmingham B15 2TT, U.K.
(e-mail: xiny@sustc.edu.cn)

domains, such as social networks, commerce, astronomy, bi-
ology, medicine and so on [1]. Big data has been continuously
generated at an unprecedented rate. It is expected that digital
information will reach 40 trillion gigabytes by 2020, increasing
from 0.13 trillion gigabytes in 2005 [2]. How to benefit from
the massive amount of big data has become more significant
than ever before.

Nowadays, machine learning has proved to be a ubiquitous
and indispensable solution for data-driven problems in most
sciences [1], [3]. On the other hand, uncertainty inherently
exists in these data-driven problems during the process of
data collection. Particularly, data collected from sensors, social
media, financial and medical records are prone to confronting
various uncertainties due to measurement errors, incomplete
knowledge and subject difference [4]–[6]. Various forms of
uncertainty may degrade the effectiveness and accuracy of
intelligent agents, e.g. decision, prediction and control sys-
tems. Generally, there are two types of uncertainty that should
be taken into consideration when designing intelligent agents
— epistemic uncertainty and aleatoric uncertainty. Epistemic
uncertainty mainly results from imprecision in data and obser-
vations or linguistic ambiguity in knowledge while aleatoric
uncertainty refers to the inherent variability of subjects or
physical systems [5], [6]. Worse, the big data environment is
more likely to suffer from uncertainty due to the high dimen-
sional, heterogeneous and unpredictable data characteristics.
Therefore, alleviating the effect of uncertainty in the big data
environment has become an urgent and inevitable task.

Fortunately, fuzzy inference systems [7], which take advan-
tage of fuzzy logic to measure the value with incomplete or
uncertain information, has been demonstrated to be powerful
and effective to deal with uncertainties [8]. Therefore, fuzzy
neural network (FNN) which exploits both fuzzy inference
systems and neural networks can be a good solution for
machine learning tasks in the big data environment with
uncertainty. Several studies have demonstrated that FNN is
capable of dealing with uncertainty benefiting from its fuzzi-
fication operation and if-then-rule architecture [6], [9], [10].
The Gaussian membership function used in the fuzzification
operation can describe the input data in a specific range of
distribution as membership degree, which provides a tolerance
toward epistemic uncertainty, such as noise and variations in
data [6], [10]. The fuzzy if-then-rule can model dependency
between input and output variables. Each fuzzy rule will
represent an inference logic for different observation situations
associated with various data [6]. Apart from the fuzzy-based
method, an extreme learning machine method was used in [11]

2

to address the classification problem on uncertain XML doc-
uments. However, its application in the big data environment
is not clear.

Another key issue in the big data environment is the
distributed nature of the real world data. The massive amount
of data may be not available on a single controller, but
distributed throughout a network of interconnected agents [12].
The limitations of communication load and storage resources
of a single agent also possibly restrict its implementation for
large amount of data. Additionally, unlimited data transition
between agents may lead to serious security and privacy issues,
which have attracted increasing public attention [13]–[15].
Therefore, a centralized algorithm that must be implemented
with all the data in a centralized agent is neither practical
nor safe especially in the big data environment. A distributed
algorithm relied on the local data and limited communication
among agents is necessary for the big data environment. In
what we refer to as ”consensus learning”, a single model must
be agreed by all the agents based on some consensus protocols
after the distributed learning process. Thus, consensus learning
for distributed FNN (D-FNN) is quite expected in the big data
environment.

Distributed machine learning algorithms, such as distributed
extreme learning machines [16], [17], distributed support vec-
tor machines [18], [19], and distributed deep neural networks
[20], [21] have been widely investigated. In [16], a distributed
extreme learning machine with kernels based on MapReduce
is proposed to realize its parallel computation. Very recently,
a decentralized multi-task learning based on extreme Learning
machines is proposed in [17], where the alternating direction
method of multipliers (ADMM) [22] is employed in an
alternating optimization procedure. It is clear that the com-
putational complexity of this method increases dramatically
due to the alternating procedure. The ADMM procedure is
also employed in [18], [19] to achieve distributed solutions
for support vector machines. In [20], [21], ADMM-based
algorithms are proposed to train the deep neural networks
to avoid gradient-based methods. It should be mentioned
that, none of these distributed algorithms can deal with the
uncertainty problem in the big data environment.

Recently, several distributed algorithms for FNN were pro-
posed [23], [24]. The authors in [23] proposed a decentralized
algorithm for random-weights FNN, where the parameters in
the antecedent layer are randomly selected instead of being es-
timated. An online implementation for the same FNN structure
in [23] is further proposed in [24]. There’s no doubt that such
a random method for parameter identification can result in
very large deviations during the learning process. In addition,
it suffers from the curse of dimensionality as the number of
fuzzy rules increases exponentially with the increase of input
space. Moreover, the proposed distributed algorithms can only
assure the consensus on the consequent layer instead of both
antecedent and consequent layers of the FNN. In other words,
such distributed algorithms are not really distributed since a
single model can not be agreed by multiple agents. Therefore,
these distributed algorithms are neither practical nor efficient
in the big data environment.

To overcome the aforementioned issues in distributed algo-

rithm for FNN, this paper proposes a fully D-FNN model,
which considers the consensus for its antecedent and con-
sequent layers and hence is really distributed. A novel con-
sensus learning algorithm, which consists of consensus-based
structure learning and parameter learning, is proposed for
the D-FNN model. Particularly, the consensus-based structure
learning for the antecedent layer is built on a distributed
clustering method, which can alleviate the dimensionality
problem of the random-weights FNN. The consensus-based
parameter learning for the consequent layer is realized by
a distributed least square algorithm. The consensus-based
structure learning and parameter learning are implemented
sequentially with the latter employed after the former. Both
of them are built on the well-known ADMM, which has
been shown as an efficient solution for the consensus-based
problems [22], [25]. Although many centralized algorithms
for the FNN with clustering method for structure learning
were studied in [26]–[28], to the authors’ best knowledge,
its distributed counterparts were not quite considered in the
literature. The contribution of this paper is three-fold:
• This paper proposes a new D-FNN model to address the

inherent issues in the big data environment, including the
uncertainty and distributed challenges. Note that existing
D-FNN models always avoided the consensus for its
antecedent layer due to computational difficulty. The pro-
posed real D-FNN exploits distributed structure learning
and parameter learning sequentially for the antecedent
layer and consequent layer, respectively.

• A novel consensus learning algorithm is proposed to ad-
dress the proposed D-FNN model. The consensus learn-
ing algorithm that consists of consensus-based structure
learning and parameter learning is built on the well-
known ADMM. It’s worth noting that the consensus
learning algorithm is very scalable and does not suffer
from slow training speed or gradient vanishing problems
compared with back-propagation-based methods.

• This paper provides comprehensive simulations of vari-
ous structures of the D-FNN. Simulation results of the
proposed consensus learning algorithm outperform all
existing D-FNN algorithms in terms of both generaliza-
tion accuracy and training speed. Thus the superiority
and effectiveness of the consensus learning algorithm are
clear.

The rest of the paper is organized as follows. Section
II is devoted to modelling of the structure learning and
parameter learning for centralized FNN. Section III extends
the centralized FNN to D-FNN, for which the consensus
learning algorithm is proposed. A comprehensive simulation
is conducted in Section IV to confirm the superiority and
effectiveness of the proposed D-FNN model and consensus
learning algorithm. Conclusions are drawn in Section V.

II. STRUCTURE LEARNING AND PARAMETER LEARNING
FOR CENTRALIZED FNN

Let us briefly recall the structure of existing FNN, which
employs the first-order of the Takagi-Sugeno method of fuzzy
inference system. Suppose estimating a scar output y ∈ R

3

from a D-dimensional input x = [x1, x2, · · · , xD], then the
k-th fuzzy rule of the T-S system is

Rule k: IF x1 is Ak1 and · · · and xD is Akd

Then y = wk0 +
∑D

j=1 wkjxj

where Akj is a Gaussian membership fuzzy set whose mem-
bership function is described by,

ϕkj(xj) = exp

[
−
(
xj −mkj

σkj

)2
]

(1)

where mkj and σkj are the mean and standard variance of the
Gaussian membership function, respectively. Usually, the FNN
is constituted by five feed-forward layers, whose structure is
provided in Fig.1.

Layer 1: Input

Layer 2: Antecedent

Layer 4: Consequent

Layer 5: Output

Layer 3: Rule

ො𝑦

...

Σ

𝑥1 𝑥2 𝑥𝐷

...

......

...
ത𝜙1 𝑅2𝑅1 𝑅𝐾

ത𝜙2 ത𝜙𝐾

𝜓1 𝜓2
𝜓𝐾

𝑋 𝑋 𝑋

Fig. 1. The structure of FNN

Layer 1 is the input layer, where each node corresponds to
one input variable, i.e. xd, and transmits the scaled input value
to the next layer.

Layer 2 is the antecedent layer, where each node corre-
sponds to one fuzzy set and outputs a membership value
according to (1).

Layer 3 is the rule layer, where each node represents one
fuzzy logic rule and performs antecedent matching of this rule
using the following AND operation:

φk(x) =

D∏
j=1

ϕkj(xj), (2)

which is the firing strength of fuzzy rule k. The obtained firing
strength is then normalized by

φ̄k(x) =
φk(x)∑K
k=1 φk(x)

. (3)

where K is the total number of fuzzy rules.

Layer 4 is called the consequent layer, where each node
performs a defuzzification process for each fuzzy rule k using
a weighted average operation as follows:

ψk(x) = φ̄k(x)(wk0 +

D∑
j=1

wkjxj), (4)

Layer 5 is the output layer, which calculates the overall
output by summing the output of each fuzzy rules in Layer 4
as follows,

ŷ =

K∑
k=1

ψk(x), (5)

Generally, FNN involves identification of structure and pa-
rameters. The structure learning is to identify the parameter of
Gaussian membership function in the antecedent layer for each
fuzzy rule k, i.e. mkj and σkj , j ∈ {1, · · · , D}; the parameter
learning is to identify the output weights wk0, · · · , wkD in the
consequent layer. Both of the structure learning and parameter
learning can be addressed by the use of back propagation
method [29]. Note that the back-propagation learning process
often suffers from slow training speed and gradient vanishing
issues. Thus, it is neither practical nor efficient especially in
the big data environment, where the data possibly have very
large samples and dimensions. To avoid the aforementioned
issues, we considered employing the clustering method [26]
for the structure learning and the least square algorithm [27]
for the parameter learning.

The fuzzy rules are determined by the input-output pairs
of the training samples. A basic idea is to group the input-
output pairs into clusters and use one rule for each cluster. In
this paper, the K-means algorithm [30], which is one of the
most popular and efficient clustering algorithm, is employed
for structure learning to identify parameters in the antecedent
layer of the FNN. As shown in Fig.2, the clustering centers
obtained by the K-means algorithm will be the centers of
Gaussian membership function in the antecedent layer of the
FNN.

Let D := {(Xi, Yi)|Xi ∈ RD, Yi ∈ R, i ∈ N :
{1, · · · , N}} denote the set of training data, xij denote the
j-th component of the i-th observation Xi. The K-means
algorithm aims at partitioning the N observations into K sets
C := {C1, · · · , CK}. It should be noted that the total number
of clusters K, which is assumed to be known a priori, is also
the total number of fuzzy rules. Let K := {1, · · · ,K}, the
clustering problem amounts to identifying the centers of each
cluster k ∈ K by minimizing the squared error distortion, i.e.,

mk = arg min
mk

1

2

K∑
k=1

|Ck|∑
i=1

||Xi −mk||2 (6)

where mk is the center of cluster Ck. The K-means algorithm
uses an iterative refinement technique. Starting from an initial
set of K centers, i.e. {m1(0), · · · ,mK(0)}, the algorithm
alternates between an assignment step and an update step as
follows.
• Assignment step: Assign each observation Xi to the

cluster C(t)k , whose center is closest to Xi.

4

𝐦1 𝐦2

𝐦𝑘

𝛔1

𝛔2

𝛔𝑘

Clustering

Generating Antecedence of Fuzzy Rules

𝑥1𝑚11

𝜎11

𝐴11Cluster 1:

𝑥𝑁𝑚1𝑁

𝜎1𝑁

𝐴1𝑁

…

𝑥1𝑚21

𝜎21

𝐴21Cluster 2:

𝑥𝑁𝑚2𝑁

𝜎2𝑁

𝐴2𝑁

…

𝑥1𝑚𝐾1

𝜎𝐾1

𝐴𝐾1Cluster K:

𝑥𝑁𝑚𝐾𝑁

𝜎𝐾𝑁

𝐴𝐾𝑁

…

…

Fig. 2. The clustering method to identify Gaussian parameters in the antecedent layer of the FNN

• Update step: Update the center of each cluster by

m
(t)
k =

1

|Ck(t)|
∑

Xi∈Ck(t)

Xi.

The K-means algorithm converges if the centers are unchanged
during the iteration. Once the centers of each cluster are
obtained, the center of each fuzzy set is thus obtained. Ac-
cordingly, the standard variance σkj of each fuzzy set can be
obtained by

σkj =

√√√√ 1

N

N∑
i=1

(xij −mkj)
2. (7)

By now, the parameters of Gaussian membership function in
the antecedent layer are determined. In the following, a closed-
form solution to identify the output weights in the consequent
layer will be introduced.

Define a hidden matrix H := [H1, · · · , HK], where

Hk =

φ̄k(X1) φ̄k(X1)x11 · · · φ̄k(X1)x1D
φ̄k(X2) φ̄k(X2)x21 · · · φ̄k(X2)x2D

...
...

. . .
...

φ̄k(XN) φ̄k(XN)xN1 · · · φ̄k(XN)xND,

 (8)

and the output vector Y := [Y1, · · · , YN]. The output weight
w in the consequent layer of FNN can be learned by solving
the following optimization problem,

w = arg min
w

1

2
||Y −Hw||2 +

µ

2
||w||2, (9)

where µ > 0 is a trade-off factor between the training error
and regularization, the weight w has the following form:

w = [w10, · · · , w1d, · · · , wK0, · · · , wKD]T , (10)

It should be noted that selecting the value of µ appropriately
can make the solution much more stable and have better

generalization performance [31]. Since (9) is a standard least
square optimization problem, its closed form solution can be
easily obtained by:

w = (HTH + µI)−1HTY, (11)

where I is the identity matrix with dimension of K(D + 1).

III. CONSENSUS LEARNING FOR D-FNN

In the big data environment, large-scale data may exist in
different locations and machines, referred as multiple agents
in this paper. Note that the centralized FNN must implement
all data in a single agent. It may not be possible to perform
centralized FNN in the big data environment due to several
reasons. First, the communication load and storage resources
of a single agent may limit its implementation of large-scale
data. In addition, transiting the data between multiple agents
may result in serious data security and privacy issues, which
have attracted increasing public attention recently. Moreover,
the whole system will fail if the centralized agent loses or
disconnects due to contingency. Therefore, there is a great
demand for D-FNN, where the global training process can be
performed in each individual agent with limited information
exchange. Moreover, the D-FNN is more flexible and robust
against the contingencies compared with the centralized FNN.

In this section, the centralized FNN is extended to its
distributed version D-FNN to deal with the big data. A
novel consensus learning is proposed for the D-FNN, which
integrates multiple FNNs corresponding to multiple agents in
the big data environment and agrees on a single FNN based
on consensus protocols. The consensus learning algorithm
consists of consensus-based structure learning and parameter
learning. Both of them are built on ADMM, which is widely
employed in consensus-based distributed problems [22].

5

Generally, the distributed algorithms can be classified into
two types based on network topology. The first one is imple-
mented in a star network, where a fusion center is required to
communicate with all agents. The second one does not need
such fusion center. The agents are only allowed to communi-
cate with their neighbouring agents based on the underlying
network topology. Although the former has better convergence
performance, the latter is more preferred in the big data
environment due to the practicability and security issues. The
fusion center may not exist in the big data environment. In
addition, the requirement that all agents must communicate
with the fusion center instead of with their neighbouring ones,
will increase the potential risk of data leakage. Therefore, the
D-FNN proposed in this paper will employ the second type of
distributed algorithm.

We consider a network with L nodes connected with E
edges and each node is assumed as an agent. This network
can be described as an undirected graph G = {L, ξ}, where
L and ξ are the sets of vertexes and edges, respectively. A
simple network consisting of five agents and six edges is
shown in Fig.3 for illustration purpose. For the dataset D :=
{(Xi, Yi)|i ∈ N}, Let {D1, · · · ,DL} be a decomposition of
the entire dataset D. For ease of representation, each subset
Dl is assumed to be the data located on each agent l ∈ L.
The set of neighbouring agents of agent l is defined as Nl.
Similarly, we introduce subset Cl to represent the observation
subset of agent l. In each subset Cl, let Clk denote the subset
of cluster k in agent l such that

⋃K
k=1 Clk = Cl. Based on

Agent-1

Agent-3

Agent-5 Agent-4

Agent-2

Fig. 3. A simple network with five agents

the consensus strategy, the structure learning problem for the
D-FNN can be formulated as follows,

min
ml

k

1

2

L∑
l=1

K∑
k=1

∑
Xl

i∈Clk

||X l
i −ml

k||2 (12a)

s.t. ml
k = rk, l ∈ L, k ∈ K, (12b)

where ml
k is a local variable, representing the center of fuzzy

set k of agent l, rk is a global variable to integrate all local
centers and |Clk| represents the cardinality operation for a set.
The constraint (12b) employs the consensus strategy, which
assures all the local centers coincide at one global vector of

center. It is worth noting that the local variable ml
k can be

computed in parallel for each agent l.
Once the global center rk of each fuzzy rule k is determined,

the global standard variance can be easily calculated by:

σ̄kj =

√√√√ 1

N

L∑
l=1

|Cl|(σl
kj)

2 (13)

where σ̄kj is the j-th component of the global standard vari-
ance of the k-th fuzzy rule, σl

kj is the corresponding standard
variance of local agent l, |Cl| represents the cardinality of
subset Cl. It should be noted that the standard variance σl

kj of
rule k dimension j is calculated in a component-wise manner,
i.e.

σl
kj =

√√√√ 1

|Clk|
∑

Xl
i∈Clk

(X l
ij −ml

kj)
2 (14)

where X l
ij and ml

kj are the j-th component of X l
i and ml

k,
respectively.

The above distributed clustering by consensus learning for
antecedent layer identification of the D-FNN is shown in Fig.4

Agent 1
𝛔2
1

𝛔1
1

𝐦1
1

𝐦2
1

𝛔𝑘
1

𝐦𝑘
1

Agent K
𝛔2
2

𝛔𝑘
2

𝛔1
2

𝐦1
2

𝐦𝑘
2

𝐦2
2

Consensus
Learning

…
…

ഥ𝛔2

ഥ𝛔1

𝒓1

𝐫2

ഥ𝛔𝑘
𝒓𝑘

Consensus

Distributed clustering by consensus learning

Fig. 4. The procedure of distributed clustering by consensus learning for
antecedent layer identification of the D-FNN

Similarly, the parameter learning problem for the D-FNN
based on the consensus strategy is formulated as follows,

min
wl

1

2

L∑
l=1

(||Y l −Hwl||2 + µ||wl||2), (15a)

s.t. wl = z, l ∈ L, q ∈ Nl, (15b)

where wl is a local variable, representing the output weight
of agent l, z is a common global weight to integrate all local
weights.

The procedure of the proposed consensus learning algo-
rithm, which consists of distributed structure learning for the
antecedent layer and distributed parameter learning for the
consequent layer, is described in Fig.5.

6

…

FNN-1

𝒟1

…

FNNs for
multiple agents

DFNN by consensus learning
Distributed

Samples

…

FNN-L

𝒟𝐿

DFNN

Fig. 5. The procedure of consensus learning for the D-FNN

A. Overview of ADMM

In this section, we first introduce the preliminary knowledge
of ADMM [22], which will be used to solve the proposed
optimization problem (12) and (15) for the consensus learning.
The standard form of ADMM solves the following problem:

minf(x) + g(y) (16)
s.t. Ax +By = c, x ∈ Cf , y ∈ Cg (17)

Then the following augmented Lagrangian is constructed,

L(x,y,λ) = f(x) + g(y) + λT (Ax +By − c)
+
ρ

2
||Ax +By − c||2 (18)

where λ is the Lagrange multiplier and ρ is a positive constant
to trade-off the convergence rate and numerical accuracy. The
ADMM solves (18) iteratively via an alternating procedure,
which starts from arbitrary initial points y(0) and λ(0) and
then updates the variable x and y and multipliers λ sequen-
tially by the following procedure:

x(t+ 1) = arg min
x∈Cf

L(x,y(t),λ(t)), (19)

y(t+ 1) = arg min
y∈Cg

L(x(t+ 1),y,λ(t)), (20)

λ(t+ 1) = λ(t) + ρ(Ax(t+ 1) +By(t+ 1)− c), (21)

until convergence. The convergence behavior at iteration t can
be inspected by analyzing the primal residual and dual residual
with given tolerances as follows,

||Ax(t) +By(t)− c||2 ≤ ε1, (22)
||λ(t)− λ(t− 1)||2 ≤ ε2, (23)

where ε1 and ε2 are the values of convergence tolerance of
the ADMM procedure.

Under the convexity condition of function f(·) and g(·)
and domain set Cf and Cg , ADMM is known to converge
to a unique stable point [22]. A recent study also proves
the convergence of ADMM for a variety of nonconvex and
possibly nonsmooth functions given some sufficient conditions
[25].

B. Consensus-based distributed structure learning

The optimization problem (12) is nonconvex, which can
not be efficiently solved by any exhaustive search methods.
Meanwhile, the centralized clustering methods such as the K-
means algorithm still suffer from the issues of communication
load, privacy concerns and contingencies in the big data
environment. Thus, a distributed clustering method is crucial
to address the optimization problem (12). In this paper, a
distributed K-means algorithm is proposed to address the
structure learning optimization problem (12). This method is
motivated by [32], where a distributed clustering scheme is
developed for wireless sensor networks.

First, we construct the following augmented Lagrangian for
(12):

Ls(m, r,λs) =
1

2

L∑
l=1

K∑
k=1

∑
Xl

i∈Clk

||X l
i −ml

k||2

+

L∑
l=1

K∑
k=1

λT
s,kl(m

l
k − rk)

+
1

2
ρs

L∑
l=1

K∑
k=1

||ml
k − rk||2 (24)

where λs,kl is the Lagrange multiplier and ρs > 0 is a penalty
parameter. Starting from the initial points r(0) and λs(0),
the variables at each iteration t are updated iteratively by the
following procedures based on the ADMM:

ml(t+ 1) = arg min
m
L(ml, r(t),λs(t)), (25)

r(t+ 1) = arg min
r
L(ml(t+ 1), r,λs(t)), (26)

λs,kl(t+ 1) = λs,kl(t) + ρs(m
l
k(t+ 1)− rk(t+ 1)). (27)

It should be noted that (25) can be solved in parallel for each
agent l. Similarly, we can also employ the assignment step
and update step in the K-means algorithm to update the cluster
centers ml(t + 1) for each agent l. On the other hand, since
the optimization problem (26) is linear on r, the closed-form
solution can be easily solved by setting the partial derivatives
with respect to r to zero. The closed-form solution of (26) is
given directly as follows,

rk(t+ 1) =
1

ρs
λ̄s,kl(t) + m̄l

k(t+ 1), (28)

where

m̄l
k(t+ 1) =

1

L

L∑
l=1

ml
k(t+ 1), (29)

λ̄s,kl(t) =
1

L

L∑
l=1

λs,kl(t). (30)

From (28), we can see updating rk(t+1) requires the commu-
nication between all the agents. However, it may not possible
in the big data environment. Therefore, a more practical
updating procedure is more preferred here. Similarly with the
idea in [33], this paper employs the well-known distributed
average consensus (DAC) strategy [34] to update rk(t + 1).
DAC is an iterative strategy to compute the global average

7

requiring data only exchanged in a local neighborhood. At
iteration t, the local DAC update is given by:

αl(t+ 1) =
∑
q∈Ll

Wlqα
l(t), (31)

where αl is the local variable corresponding to each agent
l, Wlq is a weighted connectivity matrix. Suppose dl is the
number of neighboring agents of agent l and d = maxl∈L dl.
According to [34], given the following matrix-degree weight,

Wlq =

1

d+ 1
, if q ∈ Ll;

1− dl
d+ 1

, if q = l;

0, otherwise.

(32)

the following procedure converges to the global average:

lim
t→+∞

αl(t) =
1

L

L∑
l=1

αl(0), ∀l ∈ L. (33)

Therefor, m̄l
k(t + 1) and λ̄s,kl(t) can be easily obtained by

using the DAC iteration (31) with the matrix-degree weight
(32). It is worth noting that it is not necessary to match the
cluster ordering of each agent before the consensus procedure.
The consensus algorithm will still converge with random initial
cluster ordering.

Based on the analysis above, we can summarize the algo-
rithm for distributed structure learning in Algorithm 1. The
convergence behavior of Algorithm 1 can be inspected by
checking the norms of the following two residuals:

||ml
k(t)−mq

k(t)||2 ≤ ε1, (34)

||λl
s,k(t)− λl

s,k(t− 1)||2 ≤ ε2. (35)

Algorithm 1 ADMM-based distributed structure learning (12)
Initialization: Set t = 0 and the Lagrange multipliers
λs,kl(t) = 0. Initialize the cluster centers ml

k(t) by using
K-means algorithm for each agent l.
for t = 0, 1, 2, · · · , do

Update the local variables ml(t+ 1):
Assignment step: Each agent l assigns each X l

i to the
cluster Clk(t), whose center rlk(t) is closest to X l

i .
Update step: Each agent l updates the center of each
cluster Clk(t) by

ml
k(t+ 1) =

1

|Clk(t)|
∑

Xl
i∈Clk(t)

X l
i (36)

Update the global variables r(t + 1) by (28) and
broadcast it to each agent l.
Update the dual variables λs(t + 1) by (27) and
broadcast it to each agent l

end for

C. Consensus-based distributed parameter learning

Similarly, we solve the optimization problem (15) in a
distributed manner by the use of ADMM. The augmented
Lagrangian for (15) is as follow,

L(w, z,λp) =
1

2

L∑
l=1

||Y l −H lwl||2 +
µ

2
||z||2

+

L∑
l=1

λT
p,l(w

l − z)

+
1

2
ρp

L∑
l=1

||wl − z||2 (37)

where λp,l is the Lagrange multiplier and ρp > 0 is a penalty
parameter. The ADMM-based procedures for distributed pa-
rameter learning are as follows,

wl(t+ 1) = arg min
m
L(wl, z(t),λp(t)), (38)

z(t+ 1) = arg min
r
L(wl(t+ 1), z,λp(t)), (39)

λp(t+ 1) = λp(t) + ρs(w
l(t+ 1)− z(t+ 1)). (40)

Since (38) is a standard least square problem, its closed form
solution can be easily obtained by:

wl(t+ 1) = ((H l)TH l + µI)−1((H l)TY l −λp(t) + ρpz(t)),
(41)

where I is the identity matrix with dimension of K(D + 1).
The closed-form solution of (39) can be obtained by:

z(t+ 1) =
λ̄p,l(t) + ρpw̄

l(t+ 1)

µ/L+ ρp
, (42)

where

w̄l(t+ 1) =
1

L

L∑
l=1

wl(t+ 1),

λ̄p,l(t) =
1

L

L∑
l=1

λp,l(t).

Similarly with the procedure in the distributed structure learn-
ing, we also employ the DAC strategy in order to avoid
communications among all agents. The w̄l(t+ 1) and λ̄p,l(t)
are obtained using the DAC iteration (31) with the matrix-
degree weight (32).

Similarly, we summarize the algorithm for distributed pa-
rameter learning in Algorithm 2. The convergence behavior of
the Algorithm 2 can be inspected by checking the norms of
the following two residuals:

||wl(t)− z(t)||2 ≤ ε1, (43)
||λp(t)− λp(t− 1)||2 ≤ ε2. (44)

Remark: One may notice that, during the consensus proce-
dure of the D-FNN, the cluster number of agents are required
to be the same. However, this may be not always true in some
specific scenarios. To make our algorithms more general, the
scenario that some clusters are missing in some agents should
be considered. Here we provide a simple strategy to address
the cluster mismatching problem. Suppose the cluster number

8

Algorithm 2 ADMM-based distributed parameter learning
(15)

Initialization: Set t = 0 and initialize global weight z(t)
and Lagrange multipliers λp(t) for each agent.
for t = 0, 1, 2, · · · , do

Update the local variables wl(t+ 1) by (41)
Update the global variables r(t + 1) by (42) and
broadcast it to each agent l.
Update the dual variables λp(t + 1) by (40) and
broadcast it to each agent l

end for

of each agent are K1,K2 · · · ,KL, respectively. Without loss
of generality, we set K1 ≤ K2 ≤ KL. As shown in Fig.
6, if a cluster is missing, the corresponding position is filled
with zero-vector 0. After the filling procedure, the cluster
number of each agent becomes the same. Then the Algorithm
1 can be used directly for the distributed structure learning of
the D-FNN. If the data distribution of each agent are totally
different, then the knowledge of domain adaptation [35] should
be considered. However, this goes beyond the scope of this
paper.

𝑚𝑚1
1

𝑚𝑚2
1

𝑚𝑚𝐾𝐾1
1

𝑚𝑚1
2

𝑚𝑚2
2

𝑚𝑚𝐾𝐾1
2

𝑚𝑚1
𝐿𝐿

𝑚𝑚2
𝐿𝐿

𝑚𝑚𝐾𝐾1
𝐿𝐿

...

𝑚𝑚𝐾𝐾1+1
2

𝑚𝑚𝐾𝐾2
2

𝑚𝑚𝐾𝐾2+1
𝐿𝐿

𝑚𝑚𝐾𝐾𝐿𝐿
𝐿𝐿

… …
… …

𝑚𝑚𝐾𝐾1+1
𝐿𝐿

𝑚𝑚𝐾𝐾2
𝐿𝐿

…

Agent-1 Agent-2 Agent-L

…

𝟎𝟎

𝟎𝟎

𝟎𝟎

𝟎𝟎

𝟎𝟎

𝟎𝟎

……

Fig. 6. The cluster centers of each agent in the mismatching scenario

IV. SIMULATIONS

In this section, the performance of the proposed consensus
learning algorithm for D-FNN in the big data environment
is evaluated by numerical simulations on several widespread
datasets, which are available on UCI Machine Learning Repos-
itory 1 or Kaggle Datasets 2. The simulation results based on

1http://archive.ics.uci.edu/ml
2https://www.kaggle.com/datasets

TABLE I
NUMERICAL INFORMATION OF THE TESTED DATASETS

Dataset Samples Dimensions Desired Output
CCPP [36] 9,568 4 Electrical energy

KC-house [37] 21,613 15 House price
CASP [38] 45,730 9 Deviation
Motor [39] 998,070 7 Motor temperature

the proposed consensus learning algorithm are compared with
several state-of-the-art FNN algorithms.

The datasets are selected to represent various domains in the
big data environment though not all of them have very large-
scale samples and dimensions. Here we briefly summarize the
input and output information for these datasets in Table I. In
all these cases, input variables are normalized between [−1, 1]
before the experiments.

To stimulate the distributed nature of the big data, a network
of agents is randomly generated using a random topology
model [33] with each agent’s connectivity probability as 25%.
Accordingly, each dataset is randomly decomposed for each
agent. To evaluate the accuracy of all the models, we perform
a 10-fold cross-validation for each dataset. In each fold, the
following FNN algorithms are compared:

• Random-weight-FNN (R-FNN): This is the distributed
FNN algorithm reported in [23], which randomly gen-
erates the Gaussian parameters in the antecedent layer
and then employs the least square algorithm to identify
the parameters in the consequent layer. As we mentioned
in the Introduction, such a random method for parameter
identification could result in very large deviations during
the learning process. In addition, it suffered from the
curse of dimensionality as the number of fuzzy rules
increases exponentially with the increase of input space.
Moreover, the distributed algorithm assured consensus
only for the consequent layer instead of both the an-
tecedent and consequent layers. Thus it is not really
distributed and thus not practical in the big data envi-
ronment.

• Centralized K-means-FNN (C-FNN): This is the central-
ized FNN algorithm provided in this paper. It employs the
K-means algorithm to identify the Gaussian parameters in
the antecedent layer and least square algorithm to identify
the parameters in the consequent layer. Specifically, C-
FNN solves the optimization problem (6) by the central-
ized K-means algorithm to obtain the parameters mk and
σkj and then fix them to solve the optimization problem
(9) by the close-form solution (11). Note that by the use
of the K-means algorithm for identifying parameters in
the antecedent layer, it does not suffer from the curse of
dimensionality as R-FNN does.

• Half-consensus learning D-FNN (H-FNN): This is the
distributed algorithm for the same structure of C-FNN but
employing the consensus protocol only for its consequent
layer. Thus, the term ”half-consensus learning” is used
for the H-FNN, Note that by H-FNN, agents can not
agree on a single FNN model after the learning procedure.
Specifically, H-FNN solves the optimization problem

9

0 5 10 15 20 25

Iteration

0

0.05

0.1

0.15

0.2

0.25

D
is

tr
ib

ut
ed

 K
-m

ea
ns

 E
rr

or

CCPP, K = 15

0 10 20 30 40 50 60

Iteration

0

0.05

0.1

0.15

0.2

0.25

0.3

D
is

tr
ib

ut
ed

 K
-m

ea
ns

 E
rr

or

CASP, K = 15

0 5 10 15 20 25 30 35 40

Iteration

0

0.05

0.1

0.15

0.2

0.25

D
is

tr
ib

ut
ed

 K
-m

ea
ns

 E
rr

or

KC-house, K = 15

0 2 4 6 8 10 12 14 16 18 20

Iteration

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

D
is

tr
ib

ut
ed

 K
-m

ea
ns

 E
rr

or

Motor, K = 15

Fig. 7. Convergence bahavior of the distributed K-means algorithm for various datasets

(6) by the centralized K-means algorithm to obtain the
parameters mk and σkj . Then H-FNN broadcasts them
to each agent and solves optimization problem (15) in a
distributed manner by Algorithm 2.

• Consensus learning D-FNN (D-FNN): This is the con-
sensus learning algorithm proposed by this paper, which
employs the consensus protocol for both the antecedent
and consequent layers. It’s worth noting that this al-
gorithm is the really distributed and practical one in
the big data environment. The agreement among various
agents on a single FNN model can be obtained after
the consensus learning procedure. Particularly, D-FNN
employs Algorithm 1 and Algorithm 2 sequentially to
respectively solve the optimization problem (12) and
optimization problem (15) in a fully distributed manner.

In this paper, all simulations are implemented using Matlab
R2019b on a laptop with Intel i7 @ 4.0 GHz processor and
16 GB of memory. The convergence criteria of the ADMM
procedure in Algorithm 1 and Algorithm 2 are set as ε1 =
ε2 = 10−3. The normalized root mean square error (NRMSE)
defined by

NRMSE =

√√√√ 1

Nσ̂2
Y

N∑
i=1

(Ŷi − Yi)2, (45)

is used to evaluate the performance of the models.
The convergence behavior of distributed K-means algorithm

and distributed parameter learning are provide by Fig.7 and

Fig.8, respectively. It can be seen, both of the two algorithms
converge quite fast for these datasets.

Table II summarizes the simulation results for the tested
datasets by implementing R-FNN, C-FNN, H-FNN and D-
FNN, respectively. The first column of Table II is the dataset
name, the second column gives the total number of agents, the
third column provides the trade-off factor in (15a). The fourth,
fifth and sixth column of Table II present the simulation results
of R-FNN including total number of rules, obtained NRMSE
value and training time, respectively. The seventh column of
Table II gives the K value, which is also the total number
of clustering and fuzzy rules for implementing the C-FNN,
H-FNN and D-FNN. Their simulation results are provided in
the remaining columns. It should be noted that the NRMSE
value obtained by the C-FNN is a lower bound of the one
obtained by H-FNN. It can be seen from Table II, R-FNN can
not handle the datasets KC-house and Motor due to the large-
scale rule numbers and samples. The NRMSE value of CCPP
obtained by C-FNN is much worse than the ones obtained by
C-FNN, H-FNN and D-FNN. As for CASP, the NRMSE value
obtained by R-FNN is a bit better than other three algorithms
since R-FNN uses much more rules (512 vs 15). Clearly,
R-FNN is not scalable and can not be used in the big data
environment. We also test the D-FNN by using various values
of K for CASP. Figure 9 provides the NRMSE of CASP by
setting various K for the D-FNN. Generally, larger value of
K will lead to smaller value of NRMSE. However, we still
suggest to select a moderate value of K. Surprisingly, the
NRMSE value of Motor by D-FNN is much better than the

10

0 10 20 30 40 50 60 70 80 90

Iteration

0

10

20

30

40

50

60

70

80

90

D
is

tr
ib

ut
ed

 p
ar

am
et

er
 le

ar
ni

ng
 E

rr
or

CCPP, K = 15

0 50 100 150 200 250 300

Iteration

0

5

10

15

20

25

D
is

tr
ib

ut
ed

 p
ar

am
et

er
 le

ar
ni

ng
 E

rr
or

CASP, K = 15

0 10 20 30 40 50 60 70 80 90 100

Iteration

0

5

10

15

20

25

30

D
is

tr
ib

ut
ed

 p
ar

am
et

er
 le

ar
ni

ng
 E

rr
or

KC-house, K = 15

0 20 40 60 80 100 120 140

Iteration

0

0.5

1

1.5

2

2.5

D
is

tr
ib

ut
ed

 p
ar

am
et

er
 le

ar
ni

ng
 E

rr
or

Motor, K = 15

Fig. 8. Convergence bahavior of the distributed parameter learning algorithm for various datasets

TABLE II
SIMULATION RESULTS FOR THE DATASETS

Dataset L u R-FNN K C-FNN H-FNN D-FNN
Rules NRMSE Time(s) NRMSE Time (s) NRMSE Time (s) NRMSE Time (s)

CCPP 5 0.01 16 4.178 0.23 15 0.2313 0.15 0.2320 0.26 0.2331 0.61
KC-house 5 0.01 32768 - - 15 0.5299 0.45 0.5304 0.51 0.5251 2.31

CASP 5 0.001 512 0.7682 457.4 15 0.7745 0.94 0.7748 0.83 0.7827 1.43
Motor 25 0.001 128 - - 15 0.6230 13.31 0.6248 6.0 0.6079 9.82

other algorithms since the clustering results (fuzzy rules) of
D-FNN is different from the others’. For such a large-scale
dataset, the distributed clustering results can outperform the
centralized clustering results. This phenomenon also verifies
the effectiveness of the proposed consensus learning algorithm.
In addition, we would like to re-emphasize that the superiority
of D-FNN compared with other three methods are as follows:
1) The D-FNN is able to handle data in multiple agents. This
capability becomes more significant in big data environment
as the big data may exist in different locations and machines.
2) The D-FNN can alleviate the burden of communication load
and storage resources in a single agent. 3) The D-FNN can
preserve the users’ data privacy by limiting the data transiting
between multiple agents.

To verify the proposed distributed K-means method can
work well in the case that each agent has different clus-
ter numbers, we implemented it on the CASP dataset with
different sample number and different cluster number of
each agent, specifically, the cluster number are respectively
K1 = 11,K2 = 12,K3 = 13,K4 = 14,K5 = 15. The
distributed K-means method converge within 50 iterations and

achieves the NRMSE value 0.7887, which is consistent with
the NRMSE value 0.7827 obtained by the distributed K-means
method but with the same cluster number K = 15 of each
agent.

V. CONCLUSIONS

Emerging technology and breakthroughs have driven the
boom of big data in various domains. This paper has proposed
a D-FNN model to deal with the inherent issues of the big
data environment including the uncertainty and distributed
challenge. The proposed D-FNN employed a sentential manner
to exploit distributed structure learning and parameter learning
based on distributed optimization methods. It’s worth noting
that the D-FNN is very scalable and does not suffer from
slow training speed and gradient vanishing problems compared
with back-propagation-based methods. The consensus learning
algorithm has been proposed for the D-FNN in the big
data environment. The consensus learning algorithm, which
consists of consensus-based distributed structure learning and
parameter learning is built on the well-known ADMM. Simu-
lation results have verified the superiority and effectiveness

11

0 5 10 15 20 25 30

Number of rules

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83
N

R
M

S
E

Fig. 9. NRMSE of CASP by setting various K

of the proposed consensus learning algorithm for D-FNN.
The proposed consensus learning algorithm can be easily
generalized to realize various functions and tasks in the area
of machine learning. A new D-FNN model with hierarchy
structure based on the proposed consensus learning algorithm
is under consideration for future works.

REFERENCES

[1] J. Qiu, Q. Wu, G. Ding, Y. Xu, and S. Feng, “A survey of machine
learning for big data processing,” EURASIP Journal on Advances in
Signal Processing, vol. 2016, no. 1, pp. 1–16, 2016.

[2] J. Gantz and D. Reinsel, “The digital universe in 2020: Big data, bigger
digital shadows, and biggest growth in the far east,” IDC iView: IDC
Analyze the future, vol. 2007, no. 2012, pp. 1–16, 2012.

[3] Z. Obermeyer and E. J. Emanuel, “Predicting the future—big data,
machine learning, and clinical medicine,” The New England journal of
medicine, vol. 375, no. 13, pp. 1216–1219, 2016.

[4] R. Ak, V. Vitelli, and E. Zio, “An interval-valued neural network
approach for uncertainty quantification in short-term wind speed pre-
diction,” IEEE transactions on neural networks and learning systems,
vol. 26, no. 11, pp. 2787–2800, 2015.

[5] R. H. Hariri, E. M. Fredericks, and K. M. Bowers, “Uncertainty in big
data analytics: survey, opportunities, and challenges,” Journal of Big
Data, vol. 6, no. 1, pp. 1–16, 2019.

[6] I. Couso, C. Borgelt, E. Hullermeier, and R. Kruse, “Fuzzy sets in
data analysis: From statistical foundations to machine learning,” IEEE
Computational Intelligence Magazine, vol. 14, no. 1, pp. 31–44, 2019.

[7] J.-S. Jang, “ANFIS: adaptive-network-based fuzzy inference system,”
IEEE transactions on systems, man, and cybernetics, vol. 23, no. 3,
pp. 665–685, 1993.

[8] C. El Hatri and J. Boumhidi, “Fuzzy deep learning based urban traffic
incident detection,” Cognitive Systems Research, vol. 50, pp. 206–213,
2018.

[9] G. Fu and Z. Kapelan, “Fuzzy probabilistic design of water distribution
networks,” Water Resources Research, vol. 47, no. 5, pp. 1–12, 2011.

[10] D. Chen, X. Zhang, L. L. Wang, and Z. Han, “Prediction of cloud
resources demand based on hierarchical pythagorean fuzzy deep neural
network,” IEEE Transactions on Services Computing, pp. 1–1, 2019.

[11] X. Zhao, X. Bi, G. Wang, Z. Zhang, and H. Yang, “Uncertain XML
documents classification using extreme learning machine,” Neurocom-
puting, vol. 174, pp. 375–382, 2016.

[12] L. Georgopoulos and M. Hasler, “Distributed machine learning in
networks by consensus,” Neurocomputing, vol. 124, pp. 2–12, 2014.

[13] V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza, Y. Saygin,
and Y. Theodoridis, “State-of-the-art in privacy preserving data mining,”
ACM Sigmod Record, vol. 33, no. 1, pp. 50–57, 2004.

[14] D. Chen and H. Zhao, “Data security and privacy protection issues
in cloud computing,” in 2012 International Conference on Computer
Science and Electronics Engineering, vol. 1, pp. 647–651, IEEE, 2012.

[15] M. Li, W. Lou, and K. Ren, “Data security and privacy in wireless body
area networks,” IEEE Wireless communications, vol. 17, no. 1, pp. 51–
58, 2010.

[16] X. Bi, X. Zhao, G. Wang, P. Zhang, and C. Wang, “Distributed extreme
learning machine with kernels based on mapreduce,” Neurocomputing,
vol. 149, pp. 456–463, 2015.

[17] Y. Ye, M. Xiao, and M. Skoglund, “Decentralized multi-task learning
based on extreme learning machines,” arXiv preprint arXiv:1904.11366,
pp. 1–11, 2019.

[18] P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-based dis-
tributed support vector machines,” Journal of Machine Learning Re-
search, vol. 11, no. May, pp. 1663–1707, 2010.

[19] Y.-Q. Bai, Y.-J. Shen, and K.-J. Shen, “Consensus proximal support vec-
tor machine for classification problems with sparse solutions,” Journal
of the Operations Research Society of China, vol. 2, no. 1, pp. 57–74,
2014.

[20] G. Taylor, R. Burmeister, Z. Xu, B. Singh, A. Patel, and T. Goldstein,
“Training neural networks without gradients: A scalable ADMM ap-
proach,” in International conference on machine learning, pp. 2722–
2731, 2016.

[21] C. Leng, Z. Dou, H. Li, S. Zhu, and R. Jin, “Extremely low bit neural
network: Squeeze the last bit out with ADMM,” in Thirty-Second AAAI
Conference on Artificial Intelligence, pp. 3466–3473, 2018.

[22] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends R© in Machine learning, vol. 3,
no. 1, pp. 1–122, 2011.

[23] R. Fierimonte, M. Barbato, A. Rosato, and M. Panella, “Distributed
learning of random weights fuzzy neural networks,” in 2016 IEEE
International Conference on Fuzzy Systems, pp. 2287–2294, IEEE, 2016.

[24] R. Fierimonte, R. Altilio, and M. Panella, “Distributed on-line learning
for random-weight fuzzy neural networks,” in 2017 IEEE International
Conference on Fuzzy Systems, pp. 1–6, IEEE, 2017.

[25] Y. Wang, W. Yin, and J. Zeng, “Global convergence of ADMM in
nonconvex nonsmooth optimization,” Journal of Scientific Computing,
vol. 78, no. 1, pp. 29–63, 2019.

[26] S. L. Chiu, “Fuzzy model identification based on cluster estimation,”
Journal of Intelligent & fuzzy systems, vol. 2, no. 3, pp. 267–278, 1994.

[27] J. de Jesús Rubio, “SOFMLS: online self-organizing fuzzy modified
least-squares network,” IEEE Transactions on Fuzzy Systems, vol. 17,
no. 6, pp. 1296–1309, 2009.

[28] J. A. M. Hernández, F. G. Castañeda, and J. A. M. Cadenas, “An
evolving fuzzy neural network based on the mapping of similarities,”
IEEE Transactions on Fuzzy Systems, vol. 17, no. 6, pp. 1379–1396,
2009.

[29] C.-F. Juang and C.-T. Lin, “An online self-constructing neural fuzzy
inference network and its applications,” IEEE transactions on Fuzzy
Systems, vol. 6, no. 1, pp. 12–32, 1998.

[30] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the fifth Berkeley sympo-
sium on mathematical statistics and probability, vol. 1, pp. 281–297,
Oakland, CA, USA, 1967.

[31] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning
machine for regression and multiclass classification,” IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 2,
pp. 513–529, 2011.

[32] P. A. Forero, A. Cano, and G. B. Giannakis, “Distributed clustering using
wireless sensor networks,” IEEE Journal of Selected Topics in Signal
Processing, vol. 5, no. 4, pp. 707–724, 2011.

[33] S. Scardapane, D. Wang, and M. Panella, “A decentralized training
algorithm for echo state networks in distributed big data applications,”
Neural Networks, vol. 78, pp. 65–74, 2016.

[34] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus
with least-mean-square deviation,” Journal of parallel and distributed
computing, vol. 67, no. 1, pp. 33–46, 2007.

[35] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation via
transfer component analysis,” IEEE Transactions on Neural Networks,
vol. 22, no. 2, pp. 199–210, 2010.

[36] P. Tüfekci, “Prediction of full load electrical power output of a base load
operated combined cycle power plant using machine learning methods,”
International Journal of Electrical Power & Energy Systems, vol. 60,
pp. 126–140, 2014.

[37] “Predict house price in king county using regression.” https://www.
kaggle.com/harlfoxem/housesalesprediction. Accessed: 2019-08-18.

[38] “Physicochemical properties of protein tertiary structure data set.”
https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+
Protein+Tertiary+Structure. Accessed: 2019-07-20.

12

[39] W. Kirchgässner, O. Wallscheid, and J. Böcker, “Deep residual con-
volutional and recurrent neural networks for temperature estimation in
permanent magnet synchronous motors,” in 2019 IEEE International
Electric Machines & Drives Conference (IEMDC), pp. 1439–1446,
IEEE, 2019.

	Clipboard Data(1)
	DFNN_3_Apr_20.pdf

